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Abstract

Regional Internet Registries (RIR) are organisations that manage the allocation and reg-
istration of IP addresses and Autonomous System Numbers. They publish WHOIS files
which documents IP address assignments and their contact details. Additionally, they
maintain delegation files which documents prefix and ASN allocation. Furthermore, they
maintain rDNS zone files, these files document prefix to nameserver mappings. These
data are valuable to researchers and operators; however, the relationships between pre-
fixes, origins, organisations, and maintainers that are connected indirectly, span a complex
graph. This paper attempts to fill this gap by exploring graph databases using data from
rir-data.org, a project that aims to provide longitudinal RIR data in a consistent for-
mat. However, while parsing these data, we observed significant inconsistencies such as
missing origins in their data. We utilized raw BGP Routing Information Base (RIB) files
to mitigate this inconsistency and enrich the dataset. Then we build graphs out of the en-
riched data to allow traversal of relationships between organisations, maintainers, prefixes,
and origins in an effort to complement exploratory research efforts. This study documents
our design choices and query evaluations to solve currently time-consuming and resource-
intensive queries in non-graph-based solutions. Additionally, we provide a suitable method
of modelling the data to enable comparison as well as a library of queries to perform re-
search. Finally, we highlight some open research challenges to extend our work, such as
developing a unified query layer to leverage the strengths of both a graph and a relational
database.

Keywords: RIR, WHOIS, Graph database

rir-data.org


Chapter 1

Introduction

This chapter presents background information on our research’s fundamental concepts,
motivations, goals, questions, and contributions. We propose a graph database model for
storing RIR WHOIS data and contribute a query library to enable exploratory research.
Before we discuss this, we first look at the background.

1.1 Background

The internet has revolutionized communications, transforming how we connect and share
information across the globe. Where sending mail across continents once took multiple
days, it now takes mere seconds through digital means. A fundamental aspect of this
connectivity is the use of unique numerical identifiers known as Internet Protocol (IP)
addresses, which are essential for communication between devices on a network.

Every device connected to the internet has a unique number called an IP address. This
unique identifier, such as 192.168.1.1 in the case of IPv4, allows a device to communicate
with other network-connected devices both within and outside its local network. IP ad-
dresses function much like physical mail addresses; just as mail must be sent to the correct
address to reach its intended recipient, data must be directed to the correct IP address
to ensure it reaches the right device. Without unique IP addresses, the data could be
misrouted, much like mail delivered to the wrong house.

The allocation of these unique IP addresses is managed by Regional Internet Registries
(RIR). RIRs are responsible for distributing IP address blocks to various operators, ensur-
ing that each address is unique and properly assigned. Operators include entities such as
Internet Service Provider (ISP), companies, governmental agencies, and universities. These
operators receive one or more Autonomous System (AS) numbers and corresponding IP
address prefixes. An AS is a collection of IP networks and routers under the control of a
single organization that presents a common routing policy to the internet.

The Border Gateway Protocol (BGP) plays a crucial role in facilitating communication
between different ASes. BGP is used to exchange reachability information among ASes,
allowing them to announce their IP address prefixes to their neighbours. This announce-
ment process enables effective communication and data routing across the vast network of
interconnected devices on the internet.

RIRs maintain comprehensive records of the IP addresses and AS numbers they allo-
cate. These records, known as WHOIS and delegation files, contain essential information
about the operators and their contact details. When a network is misconfigured or gener-
ates malicious traffic, these records enable network administrators to identify and contact
the responsible operators to resolve the issue.
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By providing operators with the necessary IP address blocks and AS numbers, RIRs
facilitate the smooth functioning of the internet’s infrastructure. Understanding the role of
RIRs, the allocation of IP addresses, and the importance of protocols like BGP is essential
for network researchers and professionals who work to maintain and improve the reliability
and security of the internet.

Graph databases have gained significant attention in recent years for their ability to
efficiently handle complex relationships. Our research is particularly inspired by the work
presented by Schlamp et al. in the HEAP paper [1], which demonstrated the potential of
graph databases in analysing RIR data for detecting malicious activities in BGP.

1.2 Motivation

RIRs publishing the daily prefix allocations date back to the inception of these registries,
creating an ever-increasing amount of data. Each registry has their own inconsistencies
when it comes to storing these data. Certain RIRs have different field names for the same
properties, which can also contain circular references. For example, RIRx says a prefix
is managed by RIRy while RIRy says a prefix is managed by RIRx. Along with these
inconsistencies and lack of standardization, WHOIS services provided by RIRs have limited
querying capabilities, making RIR data complex to parse.

Schlamp et al. has made substantial progress in using RIR data to infer and classify
malicious activity in BGP networks. Despite its effectiveness, the HEAP implementation
required manual intervention to maintain performance, highlighting a critical area for im-
provement.

This paper explores graph databases and GraphQL to store parsed WHOIS data.
GraphQL returns the data to the user in a graph form. Storing RIR data in a graph
representation allows for a flexible and intuitive way to show relationships between pre-
fixes, AS-es, maintainers, and organizations. Graphs naturally represent networks and
allow for advanced querying and analysis, such as community detection.

1.3 Goal, Research Questions & Approach

This subsequent section details our design and research goals, research questions, and the
respective adopted approaches.

1.3.1 Research & Design Goal

The goal of this research is to design a system that makes RIR data available in graph form.
It should ingest data from a source that processed WHOIS data, daily delegation files and
Reverse Domain Name System zone fragment files. This data is enriched by adding origins,
stored in a database and exposed via a GraphQL API to support exploratory research. This
is achieved by making the data accessible on a day-to-day granularity, enabling comparison
in the temporal domain. Additionally, we provide a query library for running queries on
the graph database.

This study aims to design a system to support researchers working with longitudinal
RIR WHOIS data. These questions will be answered by literature research and reaching
out to researchers in the field. The design goal is to determine whether a graph database
can support these needs.
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1.3.2 Research Questions & Approach

RQ: What is the suitable design for modelling and comparing RIR data across temporal
and spatial dimensions?

We will propose a suitable data model to store RIR WHOIS data in a graph database.
As the data in the database will keep increasing, We need to design the database accord-
ingly to enable comparison. We will develop a system to ingest data from the source, enrich
it and store it in a format to easily convert it. We will evaluate the system by running the
queries and benchmarking.

Before we can answer our main research question, we first need to review the following:

What is the most suitable graph database for storing RIR data based on literature?
We will investigate different database systems using existing literature to determine a

suitable storage solution. We opted specifically for a graph-type database as it is indicated
by literature, and instinctively, it lends itself well for analysing the underlying relationships
in RIR WHOIS data. This paper has evaluated several systems by reviewing each system’s
stability, performance, and support.

What are the suitable use cases to evaluate the proposed system?
We will contact several users of the intended system to gather queries that interest

them and determine which are time and resource-intensive, knowing that a graph-based
approach does not loan itself well to aggregate statistics.

1.3.3 Contributions

We contribute to the field with a suitable data model for efficiently storing and retrieving
RIR data. We implemented an ingester for processed RIR data and a graph creator for
this processed data. We implemented a query library informed by queries that interest
other researchers. We demonstrated which queries can best be solved by graph databases
and which queries are best solved by other systems.
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Chapter 2

Core Concepts

This chapter discusses the evolutions and fundamental topics relevant to this research.
The subsequent sections present the overview of graph databases, GraphQL, and finally
Regional Internet Registries (RIR) data.

2.1 Graph Databases

Building on the groundwork laid by the HEAP paper, we delve into the fundamentals of graph
databases, which offer a robust framework for managing interconnected data without the
overhead of extensive JOIN operations typical in RDBMS.

Graph Databases started being developed in the mid-1960s [2]. However, commercial
applications of Graph databases did not appear until early 1990. In the mid-2000s, the
first commercial ACID-compliant transactional databases became available. ACID stands
for Atomicity, Consistency, Isolation, and Durability [3]. This means that the data in the
database is not added unless specific safeguards have been met. Graph databases fall in
the Not only Structured Query Language (NoSQL) family, which differs from traditional
databases, as they do not use tables or rows to organize data. Instead, data is stored in a
model to represent the data. This can be graphs, key-value pairs, a document store, or a
wide column.[4].

Graph databases are designed to store and query interconnected data represented as
graphs [4]. A collection of objects that can be represented as nodes and edges. Nodes are
used to represent entities, such as a bank account, a person, or an IP address. For instance,
the edges represent relationships like a person has a bank account or a person uses an IP
address. Edges can have a direction or be undirected edges. If the edge has a direction,
the relationship can be different depending on the direction. Undirected edges have a
singular meaning. Information related to these nodes and edges is stored in properties.
For example, the relationship between a person and an IP address can have a property
describing the date and time or the ISP providing it. A person entity node can have
properties such as name, age, or job title.

Additionally, Graph databases gained popularity in the industry with the rise of social
media [4]. The growing connectivity of data required a more connected way of storing data
to enable more efficient data retrieval and traversal. Conventional relational databases use
tables, but they have inherently restrictive links between rows of data [4]. In relational
databases, you can link data together using foreign keys. However, this does not allow
further information to be stored on this link. For instance, we need to construct additional
tables describing the relationship if we want to store more information about the link. As a
result, we exploit the potential of graph databases, which allow data about the relationship
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between two entities in the edge connecting the nodes to be stored. See Figure 2.1 for a
visual representation of this difference.

Figure 2.1: Model difference between a graph database and a relational database

Besta et al. [4] described many types of NoSQL databases, such as Resource Description
Framework (RDF) systems, Native graph, wide-column, document, tuples, and key-value
stores. The choice of database depends on the type of data you want to store. We will
restrict ourselves to comparing native graph databases, as the data we wish to store is
highly interconnected. These can be categorized into three groups based on their data
model: Hypergraphs, RDF, and Labeled Property Graph (LPG) database models.

Hypergraphs are listed solely for completeness and are only used by one graph database.
They contain edges that connect any number of vertices. This type was not considered,
keeping the scope limited.

Resource Description Framework (RDF) model implementations are also called triple
stores, as they are a collection of triples. Each triple consists of a subject, a predicate, and
an object. The subject and object are different graph nodes, and predicates are the graph’s
edges. This data model can be implemented in both graph and relational databases.

In addition, the Labeled Property Graph (LPG) model enriches the classic graph model
by adding labels to vertices and edges. These labels define the class a vertex or edge
belongs to and contain properties. These are key-value pairs that store additional data on
the graph.

We consider software implementing graphs, such as Spark. Spark is a general-purpose
distributed dataflow framework designed to process and analyse large amounts of data
in a distributed environment. Spark handles distributed task dispatching, scheduling,
and input/output (I/O). It offers several high-level APIs for real-time processing, machine
learning, and graph processing. GraphX and Graphframes are thin graph-processing frame-
works on top of Spark. They provide an API for expressing graph computation and are
built for large-scale graph data. Additionally, they are optimized for minimizing complex
join operations, thus reducing the number of stages needed for a computation [5].
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2.2 GraphQL

To improve our querying capabilities, we incorporate GraphQL, a powerful query language
that aligns well with the expressive needs highlighted by the HEAP team.

In 2012, Facebook developed GraphQL and subsequently released it as an open-source
project in 2015 [6]. Furthermore, it was incorporated into the GraphQL Foundation in
2018, establishing a neutral platform for collecting and distributing membership dues and
community support [7]. Noteworthy participants, such as AWS, IBM, Microsoft, PayPal,
and Shopify, contribute to its membership. The GraphQL Working Group facilitates devel-
opment of GraphQL, convening monthly to deliberate on pertinent matters and collectively
advance the core GraphQL project.

GraphQL is a declarative data retrieval API query language that enables the client
to specify the data it needs [8]. This feature saves bandwidth on data a client does not
need. It is presented as an alternative to REST, requiring multiple requests to different
endpoints to retrieve data. This functionality enables retrieving all required data in a
single request, reducing network load. It returns the requested data as JSON object with a
graph representation. An example can be seen in Figure 2.2.

Figure 2.2: Model difference between a REST API and GraphQL API

2.3 Regional Internet Registries (RIR)

In line with the HEAP study, we focus on RIR data, examining its structure and the
potential for deriving insights into network behaviors and anomalies.

RIRs provide a myriad of data sources, for this research we will confine ourselves to
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WHOIS snapshots, delegation files and rDNS zone files. We restrict ourselves to the RIR
databases, as other IRR databases contain some irregularities, as claimed by Du et al. [9].
We use rir-data.org RIR data because it is already parsed and stored in a standard
format [10].

Regional Internet Registries (RIR) are organisations that allocate Internet number re-
sources such as IP addresses (IPv4 and IPv6) and Autonomous System Number (ASN)
[11]. These resources can be allocated to end users or intermediaries to allocate to their end
users. These intermediaries can be Local Internet Registries (LIR)s, National Internet Reg-
istries (NIR)s, or Internet Service Provider (ISP). NIRs operate primarily in the APNIC
region, but there are some in LACNIC too. RIRs are formally recognized by the Inter-
net Corporation for Assigned Names and Numbers (ICANN). Historically, RIRs predate
the ICANN, so the RIRs (at the time APNIC, ARIN and RIPE NCC) formally joined
the structure of ICANN via the Address Supporting organisation (ASO) proposed in a
Memorandum of Understanding (MoU) [12]. The ASO is responsible for recommendations
regarding IP address policy and advises the ICANN board. After LACNIC was founded
and recognized in 2003, the RIRs formed the NRO to coordinate on important matters of a
global nature [13]. NRO, standardized the format to exchange transfers and statistics. In
2004, a new MoU was signed between the NRO and ICANN, replacing the previous MoU
between the three RIRs and ICANN. This formalized that the NRO will fulfil the duties
of the ASO. In 2005, AFRINIC joined the NRO following its formal recognition [14].

While the region in the regional internet registry might imply a limited scope, an RIRs
typically serves an entire continent or a significant portion thereof. There are currently five
RIRs. AFRINIC performs duties for Africa, ARIN serves North America, APNIC helps
Asia, LACNIC aids South America and RIPE NCC benefits Europe. Figure 2.3 illustrates
the geographical distributions of the five RIRs.

Source: https://en.wikipedia.org

Figure 2.3: Map of RIR regions

2.3.1 WHOIS

WHOIS is a protocol for querying databases for information about the registrant of a
certain IP address or range of addresses or domains [15]. The current iteration of WHOIS
is described in RFC 3912 [16]. The WHOIS data will serve as the basis for the research and
will be enriched using all the data sources used by rir-data.org. As WHOIS’ roots lie in
the ARPANET (a precursor to the Internet) days, the protocol has several shortcomings in
internationalization and security [16], [17]. Punycode encodes Unicode domain names for
compatibility with ASCII systems [18]. This workaround has to be used for domain names
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using non-ASCII characters. While ICANN has voted on phasing out WHOIS, RIRs still
provide bulk collection of their current WHOIS database [19]. WHOIS data can be stored
in a thin or a thick data model.

A thin data model stores minimal information, such as the domain name, registrar
ID, and referral to the registrar’s WHOIS server [20]. A thick data model stores all the
registrars’ full WHOIS information within a Top-Level Domain (TLD). Thin models are
essentially redirects to the server responsible, requiring two WHOIS queries, whereas thick
models only require one server to be contacted. Additionally, thin models lose their data if
a registrar goes out of business, whereas thick models retain it. Thick models are usually
faster and more complete than thin models.

Whether a domain uses a thin or a thick model depends on the policy of the Top-
Level Domain (TLD). For example, .com and .org operate a thin data model, requiring
the domain registrars to maintain the WHOIS information of its customers. While .org
operates a thick data model. Country Code top-level domains like .nl) have their own
policy. ICANN has specified policy that all TLDs are required to move to a thick data
model [21].

Appendix A.1 presents an example of WHOIS output for the utwente.nl domain. It
presents domain details, starting with the domain’s status, followed by registrar and abuse
contact information for addressing malicious activities. Sequentially, it documents the
domain’s creation and last updated dates. Furthermore, it includes indicators regarding
DNSSEC support and enumerates the IPv4 and IPv6 addresses of its nameservers. Finally,
the section concludes with details about the maintainer and a copyright notice.

2.3.2 Delegation files

There are two types of delegation files: Extended and Basic. RIRs already had a history
of publishing delegation statistics. However, to standardize this format across RIRs, the
basic statistics format was unified in 2004 [22]. The format of these files is standardized in
the RIR Statistics Exchange format. Between 2008 and 2010, APNIC started testing an
extended format version [23].

This extended format includes resources allocated to the RIR but not allocated to an
organisation and reserved resources. These resources are in transition, either in the process
of being delegated or returned to the pool of RIR resources. The extended format adds
an opaque-id to the allocation records. This allows the trace of multiple allocations to the
same organisation [24].

The general file structure starts with a header line, a three of summary lines, followed
by the delegation records.

The header describes the version of the format, the registry that published it, and the
file’s serial. This is followed by the number of delegations present in the file, the start date
and end date, and UTC offset, as shown in Listing 2.1.

Listing 2.1: Header example
1 version|rir|serial|count|startdate|enddate|UTC -offset
2 2|ripencc|1700693999|246568|19700101|20231122|+0100

The summary lines count the number of IPv4, IPv6, and AS number allocations and
end on the string “summary” to distinguish between a summary and a record line. An
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example can be found in Listing 2.2.

Listing 2.2: Summary example
1 rir|*| type |*| count|‘summary ’
2 ripencc |*|ipv4|*|92704|summary
3 ripencc |*|asn|*|45615|summary
4 ripencc |*|ipv6|*|108249|summary

The record lines describe the registry, the country code according to ISO 3166, the allo-
cation type, the start number, the value, the date the allocation was made, the status, and
the opaque ID [23]. Allocation types include IPv4, IPv6, or Autonomous System Number
(ASN). IPv4 allocations specify the starting address and the number of addresses included,
whereas ASN allocations denote the initial ASN and the quantity of ASNs allocated. In
conclusion, timestamps indicate the epoch data and the allocation status.

The status can be available, allocated, assigned, or reserved. Available means it is
not assigned or allocated, and the resource is still in the RIR pool. Assigned means an
organisation can use this resource but not sub-assign it to other parties. Allocated means
that a LIR has the resource and can allocate or assign it to its end users. Reserved means
that a resource is not allocated or assigned. This can have multiple reasons, such as space
reserved for the growth of an ISP, reserved addressed for experimental services, or returns
that are not yet cleared and available for reassignment [25]. For an example featuring the
IPv4 and IPv6 registrations of the University of Twente, see Listing 2.3.

Listing 2.3: Delegation record for the University of Twente
1 rir|Country code|type|start|count|date|status|opaque -id
2 ripencc|NL|ipv4|130.89.0.0|65536|19910412|assigned|

cfad7b98-b8d3-4599-849a-67cc3d07dceb
3 ripencc|NL|ipv6|2001:678:d0::|48|20151223|assigned|

cfad7b98-b8d3-4599-849a-67cc3d07dceb
4 ripencc|NL|ipv6|2001:67c:2564::|48|20111104|assigned|

cfad7b98-b8d3-4599-849a-67cc3d07dceb

2.3.3 Reverse DNS

We generally speak about forward DNS, this system looks for the corresponding IP address
when queried with a domain. For example, we use it When we want to navigate to
utwente.nl, DNS translates this domain into an IP address to visit. Reverse Domain
Name System (rDNS) works according to the same principle, only in the other direction.
It has several use cases, such as authentication of mail servers or making traceroute
output more human-readable. RIRs store this information is zone files per octet. Listing
2.4 illustrates a record from the 130.in-addr.arpa-RIPE file.

Listing 2.4: Reverse DNS zone file snippet for University of Twente
1 domain | time -to-live | Record type | hostname
2 89.130.in-addr.arpa. 86400 NS ns1.utwente.nl.
3 89.130.in-addr.arpa. 86400 NS ns2.utwente.nl.
4 89.130.in-addr.arpa. 86400 NS ns3.utwente.nl.
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If the domain contains in-addr.arpa it is for lookups in IPv4, if it contains .ip6.arpa
it is used for IPv6 lookups. Each RIR publishes these zone fragments on their FTP sites.
Each line of these files contains a Pointer (PTR) record. A record starts with the IP
address in reverse, the Time To Live (TTL), the record type, and the domain.
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Chapter 3

Related Work

This chapter discusses related work for graph databases, GraphQL, and RIR data. We
selected papers by searching for relevant terms in Google Scholar. After selecting a paper
for further reading, papers were further filtered on relevance based on the introduction,
methodology, discussion, and results. A paper’s relevancy is judged on its insights and
theories that support or contrast the research goals. Should a paper be discarded, the
references were checked for any potential papers to include. When a paper passed all
criteria, it was summarized and discussed below.

3.1 Graph Databases

In this section, we refer to the data model in the abstract rather than the specific data
model we developed for the system architecture. We discuss various benchmarking tools
and examine the landscape of Graph databases. Finally, we compare the performance of
various database systems to aid in selecting the system architecture.

The HEAP project serves as a cornerstone for our research, demonstrating both the
strengths and limitations of graph databases in a network analysis context. We build on
their findings to identify suitable databases and optimize their use.

There are several things to consider when looking for the right graph database imple-
mentation. What conceptual model to use, Resource Description Framework (RDF) or
Labeled Property Graph (LPG).

In 2009, Bader et al. defined the first version of HPC-SGAB [26] to develop a stan-
dardized method of testing graph databases to enable direct comparison to compare their
performance. This paper describes a benchmark by measuring the Traversed Edges per
Second (TEPS), which generates a sparse graph using R-MAT algorithm [27]. The bench-
mark focuses on shortest-path calculations. However, this paper aims to do queries focused
on finding neighbourhoods more than doing path calculations. While these measures do
not directly translate to useful benchmarks for the solution we will build, they allow for
initial filtering.

Dominguez-Sal et al. [28] applied HPC-SGAB first to Neo4J, DEX, HypergraphDB,
and JENA. In this paper, the authors measure the loading time of graphs generated by
the HPC-SGAB and the shortest path calculations. From this test, DEX achieved the best
performance, followed by Neo4J. Additionally, Ciglan et al. designed the first graph traver-
sal benchmark [29]. The authors propose a benchmark based on breadth-first traversal and
operations requiring full graph traversals.
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One of these operations is community detection. Community detection is a relevant
measure for the system this paper explores. This measure detects densely connected groups
of vertices within a graph. In the context of this research, this allows for complex network
analysis. Additionally, it can provide insight in resource allocation and policy analysis and
assist with anomaly detection. Neo4J, DEX, OrientDB, NativeSail, and the experimental
SGDB were benchmarked in this comparison. The benchmark considers loading times,
three hops Breadth-first Search (BFS) operations, and computation of connected compo-
nents for both in- and out-going edges. SGDB performed best in all tests, followed by
Neo4J. Only in the loading benchmark was Neo4J’s performance surpass by NativeSail.
DEX interestingly did not complete the loading nor the three hop BFS for the larger graph
sizes. However, the author does not give an explanation for this outlier.

Jouili et al. [30] proposed a benchmark by reviewing performance under concurrent use.
The authors used their benchmark to compare any Blueprints-compliant graph database.
Blueprints is a property graph model interface that provides a standardized way to interact
with graph databases and processing systems. This enables developers to write system-
agnostic applications working with different graph databases. Blueprints have since been
integrated into Apache’s TinkerPop [31].

In this benchmark, the authors measure loading time, traversal workload of shortest
path and neighbourhood exploration (limited depth BFS), and an intensive workload. In
the intensive workload, the authors instructed different clients to simultaneously fetch
several vertices, update properties, and add an edge. They considered Neo4J, Titan, Ori-
entDB, and DEX in their testing. Regarding insertions, DEX & Titan performed best
at larger sizes. Depending on the buffer size, Neo4J would perform better until a certain
threshold was reached, at which point execution times jumped up, and DEX achieved the
best performance. For shortest path search and breadth-first search, Neo4J performed
best, with DEX & Titan reaching second place dependent on the number of hops.

In 2023, Besta et al. analysed the graph database’s landscape [4]. This paper considers
all systems that can be used as graph databases, ranging from RDF systems implemented
in traditional relational databases to the different types of NoSQL databases. The family
of NoSQL databases consists of RDF databases implemented as NoSQL, Document, Tuple,
Key-Value, Wide Column, and native graph stores.

The authors also include a section, ‘Insights for practitioners’, to discuss performance
in general. While they initially start out preferring RDBMS above native graph database
designs, the authors acknowledge the use case of native graph systems depending on the
workload. Regarding RDBMSes, they listed several interesting concepts, ranging from SQL
translation layer [32], a fork of existing RDBMS [33], graph implementation layer inside
existing databases [34]–[37].

The evaluation of Neo4J and Spark/GraphX presents varying findings. Research out-
comes regarding the comparative performance of GraphX against Neo4J are inconclusive.
Ali et al. [38] measure the performance of the PageRank algorithm for Neo4J and GraphX.
PageRank is an algorithm that determines the importance of a website by looking at the
web pages that link to that website. The more links, the more important that website is,
and this algorithm is the foundation of the early iterations of the Google Search engine.

In this paper, the experiment measures the execution time of PageRank on the Yelp
dataset. They claimed that GraphX is around 12 times slower than Neo4J on both input
sizes. The input size scales nearly linear with the increase of execution times. However,
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the authors acknowledge that from a programmer’s perspective, GraphX implementation
is more efficient, which is attributed to the fact that Python code for Spark is deemed more
readable and easily comprehensible compared to the Cypher query language used in Neo4J.

On the other side of the performance spectrum, Ballas et al. [39] applied PageRank to
five other datasets provided by Stanford’s Network Analysis Platform (SNAP). All datasets
are smaller in the number of nodes, but the LiveJournal dataset is larger in the number
of edges by roughly two times. In this experiment, Neo4J fails to complete the PageRank
algorithm on the LiveJournal dataset. The authors note that Neo4J failed in the graph
creation step after the data was loaded.

GraphX outperformed Neo4J by a small margin in three of the four datasets that Neo4J
did manage to load. The larger the dataset, the better GraphX performed compared to
Neo4J. In the smallest dataset, Neo4J had the fastest execution time.

Kalogeras et al. [40] explore Neo4J and GraphX performance in community detection.
In this paper, the authors conduct experiments using the Label Propagation Algorithm
(LPA) on three datasets: Digital Bibliography and Library Project [41], YouTube, and
LiveJournal. SNAP provided all these datasets, and the authors measured the LPA execu-
tion time for each dataset. For DBLP and YouTube, Neo4J was faster by a small margin.
GraphX was roughly twice as fast for the LiveJournal dataset.

Our project relies most on loading and community detection. Hence, we put the focus
for selecting a system on loading and community detection benchmarks. Another emphasis
of the system is path computation. These insights were incorporated in the database
selection.

3.2 GraphQL

While there has been relatively little research regarding the application of GraphQL, none
focused, understandably, on providing API access to RIR data using GraphQL. Our adop-
tion of GraphQL is driven by the need for more efficient and expressive querying mecha-
nisms, as observed in the HEAP paper’s extensive use of labels on edges to store metadata.

Brito et al. [42] conducted an assessment of APIs that moved from REST to GraphQL,
resulting in a substantial reduction in network load, reducing the number of fields by 94%
and the number of bytes by 99%. Additionally, GraphQL enabled the API to reduce the
number of calls needed to obtain the required data. GraphQL manages these significant
improvements in two ways. First, it supports a hierarchical data model, reducing the
number of endpoints with which clients must interact. This feature reduces the number of
queries and, thus, the network load. Second, the data saving comes from the client-specific
queries, meaning that clients only receive data they ask for, minimizing the number of
fields returned and thus lowering the returned number of bytes.

Vogel et al. describe several challenges one should consider when moving from REST
to GraphQL [43]. Denial of service due to overly complex queries must be accounted for.
Other lessons mentioned, while useful, do not apply to the system proposed by this paper
as it is a new implementation. Issues that arise from transforming existing implementa-
tions to GraphQL are thus less relevant. While there has been interest from the scientific
community surrounding GraphQL, as noted by Quiña-Mera [44], there is still room for
more validation in other realistic use cases aside from Facebook’s use case.
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3.3 RIR data

Various research has been done in parsing RIR data. We first review papers that parse
RIR WHOIS data and conclude with papers that use RIR WHOIS data. Like the HEAP
project, our work leverages RIR data to uncover patterns and detect anomalies between
operational and administrative data sources, further validating the effectiveness of graph
databases in this domain.

Beverly [45] parsed RIR data by ingesting the bulk WHOIS services provided by the
RIRs to geo-audit address registrations. The paper proposes skipping prefixes a specific
RIR does not manage. These prefixes are generally listed for completeness but carry a not-
managed-by notice. This means that a prefix is listed in the WHOIS database of RIRx

while being managed by RIRy. When combining data from all RIRs, these entries must
be filtered out.

Additionally, the author identified particularities when parsing the data, such as the
circular references and prefixes listed by an RIR but managed by another. These circular
references are especially troublesome when storing RIR data in a graph database, as one
needs to keep cycle detection in mind. The author concluded that time differences in the
data dumps might cause these errors. However, upon scrutinizing the timestamps provided
by the RIR, it was determined that they indeed contained errors in some instances.

Nemmi et al. [46] parsed the daily delegation extended form files and BGP data from
CAIDA’s bgpstream. This was done to compare the allocations stored by RIRs with the
actual operational network of BGP in case there are duplicate records. The author also
proposes to use regular delegation files when extended delegation files have missing records.

The authors also restored various artefacts in available data by filling registration gaps,
if an AS appears in date− 1 and date+1, it is assumed that the AS also exists at date. In
some cases, the authors also restored the registration date to the date that the AS was first
registered. In specific files, inconsistent dates were used, and they contained placeholders
or earlier dates in later files compared to earlier files.

Streibelt et al. [47] devised a system to provide bulk historical WHOIS data to re-
searchers. At the time, Team Cymru already provided a bulk WHOIS service; however,
this was restricted to current data. However, the data on which Streibelt’s system relies
is inconsistent, as proved by Arouna et al. [10].

Previous studies show that parsing WHOIS data presents unique challenges and intri-
cacies. Arouna et al. shows how different RIRs use different labels for the same data point.
RIPE NCC, ARIN and LACNIC use the label ‘created ’ for the creation date, APNIC calls
it ‘last-modified ’ and AFRINIC uses ‘changed[0] ’. The authors consolidated data from the
WHOIS snapshots, delegation files, and reverse DNS zones at the RIR level. The data is
made available as an S3 object storage [48], and their website provides a sample code for
getting started.

Cai et al.’s [49] paper analyses the relationships between Autonomous Systems and
organisations. This paper provides valuable insight into linking different ASes to organi-
sations. The study identified several ways to link different ASes back to the same organ-
isation. The authors accomplish this by clustering various data points; organisation ID,
phone numbers and email domains.
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The Internet Yellow Pages of the Internet Health Report does similar things to this pa-
per’s objectives. It shows prefixes, ASNs, origins, organisations, and countries in a graph
format. This project crawls various data sources. It parses data from Cisco Umbrella,
Cloudflare Radar, IANA’s DNS root zone files. They also include RIPE NCC’s AS names,
ROA, Atlas Probes and Atlas Measurements as input dataset alongside APNIC’s popula-
tion estimates dataset [50], [51]. This study focuses on RIR data from the administrative
perspective instead of the operational perspective of IYP and provides more longitudinal
access.

In 2015, Schlamp et al. [52] aimed to detect BGP hijacks by parsing RIPE NCC’s Inter-
net Routing Registry (IRR) database to classify benign sub-Multiple Origin Autonomous
System (MOAS) event from malicious ones by looking at business relations. SubMOAS
events can be announcements of rogue ASes where they advertise a route to a prefix fully
contained within a prefix of a legitimate AS. The unsolved challenge is detecting whether
a subMOAS event is benign or malicious. The paper argues that while a malicious party
might announce a shorter prefix, they cannot alter RIPE NCC’s objects without having
the proper credentials.

Hence, they can classify the legitimacy by looking at the IRR data. The paper also
explores designing a well-suited data model for a graph database. The paper describes
storing the MNTNER, ORGANISATION, INETNUM, AUT-NUM and ROUTE objects
and constructing a graph using these values as vertices. Schlamp et al. (2016) [1] extended
their previous study by parsing the IRR databases from the RIRs to store relevant data for
the BGP hijack alert classification system. Implementation details of their graph database
are not shared.
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Chapter 4

Methodology

This chapter presents our adopted research methodologies. First, we discuss our database
choice and how we selected the queries. Lastly, we discuss high-level implementation
choices.

4.1 Database selection

Guided by the performance issues faced by the HEAP team, we carefully select graph
databases that promise improved efficiency and scalability for handling large datasets. We
considered the following factors while choosing the adopted database:

1. Scalability
Scalability comes in two types, such as vertical and horizontal scalability. Vertical
scaling means adding more hardware to the machine. For instance, a CPU with
higher clock speed, more cores, more RAM, or faster storage. Horizontal scaling
means adding more instances or nodes to a system and distributing the load across
multiple machines. We focus on horizontal scalability in the database choice.

2. Performant under daily writes
The system needs to keep performing well under daily writes. The chosen solution
needs to be able to deal with an increasing amount of data, as RIR data keeps
increasing by the day.

3. Supporting of comparisons in the spatial and temporal domain
This refers to the system’s capability to compare data points with each other; addi-
tionally, it needs to be capable of comparing between different dates.

These factors are relevant to the project because of the very nature of RIR data. There
is a significant amount of data produced on a daily basis. This invites the use case of
comparing different dates with each other.

We used the above-listed factors to decide which database system to use. There are a
multitude of options available, so we constructed a shortlist based on available literature.
We then apply these factors to the shortlist and choose our database accordingly. We
discuss the database systems mentioned in the Related Work section in the Implementation
section. We chose to only review free editions or community editions. We did not want to
encounter limitations that restrict our use.
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4.2 Query selection

Our query selection process is influenced by the types of queries used in the HEAP project,
with a focus on optimizing performance for both simple and complex queries. We adopted
an interview approach to determine the researchers’ need to design and implement a system
to support the researchers in their needs. We designed a small survey outlining the high-
level design of the system. We asked the following questions after explaining the benefits
and limitations, such as the performance of aggregate queries:

1. What kind of relationships between entities would you query?

2. What kind of temporal relationships or longitudinal developments would you query?

3. What typical graph analysis would be useful? (e.g., strongly connected components?)

We emailed this survey to a group of network measurement researchers and collected
their responses. We reached out to Johann Schlamp, one of the authors of the HEAP
paper [1], and Oliver Hohlfeld, a professor at the University of Kassel with a focus on
network measurements. We contacted Kimberly C. "KC" Claffy, the director of CAIDA,
as well as Thomas Krenc, postdoctoral researcher at CAIDA. We reached out to Cristian
Hesselman, the research director at SIDN Labs, and Moritz Müller, a research engineer at
SIDN Labs. Cristel Pelsser, a professor at UCLouvain, and Shyam Krishna Khadka, a PhD
candidate at the University of Twente, were also contacted. Additionally, we reached out to
Taejoong (Tijay) Chung, an assistant professor at Virginia Tech, and Romain Fontugne, the
deputy director at Internet Initiative Japan and maintainer for Internet Health Report and
Internet Yellow Pages. We filtered the responses for queries we had already implemented
and collected the remaining queries to discuss among ourselves. Then, we investigated
whether the query was applicable to a graph system and constructed an implementation
priority list based on the number of researchers requesting it and its perceived usefulness.
Some requests, while very interesting, were too time- or resource-consuming to implement.
Interestingly, RPKI was a much requested feature. However, we could not include this
feature due to the lack of data in our data source and time constraints. Nevertheless, we
aim to include this in our future work.

4.3 Implementation choices

We implemented the system as a podman container. While this functions as a constraint, it
does allow this project to be run and maintain consistency across systems and architectures.

We implemented the system using Python as that language is popular among data sci-
entists. It is a language the is efficient to prototype in and provides additional functionality
by libraries. We developed the library in a PySpark Jupyter notebook. This supported
our agile and iterative approach to development. We also think it is likely that researchers
using our project will likely use Jupyter notebook too to perform their analysis, so it was
important to us that it worked correctly in that environment.

We developed the code iteratively in a PySpark Jupyter notebook. Once the code
worked, we moved it into its modules and generalized the code as much as possible to
encourage re-usability. In order to make the code as usable as possible, we used docstrings,
type hinting, clear variable naming, and modular functions. We ran our benchmarks
inside Jupyter notebooks too and provide the code to run the benchmarks yourself in the
checker.py module.
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While we discussed GraphQL in earlier chapters, we did not implement it and con-
sidered it out of scope. We retain the ease of use by providing the project with well-
documented Python modules that can be used in a PySpark Jupyter Notebook .
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Chapter 5

Implementation & Design

This chapter discusses the research results and answers the questions in the Research
Questions section in the order in which we posed them.

5.1 Suitable graph database

Reflecting on the HEAP project’s use of Neo4j, we evaluate various graph databases to
find a balance between expressivity and performance. As mentioned in the related work,
we intended to evaluate alternative solutions to graph databases as proposed by Besta et
al. [4]. We evaluated those examples based on the available literature and online material
and reviewed them using the factors discussed in the methodology.

Emptyheaded [35] boasts excellent performance, but is not in active development (last
commit seven years ago at the time of writing) and has no active community [53]. GRAIL
[32] is a translation layer between graph-specific queries and translates them to SQL. This
project has the same problems as EmptyHeaded [54]. Additionally, Vertica [36] did become
an active product after its paper. However, it is limited to single host machines and can
only load data up to 1 TB of storage [55]. This storage limitation would be encountered
quickly, as a full day of data is around 130 GB when stored as gzip compressed parquet
files. This limitation would be hit after downloading six days of data.

We also investigated the performance of several native graph databases. We reviewed
Neo4J, Spark, DEX, HyperGraphDB, Jena, OrientDB, NativeSail, SGDB and Titan. We
put emphasis on benchmarks that review loading and community detection, as these mea-
sures apply most to this project. After this evaluation, the shortlist came down to Neo4J
and Spark. In performance comparisons, both systems showed promising numbers. We
adopted Spark because of ease of development and performance considerations. We set
up a podman container to run PySpark with Jupyter notebook [56], [57]. The system was
tested on a machine with 50 CPU cores and 256GB of RAM allocated to the Spark in-
stance. We selected Spark to function as our graph engine. Spark is not a database in the
traditional sense. Its distributed computing system allows for large-scale data processing
and analytics. We store processed data on disk to be retrieved to construct a graph on
demand.

5.2 Suitable use cases

Following the HEAP team’s success in using graph databases for network analysis, we
identify use cases that benefit from the strengths of graph-based approaches. We expand
these queries with queries obtained from a survey. These queries were extracted from
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Table 5.1: Results of the survey

Query Number of
researchers requesting

Opinion of
expert supervisors

State of
implementation

Relationship between prefixes 4 yes yes
RPKI 3 no (scope) no
Frequency of change 2 no (resources) no
Changes over time 1 if possible partly
Sub-graph extraction 1 if possible yes
Change of prefix ownership 1 no no
Roaming prefixes 1 if possible partly
Degree of vertices 1 yes yes

discussions and email chains with researchers active in the network analysis field. We
selected queries based on their applicability to graph analysis. Several queries that focus
on aggregates or are otherwise better served by a RDBMS were not implemented.

After evaluating the queries, we realized that most demand focused on exploratory
research. We still contribute various queries that allow spatial and temporal comparison,
but the majority of queries focus on supporting exploratory research. When conducting our
survey, several researchers responded with surprise. They did not consider applying graph
database to RIR data. Hence, some answers are better suited to a relational database
implementation. For an overview of the survey results, see Table 5.1. These queries from
the basis to evaluate the system. Together with the expert supervisors, we added several
queries based on our experience with exploring the data so far. The complete list of queries
implemented can be found in Appendix B.

5.3 Suitable data model

Our goal is to create semantically meaningful edges to capture the relationships between the
four vertex types. Taking inspiration from the HEAP data model, we refine our approach to
reflect the data we have available while maximizing its usefulness for exploratory research.
We construct the edges as follows:

1. Maintainers and Prefixes:
An operator or maintainer is an entity responsible for administrating a network
prefix. Since maintainers manage the prefixes, it is logical to establish edges between
maintainers and the prefixes they control. These links allow for traversal and querying
of which prefixes are managed by a particular maintainer and vice versa.

2. Prefixes and Origins:
An ASN or origin is responsible for announcing network prefixes. We allow for
traversal by creating edges between prefixes and the ASNs that announce them.
This helps in understanding which origins are associated with specific prefixes.

3. Origins and Organisations:
Origins (ASNs) are associated with specific organizations. Establishing edges be-
tween origins and their respective organizations allows us to explore this relation-
ship. This link enables us to trace the ownership and gives insight into the control
of network resources.
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We constructed links bidirectionally to support GraphFrames’ graph analysis algorithms.
As these algorithms operate under the assumption that edges are directional. We propose
the data model 5.1 to represent RIR data in graph form.

Figure 5.1: Schema of the data

5.4 Implementation details

Our implementation aims to address the performance bottlenecks experienced by the
HEAP team, aiming for a more streamlined and efficient system. This section discusses
implementing the Ingester, the Graph Creator, and the Query library. These were imple-
mented using the GraphFrames library on top of Spark. GraphFrames work together effec-
tively with DataFrames which are the basis of the rir-data.org dataset. GraphFrames
is essentially the same as GraphX, adds some extra compatibility (support for Python
and Java besides Scala). It misses the partitioning from GraphX but exchanges that for
Spark Catalyst’s graph-based optimizations.

5.4.1 Ingester

The ingester has two parts, with a local caching step between the two steps. First, we
retrieve the data for a specified date provided by rir-data.org to ingest. We start by
dropping columns that have no purpose to increase our space-efficiency. We also rename
the columns ‘last-modified ’ and ‘mnt-by ’ to their ‘_’ counterparts (i.e. ‘last_modified ’ and
‘mnt_by ’) to make the column names more SQL-friendly. Once these columns are removed
and renamed, the DataFrames are written to disk and reloaded to prevent re-fetching data.

In the second part, we start pre-processing by unwrapping the lists that contain the
prefixes. For each value in the list of prefixes, we create a new row with the same main-
tainer, organisation, and origin. After unwrapping these lists, we drop prefixes without
semantic meaning for the graph. We removed 0.0.0.0/0, 10.0.0.0/8, 172.16.0.0/12
and 192.168.0.0/16 because these prefixes either contain the full IPv4 address space or
they represent private ranges. We also remove rows that are managed by other RIRs.
When a redirect prefix is present, it is stated in the ‘descr ’ column that this IPv4 address
block not managed by % where % is the RIR that does not manage it but does retain it in
its WHOIS data.
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While ingesting the data, we realized that most values in origin were Null. Only
ARIN stores the ‘origin’ value in their WHOIS data; in all other cases, this is stored in
ROUTE data and thus inaccessible via the rir-data.org dataset. As a result, we enrich
the data by adding origins to the rows before storing the DataFrame to disk again for graph
creation. We add this by downloading the relevant Route Views RIB file. Using this file
and the ‘start_address’ value, we look up the origin with the pyasn module [58]. If an
origin was added by this process, we set True in the ‘external_origin’ column to indicate
that the value was obtained from another source. See Fig. 5.2 for a visual representation.
While this method does not fully resolve the issue, the following subsection elucidates how
vertices are generated for origins that still possess a Null value.

Figure 5.2: Flowchart of the ingester

5.4.2 Graph creator

The graph creator loads the DataFrame of a date specified by the user. First, it verifies
whether the date is valid. The date must fall between 2022-11-01 and the current date. It
also checks whether the data has been ingested yet because there is one day that has no
available data (2023-07-26), and the two or three days leading up to the current date are
not available as they are still processing on the rir-data.org side.

After loading the DataFrame, it generates IDs using the sha256 hashing to guarantee
unique IDs across multiple machines. The current implementation was tested on a single
host server with sufficient resources. We designed the system with distributed Spark
functionality in mind, should future researchers want to make use of it.

The code then creates a vertex DataFrame by taking all IDs with their relevant val-
ues and a boolean for ‘external_origin.’ This column can only be valid for origin ver-
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tices, and all other type vertices store a False for this column. If an origin value is
Null even after adding origins in the pyasn step, it is replaced here with the string
{prefix-maintainer-organisation}. This approach resolves the issue of null values while
retaining semantic values.

Lastly, it creates an edge DataFrame by taking all prefixes’ IDs and linking them to
maintainers, maintainers to origins, origins to prefix, and origins to organisation. The
vertex and edge DataFrames are passed on to the GraphFrame constructor to build the
graph [59]. See Fig. 5.3 for a visual representation. Finally, this step returns the graph
object to apply queries to or perform filtering using the query library.

Figure 5.3: Flowchart of the Graph Creator

5.4.3 Query library

We implemented all the queries in the query library, which enabled us to implement several
queries to facilitate exploratory research. Plain queries such as filtering for a certain value
or list of values in the ‘prefix ’, ‘origin,’ ‘maintainer ’ or ‘organisation’ column. It can also
find prefixes belonging to or maintained by a specific ‘origin,’ ‘organization,’ or ‘main-
tainer.’ We also support finding links between origins by checking if they have a shared
‘maintainer’ or ‘organisation.’ The library also supports more advanced graph queries
such as applying PageRank, (Strongly) Connected Components, Community Detection,
and BFS path computation. We discuss the queries more in-depth below.

Filters

Description: A filter query selects and returns nodes or edges in a graph that meet the
specified criteria.
Example use case: We need to review all prefixes announced by a certain origin, main-
tained by the same maintainer.
Reasoning: Filters allow for a more nuanced look at the data. We also implemented LIKE
queries as a convenience for the researchers.

Traversal

Description: A traversal query identifies and visits nodes that are 1, 2, or 3 hops away
from a given vertex in a graph.
Example use case: We aimed to find the organisation responsible for a specific prefix.
Reasoning: Traversal allows for insight into which vertices are connected to a vertex.
This can range from which origin is connected to a prefix to which organisation does a
maintainer belong to.
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Link vertices

Description: The shortest path query identifies the shortest route between two vertices
in a graph.
Example use case: We need to determine if two vertices are connected by a chain of
influence via their organisations.
Notes: Path computation tries constructing a path from vertexx to vertexy. If a non-
empty path is returned, there is a link between two vertices, which can be used to find ori-
gins that share an organisation or maintainer. Reasoning: This query allows researchers
to find the underlying (‘hidden’) connections by performing a BFS to find a path between
two vertices. As the edges in the path DataFrame only describe vertex IDs, we provide a
function to rewrite the DataFrame to human-readable format.

Degree

Description: A degree query calculates the number of edges connected to each node in a
graph.
Example use case: We can determine the most interconnected vertices of the graph by
computing their degree.
Reasoning: This was one of the requests from the survey. Nodes with a high degree are
often hubs or points of failure, making this query essential for understanding the structure
and identifying key nodes. We provide methods for splitting by vertex types as well as
sorting by degree count.

PageRank

Description: PageRank calculates the importance of each node in a graph based on the
structure and connectivity of the network.
Example use case: We can identify the most influential entities by computing the PageR-
ank of organizations within the network.
Notes: PageRank can identify which vertices are most important within the graph [60].
As the number of incoming edges is of high importance to the algorithm, this will favour
maintainers with lots of small (i.e., /28-/32) prefixes more than maintainers with a few
large (i.e., /16) prefixes. PageRank is natively implemented by the GraphFrames library,
but we extended it by creating filters per vertex type. This way, researchers can look at the
most important organisation or maintainer, rather than only seeing origins and prefixes.
Reasoning: It is particularly useful in identifying influential nodes within a network. We
provide additional methods for splitting pagerank score by vertex type, as well as sorting.

Connected Components & Strongly Connected Components

Description: (Strongly) Connected Components identifies all sub-graphs where every
node is reachable from every other node within the same sub-graph.
Example use case: Identifying connected components within the network graph allows
us to detect isolated subnetworks.
Notes: The Connected Components and Strongly Connected Components algorithm iden-
tifies sets of vertices where other vertices can reach each vertex in the same set, enabling
the findings of connected groups of prefixes, origins, maintainers, and organisations. In
the context of network analysis, identifying these strongly connected components can help
understand the network’s structural organisation and operational dynamics.
Reasoning: This query is useful for understanding the overall connectivity and robustness
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of the network. We provide methods to extract sub-graph based on component as well as
analysis functions to look at component sizes

Community Detection

Description: Community Detection identifies and groups nodes in a network that are
more densely connected to each other than to the rest of the network, revealing the under-
lying community structure.
Example use case: Community detection assists in identifying clusters of interconnected
nodes within the network.
Notes: Community detection aims to identify groups of vertices that have a community
structure. It uses the Label Propagation Algorithm (LPA) to identify these communities
[61], which helps researchers to identify vertices that exhibit strong internal connections
within the network.
Reasoning: This reveals the underlying community structure, which is essential for var-
ious analyses, such as detecting groups of ASNs that frequently interact or clusters of
prefixes managed together. We provide methods to extract sub-graph based on commu-
nity as well as analysis functions to look at community sizes

Comparing different dates

Description: Comparing two graphs gives insight into which connections are removed
and which connections are added between the two dates.
Example use case: To detect unauthorized changes and monitor the evolution of the
network, we need to review prefix-origin mappings across different dates.
Reasoning: Comparing two graphs gives insight into which connections are removed
and which connections are added between the two dates. This is essential for temporal
analysis, allowing you to track changes over time, understand network evolution, and detect
anomalies or trends. We provide additional methods analysing which vertex types changed
the most.
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Chapter 6

Evaluation

This chapter presents the results of the queries and reviews the output, the runtime, and the
usefulness of graphs compared to RDBMS. The system utilized a dual Intel ® Xeon ® Gold 6258R
CPU for all our runs with 50 cores and 256GB of RAM. We do not show the output of
results, as the resulting DataFrames are very wide and cannot legibly be represented.

6.1 Ingester

We can process RIR data using the process_rir_data_dot_org method, which takes
around 1 − 2 minute(s) per day of data, 40% of which is downloading the RIB file and
converting it to a file that pyasn can use. The resulting DataFrame is stored in the dataset
folder.

6.2 Graph Creator

We can pick a date to load a graph of RIR data using the load_graph method. This
process of retrieving the DataFrame from disk, assigning the vertex IDs, and constructing
a graph takes about 3 minutes. The result is a GraphFrame that can be searched through
or have graph analysis queries applied to it.

6.3 Query Library

The query library incorporates lessons from the HEAP project, focusing on achieving a
balance between expressivity and performance. We leverage the query library to anal-
yse network data, including reviewing administrative changes and tracing invalid RPKI
announcements. We evaluate the suitability of our query library with our general under-
standing of relational databases. Unfortunately, there is no RDBMS-based implementation
of our project to compare against at time of writing. So we evaluate the suitability com-
pared to RDBMS on a theoretical level. We executed these queries on a graph built from
data of 2024-05-17. This graph contains 5.346.192 prefixes, 118.581 origins, 30.297 main-
tainers, and 2.656.558 organisations for vertices. It encompasses 30.801.088 edges.

6.3.1 Filters

Benchmark: We ran filters looking for values related to the University of Twente prefix.
We filtered the source DataFrame and the GraphFrame. We also ran the LIKE-filter for
‘?niversity? ’, this filter looks for all vertices that contain that string with ‘? ’ as SQL
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wildcards. In this example, we replace the U of University for a wildcard to capture both
capitalized and uncapitalized spellings.
Output: A filtered DataFrame
Runtime: 10 seconds
Comparison to a RDBMS: −−
Relational databases are optimized for selection and pattern-matching queries. The SELECT
and LIKE calls we use in the apply_filter_* methods rely on these calls entirely.

6.3.2 Traversal

Benchmark: We picked 5 random values to evaluate the Traversal. This is accomplished
by seeding Spark’s sample function [62] using Python’s random [63]. We ran the queries 5
times and averaged those values to reach the runtime values, as shown below.
Output: DataFrame containing the destination(s)
Runtime: 30 seconds (see Table E.1)
Comparison to a RDBMS: −/+
Depending on the distance traversed, this is more suitable to RDBMS than graph databases.
For first_degree_traversal, RDBMS would perform better as it will be a single row in a
link table. But graphs databases perform better for second- and third_degree_traversal
as they are specifically designed for efficient traversal operations.

6.3.3 Link vertices

Benchmark: We ran the Connected Components algorithm before picking 4 differently
sized components to evaluate Link Vertices queries. We pick the largest, the smallest and
2 random components. For each component, we pick 3 random vertex pairs. Otherwise,
it would be highly likely we pick random vertices that are not connected at all. This
would not net us relevant results. We tested using the following maxPathLengths: 5, 10
(default) and 15 to give insight into running the Link Vertices queries on smaller and larger
components. See Algorithm 1 for a pseudocode overview of the benchmark. We ran the
benchmark 3 times and averaged the runtime values, as shown below.
Output: DataFrame containing the path between the two vertices (if present)
Runtime: 35 minutes (see Table E.2)
Comparison to a RDBMS: +
Breadth-first Search is a core strength of graph databases. This operation is inherently
more efficient in a graph database due to its optimized vertex traversal.

6.3.4 Degree

Benchmark: We ran the sorted_xdegree_split function 3 times and averaged the run-
time. We restarted the podman container between runs to bypass Spark’s caching mecha-
nisms.
Output: DataFrame of vertices, with an added column containing the degree count.
Runtime: 10 minutes
Comparison to a RDBMS: −/+
While graph databases can compute degrees fairly quickly, it does depend on an aggregate
COUNT. This operation can be done faster in RDBMS.
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6.3.5 PageRank

Benchmark: We ran the pagerank_vertices_split function 3 times and averaged the
runtime. We restarted the podman container between runs to bypass Spark’s caching
mechanisms.
Output: GraphFrame with a ‘pagerank ’ value column for the vertices and a ‘weight ’ col-
umn for the edges.
Runtime: 1 hour
Comparison to a RDBMS: ++
PageRank is a graph-focused algorithm. While there are RDBMS implementations possi-
ble, a graph-related approach will perform better.

6.3.6 Connected Components & Strongly Connected Components

Benchmark: We ran the connected_components and strongly_connected_components
functions 3 times and averaged the runtime. We restarted the podman container between
runs to bypass Spark’s caching mechanisms.
Output: DataFrame containing vertices with an added column containing the ‘component ’
value.
Runtime: 1 hour
Comparison to a RDBMS: ++
The algorithms to compute the (strongly) connected component require traversal. Thus,
a graph database performs better than a RDBMS.

6.3.7 Community Detection

Benchmark: We ran the community_detection function 3 times and averaged the run-
time. We restarted the podman container between runs to bypass Spark’s caching mecha-
nisms.
Output: DataFrame of vertices with an added column containing the ‘label ’ value.
Runtime: 80 hours
Comparison to a RDBMS: ++
Label Propagation Algorithm is specifically designed for graph structures. Graph databases
can execute this query more efficiently than a relational database.

6.3.8 Comparing different dates

Benchmark: We ran the community_detection function 3 times, comparing 2 random
dates of our available data.
Output: DataFrame containing all edges that are present in date1 but not in date2 and
vice versa, with an extra column ‘missing_from’ to indicate its origin.
Runtime: 10 minutes
Comparison to a RDBMS: −
Relational databases are highly optimized for data operations and complex queries with
multiple conditions. While graph databases can perform these operations, relational
databases offer better performance in this regard.
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Algorithm 1 Benchmark Link Vertices
1: components← graph.connected_component()
2: lengths← [5, 10, 15]
3: sample_components← components.sample().limit(2)
4: sample_components.append(components.max())
5: sample_components.append(components.min())
6: for component in sample_components do
7: vertices← graph.vertices.filter(component)
8: sample_vertices← vertices.sample().limit(6)
9: sources← sample_vertices[0 : 2]

10: targets← sample_vertices[3 : 5]
11: for source, target in sources, targets do
12: for length in lengths do
13: path← graph.link_vertices(source, target, length)
14: end for
15: end for
16: end for

6.4 Analysis of Findings

6.4.1 Temporal Data Comparison

We applied our analyse_changes() method to two dates, 17-03-2024 and 17-05-2024.
This method looks at the edges of the graphs for those two dates. The method determines
the changes between the two graphs using the edges. This data is then used to construct
a new DataFrame with all changed edges along with a label of the missing date. When
looking into the values that changed the most between those two dates, as well as the
change relative to the object and the change relative to its type. We picked random dates
and created two time deltas; four weeks and eight weeks. We observed the following:

Table 6.1: Four weeks

Date Type Value
Number

of
changes

Change
relative
to self

Change
relative
to type

15-02-2024

Prefix 157.10.64.0/26 64 25% 0.02%
Maintainer PHIX-NOC-AP 3524 0.72% 10.56%
Origin 15557 103303 69.80% 22.07%

Organization A1 Telekom Austria
AG - Business Customers 1688 1.71% 0.82%

14-03-2024

Prefix 157.10.65.0/26 64 25% 0.02%
Maintainer PHIX-NOC-AP 2075 0.42% 6.77%
Origin 12670 71161 100% 15.90%
Organization Linkt Customer 1476 10.66% 0.73%

PHIX-NOC-AP operates as a tier 2 ISP in the Philippines. Altice, associated with
AS15557, is a prominent ISP based in France. Meanwhile, 1 Telekom Austria AG - Business
Customers serves as an ISP in Austria, specifically targeting business connectivity needs.
Linkt Customer, linked to Linkt SAS, functions as a tier 2 ISP.
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Table 6.2: Eight weeks

Date Type Value
Number

of
changes

Change
relative
to self

Change
relative
to type

17-03-2024

Prefix 103.187.39.16/32 4 50% 0.003%
Maintainer PHIX-NOC-AP 6201 1.27% 9.11%
Origin 9299 12401 1.27% 9.26%

Organization BELTELECOM MinskFilial
branch Republic of Belarus 5299 1.27% 8.01%

17-05-2024

Prefix 103.187.39.240/29 4 50% 0.003%
Maintainer PHIX-NOC-AP 4475 0.91% 7.23%
Origin 9299 8898 0.91% 7.30%
Organization Failover IPs 2045 2.55% 3.39%

We did not observe any anomalies in the prefix changes. Every prefix that changes
has four changes associated with it. This is because of the data model, as can be seen
in Fig. 5.1. We construct four edges, to and from the maintainer and to and from the
origin. For the other changes, the values are more interesting. Origin AS9299 is asso-
ciated with the Philippine Long Distance Telephone company, a major telecom provider
in the Philippines and a tier 2 ISP. The maintainer for this AS is PHIX-NOC-AP. In Be-
larus, BELTELECOM MinskFilial branch Republic of Belarus operates as a large tele-
com provider. Meanwhile, AS16276 is linked to the organisation Failover Ips. According
to OVH’s website, failover IPs are beneficial during service interruptions, major incidents,
or when servers exceed their capacity [64]. These additional IPs, offered as a paid service,
ensure consistent accessibility even in unforeseen events.

We generated a cumulative distribution function (CDF) graph to illustrate the fre-
quency of changes. Additionally, we constructed a bar graph to analyse the occurrence of
changes, categorizing the number of changes subdivided by vertex type for the initial 10%
of the dataset. This dual approach provides a comprehensive view of change distribution
and frequency across different vertex types within the subset of the data.

Figure 6.1: Cumulative Distribution Function of the number of changes

As we can see in the CDF graph, Fig. 6.1, the prefixes (depicted in blue) rises quickly
and reach a cumulative probability of 100% at a relatively low count of changes. This
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suggests that they are the most stable of the vertex types. The curve for maintainers
(depicted in orange) shows a more gradual increase compared to the prefixes, indicating a
wider distribution of changes. There is a noticeable step pattern, which might imply dif-
ferent levels or tiers of changes across the dataset. The origin curve (shown in green) starts
with a slower rise but then accelerates more quickly, indicating there is a moderate number
of origin vertices with few changes, while some have a significant number of changes. The
curve for organisations (red line) is steep and reaches the cumulative probability of 100%
quickly. This suggests that nearly all organisation execute very few changes, indicating
a high stability similar to prefixes. In conclusion, prefix and organisation are relatively
stable. The majority of vertices belonging to those groups experience few changes. Main-
tainers on the other hand show the greatest variability in terms of changes. The origins
curve walks the middle between these two extremes, indicating moderate dynamics.

Figure 6.2: Occurrence of the number of changes

In Fig. 6.2, we see the occurrence of changes separated by vertex type (maintainer,
origin, organisation, and prefix) for the first 10% of data. On the horizontal axis, we show
the number of changes. While the vertical axis (log scale) represent the occurrences of these
changes for each vertex type. Prefixes (depicted in blue) have a high frequency of changes at
lower counts and completely stop after 8 changes. They also have the highest occurrence of
changes compared to the other groups at 2 and 4 changes. This indicates that most prefix
vertices undergo a few changes. For maintainers (depicted in orange) this distribution
is more spread out, indicating variability in the number of changes. Origins (depicted
in green) exhibit a broad distribution of changes, with a significant number of changes
occurring for 2 and 4. Organisations (depicted in red) have a high frequency of change at
1, 3, 5, 6, 7. Their occurrence of change is more consistent, spread across higher counts of
change compared to other vertex types. This indicates that organisations often experience
varied levels of change. In general, prefix and organisation vertices tend to experience
fewer changes more frequently as opposed to maintainer and origin vertices which have a
wide range of change frequencies. Along with the CDF graph, this visualization aids in
understanding the dynamics of change and the stability of different vertex groups within
the graph.
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We demonstrate this query compares network data across different dates by analysing
changes in prefixes, origins, maintainers, and organizations is valuable for both academic
research and network operators. Academics can use it to study the evolution of inter-
net governance, examining how administrative control and policies shift over time. This
can reveal trends in ownership, regulatory compliance, and organizational changes. For
operators, it helps in managing administrative responsibilities by highlighting updates in
registry information, ensuring accurate records, and identifying potential compliance is-
sues, thereby improving the integrity and reliability of network data management.

6.4.2 Linking Administrative Data with Operational Validity

In the work of Jaw et al. [65] the AS205220 announced several prefixes with invalid
announcements of RPKI. These invalid announcements were mapped using IP2ASN to a
different ASN than announced. We evaluate their undetermined finding by looking for
registrations for the announced prefixes. For each invalid_asn announcement, we load
the graph of that date and check the connected origin, maintainer, and organisation for
the announced prefix. Out of the 410 records, 68 matched the criteria for further analysis.
47(69%) findings could not be classified. This indicates that they either did not have
an active registration at the date in question or could mean that they did not have a
registration on that specific day or the registration falls under a larger registration. For
instance, an announcement of a smaller prefix than the registration. The other 21 (31%)
registrations have been summarized in the following table:

Date Prefix Origin Origin
external Maintainer Notable

organisations
Number of

organisations

2022-11-28 45.45.152.0/22 205220 no MNT-IL-845 IPXO, HKGO 11

83.147.252.0/22 7029 no IPXO-MNT
CYBER-MNT IPXO 20+

2023-01-16 185.81.217.0/24 unlabeled yes AZERONLINE-MNT RH-NET 1

46.23.100.0/22 15723 yes AZERONLINE-MNT Azeronline,
RH-NET 8

2023-02-04 46.23.98.0/24 398343 no AZERONLINE-MNT Azeronline 17
46.23.96.0/24 398343 no AZERONLINE-MNT Azeronline 17

2023-02-14
185.81.216.0/24 unlabeled yes AZERONLINE-MNT Azeronline 1
185.81.219.0/24 398343 no AZERONLINE-MNT Azeronline 17
46.23.99.0/24 398343 no AZERONLINE-MNT Azeronline 17

2023-03-20 109.205.212.0/24 202335 yes AZERONLINE-MNT Azeronline 2

188.64.12.0/22 17941 yes AZERONLINE-MNT Azeronline,
Equinix 20+

2023-04-02 108.165.135.0/24 205220 no MNT-IL-845 IPXO, HKGO 13

2023-04-24
50.114.212.0/22 205220 no MNT-IL-845 IPXO, HKGO 9
50.114.192.0/22 205220 no MNT-IL-845 IPXO, HKGO 9
50.114.244.0/22 205220 no MNT-IL-845 IPXO, HKGO 9

2023-06-02 91.186.194.0/23 unlabeled yes
IPXO-MNT

CYBER-MNT
HKGO 1

2023-07-16

154.16.24.0/24 unlabeled yes NETSTACK-MNT
Digital Energy
Technologies
Limited

1

188.64.143.0/24 834 no SB-MNT IPXO 20+
196.251.251.0/24 40676 no DAL1-MNT Group8 20+
104.234.155.0/24 205220 no MNT-IL-845 IPXO, HKGO 10

2023-10-18 206.53.62.0/24 [30407,61317] no MNT-ONTAR-40 Velcom INC 2

Several values are particularly noteworthy. The entry Azeronline-MNT appears fre-
quently; it corresponds to Azeronline Information Services, as ISP in Azerbaijan. IPXO,
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based in the United States, is an IP address platform that offers services related to IP
acquisition, management, security, and data intelligence. Their maintainer is MNT-IL-845.
HKGO is an ISP for Taiwan, called August Internet. Additionally, RH-NET is recognized as
a research and university network in Iceland.

As the findings were incomplete beforehand, this tool can support research in validat-
ing findings from the BGP or operational side of the internet by comparing it against RIR
registrations. Academically, it supports research into internet security and governance by
providing insights into the prevalence and causes of invalid route announcements, facili-
tating studies on the effectiveness of RPKI in securing internet routing. For operators,
it enhances operational security by quickly identifying and addressing misconfigurations
or malicious activities, helping maintain trust in network operations and ensuring compli-
ance with routing policies. This capability improves the resilience and stability of network
infrastructures by preventing route hijacks and other security threats.
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Chapter 7

Discussion

In this chapter, we discuss the results of the research. First, we review our contributions
and discuss two challenges we encountered while developing the system and their solution.
Then, we discuss the trade-off decisions we made and the limitations of the project. Finally,
we look at actionable recommendations and some improvements for future work.

7.1 Contributions

This research builds on the HEAP project’s findings, contributing to the field by addressing
its performance challenges and enhancing the usability of graph databases for network
analysis. Our primary contribution to the field is demonstrating a graph-based data model
for RIR WHOIS data works and provides several benefits. We provide Python modules
that facilitate the conversion of data from rir-data.org into local storage formats. These
modules introduce methods to convert the RIR data into graph representations. The
graphs enable more powerful data analysis by leveraging the relationships in the dataset.

We offer a library with queries that can be used to perform exploratory research on
the graphs. These queries are inspired by real-life examples to demonstrate practical use
as well as outline future additions to the system.

7.2 Lessons learnt

Working with new data and tools always poses challenges and provides learning opportu-
nities, and the subsequent sections discuss two of these challenges in further detail.

In our first explorations shows that the origin was present, which is an integral part
of our input data. Later in the programming process, we discovered that most rows had
a Null value in the origin column. Should the value be Null, we would create a vertex
for that. Then graph analysis like connected components or community detection would
result in worthless output as most prefixes, maintainers, and organisations would belong
to the same component or community. We contacted the authors of rir-data.org to find
out if this was by design or a bug. Unfortunately, this was a limitation of the RIR WHOIS
databases themselves. Consequently, we opted to add origins by retrieving them from RIB
files. This comes with the caveat that origins are largely retrieved from an operational
source rather than an administrative source.

In earlier iterations of the system, we generated IDs using JOIN operations. We used to
SELECT all values and using SQL DISTINCT find all unique values and computed IDs using
a range of functions and subsequently join the IDs back to the original DataFrame. We
tried uuid, monotonically_increasing_id, and other manners of generating unique IDs.
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This worked fine until graph sizes of more than 260 thousand records. Beyond this point,
the graph would remove existing edges, describe incorrect edges, or worse, construct edges
that do not exist in the dataset.

After realizing the problem originated from the generating_ids functions, we rewrote
the function to take the value of a prefix, maintainer, origin, or organisation, transform it
into a sha256 hash, and prefix it with the vertex type. For example, ‘130.89.0.0/16 ’ be-
comes ‘p_e127ce3a558d2633367db4e1f77a7fe25257e50df1b0ad2417445c57a8bf3352 ’. Once
the function was rewritten to perform the operation without needing a JOIN operation,
this resulted in a significant speed-up. Graphs could now be created at 1/4th of the time
required compared to the old method. Using this knowledge of JOIN operations being this
expensive, we reviewed all queries and looked into ways to perform them without JOINs.
Nearly all queries using JOINs before could be rewritten in some way to perform JOIN-less
with a substantial performance increase.

7.3 Considerations

We currently retrieve origins from an external source, as rir-data.org stores a limited
number of ‘origins’ in their data. The majority of origin data now comes from RIB files
from Route Views [66], which is an operational source rather than an administrative source
like the RIRs. This could impact research that looks at discrepancies between operational
and administrative data. To enable researchers to recognize that data is coming from an
operational source, we label all external origins, which can be found in the ‘external origin’
label in the graph’s vertices.

We realized that the dataset was not as reliable. When parsing the data for 2024-05-23,
we ran into weird errors in our enrich_df method or the Add origins step in 5.2. The
‘origin’ column was missing entirely on this date. We made the method resistant to the
missing column by checking if the origin is present. Depending on the outcome, it will set
‘external origin’ to True for non-Null values in ‘origin’ or set the value to True for all.
While this is a minor inconvenience, it does point out reliance on a dataset that is not as
reliable as we would hope.

Another limitation of rir-data.org is that it only goes back to 2022-11-01. This
project could not produce graphs before that date. There is also a single day missing in
2023-07-26. It is unclear why this date is unavailable. When you attempt to load the
dataset for that day, the system recognizes this date and will load the previous day. The
dataset always remains behind for two to three days. When you try to load this date, the
system will warn you that this date is not available. This is likely a processing delay.

The current version of the ingester drops the ‘country,’ ‘status’, and ‘source’ values.
However, this value could be retained and added to the graphs with relatively minor
modifications to the ingester and the graph creator. The addition was considered out of
scope for this thesis as it would significantly increase the data stored. This is a trade-off
in storage functionality.

As a possible extension, it could allow for country or source (being the allocating
RIR) based queries and other interesting research possibilities. Before this addition is
implemented, the impact on graph analysis queries must be considered. As creating a
significant amount of edges to a limited number of new nodes will create an unbalance in
queries such as PageRank. Queries such as (Strongly) Connected Components and Com-
munity detection will likely lose their semantic meaning if ‘country ’ is implemented as a
vertex. It probably makes more sense to store it as a label in vertices themselves, as we
do with ‘external_origin’.
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Certain queries would perform better when run on a RDBMS, as presented in section
6.3. This design study focused on making the data available in graph form for intriguing
graph analysis. However, certain parts of exploratory research can be performed just as
well or better on a traditional relational database. We discussed an idea internally for a
future project to build a layer on top of this graph system to redirect queries to the back
end that could best serve that purpose, as discussed in the Future Work section.

7.4 Recommendations and Future work

We recommend researchers to use our system to research and see where the project can
improve. We have already considered several improvements in the future work section.
But should a use case not be covered, we encourage contacting us to see if this feature can
be integrated.

We also suggest rir-data.org to investigate ways to incorporate origins in their data
set. For example, the ROUTE objects can be used to find links between allocated prefixes
and Autonomous System Numbers, because this will enable us to depend less on opera-
tional data when incorporated in their system.

The initial release of software frequently involves balancing functionality against the
delivery timeline, and our work is no different. In the subsequent sections, we discuss
possible extensions of the project and other future work.

We received several suggestions that we did not implement due to time or resource
constraints. Some of these queries will require comparing multiple data dates, which is
very resource-intensive. Additionally, Multiple researchers indicated an interest in RPKI
data relating to the RIR WHOIS data when contacting them for potential queries. We
opted not to incorporate this in the initial version, as this would expand the scope too
much. But this could be a worthwhile addition for future research. These queries are in
Appendix C.

Currently, comparing dates is restricted to reviewing which edges have changed. This
does allow insight into which maintainer, origin, prefix, or organisation has changed the
most compared to the previous date. However, it would also be very interesting to see
changes in components, pagerank scores, or communities. We encourage researchers to
implement these extended comparisons that we had to consider out of scope due to time
constraints.

Our system compares the current day against the previous day when parsing RIR data.
When a day of data is identical to the previous day, it creates a symlink rather than storing
the data, thereby saving storage space. In contrast, when changes in the data are detected,
our system stores the entire day of data. The storage mechanism could be improved by
storing only changes and modifying the graph creator to compute the graph based on a
weekly, monthly, or even yearly snapshot. This is followed by processing the difference
between the added, removed, or modified records. As a result, the system would save on
storage with a trade-off of requiring more time to compute the graph.

Community Detection is the algorithm in our library with the longest runtime. We
encourage researchers to look into faster community detection algorithms and write an im-
plementation for the GraphFrames or GraphX library. Algorithms like COPRA [67] could
be interesting, as this algorithm can deal with overlapping communities.
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Graph databases have distinct benefits over relational databases in certain aspects. One
of the primary advantages of graph databases is their efficiency in traversing relationships,
performing path-finding, and managing recursive relationships. These types of queries
are inherently graph-centric, as they require navigating through vertices and edges, which
graph databases are optimized for.

In contrast, Relational Database Management System (RDBMS) better handle large-
scale aggregation and complex join. Queries that involve summarizing large datasets, such
as computing averages, totals, or other aggregate metrics across numerous records, are bet-
ter suited to the structured tabular format of an RDBMS. The indexing and optimization
techniques available in RDBMSes are tailor-made for these kinds of operations, making
them perform better for such tasks.

Given these strengths, a best-case solution would leverage both types of databases,
depending on the nature of the query. We envision a query management layer on top
of the two databases, capable of recognizing which incoming query can be best served
by which database and redirecting it accordingly. This layer would review the query’s
required calls and decide whether the graph database or the RDBMS would provide the
best performance, harnessing the strengths of both systems without experiencing their
individual shortcomings. This system would also allow for a singular point of access,
rather than require the query to be requested to both databases.

Our work lays a solid foundation for the graph database side of this implementation.
We have focused on optimizing graph-related queries and identifying which queries are
likely better served by an RDBMS. The next step would be building a RDBMS database
to deal with the daily volume of data. This will involve designing a schema, deciding
indexing strategies, and optimizing data storage to efficiently handle the expected data
volumes.

Once the RDBMS implementation is complete, the final step would be to develop an
integrated system that seamlessly interfaces with both the graph and relational databases.
This could be implemented using GraphQL or another layer that can handle multiple back-
ends. This system would include an intelligent query management layer capable of routing
queries based on their nature and requirements. Additionally, it provides a unified interface
for researchers, lowering the barriers of working with RIR data.

By completing this integration, future researchers can create a powerful, flexible RIR
WHOIS data management solution that leverages the best aspects of both database types.
This hybrid approach will improve performance for specific queries and provide a more
expanded toolset for researchers to explore the RIR data.
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Chapter 8

Conclusion

In conclusion, our research extends the pioneering work of the HEAP project, demonstrat-
ing the potential of graph databases in network analysis while addressing key performance
and maintenance challenges.

In this study, we have explored the utilization of Regional Internet Registries (RIR)
data, acknowledging its characteristics and challenges associated with its use. RIRs are
organisations that manage the allocation and registration of internet number resources
within specific regions of the world. There are five RIRs: RIPE NCC, ARIN, APNIC,
LACNIC and AFRINIC.

RIR WHOIS data poses significant challenges for data analysis due to its complexity
and differences in structure across different RIRs. Each RIRs data format can vary, cre-
ating obstacles for unified data analysis. Our project aims to mitigate these challenges by
leveraging the already available data source rir-data.org, enriching it, and transforming
it into graph structures that facilitate exploratory research. By doing so, we provide a more
coherent and unified framework for analysing this data, enabling researchers to uncover
insights that might be obscured by the raw, unstructured data.

Each RIR maintains a WHOIS database and delegation and rDNS zone fragment files.
These files are important to network management and research. We proposed a graph
database constructed from parsed RIR WHOIS data and supported by well-documented
Python modules for data ingestion, graph creation, and analysis. This graph database
structure aims to simplify the complexity of RIR data, making it more accessible to re-
searchers.

Several lessons were learned throughout this project. First, data reliability, in our data
source did not reliably provide us with origins. We mitigated this using raw BGP RIB
files. We learnt to make our system resilient against missing values in the dataset.

Second, Performance impact of JOINs, when developing the graph builder, we encoun-
tered bugs in edge creation. We were able to trace this back to the ID generation. During
this debugging process, we realized the performance impact of JOIN operations. Using this
lesson, we rewrote large parts of the query library to perform its queries with less JOINs.

While our project provides a solid foundation, several areas remain for future research.
For instance, the incorporation of Resource Public Key Infrastructure (RPKI) data. RPKI
provides cryptographic verification of the route announcements in the Internet’s routing
infrastructure, enhancing the security and reliability of routing. Integrating RPKI data
with our graph database would provide a richer dataset.

Additionally, a promising direction for future work involves running an Relational
Database Management System (RDBMS) in parallel with our graph database, with a
unified access layer connecting both systems. This approach would allow us to redirect
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incoming queries to the database that best serve the researcher’s need, combining the
strengths of both database types. For instance, the graph database could handle complex
relationship queries, while large-scale aggregations and complex joins could be managed
by the RDBMS.

In conclusion, our proposed graph database model presents a viable and suitable solu-
tion for analysing RIR WHOIS data. This work not only fulfils the current research and
design goals but also lays the groundwork for ongoing improvements and innovations in
the field of RIR data analysis. Integrating RPKI data and developing a hybrid system
combining graph databases with RDBMS are promising areas for future research. By con-
tinuing to build on this foundation, researchers can gain deeper insights into RIR data and
contribute to the security and stability of the global Internet infrastructure.
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Appendix A

Raw WHOIS data example

Listing A.1: WHOIS output for utwente.nl
Domain name : utwente . n l
Status : a c t i v e

Reg i s t r a r :
Un i v e r s i t e i t Twente
Dr i ene r l o l aan 5
7522NB Enschede
Nether lands

Abuse Contact :
+31.534891313
email@utwente . n l

Creat ion Date : 1986−10−16

Updated Date : 2020−11−03

DNSSEC: yes

Domain nameservers :
ns3 . utwente . n l 1 31 . 1 55 . 0 . 3 7
ns1 . utwente . n l 1 3 0 . 8 9 . 1 . 2
ns1 . utwente . n l 2001:67 c : 2 5 6 4 : a102 : : 3 : 1
ns2 . utwente . n l 1 3 0 . 8 9 . 1 . 3
ns2 . utwente . n l 2001:67 c : 2 5 6 4 : a102 : : 3 : 2

Record maintained by : SIDN BV

Copyright no t i c e
No part o f t h i s pub l i c a t i on may be reproduced , publ i shed , s to r ed in a
r e t r i e v a l system , or transmitted , in any form or by any means ,
e l e c t r o n i c , mechanical , r ecord ing , or otherwise , without p r i o r
permis s ion o f SIDN .
These r e s t r i c t i o n s apply equa l l y to r e g i s t r a r s , except in that
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r ep roduc t i ons and pub l i c a t i on s are permitted i n s o f a r as they are
reasonable , nece s sa ry and s o l e l y in the context o f the r e g i s t r a t i o n
a c t i v i t i e s r e f e r r e d to in the General Terms and Condit ions f o r . n l
Reg i s t r a r s .
Any use o f t h i s mate r i a l f o r adve r t i s i ng , t a r g e t i n g commercial o f f e r s or
s im i l a r a c t i v i t i e s i s e x p l i c i t l y fo rb idden and l i a b l e to r e s u l t in l e g a l
a c t i on . Anyone who i s aware or su spec t s that such a c t i v i t i e s are tak ing
p lace i s asked to inform SIDN .
( c ) SIDN BV, Dutch Copyright Act , p r o t e c t i on o f authors ’ r i g h t s
( Sec t i on 10 , subs e c t i on 1 , c l au s e 1 ) .
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Appendix B

Queries

Queries implemented in this project:

1. List all vertices of type x linked with a path to y.
This query shows all prefixes managed by an organisation, for instance.

2. Is there a link between Vertex x and Vertex y
These vertices can be the same time, but this is not required. The result of this
query is the shortest path from x to y.

3. Find the highest or lowest degree vertex.
This can be in-degree, out-degree, or both.

4. Apply the PageRank algorithm to a graph.
This shows the most interconnected nodes of the graph.

5. Find Connected Components
This query runs Connected Components algorithm over the entire graph, finding
prefixes, maintainers, origins, and organisations connected to each other.

6. Find Strongly Connected Components
This query runs the Strongly Connected Components algorithm over the entire graph,
finding prefixes, maintainers, and origins connected to each other.

7. Apply Community Detection
This query runs LPA on the graph to find communities of connected prefixes, main-
tainers, origins, and organisations.

8. Show all changes between date x and date y
This shows all changes in the edges between prefixes, maintainers, origins, and or-
ganisations between two dates.
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Appendix C

Future work queries

Queries not implemented in this project but relevant enough to warrant future work:

1. Show the difference between object x at different points in time
This query displays the attributes that changed at different points in time.

2. Query change of ownership.
This query returns the previous maintainer/organisation that owned the prefix, if
available. Using the data in the ‘last-modified’ we can load the graph of a date
before that day to find the previous owner. This comes with the limitation that the
rir-data.org dataset only goes back to 2022-11-01.

3. Queries related to RPKI
While these queries were much requested, these were considered out of scope as RPKI
data is not included in the rir-date.org dataset.
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Appendix D

Manual

D.1 Prerequisites

We assume you try to run it on a Linux based server. We tested it on Debian 11 (bullseye).
It will most likely work on other distributions, but we have not confirmed that it works.
We used podman 3.0.1 and podman-compose 0.1.11.

D.2 Container

We provide a Dockerfile to build the container. This starts the PySpark Jupyter notebook.
Along some path and port configuration in .env and the docker-compose.yml. We pro-
vide a convenient script called start-notebook.sh to kick off the compose and pipe all
output to a session file. This file will contain the token to access the Jupyter notebook.
Once the container is up and running, you can access the server from the web browser
using the URL or you can use an editor like VS Code. In the ‘notebooks’ folder, we provide
a couple of notebooks. The most important ones are spark-instance-rirmap.ipynb, this
contains all configuration necessary to run spark code. You can modify the core count
and memory configuration to fit your machine. Be aware that lowering resource alloca-
tion might impact your performance negatively. The other two relevant notebooks are
ingest_and_store.ipynb and make_graph.ipynb. These will be discussed in the follow-
ing sections.

D.3 Ingesting

In the ingest_and_store.ipynb we show an example of how to ingest rir-data.org data.
This uses the ingester.py module. If you make any changes to the directory structure
where you store the dataset, this must be reflected here too. The main method that will be
of interest to you is process_rir_data_dot_org(). This method requires a SparkSession
which can be generated using the spark-instance-rirmap.ipynb notebook. You can
choose to leave the current_data and latest_date field empty if you wish to ingest all
data. By default, current_data looks for the first date that is not present in the dataset
folder. latest_data looks at the rir-data.org dataset to find out the latest date that is
present.
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D.4 Graph Creation and Analysis

In the make_graph.ipynb we show an example of how to generate a graph as well as some
analysis examples. This notebook uses the rirmap.py module. If you make any changes to
the directory structure where you store the dataset, this must be reflected here too. To cre-
ate a graph, you want to use load_graph(). This requires a datetime and a SparkSession.
Alternatively, if you wish to perform analysis on the source DataFrame as well as the graph,
you can load the source DataFrame using load_df() and load_graph_df() to get both
objects separately.

Once you have the GraphFrame object, you can perform analysis using the methods
provided in the rirmap.py module. Have a look at the pydoc or the Evaluation chapter
6.3 for inspiration.
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Appendix E

Benchmark data

E.1 Traversal

These numbers were collected by running benchmark_traversal() method present in the
checker module. It gathers five random vertices from each type (prefix, origin, maintainer,
and organisation). For each of these values, we time a run of each traversal. We repeat
this process five times. The runtimes for each of these runs are shown in the table E.2.

E.2 Link Vertices

These numbers were collected by running benchmark_link_vertices() method present
in the checker module. It requires connected_components() to be run beforehand. It
aggregates the vertices on component and sorts the count. It picks 4 components based on
the count, it picks the largest, the smallest and 2 random components. The method then
picks 3 vertex pairs in each component and computes the path between them at 3 different
maxPathLengths: 5, 10 and 15. The runtimes for each of these runs are shown in the table
E.2.

Table E.1: Runtime per vertex type in seconds

Type Prefix Origin Maintainer Organisation
Run step type 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 1 1.59 1.07 0.88 0.86 0.92 0.89 1.17 0.94 1.12 1.70 2.38 0.98 1.62 0.88 1.56 257.36 91.36 62.95 5.62 146.57

2 138.64 0.90 1.03 52.6 7.78 3.26 4.56 3.22 3.66 2.80 0.51 0.47 0.47 0.46 0.48 0.88 0.88 1.20 0.85 1.02
3 1.08 3.91 9.58 0.95 0.92 2.25 2.13 2.01 1.83 1.83 2.30 1.90 1.90 2.00 1.71 527.74 175.59 95.69 11.70 316.56

2 1 0.96 1.08 1.25 1.05 0.93 0.98 0.96 1.67 1.02 1.22 7.84 1.27 1.02 1.00 1.40 3.17 146.38 246.55 2.30 146.47
2 51.60 4.52 8.02 3.38 130.56 2.93 3.41 4.19 5.31 2.75 0.51 1.22 0.79 0.85 0.59 2.64 0.91 1.01 0.93 0.95
3 0.93 0.89 0.83 1.55 0.94 1.93 1.79 2.31 1.89 2.50 13.31 2.42 2.14 1.88 3.41 4.37 287.79 486.56 5.55 289.20

3 1 0.94 1.27 1.32 1.11 1.00 0.88 0.93 1.49 0.91 2.89 9.06 0.92 0.97 1.00 0.98 251.92 6.08 12.98 244.61 147.49
2 3.16 7.92 3.76 127.70 6.07 3.06 3.34 3.70 2.80 2.85 0.56 0.53 0.50 0.67 0.52 0.96 0.93 1.29 1.01 1.16
3 0.94 0.89 0.87 0.91 1.46 2.02 2.18 2.01 1.98 3.84 13.33 2.63 4.01 2.84 3.22 517.22 12.15 25.95 484.85 295.04

4 1 1.11 0.90 0.93 0.93 0.95 0.98 0.98 1.86 0.94 1.43 1.10 0.93 1.04 0.92 0.93 8.52 86.12 143.79 101.57 2.09
2 49.26 35.85 97.80 2.81 126.01 3.38 4.66 3.21 3.20 3.60 1.01 0.85 0.75 0.52 0.51 2.53 0.99 1.12 0.99 0.93
3 1.01 0.98 0.95 0.98 0.97 2.48 2.00 3.14 1.97 4.42 2.38 2.07 2.12 3.32 2.872 17.77 171.18 283.83 201.24 3.62

5 1 1.04 1.12 1.07 1.72 1.00 1.98 2.12 2.11 2.13 1.00 1.09 1.90 1.10 1.51 0.98 153.55 2.23 34.47 141.65 2.69
2 148.15 11.34 3.19 4.19 236.33 5.19 4.82 4.23 3.56 4.45 1.88 0.62 0.81 0.64 0.66 1.02 1.68 1.07 1.16 1.09
3 1.11 2.02 1.01 1.76 1.02 4.01 2.36 2.81 2.30 2.99 2.45 3.60 2.31 3.66 3.28 323.65 3.72 67.31 274.60 5.55
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Table E.2: Runtime per path computation in seconds

Component 1 2 3 4
Run MaxPathLength\Pair 1 2 3 1 2 3 1 2 3 1 2 3

1
5 621.47 271.62 1657.32 422.93 403.13 437.72 2514.87 3147.82 4028.26 361.29 325.15 504.11
10 717.89 254.97 1679.20 408.00 423.37 459.59 2767.12 3310.62 4057.29 408.16 350.58 547.54
15 685.62 270.07 1896.69 401.80 422.17 470.95 2908.27 3769.79 4170.53 405.54 367.68 544.85

2
5 1376.79 1431.00 1548.54 1617.67 1745.45 1795.50 7088.35 11315.47 2178.60 406.67 422.81 585.16
10 1413.13 1501.70 1590.31 1645.10 1760.75 1598.15 7549.80 11324.50 2188.60 434.88 438.89 632.41
15 1478.47 1532.27 1585.43 1685.35 1783.94 1607.63 7907.14 8860.86 2220.58 457.85 429.02 664.54

3
5 1075.20 1125.06 1155.51 5265.52 1343.77 1357.36 6315.67 6425.48 3362.27 481.62 473.22 690.97
10 1093.52 1123.81 1601.55 5272.57 1351.31 1385.86 6133.41 6512.03 3358.19 502.53 469.99 691.70
15 1084.31 1126.09 1917.66 5420.78 2721.97 1413.88 6201.93 6830.95 3392.94 527.10 597.84 682.09
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