BSc Thesis Applied Mathematics

Comparing ordinal
pattern-based short-term
predictions to alternative
forecasting methods

Herkus Jacina

Supervisors: Annika Betken and Giorgio Micali

July, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

UNIVERSITY OF TWENTE.

Preface

I would like to express my sincere gratitude to my supervisors for introducing me to
the intriguing and fascinating mathematical discipline known as time series analysis and
providing guidance throughout the entire research process. This shared knowledge allowed
me to understand and learn more about how, in this data-driven world, the data can be
analysed and processed to draw conclusions and make predictions.

Comparing ordinal pattern-based short-term predictions to
alternative forecasting methods

Herkus Jacina

July, 2024

Abstract

In this work, the feasibility of using ordinal patterns for short-term prediction is anal-
ysed. The accuracy of ordinal pattern-based predictions is compared to the accuracy
of the linear predictor method. These comparisons are then used to conclude under
which assumptions and conditions the predictions made by the two methods are sim-
ilar. The considered stochastic processes are: moving averages, autoregressive, and
fractional Brownian motion. Additionally, real-world data sets are used to analyze
how the prediction methods perform.

Keywords: Ordinal patterns, Predictions, Linear predictors, Fractional Brownian mo-
tion, Fractional Gaussian noise, Hurst parameter, Moving average processes, Autore-
gressive processes, Real-world data

1 Introduction

Ordinal patterns are sequences of symbols that represent the relative order of elements
within a time series or dataset, rather than their exact values. In earlier papers, ordinal
patterns were referred to as permutations and were used to analyse the complexity or pre-
dictability of time series using a measurement called permutation entropy [1]. As more
research surfaced on ordinal patterns, it became a useful mathematical concept in fields
that analyse time series. In medicine, ordinal patterns are used to analyse and draw con-
clusions for EEG data |2]|, heartbeat [3], or patients with severe injuries [4]. This showcases
the versatility of ordinal patterns and the benefit of using patterns to analyse time series.

In recent times, ordinal patterns have started to be used as a predictor for time series.
In the article "Short-term prediction through ordinal patterns" by Yair Neuman, Yochai
Cohen and Boaz Tamir [5], it is analysed whether ordinal patterns can be used as a time
series forecasting method. While the work focused on predicting the next pattern in the
time series, the results showcased that the accuracy of predictions made were better than
randomly guessing the next ordinal pattern. This provided a basis to consider ordinal pat-
terns as a prediction method and since then other papers have been published analysing
the feasibility of using ordinal patterns for short-term predictions.

In this paper, research is conducted to analyse whether ordinal patterns can be used
as a short-term predictor. Additionally, the predictions made using ordinal patterns and
their accuracy are compared to predictions made using the linear predictions method. This
comparison aims to identify the conditions and assumptions under which ordinal pattern
predictions are as accurate as predictions made by alternative forecasting methods.

2 Preliminaries

The research topic involves concepts from many different disciplines of mathematics. There-
fore, it is important to define them well, to ensure that readers from any background can
follow the derivations and results of this research. This section introduces and briefly
discusses the concepts relevant to this research.

2.1 Time series and Stochastic processes

Since the research focuses on analysing multiple prediction methods for time series, it is
important to understand what time series are and the processes that generate these time
series.

A time series is a sequence of measurements recorded at discrete time instants ¢t € T,
where T is a discrete set, and is usually denoted (X;);er [6]. Data points in a time series
are observations of a single random variable or group of variables across time, allowing for
the examination of the dynamic and establishing trends between the observations. For-
mally, a time series is defined as [14]:

Definition 2.1 (Time Series) A time series is a stochastic process (X;)ier, where T
is a set of times. We call (X;).er a realization of the process.

Time series analysis refers to methods for analyzing time series data in order to derive
useful statistics and data properties, which can be used for making time-series predictions.

We see a time series as a realizations (x¢)ier of a stochastic process. These random
variables represent time series evolution over a set period of time, with the unpredictable
nature of the future observations. Stochastic process is formally defined as [14]:

Definition 2.2 (Stochastic process) Let (2, F,P) be a probability space, and (E,¢€)
a measurable space, called state space. Let T be an index set. A stochastic process
X = (X¢)ter defined on (9, F,P) with values in (E,€) is a function:

X :QxT— E st, ¥t w— X¢(w) is measurable from (2, F) to (E,¢).

Stochastic processes are commonly used in scientific disciplines such as physics, economics,
and engineering to represent systems that vary over time as a result of random events.

2.2 (Sample) Mean, Variance, and Autocovariance

Mean value and variance are powerful tools not only to analyse the results and draw con-
clusions but also to characterize the distribution of time series |7].

Mean value is a statistical measurement that represents the average value in a set of
observations and we denote it as E(X;). For time series that implies finding the average
of observed values {x1,z2,...,x7} over a time period T [7]. The resulting average of time
series observations is called a sample mean and is denoted using notation f.

Definition 2.3 (Sample mean) Let X be time series indexed by T'. Then, the
sample mean [i for the time series X is the random variable:

7|

1
(X)) = — .

Variance is a measure that describes the spread in a set of observations around its mean
[7]. Variance can be denoted as var(X;) or o2, where we call o the standard deviation.
The resulting spread of time series observations is called a sample variance and is denoted
using notation 2.

Definition 2.4 (Sample variance) Let X be time series indexed by 7. Then, the
sample variance 62 for the time series X is calculated using the following expression:

Lastly, autocovariance measures the joint variability of two variables at distance k, which
we refer to as lag k. We denote autocovariance at lag k as (k). The resulting joint vari-
ability of time series observations at lag k is called a sample autocovariance at lag k£ and
is denoted using notation (k).

Definition 2.5 (Sample autocovariance) Let X be time series for a time period 7.
Then, the sample autocovariance at lag k, 4(k), for the time series X is calculated using
the following expression:

T—k

Furthermore, we introduce the following definition for stochastic processes X; [14]:

Definition 2.6 (Wide-sense stationary) We refer to stochastic processes as wide-sense
stationary (WSS), if they satisfy the following conditions:

e E(X;) =E(X;) for all t;
o E(X7) < +oo;
o Cov(Xy, Xs) = f(t — s) for some real valued function f.

The mean value function being constant implies that the E(X}) is independent of the time
variable ¢t in a time series. Additionally, the wide-sense stationary process has a finite
variance. Lastly, the autocovariance being time-invariant means that the value depends
only on the time difference t — s and not on the specific time ¢t and s.

The WSS condition is important when considering time-series predictions. This ensures
that predictions have scientific reasoning and are not just random predictions. Therefore
checking whether the stochastic process is WSS is crucial, before using time-series predic-
tion methods.

A special WSS process is the white noise, defined as [14]:

Definition 2.7 (White noise) A stochastic process €, t € T, is white noise if
E(es) = E(e) for all s,t € T, 7.(0) = 02 > 0 and 7,(7) = 0 for all 7 # 0.

White noise refers to a process of uncorrelated random variables that follow a fixed distri-
bution with a constant mean p and variance o2 [7]. This implies that the autocovariance
function v(k) = 0 for k£ # 0 and v(0) = 2. Typically we use notation ¢ to denote white
noise and say that standard white noise values follow a N (0, 1) distribution, meaning that
the mean value is assumed to be 0 and standard deviation o to be equal to 1.

2.3 Fractional Brownian motion and Fractional Gaussian noise

In this thesis, we will make use of fractional Brownian motion (fBm) and fractional Gaus-
sian noise (fGn) to simulate artificial time series on which we will compare the time series
prediction methods.

The fBm process is a continuous-time Gaussian process with a fraction parameter H € (0, 1]
which is referred to as the Hurst parameter [8]. The increment between two fBm values
X;_1 and X; is called fractional Gaussian noise, which we denote as Y; and satisfies the
following expression Y; = X; — X;_1, where X; are fBm. The fGn is normally distributed
with E(Y;) = 0 for all ¢ € N and autocovariance which satisfies the following equation:

y(k) = 5 (& + 17 = 2062 + |k — 1)) . (1)

N =

2.4 Ordinal patterns

As mentioned in the introduction, ordinal patterns refer to an arrangement of time series
observations in a partition based on their relative rank. The order of ordinal patterns refers
to the number of observations in a partition. We consider the use of ordinal patterns of
order 3, meaning the relative rank of three consecutive observations (Xy, X;y1, X¢42). For
instance for order 3 the following are all ordinal patterns and the conditions they satisfy:

™ =1(0,1,2) & X;<Xip1 < Xpyo;
m=1(0,2,1) & X< X1 & Xip1> Xipo & Xy < Xigo;
m=(1,0,2) & Xi>Xi1 & X1 < Xipo & Xy < Xigo;
m=(1,2,0) & X;<Xp1 & Xip1> X & Xy < Xpgo;
5 =1(2,0,1) & Xi>Xi1 & Xip1 < X & Xy > Xpyo;
6 =(2,1,0) & X;> X1 > Xy

3 Linear predictors for fractional Gaussian noise

This section explains how to derive the best linear predictor, with a focus on fractional
Gaussian noise. We then develop these predictors and evaluate their accuracy using met-
rics such as minimum mean squared error and mean squared error. These measures aim
to demonstrate the accuracy of linear prediction methods when dealing with fractional
Gaussian noise.

3.1 Derivation of best linear predictor

A linear predictor is one way to predict the next value in the time series. A linear predictor
is a weighted sum of the past observations.

Let)A(t,n denote a linear predictor of the time series at time ¢, using n previous obser-
vations, i.e. a random variable of the form:

n
Xin = § a; Xy,
i=1

where a; denotes the coefficients of this weighted sum.

Thus the objective becomes determining the coefficient a; that minimize the mean squared
error (MSE): E(X; — X;,)?. The predictor X;, that minimizes MSE is called the best
linear predictor [14].

Definition 3.1 The Xt,n for which MSE is minimized, is called the best linear predic-
tor.

To determine the coefficients a; that minimize the MSE, we let ag = -1, and then MSE
can be rewritten as [14]:

E (i aiXt_Z) . (2)
=0

Under assumption that E(X;) = 0 for all ¢, the equation (2) can be expressed as:

n 2 n n
E (Z a,;Xt_Z) = Zzaiaj’)/(i —j>,
=0

i=0 j=0

where v denotes the autocovariance function. Because the objective is to minimize this
quadratic equation with respect to the coefficients a1, ao, ..., a,, partial differentiation with
respect to ag, k = 1,2, ...,n yields the desired conditions for minimality [14]:

n
Zaly(l_k) :O7 k: 1,2,...,7’L. (3)
i=0
Because we let ag = -1, the expression (3) can be rewritten as:
n
y(k) = ay(i—k), k=12 .n
i=1

This set of equations in matrix form becomes

~vO0) A1) 4(2) ... ’y(n.— D] ral [y

v(1) ~(0) (1) : as v(2)

1) A) e E)= |70 (4)
y(n—1) : ~(0) | Lon ().

We compactly rewrite (4) as I'ya = 7,. These equations are called the Yule-walker equa-
tions. It can be observed, that the autocovariance matrix I';, on the left side of the expres-
sion (4) is symmetric. Because the resulting matrix is symmetric, the following theorem
can be used to conclude, that the matrix is diagonalizable and admits real eigenvalues [15].

Theorem 3.1 (Spectral theorem) In a finite-dimensional Euclidean space, every sym-
metric transformation has an orthonormal eigenbasis.

Under the assumption that the resulting matrix is positive semi-definite, the conditions for
matrix inversion can be formulated as the following theorem [11]:

Theorem 3.2 If matrix A is positive semi-definite, then matrix A is invertible if-and-
only-if all the eigenvalues are positive.

Therefore to be able to conclude that the autocovariance matrix I',, is invertible, we need
to derive the restrictions placed on values of the matrix that need to be satisfied. To derive
these restrictions, Gershgorin’s theorem is used [12]:

Theorem 3.3 (Gershgorin’s theorem) Every eigenvalue of a square matrix A satis-
fies:

A= A <) Ayl i€ {1,2,...,n}. (5)
J#

Since for all ¢ € 1,2,...,n — 1, the values A;; in the autocovariance matrix I'), are equal to
7(0), equations (5) can be rewritten as:

A=7(0)] <D Ayl ie{l,2,..,n—1}.
J#
Thus, we get that the value A — (0) is bounded, thus giving the following inequality:
=D A< A-y(0) <) Ay
J# J#
Adding «(0) to the equation results in the following inequality:
=D A +9(0) A A+ (0). (6)
j#4 J#
For the matrix to be invertible, none of the eigenvalues should be zero. To ensure this, the
interval for A should not include zero, which implies:

’)/(0) - ZAZ‘]' > 0.
JF#i
Which can be rewritten as follows:

n—1
Y(0) > Aij = A(i),
i=1

J#

where the last inequality follows from observing the first row of the autocovariance matrix
I',,. Therefore, we derive the following theorem:

Theorem 3.4 Autocovariance matrix I',, of Yule-walker equations (4) is invertible if

n—1

7(0) >y (i).

=1

If the covariance matrix I',, is invertible, then multiplying both sides of the Yule-Walker
equations (4) by the inverse of this matrix gives the set of equations for the coefficients a;
that minimizes the MSE E(X; — Xm)2 iea="TI,1y,.

3.2 Best linear predictor for fractional Gaussian noise

Since fractional Gaussian noise equals Y; = X; — X;_1, where X; is fractional Brownian
motion, we can determine whether the next observed value X; was higher or lower than
X1 using linear predictor for Y;. We consider a linear predictor for fractional Gaussian
noise using n previous observations:

n

Yin = E a;Yy—j.
i1

By definition of {Gn, E(Y;) = 0 for all ¢, therefore we can use Yule-walker equations (4)
to determine the coefficients a; that minimize the MSE E(Y; — f/}n) Additionally, the
expressions for autocovariance for f{Gn are known and can be calculated if the Hurst pa-
rameter H is known. However, calculating the inverse of a square matrix becomes difficult
when dimensions exceed the value of 3. Therefore, for the research, we only consider linear
predictors for fGn that uses 1, 2, or 3 previous observations.

Thus we get that the best linear predictor that uses 1 previous observation is of the
following form:

Yii=a1Yi 1.

Whereby multiplying the Yule-Walker equations (4) by the inverse of covariance matrix
I'y, we get the following expression for ay:

a1 =2(0)9(0) = L =200,

where the last equality follows from the fact that for fractional Gaussian noise v(0) = 1.
Therefore, the best linear predictor that uses 1 previous observation is Y; 1 = v(1)Y;—1.

Theorem 3.5 If Y; is fractional Gaussian noise, then linear predictor that uses 1 pre-
vious observation Y; ; is the best linear predictor if-and-only-if a1 = (1) for ¥; 1 = a1Y;—;1.

Now consider a linear predictor for fractional Gaussian noise that uses 2 previous ob-
servations. The linear predictor is of the following form:

Yio = a1Yi 1 + a2Yi_o.

Once again by using Yule-Walker equations (4), we can solve the set of equations to de-
termine the coefficients a1 and as. This is the resulting set of equations:

=19 29)

The inverse of a 2x2 matrix on the right side of the equation is calculated as follows:

2 _ 2 | —~(1 K@ Y
07 =y =) (0) TOEAME A0

1 (0) €))
[7(0) 7(1)} - 1 [7(0) —v(l)}_[O o wwﬁo-)w

It should be noted that v(1)2 # ~(0)? for all values of H.

Then multiplying the two matrices on the right side of the equation results in coefficients
a1 and ag that constitute the best linear predictor Y; 2. The coefficients have the following

expressions:
1) (v(0)—~(2
o -
2 7)
ag = 7(0)v(2)— (1)

Theorem 3.6 If Y; is fractional Gaussian noise, then linear predictor that uses 2 previous
observation Y; o is the best linear predictor if-and-only-if a1 and as are equal to the values
in expression (7) for Y; 2 = a1Y;—1 + a2Yi—o.

Lastly, the linear predictor for fractional Gaussian noise that uses 3 previous observations,
has the following expression:

?2,3 =a1Yi—1 +a2Yi—o +azY;_3.

Once again we use Yule-walker equations (4) to determine the coefficients ai, as, and as:

a1 7(0) (1) ~
az| = {v(1) ~+(0) ~
as 7(2) (1) ~(0) 7(3)

Finding the inverse of a 3x3 matrix (See appendix A) and matrix multiplying the two
matrices on the right side of the equation results in coefficients a1, a2, and ag that constitute
the best linear predictor Y; 3. The coefficients have the following expressions:

a1 = 1002 —y(1)2)+r (Y2 () =7 (0)+YB)(r(1)2=7(0)7(2)) .
! Y(0)(7(0)*—(1)?) =7 (1)? (+(0) =¥(2)) +~(2) (v(1)*—7(0)7(2)) °

ar = 222 =9(0)+7(2) (4(0)2=7(2)?)+7(1)7(3) (¥(2)—7(0)) . (8)
27 0702 (D2) 120 —2) @) (v (1)*—7(0)7(2))’

an = YOO =7(0)7(2)+7(1)7(2) (7(2)=7(0)+7(3) ((0)2 =7 (1)?)
3 7(0)(v(0)2 = (1)) = (1)2(v(0)—7(2)) +7(2) (v(1)2 = (0)7(2)) ~

Theorem 3.7 If Y; is fractional Gaussian noise, then linear predictor that uses 3 previous
observation Y; 3 is the best linear predictor if-and-only-if a1, a2, and a3 are equal to the
values in expression (8) for Y; 3 = a1Yi—1 + a2Y;—2 + azYi_3

3.3 Comparing minimum mean squared error of linear predictors

Until now the objective was to determine the coeflicients for predictors that minimize the
mean squared error. Once we derive these coefficients, we can determine the minimum
mean squared error (MMSE) of these linear predictors. We can calculate MMSE by using
the following theorem [14]:

Theorem 3.8 (MMSE) Suppose (X;)ter is WSS, zero mean stochastic process.
Let n € N be fixed, then if Xt , := > 7" | a;X¢—; minimizes E(X; — Xm)2 over all a1, ..., an,
the MMSE E(X; — X;,)? can be calculated using the following expression:

E(X; — Xi0)? = 7(0) — a1y(1) — ... — any(n).

Because fractional Gaussian noise is WSS and has zero mean Theorem 3.8 can be applied
to calculate MMSE for each of the predictors as follows:

where we use coefficients a; that we determined in the previous subsection (Theorem 3.5,
Theorem 3.6, and Theorem 3.7).

By substituting the values of «(i) using the autocovariance expression (1) for fractional
Gaussian noise, we get the expressions of MMSE that depend on Hurst parameter H.
Therefore, the resulting values of MMSE can be plotted as a function of H:

1.0+ . L T
oL Hoong, Method
& £ ™
n.n""“ ﬁ",\ 1 previous observation
e L L)
...n (# 2 previous observations
0.75 ..-I.. ‘Aﬁ 3 previous cbservations
Pt 82
; !
LIJ -
(7} %
2 -
S o= .
&
-
B
]
§
025 F
§
™
0.00 0.25 0.50 0.75 1.00

F1GURE 1: MMSE depending on Hurst parameter and number of previous obser-
vations.

For fBm processes, the higher the value of Hurst parameter H, the smoother the path of
each realization of fBm. Therefore, for higher values of H, the curve of fBm becomes more
linear and predictions become more precise and the MMSE approaches 0. While, for lower
values of H, the curve of fBm contains a lot of fluctuations, therefore the MMSE values
are higher. Lastly, for H = 0.5, the fBm process becomes standard white noise, therefore
being difficult to predict and constituting the highest MMSE value.

As could be seen in the Figure (1), the MMSE values improve based on the number
of previous observations used. However, the improvement is not that significant for higher
H values. Additionally, the improvement from using 1 previous observation to using 2
previous observations is more significant than using 3 previous observations rather than 2.
This pattern of less significant improvement continues with each additional observation,
thus it is enough to use up to 3 previous observations to make predictions.

3.4 Comparing MSE of linear predictors

Another way to compare the MSE of linear predictors is by using Monte Carlo simulations.
Using simulations we can check the squared error made through many simulation runs,
thus getting MSE. The simulations consisted of firstly simulating 500 values of Fractional
Brownian motion X; for each run and then calculating ¥; = X; — X;_1. Then for a fixed
value of H, the squared error (Y; — f/tm)Q, where n = 1,2, 3, is calculated for each linear
predictor for that run. The coefficients a;, where ¢ = 1,2,3, we use in this simulation
for th are the ones that minimize the MSE and were derived in Section 3.2. The same
process is repeated for 2000 runs for a specific value of H and the mean squared error is
calculated. This process is then repeated for all values of H € [0.01,1] in increments of
0.01. Plotting the results as a function of Hurst parameter H, we get the following figure:

Method
1 previous cbservation
#® 2 previous observations

3 previous cbservations

MSE

0.29

0.0

0.00 0.25 0.50 0.75 1.00

FIGURE 2: MSE depending on Hurst parameter and number of previous observa-
tions.

Figure (2) shows that at lower values of H, there is a substantial difference in MSE between
using 1 previous observation and using 2 or 3 previous observations to forecast the value
of Y;. However, it can also be noticed that there is barely any difference in MSE when
comparing using 2 and 3 previous observations. Additionally, sometimes when considering
2 previous observations, the MSE was lower than when using 3 observations. But for
higher values of H, there is barely any difference in MSE and they essentially converge to
MSE value near 0. Thus, it can be stated that in terms of MSE, the number of previous
observations considered is only favorable for smaller Hurst parameter values.

10

4 Predictions using Ordinal patterns

Another way to make time-series predictions is by using ordinal patterns. While ordinal
patterns ’lose’ information about concrete values of X; and use the relative rank of these
values in partition, they can be used to predict whether the next observation will be higher
or lower than the previous observation. An article "Short-term prediction through ordinal
patterns" by Yair Neuman, Yochai Cohen and Boaz Tamir [5] looks into the use of ordinal
patterns to make short-term predictions. By using ordinal patterns we limit the possible
transitions to the next ordinal pattern. If we consider ordinal patterns of order 3, then
each ordinal pattern, which there is a total of 6 ordinal patterns, can only transition to 3
ordinal patterns. Because of the limitations imposed by the few possible transitions that an
ordinal pattern can transition to, it is interesting to analyse how accurate the predictions
become if the time series is analysed using ordinal patterns.

In the article [5], the use of ordinal patterns of order 3 was considered and the table
containing all possible transitions for ordinal patterns of order 3 can be seen below:

Ordinal pattern Possible next ordinal pattern s
m = (0,1,2) m = (0,1,2) | me =(0,2,1) =(1,2,0)
m = (0,2,1) m =(1,0,2) | m5 = (2,0,1) | m¢ = (2,1,0)
m3 = (1,0,2) m =(0,1,2) | m =(0,2,1) | 74 = (1,2,0)
ms = (1,2,0) m3 =(1,0,2) | 75 = (2,0,1) | m¢ = (2,1,0)
5 = (2,0,1) m =(0,1,2) | m =(0,2,1) | 74 = (1,2,0)
6 = (2,1,0) w3 =(1,0,2) | 75 = (2,0,1) | 76 = (2,1,0)

TABLE 1: Possible transitions for ordinal patterns of order 3.

These transitions also can be used to determine whether there was an increase between
the two consecutive values (Y; > 0) or a decrease (Y; < 0). This is done by looking at the
last two rank values of the next ordinal pattern:

m=(0,1,2) = Y; >0
M= (0,2,1) = Y; <0;
m=(1,0,2) = Y; > 0;
m = (1,2,0) = Y; <0
ms=(2,0,1) = Y, > 0;
76 = (2,1,0) = Y, <0.

For example, if the transition was to a pattern (0, 1,2), by looking at the rank of the last
two observations in the pattern sequence, it can be concluded that the value X, is higher
than X;_ 1, therefore Y; = X; — X;_1 results in a positive number. On the contrary, if the
transition was to a pattern (1,2,0), then the conclusion would be that X; is lower than
X;_1 and thus Y; is a negative number.

Therefore, by analysing time series using ordinal patterns and counting how many times
specific transitions occur, it is possible to predict whether the next value will be higher
than the last observed (sgn(Y;) = 1) or lower (sgn(Y;) = —1). This is done by finding the
final ordinal pattern in the time series and then examining whether, throughout the entire
series, this pattern more frequently led to an increase or a decrease in value.

11

Let n; ; denote the number of times the transition from 7; to m; occurred during the entire
time series. Then n; ; for time series (X)ier can be formally expressed as:

T-3

nij = Z {(Xep1, Xevo, Xegs) = 7 (X, Xev1, Xey2) = mi}
=1

We predict using the last ordinal pattern observed and whether there were more transitions
to increasing or decreasing patterns. Table (2) summarizes the predictions being made
based on these observations.

Last observed ordinal patterns 7 | Prediction sgn(Y;) = 1 if: | Prediction sgn(Y;) = —1 if:
m = (0,1,2) ny1 >ni2+nig ni1 <ni2+nig
m = (0,2,1) n2e < na3 + nas n26 > N23 + N5
m3 = (1,0,2) n31 > N3z +n34 n31 < n3a+ N34
my = (1,2,0) nae < N4 3+ N5 N46 > M43+ Mys
5 = (2,0,1) n51 > N5 + M54 ns1 < N2+ M54
76 = (2,1,0) n6,6 < M6,3 + N65 ne,6 > N6,3 + 16,5

TABLE 2: Predictions made based on last observed ordinal pattern and information
from time series.

For example, if the last observed ordinal pattern was m; and there were more transitions
from m; to 7 then transitions from m; to mo and w4 combined, then the prediction would
be that the next observed value X; will be higher than X; ;. On the contrary, if there is
more combined transition to patterns ms and w4 than to m; then the prediction would be
that the next observed value X; will be lower than X;_q.

Therefore, the ordinal pattern prediction method utilizes the information of the entire
time series to distinguish trends in the time series and predict whether the next observed
value X; will be higher or lower than the last observed value X;_;.

5 Comparison of two prediction methods

In this section, we will compare the performance of the ordinal pattern method and the lin-
ear predictors for time series forecasting. The comparison entails comparing both methods
on a common dataset, followed by a thorough examination of the accuracy of predictions.

Because the ordinal pattern method predicts sgn(Y;) rather than a concrete value, the
linear predictors will also be adjusted to predict sgn(Y;) rather than a concrete value of Y;.
This is rather straightforward because linear predictor fftm results in either a positive or
negative value. Therefore, taking sgn(Y;.,) as a prediction for sgn(Y;) is fitting and allows
for an accurate comparison between the two methods.

Comparing the predictions made by both methods to the real sgn(Y;), it can be determined
whether the prediction was correct or incorrect. This can be formulated as a conditional
function:

1 If the prediction was correct
1prediction =

0 If the prediction was incorrect

12

Then over many different predictions, we can calculate the accuracy of predictions made
using the following expression:

ZN 1 rdiction
Accuracy = =N _PTECron
Y N
where N denotes the number of predictions made.

To compare the accuracy of the two prediction methods, we once again simulate 500 values
of fractional Brownian motion X; for each run. Then the entire series is analysed using
ordinal patterns, the last occurring pattern is identified and the prediction of sgn(fft) is
made. Similarly, ?}n of the fractional Brownian motion is calculated for n = 1,2,3 and
then sgn(f/tm) is the prediction made by linear predictor method using n previous ob-
servations. These predictions then are compared to the value of sgn(Y;) and it is noted
whether the prediction was correct or incorrect. The same process is repeated for 2000
runs for a specific value of H and the accuracy of predictions is calculated. This process
is then repeated for all values of H € [0.01,1] in increments of 0.01. Thus the results can
be plotted as a function of Hurst parameter H:

™
0 8
™
»
hd]
0.8 8
-
] !
g Jn
&
3 I M i
[T + B°E
' '::'“ "
< ”.3:'.3" “' Method
0.6 :.z':-.n... . - a¥ 0 1 previous observation
o} ":] |= - ¥ # 2 previous observations
o Bap
o [* , |] # 3 previous observations
” L T
0.5 V:'n- Ordinal pattern
0.00 0.25 0.50 0.75 1.00

FiGURE 3: Comparison of accuracy for all prediction methods.

When observing Figure (3) it can be seen that the accuracy of predictions made by all
of the methods is similar for higher values of H. However, for the lower values of H, the
accuracy of predictions made by using ordinal patterns is worse than the predictions made
by the linear predictor method that uses 2 or 3 previous observations. Lastly, for H values
around 0.5, the accuracy of predictions made by all of the methods is around 0.5. Observe
the expression for autocovariance of fGn:

1
yw):50k+1w¥—mmﬂﬁ+m—1Wﬂ.
For H = 0.5, the expression can be rewritten as:

0 if k#£0
1 ifk=0

| =

v(k) = Ok+H—ﬂM+W—1D={

And since for fGn E(Y;) = 0 for all ¢ € N, the process becomes standard white noise and
thus predictions become random guessing constituting to accuracy around 0.5.

13

6 Hurst estimator, Moving average processes, and Autore-
gressive processes

This section investigates an approach for estimating the Hurst parameter for any wide-
sense stationary (WSS) process. Furthermore, we describe two new WSS linear processes:
Moving Averages (MA) and Autoregressive (AR), and then test and compare the accuracy
of previously developed prediction methods on these processes.

6.1 Hurst estimator

In the theoretical setting, the Hurst parameter is known and the data set is generated using
that Hurst parameter. Therefore comparing the accuracy of predictions made by the 2 pre-
diction methods is rather subjective. When it comes to making predictions for real-world
data, the Hurst parameter H is unknown and thus predicting the next value using a linear
predictor method becomes a difficult task. However, there is a way to estimate the Hurst
parameter for any wide-sense stationary (WSS) data using ordinal patterns. The article
"Estimation of ordinal pattern probabilities in fractional Brownian motion" by Mathieu
Sinn and Karsten Keller [9], analyses how the Hurst parameter can be estimated using
ordinal patterns for any WSS time series.

In the article "Ordinal patterns in long-range dependent time series" by A. Betken et
al. [16], the idea behind Hurst parameter estimation is to analyse the "up-and-down" be-
havior of the time series. For ordinal patterns, this entails analysing which ordinal patterns
constitute fluctuating rank values, rather than increasing or decreasing rank values. For
ordinal patterns of order 3, we formulate this statement as a conditional function:

1 oif W(Xh Xit1, Xi+2) € {(27 0, 1)7 (17 0, 2)’ (Oa 2, 1)7 (1a 2, 0)}

W(l) = 1{7T(X7j,X7j+1,X7;+2)} = {O else

Then the relative frequency estimator is given by:
1 n
Cn = — W (7). 9
PN)

We can use this relative frequency ¢, for the Zero-crossing estimator of the Hurst parameter
[16]. The estimator of Hurst parameter can be calculated using the following expression:

H, := max {0, logo <cos <7T20n)> + 1} ,

where ¢, has a value calculated using expression (9). It should be noted that this estimator
of the Hurst parameter only applies when considering fBm data.

To showcase how accurate the Hurst parameter estimator H is, we can simulate values
for fractional Brownian motion using real Hurst parameter H. Then analysing the time
series using ordinal patterns, calculate the estimator of Hurst parameter H and find an
error between the real and estimated values of the Hurst parameter. The simulation was
done for all values of H € [0.01, 1] in increments of 0.01 and then was plotted as a function
of the real Hurst parameter H. The resulting plot can be seen in Figure (4).

14

0.02

Error

-0.02

0.00 025 0.50 075 1.00

H

FIGURE 4: The error between the estimated (H) and real (H) Hurst parameter,

As could be seen, the difference is not really substantial with most of the errors fluctuating
between —0.02 and 0.02, meaning that the estimator of Hurst parameter H is an accurate
alternative that can be used for other WSS processes.

6.2 Moving average processes

Until now, we only considered using fractional Brownian motion processes. However, there
are many other linear processes that are WSS. One example of a WSS linear process is a
Moving averages process. A moving averages process of order k is a linear process X; that
can be described using the following equation:

X =boer +breg—1 + - + brer—p,

where b; € R, i = 0,1,...,k and ¢ is white noise. The process is the weighted sum of
k 4 1 preceding white noise values. For convenience, we denote a moving averages process

of order k by MA(k).

Consider a MA(1) process. Then each X; can be expressed using the following equation:
Xt = boer + bres_q.

Then we can compare the predictions made by the two methods using Monte Carlo simu-
lations. For simulations, we let by = 1 and by = §. Then we simulate values X; for values
of a € [0,1] in increments of 0.1. Then the predictions for each run are made by linear pre-
dictor that uses 1 previous observation (LP(1) method) and ordinal pattern method (OP
method). Then the accuracy is calculated over the 10000 simulation runs. The results of
this simulation can be seen in Table (3).

15

MA(1) Accuracy
Value of a | OP method | LP(1) method

a=0 0.5 0.5
a=0.1 0.51 0.5
a=02 0.52 0.53
a=0.3 0.52 0.53
a=04 0.53 0.54
a=0.5 0.54 0.56
a=0.6 0.55 0.58
a=0.7 0.55 0.59
a=0.8 0.58 0.61
a=09 0.58 0.61
a=1 0.59 0.63

TABLE 3: Accuracy of predictions of simulated MA(1) process.

Similarly, we can consider MA(2) process, with the following expression:

a a

Xy =6+ §€t—1 + 1&—2-
Once again we can compare the accuracy of predictions made by LP(1), LP(2), and ordinal
pattern method through simulations. The accuracy of predictions made for each value of
a € [0,1] is shown in the table below.

MA(2) Accuracy
Value of a | OP method | LP(1) method | LP(2) method

a=20 0.5 0.5 0.49
a=20.1 0.5 0.5 0.5
a=0.2 0.51 0.51 0.52
a=0.3 0.53 0.53 0.53
a=04 0.55 0.55 0.55
a=0.5 0.56 0.58 0.58
a=0.6 0.58 0.6 0.6
a=0."7 0.59 0.62 0.61
a=0.8 0.6 0.62 0.62
a=20.9 0.61 0.63 0.63
a=1 0.64 0.67 0.66

TABLE 4: Accuracy of predictions of simulated MA(2) process.

Lastly, consider the following expression for the MA(3) process:

X =¢€ €t €t €t_3.
t t 2t1 1t2 8t3

In simulations, the predictions are made by using LP(1), LP(2), LP(3), and ordinal pattern
method and the resulting accuracy can be seen in Table (5).

16

MA(3) Accuracy
Value of a | OP method | LP(1) method | LP(2) method | LP(3) method

a=0 0.5 0.49 0.49 0.49
a=0.1 0.51 0.51 0.51 0.51
a=0.2 0.52 0.52 0.52 0.52
a=0.3 0.54 0.54 0.53 0.53
a=04 0.54 0.56 0.56 0.56
a=0.5 0.55 0.57 0.57 0.57
a=0.6 0.57 0.6 0.6 0.6
a=0.7 0.59 0.61 0.62 0.61
a=0.8 0.61 0.63 0.63 0.63
a=0.9 0.63 0.65 0.65 0.64
a=1 0.65 0.67 0.67 0.66

TABLE 5: Accuracy of predictions of simulated MA(3) process.

Multiple conclusions can be drawn by looking at the accuracy of all of the moving average
process simulations. Firstly, the accuracy of predictions made using all of the methods
were similar. Secondly, the accuracy of all predictions increased with the increasing value
of a. This was to be expected because by increasing the value of a the realizations of
the moving averages process becomes more linear. Lastly, when we consider a = 0, all of
the considered MA processes become just a single white noise observation and therefore
like discussed in section (5), the autocovariance (k) = 1 when k& = 0 and (k) = 0 for
k # 0. This indicates that methods work as intended because any accuracy substantially
higher than 0.5 would contradict the fact that white noise is unpredictable. Additionally,
it should be noted that we do not use LP(2) and LP(3) prediction methods for the MA(1)
process and LP(3) for the MA(2) process, since the values of these processes depend on 1
and 2 previous € values, therefore these predictions methods would not be a valid choice.

6.3 Autoregressive processes

Another example of a linear process that can be WSS is the autoregressive process. An
autoregressive process of order k is a linear process X; that is described by the following
equation:

Xi=a1 Xe 1+ aXio+ -+ ap Xk + €,

where a; € R, i =1,2,...,k and ¢ is white noise. The value of X; is the weighted sum of k
preceding X observations and white noise €¢;. For convenience, we denote an autoregressive
process of order k as AR(k).

If we consider the AR(k) process as a polynomial of degree k, then the AR(k) process
is asymptotic, if all the roots of this polynomial lie inside the unit circle [11]. For simula-
tions, we consider AR processes that are WSS.

Once again we can compare the accuracy of predictions made by LP(1), LP(2), LP(3),
and ordinal pattern prediction methods using Monte Carlo simulations that we applied for
moving averages processes. In this case for AR(1), AR(2), and AR(3) processes we can use
all prediction methods, because the autoregressive process is recurring, meaning that all
previous values in a time series influence the next value. We consider the following AR(1),

17

AR(2), and AR(3) processes:

AR(1) process: X; =

2

a
X1 + €

AR(2) process: X; = 2Xt_l + %Xt_g + €

AR(3) process: X; =

This choice of coefficients ensures, that all of the autoregressive processes are WSS for
values of a € [0,1]. The resulting accuracy of predictions made are summarized in the

tables below:

2

2

4

a a a
*Xt—l + *Xt_2 + *Xt_g + €.

8

AR(1) Accuracy
Value of a | OP method | LP(1) method | LP(2) method | LP(3) method

a=0 0.51 0.51 0.5 0.5
a=0.1 0.51 0.51 0.5 0.51
a=0.2 0.51 0.52 0.53 0.52
a=0.3 0.52 0.52 0.52 0.52
a=04 0.53 0.55 0.55 0.55
a=0.5 0.55 0.57 0.57 0.57
a=0.6 0.57 0.58 0.58 0.58
a=0.7 0.58 0.6 0.6 0.59
a=0.8 0.6 0.63 0.62 0.62
a=0.9 0.62 0.65 0.64 0.64
a=1 0.64 0.66 0.66 0.66

TABLE 6: Accuracy of predictions of simulated AR(1) process.

AR(2) Accuracy
Value of a | OP method | LP(1) method | LP(2) method | LP(3) method

a=20 0.51 0.5 0.5 0.5
a=0.1 0.51 0.51 0.51 0.51
a=0.2 0.52 0.51 0.52 0.52
a=0.3 0.54 0.54 0.54 0.54
a=04 0.55 0.55 0.56 0.56
a=0.5 0.58 0.58 0.59 0.59
a=0.6 0.6 0.61 0.62 0.61
a=0.7 0.61 0.63 0.64 0.63
a=0.8 0.66 0.66 0.67 0.67
a=0.9 0.69 0.7 0.71 0.71
a=1 0.72 0.73 0.73 0.73

TABLE 7: Accuracy of predictions of simulated AR(2) process.

18

AR(3) Accuracy
Value of a | OP method | LP(1) method | LP(2) method | LP(3) method

a=0 0.5 0.5 0.5 0.51
a=0.1 0.5 0.5 0.51 0.51
a=0.2 0.52 0.52 0.52 0.52
a=0.3 0.54 0.54 0.54 0.54
a=04 0.55 0.56 0.57 0.57
a=0.5 0.58 0.59 0.6 0.6
a=0.6 0.61 0.62 0.63 0.63
a=0.7 0.64 0.66 0.66 0.67
a=0.8 0.68 0.68 0.69 0.7
a=0.9 0.73 0.73 0.75 0.74
a=1 0.79 0.79 0.8 0.8

TABLE 8: Accuracy of predictions of simulated AR(3) process.

Once again, the accuracy of predictions made using all of the methods were similar. Ad-
ditionally, when observing the results of different AR(k) processes, it can be seen that the
accuracy of predictions increased faster when more previous observations were considered
for the AR process. This is because increasing the number of observations considered for
AR processes, for higher values of a constituted fewer fluctuations in time series. Once,
again in all the simulations for a = 0, the AR processes resulted in single white noise obser-
vation, and therefore the accuracy of these predictions being approximately 0.5 indicates,
that the methods work as intended.

7 Predictions for real-world data

This section compares time series prediction methods using two real-world datasets: oil
prices and global temperatures. We aim to evaluate the performance and accuracy of these
methods in predicting trends in each dataset.

7.1 Oil prices

As a data set, we consider crude oil prices of Western Texas intermediate. This data set
contains 10021 daily prices in dollars per barrel that span from January of 1986 until the
end of May 2024. Some data points were missing or had a value of 0% per barrel, therefore
to be able to represent it as a continuous and accurate time series, the values were taken as
a weighted average of the two closest non-zero values. The plot depicting the price change
over time (time series) can be seen in Figure (5).

Dollars per Barrel
20 40 60 80 100

0 2000 4000 6000 8000 10000

Day

FIGURE 5: Time series of daily oil price from 1986 until now.

19

However, the time series is not WSS and needs to be processed so that the model as-
sumptions are satisfied and predictions using linear predictors can be made. In the article
"Order patterns, their variation and change points in financial time series and Brownian
motion" by Christoph Bandt [10], the same data set is used, and logarithmic returns of
the prices are taken to make the data WSS. The logarithmic returns for daily data are
calculated as:

Ry =log(X;) — log(Xi—1),

where R; denotes the logarithmic return of day ¢. The resulting time series contains 10020
logarithmic return values, which can be seen in Figure (6):

-0.05 0.05
|

Logarithmic return
-0.15

-0.25

0 2000 4000 6000 8000 10000

Day
FIGURE 6: Time series of logarithmic returns of oil prices.

Inspecting this plot, it could be seen that there is a large decrease followed by a large
increase in the time series around day 9000. This spike occurred between the start of
march 2020 and the start of April 2020, when there was a global pandemic Covid-19.
The fast decrease, was a result of the lockdown that occurred during the start of the
pandemic, when the demand for oil decreased rapidly. The quick increase was the result of
economic recovery and supply disruptions after the lockdown. Therefore, we can see that
global events impact the prices of oil and there is dependence in time series data. When
observing the logarithmic return values over a shorter period, see Figure (7), the values
fluctuate a lot and showcase the random behavior of the observations.

0.10

Logarithmic return
0.00
I

-0.10

0 20 40 60 80 100

Day
FIGURE 7: Smaller time series of logarithmic returns of oil prices.

To be able to make predictions, we need to show that the time series (Ry)er satisfies the
model assumptions of having zero mean E(R;) = 0 for all ¢ € N and being WSS. Calcu-
lating the sample mean of the time series, the derived result was 0.0001. Therefore, time
series (Ry)ier has a sample mean of nearly 0 and this condition is satisfied.

20

To see if the time series is stationary, we can analyse the resulting autocovariance at
lag k. To conclude that the time series is WSS, the resulting autocovariance should be 1 at
lag 0 and around 0 for the remaining lag k, where k£ > 1. Calculating the autocovariance
at specific lag k and plotting the results we get the following:

Autocovariance

0 2000 4000 6000 8000 10000

Lag

FIGURE 8: The autocovariance at specific lag for time series R;

As could be observed in Figure (8), v(0) = 1 and the values of (k) for k # 0 are close to
0. Therefore, we can say that the time series (R;)icr satisfies the model assumptions, and
can be used to make predictions.

For predictions, we split the time series of 10020 logarithmic return values into smaller
overlapping time series of 102 values. So we first consider the values from day 1 until day
102, then from day 2 until 103, and so on. For each interval, we aim to predict the sign of
the last logarithmic return in that interval. If the sign is positive this indicates that the oil
price was higher than the previous day. On the contrary, if the sign is negative, it indicates
that oil prices decreased. For each interval, we use the remaining 101 known values of
logarithmic returns, to estimate the Hurst parameter H. Then, the predictions are made
using the linear predictor method and the ordinal pattern method and are compared to
the real sgn(R;). Overall, during the entire process, this constituted to 9199 intervals and
thus 9199 total predictions.

Accuracy
OP method | LP(1) method | LP(2) method | LP(3) method
0.505 0.511 0.502 0.499

TABLE 9: Accuracy of predictions for logarithmic return values.

As could be seen in Table (9), the accuracy of all prediction methods is around 0.5, which
is similar to an accuracy one would achieve if they were to randomly guess. However, these
were the expected results, because if the accuracy of any of the methods were substantially
better than 0.5, it could be concluded that the oil prices are predictable and people could
use these methods to benefit financially. Therefore, this data set confirms that these
methods work as intended and thus is theoretical confirmation of the prediction methods
considered.

21

7.2 Global temperatures

Another data set we consider is the monthly global world temperatures. This data set
contains 1392 monthly global average temperatures that span from January 1900 until
December 2015. This is the resulting plot, that depicts the average temperature change
over time.

14
|

Average temperature

2 4 6 8 10
|

T T T T T I
1900 1920 1940 1960 1980 2000

Year

FIGURE 9: Time series of average global temperature from 1900 until 2015.

When observing Figure (9), it can be concluded that the resulting time series is not WSS,
because we can see a lot of fluctuations, the average temperature gradually increasing as
years go by. Therefore, the time series first needs to be preprocessed, before applying the
prediction methods. Time series can be separated into three different components [14]:

e A trend my, which showcases the gradual development of time series.

e A seasonal component sy, which showcases the pronounced periodic behaviour of
time series.

e An incidental component w;, which showcases the irregular fluctuations of time series.

By decomposing the global temperature time series into these 3 components, we get the
following plots:

12

2 8

9.0

random seasonal trend observed

-05 05 -8B -2 2 BOD

1900 1920 1940 1960 1980 2000
Year

FIGURE 10: Decomposition of average global temperature time series.

22

Firstly, when observing the trend component of the time series in Figure (10), we can
see that the temperature gradually increased over the observed period. Additionally, this
increase becomes steeper from Year 1980 and continues until the end of the time series.
This perfectly corresponds to what we already know about global temperature and global
warming. Lastly, the incidental component, or in the plot the random component, corre-
sponds to the difference from the expected global temperature that month. Therefore, by
predicting whether the random component will be a positive or a negative value, we would
be able to determine whether the global temperature will be higher or lower than expected
for the next month.

We consider the random component in Figure (10) as our time series. Once again, to
be able to make a prediction, we need to show that the time series satisfies the model
assumptions of having zero mean E(X;) = 0 and being WSS. Calculating the sample mean
of the time series, the derived result was 0.0018. Therefore, the time series has a sample
mean of nearly 0 and this condition is satisfied.

Now we analyse the autocovariance at lag k to determine if the time series is station-
ary and conclude whether the time series satisfies the model assumptions and can be used
for predictions. The resulting plot can be seen below:

Autocovariance

e et e e

(RN PVIRNSTN
U G A

04 -02 00 02 04 06 08 10

T T T T T T T
0 200 400 800 800 1000 1200 1400

Lag

FIGURE 11: The autocovariance at specific lag for the incidental component

Once again, we see in Figure (11), that 4(0) = 1 and the values of v(k) for k # 0 are close
to 0 thus, we can say that the time series satisfies the model assumptions, and can be used
to make predictions.

For predictions, we split the time series of 1392 values into smaller overlapping time series
of 120 values. For each interval, we aim to predict the sign of the last observation in that
interval. If the sign is positive this indicates that the global temperature that month was
higher than expected. On the contrary, if the sign is negative, it indicates that the global
temperature was lower than expected. For each interval, we use the remaining 119 known
incidental component values of global temperature, to estimate the Hurst parameter H.
Then, the predictions are made using the linear predictor method and ordinal pattern
predictions method and compared to the real sgn(X;). Overall, during the entire process,
this constituted to 1272 interval and thus 1272 total predictions.

Accuracy
OP method | LP(1) method | LP(2) method | LP(3) method
0.608 0.614 0.623 0.627

TABLE 10: Accuracy of predictions for incidental component of global temperature

23

As could be observed in Table (10), the accuracy of all prediction methods is around 0.62,
where the highest accuracy was achieved when using 3 previous observations. Additionally,
by using more previous observations, the accuracy of predictions increased, which indicates
that the incidental component of global temperatures is dependent on past observations.
Lastly, because the accuracy is above 0.5, this indicates that the incidental component can
be predicted using past data. These methods can be used to forecast whether a global
temperature upcoming month will be hotter or colder than expected.

8 Conclusion

In this research, we compared the predictions made by using ordinal patterns (4) and lin-
ear predictors (3) for many different stochastic processes. The analysis was conducted on
the time series that represented: fractional Brownian motion processes (5), Moving aver-
ages processes (6.2), and Autoregressive processes (6.3). Additionally, both methods were
tested using real-world data, such as oil prices (7.1) and global temperatures (7.2).

The results showcased that ordinal patterns can be used as a prediction method and in
most cases produce better accuracy than 0.5. Under specific circumstances, the predictions
made using ordinal patterns can be as accurate as predictions made by the linear predictor
method. This was the case when considering fractional Brownian motion processes with
H > 0.5. However, the linear predictor method performed substantially better for lower
values of H. This can be seen when analysing results of Moving averages and autoregressive
processes, where during simulations the estimated Hurst parameter was between 0 and 0.3.

Additionally, it should be noted, that ordinal patterns proved to be not only a good
forecasting method, but also a tool to analyse time series. Ordinal patterns proved to be
a great way to estimate the Hurst parameter for any time series, thus allowing to analyse
any stochastic process as fractional Brownian motion processes.

In future research, other prediction methods or machine learning can be considered and
compared to the ordinal pattern prediction method. Additionally, it could be checked the-
oretically whether there are any restrictions that limit the accuracy of predictions made
using ordinal patterns.

24

References

[1] C. Bandt and B. Pompe, ‘Permutation Entropy: A Natural Complexity Measure for
Time Series’, Phys. Rev. Lett., vol. 88, no. 17, p. 174102, Apr. 2002, doi: 10.1103/Phys-
RevLett.88.174102.

[2] K. Keller, A. Unakafov, and V. Unakafova, ‘Ordinal Patterns, Entropy, and EEG’,
Entropy, vol. 16, no. 12, pp. 6212-6239, Nov. 2014, doi: 10.3390/e16126212.

[3] M. Munoz-Guillermo, ‘Ordinal Patterns in Heartbeat Time Series: An Approach Using
Multiscale Analysis’, Entropy, vol. 21, no. 6, p. 583, Jun. 2019, doi: 10.3390/e21060583.

[4] K. Kalpakis et al., ‘Permutation entropy analysis of vital signs data for outcome predic-
tion of patients with severe traumatic brain injury’, Computers in Biology and Medicine,
vol. 56, pp. 167-174, Jan. 2015, doi: 10.1016/j.compbiomed.2014.11.007.

[5] Y. Neuman, Y. Cohen, and B. Tamir, ‘Short-term prediction through ordinal patterns’,
R. Soc. open sci., vol. 8, no. 1, p. 201011, Jan. 2021, doi: 10.1098/rs0s.201011.

[6] P. J. Brockwell and R. A. Davis, Time series: theory and methods, 2nd ed. in Springer
series in statistics. New York: Springer, 1996.

[7] W. W. S. Wei, Time Series Analysis: Univariate and Multivariate Methods, 2nd ed.
Pearson College Div 2005.

[8] S. Shi, J. Yu, and C. Zhang, ‘Fractional gaussian noise: Spectral density and
estimation methods’, Journal Time Series Analysis, p. jtsa.12750, May 2024, doi:
10.1111/jtsa.12750.

[9] M. Sinn and K. Keller, ‘Estimation of ordinal pattern probabilities in fractional Brow-
nian motion’. arXiv, Jan. 10, 2008, arXiv: 0801.1598

[10] C. Bandt, ‘Order patterns, their variation and change points in financial time series
and Brownian motion’, Stat Papers, vol. 61, no. 4, pp. 1565-1588, Aug. 2020, doi:
10.1007/s00362-020-01171-7.

[11] O. Taussky, ‘Positive-definite matrices and their role in the study of the characteristic
roots of general matrices’, Advances in Mathematics, vol. 2, no. 2, pp. 175-186, Jun.
1968, doi: 10.1016/0001-8708(68)90020-0.

[12] S. Brakken-Thal, ‘Gershgorin’s Theorem for Estimating Eigenvalues’.

[13] R. Bhattacharya and E. C. Waymire, A Basic Course in Probability Theory. in Univer-
sitext. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-47974-3.

[14] H. Kwakernaak, G. Meinsma, and A. Betken, Time series analysis, University of
Twente: Enschede, The Netherlands, 2023.

[15] M. Lachut and B. Keigwin, ‘Applications of the Spectral Theorem: Utilizing Eigen-
values and Eigenvectors’, J Stud Res, vol. 12, no. 4, Nov. 2023, doi: 10.47611/js-
rhs.v12i4.5585.

[16] Betken A, Buchsteiner J, Dehling H, Miinker I, Schnurr A, Woerner JH. Ordi-
nal patterns in long-range dependent time series. Scand J Statist. 2021;48:969-1000.
https://doi.org/10.1111 /sjos.12478

Appendix

Appendix A: Inverse of 3 x 3 matrix

Consider any 3 x 3 matrix A, defined as follows:

a b c
A=|d e f
g h i

The inverse of A can be expressed as follow:

1

-1 _
AT = det(A)

adj(A),

where det(A) denotes the determinant of matrix A and adj(A) denotes the adjoint matrix
of A. Where the determinant and adjoint of matrix A have the following expressions:

_ e fI_,d f d e|
det(A) = a ho ’g |t g b’
(e f| b ¢ b c|]
h 1 h 1 e f
) _ d f a c a c
d e _a b a b
L lg h g hl |d el]
where:
a b
d’—ad—bc

is the difference of the product of the diagonals. Therefore we have:
det(A) = a(ei — fh) — b(di — fg) + c(dh — eg);

et—fh ch—0bi bf—ce
adj(A) = |fg—di ai—cg cd—af
dh —eg bg—ah ae—bd

Therefore the inverse of the 3 x 3 matrix can be expressed as the following:

et —fh ch—0bi bf—ce
fg—di ai—cg cd—af]|,
dh —eg bg—ah ae—bd

1

Al =
a(ei — fh) —b(di — fg) + c(dh — eg)

where condition that a(ei — fh) — b(di — fg) + c(dh — eg) # 0 must be satisfied for matrix
A to be invertable.

Appendix B: R studio codes

Appendix B presents all R studio codes that were constructed to be used in this Thesis.

B.1 Script 1

This script was used to calculate and plot the MMSE of linear predictor for fBm process
in Section 3.3.

library ("ggplot2")
#We set starting wvalue of H
H<— 0.01

#We create a wector to store the MMSE values for 1,2 and 3 previous observations
MMSEI <— c ()
MMSE2 <— c ()
MMSE3 <— c ()

#We run a loop wuntil H= 0.99 in increments of 0.01
while (H < 1){
#We calculate the MMSE and store the walue

MMSEl <— append (MMSEL1,2 *x (2xH) — 2xx(4xH—2))

MMSE2 <— append (MMSE2,1 — ((2 #*(2+H—1) — 1)

*(1—(3xx(2xH)+1)/2 + 2%x(2xH)) /(2 **% (2%H) — 2% (4xH—2)))*(2x*(2xH-1)—1)

— ((3%x(2xH)+1)/2 — 2%x(2xH) — (2%x(2xH — 1)—1)**2) /(2 =% (2xH) — 2%x(4xH—-2))
#* ((3xx(2xH)+1)/2 — 2%x(2xH)))

MMSE3 <— append (MMSE3, 1 — ((2%%(2*H—1)—1)%(1—(2%%(2*H—1)—1)**2)+ (2**(2«H—-1)—1)
*((3xx(2«H)+1)/2 2% (2xH)) * ((3**(2xH)4+1)/2 2% (2xH) 1)

+ (2% (4xH—1)+2%+ (2xH—1)—3%% (2+H)) ((2%* (2«H—1)—1)**2

— ((3%x(2xH)+1)/2 — 2%x(2xH)))) /(1 —(2%* (2+«H—-1)—1)%x2

— ((2%%(2xH—-1)—1)%*%2) % (1 —((3*%(2«H)+1)/2 — 2x%x(2xH)))

F((3k (24H)+1) /2 — 2%k (2%H)) * ((2%* (2%H—-1)—1)*%x2 — ((3*x(2xH)+1)/2 — 2%x(2xH))))
s (2% (2xH—1)—1) — (((2%%(2xH—1)—1)%%2) % ((3xx (2«H)+1)/2—2x%% (2«H)—1)

F (3 (2+H)+1) /2 — 2%k (24H))* (1 —((3sx(2xH)+1)/2 — 2%k (2+H)) **2) | (2% (2xH—-1)—1)
s (2k (4xH—1)+ 2% (2xH—1)—3sx (2xH)) ((3#x (2xH)+1) /2—2%% (2xH) —1))

/(1 —(2%%(2%xH—1)—1)%%2 — ((2%*%(2«H—1)—1)%*x2)x(1—((3*x(2xH)+1)/2 — 2%x(2xH)))

F (3 (24H)+1)/2 — 2% (2%H)) * ((2%* (2%«H—1)—1)*%x2 — ((3*x(2xH)+1)/2 — 2%x(2xH))))
s ((3wx(2xH)+1)/2 — 24x(2xH)) — ((2%%(2«H—1)—1)% ((2%%(2xH—1)—1)%%2

— ((3*x(2xH)+1)/2 — 2%x(2xH)))+ (2% (2xH—1)—1)* ((3*x(2xH)+1)/2

— 2ok (24H)) * (3 (2xH)+1) /2 — 2k (24H) — 1)+ (2% (4*xH—1)+ 2% (2xH—1)—3x%* (2xH))
#(1—(2%% (2xH—-1)—1)%*x2)) /(1 — (2% (2«H—-1)—1)**2 — ((2%x(2xH—-1)—1)*%2)
#(1—((3%x(2xH)+1)/2 — 2% (2xH)))+ ((3*x(2xH)+1)/2 — 2x%x*(2xH))

s ((2wx (2kH—1)—1)**x2 — ((3*x(2xH)+1)/2 — 2%x(2xH))))

sk (2ox (4kH—1)+2%% (2xH—1)—3%% (2xH)))

H<— H + 0.01

}
#Creating a data frame that contains all the MMSE
dfl <— data.frame(Method=rep(c("l_previous_observation","2_previous_observations"

,"3_previous_observations"),each=99)
,H=rep (c(seq(0.01,0.99, by=0.01)),3) ,MMSE = c(MMSE1, MMSE2, MMSE3))

#Creating a plot of this Data frame
MMSEplot <— ggplot (dfl, aes(x=H, y=MMSE, group=Method, linetype = Method)) +

geom point (aes(color=Method), size = 3) +
theme classic () +
theme (
legend . position = ¢(0.91, 0.8),
legend . background = element rect(fill = "white", color = "black"),
legend .box . background = element rect(color = "black"),
legend .box = "vertical", # Make the legend wvertical
axis.title.x = element text(size = 16),
axis.title.y = element text(size = 16)
) +
labs (
x = "H",
y = "MMSE" ,
color = "Method",
linetype = "Method"
)

Print the plot
print (MMSEplot)

B.2 Script 2

This script was used to calculate and plot the MSE of linear predictor for fBm process in

Section 3.4 and compare the accuracy of all prediction methods for fBm process in Section
5.

install . packages("longmemo")
library (longmemo)

install . packages("pracma")
library (pracma)

library (ggplot2)

#Simulation of fractional Brownian motion with Hurst parameter H of length n and wit

circFBM<— function(n, H, plotfBm=FALSE){
if (missing(n)) n <— 500
if (missing (H))
H<— 0.6
if (missing (plotfBm)) plotfBm <— 1
##

first line of the circulant matriz, C, built wvia covariances of fGn

lineC <— function(n, H, m){
k<— 0:(m — 1)
H2 <— 2 = H
v <— (abs((k — 1)/n)"H2 — 2 % (k/n)"H2 + ((k + 1)/n)"H2)/2
ind <— ¢(0:(m/2 — 1), m/2, (m/2 — 1):1)
v <— v[ind + 1]
drop (v)

S .

mext power of two > n
#H
m<— 2
repeat {
m<— 2 *x m
if(m>= (n — 1))
break

stockm <— m H
#H
research of the power of two (<2°18) such that
C is definite positive

repeat {
m<— 2 *x m
eigenvalC <— lineC(n, H, m)
if (m<100) print(eigenvalC)
eigenvalC <— Re(fft (c(eigenvalC), inverse
if ((all(eigenvalC > 0)) | (m > 2°18))
break

F))

if(m > 2°18) {
cat (" >_exact_method,_impossible!!" fill = T)
cat (" >_can’'t_find _m_such_that_C_Lis_definite_positive", fill
=T)
break

else {
#H#
#H#
simulation of W=(Q)"t Z, where Z leads N(0,I m)
and (Q)_{jk} =m"(—1/2) exp(—2i pi jk/m)
Veza
ar <— rnorm(m/2 + 1)
ai <— rnorm(m/2 + 1)
ar[1] <— sqrt(2) * ar[1]
ar[(m/2 + 1)] <— sqrt(2) = ar[(m/2 + 1)]
ai [1] <— 0

ai[(m/2 + 1)] <— 0

ar < clarle(Lim/2 + 1), arle((m/2):2)])
ai <— c(ai[c(l:(m/2 + 1))], aicle((m/2):2)])
W <— complex(real = ar, imaginary = ai) ##

#H#

reconstruction of the fGn

Viida

W <— (sqrt(eigenvalC)) * W
fGn <— fft (W, inverse = F)

fGn <— (1/(sqrt(2 % m))) * fGn
fGn <— Re(fGn[c(1l:n)])

fBm <— cumsum(fGn)

fBm[1] <— 0 ##

plot of fBm
PV

if (plotfBm) {
par (mfrow = ¢(1, 1))

time <— (0:(n — 1))/n

Nchar <— as.character (n)

Nleg <— paste(c("N=_", Nchar), collapse = "_")
Hchar <— as.character (round(H, 3))
Hleg <— paste(c(",_H=", Hchar), collapse = "")
NHleg <— paste(c(Nleg, Hleg), collapse = "")
leg <— paste(c(
"Path_of_a_fractional _Brownian_motion_———_parameters",
NHleg), collapse = "_:_"
plot (time, fBm, type = "1", main = leg)
}
fBm
}
}
#We set starting wvalue of H
Ht <— 0.01

#To store MSE of predictions for all the Hurst parameter values (0.01,0.99)
MSE1 <— ¢ ()
MSE2 <— c ()
MSE3 <— ¢ ()

#To store the accuracy of predictions for all the Hurst parameter values (0.01,0.99)
AC <— c()

AC1 <— c()
AC2 <— c()
AC3 <— c()

while (Ht < 1){
k< 1

#To store the squared error of predictions for fized Hurst parameter
SE1l <— c()
SE2 <— c()
SE3 <— ¢ ()

#To store whether prediction was correct for fized Hurst parameter
El <— c()
E2 <— c()
E3 <— c()
E < c()

while (k<= 2000) {

#Generated values of fBm for fized Hurst parameter H
a <— circFBM (500 ,Ht , FALSE)

Y <— c()

j<— 0

#Derives the fGn wvalues

while (j <= length(a)—1) {
Y <— append(Y,a[j+1]-a[j])
j<— jt1

#Tracks the time series in terms of ordinal patterns
Patern sequence <— c()

#Used to track how many times specific pattern occurs in time series and
#to track how many time specific transition occurs

cl <— 0
c2 <— 0
c3 <— 0
cd <— O
ch <— 0
c6 <— 0
t1l <— 0
t12 <— 0
tl14 <— O
t26 <— O
t25 <— 0
t23 <— 0
t31 <— O
t32 <— 0
t34 <— 0
t45 <— 0
t43 <— 0
t46 <— O
t51 <— 0
t52 <— 0
t54 <— 0
t66 <— 0O
t63 <— 0
t65 <— 0

i<— 0

#Converting the time series into ordinal patterns
while (i <= length(Y)—3)
if (Y[i+1] > 0 & Y[i+2] > 0){

Patern sequence <— append(Patern sequence,l)

cl <— ¢l + 1 -

if (i > 0){

if (Patern sequence[i] =— 1){
t11 <— tT1 + 1

else if (Patern_sequence[i] == 3){
t31 <— t31 + 1

else if (Patern_sequence[i] == 5){
t51 <— t51 +4 1

}

}
else if (Y[i+1]>0 & Y[i+2] < 0 & (Y[i+1]+Y[i+2]) > 0){
Patern sequence <— append(Patern sequence,2)
€2 <— ¢2 + 1 -
if (i > 0){
if (Patern sequence|i] == 1){
t12 <— t12 4 1

else if (Patern_sequence[i] == 3){
t32 <— t32 + 1

else if (Patern_sequence[i] == 5){
t52 <— t52 + 1
}

}

}
else if (Y[i+1]<0 & Y[i+2] > 0 & (Y[i+1]4+Y[i+2]) > 0){
Patern sequence <— append(Patern sequence,3)
3 <— ¢3 + 1 -
if (i > 0){
if (Patern sequenceli] =—= 2){
£23 <— t23 + 1

else if (Patern_sequence[i] == 4){
t43 <— t43 + 1

else if (Patern_sequence[i] = 6){
t63 <— t63 + 1
}

}

¥
else if (Y[i+1]>0 & Y[i+2] < 0 & (Y[i+1]4+Y[i+2]) < 0){
Patern sequence <— append(Patern sequence, 4)
cd <— ¢4 + 1 -
if (i > 0){
if (Patern sequence|i] == 1){
t14 <— t14 + 1

else if (Patern_sequence[i] == 3){
t34 <— t34 + 1

else if (Patern_sequence[i] == 5){
t54 <— t54 + 1

}

}
else if (Y[i+1]<0 & Y[i+2] > 0 & (Y[i+1]4+Y[i+2]) < 0){
Patern sequence <— append(Patern sequence,5)
c5 <— ¢b + 1 -
if (i > 0){
if (Patern sequencel|i] =— 2){
t25 <— t12 + 1

else if (Patern_sequence[i] == 4){
t45 <— t32 + 1

else if (Patern_sequence[i] == 6){
t65 <— t52 + 1

}

}
else if (Y[i+1]<0 & Y[i+2] < 0){
Patern sequence <— append(Patern sequence,6)
c6 <— ¢c6 + 1 -
if (i > 0){
if (Patern sequence|i] == 2){
t26 <— t26 + 1

else if (Patern_sequence[i] == 4){
t46 <— t46 + 1

else if (Patern_sequence[i] == 6){
t66 <— t66 + 1

#Predicting using ordinal patterns and moting whether the prediction was correct
if (Patern sequence[length(Patern sequence)| == 1){
if (611 > t124t14){ -
E <— append (E,abs(sign(Y[length(Y)])—1))

else {
E <— append(E,abs(sign(Y[length(Y)])+1))
}

if (Patern_sequence[length(Patern_sequence)| = 2){
if (t234t25 > t26){
E <— append(E,abs(sign(Y[length(Y)])—1))

else {
E <— append(E,abs(sign(Y|[length(Y)])+1))

}

if (Patern_sequence|length(Patern_sequence)| == 3){
if (631 > t324t34)(
E <— append (E,abs(sign (Y[length(Y)])—1))

else {
E <— append (E,abs(sign (Y[length(Y)])+1))
}

if (Patern_sequence[length(Patern_sequence)| = 4){
if (t43+t45 > t46){
E <— append(E,abs(sign(Y[length(Y)]) 1))

else {
E <— append(E,abs(sign(Y[length(Y)])+1))
}

if (Patern_sequence[length(Patern_sequence)| = 5){
if (51 > t52+4t54){
E <— append(E,abs(sign(Y[length(Y)])—1))

else {
E <— append(E,abs(sign(Y[length(Y)])+1))

}

if (Patern_sequence[length(Patern_sequence)] = 6){
if (t63+%65 > t66)({
E <— append(E,abs(sign(Y[length(Y)])—1))

else {
E <— append (E,abs(sign (Y[length(Y)])+1))
}

i<—j—1
H <— Ht

#Calculating the best linear predictor (1 observation) and resulting squared
#error and whether a prediction was correct

Y est 1 <— (2*x(2xH—-1) — 1)*Y[i—1]

SE1 <— append (SE1, (Y[i]-Y est 1)%%2)

El <— append(El,abs(sign(?[i])_fsign(Y_est_l)))

#Calculating the best linear predictor (2 observation) and resulting squared

#error and whether a prediction was correct

Y est 2 <— (2 xx(2xkH—1) — 1)*(1—(3%x(2*H)+1)/2 + 2xx(2xH)) /(1 —(2%x(2xH—-1)—1)**2)*Y[i—1]
F (3% (2x%H)+1)/2 2% (2%H) (2%%(2%H 1) —1)%%2) /(2 #x (2xH) 2% (4*H—2))*Y[i—2]
SE2 <— append(SE2,(Y[i]—-Y est 2)%x2)

E2 <— append(EQ,abs(sign(?[i])_fsign(Y_est_Z)))

#Calculating the best linear predictor (8 observation) and resulting squared

#error and whether a prediction was correct

Y est 3 <— ((2%x(2xkH—1)—1)s(1—(2k(2%H—1)—1)kx2)+ (25 (2%H—1)—1)* ((3*x (2«H)+1)/2 — 2xx(2xH))
(3w (2%H)+1) /2 — 2x% (24H) — 1)+ (2% (4*H-1) 425k (2#H 1) 3k (24H)) # (2% (24H-1) —1) %2

— ((3**(2xH)+1)/2 — 2xx(2%H)))) /(1 —(2%* (2*xH—1)—1)**%2 — ((2%*(2xH-1)—1)%*2)
*(1—((3**x(2xH)+1)/2 2% (2xH)))+ ((3** (2xH)+1) /2 2ok (2xH)) (2% (2xH—1) —1)**2

— ((3#x(2xH)+1)/2 — 2%*(2xH))))*Y[i—1] + (((2%%(2%«H—-1)—1)s%*2)% ((3s%* (2+H)+1)/2—2%x*(2+H) 1)
+((3%x(2xH)+1) /2 — 2%k (24H)) * (1 —((3%x(2xH)+1)/2 — 2k (2xH)) kk2) 4 (2%% (2%H—-1) —1)% (2%* (4*H-1)
+2sk (2xH—1)—3skx (2xH)) sk ((3wk (2kH)+1) /2—2%% (2%H) —1)) /(1 — (2% (2kH—1) —1)%*2 4 ((2%% (2«H—-1)—1)%x*2)
(1—((3%x(2xH)+1)/2 — 2% (2xH)))+ ((3%(2+H)+1)/2 — 2k (24H)) * ((2%* (2xH—-1)—1)%%2

— ((B#x(2xH)+1)/2 — 2%*x(2xH))))*Y[i—2] + ((2%*(2xH—1)—1)%((2%*(2xH—-1)—1)%%2

— ((3#x(2xH)+1)/2 — 2%*x(2xH)))+ (2%% (2xH—1)—1)* ((3sx(2xH)+1)/2 — 2%*(2xH))* ((3*x(2xH)+1)/2
— 2k (2kH) — 1)+ (2% (4xH—1)+ 2% (2xH—1)—3sx (2xH))« (1 —(24x (2xH—1)—1)*%2)) /(1 — (2% (2xH—1) —1)**2
— ((2%%(2%xH—1)—1)*%2) k(1 —((3%x (2xH)+1)/2 — 2%x(2xH))) +((3**(2xH)+1)/2

— 2k (2kH)) (2% (2%H—1)—1)*%x2 — ((3*x(2xH)+1)/2 — 2%x(2xH))))*Y[i—3]

SE3 <— append(SE3,(Y[i]—Y est 3)*%x2)

E3 <— append(E3,abs(sign(Y[i])—sign(Y_est_3)))

k <— k+1

#Calculating the MSE of each linear predictor for fizxed Hurst parameter H
MSE1l <— append (MSE1l,mean(SE1l))
MSE2 <— append (MSE2,mean(SE2))
MSE3 <— append (MSE3,mean(SE3))

#Calculating the accuracy of all predictions methods for fized Hurst parameter H
AC <— append (AC,(1—sum(E)/2/length(E)))

AC1 <— append(ACl,1—sum(E1l)/2/(k—1))

AC2 <— append(AC2,1—sum(E2)/2/(k—1))

AC3 <— append (AC3,1—sum(E3)/2/(k—1))

Ht <— Ht + 0.01

#Creating a data frame that contains all the MSE
dfl <— data.frame(Method=rep(c("l_previous_observation"
,"3_previous_observations"),each=99) ,H=rep(c(seq(0.01,0.99,

#Creating a plot of this Data frame
MSEplot <— ggplot (dfl, aes(x=H, y=MSE, group=Method,
geom_point (aes(color=Method),size = 3) +

linetype = Method))

theme classic () +
theme (
legend . position = ¢ (0.8, 0.8), # Change the coordinates as needed
legend . background = element rect(fill = "white", color = "black"),
legend .box . background = element rect(color = "black"),
legend .box = "vertical", # Make the legend vertical
axis.title.x = element text(size = 16), # Change the size of z—azis
axis.title.y = element text(size = 16) # Change the size of y—azis
)+
labs (
x = "H",
y = "MSE",
color = "Method",
linetype = "Method"
)

Print the plot
print (MSEplot)

the Accuracy’s

#Creating a data frame that contains all of predictions
"

df2 <— data.frame(Method=rep(c("l_previous_observation","2_previous_obse
,"3_previous_observations","Ordinal_pattern"),each=99) H=rep(c(seq(0.01,
,AC = ¢ (AC1,AC2,AC3,AC))

of this Data frame

#Creating a plot
aes (x=H, y=AC,

ACplot <— ggplot (df2, linetype = Method)) +

group=Method,

geom point (aes(color=Method),size = 3) +
theme classic () +
theme (
legend . position = ¢(0.9, 0.23), # Change the coordinates as needed
legend . background = element rect(fill = "white", color = "black"),
legend .box . background = element rect(color = "black"),
legend .box = "vertical", # Make the legend wvertical
axis.title.x = element text(size = 16), # Change the size of z—azis
axis.title.y = element:text(size = 16) # Change the size of y—awis
)+
labs (
x — "H",
y = "Accuracy",
color = "Method",
linetype = "Method"

Print the plot
print (ACplot)

,"2_previous_observations"

by=0.01)),3) ,MSE = c(MSE1,MSE2,MSE3))

+

label
label

rvations"
0.99, by=0.01)),4)

label
label

B.3 Script 3

This script was used to calculate the error between the real Hurst parameter H and Hurst
estimator H in section 6.1.

library (longmemo)
library (pracma)
library (ggplot2)

circFBM<— function (n, H, plotfBm=FALSE) {
if (missing(n)) n <— 500
if (missing (H))
H<— 0.6
if (missing (plotfBm)) plotfBm <— 1
7

first line of the circulant matriz, C, built wvia covariances of fGn

i
lineC <— function(n, H, m){
k<— 0:(m — 1)
H2 <— 2 = H
v <— (abs((k — 1)/n)"H2 — 2 * (k/n)"H2 + ((k + 1)/n) "H2)/2
ind <— ¢(0:(m/2 — 1), m/2, (m/2 — 1):1)
v <— v[ind + 1]
drop(v)

next power of two > n

T

m<— 2
repeat {
m<— 2 *x m
if(m >= (n — 1))

break
¥
stockm <— m HH
#H

research of the power of two (<2°18) such that
C is definite positive
#H
repeat {

m<— 2 x m

eigenvalC <— lineC(n, H, m)

if (m<100) print(eigenvalC)

eigenvalC <— Re(fft (c(eigenvalC), inverse = F))

if ((all(eigenvalC > 0)) | (m > 2°18))

break

¥
if(m > 2-18) {
cat (" >_exact_method,_impossible!!" fill = T)
cat (" >_can’t_find _m_such_that_C_is_definite_positive", fill
= T)
break

else {
#H#
#H#
simulation of W=(Q)~t Z, where Z leads N(0,I_m)
and (Q)_{jk} =m~(~1/2) ewxp(—2i pi jk/m)
#H#

ar <— rnorm(m/2 + 1)

ai <— rnorm(m/2 + 1)

ar[1] <— sqrt(2) =* ar[1]

ar[(m/2 + 1)] <— sqrt(2) * ar[(m/2 + 1)]

ai [1] <— O

ai [(m/2 + 1)] <— O

ar <— c(arle(1:(m/2 + 1))], ar[e((m/2):2)])
aic <— — ai

ai <— c(ai[c(l:(m/2 + 1))], aiclc((m/2):2)])
W <— complex(real ar, imaginary = ai) ##
#H#

reconstruction of the fGn

W <— (sqrt(eigenvalC)) = W
fGn <— fft (W, inverse = F)

fGn <— (1/(sqrt(2 * m))) * fGn
fGn <— Re(fGn[c(1l:n)])

fBm <— cumsum(fGn)

fBm[1] <— 0 P

e
plot of fBm

##

if (plotfBm) {
par (mfrow = ¢(1, 1))
time <— (0:(n — 1))/n
Nchar <— as.character (n)

Nleg <— paste(c("N=_", Nchar), collapse = "_")
Hchar <— as.character (round(H, 3))

Hleg <— paste(c(",_H=", Hchar), collapse = "")
NHleg <— paste(c(Nleg, Hleg), collapse = "")

leg <— paste(c(

"Path_of_a_fractional_Brownian_motion_———_parameters",

NHleg), collapse = "_:_")
, plot (time, fBm, type = "1", main = leg)
fBm
}
}
#We set starting value of H
Ht <— 0.01

#Used to store the estimated wvalues of Hurst parameter
hurst e <— c()

while” (Ht < 1){

k<— 1

while (k<= 1) {

#Generated values of fBm for fixzed Hurst parameter H
a <— circFBM (20000 ,Ht,FALSE)

Y <— c()

j<— 0

#Derives the fGn wvalues

while (j <= length(a)—1) {
Y <— append(Y,a[j+1]—a[j])
j <= j+1

#Tracks the time series in terms of ordinal patterns
Patern_sequence <— c()

#Counts how many time up—down behaviour patterns occur in time series
count <— 0

#Used to track how many times specific pattern occurs in time series and
#to track how many time specific transition occurs

cl <— 0
c2 <— 0
c3 <— 0
cd <— O
ch <— 0
c6 <— 0
t11l <— 0
t12 <— 0
t14 <— 0
t26 <— O
t25 <— 0
t23 <— 0
t31 <— 0
t32 <— 0
t34 <— 0
t45 <— 0
t43 <— 0
t46 <— O
t51 <— O
t52 <— 0
t54 <— O
t66 <— O
t63 <— 0
t65 <— 0
i<—0

#Converting the time series into ordinal patterns
while (i <= length (Y)—-3)
if (Y[i+1] > 0 & Y[i+2] > 0){

Patern sequence <— append(Patern sequence,l)

cl <— ¢l + 1 -

if (i > 0){

if (Patern sequence[i] =— 1){
t11 <— tI1 + 1

else if (Patcrn_sequence[i] == 3){
t31 <— t31 4 1

else if (Patern_sequence[i] == 5){
t51 <— t51 + 1
¥

}

¥
else if (Y[i+1]>0 & Y[i+2] < 0 & (Y[i+1]+Y[i+2]) > 0){
Patern sequence <— append(Patern sequence,2)
count Z— count ++ 1 -
c2 <— c2 + 1
if (i > 0){
if (Patern sequence|i] == 1){
t12 <— tI2 + 1

else if (Patern_sequence[i] == 3){
t32 <— t32 + 1
}

else if (Patcrn_sequence[i] == 5){
t52 <— t52 + 1
}

}

}
else if (Y[i+1]<0 & Y[i+2] > 0 & (Y[i+1]4+Y[i+2]) > 0){
Patern sequence <— append(Patern sequence,3)
count Z, count + 1 -
c3 <— c3 + 1
if (i > 0){
if (Patern sequenceli] == 2){
t23 <— t23 + 1

else if (Patern_sequence[i] == 4){
t43 <— t43 + 1

else if (Patern_sequence[i] == 6){
t63 <— t63 + 1

}

¥
else if (Y[i+1]>0 & Y[i+2] < 0 & (Y[i+1]+Y[i+2]) < 0){
Patern sequence <— append(Patern sequence, 4)
count <— count -+ 1 -
cd <— c4 + 1
if (i > 0){
if (Patern sequence|i] == 1){
t14 <— tT4 + 1

else if (Patern_sequence[i] == 3){
t34 <— t34 + 1

else if (Patern_sequence[i] == 5){
t54 <— t54 4 1
}

}

}
else if (Y[i+1]<0 & Y[i+2] > 0 & (Y[i+1]4+Y[i+2]) < 0){
Patern sequence <— append(Patern sequence,5)
count <— count + 1 -
ch <— ¢cb + 1
if (i > 0){
if (Patern sequence|i] == 2){
25 <— t12 4+ 1

else if (Patern_sequence[i] == 4){
t45 <— t32 + 1

else if (Patern_sequence[i] == 6){
t65 <— t52 4 1

}

}
else if (Y[i+1]<0 & Y[i+2] < 0){
Patern sequence <— append(Patern sequence,6)
c6 <— ¢6 + 1 -
if (i > 0){
if (Patern sequence[i] == 2){
t26 <— t26 + 1

else if (Patern_sequence[i] == 4){
t46 <— t46 + 1

else if (Patern_sequence[i] == 6){
t66 <— t66 + 1

}

k<—k + 1

}

Ht <— Ht+0.01

#We calculate the frequency estimator ¢ n and then calculate Hurst estimator wvalue
c e <— count/19997 -

H e <— max(0,log(cos(pi*c e/2),2) + 1)

hurst e <— append(hurst e,H e)

#Calculating the error between real Hurst parameter and Hurst estimator
o <— 1
error <— c()
while (o <= 99) {
error <— append(error ,hurst e[o] — 0/100)
o<— o + 1 -

#Creating a data frame that contains all errors between real Hurst parameter
#and Hurst estimator
dfl <— data.frame(Method=rep(c("Error"),each=99) ,H=c(seq(0.01,0.99, by=0.01)),Error = error)

#Creating a plot of this Data frame
Errorplot <— ggplot(dfl, aes(x=H, y=Error, group=Method, linetype = Method)) +

geom_line (aes(color=Method),size = 1) +
theme classic () +

theme (
axis.title.x = element_text(size = 16), # Change the size of z—axis label
axis.title.y = element_text(size = 16) # Change the size of y—axzis label
) +
labs (
x = "H",
y = "Error"
)
#Print the plot
Errorplot + theme(legend.position="none") + geom_abline(intercept = 0.02, slope = 0)

+ geom_abline(intercept = —0.02, slope = 0)

B.4 Script 4

This script was used to generate the moving average process and to compare the accuracy
of predictions in Section 6.2. (The code can be adapted to generate values for MA(1) or
MA(2), the listed code is for MA(3)).

#We set the starting a value to 0
a <— 0

#Used to store the accuracy of different prediction methods
ACOPMR <— c ()
ACLPMR <— c ()
ACLPMR2 <— ¢ ()
ACLPMR3 <— ¢ ()

while(a <= 1){
k <— 1
hurst_e <— c()

#To store whether prediction was correct for fized Hurst parameter

E <— c()

e <— 0

e2 <— 0

e3 <— 0

while (k<= 10000) {
#Generated values of MA(8) for fized value a
x<—arima .sim (model=list (ma=c(a/2,a/4,a/8)),n=105)

#Tracks the time series in terms of ordinal patterns
Patern sequence <— c()

#Counts how many time up—down behaviour patterns occur in time series
count <— 0

#Used to track how many times specific pattern occurs in time series and
#to track how many time specific transition occurs

cl <— 0
c2 <— 0
c3 <— 0
cd <— O
c5h <— 0
c6 <— 0
t1l <— 0
t12 <— 0
tl14 <— O
t26 <— O
t25 <— O
t23 <— 0
t31 <— O
t32 <— 0
t34 <— 0
t45 <— O
t43 <— O
t46 <— O
t51 <— 0
t52 <— 0
t54 <— 0
t66 <— 0O
t63 <— O
t65 <— 0
i<—1

i<— 0

#Converting the time series into ordinal patterns
while (i <= length(x)—2) {
if (x[i] > 0 & x[i+1] > 0){

Patern sequence <— append(Patern sequence,l)

cl <— ¢l + 1 -

if (i > 1)

if (Patern sequence|i—1] == 1){
t11 <— t11 + 1

else if (Patern_sequence[i—1] = 3){
t31 <— t31 + 1

else if (Patern_sequence[i—1] == 5){
t51 <— t51 4 1
}

b
}
else if (x[i] > 0 & x[i+1] < 0 & x[i]+x[i+1] > 0){

Patern_sequence <— append (Patern_sequence ,2)
count <— count + 1

c2 <— c2 + 1
i (i > 1
if (Patern sequence|i—1] == 1){
12 <— t12 + 1

else if (Patern_sequence[i—1] = 3){
t32 <— t32 + 1

else if (Patern_sequence[i—1] = 5){
t52 <— t52 + 1
}

}

}

else if (x[i] < 0 & x[i+1] > 0 & x[i]+x[i+1] > 0){
Patern sequence <— append(Patern sequence,3)
count <— count + 1 -
c3 <— ¢c3 + 1

if (i > 1){
if (Patern_sequence[i—1] == 2){
t23 <— t23 + 1
else if (Patern_sequence[i—1] == 4){
t43 <— t43 1

else if (Patern_sequence[i 1] = 6){
t63 <— t63 + 1

}

}
else if (x[i] > 0 & x[i+1] < 0 & x[i]+x[i+1] < 0){
Patern sequence <— append(Patern sequence, 4
count Z— count ++ 1 -
cd <— c4 + 1
if (i > 1){
if (Patern sequence|i—1] == 1){
t14 <— tT4 + 1

else if (Patern_sequence[i—1] = 3){
t34 <— t34 + 1

else if (Patern_sequence[i—1] = 5){
t54 <— t54 + 1
}

}

}
else if (x[i] < 0 & x[i+1] > 0 & x[i]+x[i+1] < 0){
Patern sequence <— append(Patern sequence,5)
count Z, count + 1 -
ch <— ¢cb + 1
if (i > 1){
if (Patern sequence|i—1] == 2){
t25 <— tI12 + 1

else if (Patern_sequence[i—1] = 4){
t45 <— t32 + 1

else if (Patern_sequence[i—1] = 6){
t65 <— t52 + 1

}
}
else if (x[i] < 0 & x[i+1] < 0){

Patern sequence <— append(Patern sequence,6)
c6 <— 6 + 1 -
if (i > 1){
if (Patern sequence|i—1] == 2){
t26 <— t26 + 1

else if (Patern_sequence[i—1] = 4){
t46 <— t46 + 1

else if (Patern_sequence[ifl] == 6){
t66 <— t66 + 1

}

}
i< it1
}

#We calculate the frequency estimator ¢ n and then calculate Hurst estimator wvalue
c e <— count/length(Patern sequence) -

H e <— max(0,log(cos(pi*c e/2),2) + 1)

hurst e <— append(hurst e, H e)

H< T o -

#Calculating the best linear predictor (1 observation)
#and whether a prediction was correct
X est 1 <— (2xx(2xH—1) — 1)=xx[length(x)—1]
if (X est 1 < 0){
e <— e T abs(sign(x[length(x)]) + 1)

}
else if (X est_1 > 0)
e <— e + abs(sign(x[length(x)]) — 1)

}

#Calculating the best linear predictor (2 observation)
#and whether a prediction was correct
X est 2 <— (2 *x(2xkH—1) — 1)*(1— (3% (2«H)+1)/2 + 2xx(2xH)) /(1 —(2%*x(2xH—1)—1)**2)
#x[length (x)—1] + ((3%*(2%H)+1)/2 — 2% (2xH)
— (2%%(2+«H — 1)—1)%*x%2)/(2 %x (2xH) — 2%x(4xH—-2))*x[length(x)—2]
if (X est 2 < 0){
e2 <— e2 + abs(sign(x[length(x)]) + 1)

ilse if (X est_2 > 0) {
e2 <— e2 + abs(sign(x[length(x)]) — 1)

}

#Calculating the best linear predictor (3 observation)
#and whether a prediction was correct
X est 3 <— ((2%%(2%«H—1)—1)s (1 —(2%x(2xH—-1)—1)%%2)4 (2% (2xH—-1)—1)*
((3%x(2xH)+1)/2 — 2%x(2xH))* ((3**x(2xH)+1)/2 — 2%x(2xH) — 1)
(2% (4%H—1) 2%k (2%H—1)—3skok (2H)) ((2% (2xH—-1)—1)*%2 — ((3%*(2+H)+1)/2
2% (2xH)))) /(1 —(2%% (2xH—1)—1)*%2 — ((2%% (2«H—-1)—1)%x2)x (1 —((3*x(2xH)+1)/2
2k (2xH)))+ ((3s*x (2xH)+1) /2 — 2k (24H)) * ((2%x (2xH—1)—1)*%2 — ((3**x(2xH)+1)/2
— 2xx(2xH))))*x[length (x)—1] + (((2%*(2*H—1)—1)%*2)* ((3%*(2xH)+1)/2—2%x(2xH)—1)
+((3kx(2xH)+1)/2 — 2%k (2+H)) * (1 —((3%x(2xH)+1)/2 — 2%x(2xH)) **x2)+ (2%% (2xH—-1)—1)
s (2o (4xH—1) 2ok (26H—1)—3skok (24H)) e (3 (2xH)+1) /2— 2% (2xH) —1)) /(1 — (2% (2xH—1) —1)%%2
(2% (2%H—1)—1)*%2) % (1 —((3%x(2xH)+1)/2 — 2%x(2xH)))+ ((3**(2+H)+1)/2 — 2%%(2xH))
w (2% (2xH—1)—1)%x2 — ((3%*x(2+H)+1)/2 — 2%x%(2%H))))*x[length(x)—2] + ((2*%(2xH—-1)—1)
w (2% (2xH—1)—1)%x2 — ((3sx(2+H)+1)/2 — 2% (2%H)))+ (2%*(2xH-1)—1)
k((3wx(2xH)+1)/2 — 2%x(2xH)) ((3*x(2xH)+1)/2 — 2%x(2xH)—1)
4 (2% (4xH—1)+ 2% (2xH—1) 3k (2xH)) (1 — (2% (2xH—-1)—1)**x2)) /(1 — (2% (2xH—-1)—1)**2
— ((2%*(2*xH—1)—1)**2)* (1 —((3**x(2+«H)+1)/2 — 2%*(2xH)))+ ((3**(2xH)+1)/2
2ok (2xH)) ¢ (2% (2xH—1) —1)*%2 ((3**(2xH)+1)/2 2x% (2x%H)))) *x[length (x) —3]
if (X est 3 < 0){
e3 <— e3 + abs(sign(x[length(x)]) + 1)

[+

)x;,lse if (X est 3 > 0) {
e3 <— e3 + abs(sign(x[length(x)]) — 1)

#Predicting using ordinal patterns and moting whether the prediction was correct
if (Patern sequence[length(Patern sequence)| == 1){
if (611 > t124t14){ -
E <— append (E,abs(sign(x[length(x)])—1))

else {
E <— append(E,abs(sign(x[length(x)])+1))
}

if (Patern_sequence[length(Patern_sequence)| = 2){
if (t23+4t25 > t26){
E <— append(E,abs(sign(x[length(x)])—1))

else {
E <— append(E,abs(sign(x[length(x)])+1))

}

if (Patern_sequence|length(Patern_sequence)| == 3){
if (631 > t324t34)(
E <— append(E,abs(sign(x[length(x)])—1))

else {
) E <— append (E,abs(sign(x[length(x)])+1))

if (Patern_sequence[length(Patern_sequence)| == 4){
if (t43+t45 > t46){
E <— append(E,abs(sign(x[length(x)])—1))

else {
E <— append(E,abs(sign(x[length(x)])+1))
}

if (Patern_sequence[length(Patern_sequence)| = 5){
if (651 > t524t54)
E <— append(E,abs(sign(x[length(x)])—1))

else {
E <— append(E,abs(sign(x[length(x)])+1))

}

if (Patern_sequence[length(Patern_sequence)] = 6){
if (6634565 > t66){
E <— append(E,abs(sign(x[length(x)])—1))

else {
E <— append (E,abs(sign(x[length(x)])+1))
}

}
k<—k +1

#Calculating accuracy of predictions for fized value a
ACOP <— 1-—sum(E)/2/length (E)

ACOPMR <— append (ACOPMR, ACOP)

ACLP <— 1-e/2/(k—1)

ACLPMR <— append (ACLPMR, ACLP)

ACLP2 <— 1—e2/2/(k—1)

ACLPMR2 <— append (ACLPMR2, ACLP2)

ACLP3 <— 1—e3/2/ (k—1)
ACLPMR3 <— append (ACLPMR3, ACLP3)
a = a + 0.1

}

#Prints all the accuracy’s of all a in (0,1) with increments of 0.1
print (ACOPMR)
print (ACLPMR)
print (ACLPMR2)
print (ACLPMR3)

B.5 Script 5

This script was used to generate autoregressive process and to compare the accuracy of
predictions in Section 6.3. (The code can be adapted to generate values for AR(1) or
AR(2), the listed code is for AR(3)).

#We set the starting a value to 0
a <— 0

#Used to store the accuracy of different prediction methods
ACOPMR <— c ()
ACLPMR <— c ()
ACLPMR2 <— ¢ ()
ACLPMR3 <— ¢ ()

while(a <= 1){
k <— 1
hurst_e <— c()

#To store whether prediction was correct for fized Hurst parameter
E <— c()
e <— 0
e2 <— 0
e3 <— 0
while (k<= 10000) {
#Generated values of AR(8) for fized value a
x<—arima .sim (model=list (ar=c(a/2,a/4,a/8)),n=105)

#Tracks the time series in terms of ordinal patterns
Patern sequence <— c()

#Counts how many time up—down behaviour patterns occur in time series
count <— 0

#Used to track how many times specific pattern occurs in time series and
#to track how many time specific transition occurs

cl <— 0
c2 <— 0
c3 <— 0
cd <— O
c5h <— 0
c6 <— 0
t1l <— 0
t12 <— 0
tl14 <— O
t26 <— O
t25 <— O
t23 <— 0
t31 <— O
t32 <— 0
t34 <— 0
t45 <— O
t43 <— O
t46 <— O
t51 <— 0
t52 <— 0
t54 <— 0
t66 <— 0O
t63 <— O
t65 <— 0
i<—1

i<— 0

#Converting the time series into ordinal patterns
while (i <= length(x)—2) {
if (x[i] > 0 & x[i+1] > 0){

Patern sequence <— append(Patern sequence,l)

cl <— ¢l + 1 -

if (i > 1)

if (Patern sequence|i—1] == 1){
t11 <— t11 + 1

else if (Patern_sequence[i—1] = 3){
t31 <— t31 + 1

else if (Patern_sequence[i—1] == 5){
t51 <— t51 4 1
}

b
}
else if (x[i] > 0 & x[i+1] < 0 & x[i]+x[i+1] > 0){

Patern_sequence <— append (Patern_sequence ,2)
count <— count + 1

c2 <— c2 + 1
i (i > 1
if (Patern sequence|i—1] == 1){
12 <— t12 + 1

else if (Patern_sequence[i—1] = 3){
t32 <— t32 + 1

else if (Patern_sequence[i—1] = 5){
t52 <— t52 + 1
}

}

}

else if (x[i] < 0 & x[i+1] > 0 & x[i]+x[i+1] > 0){
Patern sequence <— append(Patern sequence,3)
count <— count + 1 -
c3 <— ¢c3 + 1

if (i > 1){
if (Patern_sequence[i—1] == 2){
t23 <— t23 + 1
else if (Patern_sequence[i—1] == 4){
t43 <— t43 1

else if (Patern_sequence[i 1] = 6){
t63 <— t63 + 1

}

}
else if (x[i] > 0 & x[i+1] < 0 & x[i]+x[i+1] < 0){
Patern sequence <— append(Patern sequence, 4
count Z— count ++ 1 -
cd <— c4 + 1
if (i > 1){
if (Patern sequence|i—1] == 1){
t14 <— tT4 + 1

else if (Patern_sequence[i—1] = 3){
t34 <— t34 + 1

else if (Patern_sequence[i—1] = 5){
t54 <— t54 + 1
}

}

}
else if (x[i] < 0 & x[i+1] > 0 & x[i]+x[i+1] < 0){
Patern sequence <— append(Patern sequence,5)
count Z, count + 1 -
ch <— ¢cb + 1
if (i > 1){
if (Patern sequence|i—1] == 2){
t25 <— tI12 + 1

else if (Patern_sequence[i—1] = 4){
t45 <— t32 + 1

else if (Patern_sequence[i—1] = 6){
t65 <— t52 + 1

}
}
else if (x[i] < 0 & x[i+1] < 0){

Patern sequence <— append(Patern sequence,6)
c6 <— 6 + 1 -
if (i > 1){
if (Patern sequence|i—1] == 2){
t26 <— t26 + 1

else if (Patern_sequence[i—1] = 4){
t46 <— t46 + 1

else if (Patern_sequence[ifl] == 6){
t66 <— t66 + 1

}

}
i< it1
}

#We calculate the frequency estimator ¢ n and then calculate Hurst estimator wvalue
c e <— count/length(Patern sequence) -

H e <— max(0,log(cos(pi*c e/2),2) + 1)

hurst e <— append(hurst e, H e)

H< T o -

#Calculating the best linear predictor (1 observation)
#and whether a prediction was correct
X est 1 <— (2xx(2xH—1) — 1)=xx[length(x)—1]
if (X est 1 < 0){
e <— e T abs(sign(x[length(x)]) + 1)

}
else if (X est_1 > 0)
e <— e + abs(sign(x[length(x)]) — 1)

}

#Calculating the best linear predictor (2 observation)
#and whether a prediction was correct
X est 2 <— (2 *x(2xkH—1) — 1)*(1— (3% (2«H)+1)/2 + 2xx(2xH)) /(1 —(2%*x(2xH—1)—1)**2)
#x[length (x)—1] + ((3%*(2%H)+1)/2 — 2% (2xH)
— (2%%(2+«H — 1)—1)%*x%2)/(2 %x (2xH) — 2%x(4xH—-2))*x[length(x)—2]
if (X est 2 < 0){
e2 <— e2 + abs(sign(x[length(x)]) + 1)

ilse if (X est_2 > 0) {
e2 <— e2 + abs(sign(x[length(x)]) — 1)

}

#Calculating the best linear predictor (3 observation)
#and whether a prediction was correct
X est 3 <— ((2%%(2%«H—1)—1)s (1 —(2%x(2xH—-1)—1)%%2)4 (2% (2xH—-1)—1)*
((3%x(2xH)+1)/2 — 2%x(2xH))* ((3**x(2xH)+1)/2 — 2%x(2xH) — 1)
(2% (4%H—1) 2%k (2%H—1)—3skok (2H)) ((2% (2xH—-1)—1)*%2 — ((3%*(2+H)+1)/2
2% (2xH)))) /(1 —(2%% (2xH—1)—1)*%2 — ((2%% (2«H—-1)—1)%x2)x (1 —((3*x(2xH)+1)/2
2k (2xH)))+ ((3s*x (2xH)+1) /2 — 2k (24H)) * ((2%x (2xH—1)—1)*%2 — ((3**x(2xH)+1)/2
— 2xx(2xH))))*x[length (x)—1] + (((2%*(2*H—1)—1)%*2)* ((3%*(2xH)+1)/2—2%x(2xH)—1)
+((3kx(2xH)+1)/2 — 2%k (2+H)) * (1 —((3%x(2xH)+1)/2 — 2%x(2xH)) **x2)+ (2%% (2xH—-1)—1)
s (2o (4xH—1) 2ok (26H—1)—3skok (24H)) e (3 (2xH)+1) /2— 2% (2xH) —1)) /(1 — (2% (2xH—1) —1)%%2
(2% (2%H—1)—1)*%2) % (1 —((3%x(2xH)+1)/2 — 2%x(2xH)))+ ((3**(2+H)+1)/2 — 2%%(2xH))
w (2% (2xH—1)—1)%x2 — ((3%*x(2+H)+1)/2 — 2%x%(2%H))))*x[length(x)—2] + ((2*%(2xH—-1)—1)
w (2% (2xH—1)—1)%x2 — ((3sx(2+H)+1)/2 — 2% (2%H)))+ (2%*(2xH-1)—1)
k((3wx(2xH)+1)/2 — 2%x(2xH)) ((3*x(2xH)+1)/2 — 2%x(2xH)—1)
4 (2% (4xH—1)+ 2% (2xH—1) 3k (2xH)) (1 — (2% (2xH—-1)—1)**x2)) /(1 — (2% (2xH—-1)—1)**2
— ((2%*(2*xH—1)—1)**2)* (1 —((3**x(2+«H)+1)/2 — 2%*(2xH)))+ ((3**(2xH)+1)/2
2ok (2xH)) ¢ (2% (2xH—1) —1)*%2 ((3**(2xH)+1)/2 2x% (2x%H)))) *x[length (x) —3]
if (X est 3 < 0){
e3 <— e3 + abs(sign(x[length(x)]) + 1)

[+

)x;,lse if (X est 3 > 0) {
e3 <— e3 + abs(sign(x[length(x)]) — 1)

#Predicting using ordinal patterns and moting whether the prediction was correct
if (Patern sequence[length(Patern sequence)| == 1){
if (611 > t124t14){ -
E <— append (E,abs(sign(x[length(x)])—1))

else {
E <— append(E,abs(sign(x[length(x)])+1))
}

if (Patern_sequence[length(Patern_sequence)| = 2){
if (t23+4t25 > t26){
E <— append(E,abs(sign(x[length(x)])—1))

else {
E <— append(E,abs(sign(x[length(x)])+1))

}

if (Patern_sequence|length(Patern_sequence)| == 3){
if (631 > t324t34)(
E <— append(E,abs(sign(x[length(x)])—1))

else {
) E <— append (E,abs(sign(x[length(x)])+1))

if (Patern_sequence[length(Patern_sequence)| == 4){
if (t43+t45 > t46){
E <— append(E,abs(sign(x[length(x)])—1))

else {
E <— append(E,abs(sign(x[length(x)])+1))
}

if (Patern_sequence[length(Patern_sequence)| = 5){
if (651 > t524t54)
E <— append(E,abs(sign(x[length(x)])—1))

else {
E <— append(E,abs(sign(x[length(x)])+1))

}

if (Patern_sequence[length(Patern_sequence)] = 6){
if (6634565 > t66){
E <— append(E,abs(sign(x[length(x)])—1))

else {
E <— append (E,abs(sign(x[length(x)])+1))
}

}
k<—k +1

#Calculating accuracy of predictions for fized value a
ACOP <— 1-—sum(E)/2/length (E)

ACOPMR <— append (ACOPMR, ACOP)

ACLP <— 1-e/2/(k—1)

ACLPMR <— append (ACLPMR, ACLP)

ACLP2 <— 1—e2/2/(k—1)

ACLPMR2 <— append (ACLPMR2, ACLP2)

ACLP3 <— 1—e3/2/ (k—1)
ACLPMR3 <— append (ACLPMR3, ACLP3)
a = a + 0.1

}

#Prints all the accuracy’s of all a in (0,1) with increments of 0.1
print (ACOPMR)
print (ACLPMR)
print (ACLPMR2)
print (ACLPMR3)

B.6 Script 6

This script was used to analyse the Oil prices data in Section 7.1 and make predictions
using all discussed prediction methods.

library (readxl)

library (tseries)

library (healthyR .ts)

DCOILWTICO <— read excel ("DCOILWTICO. x1s")
i<— 11 -

x <— c()

#Used to conwvert data into time series
while (i<= 10031){
x <— append(x,as.numeric(DCOILWTICO$...2[i]))
i<—1i+4+1
}
<=1
#Used to fill in the missing data points
while (j <= 10021) {
if (x[j] <= 0.5) {
index = j + 1
while (x[index] <= 0.5){

index = index +1
ziiference = index — j
a = (diference/(diference+1))*x[j—1] + 1/(diference+1)*x[index]
x[i] < a
¥
j <= j+1

#Used to plot the time series
functionl <— function(i){x[i]}

curve(functionl ,from=1, to = 10020, xlab="Day", ylab= "Dollars_per_Barrel", col=2)
#Used to calculate logarithmic returns R t

Rt < c()

k <— 2

while (k <= 10021){
R t <— append(R t, log(x[k])—log(x[k—1]))
k <— k+1
mean(R_t)
#Used to calculate autocovariance for set lag and plot these results
acf stationary 1 <— acf(R_t, lag.max = length(R t), plot = FALSE)
plot(acf_stationary_l, ylab = "Autocovariance", col = 2)
#Used to plot the logarithmic returns as time series
function2 <— function(i){R t[i]}

curve (function2 ,from=1, to = 10020, xlab="Day", ylab= "Logarithmic_return", col=2)

move <— 0
hurst_e <— c()

#To store whether prediction was correct

el <— O
e2 <— 0
e3 <— 0
E <— c()

while (move <= 9918){
set <— 1 + move
Y < c()
while(set <= 102 + move){
Y <— append(Y,R t[set])
set <— set 4 1 -

##Tracks the time series in terms of ordinal patterns
Patern_sequence <— c()

#Counts how many time up—down behaviour patterns occur in time series
count <— 0

#Used to track how many times specific pattern occurs in time series and
#to track how many time specific transition occurs
cl <—
c2 <—
c3 <—
c4d <—
ch <—
c6 <—
<7

[eNeloBoloNal

t11
t12 <—
t14 <—

o oo

t26 <—
t25 <—
t23 <—

o oo

t31 <— 0

t32 <—
t34 <—

oo

t45 <—
t43 <—
t46 <—

ooo

t51 <—
£52 <—
t54 <—

oo o

t66 <—
t63 <—
t65 <—

o oo

i<— 0
#Converting the time series into ordinal patterns
while (i <= length(Y)—3) {
if (Y[i+1] >= 0 & Y[i+2] >= 0){

Patern sequence <— append(Patern sequence,l)

cl <— ¢l + 1 -

if (i > 0){

if (Patern sequence[i] == 1){
t11 <— tT1 + 1

else if (Patern_sequence[i] == 3){
t31 <— t31 + 1

else if (Patern sequence|i] == 5){
t51 <— t51 + 1
}
}

}
else if (Y[i+1]>= 0 & Y[i+2] < 0 & (Y[i+1]4Y[i+2]) >= 0){
Patern sequence <— append(Patern sequence,?2)
count <— count + 1 -
c2 <— c2 + 1
if (i > 0){
if (Patern sequence|i] == 1){
t12 <— tI2 + 1

else if (Patern_sequence[i] = 3){
t32 <— t32 + 1

else if (Patern_sequence[i] == 5){
t52 <— t52 + 1

}

}
else if (Y[i+1]<0 & Y[i+2] >= 0 & (Y[i+1]+Y[i+2]) >= 0){
Patern sequence <— append(Patern sequence,3)
count Z, count + 1 -
c3 <— c3 + 1
if (i > 0){
if (Patern sequenceli] == 2){
£23 <— t23 + 1

else if (Patern_sequence[i] == 4){
t43 <— t43 + 1

else if (Patern_sequence[i] = 6){
t63 <— t63 + 1
}

}

}
else if (Y[i+1]>= 0 & Y[i+2] < 0 & (Y[i+1]+Y[i+2]) < 0){
Patern sequence <— append(Patern sequence,4)
count Z— count + 1 -
cd <— c4 + 1
if (i > 0){
if (Patern sequence|i| =— 1){
t14 <— tT4 + 1

else if (Patern_sequence[i] == 3){
t34 <— t34 + 1

else if (Patern_sequence[i] == 5){
t54 <— tb54 + 1

}

}
else if (Y[i+1]<0 & Y[i+2] >= 0 & (Y[i+41]4+Y[i+2]) < 0){
Patern sequence <— append(Patern sequence,5)
count Z, count + 1 -
ch <— ¢cb + 1
if (i > 0){
if (Patern sequence[i] == 2){
t25 <— t12 + 1

else if (Patern_sequence[i] == 4){
t45 <— t32 + 1

else if (Patern_sequence[i] = 6){

t65 <— t52 + 1
}

}
else if (Y[i+1]<0 & Y[i+2] < 0){
Patern sequence <— append(Patern sequence,6)
c6 <— b6 + 1 -
if (i > 0){
if (Patern sequence[i] == 2){
£26 <— t26 + 1

else if (Patern_sequence[i] == 4){
t46 <— t46 + 1

else if (Patern_sequence[i] == 6){
t66 <— t66 + 1

}
}
i< it

c e <— count/length(Patern sequence)
H e <— max(0,log(cos(pi*c e/2),2) + 1)
hurst e <— append(hurst e,H e)

H< f o - =

#Calculating the best linear predictor (1 observation)
#and checking whether a prediction was correct
X est 1 <— (2%x(2xH—1) — 1)*R t[set —2]
if (X est 1 < 0){ -
el <— el + abs(sign(Y[length(Y)]) + 1)

else if (X est_1 > 0)
el <— el + abs(sign(Y[length(Y)]) — 1)

#Calculating the best linear predictor (2 observation)
#and checking whether a prediction was correct
X est 2 <— (2 =% (2«H—-1) — 1) (1—(3x*x(2+H)+1)/2 + 2% (2*H)) /(1 —(2%*(2«H—-1)—1)**2)
*R t[set —2] + ((3xx(2%H)|+1)/2 2% (2xH)
— (2%%(2%H — 1)—1)*%2)/(2 *% (2xH) — 2%%(4xH—-2))*R t[set —3]
if (X est 2 < 0){ -
e2 <— e2 + abs(sign(Y[length(Y)]) + 1)

else if (X est_2 > 0)
e2 <— e2 + abs(sign(Y[length(Y)]) 1)
}

#Calculating the best linear predictor (3 observation)
#and checking whether a prediction was correct
X est 3 <— ((2**(2+H—-1)—1)*(1—(2%*(2*H—-1)—1)**2)+ (2% (2+«H-1)—1)
s ((3wk (2xkH)+1)/2 — 2% (2xH)) * ((3*%(2«H)+1)/2 — 2xx(2xH) — 1)
4+ (2%x (4xH—1)+ 2% (2xH—1)—3skok (2xH)) sk ((2% (2xH—1)—1)%*2
— ((3*x(2xH)+1)/2 — 2%x(2xH)))) /(1 —(2%*(2+«H—1)—1)**2 — ((2x%x(2xH—1)—1)%*2)
*(1—((3%x(2xH)+1)/2 — 2k (2xH)))+ ((3sx(2xH)+1)/2 — 2k (2+H)) * ((2%%(2xH—-1)—1)*%2
— ((3*x(2xH)+1)/2 — 2xx(2+H))))*R t[set —2] + (((2**(2+H-1)—1)*%2)
s (3w (2xH)+1) /2—2%% (2%H) — 1)+ ((3%% (2%H)+1) /2 — 2% (2xH))% (1 —((3%%(2xH)+1)/2
— 2ok (2%H)) k#2)+ (2% (2xH—1) — 1) (2%x (4%«H—1)+2%% (2xH—1)—3s%* (2xH)) * ((3** (2xH)+1)
/2—2x% (2%H) —1)) /(1 —(2%% (2%«H—1) —1)%*2 + ((2%% (2%H—-1)—1)%x2)x (1 —((3*x(2xH)+1)/2
— 2k (24H)))+ ((3%x (2xH)+1) /2 — 2o (2xH)) s ((2%% (2%H-1)—1)%*2
— ((3*%(2+H)+1)/2 — 2%*(2xH))))*R _t[set —3] + ((2**(2+H-1)—1)* ((2**(2*H—-1)—1)*%2
— ((B%%(2xH)+1)/2 — 2% (2xH)))+ (2%*(2%«H—-1)—1)* ((3**(2xH)+1)/2 — 2x%(2xH))
s ((3wx (2xkH)+1)/2 — 2% (2xH) —1)+ (2% (4*xH—1)+ 2% (2xH—1)—3%x* (2xH))
(1 —(2%% (2xH—1)—1)%%2)) /(1 —(2%% (2«H—1)—1)**2 — ((2%*(2xH—1)—1)*%2)
*(1—((3%x(2xH)+1)/2 — 2% (2xH)))+ ((3*x(2xH)+1)/2 — 2%*(2xH))
s ((2wx (2kH—1)—1)%*x2 — ((3*x(2xH)+1)/2 — 2%x*(2+H))))*R t[set —4]
if (X est 3 < 0){ -
e3 <— e3 + abs(sign(Y[length(Y)]) + 1)

]élse if (X _ est_3 > 0) {
e3 <— e3 + abs(sign(Y[length(Y)]) — 1)

#Predicting wusing ordinal patterns and noting whether the prediction was correct
if (Patern sequence|length(Patern sequence)| == 1){
if (t11 > t124t14){ -
E <— append (E,abs(sign(Y|[length(Y)])—1))

else {
E <— append (E,abs(sign (Y[length(Y)])+1))

}

if (Patern_sequence|length(Patern_sequence)| == 2){
if (t23+4t25 > t26){
E <— append(E, abs(sign(Y[length(Y)])—1))

else {
E <— append(E, abs(sign(Y[length(Y)]|)+1))

}

if (Patern_sequence|length(Patern_sequence)| == 3){
if (t31 > t32+634){
E <— append (E,abs(sign (Y[length(Y)])—1))

else {
E <— append(E,abs(sign(Y[length(Y)]|)+1))

}

if (Patern_sequence|length(Patern_sequence)| = 4){
if (6434145 > t46){
E <— append (E,abs(sign (Y[length(Y)])—1))

else {
E <— append (E,abs(sign (Y[length(Y)])+1))
}

if (Patern_sequence[length(Patern_sequence)] == 5){
if (t51 > t52+4t54){
E <— append(E, abs(sign(Y[length(Y)]) —1))

else {
E <— append(E,abs(sign(Y[length(Y)]|)+1))

}

if (Patern_sequence|length(Patern_sequence)| == 6){
if (634665 > t66){
E <— append(E, abs(sign(Y[length(Y)])—1))

else {
E <— append(E, abs(sign(Y[length(Y)]|)+1))
}
}
move <— move + 1

}

#Calculating the accuracy of all predictions methods.
ACOP <— 1—sum(E) /2 /length (E)

ACLP1 <— 1—el/2/(move)

ACLP2 <— 1—e2/2/(move)

ACLP3 <— 1—e3/2/(move)

#Print all the accuracy’s
print (ACOP)
print (ACLP1)
print (ACLP2)
print (ACLP3)

B.7 Script 7

This script was used to analyse the global temperature data in Section 7.2 and make pre-
dictions using all discussed prediction methods.

library (readxl)

library (forecast)

library (healthyR .ts)

library (tseries)

#Used to read the Global temperature data and cowvert into time series and plot

GWT <— read excel ("C:/Users/hjaci/Desktop/R_codes_for _BA/GWT partial.xlsx")

ts.datal = ts(data—as.vector (t(GWTI[Temperature’])), start = c¢(1900),end = c(2016),
frequency = 12)

plot(ts.datal, xlab="Year", ylab="Average_temperature", col = 2)

#Decomposes the time series and plots the resulting components
decompose = decompose(ts.datal)
plot (decompose, xlab="Year", col = 2)

#Remowves the seasonal and trend components of time series
deseason=seasadj (decompose)

Random = diff(deseason)

X <— as.numeric(Random)

#Used to calculate autocovariance for set lag and plot these results
acf stationary 1 <— acf(X, lag.max = length(X), plot = FALSE)
plot (acf_stationary_1, ylab="Autocovariance", col = 2)

move <— 0
hurst_e <— c()

#To store whether prediction was correct
el <— 0
e2 <— 0
e3 <— 0
E<— c()
mean (X)
while (move <= 1272){
set <— 1 + move
Y <— c()
while(set <= 120 + move){
Y <— append (Y,X[set])
set <— set |+ 1

}

#Tracks the time series in terms of ordinal patterns
Patern sequence <— c()

#Counts how many time up—down behaviour patterns occur in time series
count <— 0

#Used to track how many times specific pattern occurs in time series and
#to track how many time specific transition occurs

cl <—
c2 <—
c3 <—
cd <—
ch <—
c6 <—

ococococoo

t11 <—
t12 <—
t14 <—

o oo

t26
t25
t23

/\/‘\/\
coo

t31
t32
t34

A
o oo

t45
t43
t46

/\/‘\/\
coo

t51
t52
t54

A
o oo

t66
t63
t65

A
[=NeNe)

i<—0
#Converting the time series into ordinal patterns
while (i <= length(Y)—3) {
if (Y[i+1] >= 0 & Y[i+2] >= 0){
Patern sequence <— append(Patern sequence,l)
cl <— ¢l + 1 -

i (i > 0
if (Patern_sequence[i]| == 1){
t11 <— t11 + 1

else if (Patern_sequence[i] = 3){
t31 <— t31 + 1

else if (Patern_sequence[i] == 5){
t51 <— t51 + 1

}

}
else if (Y[i+1l]>= 0 & Y[i+2] < 0 & (Y[i+1]4+Y[i+2]) >= 0){
Patern sequence <— append(Patern sequence,2)
count Z, count + 1 -
c2 <— c2 + 1
if (i > 0){
if (Patern sequence[i] == 1){
t12 <— tT2 + 1

else if (Patern_sequence[i] == 3){
t32 <— t32 + 1

else if (Patern_sequence[i] = 5){
t52 <— t52 + 1
}

}

}
else if (Y[i+1]<0 & Y[i+2] >= 0 & (Y[i+1]4+Y[i+2]) >= 0){
Patern sequence <— append(Patern sequence,3)
count Z— count + 1 -
c3 <— c3 + 1
if (i > 0){
if (Patern sequence|i| =— 2){
£23 <— t23 + 1

else if (Patern_sequence[i] == 4){
t43 <— t43 + 1

else if (Patern_sequence[i] == 6){
t63 <— t63 + 1

}

}
else if (Y[i+1l]>= 0 & Y[i+2] < 0 & (Y[i+1]4+Y[i+2]) < 0){
Patern sequence <— append(Patern sequence,4)
count Z, count + 1 -
cd <— c4 + 1
if (i > 0){
if (Patern sequence[i] == 1){
t14 <— t14 + 1

else if (Patern_sequence[i] == 3){
t34 <— t34 + 1

else if (Patern_sequence[i] = 5){
t54 <— tb4 + 1
}

}

}
else if (Y[i+1]<0 & Y[i+2] >= 0 & (Y[i+1]+Y[i+2]) < 0){
Patern sequence <— append(Patern sequence,5
count Z— count + 1 -
ch <— c5 + 1
if (i > 0){
if (Patern sequence|i] == 2){
£25 <— t12 + 1

else if (Patern_sequence[i] == 4){
t45 <— t32 + 1

else if (Patern_sequence[i] == 6){
t65 <— t52 + 1

}

}
else if (Y[i+1]<0 & Y[i+2] < 0){
Patern sequence <— append(Patern sequence,6)
c6 <— cb + 1 -
if (i > 0){
if (Patern sequence|i] == 2){
£26 <— t26 + 1

else if (Patern_sequence[i]| = 4){
t46 <— t46 + 1

else if (Patern_sequence[i] = 6){
t66 <— t66 + 1

}

i< it1
}

c_e <— count/length(Patern_sequence)

H e <— max(0,log(cos(pi*c_e/2),2) + 1)
hurst_e <— append(hurst_e ,H e)
H <— H_e

#Calculating the best linear predictor (1 observation)
#and checking whether a prediction was correct
X est 1 <— (2%x(2xH—1) — 1)*X|[set —2]
if (X est 1 < 0){
el <— el + abs(sign(Y[length(Y)]) + 1)

else if (X est_1 > 0) {
el <— el + abs(sign(Y[length(Y)]) — 1)

#Calculating the best linear predictor (2 observation)
#and checking whether a prediction was correct
X est 2 <— (2 *%(2xH—1) — 1)*(1—(3%*(2xH)+1)/2 + 2x%(2xH)) /(1 —(2%% (2+xH—1)—1)%=*2)
*X[set —2] + ((3%%(2%H)+1)/2 — 2xx(2xH)
— (2%%(2xH — 1)—1)*x2)/(2 *x (2xH) — 2xx(4xH—2))*X[set —3]
if (X est 2 < 0){
e2 <— e2 + abs(sign(Y[length(Y)]) + 1)

}else if (X est 2 > 0) {
e2 <— e2 + abs(sign(Y[length(Y)]) — 1)
}

#Calculating the best linear predictor (8 observation)
#and checking whether a prediction was correct
X est 3 <— ((2%%(2%«H—1)—1)%(1—(2%*(2xH—1)—1)%x2)+ (2% (2«H—-1)—1)* ((3**(2xH)+1)/2
2w (2%H))k (3% (2%H)+1) /2 — 2% (2xH) — 1)+ (2% (4xH—1)F2%% (2xH—1)—3%% (2xH))
s (2% (2kH—1)—1)%*x2 — ((3s*x(2xH)+1)/2 — 2%%(2%H)))) /(1 —(2%% (2xH—-1)—1)%%2
— ((2%%(2xH—1)—1)%%2) % (1 —((3x% (2«H)+1)/2 — 2% (2xH)))+ ((3*x(2xH)+1)/2
— 2ok (24H)) * (2% (2%H—1) —1)*%2 — ((3x%(2%H)+1)/2 — 2xx(2xH)))) *X[set —2]
4 (2% (2%«H—1)—1)sk*2) % ((3 (2H)+1)/2— 2% (2%H) —1) 4 ((3** (2xH)+1) /2 — 2x%(2xH))
(1 —((3xx (2xkH)+1)/2 — 2k (2xH)) skx2)+ (2% (2kH—1)— 1)k (2% (4xH—1)+ 2% (2xH—1)—3%* (2xH))
s ((3wx (2xkH)+1) /2—2x%% (2%H) —1)) /(1 — (2% (2k«H—1)—1) k%2 + ((2%% (2«H—1)—1)%x*2)
(1 —((3%x(2xH)+1)/2 — 2% (2xH)))+ ((3s*x(2xH)+1)/2 — 2%k (2+H)) * ((2%*(2xH—-1)—1)*%2
— ((3*x(2xH)+1)/2 — 2%x(2xH))))*xX[set —3] + ((2x*x(2xH—1)—1)% ((2%*(2xH—1)—1)*%2
— ((3®x(2xH)+1)/2 — 2%x(2xH)))+ (2% (2x«H—1)—1)* ((3**(2xH)+1)/2 — 2%x(2xH))
s ((3wx(2xkH)+1)/2 — 2% (2xH) —1)+ (2% (4*H—1)+ 2% (2xH—1)—3%x* (2xH))
(1 —(2%% (2xH—1)—1)%*%2)) /(1 — (2% (2«H—1)—1)**2 — ((2%%(2xH—-1)—1)*%2)
(1 —((3%x(2xH)+1)/2 — 2% (2xH)))+ ((3sx(2xH)+1)/2 — 2k (2+H)) * ((2%*(2xH—-1)—1)*%2
— ((3*x(2xH)+1)/2 — 2%x(2xH))))*xX|[set —4]
if (X est 3 < 0){

e3 <— e3 + abs(sign(Y[length(Y)]) + 1)

else if (X est_3 > 0) {
e3 <— e3 + abs(sign(Y[length(Y)]) — 1)

if (Patern_sequence|[length(Patern_sequence)] =— 1){
if (t11 > t124t14){
E <— append(E, abs(sign(Y[length(Y)])—1))

else {
E <— append (E,abs(sign (Y[length(Y)])+1))
}
}
#Predicting wusing ordinal patterns and noting whether the prediction was correct
if (Patern_sequence|length(Patern_sequence)| == 2){

if (t23+4t25 > t26){
E <— append (E, abs(sign (Y[length(Y)])—1))

else {
E <— append(E,abs(sign(Y[length(Y)]|)+1))

}

if (Patern_sequence|length(Patern_sequence)| == 3){
if (631 > t324634){
E <— append (E,abs(sign (Y[length(Y)])—1))

else {
E <— append(E,abs(sign(Y[length(Y)])+1))
}

if (Patern_sequence|[length(Patern_sequence)] == 4){
if (t43+t45 > t46){
E <— append(E, abs(sign(Y[length(Y)])—1))

else {
E <— append (E,abs(sign (Y[length(Y)])+1))
}
if (Patern_sequence|length(Patern_sequence)| == 5){

if (51 > t52+t54)(
E <— append(E,abs(sign(Y[length(Y)])—1))

else {
E <— append (E, abs(sign (Y[length(Y)])+1))

}

if (Patern_sequence|length(Patern_sequence)| = 6){
if (t63+4165 > t66){
E <— append(E,abs(sign(Y[length(Y)])—1))

}

else {
) E <— append(E,abs(sign(Y[length(Y)]|)+1))
}

move <— move -+ 1

#Calculating the accuracy of all predictions methods.
ACOP <— 1-—sum(E)/2/length (E)

ACLP1 <— 1—el/2/(move)

ACLP2 <— 1—e2/2/(move)

ACLP3 <— 1—e3/2/(move)

#Print all the accuracy’s
print (ACOP)
print (ACLP1)
print (ACLP2)
print (ACLP3)

	Introduction
	Preliminaries
	Time series and Stochastic processes
	(Sample) Mean, Variance, and Autocovariance
	Fractional Brownian motion and Fractional Gaussian noise
	Ordinal patterns

	Linear predictors for fractional Gaussian noise
	Derivation of best linear predictor
	Best linear predictor for fractional Gaussian noise
	Comparing minimum mean squared error of linear predictors
	Comparing MSE of linear predictors

	Predictions using Ordinal patterns
	Comparison of two prediction methods
	Hurst estimator, Moving average processes, and Autoregressive processes
	Hurst estimator
	Moving average processes
	Autoregressive processes

	Predictions for real-world data
	Oil prices
	Global temperatures

	Conclusion

