

A MODEL-DRIVEN APPROACH
FOR DEVELOPING REST-BASED
GEOSPATIAL WEB APPLICATION
USING UML PROFILES

RIFQI ALFADHILLAH SENTOSA

JULY, 2024

SUPERVISORS:

dr. J.M. Morales Guarin

dr.ir. R.A. de By

Thesis submitted to the Faculty of Geo-Information Science and Earth
Observation of the University of Twente in partial fulfilment of the
requirements for the degree of Master of Science in Geo-information Science
and Earth Observation.
Specialization: Geoinformatics

SUPERVISORS:
dr. J.M. Morales Guarin
dr.ir. R.A. de By

THESIS ASSESSMENT BOARD:
dr. F.O. Ostermann
Prof.dr.ir. P.J.M. van Oosterom

A MODEL-DRIVEN APPROACH
FOR DEVELOPING REST-BASED
GEOSPATIAL WEB APPLICATION
USING UML PROFILES

RIFQI ALFADHILLAH SENTOSA

Enschede, The Netherlands, July, 2024

DISCLAIMER
This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information
Science and Earth Observation of the University of Twente. All views and opinions expressed therein remain the
sole responsibility of the author, and do not necessarily represent those of the Faculty.

i

ABSTRACT

The development of geospatial web applications (GWAs) has seen significant advancements, one of which
is with Model-Driven Development (MDD) and Model-Driven Architecture (MDA). MDA provides a
systematic transformation of high-level models into executable computer code of applications, which
provides a significant value as a development methodology for web application.

This study focuses on leveraging the development process of REST-based GWAs using Unified
Modelling Language (UML) profiles and used it within MDA framework. The research aims to streamline
GWA development, enabling users with inadequate level of web application development skills to a
running REST-based GWA for their use case. However, the current state-of-the-art in GWA development
lacks a standardized, reproducible approach that integrates UML profiles with MDA for REST-based
architectural style. This gap limits the accessibility and scalability of GWA development for non-expert
users.

This thesis proposed a new development approach that integrates UML profiles into the MDA framework
for developing REST-based GWAs. This study involved collecting common functions from existing
GWAs, analysing their functional requirements, and developing corresponding UML profiles. These
profiles were then used to create Platform Independent Models (PIMs) and Platform Specific Models
(PSMs), which were transformed into executable code.

The methodology was demonstrated through a detailed implementation process, resulting in a
reproducible approach for developing GWAs. Several findings include the successful creation of UML
profiles that capture common GWA functionalities and the development of efficient model
transformation rules using the proposed approach.

The proposed approach lowers the barrier for GWA development, enabling GIS/RS practitioners and
developers to create customized web applications with minimal coding effort. This approach enhances the
scalability and accessibility of GWA development, potentially leading to broader adoption and innovation
in the field of REST-base geospatial web applications.

Keywords: Geospatial Web Application, Model Driven Development, Model Driven Architecture, UML,
REST API, OGC API Standards

ii

ACKNOWLEDGEMENTS

Everything has come to an end. The exciting idea, the enjoyable learning curve, and the full-pressure finishing
that are this thesis research topic – they must end too. Credits are given to where they are due.

Biggest praises be to Allah SWT., the One and Only, who let everything came and also ended accordingly.

I would like to thank dr. J. M. Morales Guarin for introducing me to this research topic and dr.ir. R.A. de By
for the provided insights. I would also convey a big gratitude to drs. Barend Köbben as the procedural advisor
who always keep me in the right direction with his timely supports and encouragements.

I am very grateful for LPDP scholarship who made my abroad study dream became reality.

My parents and siblings. The support system who always reminds me whom I fight for.

ITC Indonesian friends. Clava, Wibi, Nasir, Andi, Ghaly, Salsa, Sry, Ganda. All shared fun, potlucks, trips,
jokes, stickers, hardships, supports, and motivations are forever unforgettable.

ITC international friends. Amy, Amin, Gamil, Belise, Maria, and the rest of the batch whom I cannot say one
by one without turning this acknowledgement into a student database. Thank you for making the best
atmospheres and memories to a beautiful journey of a Master study.

PPIE team. An amazing group of people who let me grow in the organization context, but also kind enough to
spare me the chance to focus when I needed it.

My life partner Zahra. Si Biu. The most patient and kind girl I have ever loved. Thank you for believing in me
and always reminding me to believe in myself.

Thank you for everyone helping me in this study.

Finally, the last words below are for my future self.

Years from the moment this passage was written.

You sacrificed a lot to reach until this point.

All the important people you left behind.

All the chance to continue your career.

All the failures and lost opportunities.

Now that everything comes to an end.

Were the sacrifices worth something?

Your journey for proofs began.

I hope you find them.

On a train from Utrecht to Enschede, 1 July 2024

Rifqi Alfadhillah Sentosa

iii

TABLE OF CONTENTS

Table of Contents
1. Research Introduction .. 1

1.1. Introduction ...1

1.1.1. Research Objectives.. 2

1.1.2. Research Questions .. 2

1.1.3. Research Outline ... 3

2. Literature Review .. 5

2.1. Web Application Development ..5

2.1.1. Current Web Development Methodologies ... 5

2.1.2. Model Driven Development (MDD) .. 5

2.2. Model Driven Architecture (MDA) ...6

2.2.1. MDA Abstractions ... 6

2.2.2. Unified Modelling Language (UML) .. 7

2.3. REST Architectural Style ...8

2.4. OGC API Standards ...9

3. Research Method ... 11

3.1. Domain Modelling ... 14

3.1.1. Geospatial Web Application Observations ... 14

3.1.2. Functional Requirement Analysis .. 14

3.1.3. Conceptual Modelling ... 14

3.2. UML Profile Development ... 15

3.2.1. PIM-Profiles Development .. 15

3.2.2. PSM-Profile Development ... 15

3.3. Model Transformation Development ... 15

3.3.1. PIM Instantiation ... 16

3.3.2. PIM to PSM Transformation Rules .. 16

3.3.3. PSM to Code Transformation Rules .. 17

3.4. MDA Implementation ... 17

3.5. Result Evaluation .. 17

4. Domain Modelling ... 17

4.1. Geospatial Web Application Observation ... 17

4.1.1. Google Map .. 17

iv

4.1.2. OpenStreetMap ... 18

4.1.3. Earth Explorer .. 19

4.1.4. Samenmeten Data Portal ... 20

4.1.5. ShadeMap ... 21

4.1.6. PDOK Viewer .. 22

4.2. Common Functionalities Identification ... 23

4.3. Functional Requirement Analysis .. 27

4.3.1. Search for Location .. 27

4.3.2. Distance Measurement .. 28

4.3.3. Select Basemap Layer ... 29

4.4. Conceptual Modelling .. 29

5. UML Profile and Model Transformation Development ... 35

5.1. PIM Profile Development .. 35

5.1.1. PIM MVC-Model Profile .. 36

5.1.2. PIM MVC-View Profile ... 42

5.1.3. PIM MVC-Controller Profile ... 46

5.2. PSM Profile Development .. 48

5.3. PIM Instantiation ... 50

5.3.1. Class Instantiation .. 51

5.3.2. Class Name .. 54

5.3.3. Attributes and Operations ... 54

5.3.4. Enumeration .. 56

5.3.5. Enumeration – Geometry Type ... 57

5.3.6. Association ... 57

5.3.7. Association Annotation ... 58

5.4. PIM to PSM Transformation Rules .. 59

5.4.1. UML to JSON Conversion ... 59

5.4.2. Transformation Mapping .. 66

5.4.3. Model Transformation Script ... 74

5.5. PSM to Code Transformation Rules ... 77

5.5.1. Transformation Mapping .. 77

5.5.2. Model Transformation Script ... 81

6. MDA Implementation ... 84

v

6.1. PIM Instantiation ... 86

6.2. PIM to PSM Transformation ... 88

6.3. PSM to Code Transformation .. 89

6.4. The Resulting GWA Source Code .. 91

7. Result Evaluation ... 93

7.1. Strengths of The Proposed Approach .. 93

7.1.1. Simplified Development Approach for Non-Developer Users ... 93

7.1.2. Starting Point for Continuous Development by Developer Users .. 93

7.1.3. Structured Documentation of the Proposed Approach .. 93

7.2. Weaknesses of The Proposed Approach ... 94

7.2.1. Initial Complexity ... 94

7.2.2. Limited Flexibility .. 94

7.2.3. Dependency and complexity of web application development frameworks and technologies 94

7.3. Opportunities of The Proposed Approach ... 94

7.3.1. Adoption in GIS and RS community ... 94

7.3.2. Expansion of Use Cases ... 95

7.3.3. Educational use .. 95

7.4. Threats for The Proposed Approach.. 95

7.4.1. Technological Obsolescence .. 95

7.4.2. Introducing New Learning Curve ... 95

7.4.3. Adoption resistance ... 95

8. Conclusion .. 97

8.1. Research Outcome ... 97

8.1.1. Conceptualizing REST-based GWA Functional Requirements ... 97

8.1.2. UML Profile Development .. 99

8.1.3. Model Transformation Development and MDA Implementation .. 101

8.1.4. Result Evaluation ... 102

8.2. Research Implication ... 102

8.3. Research Limitation ... 103

8.4. Future Work and Recommendations .. 103

vi

LIST OF FIGURES

Figure 2. 1 The abstraction models as core concepts of Model Driven Architecture (Kriouile, 2014) 7

Figure 4. 1 The observed functionalities of Google Map .. 18
Figure 4. 2 The observed functionalities of OpenStreetMap ... 19
Figure 4. 3 The observed functionalities of Earth Explorer .. 20
Figure 4. 4 The observed functionalities of Samenmeten .. 21
Figure 4. 5 The observed functionalities of ShadeMap ... 22
Figure 4. 6 The observed functionalities of PDOK Viewer .. 23
Figure 4. 7 The conceptualized class from the described functional requirements. 32

Figure 5. 1 Research Flowchart .. 12
Figure 5. 2 Research process according to target user types .. 13
Figure 5. 3 The structure of the proposed PIM-Profiles based on MVC design pattern. 36
Figure 5. 4 The PimModelCore profile stereotypes .. 37
Figure 5. 5 The PimViewCore profile stereotypes ... 43
Figure 5. 6 The PimControllerCore profile stereotypes .. 47
Figure 5. 7 The structure of the proposed PSM-Profiles packages based on MVC design pattern. 49
Figure 5. 8 The proposed PSM-Profiles contained in each package. 50
Figure 5. 9 Part of Research Flowchart that are related to PIM Instantiation 51
Figure 5. 10 Overview of requirements for PIM instantiation (part 1) 52
Figure 5. 11 Overview of requirements for PIM instantiation (part 2) 53
Figure 5. 12 Selecting the child classes of DataStore class stereotypes. 53
Figure 5. 13 Example of PIM class name convention .. 54
Figure 5. 14 Example of inherited class attributes and operations in PIM 55
Figure 5. 15 Examples of the use of enumeration as attribute type 56
Figure 5. 16 Examples of the use of literalEncodingType in enumeration 57
Figure 5. 17 Example of enumeration in PIM for GeometryType 57
Figure 5. 18 Examples of association instance in PIM ... 59
Figure 5. 19 Part of Research Flowchart that are related to UML to JSON conversion. 60
Figure 5. 20 Overview of requirements for UML to JSON conversion. 61
Figure 5. 21 Example of PIM-Profiles in JSON schema ... 62
Figure 5. 22 Example of PIM stereotype JSON pointer ... 63
Figure 5. 23 JSON schema for Function type .. 64
Figure 5. 24 Example of PIM function JSON pointer ... 64
Figure 5. 25 Example of association name being converted to association roles. 65
Figure 5. 26 Example of association role stored in JSON format. 66
Figure 5. 27 Part of Research Flowchart that are related to PIM transformation mapping. 67
Figure 5. 28 Overview of requirements for PIM transformation mapping 68
Figure 5. 29 Example of inherited attributes and operations in PIM class 69
Figure 5. 30 Example of curating the PSM profiles using the private attribute. 70
Figure 5. 31 Example of PIM attribute mapping ... 71
Figure 5. 32 Example of association mapping ... 72
Figure 5. 33 Example of PSM elements being present without PIM counterpart. 73

vii

Figure 5. 34 Example of empty string in PSM class .. 74
Figure 5. 35 Overview of requirements for Model Transformation Script Development 75
Figure 5. 36 Example of JavaScript class of PSM stereotype ... 76
Figure 5. 37 Example of how PSM classes are instantiated based on PIM stereotype. 76
Figure 5. 38 Example of mapping conditions .. 77
Figure 5. 39 Part of Research Flowchart that are related to PIM Instantiation 78
Figure 5. 40 Overview of requirements for PSM transformation mapping 78
Figure 5. 41 The proposed directory structure of the GWA source code files 79
Figure 5. 42 Example of PSM class being mapped into computer code 80
Figure 5. 43 Example of PSM association mapping into computer code 81
Figure 5. 44 Overview of requirements for PSM-to-code model transformation script development. ... 81
Figure 5. 45 Example of JavaScript class to handle source code mapping from PSM classes. 82
Figure 5. 46 Example of code template .. 83
Figure 5. 47 Example of how source code is instantiated into source code file based on PSM information
 ... 83

viii

LIST OF TABLES

Table 4. 1 The observed common functionalities from the multiple GWAs .. 26
Table 4. 2 The list of collected nouns and verbs for potential UML class semantics. 31

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

1

1. RESEARCH INTRODUCTION

1.1. Introduction
A Web application is software that depends on or uses the World Wide Web infrastructure to execute
properly (Gellersen & Gaedke, 1999). A sophistication in this is geospatial functionality that leverages
geospatial information, thanks to global access of location-based information and services (Veenendaal,
2015). A supportive factor in its realization is the recently updated OGC API standard by Open
Geospatial Consortium (OGC, 2023) which advocates the use of resource-oriented REST architecture in
geospatial web applications (GWA). It aligns with the concept of REST API, one of the most accepted
architectural styles in the web. It allows web application specifications to be broken down into
independent components, improving the application’s modularity, unlocking future interoperability, and
the possibility to use diverse data formats in one common architectural style (Blanc et al., 2022).

Development of geospatial functionality in a web application is not an easy task for GIS and Remote
Sensing (RS) practitioners, who are often unfamiliar with web development methods. Software
development as a field of engineering, including web application development, is technically complex and
requires advanced design skills to develop the application (Barry & Lang, 2003). Traditional software
development life cycle (SDLC) concepts like requirement analysis, wireframing, and testing, including
methods like agile development and the waterfall model, are a field by itself and requires skills that
GIS/RS practitioners often are unfamiliar with.

Various high-level abstraction techniques aim to bridge between domain-based knowledge and software
development such as Model-Driven Architecture (MDA) (OMG, 2014), web-based engineering, including
UML-based Web Engineering (UWE), Model-Driven Web Engineering (MDWE) and even agile-based
Mockup-Driven Development (MockupDD) (Rivero et al., 2012). They all provide possibilities to develop
applications, but they come with a steep learning curve for potential non-developer users. Fortunately, the
sophistications in implementation of REST-based GWAs and model-driven development techniques
allow the development for an easier approach for non-developer users to create their own GWA. To do
this, high-level conceptual designs that contain components in GWA and the documented approach to
use it in developing REST-based GWAs are necessary.

This research aims to develop UML profiles of REST-based GWA components and to document a
model-driven development of REST-based GWA that leverages those profiles. Model Driven
Architecture (MDA) was chosen as the model-driven approach, allowing the use of UML profiles to solve
the complexities of development using multiple level of abstraction models (OMG, 2014). MDA initiative
is a well-researched subject, with examples including Elleuch et al. (2007) and Jovanović et al. (2013) who
brought Model Driven Engineering, a concept related to the OMG’s MDA initiative, to software
architecture and user interface domain; Betari et al. (2018) attempted and modelled the transformation of
Computation Independent Model (CIM), the highest level abstraction model in MDA principle; and Meliá
et al. (2005) who approaches architecture modelling with MDA’s lingua franca of Unified Modelling
Language (UML).

The research started by collecting various types of geospatial web applications and performing domain
modelling from the perspective of REST architectural style and OGC API standards to retrieve the GWA
functional requirements. These requirements were translated into UML stereotypes and were packaged

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

2

into UML profiles. The developed UML profiles were then applied into an MDA implementation of
REST-based GWA development, where the profiles were used to create an example of a user-defined
Platform Independent Model (PIM) then were transformed down to Platform Specific Models (PSM),
which results in computer code of a running GWA. This implementation results in a documented
approach that makes the demonstrated approach reproducible by other users.

The expected results of this research project are the UML profiles containing stereotypes of common
REST-based GWA components and a documented MDA-based GWA development. The results are
expected to improve state-of-the-art in several ways that benefit multiple types of users. The UML profiles
and the documented MDA-based development become the initial attempt to develop a new GWA
development approach. This approach allows non-developer users like most GIS/RS practitioners to
design their own GWA by only focusing on the higher-level design of what they want to include in their
GWA. The UML profiles and the documented approach are also valuable for developers to continue
developing the approach, which open to more technology stacks and widen the possibilities of the types
of GWAs that can be developed. In this way, users can seamlessly integrate geospatial functionality in their
web applications with less time, effort, and even code lines.

1.1.1. Research Objectives
The main objective of this research is to develop an MDA-based approach for REST-based GWA
development based on UML profiles. Based on the main objective, there are four sub-objectives to this
research:

1. To conceptualize the functional requirements of common REST-based GWA functionalities
from multiple GWA observations.

2. To develop UML profiles from the functional requirements of REST-based GWA and the model
transformations for MDA approach.

3. To demonstrate how the proposed UML profiles and the model transformations are being used
in developing a REST-based GWA.

4. To evaluate the proposed approach and its resulting REST-based GWA.

1.1.2. Research Questions
Related to the first sub-objective:

1. What are the common functions found from the GWA observations?
2. What are the observed functional requirements from the selected GWA functionalities?
3. What are the potential class, attribute, operation, and relationship semantics found from the

functional requirements?

Related to the second sub-objective:

1. What are the proposed UML stereotypes for developing Platform Independent Model (PIM)?
2. What are the proposed UML stereotypes for developing Platform Specific Model (PSM)?
3. How do the proposed UML stereotypes be developed into UML profiles?

Related to the third sub-objective:

1. How do the proposed UML profiles support the development of the Platform Independent
Model (PIM)?

2. What is the model transformation rules to transform the PIM to Platform Specific Models (PSM)?
3. What is the model transformation rules to generate the GWA computer code from the PSM?

Related to the fourth sub-objective:

1. What are the strengths of the proposed approach and its resulting GWA?

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

3

2. What are the weaknesses and limitations of the proposed approach and its resulting GWA?
3. What are the future opportunities and recommendations for the proposed approach?
4. What are the future challenges and threats for the proposed approach?

1.1.3. Research Outline
The main phases of this research are the literature review, the methodology of the research, the execution
of the research methodology; the implementation step; the evaluation of the research; then lastly the
conclusion. Below is the detailed structure of this thesis research:

Chapter 1 is the introduction. This chapter provides the fundamental information of the research,
including the research background, objectives, and questions.

Chapter 2 is the literature review. This chapter gives the basis of the research. First, the concept of web
application development is introduced. It includes Model-Driven Development which overarch the
Model-Driven Architecture (MDA). MDA as the main theme of this research is elaborated in detail.
Afterwards, the concepts of REST architectural style and OGC API standards are introduced.

Chapter 3 is the research method. This chapter introduces the steps that are performed in this research.
The steps include domain modelling, UML profiling, model transformation development, MDA
implementation, and evaluation.

Chapter 4 is the domain modelling steps. This chapter answers the sub-objective 1 and its research
questions. The GWA observations and their results are explained in this chapter. Afterwards, the analyses
to retrieve functional requirements and the potential semantics for UML elements such as classes,
attributes, operations, and relationships are explained.

Chapter 5 is the UML profile and model transformation development. This chapter answers the sub-
objective 2 and its research questions. The development of UML profiles from the result of previous
chapter are explained. Then, the development of model transformations for MDA approach are explained,
including PIM-to-PSM and PSM-to-code transformation.

Chapter 6 is the MDA approach implementation. This chapter answers the sub-objective 3 and its
research questions. The developed UML profiles and the model transformation approach are performed
to generate a GWA example.

Chapter 7 is the result evaluation. This chapter answer the sub-objective 4 and its research questions. The
implementation of the developed approach and the leveraged UML profiles are evaluated based on
SWOT framework. The strengths, weakness, future opportunities, and threats are elaborated by observing
the demonstrated approach.

Chapter 8 is the conclusion of the research. This chapter summarizes the answers to each research
questions. This chapter also includes limitations and recommendations of the thesis research for future
considerations.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

5

2. LITERATURE REVIEW

This chapter provides an overview of the main concepts of the research. Firstly, the concept of web
application development that is introduced. It includes the role of Model-Driven Development (MDD).
Then, the Model Driven Architecture (MDA) is explained as part of Model-Driven Development. The
detailed framework about MDA is elaborated which includes the use of Unified Modelling Language
(UML), the MDA level of abstractions, and model transformations. The literature review finishes with the
2 subjects of geospatial web applications where REST architecture and OGC API standards are
introduced.

2.1. Web Application Development
Web application is a software system consisting of web pages and database where users can connect via
their browser through a network (Y. F. Li et al, 2014). A web application involves the frontend for the
web page visualizations and user interactions and the backend for database and data processing (Pop &
Altar, 2014). The exponential sophistications in web applications have brought many benefits in the
current world as they unlocked global accesses to many aspects of life. Abundance of new technologies in
developing a web application are released in rapid pace over the years. Therefore, it is important for new
development methodologies are pursued to keep up with the innovations (Molina-Rios & Pedreira-Souto,
2020).

The development of web applications has been closely mirroring those of software development
methodologies. Web Development Life Cycle (WDLC) (Kamatchi et al., 2013) follows Software
Development Life Cycle (SDLC) techniques to in laying down the typical steps that developer teams go
through in developing a web application: identifying website objectives, gathering requirements, perform
the design process, test the application through multiple levels, deploy, and do maintenance.

2.1.1. Current Web Development Methodologies
In current industry, several web application development methodologies have been implemented.
Waterfall model was introduced by Royce (1970) as sequence-based development process to follow
through like a consecutive list of tasks to be performed to build a software, allowing straightforward ways
in collecting requirement and managing team resources at the cost of low flexibility and limited end-user
involvement.

Agile methodology, a set of iterative and incremental approaches with high adaptability, involves sprints
where short iterations are implemented to rapidly deploy parts of software to be tested. The family of
Agile approaches such as Scrum and Kanban give the advantages of flexibility, collaboration, and iteration
of developing software and web applications while facing challenges in documentation, high dependency
to customer collaboration, and requirements for experienced developers to implement (Hossain, 2023).
Another example is Model Driven Development (MDD) that uses abstractions from capturing
requirements of the application until creating the application itself.

2.1.2. Model Driven Development (MDD)
Model Driven Development (MDD) leverages the concept of using models in representing applications in
different levels of abstraction, and using commonly automatic, top-down model transformations to define
the specificity of the previous model to other models, become ultimately deliver the final application

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

6

(Rivero et al., 2012). This approach is known by several terminologies laid down by Whittle et al. (2014)
including Model Driven Engineering (MDE) as the superset of MDD and Model Driven Architecture
(MDA) as one of MDD instances that comply with OMG standards. Despite the interchangeable
semantics, the general model driven concept is the same, and it has been proven to be beneficial to
software and application development. Model Driven Development is beneficial in development process
as it is capable to document software architecture and eventually perform code generation, especially in
domain-based companies and projects where new developments can conveniently be performed thanks to
the abstraction modelling MDD proposes (Whittle et al., 2014).

Multiple software and web engineering methods apply MDD principles. Distante et al., (2007) classified
this kind of web application design methods into two categories: the conceptual design-focused ones that
prioritize on showing what is required for the application to perform, where approaches such as
Ubiquitous Web Application (UWA) and Object-Oriented Web Solutions (OOWS) are fell into; and the
logical design-focused that prioritize on showing how to implement those requirements, where a
proposition from Conallen (1999) on building web application with UML is fell into. Anything in between
is considered hybrid methodologies that covers both logical and conceptual designs, which includes
popular methods like UML-based Web Engineering (UWE) and Web Modeling Language (WebML).

2.2. Model Driven Architecture (MDA)
The Model Driven Architecture (MDA) is a software designing approach to derive value and to provide
guidelines for designing specifications of a software system using models (OMG, 2014). The MDA is a
well-documented family of standards maintained by Object Management Group (OMG) that has been a
centre of research and being implemented in various domains such as IT, healthcare, manufacturing, and
government.

2.2.1. MDA Abstractions
The MDA promotes abstraction of complex details using high-level models to provide a structured
representation of a, making it easier for developers to build and understand a complex system. The MDA
promotes the use of transformable models that ultimately result in executable codes (Xiao & Greer, 2009).
The main mechanism of MDA starts with conceptualize the high-level requirements, then specify the
platform-agnostic solutions, before finally adopts the solutions using selected technologies and platforms.

The MDA approach is based on three different viewpoints: Computer Independent Model (CIM) for
expressing the working logic of an application, Platform Independent Model (PIM) for describing the
information system without being tied to any platform, and lastly Platform Specific Model (PSM) for
modelling the information system with more specificity using certain platforms. The models be
transformed from one level to another using defined transformation rules, with each level of
transformation promotes various amount of automation.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

7

Figure 2. 1 The abstraction models as core concepts of Model Driven Architecture (Kriouile, 2014)

Computation Independent Models (CIM) describe systems from a high-level perspective, focusing on the
environment and requirements without technical details. It is commonly being referred as business model
and domain model. Compared to the other abstraction models in MDA, CIM is seen as model used for
analysis that helps to meet business and user requirements (Singh & Sood, 2010).

Platform Independent Models (PIM) emphasize the creation of models in which the specifications and
functionalities of the models are separated from implementations of any specific platforms. This level of
abstraction disregards any kind of operating systems and programming languages (Betari et al., 2018). The
use of PIM promotes technical flexibility and easier adaptation to different technologies in later
abstraction (Ameller et al., 2015). PIM is seen as mechanism to describe the concepts of a domain (Singh
& Sood, 2010).

Platform Specific Models (PSM) brings PIM to adopt a particular technological context. PSM details the
implementation of a system including specific technologies, platforms, and frameworks, bridging the gap
between the design and the actual code. PSM is seen as model used for implementation (Singh & Sood,
2010).

Model transformation is important part of the model-driven approach. By using selected model
transformation, a model can be automatically transformed into another model (Thomas, 2004). Model
transformations are the mechanism to derive PSM models from PIMs. Model transformations in MDA
typically use OMG-standardized transformation language such as Design Specific Language, (DSL),
Query/View/Transformation (QVT), and Unified Modelling Language (UML).

2.2.2. Unified Modelling Language (UML)
UML is one of modelling languages developed by Object Management Group (OMG) that focuses on the
use of graphical models to describe properties of a software system (Duke et al., 1997). It is considered as

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

8

lingua franca in software engineering (Wimmer et al., 2006). UML provides solutions based on specific
user goals, such as UML class diagram, use case diagram, and activity diagram (Shcherban et al., 2021).

UML is a widely accepted modelling language by the software and web application development industry.
UML having a lot of benefits such as the clear visual abstractions of UML and its widespread adoption.
UML is also developed and standardized by OMG, the same institution that developed Model Driven
Architecture (MDA) approach which adds UML dependability factor as a modelling language for the
approach.

There are two types of UML diagram: structural and behavioural. Structural diagrams, such as class
diagram, deployment diagram, profile diagram, and component diagram (Ma & Chao, 2020), model
elements in a domain to be static at a specific point in time (OMG, 2017). Behavioural diagrams, such as
use case diagram, activity diagram, and sequence diagram (Ma & Chao, 2020), model domain elements as
they change over time (OMG, 2017). In this research, class diagram and profile diagram are heavily used
alongside with the concept of UML stereotype that relates to the latter.

2.2.2.1. UML Class Diagram
A UML class diagram is a structural diagram that helps in designing and illustrating classes in a system and
its internal relationships (Gosala et al., 2021). UML class diagram is commonly and heavily used to model
software components in a development, especially with its close relation with Object-Oriented paradigm.
A class diagram typically consists of attributes (data member of the class), operations (behaviors or
functions the class can perform), and relationships which are designed to represent elements of a system
or domain.

2.2.2.2. UML Profile Diagram
UML profile diagram is a structural diagram with an extension mechanism to cater UML metamodel for
specific domain case using set of stereotypes, tagged values, and constraints for their UML extension
(Giubergia et al., 2014). A metamodel refers to a predefined language, structure of objects, and concepts
for defining a model. To extend the UML metamodel, UML profiles leverage the use of stereotypes,
indicated as stereotype in the profile diagram and has the same behaviour as a UML class. Using
stereotypes and other capabilities namely tagged values and constraints, this UML extension mechanism
allows the existing UML meta classes from existing metamodels to be used in modelling domain-based
problems without changing the original UML vocabularies (UML, Meta Meta Models and Profiles -
Metamodeling, MOF, UML, Profiles, Etc., n.d.).

2.3. REST Architectural Style
REST (Representational State Transfer) is an architectural style that design applications where resources
are identified by URLs and manipulated through standard HTTP methods. REST architectural style was
first proposed by Roy Fielding in his dissertation (Fielding et al., 2017) where REST was defined as an
architectural style derived from the aggregation of several architectural style with web constraints, resulting
in a style that are suitable for network-based applications. REST architectural style is a widely adopted
approach for remote programming resources to benefit from remote APIs or services (Rodríguez et al.,
2016).

REST-based design promotes scalability and interoperability of web services and APIs (Rodríguez et al.,
2016). Applications that adhere to REST architectural style abide to the following REST core principles:

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

9

 Resource addressability: Resources should be uniquely identified using Uniform Resource
Identifier (URI).

 Resource representation: The internal structure and state of resources are kept hidden from the
clients/users as they are represented only by the resource representations, XML and JSON format
being the common formats, in help of HTTP protocol to manage the representations.

 Uniform interface: Resources are handled using standardized methods of HTTP protocol.
 Statelessness: Client request to the API should contain all information required to be processed,

so that the server does not keep any interaction state.
 Hypermedia as the engine of state: Links between resources allow users to understand the

relationships and the interaction state.

2.4. OGC API Standards
OGC API standards is the latest geospatial set of standards introduced in 2016 by Open Geospatial
Consortium (OGC) that allows modular development for geospatial services and systems using resource-
based oriented principle (OGC, n.d.-c). OGC API standards define the consistent and modular building
block for spatial Web APIs (OGC API - Common - Overview, n.d.).

OGC API standards is the latest initiative from OGC to facilitate the adoption of the latest OpenAPI
Specifications 3.0 (OAS), a programming language-agnostic described standard for HTTP API, the
protocol that bases REST architectural style. Before this, the consortium was focused on maintaining
OGC Web Services (OWS) since it was designed in the early 2000. It includes older version of geospatial
standards such as Web Map Service (WMS) and Web Feature Service (WFS) that implement action-based
Remote Procedure Call (RPC) architectural style which was indeed the state of the art during its time
(OGC, n.d.-c).

OGC API standards adhere REST architectural style principles which made the new standards more
lightweight and flexible than its predecessor standards. OGC API standards is OGC attempt to follow
current trend in web application development and the enforcement of its family of standards toward
geospatial web application will be beneficial in terms of future interoperability with modern tools,
especially in promoting geospatial data integration in modern web technologies including web applications
(Blanc et al., 2022).

Based on its status, the standards can be categorized into two categories: Approved Standards and the
ones that are not yet approved. According to OGC API official website page (OGC, n.d.-b), the currently
OGC API Approved Standards as of June 2024 are as follow:

 OGC API – Features
The standard for handling “things in the real world that are of interest” (OGC, n.d.-e)

 OGC API – Common
The standard for implementing Web API that confirms to OGC API Standards (OGC, n.d.-c)

 OGC API – Tiles
The standard for implementing Web API that support the retrieval of several types of tiled
geospatial information, such as map tiles and vector tiles (OGC, n.d.-i)

 OGC API – Processes
The standard for executable processes a client can call via Web API (OGC, n.d.-g)

 OGC API – EDR
The standard that provides interfaces to access spatiotemporal data resource and perform spatial
queries (OGC, n.d.-d)

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

10

Several mentionable OGC API Standards that has not yet gotten approval status are as follow:

 OGC API – Maps
The standard for requesting maps through Web API (OGC, n.d.-f)

 OGC API – Records
The standard for handling metadata of resources (OGC, n.d.-h)

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

11

3. RESEARCH METHOD

This chapter explains the overview of the methodology used in the research. The important part of this
research is to develop a methodology of MDA implementation for developing REST-based geospatial
web applications, which includes providing resources and documentation to ensure the developed
methodology is reproducible. Figure 5.1 shows the flowchart of the research methods.

First, the common functions of multiple chosen GWAs were collected by observing all explored features
and components in their interfaces. Next, the collected common functions were categorized based on its
similarities in the purpose and the possible logic behind it. Then, some common functions with different
purpose and web app logics were analysed and described using natural language for their functional
requirements. These functional requirements contained possible semantics for classes, attributes,
operations, and relationships for developing the UML profile.

Afterwards, the developments of UML profile diagrams purposed for building PIM and PSM were
performed by addressing each observed potential semantics from the abstracted functional requirements.
Then, the transformation rules for model transformation were developed for both PIM-to-PSM
transformation and code generation.

After the abstraction models and the model transformations were laid out, a implementation on how to
implement the MDA approach using the developed UML profiles and the model transformations was
performed. The implementation included building an instance of PIM, transforming it into PSM using the
transformation rules, and generating computer codes of GWA by transforming the PSM.

All the mentioned steps above were documented along with the detailed consideration and justification as
to why the step are performed in certain way. Most of the analyses and design steps were performed using
the designing application Figma for its designing versatility that also include UML modelling. The model
transformation used Visual Studio Code for manifesting the transformation into script.

This research caters to three different types of users based on the level of development skills and the
purpose of implementing this research:

User Type #1: The Designer

This user type includes those who are interested in building GWA but have no adequate web application
development skills and knowledge. For this user type, the proposed approach provides UML profiles so
they can design a GWA using their knowledge of the domain. The expectation is that this user type
manages to express their design using the proposed UML profiles and then realise it using the
transformation steps.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

12

Figure 5. 1 Research Flowchart

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

13

User Type #2: The Developer

This user type includes those who are familiar with web application development. For this user type, the
approach provides value in the documented steps on how to build a REST-based GWA using the
proposed development approach, as well as on how to extend the UML profiles and the proposed MDA-
based development methodology. The expectation is that this user type finds the value of this research
and improves the development of the proposed methodology which will open to more GWA possibilities
that can be developed with this method.

User Type #3: The End-user

This user type includes users who are the target users of the developed GWA. For this user type, the
approach provides value in the way that GWA can be produced by the other user types using the
proposed methodology. The expectation is that this user type uses the developed GWAs but participates
in specifying the requirements.

Figure 5.2 shows the research steps along with the identified user types that might find that particular step
valuable. During the start of each step of the research, the expected user type was mentioned to indicate
which user type the section was intended to.

Figure 5. 2 Research process according to target user types

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

14

3.1. Domain Modelling
Domain modelling is a process of capturing common requirements of a domain (Wang, 2016). The aim is
to understand concepts in a domain and to create representations that explains those concepts. Domain
modelling involves defining the scope of the subject, identifying the key concepts and relationships, and
creating the representative model to get the full understanding in navigating through the domain. In this
research, the scope of the domain modelling step was the domain of GWA.

3.1.1. Geospatial Web Application Observations
The modelling process started by observing multiple interfaces of several modern geospatial web
applications. The reason for this decision was to consider the actual user experience in the observation
which helps to capture what geospatial web applications have decided to implement from a user
perspective. The observation resulted in a collection of functionalities of the chosen GWAs.
Functionalities with similar purpose were generalized into one, which were then compiled into a reduced
list of common functionalities, which became the input for the next step of the research.

The core considerations on choosing which GWAs to observe were the variety in use cases, data sources
and types, license type (open source or proprietary), and the geographic extent (global or local data) of the
GWAs. These considerations ensured many varieties of functions are observed in GWAs and made the
common function list as representative as possible for GWAs in general.

3.1.2. Functional Requirement Analysis
IEEE Standard 610 (IEEE, 1990) defines requirement analysis as “the process of studying user needs to
arrive at a definition of system, hardware, or software requirements.” This step elaborates on what are
needed to develop a certain part of GWAs. In this research, requirement analysis is applied to the list of
common functions from previous step to retrieve the typical functional requirements between client
(frontend), server (backend), and data when a user interacts with that function in REST-based GWA.
Functional requirement is one of the software requirement types which handle specific functionalities such
as calculation, data manipulation, and user interaction in a software or application.

To implement this step, multiple common functions were selected from the common function list. This
step considered that the selected common functions to have different types of client-server processes. The
selection process is purposed to capture as many varieties of functional requirements as possible.

The selected common functions were described in natural language for their functional requirements. The
analyses were taken on the perspective of REST architectural style and OGC API standards where they
influenced the description on what client-server components are involved behind the common functions.
The result of this step was natural language-based descriptions of functional requirements of the selected
common functions which will be used in the next step of UML profile development.

3.1.3. Conceptual Modelling
This step brought the functional requirement descriptions from requirement analysis step as basis to
create conceptual model. Noun/verb analysis is performed to capture the nouns and verbs from the
description. Noun and verb analyses are two concept mapping methods that are commonly used in natural
language analysis (Klavans & Kan, 1998). The purpose of this step is to capture the potential UML class,
attribute, operation, and association names to be used in UML profile development step.

The functional requirements were summarized into collections of occurring nouns and verbs, which were
then generalized into UML classes using the careful. The hypothesis was the collection of nouns can be
potential class and attribute name, while the collection of verbs complements the nouns as potential

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

15

operations and association name. The captured list is then observed for the conceptualized UML class
representation. The expected result is a collection of potential UML classes that become the basis for
creating the real UML profiles used for building PIM and PSM instances.

3.2. UML Profile Development
UML profile development is done by extending existing UML concepts to suit a particular domain
(Gómez et al., 2019). In this step, the concept of UML stereotype is used for this extension approach to
constructs UML profiles. The expected results of this step are UML profiles that will be used to develop
instances of PIM and PSM in MDA implementation.

3.2.1. PIM-Profiles Development
The first step was to develop UML profile that will be used to build PIM, namely “PIM-Profiles” for
brevity. The conceptual UML classes from previous sub-step are split based on the technological
dependencies, where every UML classes that is interpreted to be independent is used for developing the
PIM-Profiles. The approach will be to convert the UML classes from the conceptual model into
stereotypes with careful choice of semantics for each class and their related elements.

Model-View-Controller (MVC) design pattern is applied in developing the PIM-Profiles. MVC is a widely
used design patten that adopts the principle of separation of concerns, splitting the data representation
(Model), interface (View), and interaction functions (Controller) (Syromiatnikov & Weyns, 2014). This
separation principle enables simplified complexity and improved reusability of its parts in a development
(Lu et al., 2021).

In this context, MVC pattern helps in splitting the research to categorize the stereotypes in consideration
to making the model intuitive and bringing convenience in later transformation steps. This approach
separates the stereotypes into three (3) UML profiles that are represented in one UML package diagram, a
grouping diagram purposed to encapsulate classes, diagrams, or other packages into a higher-level model.
The expected result of this sub-step is a package diagram containing PIM-Profiles with MVC
categorization.

3.2.2. PSM-Profile Development
Similar approaches in developing the PIM-Profiles model are used to build PSM-Profile. The conceptual
UML classes that are interpreted to have technological dependencies become the basis of this sub-step.
Afterwards, for each MVC aspect, a package diagram of UML profiles is created. In this sub-step, package
diagrams are created to categorize several technology-relates UML profiles (e.g. profile for PostgreSQL,
profile for Leaflet) based on MVC design pattern, where they will be represented in another higher-level
package diagram.

The expected result of this sub-step is a package diagram containing several package diagrams where
technology-related UML profiles are categorized based on MVC design pattern and contains stereotypes
related to that technology.

3.3. Model Transformation Development
Model transformation in MDA is the action of transforming a model into another by combining PIM with
specific information to result in PSM. In this step, transformation rules were developed and documented
to provide a guidance on the proposed model transformation. Examples were also given to each
transformation rules. Several categories were determined for the transformation rules: PIM instantiation

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

16

phase, PIM-to-PSM transformation phase, and PSM-to-Code transformation phase. The expected results
of this step are the documentation of all transformations.

3.3.1. PIM Instantiation
In this sub-step, the rules for develop PIM from the PIM-Profiles’ stereotypes were developed and
documented. The documentation is expected to guide users in replicating the approach in creating their
own instance of PIM. The expected result of this sub-step includes the implementation of developing a
PIM instance using PIM-Profiles stereotypes, the PIM instance itself, and the documentation of the
workflow.

3.3.2. PIM to PSM Transformation Rules
In this sub-step, the developed PIM instance is taken into transformation step to instances of Platform
Specific Model (PSM) which are built upon the PSM-Profiles. The expected result of this sub-step
includes the implementation of transforming a PIM instance into PSM, the model transformation process
including transformation rules and language used, the PSM instance itself, and the documentation of the
workflow.

Transformation rules are developed and introduced to the process, giving constrains and directions as to
what should happen in the transformations. Each transformation rule is also demonstrated to transform
the PIM instantiation. One important transformation rule assigned in this research is the use of JavaScript
Object Notation (JSON) for the diagram. JSON is a light file format for data exchange that is mainly
familiarized in web environment. JSON is structured akin to JavaScript object and has its syntax derived
from JavaScript, but it is a text-only format where any programming languages can handle this file format.

In this sub-step, one of the transformation rules in this research includes converting the PIM instance into
JSON format (called PIM-JSON for brevity) using standardized encoding rules. The purpose of this
conversion is to allow automatic model transformation of PIM instance diagrams into PSM diagrams
independent of what means the diagrams are being represented. The conversion follows “Best Practice for
OGC – UML to JSON Encoding Rules” which is an OGC-initiated approach to allow UML conversion
to JSON format for supporting standards managed by OGC. The benefit of this formulated approach is
to standardize the way the abstraction models are being represented in JSON format and to ensure
transformation rules and languages developed in this research are consistent and reproducible to other
users.

Complementary to the JSON transformation rules, the model transformation in this research will be based
on JavaScript language in node.js environment, which is not a standardized option. Traditionally, there are
various model transformation languages that have been standardized such as
Query/View/Transformation (QVT) and ATLAS Transformation Language. However, there is an
ongoing debate on the encouragement to use general-purpose programming languages for model
transformation such as Java since there has not been a widely acknowledged evidence that indicates the
dedicated, traditional model transformation languages perform better (Burgueño et al., 2019). The use of
JavaScript for model transformation language in this research entertains the argument of using general
purpose programming language for model transformation with several reasons.

JavaScript is known to be tightly related to JSON, which makes it a good choice for the JSON-based
model transformation in this research. JavaScript is a prototype-based procedural language that allows
object-oriented programming to be performed, which is the paradigm used in model-driven approach as
well as UML used in this research. Lastly, JavaScript is popularly used in web application development in

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

17

general, which makes it suitable for complementing the nature of MDA implementation in this research
which is to perform geospatial web application development.

3.3.3. PSM to Code Transformation Rules
Similar to PIM to PSM transformation, in this sub-step, the developed PSM instance is subjected to model
transformation to generate computer code of the aimed geospatial web application. This step also makes
use of JavaScript as the model transformation language. A implementation of PSM class transformation to
computer code using the developed transformation script is performed. The expected result of this sub-
step includes the implementation of the code generation from the PSM, the model transformation
process, the resulted code, and the documentation of the workflow.

3.4. MDA Implementation
In this research, MDA is demonstrated to showcase the proof of concept for the developed UML profiles.
A GWA example was introduced as the goal of the implementation. Then, the implementation started by
leveraging the developed stereotypes within the PIM-Profiles to build an instance of PIM diagram. The
diagram is then brought to transformation steps using defined transformation rules into PSM diagram that
are built upon stereotypes from PSM-Profiles. Lastly, the PSM diagram is taken into code generation step
where it is transformed into computer code of a geospatial web application.

3.5. Result Evaluation
In this research, result evaluation was performed to the developed approach and the result of the
implementation. The evaluation was based on the SWOT analysis, which is a popular framework that
summarize the Strengths, Weakness, Opportunity, and Threat to identify range of assessments (Helms &
Nixon, 2010).

4. DOMAIN MODELLING

This chapter documents the domain modelling step and discusses the results of the step. This step is not
performed with reproducibility in mind, but it is possible to reproduce. The most suitable target user to
reproduce this step is the User Type #2: The Developer.

4.1. Geospatial Web Application Observation
Six (6) modern GWAs are observed for their common functions. The following subsections elaborated
each GWA observation. The summary of the observations is provided in the next subsection.

4.1.1. Google Map
Google Maps is a global-scaled, proprietary web-based mapping service developed by Google. Google
Maps serves many purposes including navigation and route, business search, geocoding, street view, and
many more. The service uses several types of geospatial data including raster and vector tiles, and vector
for user-generated point of interests.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

18

Google Map is selected for observation to represent versatile geospatial web services with global user-base
and provide user contribution functionalities to the platform, which provide relatively high number of
interactive features in their interfaces. Figure 4.1 show the captured functions in the interface of Google
Map.

Figure 4. 1 The observed functionalities of Google Map

Based on the observation, there are 16 distinct functions in the Google Map. The platform’s most distinct
functionalities compared to the other GWAs in this list are the functionality to provide user customized
data based on user authentication, and its functionality to provide ranges of data including various types of
map tiles, user reviews, geotagged images, and Street View data for any arbitrary location.

4.1.2. OpenStreetMap
Open Street Map is a global-scaled, open-source project for providing free and editable geospatial data of
the world. The project provides several possible services including navigation and routing, geocoding, and
analysis. The service uses several types of geospatial data such as tiles and vectors.

OpenStreetMap is selected for observation to represent open-source GWAs purposed for huge
collaboration initiatives such as citizen science project, which include functionalities with simple interface
to easily access data and to promote collaborations. Figure 4.2 shows the captured functions in the
interface of OpenStreetMap.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

19

Figure 4. 2 The observed functionalities of OpenStreetMap

Based on the observation, there are 17 distinct functions in the OpenStreetMap. The platform’s most
distinct functionalities compared to other observed GWAs are to show recent changes on data within the
map extent, to perform geospatial process to extract nearby and enclosed data and set of functions to
allow user to add new data or edit existing ones.

4.1.3. Earth Explorer
Earth Explorer is a global-based, proprietary geoportal that provides the service to search and download
geospatial data and information of the world Earth Resources Observation and Science (EROS) archives
by U.S. Geological Survey (USGS). The service provides satellite imagery data to download with various
use cases.

Earth Explorer is selected for observation to represent proprietary global-based GWAs which is part of
geoportal for providing open access to global data especially satellite imagery data, which have
functionalities to perform queries to multiple data sources, to show the queried data, and to provide access
to the data. Figure 4.3 shows the captured functions in the interface of Earth Explorer.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

20

Figure 4. 3 The observed functionalities of Earth Explorer

Based on the observation, there are 13 distinct functions in the Earth Explorer. The platform’s most
distinct functionalities compared to other observed GWAs are advanced filtering options, displaying
preview of selected data coming from other sources and providing access to download data in different
file formats.

4.1.4. Samenmeten Data Portal
Samenmeten data portal is a Dutch national-based, open-source citizen science platform maintained by
Dutch National Institute for Health and Environment (RIVM) that provide measurements of air quality
and noise level for public use. The platform provides visualization of sensor locations and the
measurements and API for accessing the measurement data.

Samenmeten data portal is selected for observation to represent a local-based geoportal visualization that
display citizen science data of various types (air quality parameters) and provide access to the data via API
connection, which allows interactivity to data for showing advanced and various types of information.
Figure 4.4 shows the captured functions in the interface of Samenmeten data portal.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

21

Figure 4. 4 The observed functionalities of Samenmeten

Based on the observation, there are 9 distinct functions in the Samenmeten data portal. The platform’s
most distinct functionalities compared to other observed GWAs are showing popup that open various
capabilities of the selected data, including displaying metadata, processing the data transformation into
static and interactive charts, and temporal- and attribute-based filtering function to the selected data.

4.1.5. ShadeMap
ShadeMap is a global-based, proprietary platform that provides simulation of shadows and displays them
on the map. It provides free access to machine learning-based shadow simulation for most of the worlds
and the more accurate LiDAR-based simulation for its premium users.

ShadeMap is selected for observation to represent proprietary geospatial web service that specialized in
displaying 3D data with on-the-fly data transformation process (shadow simulation) that can handle
interactive input from user, which contain visualization that showcase the main value of the web service
and functionalities that allows user to control the data visualization which can be limited based on the tier.
Figure 4.5 shows the captured functions in the interface of ShadeMap.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

22

Figure 4. 5 The observed functionalities of ShadeMap

Based on the observation, there are 15 distinct functions in the ShadeMap. The platform’s most distinct
functionalities compared to other observed GWAs are providing 3D data visualization, providing on-the-
fly geospatial process to existing data and user-provided data that is not retained, changing the styles of the
shadow, and allowing bounding box filter of displayed data to select which area to perform the geospatial
process.

4.1.6. PDOK Viewer
PDOK Viewer is a Dutch national-based, proprietary platform that displays the open government geo-
information datasets of The Netherlands. PDOK geoportal provides access to varieties of data via API
using various services such as WMS, WMTS, and WFS.

PDOK Viewer is selected for observation to represent proprietary local-based GWAs that is part of
geoportal that showcase various kind of data for public access, which contain simple interface for data
visualization that connects to multiple data source with limited interactivity. Figure 4.6 shows the captured
functions in the interface of PDOK Viewer.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

23

Figure 4. 6 The observed functionalities of PDOK Viewer

Based on the observation, there are 10 distinct functions in the PDOK Viewer. The platform’s most
distinct functionalities compared to other observed GWAs are functionalities to provide big number of
data sources to retrieve and display data and show information based on selected data which might come
from different data sources.

4.2. Common Functionalities Identification
Based on the observations of the GWAs, the captured functions are generalized into several distinct
categories of functions. The observations captured 21 distinct categories of functions. Table 4.1 shows the
observed functions and the categories each falls into.

Search for Location

This function closely relates to data search capability of the GWA and display the result on the map.

Perform Processes

This function contains various processes including giving direction between data and points of interest,
performing measurement, and more specific geospatial processes such as chart generation and shadow
analysis.

Open Other Resources

This function relates to directing user to different pages, which commonly displayed as menu, sidebar, and
homepage button.

Authentication

This function relates to user authentication that can have influence in which data are available to an
arbitrary user and which services are accessible.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

24

Attribution

This function relates to accessing metadata of displayed data, which commonly found in GWA with
licensed data that might come from connected external data sources.

Get Other Layers

This function relates to accessing and displaying available data, especially basemap.

Initialization

This function relates to all data displayed and services run during the first time the GWA is accessed,
which mainly includes show filtered data and show pre-defined location.

Filter Data to Show

This function relates to data filter and query capabilities to either spatial or non-spatial data in the GWA.
This function can form in various approaches such as submitted search and pre-defined buttons.

Show User's Current Location

The function relates to capability to use current user location determined by GPS of the user’s device and
display the location on the GWA.

Scale Control

This function relates to zooming capabilities in the GWA which can be in form of button or mouse scroll.

Scale Bar

This function relates to visualization of current scale in form of bar, which is also commonly
complemented with scale number the bar represents.

Get Info About Selected Location

The function relates to showing info about an arbitrary data or point of interest which mainly in form of
popup when user interact with the displayed data or point of interest.

Let User Add Data

This function relates to the capability for user to add new data to the GWA with two approaches on
whether the data is retained to the GWA or not.

Share Link

The function relates to the capability to share link of the current view of the map.

Download Data

The function relates to downloading, exporting, and sharing capabilities in the GWA.

Add Legend

The function relates to the legend of the map display in GWA, commonly shown as part of the map or as
a separate user interface component, with options to hide it.

Custom Right-Click Interaction

The function relates to the right-click interactivity that shows the GWA-customized context menu when
clicked to certain user interface component.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

25

Use Different Units

The function relates to the capability to change the units of the map use such as in the scale bar and
distance measurement.

Change Style

The function relates to the capabilities for user to change the style of components in the interface, such as
modifying the shadow colour.

Interact With Currently Shown View

The function relates to the capabilities for the user to perform advanced interaction with the GWA’s user
interface such as creating bounding box or perform multiple selections.

Move or Orient Current View

The function relates to the capabilities to move the current view of the GWA map such as basic map
panning and rotating as well as dedicated functionalities like go to pre-defined centre of the map and
orient the north direction.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

26

Table 4. 1 The observed common functionalities from the multiple GWAs

Requirements Google Map Open Street Map Earth Explorer Samen Meten Shade Map PDOK
Show location Search location Search location Search location Search location to show Search location to show

Search + Give directions Search + Give directions
Show pop up info about
the sensor + analytics

Show other processed
data

Give measurement
processing tool

Give direction to / from
selected location

Give direction
Time slider to change
shadow operation /
calculation

Perform measurement
using selected location

Show/hide sun direction
line
Perform shadow
analysis process on data
on current view

Menu to other pages Menu to other pages Menu to other pages Menu to other pages Menu to other pages Menu to other pages

Open Homepage Open Homepage Open Homepage
Menu to pop up general
info

Open pop up setting

Open new window
Open popup showing gif
of selected data over
time

Open external sites

Sidebar (Menu to other
pages)

Sidebar (Menu to other
pages)

Authentication Authentication Authentication Authentication

Attribution
Get Credit Attribution
(dynamically changed)

Get Attribution
Get Credit Attribution
(dynamically changed)

Get Credit Attribution Get Credit Attribution

Show other layers Get other layers Show different basemap Show other basemaps Show other basemaps Show different basemap

Show data in 3D

Show filtered data &
basemap on arbitrary
location

Show filtered data &
basemap on arbitrary
location

Show filtered data &
basemap on arbitrary
location

Show filtered data &
basemap on arbitrary
location

Show filtered data &
basemap on arbitrary
location

Show options of filtered
data on arbitrary
location (e.g. user
location)
Show basemap on
arbitrary location (e.g.
user location)

Filter based on
categories

Show data about the
current map

Filter the necessary data
to get based on area /
name filter

Filter data based on
result plausibility

Show filtered data on /
around selected
location

Give different filter
options

Filter data based on the
nature of sensors

Show user's
current

location
Current Location Current Location Current Location

Scale control Scale Control Scale Control Scale Control Scale Control Scale Control Scale Control
Scale bar Show scale bar Scale bar

Get data about specific
point / location

Show recent changes to
current map view

Dynamic coordinate
Get & show selected
data

(Dynamic) date and time
Get & show selected
data

Show data about the
current map

Show all locs. nearby /
enclosed

Show data id
Select object from
dataset

Show image data &
Street View

Show info about current
location

Give object information

Get country name
Show info about
selected data

Let user add data Let user add data
Let user add their own
data

Add new data on
selected location

Open new page (edit
mode)
Let user add data

Share Link Share link
Share link to current
view

Give link to current view

Share file Let user exports data Download the data
Download current view
as geoTIFF

Let user download

Add Legend Get legend
Color legend
(dynamically change
based on data)

Show currently shown
data & its legend

Custom right-
click

Give options about
selected location

Give options about
selected loc.

Use different
units

Use different units Change units

Change style Change shadow color

Let interaction of
creating polygon for filter

Let user add new free-
hand building for
shadow simulation
Clear all new added
buiding

Move / orient
current view

Center the map to
selected loc.

Reset to north

Let User Add
Data

Download Data

Interact with
currently-

shown view

Perform
processes

Open Other
Resources

Get Other
Layer

Initialization

Filter Data to
Show

Get info about
selected
location

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

27

4.3. Functional Requirement Analysis
This section documents the requirement analysis step and discusses the results of the step. The selected
functions from GWA observation step were analysed and described using natural language for its typical
client-server processes. From the list of common functions from the domain modelling step, three
functions are selected for this requirement analysis:

1. Search for Location.
2. Perform Process, in this case distance measurement process.
3. Get Other Layers, in this case to get the basemaps.

This selection considers that the chosen functions cover different type of web app logics behind them,
which are elaborated in the next subsection. The following subsections showcase the reasoning behind
each selected function and the analysis step that were performed.

4.3.1. Search for Location
Search functionality is a functionality in a GWA that is purposed for getting data from the connected data
source and use the data in the GWA interface. This function is selected for functional requirement analysis
because it is a good function example that can showcase the typical frontend-backend-data source
connection in a GWA.

The implementations usually involve a search bar provided on the frontend interface of the GWA where
users input the location-based query into the search bar and submit it, which can be the name of the
location or spatial search such as a pair of coordinates or bounding box extent. The input is sent to the
backend of GWA which is then handled to use the query into the data source before the queried data are
being sent back to the frontend side to be used.

In the case of REST-based GWA with compliance to OGC API standards, several points can be specified.
One of the important practical points for both compliances is the use of HTTP as the protocol to handle
the communication in web environment. Any communication between server (backend) and backend of
the GWA is highly suggested to use HTTP messages containing the HTTP method and status, HTTP
header, and message body (MDN, n.d.). In this case, search queries and their results are being transformed
into HTTP message in any client-server communications.

Another point to consider is the use of JSON object. JSON becomes the most preferable format for data
exchange in REST implementation (Soni & Ranga, 2019). OGC API standards with its overlying
OpenAPI specification also heavily implement JSON schema for their APIs. In this case, HTTP messages
between client and server is suggested to use JSON format.

Below are the summarized functional requirements for the search location functionality:

1. The user enters a location-based query into the search bar. It could take various forms:
o Keyword search: the name of a place e.g. city.
o Spatial search: a specific coordinate or a bounding box.

2. The user initiates the search by pressing "Enter" or clicking a search button.
3. The front-end code constructs an HTTP GET request with appropriate query parameters.
4. The backend server parses the HTTP request to extract relevant information from the query

parameters.
5. The request is routed to the specific geospatial module or service within the backend, such as a

geospatial search service or a geocoding service.
6. The geospatial module or service executes the necessary operations based on the type of

geospatial search requested.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

28

7. Geospatial services may interact with the geospatial data source to retrieve relevant information.
8. Once the data is retrieved, the backend performs additional processing, such as transforming the

raw data into GeoJSON format.
9. The geospatial service generates the HTTP response in a standardized format (e.g. JSON or

GeoJSON) and sends it back to the front end using compatible parsing libraries.
10. The front end parses the HTTP response to extract the relevant information.
11. The front end processes the retrieved information to update the user interface with the search

results.

4.3.2. Distance Measurement
Distance measurement is a feature in GWAs that is purposed for measuring the distance between data or
point of interests. This function is selected for functional requirements analysis because it is one of the
most common geospatial processes implemented in GWA, which can help in showcasing how a process
typically work in a GWA.

The implementation usually starts with an initiation by the user to start a measurement, commonly by
clicking a dedicated button or performing a right-click to a data or point of interest where an option to
measure distance is available in the context menu. The measurement type can also vary depending on
whether it is a straight-line measurement or one that include routing service. After the user select the data,
HTTP message is sent to server containing all information required for performing all required processes.
This initiates a creation of ‘job’ which is a resource that represent any kind of processes. This job resource
contains metadata of the process including ID, involved process, and status. The processes are executed
where they also handle the status of the relevant job. Until the status of the job is declared as finished, the
results of the processes are being sent to the client using HTTP message where it will be used at the
frontend of the GWA.

In the case of REST-based GWA with compliance to OGC API standards, the uses of HTTP and JSON
are still applied. A specific point to be added to both compliances is the use of ‘job’ and all other concepts
around it which comes from the OGC API – Processes.

Below are the summarized functional requirements for the distance measurement functionality:

1. The user initiates a distance measurement process by interacting with provided interface.
2. The user selects two points on the map for distance measurement. Event listener attached to the

interface detects this interaction.
3. The frontend sends a POST request to the backend server to initiate the distance measurement.

The request contains a JSON payload with the selected points and measurement parameters.
4. The backend server parses the HTTP request to extract relevant information. The server validates

the input data.
5. The backend creates a job resource to handle the distance measurement task. A unique identifier

is assigned to the job. The server responds with a 202 Accepted status and a URL to poll for job
status.

6. The distance measurement is performed by the appropriate module or service.
7. The frontend periodically checks the status of the job by sending a GET request to the job URL.
8. When the distance measurement is complete, the backend updates the job resource with the

result.
9. The frontend updates the user interface to display the measured distance.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

29

4.3.3. Select Basemap Layer
Basemap layer option is a common feature in GWAs that is purposed for providing different types of
basemap layer for GWA map display. This function is selected for functional requirements analysis
because it is a simple functionality in GWA that can showcase how an interaction in a component can
affect another component.

The implementation usually starts from initialization where a dedicated user interface component for
showing the basemap options are presented. When the GWA is initialized, a HTTP exchange is happened
to extract the available basemap options from the data source. This communication commonly involves
external APIs to get the basemap layer as well as the metadata such as the preview, name, and provider
attribution. When a user selects an option of the provided basemap layers, a HTTP message is sent from
the client to server which retrieves the data from the data source. This basemap layer data can be in many
file formats including raster image, map tiles and vector tiles. After the data is retrieved and is sent back to
the client frontend, the data is rendered and update the previous map display.

In the case of REST-based GWA with compliance to OGC API standards, the uses of HTTP and JSON
are still applied. Depending on the file format that is used, several OGC API standards can apply.
However, the concept of ‘collection’ which is implemented by OGC API – Core is applied to represent
any kind of data. The concept of ‘collection’ that treat everything as a resource regardless of the file
format helps in enforcing REST architectural pattern to the GWA while also maintain the interoperability
to the compliant GWA.

Below are the summarized functional requirements for the basemap layer selection functionality:

1. During the initialization of map visualization in the application, a section of the UI provides an option
list or dropdown menu for selecting basemap layers. The frontend sends an HTTP GET request to
the backend for metadata of the available basemap layers and displays the response in a dedicated
section.

2. When a user selects a basemap layer from the dropdown, the frontend sends an HTTP GET request
to the backend, specifying the selected basemap layer.

3. The backend parses the HTTP request and fetches the data associated with the selected basemap
layer.

4. The backend sends the requested data (or alternatively tiles) back to the frontend by generating HTTP
200 response.

5. The frontend parses the HTTP response to retrieve the data or tiles from the backend.
6. The frontend updates the map, replacing the current basemap layer with the newly selected one. If the

backend provided raw data, the frontend might need to render the basemap layer.
7. The user can interact with the map, such as panning or zooming. The frontend sends additional GET

requests to the backend for tiles covering the newly visible area.

4.4. Conceptual Modelling
This step conceptualizes the functional requirements using the concept of UML class. Since REST
principle and OGC API standards have been applied as the perspective in analysing the functional
requirements, the UML classes resulted from this step should also capture the requirements that allow
development of GWAs that abide with the REST principle and OGC API standards.

First, the noun/verb analysis was performed. Table 4.2 shows the summary of all nouns and verbs. Based
on the analysis and considerations to each item in the summary table, several UML classes are generated as
shown in Figure 4.7. The classes are intentionally structured in three separate columns to apply MVC

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

30

design pattern for separation of concerns. The UML classes resulted in this phase are not using many
UML capabilities such as multiplicity and associations, which will be applied during the development of
UML profile.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

31

Table 4. 2 The list of collected nouns and verbs for potential UML class semantics.

Noun Verb
enter (Location-based query)
initiates (Search process; Distance measurement process)
press (Enter key)
click (Seach button)
interact (Provided Interface)
select (Displayed Data on Map; provided Basemap layer)
construct (HTTP GET request)
parse (HTTP response)
extract (Data; from HTTP response)
process (Data)
update (Interface)
attach (Event listener)
send (HTTP request)
initiate (Search process; Distance measurement process)
check (Job's status)
display (Job's result; Metadata of basemap layer options)
specify (Selected Basemap layer)

Interface
Type: Search bar, Button, Map, Section

provide (Basemap layers option list)

Event listener detect (Interaction)
Location-based query
Type: Keyword search, Spatial search
Query parameter
Search Process

parse (HTTP request)
extract (Data; from Query parameter in HTTP request)
route (HTTP request)
validate (extracted Data; from HTTP request)
create (Job)
respond (to Job)
update (Job's result)
execute (Geospatial operation)
interact (with Data Source)
retrieve (Data)
generate (HTTP response)
send (HTTP response; to Front end)

Job
Unique identifier, Status, URL, Result

handle (Distance measurement process)

Geospatial Operation
Example: Distance measurement process
HTTP Request
Type: GET, POST
Format: JSON, GeoJSON
Content: Data (e.g. Point, Measurement
parameter)
HTTP Response
Format: JSON, GeoJSON
Data Source
Data / Information
Basemap Layer
Metadata
Example: Basemap layer options

User
Interaction

Front End

Back End Server

Geospatial Module / Service

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

32

Figure 4. 7 The conceptualized class from the described functional requirements.

Below are the descriptions of each conceptualized class:

1. The UserInteraction class represents interactions that are captured from the functional
requirements. It covers all possible interactions a user might perform with a geospatial web
application. The interactionType attribute provide the mean to specify what kind of interaction a
user perform in any arbitrary instance of this class, examples from the functional requirements are
click to represent any kind of mouse clicks and keypress to represent any kind of keyboard presses.
The enter operation represents the possibility of a user to enter an input to geospatial web
application. The interact operation represents the possibility of a user to interact with UI elements
of geospatial web application and perform any interaction types that are defined in the
interactionType attribute. The initiate operation represents the possibility of a user to perform a
process by interacting with provided UI component in the geospatial web application interface.

2. The Frontend class represents the various frontend components of the geospatial web application
that are captured from the functional requirements. It covers the different types of interfaces
available to users. The interfaceType attribute specifies the observed types of interfaces from the
requirement analysis, which includes options such as searcher, button, map, and container. The
operations defined within this class covers interactions and data handling on the client side. The
attach operation allows the attachment of event listeners to view components, enabling user
interactivity with the frontend component. The display operation represents the rendering of data
on the frontend interface to visually show the information. The construct and parse operations
represent the HTTP communication management for building request objects and interpreting
response objects. The extract operation represents the action to pulling specific data from HTTP
messages. The specify operation represents the action of defining which data will be used or
displayed while the process operation handles the manipulation and preparation of this data. Lastly,

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

33

the update operation represents the action of the frontend components updating themselves with
new data to provide dynamic and interactive user experience.

3. The HttpProtocol class represents the mechanisms and operations associated with handling HTTP
communications within the geospatial web application. It is responsible for managing the flow of
HTTP requests and responses between the frontend and backend component. The messageType
attribute specifies whether a particular instance of an HTTP message is a request or a response.
The send operation represents for the action of transmitting an HTTP message, such as a request
from the frontend to the backend or a response from the backend to the frontend. The receive
operation represents the reception of those HTTP messages.

4. The BackendServer class represents the server-side component which handles operations within a
GWA. The parse operation represents the interpretation of incoming HTTP requests by the
server, while the extract operation represents the retrieval of data from these requests. The route
operation represents the routing action where requests are sent to the appropriate handler within
the server. The construct operation represents the action of forming the HTTP response object to
be sent back to the client. The create operation represents the action of creating a job resource for
an initiated process within the server. The update operation represents the action of updating the
existing job resource based on the ongoing process that takes place, such as adding the job
resource with the process result and updating the status of the job. The validate operation
represents the action of server ensuring that all exchanged data complies to the predefined
standards.

5. The Job class represents a discrete resource of an initiated process within the backend server of a
GWA. This class represents the mechanism responsible for managing and tracking individual
processes that need to be executed. The uniqueIdentifier attribute represents the distinct ID for each
job and the status operation represents the current state of the job. The handle operation
represents the execution of the job by handling the specified process and producing the necessary
output.

6. The BackendService class represents the part of backend server that executes processes and interacts
with data sources. The input and output attributes represent the data received and produced by the
service. The execute operation represent the action of performing the process associated with the
service. The interact operation handles interaction with the data source. The retrieve operation
represents the action of obtaining data from the data source to be processed.

7. The DataSource class represents the location of where the data required by the GWA are stored.
Based on the observation and analysis in this research, there is no attribute and operation that is
relevant to this class.

8. The Data class represents the actual data used or managed by the GWA. Based on the observation
and analysis in this research, there is no attribute and operation that is relevant to this class.

The conceptual classes above can be categorized into two categories, based on the interpreted level of
abstractions for this research. This categorization is also an application of separation of concern concept,
where each class is interpreted on whether it is more valuable to be used in building PIM-Profiles or PSM-
Profile.

The classes used in the PIM-Profiles model are as follows:

1. UserInteraction: This class represents a high-level, fundamental part of the application’s
requirements which is separated from the concern of what technology that is being interacted
with.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

34

2. Frontend: This class focuses on the types of elements and their relevant interactions, which are
concepts that remain consistent regardless of the chosen technology.

3. DataSource: This class represents the abstraction of data access without specifying the underlying
data store technology.

4. Data: This class represents a high-level abstraction of what data is needed and how it is
structured, which is independent of how the data is stored and processed on a specific platform.

The classes used in the PSM-Profile are as follows:

1. BackendServer: This class deals with the handling of HTTP exchanges that bridges the data
source and frontend of the GWA, which is not something to be concerned about in PIM-Profiles
development as it depends on the specific technology being chosen in the GWA development.

2. BackendService: This class is closely related to the BackendServer class which is not within the
scope of PIM-Profiles building and is dependent on the chosen technology.

3. Job: This class is managed in the server side of the GWA which makes it closely related to
BackendServer.

4. HttpProtocol: This class represents a specific technology for the GWA which makes it a
technology-specific concept.

The summarized and interpreted conceptual classes above become the result that is used in the next step
of building the UML profiles. The existence of the classes, attributes, and operations, as well as the
absence of them, are considered in the next step where the classes are engineered to be suitable for
practical implementation in the MDA implementation.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

35

5. UML PROFILE AND MODEL TRANSFORMATION
DEVELOPMENT

This chapter explains the development of UML profiles and the model transformation rules for the MDA
implementation. There were two UML profiles to represent the MDA level of abstractions: Platform
Independent Model (PIM) and Platform Specific Model (PSM). Afterwards, the elements of PIM-Profiles
were mapped into the PSM-Profile of the selected technologies, which resulted in the PIM-to-PSM model
transformation. Lastly, the PSM-Profiles were mapped into the computer code of the selected platforms
to develop the PSM-to-code transformation rules.

All steps in this chapter were taken and documented with their reproducibility in mind. The appropriate
user types were mentioned at the start of each section.

5.1. PIM Profile Development
This step designs the UML conceptual classes into both PIM-Profiles. The development started with
analysing each of the conceptual classes using the perspective of MVC design pattern. Each class from the
conceptual model was categorized based on whether it is closely related to the data layer (Model), the
interface layer (View), or the intermediary layer (Controller).

This step was performed with reproducibility in mind. The most suitable target users to reproduce this
step are the User Type #2: the Developers. By knowing how to build the PIM-Profiles, users can
reproduce the step to build their own UML profile for building the PIM or to improve the existing ones.

After the categorization, each class was expanded into more specific concepts that are relevant to the
GWA development using the UML stereotype. This approach was performed by specifying the right
semantics for each stereotype and determining the attributes and operations within the stereotype, while
also maintaining the whole profile diagram in the same abstraction level.

Figure 5.3 displays the UML package diagram showcasing the implementation of MVC separation of
concerns in the PIM profile development. The top rectangle Pim represents a package for the PIM itself
while the apply arrows represent the direct relationships that showcase which profiles are being applied to
the package. The three profile rectangles represent the MVC-separated PIM-Profiles:

1. PimModelCore profile for data related stereotypes (Model).

2. PimViewCore profile for interface related stereotypes (View).

3. PimControllerCore profile for data-interface mediatory stereotypes (Controller).

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

36

Figure 5. 3 The structure of the proposed PIM-Profiles based on MVC design pattern.

Additional point to be mentioned is the use of colours in the PIM classes as well as the PSM classes
shown after the transformation during the MDA implementation. The purpose of the colours is to
indicate which MVC pattern the PIM class is related to like shown in the Figure 5.3 above. There are four
types of colours being used.

In the UML profile development, two UML metaclasses were extended into stereotypes: Class and
Association. During the practical implementation of UML profiles, the Class stereotype was used to
contain information related to relevant classes within the profile, while the Association stereotypes are
responsible to relate a Class stereotype with another Class stereotype from both the same and a different
profile. The following subsections elaborate on each profile.

5.1.1. PIM MVC-Model Profile
Figure 5.4 shows the contents of PimModelCore profile which handles data-related concepts. Both Class
and Association metaclasses are pointed with arrow that came from the stereotypes, indicating an
extension relationship. Each stereotype may also be related to each other which is shown with bold arrow
that indicates an inheritance relationship. The following paragraphs describe each stereotype in detail.

Dataset Class Stereotype

 This class stereotype represents the collections of data used in GWA that are organized in a
specific format namely as vector or raster data format.

 This class stereotype does not inherit, nor does it have public attributes or operations to be
inherited by other class stereotypes.

 This stereotype has an inheritance relationship with two class stereosubtypes: SpatialDataset for
spatial data and NonSpatialDataset for non-spatial data. These two stereotypes are addressed
separately because data with spatial properties may have different data structure compared to non-
spatial data and may be treated differently.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

37

Figure 5. 4 The PimModelCore profile stereotypes

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

38

SpatialDataset Class Stereotype

 This class stereotype represents any collection of data that contains a spatial property. This
includes spatiotemporal vector and raster data.

 SourceCRS attribute: a string that provides the crucial metadata regarding the original coordinate
reference system of the data, which helps to know how the data can be accurately located on the
surface of the Earth, as well as to know whether a coordinate transformation is needed for the
GWA implementation.

 This class stereotype has inheritance relationships with two more specific stereotypes:
VectorDataset for vector data and RasterDataset for raster data. These two specific stereotypes are
addressed separately because they have different data structure and different uses in how they
represent the real world.

NonSpatialDataset Class Stereotype

 This class stereotype represents any collection of data that contains no spatial property.

 relevantAttributes attribute: an array of strings referring to data properties that have meaningful role
in the GWA based on user preference.

 attributeFilter operation: a function to filter data based on selected attributes.

 This class stereotype inherits attributes and operations from the Dataset class stereotype.

 This class stereotype has inheritance relationships with more specific stereosubtypes: VectorDataset
for vector data and RasterDataset for raster data. These two specific stereotypes are addressed
separately because they have different data structure and different use cases in how they represent
the real world.

VectorDataset Class Stereotype

 This class stereotype represents data with the vector data model, which stores discrete features
with defined shapes and boundaries.

 geometry attribute: a string that specified geometry type defined by ISO 19107:2003.

 relevantAttributes attribute: an array of strings referring to data properties that have meaningful role
in the GWA based on the user preference.

 attributeFilter operation: a function to filter data based on selected attributes.

 This class stereotype inherits attributes and operations from the SpatialDataset and Dataset class
stereotypes.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

RasterDataset Class Stereotype

 This class stereotype represents data with the raster data model, which stores data as a grid of
regularly sized pixels.

 dataFormat attribute: a string of the specified format in which the raster data is stored.

 imageBounds attribute: an array of coordinates providing to the geographic extent of the raster data.

 pixelSize attribute: an array of integer values that represent the size of a single pixel in the raster
data. This attribute has a tagged value of unit to indicate the unit of the size.

 pixelAttributeDataType attribute: a string that define the data type for the pixel value.

 This class stereotype inherits attributes and operations from the SpatialDataset and Dataset class
stereotypes.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

39

 bandAmount attribute: an integer that refer to the number of bands within the raster data.

 time attribute: an array of data time that refer to the temporal extent of the raster dataset.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

Below is the elaboration for Dataset class stereotypes and its stereosubtypes. DataStore is different from
the Dataset because DataStore refers to the system for storing data, while Dataset refers to the collection
of data that may be stored in data stores.

DataStore Class Stereotype

 This class stereotype represents a generic mechanism for storing and retrieving data.

 dataStoreProvider attribute: a string of the specific data store provider that is being used by the user.

 This class stereotype does not inherit attributes or operations from other class stereotypes.

 This class stereotype has inheritance relationships with two specific stereosubtypes: LocalDataStore
for data stores on the local machine and CloudDataStore for data stores in a remote cloud
environment. These two stereotypes are defined separately because they have different
implementations for data access and data persistence.

LocalDataStore Class Stereotype

 This class stereotype represents data stores that reside on the local machine.

 ipAddress attribute: a string that provides the IP address of the data store. This is required simply
to emphasize that even within local data store, an IP address is an important information.

 This class stereotype inherits attributes and operations from the DataStore class stereotype.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

CloudDataStore Class Stereotype

 This class stereotype represents a data store that is located in some remote cloud environment.

 endpoint attribute: a string that provides the URL or identifier of the data store service.

 This class stereotype inherits attributes and operations from the DataStore class stereotype.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

Below is the elaboration for DataService class stereotypes and its stereosubtypes. DataService is different
from the DataStore because DataStore refers to the system for storing data, while DataService refers to a
service that provide access to data which may be stored in a data store.

DataService Class Stereotype

 This class stereotype represents a service that provides access to data.

 providerName attribute: a string that specifies the name or identifier of the service that provides the
data.

 This class stereotype does not inherit attributes or operations from other class stereotypes.

 This class stereotype has inheritance relationships with two specific stereotypes: SpatialDataService
for data sources that contain geospatial information and NonSpatialDataService for data sources
that contain only non-geospatial information. These two specific stereotypes are addressed
separately because each type of data service may have different means in accessing their services.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

40

NonSpatialDataService Class Stereotype

 This class stereotype represents data services that provide access to non-spatial data.

 This class stereotype does not inherit, nor does it have public attributes or operations to be
inherited by other class stereotypes.

SpatialDataService Class Stereotype

 This class stereotype represents data services that provide access to spatial data.

 sourceCRS attribute: a string that provides the crucial metadata regarding the original coordinate
reference system of the data provided by the service.

 This class stereotype inherits attributes and operations from the DataService class stereotype.

 This class stereotype has inheritance relationships with four specific stereosubtypes:
VectorTileDataService for serving vector tiles, RasterTileDataService for serving raster tiles,
VectorDataService for serving vector datasets, and RasterDataService for raster datasets. These
stereosubtypes are addressed separately because each service represents different ways of serving
spatial data.

VectorTileDataService Class Stereotype

 This class stereotype represents a service that provides access to vector tiles, a format of storing
geographic data with efficient rendering capabilities at different zoom levels.

 relevantLayers attribute: an array of strings that lists the collection of layer names that are served by
the vector tile service, since the data service might serve several vector tiles.

 This class stereotype inherits attributes and operations from the DataService and SpatialDataService
class stereotype.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

RasterTileDataService Class Stereotype

 This class stereotype represents services that provide access to raster tiles, which are smaller
images that can be combined to form a larger image.

 This class stereotype inherits attributes and operations from the DataService and SpatialDataService
class stereotypes.

 This class stereotype does not have public attributes or operations to be used or inherited by
other class stereotypes.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

VectorDataService Class Stereotype

 This class stereotype represents data services that provides access to vector data.

 geometry attribute: a string that specified geometry type defined by ISO 19107:2003.

 relevantAttributes attribute: an array of strings referring to data properties that have meaningful role
in the GWA based on the user preference.

 This class stereotype inherits available attributes and operations from DataService and
SpatialDataService class stereotype.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

RasterDataService Class Stereotype

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

41

 This class stereotype represents data services that provides access to raster data.

 imageBounds attribute: an array of coordinates referring to the geographic extent of the raster data.

 pixelSize attribute: an array of integer representing the size of a single pixel in the raster data. This
attribute has a tagged value of unit to indicate the unit of the size.

 pixelAttributeDataType attribute: a string of the defined data type used for the pixel value.

 This class stereotype inherits available attributes and operations from DataService and
SpatialDataService class stereotype.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

Below is the elaboration for the association stereotypes in this profile.

Offer Association Stereotype

 This association stereotype represents the movement of data from one entity to another in a data
modelling context.

 It is used to associate instances of the DataStore or DataService class stereotype or the stereotypes
that inherit them, with instances of Dataset class stereotype or the stereotypes that inherit it. This
is semantically appropriate because it captures the relationship where the source offers available
datasets.

Display Association Stereotype

 This association stereotype represents a visualization relationship between data and its graphical
representation on a map in some GWA.

 This association stereotype is used to associate instances of the Dataset or DataService class
stereotype or the stereotypes that inherit them, with instances of the MapDisplay class stereotype
or the stereotypes that inherit it. This is semantically appropriate because it clearly conveys the
purpose of the association where data is being displayed by a map in some GWA.

Process Association Stereotype

 This association stereotype represents data handling before the data is being served by WHAT.

 It is used to associate instances of the Dataset or DataService class stereotype or the stereotypes that
inherit it, with instances of PimControllerCore profile’s class stereotypes. This is semantically
appropriate because controller classes may act as the central processing units in a GWA that
perform data manipulation, analysis, and transformation.

Bind Association Stereotype

 This association stereotype represents the reliance of a chart component on some data.

 It is used to associate instances of the Dataset or DataService class stereotype or the stereotypes that
inherit them, with instances of ChartDisplay class stereotype or the stereotypes that inherit it. This
is semantically appropriate because it captures the data dependency of the visual component on
the provided data.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

42

5.1.2. PIM MVC-View Profile
Figure 5.5 shows the contents of PimViewCore profile which handles visualization-related concepts. The
following paragraphs describe each stereotype in detail.

Below is the elaboration for UiComponent class stereotypes and its stereosubtypes.

UiComponent Class Stereotype

 This class stereotype represents the foundational building block for user interface (UI)
components in a GWA.

 This class stereotype does not inherit nor does it have public attributes or operations to be
inherited by other class stereotypes.

 This class stereotype has inheritance relationships with four stereosubtypes: DataVisualization for
representing data on the interface, LayerSelection for representing options for the user to choose,
Button for UI component dedicated for triggering actions, and SearchBar for user input focused
on searching data. These stereosubtypes are addressed separately because they provide specialized
functions beyond the basic UI components.

DataVisualization Class Stereotype

 This class stereotype represents UI components specialized in creating visual elements that
communicate data insights.

 VisualizationTitle attribute: a string that describes the visualization.

 It inherits attributes and operations from the UiComponent class stereotype.

 It has inheritance relationships with two stereosubtypes: MapDisplay for displaying map for spatial
data and ChartDisplay for displaying charts. These stereosubtypes are addressed separately because
they cater for different types of visualization with different configurations and purposes.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

43

Figure 5. 5 The PimViewCore profile stereotypes

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

44

MapDisplay Class Stereotype

 This class stereotype represents maps for visualizing geospatial data on a user interface.

 targetCRS attribute: a string that determines the CRS the map is using. This information is useful
to indicate a potential coordinate transformation for the used data.

 panMap operation: a function to shift the map in specific direction.

 zoomMap operation: a function to adjust the zoom level of the map.

 updateMap operation: a function to refresh the map display with new or updated data.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

ChartDisplay Class Stereotype

 This class stereotype represents visual data representation through charts.

 ChartType attribute: a string that specifies the type of chart.

 This class stereotype inherits attributes and operations from the UiComponent and DataVisualization
class stereotypes.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

LayerSelection Class Stereotype

 This class stereotype represents a UI component that contains the layer options for a user to
choose from, such as UI component with list of available data.

 availableLayers attribute: an array of strings that lists all possible layer options that the user can
choose from.

 defaultLayers attribute: a string representing the default layers that are selected when the UI
component loads.

 This class stereotype inherits available attributes and operations from the UiComponent class
stereotype.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

Button Class Stereotype

 This class stereotype represents a clickable UI element that triggers an action.

 label attribute: a string that is the text label displayed on the button.

 This class stereotype inherits attributes and operations from the UiComponent class stereotype.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

SearchBar Class Stereotype

 This class stereotype represents a UI component specifically designed for users to enter search
queries.

 inputFormat attribute: a string that represents the format or type of the data the search bar can
accept.

 This class stereotype inherits available attributes and operations from the UiComponent class
stereotype.

 This class stereotype does not have inheritance relationships with other stereosubtypes.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

45

Below is the elaboration for UserInteraction class stereotypes and its stereosubtypes. UserInteraction is
different from UiComponent because user interaction refers to the interaction that happen to UI
component, which is a separate concept from the UI component itself.

UserInteraction Class Stereotype

 This class stereotype represents general user interaction elements in a GWA.

 interactionType attribute: a string that specifies the type of user interaction. The value of this
attribute shall be one of the following: Click, KeyPress, Drag, or MouseOver.

 executeCallbackFunction operation: a function that executes the callback function that is triggered
after a user interaction occurs.

 This class stereotype does not inherit attributes or operations from other class stereotypes.

 This stereotype has an inheritance relationship with a class stereosubtype: click for representing an
action that creates click event.

ClickInteraction Class Stereotype

 This class stereotype represents the action of clicking an UI component.

 clickType attribute: a string that specifies the type of click. The value of this attribute shall be one
of the following: Click, Right-click, and Double-click.

 This class stereotype inherits available attributes and operations from UserInteraction class
stereotype.

 This class stereotype does not have inheritance relationships with more specific stereotypes.

Below is the elaboration for the association stereotypes in this profile.

VisualLink Association Stereotype

 This association stereotype represents the way a UI component links with other UI components.

 This association stereotype is used to associate instances of UiComponent class stereotype or the
stereotypes that inherit it, with instances of UiComponent class stereotype or the stereotypes that
inherit it. This is semantically appropriate because it describes the way UI components interact
and influence each other visually on the screen.

Attach Association Stereotype

 This association stereotype represents the way a UI component captures and transmit user input
into an element responsible for handing the user interaction.

 This association stereotype is used to associate instances of UiComponent class stereotype or the
stereotypes that inherit it, with instances of UserInteraction class stereotype or the stereotypes that
inherit it. This is semantically appropriate because it describes the flow of user interaction data.

Trigger Association Stereotype

 This association stereotype represents the way a user interaction triggers a function in GWA.

 This association stereotype is used to associate instances of UserInteraction class stereotype or the
stereotypes that inherit it, with another instance of PimControllerCore profile’s class stereotypes.
This is semantically appropriate because it is a common semantic for the user interaction event to
trigger a function.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

46

Display Association Stereotype

 This association stereotype represents a visualization relationship between data and its graphical
representation on a map in GWA.

 This association stereotype is used to associate instances of Dataset or DataService class stereotype
or the stereotypes that inherit them, with instances of MapDisplay class stereotype or the
stereotypes that inherit it. This is semantically appropriate because it clearly conveys the purpose
of the association where data is being displayed by a map in GWA.

Bind Association Stereotype

 This association stereotype represents the reliance of a chart component for data.

 This association stereotype is used to associate instances of Dataset or DataService class stereotype
or the stereotypes that inherit it, with instances of ChartDisplay class stereotype or the stereotypes
that inherit it. This is semantically appropriate because it captures the data dependency of the
visual component on the provided data.

5.1.3. PIM MVC-Controller Profile
Figure 5.6 shows the contents of PimControllerCore profile which handles visualization-related concepts.
The following paragraphs describe each stereotype in detail.

DataProcessing Class Stereotype

 This class stereotype represents components responsible for manipulating and transforming data.

 outputFormat attribute: a string that specifies the format of the data after processing.

 supportedProcesses attribute: an array of string referring to the processes that can be performed.

 executeProcess operation: a function that defines the execution of the process.

 This class stereotype does not inherit any attribute and operation from other class stereotypes.

 This class stereotype has inheritance relationships with two specific stereotypes: SpatialProcessing
for handling spatial data processing and NonSpatialProcessing for handling non-spatial data
processing. These specific stereotypes are addressed separately because both provides different
means to handle different data types and provides specialized functionalities.

SpatialProcessing Class Stereotype

 This class stereotype represents processes that operate on spatial data.

 outputCRS attribute: a string that specify the CRS of the output data after process.

 This class stereotype inherits available attributes and operations from DataProcessing class
stereotype or the stereotypes that inherit it.

 This class stereotype has inheritance relationships with two specific stereotypes: LocalProcessing for
processes sourced from local machine and CloudProcessing for processes sourced from cloud
provider. These specific stereotypes are addressed separately because the environment and
resources are both different and require different ways of handling the processes.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

47

Figure 5. 6 The PimControllerCore profile stereotypes

NonSpatialProcessing Class Stereotype

 This class stereotype represents processes that do not involve spatial data.

 This class stereotype does not have public attribute and operation to be inherited by other class
stereotypes.

 This class stereotype inherits available attributes and operations from DataProcessing class
stereotype.

 This class stereotype has inheritance relationships with two specific stereotypes: LocalProcessing for
processes sourced from local machine and CloudProcessing for processes sourced from cloud
provider. These specific stereotypes are addressed separately because the environment and
resources are both different and require different ways of handling the processes.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

48

LocalProcessing Class Stereotype

 This class stereotype represents processes that are accessed and handled in the local machine.

 This class stereotype does not have public attribute and operation to be inherited by other class
stereotypes.

 This class stereotype inherits available attributes and operations from DataProcessing,
SpatialProcessing, and NonSpatialProcessing class stereotypes.

 This class stereotype does not have inheritance relationships with more specific stereotypes.

CloudProcessing Class Stereotype

 This class stereotype represents processes that are accessed and handled within cloud
environment.

 This class stereotype does not have public attribute and operation to be inherited by other class
stereotypes.

 This class stereotype inherits available attributes and operations from DataProcessing,
SpatialProcessing, and NonSpatialProcessing class stereotypes.

 This class stereotype does not have inheritance relationships with more specific stereotypes.

Trigger Association Stereotype

 This association stereotype represents the way a user interaction triggers a function in GWA.

 This association stereotype is used to associate instances of UserInteraction class stereotype or the
stereotypes that inherit it, with another instance of PimControllerCore profile’s class stereotypes.
This is semantically appropriate because it is a common semantic for the user interaction event to
trigger a function.

Process Association Stereotype

 This association stereotype represents a relationship that represents the way processes handles
data input to generate the output.

 This association stereotype is used to associate instances of PimControllerCore profile’s class
stereotype with instances of Dataset or DataService class stereotype or the stereotypes that inherit
it. This is semantically appropriate because it defines the way processes handle datasets from any
sources including data services.

5.2. PSM Profile Development
This step developed the possible UML profiles containing stereotypes to be used in building a Platform
Specific Model (PSM), or as it is named PSM-Profiles. The step started with designing how the PSM-
Profiles are structured with PIM transformation in mind. This consideration is required because every
information needed to develop a stereotype in PSM-Profiles must come from existing PIM-Profiles’
stereotypes in any way. This allows the instance of PIM to be transformed into PSM with clear logic
behind it.

The most suitable target users to reproduce this step are the User Type #2: the Developers. By knowing
how to build the PSM-Profiles, users can reproduce the step to build their own UML profile for building
the PSM or to improve the existing ones.

Figure 5.7 shows the UML package diagram that showcases the structure of the PSM-Profiles. The top
rectangle Psm represents a package for the PSM itself while the apply arrows represent the direct

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

49

relationship that showcase which packages are being applied. The first level of packages displays the three
packages that result from the implementation of the MVC separation of concerns. This separation gives a
boundary for the transformation of each PIM-Profiles stereotype as it can only be transformed into PSM-
Profile stereotypes that come from the same MVC layer.

Each MVC package is separated further into several purpose-related packages which relate to a specific
collection of available technologies:

1. PsmModel package contains DataStore package representing the data storage technologies such
as PostgreSQL, and DataService package representing services that provide data access such as
WMS and WFS.

2. PsmView package contains FrontendFramework representing user interface libraries such as
React, and MappingLibrary package representing web mapping libraries such as Leaflet.

3. PsmController package contains BackendFramework representing web server framework such as
Express.JS, HttpClientLibrary representing HTTP client libraries such as Axios, and
DataProcessing package representing geospatial processing services such as WPS.

Figure 5. 7 The structure of the proposed PSM-Profiles packages based on MVC design pattern.

Figure 5.8 shows the proposed PSM-Profiles of each technology in this research. The colour yellow
indicates the PSM-Profile used in this research project. Not all PSM-Profiles were elaborated in detail
because the platform-specificity of the contained stereotypes might add too much irrelevance to the
project. PSM-Profiles are demonstrated in the MDA Implementation chapter.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

50

Figure 5. 8 The proposed PSM-Profiles contained in each package.

5.3. PIM Instantiation
This section explains how to use PIM-Profiles to build a PIM instantiation. This step was performed with
reproducibility in mind. The most suitable target users to reproduce this step are:

 User Type #1: the Designers.

 User Type #2: the Developers.

By knowing how to instantiate a PIM from the developed PIM-Profiles in this section, both users can
reproduce the step to build their own preferred PIM. PIM instantiation is part of model transformation
development step, which uses the PIM-Profiles that were developed in the UML profile development as
the only provided resource. The result of this section is the steps to perform PIM instantiation, which can
be used to create a PIM. Figure 5.9 shows the parts of research flowchart that are relevant to this section.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

51

Figure 5. 9 Part of Research Flowchart that are related to PIM Instantiation

Several requirements were developed to help users complete the PIM instantiation according to the
proposed approach. Following the requirements below in sequence allows users to create a PIM diagram
that can be brought into model transformation into PSM. Figure 5.10 shows the overview of the
requirements used for PIM instantiation.

5.3.1. Class Instantiation

Recommendation #5.3.1
To design an instance of PIM class, it is recommended to use child stereotypes of the PIM-Profiles.

Resource: PIM-Profiles (provided); Execute: Manual by User

The first step for users is to find the available PIM-Profiles stereotypes to use. To direct the user’s
attention to the most valuable stereotypes to use, it is recommended to use the child classes which is
shown as the lower-level classes in the diagram structure. This recommendation is highly suggested as
child classes contain more information including attributes and operations that are inherited by their
parent classes. This makes child classes more informative to use for designing the PIM as well as its
transformation in later steps.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

52

Figure 5. 10 Overview of requirements for PIM instantiation (part 1)

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

53

Figure 5. 11 Overview of requirements for PIM instantiation (part 2)

This recommendation also considers that the model transformation scripts might have mandatory
information to be filled to perform the automatic transformation. The use of parent class leads to fewer
information to be received by the model transformation script. This can potentially cause the
transformation step to give more prompt users to manually fill in for the empty required information
(such as the way to access the data store in the given example) which makes the transformation less
automated. This issue might also introduce conflicts such as increased chance of incompatibility with
other selected PSM technologies or even failure which might stop the transformation process.

Figure 5.12 shows the example of DataStore class stereotype which has inheritance relationship with two
child class stereotypes: LocalDataStore and CloudDataStore. Recommendation #5.3.1 suggests on using the
two child class stereotypes instead of the DataStore class stereotype which has fewer information.

Figure 5. 12 Selecting the child classes of DataStore class stereotypes.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

54

5.3.2. Class Name

Requirement #5.3.2
The name of an instantiated class shall be complemented with the name of the used stereotype in the diagram using guillemets
and placed on top of the instantiated class name.

Resource: PIM-Profiles (provided); Execute: Manual by User

After selecting the preferred PIM-Profiles stereotype to use, users are required to give name of the
instantiation of the selected class stereotype. In the instantiated class stereotype, the name of the
stereotype becomes a keyword in guillemets (« ») and placed on top of the instantiated class name. Figure
5.13 shows example of VectorDataset stereotype being used to instantiate BusStop class.

Figure 5. 13 Example of PIM class name convention

5.3.3. Attributes and Operations

Requirement #5.3.3
Each attribute and operation of the selected PIM-Profiles stereotype and the inherited stereotypes must be used. Their default
values must be provided, except the attributes or operations multiplicity defined that they are optional.

Resource: PIM-Profiles (provided); Execute: Manual by User

After a new class is created, users are required to provide the default values of each available attribute and
operation of the selected stereotype as well as all inherited ones from its parent stereotypes. All attributes
and operators have the default multiplicity of [1..1] meaning that it is mandatory to be provided, except it
is defined otherwise with other multiplicity. The attribute and operations that have multiplicity
configurations starting with 0 such as [0...1] and [0..*] indicate that the attribute or operation is optional.
Figure 5.14 shows example of how the DataService, SpatialDataService, and VectorDataservice class
stereotypes are used to instantiate CityBoundary class in the PIM.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

55

Figure 5. 14 Example of inherited class attributes and operations in PIM

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

56

5.3.4. Enumeration

Requirement #5.3.4.1
An enumeration shall be defined and be used as attribute type of classes. The original data type of said attribute must be the
same as the type of the enumeration literals.

Resource: None; Execute: Manual by User

Requirement #5.3.4.2
The default type of the enumeration literals shall be defined as CharacterString, except defined otherwise using
literalEncodingType on the enumeration.

Resource: None; Execute: Manual by User

Other than class and association stereotypes, the UML generic concept of enumeration can also be used in
the PIM. Enumerations in the PIM can be use as type of a class attribute. In this case, there is no need for
the class-enumeration relationship to be indicated using association, and the original type data type of said
attribute must be the same as the type of enumeration literals. The default value of the attribute comes
from the enumeration literals. Figure 5.15 shows how the BusStop class uses several enumerations for its
attributes. Figure 5.16 shows an example of how literalEncodingType works in an enumeration.

Figure 5. 15 Examples of the use of enumeration as attribute type

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

57

Figure 5. 16 Examples of the use of literalEncodingType in enumeration

5.3.5. Enumeration – Geometry Type

Requirement #5.3.5
If a class stereotype contains Geometry attribute, then a GeometryType enumeration based on ISO 19017:2003 geometry
types shall be created and be used as the type of said Geometry attribute.

Resource: None; Execute: Manual by User

In addition to user-defined enumerations, a GeometryType enumeration must be created when an
instance of class stereotypes that contain Geometry attribute is used in the PIM. The literals of
GeometryType enumeration come from the ISO 19017:2003 geometry types. This enumeration becomes
the attribute type of each Geometry attributes in the PIM.

In the current PIM-Profiles developed in this research, these classes are VectorDataset and
VectorDataService. The purpose of this obligation is to use standardized set of geometry types that is
compatible with JSON schema, one of main definitions in this research. This standardized approach is
proven to be useful in PIM to PSM transformation where the compatibility with JSON schema allows the
conversion of the developed PIM into JSON. Figure 5.17 shows the GeometryType enumeration in the
PIM of this research.

Figure 5. 17 Example of enumeration in PIM for GeometryType

5.3.6. Association

Requirement #5.3.6

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

58

The association stereotypes provided in PIM-Profiles shall be the only possible UML relationships used in the PIM
development. The association name in the diagram shall use the name of the association stereotype contained inside guillemets.

Resource: PIM-Profiles (provided); Execute: Manual by User

After all classes are instantiated in the PIM, associations are required to define the relationship between
each class. It is up to the user decision whether a class has association relationship. If it is decided that a
class have an association, the available association stereotypes contained in PIM-Profiles are the only
options to be used in the PIM.

Each association stereotypes have limited use as described in the PIM-Profiles and are developed to be as
semantically appropriate as possible. For example, display can only be used to associate a class stereotype
from PimModelCore profile with MapDisplay class from PimViewCore profile, since it is appropriate to
state that a Map ‘display’ a Dataset. The name of the association stereotype contained in guillemets (« »)
becomes the association name.

5.3.7. Association Annotation

Requirement #5.3.7
Association in PIM diagram shall always be represented in solid line without arrowhead, while the association names shall
have an arrow indicating its appropriate reading direction.

Resource: PIM-Profiles (provided); Execute: Manual by User

The association in PIM shall always be a bi-directional association, shown with a solid line. This means
that both class in an association can refer to each other. In addition to the directionality of the association,
the association stereotype names are also configured using single verbs that it only makes sense to be read
in certain direction. This particular trait is indicated by the order the association stereotype is described in
the PIM-Profiles. For example, the way display association stereotype is described: “… for associating
MapDisplay class to Dataset or DataService class” indicates that it only makes sense to state that a Map ‘display’
a Dataset, not the other way around. This configuration is useful during PIM-to-PSM transformation later.
In PIM diagram, this trait is shown using an arrow next to the association name. Figure 5.18 shows
example of how the Display and Offer association stereotypes in PimModelCore profile are being used to
associate the described class stereotypes.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

59

Figure 5. 18 Examples of association instance in PIM

5.4. PIM to PSM Transformation Rules
This section explains about how to create a model transformation of PIM into PSMs. This step was
performed with reproducibility in mind. The most suitable target users to reproduce this step are the User
Type #2: the Developers. By knowing how to build the model transformation users can reproduce the
step to transform their PIM into PSM using their selected technology. The rest of this section elaborates
on all steps and considerations in developing the model transformation.

5.4.1. UML to JSON Conversion

The first step in the transformation process is to convert the designed PIM diagram into JSON format. As
previously explained in Research Method chapter, JSON conversion was performed to allow automated
model transformation of the designed diagram. The following subsections explain the requirements of this
step in detail. Each requirement will be complemented with information about what resource and data
being used in the requirement, whether the resource is being provided from the beginning or the resource
is something that is result from previous steps within this project, as well as whether the requirement is
something that the user need to do manually or it is a part of the automated transformation. Figure 5.19
shows the parts of research flowchart that are relevant to this section.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

60

Figure 5. 19 Part of Research Flowchart that are related to UML to JSON conversion.

Several requirements were developed to help users complete the UML to JSON conversion according to
the proposed approach. Following the requirements below in sequence allows users to convert the PIM
diagram into JSON schema before the transformation to PSM takes place. Figure 5.20 shows the summary
of the requirements used for the conversion.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

61

Figure 5. 20 Overview of requirements for UML to JSON conversion.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

62

5.4.1.1. PIM-Profiles JSON Schema

Requirement #5.4.1.1
The completed PIM diagram shall be converted into JSON using the provided JSON files of the PIM profiles that were
developed according to the “Best Practice for OGC – UML to JSON Encoding Rules” document.

Resource: PIM-Profiles in JSON format (provided); Execute: Manual by User

As previously mentioned, his conversion process is a manual process by following “Best Practice for
OGC – UML to JSON Encoding Rules” (OGC, n.d.-a) or the UML2JSON best practice document for
short. To make the conversion process convenient for users, JSON templates of PIM-Profiles were
developed based on the best practice document. Figure 5.21 shows sample of PIM-Profiles in JSON
format.

This guided conversion is important to allow the designed diagram to be stored in a transformable format
while also retaining all the information. This research does not elaborate the detailed steps in transforming
PIM diagram into PIM-JSON and suggests users to follow the best practice document. In addition to the
guided conversion above, several extra steps were required for the conversion in this research such as
JSON schema for stereotypes, functions, and association roles.

Figure 5. 21 Example of PIM-Profiles in JSON schema

5.4.1.2. JSON Schema for Stereotypes

Requirement #5.4.1.2
The JSON pointer of the class stereotype shall be the “type” of all instantiated class of said stereotype.

Resource: PIM-Profiles in JSON format (provided); Execute: Manual by User

The current UML2JSON best practice document does not specifically include stereotype into the
encoding. However, the detail about which class stereotype that is being used to instantiate a class is

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

63

relevant to the model transformation in later step. To solve this issue, the research proposes that the type
of each class shall refers to the JSON pointer of the class stereotype’s external schema. This approach is
stated in the UML2JSON best practice document suggestion regarding the provision of external types.

This approach requires the PIM-Profiles to be converted into JSON schema and store the schema online
to be referred. Following the UML2JSON best practice document’s Requirement 2 about the way to
reference types from the external schema, PIM-Profiles’ stereotypes can be referred by each relevant class
as the class type. Figure 5.22 shows the example of BusStopDataStore class in PIM that refers LocalDataStore
class stereotype as the class type.

Figure 5. 22 Example of PIM stereotype JSON pointer

5.4.1.3. JSON Schema Functions

Requirement #5.4.1.3
The JSON pointer of the Function type shall be the “type” of all operations in a class.

Resource: PIM-Profiles in JSON format (provided); Execute: Manual by User

The current UML2JSON best practice document only covers the way attributes can be converted into
JSON encoding, but not operations. According to the UML2JSON best practice document, attributes are
represented as “property” which has the definition of “attribute or association role; not of an enumeration or code
list”. Assuming from this flexible definition, this research decided to store operations as part of property
together with attributes and association roles. However, there is also a need to make operations to be
distinctly structured in the JSON schema, so the model transformation script can split the differences
between attributes, association roles, and operations.

To solve this issue, this research proposed an external JSON schema for describing operations in the
JSON encoding in this research, shown in Figure 5.23. This approach is stated in the UML2JSON best
practice document suggestion regarding the provision of external types. This external schema allows
operations of UML classes to be identified as the type “Function” and distinct themselves among
attributes and association roles.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

64

Figure 5. 23 JSON schema for Function type

This schema is stored online inside one of the author’s GitHub repositories. Figure 5.24 shows how
functions can be defined in a JSON schema of a class. Following the UML2JSON best practice
document’s Requirement 2 about the way to reference types from the external schema, the external
schema can be referred as follow: https://raw.githubusercontent.com/rifqialf/conceptual-design-
gwa/main/uml_classoperation_schema_definition.json#/$def/Function.

Figure 5. 24 Example of PIM function JSON pointer

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

65

5.4.1.4. JSON Schema for Association Roles

Requirement #5.4.1.4
Association name shall be assigned onto the related class as association roles by assuming the active and passive voice of the
association name. The assumption is performed based on observing the arrowhead of the association name. The active-voiced
association role is placed close to the class that is pointed by the arrowhead while the passive-voiced association role resides the
opposite class.

Resource: PIM-Profiles in JSON format (provided); Execute: Manual by User

The current UML2JSON best practice document only covers the way association roles can be converted
into JSON encoding, but not association names. In an association relationship, association roles are the
semantics that specify the role of each class in said relationship. In summary, the current UML2JSON best
practice document requires an association to include two distinct words to represent the two involved
classes, while each association in the current PIM development only configure one association name.
Based on this limitation, an additional step is needed to convert the single-word association names into
two-words association roles.

As explained in previous section, the semantics of association stereotypes are a single verb with additional
arrow that indicates the way the association name shall be used. This arrow notion helps to generate
association roles by converting the single-word association name into both active and passive voice (e.g.
display association name is converted into “displays” and “is displayed by”). The rule is that the active
voice form of the association name is placed close to the class that is pointed by the arrow.

Figure 5.25 shows the way display association name is converted into two association roles. Figure 5.26
shows example of isOfferedBy, a result of association roles conversion, in JSON schema according to the
best practice document.

Figure 5. 25 Example of association name being converted to association roles.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

66

Figure 5. 26 Example of association role stored in JSON format.

After all elements in the PIM diagram have been converted into JSON format, the transformation
continues in the integrated development environment of your choice. This exact step will be elaborated
later in MDA Implementation section. The following sections elaborates on how to map the elements of
PIM into PSM.

5.4.2. Transformation Mapping

This section explains about how the JSON-converted PIM transforms into PSM. The elements of PIM
stereotypes were mapped into elements of PSM stereotypes for showing the logic behind each element
transformation. The following subsections explains several considerations that were elaborated in
developing the transformation such as the inheritance, default values, and implications on specific
decisions. Figure 5.27 shows the parts of research flowchart that are relevant to this section.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

67

Figure 5. 27 Part of Research Flowchart that are related to PIM transformation mapping.

Several requirements were developed to help users complete the PIM transformation mapping according
to the proposed approach. Following the requirements below in sequence allows users to map PIM
elements into PSM elements. Figure 5.28 shows the overview of the requirements used for PIM
transformation mapping.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

68

Figure 5. 28 Overview of requirements for PIM transformation mapping

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

69

5.4.2.1. Inherited Attributes and Operations

Requirement #5.4.2.1
Inherited attributes and operations shall be included into the PIM transformation when possible.

Resource: PIM-JSON (from JSON conversion), PIM-Profiles in JSON format (provided); Execute: Manual by User

The first consideration on the PIM transformation is to ensure all PIM classes to include inherited
attributes and operations from the relevant parent classes, except for optional attributes and operations.
Figure 5.29 shows an example of how LocalDataStore class stereotype inherits DataStore class stereotype’s
attribute and is included the mapping to PSM elements.

Figure 5. 29 Example of inherited attributes and operations in PIM class

5.4.2.2. PSM Profile Choices for Transformation

Requirement #5.4.2.2
For each class stereotypes used in PIM, all relatedPsmPackages and relatedPsmProfiles attributes shall be used to limit the
PSM-Profiles choices for the transformation.

Resource: PIM-JSON (from JSON conversion), PIM-Profiles in JSON format (provided), PSM-Profiles (provided);
Execute: Manual by User

The previous Requirement #5.4.2.1 also includes the inheritance of the private attributes relatedPsmPackages
and relatedPsmProfiles. These two attributes contribute to the PIM transformation by providing the
information of which PSM-Profiles are available to transform to. This approach gives limitation for user
to not choosing the technologies that is not appropriate to the used stereotype in PIM. The remaining
PSM-Profiles Figure 5.30 shows an illustration on how the LocalDataStore class stereotype’s
relatedPsmProfiles eliminates several PSM-Profiles to be used.

In the context of choosing the PSM-Profiles for the transformation, another consideration is the
dependency of the technologies to each other, which is determined to be outside of the scope of this
research. Even though any technology combinations are possible to be selected, selecting technologies
without considering their compatibility and language disparity to each other might increase the chance of

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

70

encountering dependency-related problems. In this research, this consideration is handed to the user to
choose wisely.

Figure 5. 30 Example of curating the PSM profiles using the private attribute.

5.4.2.3. PSM Programming Language Choice

Requirement #5.4.2.3
The selected FrontendFramework and BackendFramework PSM profiles determine the programming languages used for the
GWA.

Resource: PIM-JSON (from JSON conversion), PIM-Profiles in JSON format (provided), PSM-Profiles (provided);
Execute: Manual by User

The Requirement #5.4.2.2 also allows users to select the PSM profiles from FrontendFramework and
BackendFramework packages. In this research, the decision on these packages also effectively determines the
programming language associated with each framework. For example, choosing React, a frontend
framework primarily used with JavaScript, means that the developed GWA will use JavaScript as the
programming language of choice. Another example is that choosing Laravel, a PHP-based backend
framework, means that the developed GWA will use PHP as the programming language.

It is important to remind that when users chose the combination of frameworks, the potential
dependency-related problems mentioned in Requirement #5.4.2.2 might still arise. There is no preferred

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

71

sequence for the order on choosing the FrontendFramework or BackendFramework profile first. Users are
suggested to consider the framework dependency wisely.

5.4.2.4. PIM Attribute and Operation Mapping

Requirement #5.4.2.4
All PIM attributes and operations from the used class stereotypes shall be mapped into the stereotypes of the selected PSM-
Profiles.

Resource: PIM-JSON (from JSON conversion), PIM-Profiles in all formats (provided), PSM-Profiles in all formats
(provided); PIM-to-PSM transformation script (provided); Execute: Automatic

The next consideration is to ensure that all attributes and operations defined within the PIM must be
mapped to corresponding elements in the PSM. This requirement ensures that the model transformations
do not allow any loss of information. The attributes and operations from a single PIM class may be
mapped to separate instance of PSM classes. Figure 5.31 shows an example of a single VectorDataset class
stereotype which attributes and operations contribute to two separate PSM class stereotypes in the
transformation.

Figure 5. 31 Example of PIM attribute mapping

5.4.2.5. PIM Association Mapping

Requirement #5.4.2.5
PIM Associations shall be mapped into PSM associations with same or different name.

Resource: PIM-JSON (from JSON conversion), PIM-Profiles in all formats (provided), PSM-Profiles in all formats
(provided); PIM-to-PSM transformation script (provided); Execute: Automatic

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

72

Alongside of PIM classes, associations are also required to be mapped within the PSM. While the specific
semantics might differ between PIM and PSM, the core purpose of which MVC layers are being
associated with should be preserved. Figure 5.32 shows an example of straightforward association
transformation of visuallink which associate chart component and map component in this case.

Figure 5. 32 Example of association mapping

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

73

5.4.2.6. PSM Classes’ Default Values

Requirement #5.4.2.6
PSM attributes and operations may be created without PIM direct counterpart. All default value of the attributes and
operation parameters in the PSM-JSON without their PIM element counterpart are to be filled with empty strings in the
resulted file. Users shall fill in the empty string with relevant information by opening the file.

Resource: PSM-JSON (result of transformation); Execute: Manual by User

The leading condition to the PIM element mapping to PSM is that the Platform Specific Model (PSM)
may not directly mirror the structure of the Platform Independent Model (PIM) with one-to-one class and
element correspondences. This means that during the transformation of PSM class, some of the PSM
classes’ attributes and operations may not have default value in the PSM-JSON.

The empty default values become relevant in the end of the PIM transformation. After the resulted PSM-
JSON file is generated from the transformation, users shall check the file and fill in all empty default
values. Although keeping the default value empty will not cause the PSM-to-code transformation to fail,
empty values might cause some parts of the transformation scripts to not run properly or return
incomplete code. Figure 5.33 shows how PIM class transformations may leave PSM attributes and
operations untouched, while Figure 5.34 shows an example of several default values in PSM-JSON of
PostgreSQL class are filled with empty string after the transformation.

Figure 5. 33 Example of PSM elements being present without PIM counterpart.

Figure 5.33 above also showcases another interpretation of PSM elements that have no PIM counterpart
in the transformation. In that figure, the PostGIS class are present in the transformation despite having no
relationship with any PIM elements. This type of class and association instantiations are possible
depending on the specification of selected platforms and technologies.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

74

Figure 5. 34 Example of empty string in PSM class

For example, the PostGIS class instantiation in the case portraited in the Figure 5.34 is plausible as
PostGIS is an extension of PostgreSQL which is derived from PIM elements. The PostGIS class is
generated without any condition during the PIM transformation except on the sole fact that PostgreSQL
required PostGIS to handle geospatial data. The interpretations of the Requirement 008 like explained
above require the user’s understanding of the selected platforms and technologies.

5.4.3. Model Transformation Script

This section explains about how the transformation takes place using the prepared transformation script
developed using JavaScript code in node.js environment. After the users convert their designed PIM into
JSON schema, they are directed to integrate their PIM-JSON file into the transformation scripts to
perform the transformations. The following subsections explains what the transformation scripts do in the
transformation. This section covered in the Figure 5.35 in the research flowchart, where the figure shows
the parts of research flowchart that are relevant to this section.

Several requirements were developed to help users complete the PIM-to-PSM model transformation script
development according to the proposed approach. Following the requirements below in sequence allows
users to create a PIM-to-PSM model transformation script development that can execute the model
transformation and generate PSM. Figure 5.35 shows the overview of the requirements used for PIM
instantiation.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

75

Figure 5. 35 Overview of requirements for Model Transformation Script Development

5.4.3.1. PSM Stereotype Transformation as JavaScript Classes

Requirement #5.4.3.1
Each of PSM stereotypes used in the transformation shall have a JavaScript class that contains relevant information to its
attribute, operation, and association mappings and instantiation.

Resource: PSM-JSON (from transformation), PIM-Profiles in all formats (provided), PSM-Profiles in all formats
(provided); PIM-to-PSM transformation script (provided); Execute: Automatic

The transformation scripts handle all possible PIM stereotype transformations into the PSM stereotypes
contained in the selected profiles. JavaScript classes were used to handle the mapping and instantiation of
each PSM stereotypes. The JavaScript classes contain information such as the JSON schema of the PSM
stereotype and possible associations for the PSM stereotype. The JavaScript classes also handle the logic of
how the PSM stereotype attributes, operations, and associations are mapped based on information come
from the relevant PIM. Figure 5.28 shows the JavaScript class of the PostgreSQLDatabase PSM
stereotype as example.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

76

Figure 5. 36 Example of JavaScript class of PSM stereotype

5.4.3.2. PSM Class Instantiation from Stereotype

Requirement #5.4.3.2
The instantiation of PSM class shall be performed based on whether the PIM classes from which the information are mapped
to that PSM class were used.

Resource: PSM-JSON (from transformation), PIM-Profiles in all formats (provided), PSM-Profiles in all formats
(provided); PIM-to-PSM transformation script (provided); Execute: Automatic

Based on the developed JavaScript class, the PSM class were instantiated. The instantiation is based on
whether the PIM stereotypes from which information are mapped to the PSM class exist in the user-
provided PIM-JSON file. Figure 5.37 shows the example of the instantiation of PSM classes of
DataModel and DataHandler stereotypes based on whether PIM VectorDataset exists in the PIM-JSON
file.

Figure 5. 37 Example of how PSM classes are instantiated based on PIM stereotype.

5.4.3.3. Conditional Mapping

Requirement #5.4.3.3
The instantiation of PSM class shall be performed based on whether the PIM classes from which the information are mapped
to that PSM class were used. Following the instantiation of PSM class, transformation mapping of related PIM elements
into the PSM elements.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

77

Resource: PSM-JSON (from transformation), PIM-Profiles in all formats (provided), PSM-Profiles in all formats
(provided); PIM-to-PSM transformation script (provided); Execute: Automatic

In addition to the instantiation of the PSM class, the information mapping may also be performed
between the used PIM stereotypes in PIM-JSON file and the instantiated PSM class based on other
mapped conditions. As previously elaborated in the Transformation Mapping section, each information
contained in the PIM class can contribute to the instantiations of attributes, operations, and associations
of the relevant PSM classes, as well as to the instantiations of a new PSM class. This requirement
commonly used to transform mapped associations between the PIM class and the related PSM class,
although it may not be only limited to association mapping. Figure 5.38 shows an example of this
condition where the offer association from PIM-JSON may transformed into the contains association in
the relevant PostgreSQLDatabase class as well as instantiate a new PostGIS class along with its
associations.

Figure 5. 38 Example of mapping conditions

5.5. PSM to Code Transformation Rules
This section explains about how to create a model transformation of PSM into the computer code of
GWA. This step was performed with reproducibility in mind. The most suitable target users to reproduce
this step are User Type #2: The Developers. By knowing how to perform the code generation, users can
reproduce the step to transform their PSM into the computer code of their selected technology. The rest
of this section elaborates on all steps and considerations in developing the model transformation.

5.5.1. Transformation Mapping

This section explains about how the transformed PSM-JSON transforms into the computer code of
determined programming language. This is the second model transformation in the MDA implementation
in this research. After users performed PIM-to-PSM transformation and filled in the default values in the
resulted PSM-JSON file, the PSM-JSON file is brought to the PSM-to-code transformation script as
input. The elements of PSM stereotypes were mapped into the relevant computer code. Figure 5.39 shows
the parts of research flowchart that are relevant to this section.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

78

Figure 5. 39 Part of Research Flowchart that are related to PIM Instantiation

Several requirements were developed to help users complete the PSM transformation mapping according
to the proposed approach. Following the requirements below in sequence allows users to map PSM
elements into source code file. Figure 5.40 shows the overview of the requirements used for PSM
transformation mapping.

Figure 5. 40 Overview of requirements for PSM transformation mapping

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

79

For the target of the transformation, the directory structure to store the source code files were proposed.
The principle of “convention over configuration” were applied in the proposal, meaning that the decided
directory structure and many of the terminologies used within it follow the common conventions in
software development processes. This principle helped in simplify the transformation process by deciding
the conventional directory structure instead of coming up with another explicit terminologies. The
examples of those conventions are as follows:

1. The folder names ‘model’, ‘view’, and ‘controller’ are common folder names used in MVC-based
projects.

2. The file names ‘index.html’ for default entry point for web application and ‘server.js’ for main
server file in Node.js are commonly used terminology in web development project.

Figure 5.41 shows the proposed directory and the structures for the transformation mapping. The
following subsections explains the considerations in this model transformation step.

Figure 5. 41 The proposed directory structure of the GWA source code files

5.5.1.1. PSM Attribute and Operation Mapping

Requirement #5.5.1.1
All PSM attributes and operations from the used class stereotypes shall be mapped into the computer code of the relevant
source code files.

Resource: PSM-JSON (from transformation), PSM-Profiles in all formats (provided), Source code template (provided);
PSM-to-code transformation script (provided); Execute: Automatic

Like the previously explained PIM-to-PSM transformation, in this PSM-to-code transformation, the
elements of PSM class stereotypes were mapped into computer code based on its relevant source code
files. Based on the transformation mapping process during the previous PIM-to-PSM transformation,
PSM classes in the resulted PSM-JSON file may already came with inherited attributes and operations

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

80

from their parent classes. This situation makes transformation mapping in this step easier as there is less
responsibility for the users to check whether inherited properties were used properly. Nevertheless, user
discretion is still suggested.

Figure 5.42 shows the example of PostgreSQLDatabase PSM class stereotype where its attributes and
operations were mapped into an instance of db.js containing source code for creating a pool connection to
PostgreSQL.

Figure 5. 42 Example of PSM class being mapped into computer code

5.5.1.2. PSM Association Mapping

Requirement #5.5.1.2
PSM Associations shall be mapped into relevant source code that indicate a function is used in another function.

Resource: PSM-JSON (from transformation), PSM-Profiles in all formats (provided), Source code template (provided);
PSM-to-code transformation script (provided); Execute: Automatic

Like the previously explained PIM-to-PSM transformation, in this PSM-to-code transformation, the
elements of PSM association stereotypes were mapped into computer code based on its relevant source
code files. The association stereotypes used in the PSM-JSON shall be mapped into a part of the source
code that indicate that the PSM classes that use the association are related to each other in a certain way.
This relationship might be that a function is a part of another function, or the result of a function is used
in another function. The mapping condition is determined by the user during the development of the
transformation rules. Figure 5.43 shows the example of server.js source code generation that is the result
of association mapping between several PSM classes.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

81

Figure 5. 43 Example of PSM association mapping into computer code

5.5.2. Model Transformation Script

This section explains about how the PSM-to-code transformation is to be performed using JavaScript
code executed in node.js environment. After the users performed PIM-to-PSM transformation and filled
in the empty default values in the resulted PSM-JSON file, the users are directed into the PSM-to-code
transformation script. The following subsections explains what the transformation scripts do in the
transformation. This section covered in the Figure 5.39 in the research flowchart, where the figure shows
the parts of research flowchart that are relevant to this section.

Several requirements were developed to help users complete the PSM-to-code model transformation
script development according to the proposed approach. Following the requirements below in sequence
allows users to create a PSM-to-code model transformation script development that can execute the
model transformation and generate the source code of the GWA. Figure 5.44 shows the overview of the
requirements used for PIM instantiation.

Figure 5. 44 Overview of requirements for PSM-to-code model transformation script development.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

82

5.5.2.1. JavaScript File-based Classes

Requirement #5.5.2.1
Each of GWA source code files used in the transformation shall have a class that contains relevant information to its
attribute, operation, and association mappings and instantiation.

Resource: PSM-JSON (from transformation), PSM-Profiles in all formats (provided), Source code template (provided);
PSM-to-code transformation script (provided); Execute: Automatic

The PSM-to-code transformation scripts handle all possible PSM stereotype transformations into the
computer code of the selected technologies and programming language. Similar to the PIM-to-PSM
transformation step, JavaScript classes were used to handle the mapping and instantiation of each source
code files and their contents. Figure 5.45 shows the example of Datajs JavaScript class that handles how
data-related source code files are created.

Figure 5. 45 Example of JavaScript class to handle source code mapping from PSM classes.

5.5.2.2. Code Template Generation

Requirement #5.5.2.2

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

83

The instantiation of PSM class shall be performed based on whether the PIM classes from which the information are mapped
to that PSM class were used.

Resource: PSM-JSON (from transformation), PSM-Profiles in all formats (provided), Source code template (provided);
PSM-to-code transformation script (provided); Execute: Automatic

Within the JavaScript classes, the template of the script of each file were provided. The code templates
come with designated template literals which fill in information that come from the mapped PSM-JSON
information. Separation of the code into several variables might be performed in case parts of the code
should be instantiated in different conditions. Figure 5.46 shows the example of Dbjs JavaScript class’
mapCode_datastore method that contains the script for a db.js file for connecting the GWA with
PostgreSQL database via pool connection.

This code template generation requirement also covers the conditional mapping in this model
transformation. Figure 5.47 shows the example of how the Dbjs JavaScript class is instantiated depending
on whether the PostgreSQLDatabase PSM class exists in the provided PSM-JSON file.

Figure 5. 46 Example of code template

Figure 5. 47 Example of how source code is instantiated into source code file based on PSM information

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

84

6. MDA IMPLEMENTATION

This chapter uses the developed UML profiles and model transformation rules from previous chapter into
an MDA implementation. The implementation aims to showcase the value of the developed approach in
REST-based GWA development. First, a GWA example was introduced as the aimed result of the
implementation. Then, the implementation used the developed UML profiles to instantiate a PIM which
then brought into model transformations until the computer code of the GWA was generated. All steps in
this chapter were taken and documented with their reproducibility in mind. The appropriate user types
were mentioned at the start of each section.

A REST-based GWA example was developed to be the aim for the MDA implementation. Figure 6.1
shows the screenshot of the GWA.

Figure 6. 1 Mock-up of the GWA example

Below are the functionalities that the GWA provides:

1. The GWA shows bus stops within the Dutch city of Hengelo, Enschede, and Haaksbergen as
points. The data is downloaded from datashop24.com (Datashop24.com, n.d.) and is provided
locally on PostgreSQL database.

2. The GWA shows the three cities’ boundaries as polygons. The data is provided as WFS from the
open-access PDOK data portal (Home - PDOK, n.d.)

3. The GWA uses OpenStreetMap map tile layer as its only basemap.
4. The bus stop points show a pop-up text of the city name the point falls into when clicked.
5. The city boundary polygons show a pop-up text of the city name it represents when clicked.
6. The view of the GWA shows all the data during initialization and can be zoomed and panned by

the users.
7. The chart component represents the total number of bus stops in the GWA.
8. The chart shows the total number of bus stops of each city when the mouse hovers each pie of

the chart.
9. When a pie of the chart is clicked, the GWA filters the bus stop and city boundary data on the

map to only show the data of and within the selected city.
10. The chart provides a button to reset the city selection to reset the GWA to show all data.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

85

Below are the technical requirements of the developed GWA example:

1. It uses React-Leaflet as frontend framework. It is a wrapper that binds React frontend framework
with Leaflet as interactive map visualization library. This technology is chosen for the GWA
example because React is the most popular frontend framework according to trend survey by
Stack Overflow, the popular Q&A forum for developers (Stack Overflow Trends, 2023); and
Leaflet is the leading contender of open-source JavaScript library for interactive maps.

2. It uses Material UI for creating the pie chart component. It is a free React UI component
provider that comprise of many types of UI components, including charts. This technology is
chosen for the GWA example because during the research was conducted, Material UI is one of
the most popular UI component libraries with 1.3 million weekly downloads according to the
NPM website, the package manager for Node.js.

3. It uses Express as backend framework in Node.js. Express is a Node.js based web application
framework that is popular due to its lightweight size and flexibility for developing web
applications and mobile applications in Node.js. This technology is chosen for the GWA example
because it has been a popular choice for Node.js developers with its full capabilities of
component modification.

4. It uses Axios as HTTP client library. This technology is chosen for the GWA example because it
has been a popular choice amongst developers for its simplified way to integrate HTTP protocol
into applications.

5. It uses PostgreSQL database along with PostGIS extension for handling geospatial data, where
the bus stop data of the entire Netherlands is stored. PostgreSQL is chosen for the GWA
example because it is the most popular choice for database according to Stack Overflow
Developer Survey in 2023 (Stack Overflow, 2023), indicating it as a very relevant technology for
implementation.

REST architectural style was adhered by the GWA example during its development. Several points that
indicate this compliance are as follows:

1. The GWA uses unique URLs for identifying resources. For example, the local bus stop data from
PostgreSQL was designed in a way so that it is accessed through /busstop route.

2. The GWA uses proper HTTP protocol that allows stateless principle, meaning that each request
from the client contains all information the server needs to fulfil that request without storing any
state information on the server.

3. The GWA uses JSON as the only resource representations for data exchange between client and
server.

OGC API Standards and the overlaying OpenAPI Specifications were also adhered by the GWA example
during its development. Several points that indicate these compliances are as follows:

1. The GWA uses proper REST architectural style principles, including standardized HTTP
protocol and the use of unique URLs, as explained in previous paragraph.

2. The GWA maintains geospatial data models by several ways including using GEOJSON for
representing features in the GWA as well as ensuring all geospatial data conforms to one target
CRS.

Using the GWA example as the aim, the MDA implementation was performed. The following sections
explain how the implementation used the developed UML profiles and followed the developed approach.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

86

6.1. PIM Instantiation
This section demonstrate how PIM instantiation step is performed using the developed transformation
rules from previous chapter. This step was performed with reproducibility in mind. The most suitable
target users to perform this step are:

 User Type #1: The Designers.

 User Type #2: The Developers.

Figure 6.2 shows the designed PIM for developing the GWA example using stereotypes contained in the
developed PIM-Profiles. The requirements were adhered during this PIM design step, elaborated as
follows:

Requirement #5.3.1

Each class in the designed PIM used the most specific child stereotypes of each PIM-Profiles, according
to the. For example, LocalDataStore class stereotype was used to instantiate BusStopDataStore instead of
its more generic parent class stereotype DataStore.

Requirement #5.3.2

The PIM class’s naming conventions were also followed.

Requirement #5.3.3

When a stereotype was used, all of its default values were filled in according to its specified attribute type.
For example, the BusStopDataStore class in the PIM has default values filled in for datastorename and
ipAddress attributes.

Requirement #5.3.4.1 and #5.3.4.2

Several enumerations were created for filling the attribute type of a PIM class. For example, the BaseMap
class uses BaseMapProvider enumeration’s string-typed literal on its provider attribute.

Requirement #5.3.5

GeometryType enumeration was used in the designed PIM as attribute type of CityBoundary and BusStop
classes’ geometry attributes.

Requirement #5.3.6 and #5.3.7

All associations used solid lines with association names indicating the reading direction of the relationship.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

87

Figure 6. 2 The designed PIM diagram in the MDA implementation

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

88

6.2. PIM to PSM Transformation
This section demonstrate how the designed PIM diagram was transformed into PSM using the developed
model transformation rules. This step was performed with reproducibility in mind. The most suitable
target users to perform this step are:

 User Type #1: The Designers.

 User Type #2: The Developers.

For this model transformation, the developed transformation rules were followed:

 Requirement #5.4.1.1
The PIM diagram was converted into PIM-JSON using the provided PIM-Profiles JSON file. In
this implementation, only the pimModelCore.json was used to convert BusStopDataStore and
BusStop PIM classes into its JSON schema using respectively LocalDataStore and Dataset JSON
schema template.

 Requirement #5.4.1.2 and #5.4.1.3
While most of the JSON schema follows the UML2JSON best practice document, the JSON
pointers for indicating each class’s stereotypes and operations followed the provided external
JSON schemas.

 Requirement #5.4.1.4
The association names were converted into association roles according to the reading direction.
For example, the offer association becomes offers in the BusStopDataStore class and isOfferedBy in
the BusStop class.

 Requirement #5.4.2.1
The model transformation considered all attributes and operations including the inherited ones.
For example, the LocalDataStore class instance BusStopDataStore inherited datastorename
attribute which originally came from the parent class DataStore.

 Requirement #5.4.2.2
Based on the selected stereotypes, several technology-dependent PSM-Profiles became
unavailable to be picked, which then limited what PSM-Profiles to be used in the transformation.
For example, the LocalDataStore class stereotype’s relatedPsmProfiles attribute only allowed
PostgreSQL, MongoDB, SQLite, MySQL, and MariaDB for the data store technology, which
made options such as GoogleBigQuery and AmazonRedShift became unavailable. In this
implementation, PostgreSQL was chosen.

 Requirement #5.4.2.3
In this implementation, Express was chosen as the backend framework for the GWA. This
decision determined that JavaScript became the programming language for the GWA.

 Requirement #5.4.2.4, #5.4.2.5, #5.4.3.1, #5.4.3.2, and #5.4.3.3
A transformation script that mapped how each PIM attributes, operations, and associations
transform into PSM class instances were created. In this implementation, an example of the
transformation mapping can be seen in Figure 5.24 in earlier chapter.

 Requirement #5.4.2.6
After the model transformation was performed and resulted the PSM-JSON file using the
developed transformation script based on the previous Requirements, the resulted PSM-JSON file
was opened manually to fill in the empty default values. For example, the resulted Pool PSM class

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

89

had its user, database, password, and port attributes emptied during the model transformation,
which were then manually filled.

The result of this model transformation was the PSM-JSON file of a part of a complete PSM diagram
shown in Figure 6.3. In this implementation, only BusStopData, Pool, PostGIS PSM classes and their
associations that connect them to each other were part of this model transformation result. In addition,
the FetchBusStop PSM class were also part of this model transformation result, but without any of its
relevant associations.

6.3. PSM to Code Transformation
This section demonstrate how the designed PIM diagram was transformed into PSM using the developed
model transformation rules. This step was performed with reproducibility in mind. The most suitable
target users to perform this step are:

 User Type #1: The Designers.

 User Type #2: The Developers.

For this model transformation, the developed transformation rules were followed:

 Requirement #5.5.1.1, #5.5.2.1, and #5.5.2.2
A transformation script that mapped how each PSM attributes, operations, and associations
transform into source codes that were contained inside instances of source code files based on the
proposed directory structure were created. In this implementation, an example of the
transformation mapping can be seen in Figure 5.32 in earlier chapter.

 Requirement #5.5.1.2
PSM associations were considered in generating the computer code of the GWA. In this
implementation, an example of how associations are mapped into computer code can be seen in
Figure 5.33 in earlier chapter.

The result of this model transformation was the computer code of a part of a complete GWA source
code. In this implementation, only the db.js and buststopdata.js source code files were included in this
model transformation results.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

90

Figure 6. 3 The PSM in diagram format, resulted from the PIM-to-PSM transformation.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

91

6.4. The Resulting GWA Source Code
This section compares between the resulted computer code from the MDA model transformations in this
implementation and the source code of the GWA example. The result of the transformation and parts of
the GWA source code were compared. The most suitable target users to perform this step are:

 User Type #1: The Designers.

 User Type #2: The Developers.

 User Type #3: The End Users.

In the Figure 6.4, the resulted db.js file was reviewed. It is shown that the the transformation result
replicated the structure of the GWA example code except the fact that the example code used dotenv
environment variable to store the access-related information. When the use of dotenv is deemed irrelevant
to the implementation, the comparation shows that the model transformations successfully mapped
information from PIM and the filled-in information during the transition between the transformations
into the computer code.

In the Figure 6.5, the resulted busstopdata.js file was reviewed. It is shown that the transformation result
were equivalent to the variables and if condition inside the try-catch statements. It is shown that the
transformation result successfully mapped all information required to create a complete SQL query in the
query variable. In addition, the transformed result left several parts of the if condition empty due to lack of
information. This was because the information were mapped to come from another PSM classes which
were not part of this implementation. This showcased how lack of information might caused incomplete
code.

Figure 6. 4 Comparation of the resulted db.js file with GWA example code

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

92

Figure 6. 5 Comparation of the resulted busstopdata.js file with GWA example code

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

93

7. RESULT EVALUATION

This chapter evaluated the entirety of the proposed model-driven approach, including the developed UML
profiles and the developed MDA-based development approach, using SWOT framework.

7.1. Strengths of The Proposed Approach

7.1.1. Simplified Development Approach for Non-Developer Users
The main value proposition of the proposed approach lies in the simplification development process that
is friendly for non-developer users, specifically GIS and RS practitioners. The approach leverages pre-
defined templates that users can customize to suit their use cases. For example, the PIM profiles serves as
blueprints for The Designer users to build their own PIM diagram, which then users can choose the PSM
profiles for transforming their PIM diagram into the selected technologies., which then leads to the
generation of the computer code. There are only handful of steps the users have to go through to see the
source code of their own GWA.

The developed approach ensures that it is convenient for any types of users to create their own GWA
without the need of learning the traditional learning curve in developing a web application. The proposed
approach uses standardized templates and predefined model transformations which ensure faster time and
less effort in development and result in consistent GWA source code with less risk of errors as long as the
users are within the documented directions and step like elaborated in this research.

7.1.2. Starting Point for Continuous Development by Developer Users
This research serves as a first stepping stone for the proposed development approach. The initial
implementation offered a limited scope of development example, but it proved that the approach works
to achieve a proper GWA development. The documented steps act as guidelines that can be expanded
upon by developed users. For example, the developed UML stereotypes and profiles in this research can
be tailored to better cater specific use case such as to create real-time geospatial dashboard for sensor data.
This expansion possibility is beneficial because developers do not have to develop everything from zero
and start with the documented approach from this research which reduces time and effort in
development.

7.1.3. Structured Documentation of the Proposed Approach
The structured nature of the proposed approach makes it easy to follow even for those who might not
have experience in web application development. The documented steps and processes allow users to
systematically progress through the proposed development approach, from the PIM diagram building
phase until the MDA transformations to turn the PIM into PSM and ultimately the computer code. For
example, this research broke down the PIM instantiation step into 7 detailed requirements that users may
follow to build their own PIM instance. The provided documentation promotes consistency and
reusability of the proposed approach in developing many use cases of GWA.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

94

7.2. Weaknesses of The Proposed Approach

7.2.1. Initial Complexity
It was a complex task to ensure the proposed approach is simple to be implemented by the targeted users.
The development of the proposed approach involved rigorous planning and optimization tasks that
consume time and require many trials and errors to refine. For example, the path to develop the first UML
profiles for building PIM turned out to be a long steps of domain modelling and capturing the functional
requirements for REST-based GWA, which then the UML profiles were subjected to modifications and
refinements during the development of steps to perform PIM design. Even further refinements of the
PIM profiles were performed when PIM-to-PSM transformations were developed. This complexity in
developing the approach might lead to significant development cost and delays in project timelines,
especially for developers who might intend to extend this proposed approach to cater their own specific
use cases or domain.

7.2.2. Limited Flexibility
When the proposed approach only provides a limited number of technologies, it restricts the range of
possible GWAs that can be developed. For example, the current PSM profile for mapping library indicates
that there are only Leaflet and OpenLayers that users can choose from despite there are many other
mapping libraries such as Mapbox GL JS and CesiumJS.

This flexibility limitation also covers the limited capabilities of the UML profiles in designing the PIM. If
the stereotypes in the PIM profiles are too rigid or limited, they might not allow users to implement a
specific GWA use case or functionality. For example, the attributeFilter operation contained in the
VectorDataset class stereotype within the PIM profile allows datasets to be queried, but there has not
been any class attribute or operations that indicate streaming data transformation is possible, which limits
the GWA developed using the current version of the proposed approach to have that functionality.

7.2.3. Dependency and complexity of web application development frameworks and technologies
Developing web applications involves a myriad of technologies and frameworks, each with its own
strengths, paradigms, and compatibility requirements. This dependency and complexity might pose
significant challenges for the proposed approach when integrating various technologies in the GWA. One
challenge is to ensure that different technologies work together seamlessly. For example, old frameworks
like IBM CICS that based on COBOL, a language developed in the 1960s for mainframe computing, with
modern front-end technologies like React or Axios can present compatibility issues.

7.3. Opportunities of The Proposed Approach

7.3.1. Adoption in GIS and RS community
GIS and RS communities are comprised of professionals and researchers who might want to showcase
their spatial work with a web application. The adoption of the proposed development approach within the
GIS and RS communities can become a significant help to achieve that goal. The proposed approach
provides simplified steps for GIS and RS users to develop GWA for their projects and data, which allows
the users to reach broader audience and increase the visibility of their work. The documented nature of
the proposed approach also promotes consistency and quality in the GWA across the community which
makes it easier for practitioners to collaborate.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

95

7.3.2. Expansion of Use Cases
The proposed development approach can be extended to support a wide range of GWA development use
cases across many domains like urban planning, earth science, environmental monitoring, and more. By
catering to various domains, the approach may attract larger user base. This opportunity may also promote
innovation and improvisation for the developed approach when it is being tested to demonstrate its
capability to handle various requirements in those different domains.

7.3.3. Educational use
There is a significant opportunity for the proposed approach to be served as an educational tool for non-
developer GIS and RS users in developing GWA with ease for their projects. The proposed approach
breaks down web development tasks into manageable high-level design tasks which makes development
process accessible for the non-developer users. Detailed documentation of the proposed approach may
become a valuable educational resource on implementing model-driven development for their own use
cases.

7.4. Threats for The Proposed Approach

7.4.1. Technological Obsolescence
As new tools and frameworks in web application development are being introduced, they open
opportunities and innovation in GWA development. However, that also means that there is a challenge to
keep up with the advancements to avoid obsolescence of the proposed approach. For example, some of
the provided technologies in the PSM might have recent updates that change the syntax or replace a
method with another new one. There may also situations where a technology in the provided PSM is not
supported anymore. These kinds of changes have to be considered in the proposed approach.

7.4.2. Introducing New Learning Curve
While the proposed MDA-based GWA development approach aims to simplify the process, it does not
eliminate the learning curve entirely. Instead, it shifts the focus from the traditional web development
skills to understanding and utilizing new tools and concepts such as how to use the proposed UML
profiles to build PIM, how to read and use the provided PIM-Profiles JSON file, and how to understand
the GWA code resulted from all model transformations in the proposed approach.

7.4.3. Adoption resistance
Although the proposed development approach aims to simplify the process for GIS/RS practitioners,
these users must still invest time in learning the basics of several concepts being used such as UML, MDA,
and JSON. Despite efforts to make adoption easier, some users may find this involves steep learning
curve.

Also, the proposed approach ultimately becomes one of many web application development techniques
for users to choose from. For example, model-driven techniques like WebML and UWE exist, and they
offer distinct benefits. Outside the domain of model-driven development, techniques such as component-
driven development like Atomic Design offer different approaches that may appeal to users looking for a
more granular approach to web application development.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

96

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

97

8. CONCLUSION

This chapter concludes the research by summarizing all findings and discussions to answer all the research
questions.

8.1. Research Outcome

The following subsections answer the sub-questions based on the research sub-objectives.

8.1.1. Conceptualizing REST-based GWA Functional Requirements

What are the common functions found from the GWA observations?

This question has been answered in length in Section 4.1 and 4.2. Based on 6 GWA observations
performed in the Domain Modelling step, 21 common functionalities of GWAs were found.

1. Search for Location
2. Perform Processes
3. Open Other Resources
4. Authentication
5. Attribution
6. Get Other Layers
7. Initialization
8. Filter Data to Show
9. Show User’s Current Location
10. Scale Control
11. Scale Bar

12. Get Info About Selected Location
13. Let User Add Data
14. Share Link
15. Download Data
16. Add Legend
17. Custom Right-Click Interaction
18. Use Different Units
19. Change Style
20. Interact With Currently Shown View
21. Move or Orient Current View

What are the observed functional requirements from the selected GWA functionalities?

This question has been answered and discussed in length in Section 4.3. A natural language-based
descriptions of the observed functional requirements of several representative GWA functionalities
(search for location, distance measurement, and select basemap layer), were elaborated.

The “search for location” functionality starts with the requirement that the users can enter and submit two
types of location-based queries into a search bar in the client side. After the search input was submitted to
the server, the server retrieved data from the data source and performed several queries and operations to
the data. Lastly, the processed data were sent back to the client machine to update the presented interface
with the search result.

The “distance measurement” functionality starts with an initiation by the user to start a measurement by
clicking a button or context menu. After the initiation and relevant data input was received by the server,
the creation of “job” to represent the measurement operation was conducted, which then accompanied
the status of the measurement task until it was finished. The results of the measurement were sent back to
client side to update the presented interface with the measurement result.

The “select basemap layer” functionality starts with the initialization of the GWA where a dedicated user
interface component of the basemap options are presented. This initialization phase as well as the moment
the user interacts with the options trigger a data exchange to the server where the required data or

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

98

metadata of the basemap layers were retrieved from the data source. The data were then sent back to the
client side to update the presented interface.

The common concepts found in the three observations were the use of HTTP as the data exchange
protocol and JSON as the data exchange format between client (frontend) and server (backend).

What are the potential class, attribute, operation, and relationship semantics found from the
functional requirements?

This question has been answered and discussed in length in Section 4.4. Based on the noun/verb analysis,
8 potential UML classes were defined from the functional requirements. Potential attributes, operations,
and associations were also extracted from the functional requirements which then assigned to the relevant
classes. Below is the list of the potential semantics:

1. UserInteraction class

 Attribute: interactionType

 Operation: enter, interact, and initiate

2. Frontend class

 Attribute: interfaceType

 Operation: attach, display, construct, parse, extract, specify, process, update

3. HttpProtocol class

 Attribute: interfaceType

 Operation: attach, display, construct, parse, extract, specify, process, update

4. BackendServer class

 Attribute: -

 Operation: parse, extract, route, construct, create, update, validate

5. Job class

 Attribute: uniqueIdentifier, status

 Operation: handle

6. BackendService class

 Attribute: input, output

 Operation: execute, interact, retrieve

7. DataSource class

 Attribute: -

 Operation: -

8. Data class

 Attribute: -

 Operation: -

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

99

8.1.2. UML Profile Development

What are the proposed UML stereotypes for developing Platform Independent Model (PIM)?

This question has been answered and discussed in length in Section 5.1. The stereotypes for PIM
development were categorized into three separate UML profiles based on MVC separation of concerns.

1. PimModelCore profile for data-related stereotypes.

2. PimViewCore profile for interface-related stereotypes.

3. PimControllerCore profile for data-interface mediatory stereotypes.

Within the PimModelCore, Dataset class stereotype represents the collections of data used in the GWA.
The Dataset class stereotype is inherited by:

1. SpatialDataset class stereotype representing the collections of data that contains spatial property.
This class stereotype is inherited by VectorDataset and RasterDataset class stereotype.

2. NonSpatialDataset class stereotype representing the collections of data that contains no spatial
property.

DataStore class stereotype represents data to be used in the GWA. The DataStore class stereotype is
inherited by:

1. LocalDataStore class stereotype representing data stores that reside on the local machine.

2. CloudDataStore class stereotype representing data store that is in some remote cloud
environment.

DataService class stereotype represents service that provides access to data. The DataService class
stereotype is inherited by:

1. SpatialDataService class stereotype representing data services that provide access to spatial data.
This class stereotype is inherited by RasterTileDataService, VectorTileDataService,
RasterDataService, and VectorDataService class stereotype.

2. NonSpatialDataService class stereotype representing data services that provide access to non-
spatial data.

The PimModelCore has association stereotypes, each with different purpose:

1. Offer

2. Display

3. Process

4. Bind

Within the PimViewCore, UiComponent class stereotype represents the building block for user interface
(UI) components. The UiComponent class stereotype is inherited by:

1. LayerSelection class stereotype representing a UI component that contains the layer options for a
user to choose from.

2. Button class stereotype representing a clickable UI element that triggers an action.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

100

3. SearchBar class stereotype representing a UI component specifically designed for users to enter
search queries.

4. DataVisualization class stereotype representing represents UI components specialized in creating
visual elements that communicate data insights. This class stereotype is inherited by MapDisplay
and ChartDisplay class stereotypes.

UserInteraction class stereotype represents user interaction elements in a GWA. The UserInteraction class
stereotype is inherited by:

 ClickInteraction class stereotype representing the action of clicking an UI component.

The PimViewCore has association stereotypes, each with different purpose:

1. VisualLink

2. Attach

3. Trigger

4. Display

5. Bind

Within the PimControllerCore, DataProcessing class stereotype represents the collections of data used in
the GWA. The Dataset class stereotype is inherited by:

1. SpatialProcessing class stereotype representing processes that operate on spatial data.
2. NonSpatialProcessing class stereotype representing processes that do not involve spatial data.

Both SpatialProcessing and NonSpatialProcessing class stereotypes are inherited by:

1. LocalProcessing class stereotype representing processes that are accessed and handled in the local
machine.

2. CloudProcessing class stereotype representing processes that are accessed and handled within
cloud environment.

The PimControllerCore has association stereotypes, each with different purpose:

1. Trigger

2. Process

What are the proposed UML stereotypes for developing Platform Specific Model (PSM)?

This question has been answered and discussed in length in Section 5.2.

The stereotypes for PSM development were categorized based on the technology. Due to this structure,
PSM stereotypes cannot be pinpointed like how PIM stereotypes were explained above. Three separate
UML packages that act as the highest-level categorization based on the MVC separation of concern.
Inside each MVC category are several UML packages that are based on the specific responsibilities

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

101

How do the proposed UML stereotypes be developed into UML profiles?

This question has been answered and discussed in length in Section 5.1, 5.2, and 5.3.

The PIM stereotypes were categorized into three separate UML profiles based on MVC separation of
concerns.

1. PimModelCore profile for data related stereotypes (Model).

2. PimViewCore profile for interface related stereotypes (View).

3. PimControllerCore profile for data-interface mediatory stereotypes (Controller).

The PSM stereotypes were categorized with more complex mechanism than PIM stereotypes do. First,
there are three separate UML packages that act as the highest-level categorization based on the MVC
separation of concern. Inside each MVC category are several UML packages that are based on the specific
responsibilities:

1. PsmModel package contains DataStore package representing the data storage technologies such
as PostgreSQL, and DataService package representing services that provide data access such as
WMS and WFS.

2. PsmView package contains FrontendFramework representing user interface libraries such as
React, and MappingLibrary package representing web mapping libraries such as Leaflet.

3. PsmController package contains BackendFramework representing web server framework such as
Express.JS, HttpClientLibrary representing HTTP client libraries such as Axios, and
DataProcessing package representing geospatial processing services such as WPS.

8.1.3. Model Transformation Development and MDA Implementation

How do the proposed UML profiles support the development of the Platform Independent Model
(PIM)?

This question has been answered and discussed in length in Section 5.3. The UML profiles for building
PIM are used by users to build a PIM diagram. PIM instantiation requirements were developed to help
users to build a PIM using the proposed approach. The requirements give directions on how users can
build class instantiation using the selected PIM-Profile stereotypes, set a class name, set the attributes and
operations, use enumeration for general use and for the specific GeometryType use, set associations, and
annotate the associations properly.

What is the model transformation rules to transform the PIM to Platform Specific Models (PSM)?

This question has been answered and discussed in length in Section 5.4. After the PIM has been created,
UML to JSON conversion is to be conducted to allow automated model transformation. PIM-to-PSM
transformation rules or requirements were also developed to help users to transform their PIM into PSM
using the proposed approach. The requirements give directions on how to convert UML into JSON, to
map PIM elements into PSM elements, and to use the provided PIM-to-PSM transformation scripts.

What is the model transformation rules to generate the GWA computer code from the PSM?

This question has been answered and discussed in length in Section 5.5. After the PSM has been created
by transforming PIM into specific PSM profiles, the PSM is then transformed into computer code based
on the selected technologies. PSM-to-code transformation rules or requirements were developed to help

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

102

users to transform their PSM into computer code of the technology and frameworks they chose using the
proposed approach. The requirements give directions on how to map PSM elements into the source code,
and to use the provided PSM-to-code transformation scripts.

8.1.4. Result Evaluation

What are the strengths of the proposed approach and its resulting GWA?

This question has been answered and discussed in length in Section 7.1. The proposed approach has
several strengths to bring upon:

1. Simplified Development Approach for Non-Developer Users

2. Starting Point for Continuous Development by Developer Users

3. Structured Documentation of the Proposed Approach

What are the weaknesses and limitations of the proposed approach and its resulting GWA?

This question has been answered and discussed in length in Section 7.2. The proposed approach has
several weaknesses to consider:

1. Initial Complexity
2. Limited Flexibility
3. Dependency and complexity of web application development frameworks and technologies

What are the future opportunities and recommendations for the proposed approach?

This question has been answered and discussed in length in Section 7.3. The proposed approach has
several future opportunities:

1. Adoption in GIS and RS community
2. Expansion of Use Cases
3. Educational use

What are the future challenges and threats for the proposed approach?

This question has been answered and discussed in length in Section 7.4. The proposed approach has
several threats to consider:

1. Technological Obsolescence
2. Introducing New Learning Curve
3. Adoption resistance

8.2. Research Implication
The proposed development approach includes the developed UML profiles and the documented MDA-
based development for generating REST-based GWA. This research result represents a step into a
significant advancement which may provide benefits in GIS and RS domain.

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

103

The proposed development approach allows non-developer users, particularly those in the GIS and RS
field, to design and build their own GWAs. They can focus on the high-level design aspects of their
applications without the need of handling the coding complexities and the need of going through the
traditional learning curve of web application development.

Additionally, the documented nature of the proposed development approach is also valuable for
developers. It serves as a foundational framework that developers can build upon, extending its
capabilities to support a broader range of technology stacks. As developers continue to enhance this
proposed approach, it opens new possibilities for the types of GWAs that can be developed.

8.3. Research Limitation
The biggest limitation of the research is the time restriction that did not allow for achieving a full
transformation of the properly running GWA in this project. The author also acknowledged his limit of
knowledge and experience in this field which did not manage to execute a full-fledged MDA
implementation with very few supervisions.

Another limitation is the few numbers of GWA observations performed during the domain modelling
step. Adding more GWAs for observations add more validity to the collected and summarized
functionalities that will ultimately result in the development of UML profiles. Another limitation is the few
options for the platform-specific PSM profiles to be selected only allow a limited perspective on how the
model transformations, the mapping of PIM elements into platform-specific PSM elements, and the
mapping of PSM elements into specific computer code should be performed. When more use cases of
how the MDA model transformations and the mapping of elements are considered, the proposed
approach may be more mature.

Lastly, the author concluded that no matter how long time and how much considerations have been
poured into building a UML class diagram or other class-based diagrams like UML profile of stereotypes,
there will always be a better result to be achieved. While the author tried to do his best in developing the
UML profiles and the proposed development approach based on the profiles within the provided time
constraints, the author also agreed that in the hands of a true developer with experience in UML, this
research may give better result.

8.4. Future Work and Recommendations
Several points can be suggested for future works that are based on this research. First, it is suggested to
add more GWA for observation in the domain modelling phase for more representative collection of
functionalities that can be ultimately modelled as UML profiles. In addition to it, adding more PSM
profiles of technologies is also suggested for increasing the available options of GWA that can be
developed using the proposed approach. This suggestion also leads to better UML profiles that can be
developed.

It is also suggested for developing a more robust model transformation from PIM profile to PSM of
choice. Currently in this research, the model transformations, and the mapping of elements between
models were developed only within the limited perspective of what PSM profile options are available. If
more PSM profile options are available, it can be included in the consideration of how PIM elements
should be mapped and transformed.

Another suggestion for future works is the consideration of dependency between technologies. In the
current research, the mechanism on how users can choose the PSM profile of technology to use is based

A MODEL-DRIVEN APPROACH FOR DEVELOPING REST-BASED GEOSPATIAL WEB APPLICATION USING UML PROFILES

104

on what PIM class stereotypes were chosen. This neglected the possibility that a chosen PSM profile
might influence what next PSM profile that can be chosen.

Lastly, future works should consider the continuous improvement of OGC API standards and the
UML2JSON best practice document. Both are used in the proposed approach and are standards currently
in development status. Improvements in these two standards may lead to significant improvements of the
proposed approach.

105

LIST OF REFERENCES

Ameller, D., Burgués, X., Collell, O., Costal, D., Franch, X., & Papazoglou, M. P. (2015). Development of
service-oriented architectures using model-driven development: A mapping study. Information and
Software Technology, 62(1), 42–66. https://doi.org/10.1016/J.INFSOF.2015.02.006

Barry, C., & Lang, M. (2003). A comparison of ‘traditional’ and multimedia information systems
development practices. Information and Software Technology, 45(4), 217–227.
https://doi.org/10.1016/S0950-5849(02)00207-0

Betari, O., Filali, S., Azzaoui, A., & Boubnad, M. A. (2018). Applying a Model Driven Architecture
Approach: Transforming CIM to PIM Using UML. International Journal of Online and Biomedical
Engineering (IJOE), 14(09), 170–181. https://doi.org/10.3991/IJOE.V14I09.9137

Blanc, N., Cannata, M., Collombin, M., Ertz, O., Giuliani, G., & Ingensand, J. (2022). OGC API State of
Play - A Practical Testbed for The National Spatial Data Infrastructure in Switzerland. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(4/W1-
2022), 59–65. https://doi.org/10.5194/ISPRS-ARCHIVES-XLVIII-4-W1-2022-59-2022

Burgueño, L., Cabot, J., & Gérard, S. (2019). The future of model transformation languages: An open
community discussion. Journal of Object Technology, 18(3), 1–11.
https://doi.org/10.5381/JOT.2019.18.3.A7

Conallen, J. (1999). Building Web applications with UML.

Distante, D., Pedone, P., Rossi, G., & Canfora, G. (2007). Model-driven development of Web applications
with UWA, MVC and JavaServer faces. Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 4607 LNCS, 457–472.
https://doi.org/10.1007/978-3-540-73597-7_38/COVER

Elleuch, N., Khalfallah, A., & Ben Ahmed, S. (2007). Software architecture in model driven architecture.
ISCIII’07: 3rd International Symposium on Computational Intelligence and Intelligent Informatics; Proceedings,
219–223. https://doi.org/10.1109/ISCIII.2007.367392

Fielding, R. T., Taylor, R. N., Erenkrantz, J. R., Gorlick, M. M., Whitehead, J., Khare, R., & Oreizy, P.
(2017). Reflections on the REST architectural style and “principled design of the modern web
architecture” (impact paper award. Proceedings of the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Part F130154, 4–14. https://doi.org/10.1145/3106237.3121282

Gellersen, H. W., & Gaedke, M. (1999). Object-oriented Web application development. IEEE Internet
Computing, 3(1), 60–68. https://doi.org/10.1109/4236.747323

Gómez, A., Rodríguez, R. J., Cambronero, M. E., & Valero, V. (2019). Profiling the publish/subscribe
paradigm for automated analysis using colored Petri nets. Software and Systems Modeling, 18(5), 2973–
3003. https://doi.org/10.1007/S10270-019-00716-1/FIGURES/21

Helms, M. M., & Nixon, J. (2010). Exploring SWOT analysis – where are we now?: A review of academic
research from the last decade. Journal of Strategy and Management, 3(3), 215–251.
https://doi.org/10.1108/17554251011064837/FULL/PDF

Home - PDOK. (n.d.). Retrieved July 1, 2024, from https://www.pdok.nl/

106

Hossain, M. I. (2023). Software Development Life Cycle (SDLC) Methodologies for Information Systems
Project Management. IJFMR - International Journal For Multidisciplinary Research, 5(5).
https://doi.org/10.36948/IJFMR.2023.V05I05.6223

IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology. Office, 121990(1), 1.
https://doi.org/10.1109/IEEESTD.1990.101064

Jovanović, M., Starčević, D., & Jovanović, Z. (2013). Languages for model-driven development of
user interfaces: Review of the state of the art. Yugoslav Journal of Operations Research, 23(3), 327–341.
https://doi.org/10.2298/YJOR121101007J

Kamatchi, Iyer, J., & Singh, S. (2013). Software Engineering:Web Development Life Cycle. International
Journal of Engineering Research & Technology, 2(3). https://doi.org/10.17577/IJERTV2IS3438

Klavans, J., & Kan, M. Y. (1998). Role of verbs in document analysis. Proceedings of the Annual Meeting of the
Association for Computational Linguistics, 1, 680–686. https://doi.org/10.3115/980845.980959

List of bus stops in the Netherlands | Datashop24.com. (n.d.). Retrieved July 1, 2024, from
https://www.datashop24.com/product/List-of-bus-stops-in-the-Netherlands/

MDN. (n.d.). HTTP Messages. Retrieved June 13, 2024, from https://developer.mozilla.org/en-
US/docs/Web/HTTP/Messages

Meliá, S., Gómez, J., & Koch, N. (2005). Improving web design methods with architecture modeling.
Lecture Notes in Computer Science, 3590, 53–64. https://doi.org/10.1007/11545163_6/COVER

OGC. (n.d.-a). Best Practice for OGC - UML to JSON Encoding Rules. Retrieved June 15, 2024, from
https://geonovum.github.io/uml2json/document.html#toc20

OGC. (n.d.-b). OGC API. Retrieved June 6, 2024, from https://ogcapi.ogc.org/

OGC. (n.d.-c). OGC API - Common - Part 1: Core. Retrieved November 19, 2023, from
https://docs.ogc.org/is/19-072/19-072.html

OGC. (n.d.-d). OGC API - Environmental Data Retrieval Standard. Retrieved June 6, 2024, from
https://docs.ogc.org/is/19-086r6/19-086r6.html

OGC. (n.d.-e). OGC API - Features - Part 1: Core corrigendum. Retrieved June 6, 2024, from
https://docs.ogc.org/is/17-069r4/17-069r4.html

OGC. (n.d.-f). OGC API - Maps - Part 1: Core. Retrieved June 6, 2024, from
https://docs.ogc.org/DRAFTS/20-058.html

OGC. (n.d.-g). OGC API - Processes - Part 1: Core. Retrieved June 6, 2024, from
https://docs.ogc.org/is/18-062r2/18-062r2.html

OGC. (n.d.-h). OGC API - Records - Part 1: Core. Retrieved June 6, 2024, from
https://docs.ogc.org/DRAFTS/20-004.html

OGC. (n.d.-i). OGC API - Tiles - Part 1: Core. Retrieved June 6, 2024, from https://docs.ogc.org/is/20-
057/20-057.html

OGC API - Common - Overview. (n.d.). Retrieved June 25, 2024, from
https://ogcapi.ogc.org/common/overview.html

OMG. (2014). MDA Guide rev 2.0. In OMG Document ormsc/2014-06-01. https://www.omg.org/cgi-
bin/doc?ormsc/14-06-01

107

Pop, D. P., & Altar, A. (2014). Designing an MVC Model for Rapid Web Application Development.
Procedia Engineering, 69, 1172–1179. https://doi.org/10.1016/J.PROENG.2014.03.106

Rivero, J. M., Grigera, J., Rossi, G., Robles Luna, E., & Koch, N. (2012). Towards Agile Model-Driven
Web Engineering. Lecture Notes in Business Information Processing, 107 LNBIP, 142–155.
https://doi.org/10.1007/978-3-642-29749-6_10

Rodríguez, C., Baez, M., Daniel, F., Casati, F., Trabucco, J. C., Canali, L., & Percannella, G. (2016). REST
APIs: A large-scale analysis of compliance with principles and best practices. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9671, 21–
39. https://doi.org/10.1007/978-3-319-38791-8_2/FIGURES/4

Royce, W. W. (1970). MANAGING THE DEVELOPMENT OF LARGE SOFTWARE SYSTEMS.
Proceedings of the 9th International Conference on Software Engineering.
https://doi.org/10.5555/41765.41801

Singh, Y., & Sood, M. (2010). The Impact of the Computational Independent Model for Enterprise
Information System Development. International Journal of Computer Applications, 11(8), 975–8887.

Soni, A., & Ranga, V. (2019). API Features Individualizing of Web Services: REST and SOAP. International
Journal of Innovative Technology and Exploring Engineering (IJITEE).
https://doi.org/10.35940/ijitee.I1107.0789S19

Stack Overflow. (n.d.). Stack Overflow Developer Survey 2023. 2023. Retrieved July 1, 2024, from
https://survey.stackoverflow.co/2023/#worked-with-vs-want-to-work-with-database-worked-want-
prof

Stack Overflow Trends. (n.d.). Retrieved July 1, 2024, from
https://insights.stackoverflow.com/trends?tags=reactjs%2Cvue.js%2Cangular%2Csvelte%2Cangula
rjs%2Cvuejs3

Thomas, D. (2004). MDA: Revenge of the modelers or UML Utopia? IEEE Software, 21(3), 15–17.
https://doi.org/10.1109/MS.2004.1293067

Wang, Y. (2016). Semantic information extraction for software requirements using semantic role labeling.
Proceedings of 2015 IEEE International Conference on Progress in Informatics and Computing, PIC 2015, 332–
337. https://doi.org/10.1109/PIC.2015.7489864

Whittle, J., Hutchinson, J., & Rouncefield, M. (2014). The state of practice in model-driven engineering.
IEEE Software, 31(3), 79–85. https://doi.org/10.1109/MS.2013.65

