
 

 
 
 
 
 

Master Thesis  
 

Assessing Efficiency in Warehouse Order Picking: A 
Simula:on-Based Approach 

 
 

 
Author: Daan Nieuwenhuis – S1729055 

 

MSc in Business Administra>on 

Specializa>on: Digital Business and Data Analy>cs 

Faculty of Behavioral, Management, and Social Sciences 

University of Twente, Enschede, the Netherlands 

 

 

1st Supervisor 

Dr. Ir. Petra Hoffmann 

 

2nd Supervisor 

Dr. MaPhias de Visser 

 

 

 

 

July 22, 2024 

 



 2 

Acknowledgements 
First, I would like to thank my first supervisor, Dr. Ir. Petra Hoffmann, for her guidance 

throughout this project. Furthermore, I would like to thank Dr. MaPhias Visser for his helpful 

feedback and ideas. Special thanks go to the case company, and everyone involved in the 

project. The full support and assistance throughout the process were indispensable for the 

comple>on of this study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 3 

Management Summary 
This study provides a simula>on model capable of evalua>ng order picking policies in 

warehouse opera>ons. Order picking is the most >me-consuming and costly ac>vity in the 

warehouse, meaning efficiency improvements can lead to significant cost savings. Models in 

current literature mostly focus on a fix set of polices, where this study develops a simula>on 

model that can test a wide variety of policies and can incorporate mul>ple relevant variables. 

The primary research ques>on addressed in this study is: "How can order picking policies be 

evaluated on efficiency using a simula>on model to support decision-making in warehouse 

management?". This is answered through four sub ques>ons that explore the metrics for 

measuring efficiency, methods to enhance efficiency, and how to assess and evaluate using a 

simula>on model to eventually support decision making. The research employs a custom-

made simula>on model tailored to the specific opera>ons of the case company's warehouse. 

The model uses historical order data to simulate various scenarios, evalua>ng the impact of 

different improvement policies on travel distance and other significant variables. A 

combina>on of literature review and warehouse exper>se is u>lized to compile a set of order 

picking improvement policies, that are tested in the simula>on model. 

 

Literature iden>fies travel distance as the primary metric for measuring order picking 

efficiency. However, for the case company, addi>onal variables such as the number of bins 

u>lized are also relevant. Literature iden>fies five key areas for improvement: storage, 

batching, rou>ng, zoning, and layout. For this study we select three policies, based on 

literature and sugges>ons from warehouse management. The selected policies with the 

yielded results in the simula>on model are as follows:  

- A new storage assignment method did not improve efficiency, showing an increase in 

travel distance instead. 

- Splibng the warehouse into zones significantly improved efficiency  

- Introducing small bins also showed notable improvements in efficiency 

- Combining zoning and small bins yielded the greatest reduc>on in travel distance 

 

Three business cases were developed based on the simula>on results. A cost-benefit analysis 

presents the poten>al cost savings and considera>ons for each scenario. The efficiency gains 

result in savings in labor cost, while the implementa>on of policies can also lead to addi>onal 
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labor cost and one->me investments. Dividing the warehouse into zones results in an 

es>mated net savings of €59,175 aeer one year. For the implementa>on of small bins this is 

€26,805. The combina>on of the above policies already shows the greatest reduc>on in travel 

>me, and also presents the best business case with an es>mated net savings of €87,406 aeer 

one year.  

 

Based on the results and business cases described above, order picking policies can be 

evaluated on efficiency gains and es>mates cost savings, thereby valida>ng the use of a 

simula>on model for this purpose. By considering variables such as the number of bins and 

labor hours spent on handling, warehouse management can be supplied with all relevant 

informa>on to make informed decisions. This emphasizes the importance of tailoring models 

to specific organiza>onal context. It is found that picking cart capacity can have a significant 

effect on order picking efficiency. Where current literature mostly focusses on (a subset) of the 

five above-men>oned key areas of improvement, this study demonstrates that picking cart 

capacity is a cri>cal factor in enhancing overall efficiency. The findings underscore the benefit 

of using zones in warehouses, consistent with exis>ng literature. For the case company, this 

study advocates a hybrid approach for storage loca>on assignment, as a prac>cal contribu>on. 

More general, this study contributes by demonstra>ng how companies can leverage data for 

decision-making, serving as a valuable example for those looking to become more data driven. 
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1. Introduction 
 

Warehouses strive for high efficiency in their opera>ons, to ensure a streamlined and cost-

effec>ve logis>cs process. Nowadays, supply chains must rely on efficient logis>cal systems 

with low turnaround >mes, to meet customer expecta>ons (van Gils et al., 2018b). To meet 

the demands of rapid delivery within these >ght >meframes, less >me is available for 

warehouse opera>ons, like order picking, packing, and shipping (Koster et al., 2007). Given 

that order picking is known as the most labor-intensive and most expensive ac>vity in the 

warehouse, it oeen becomes the primary focus for enhancing efficiency (Koster et al., 2007). 

In conven>onal warehouses, on average almost 90% of the >me is spent on order picking and 

55% of the opera>ng cost is aPributed to order picking (Dukic & Oluic, 2007). Therefore, 

enhancing the efficiency of order picking is vital for improving overall warehouse produc>vity 

and cost-effec>veness. Literature offers various approaches to achieve this. The literature 

review from Van Gils et al (2018) summarizes the order picking (planning) problems in the 

category’s storage, batching, zone picking, and rou>ng. The layout of the warehouse is a fieh 

issue that can be added as a factor impac>ng the order picking performance (Yu & de Koster, 

2009). In these categories, there are a variety of policies that can be implemented to increase 

order picking efficiency. 

 

Even in modern warehouses, decisions on these order picking problems are oeen based on 

simple heuris>cs or rules of thumb (Gademann & Velde, 2005). To make informed decisions 

on which improvements can be made, the changes to the current situa>on need to be tested 

on performance to compare with the current situa>on. A proven method to evaluate such 

changes is to implement the change and compare the performance in the new situa>on with 

the performance in the old situa>on. However, in this situa>on, conduc>ng such experiments 

is expensive and >me-consuming. Consequently, in the majority of studies inves>ga>ng 

warehouse efficiency, the preferred approach is to simulate the impact of changes in a model 

(e.g. Chan & Chan, 2011; Petersen & Aase, 2004; Tsai et al., 2008). The available soeware and 

more importantly data, make it possible to replicate the warehouse processes in a model and 

evaluate its performance. Building on historic data, companies can use prescrip>ve analysis 

and simula>on, that helps them answer the ques>ons what changes they should implement.  
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U>lizing such a data-driven approach, decision makers can make informed decisions on the 

warehouse opera>ons, so not based on heuris>cs and rules of thumb (Granillo-Macías, 2020). 

It supports them in how to deal with warehouse opera>on and how to manage the wide 

amount of available data (Antomarioni et al., 2021).  McAfee & Brynjolfsson (2012) found that 

the more companies characterize themselves as data-driven, the bePer they perform on 

objec>ve measures of opera>onal and financial results. As a result, data is nowadays 

recognized as a valuable asset for companies, yet many remain uncertain about how to 

effec>vely integrate data-driven decision-making into their opera>ons (Gupta & George, 

2016). While the objec>ve is there, also leading companies seem to be failing in their struggle 

to become data-driven (Bean & Davenport, 2019). In today’s modern warehouses, the 

available technology and prac>ces, like scanning each item during picking, generate a rich 

repository of data points. However, having the data available does not mean it is automa>cally 

deployed to create value for the company, by for example providing insights on how to make 

the warehouse process more efficient.  

 

To evaluate the effec>veness of efficiency improvement methods, a simula>on model is a 

proven method in literature on order picking efficiency. Van Gils et al., (2018b) simulate the 

combined performance of mul>ple storage, batching, zoning, and rou>ng policies in a 

simula>on model, tested on a real-life case-study. Chan & Chan (2011) also use a simula>on 

model to find the most efficient warehouse setup, looking at order retrieval >me and travel 

distance. These studies, next to several other studies using simula>on (Petersen & Aase, 

(2004); Tsai et al., (2008)), focus on finding the op>mal set of policies with the highest 

efficiency for the specific warehouse or layout that is being studied. Although this offers 

grounded sugges>ons to management to improve their order picking process, it does not 

provide a versa>le model that could support warehouse management with future decision-

making. Chen et al., (2010) developed a unified framework for warehouse managers to analyze 

and evaluate order picking problems, based on the following factors: storage assignment, 

rou>ng polices, picking cart capacity, and order sequencing. This provides a warehouse 

manager with flexibility in evalua>ng and selec>ng order picking policies, applicable across 

various scenarios and repeat uses. The model, however, is limited to the above policies and 

does not offer the versa>lity to test and simulate sugges>ons from warehouse management.  

Although De San>s et al. (2018) takes into account each of the main categories in literature, 
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the focus of the study lies in proposing a new rou>ng algorithm.  Yu & de Koster (2009) also 

recognize the same categories, yet their proposed model primarily addresses batching and 

zoning. This research studies the effect of various order picking policies on efficiency, 

evalua>ng proposed methods using a simula>on model. Hereby, this study will contribute to 

the exis>ng literature by providing a model capable of evalua>ng order picking improvements 

across a broad spectrum of policies. Moreover, the aim is to provide a model designed for 

decision-making that incorporates all relevant factors influencing decisions. Unlike the 

previously men>oned models, which oeen consider only one variable as a metric for efficiency, 

this model integrates mul>ple variables to enhance decision-making accuracy. The model can 

assess improvement strategies recommended by both literature and warehouse management, 

thereby suppor>ng decision-making processes in warehouse management.  The purpose of 

this research is to answer the following research ques>on: How can order picking policies be 

evaluated on efficiency using a simula>on model to support decision making in warehouse 

management? To answer this research ques>ons the below sub ques>ons are formulated: 

1. What metric(s) should be used to measure order picking efficiency in a simula>on 

model?  

2. What methods to improve order picking efficiency exists, according to literature?  

3. How can the suggested order picking improvement methods be evaluated in a 

simula>on model?   

4. How can the simula>on model support warehouse managers in decision making?  

 

The remainder of this research is organized as follows. Chapter Two reviews the current 

literature on order picking, measuring order picking, and order picking policies. Chapter Three 

describes the methodology, followed by an introduc>on to the case study company in Chapter 

Four. Chapter Five presents the simula>on model, with the simula>on results detailed in 

Chapter Six and further discussed in the context of a business case in Chapter Seven. Finally, 

Chapter Eight includes the conclusions and discussion. 
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2. Literature review 
 
2.1 Order picking 
The warehouse is a place where goods are received, stored, picked, and shipped from (Dawe, 

1995). The primary role of a warehouse is to have storage from which the customer orders can 

be fulfilled. Contrary to a distribu>on center, a warehouse is meant to have inventory from 

which orders are picked  (Koster et al., 2007). This buffer can ensure a stable supply chain, but 

also represents a substan>al cost factor. Therefore, next to transporta>on, warehousing is one 

of the largest cost drivers in supply chains (Dukic & Oluic, 2007). Among the above-described 

ac>vi>es occurring in a warehouse, order picking is the most >me-consuming and thus the 

primary opportunity for enhancing efficiency (van Gils et al., 2018b) 

 

Order picking can be defined as the process of retrieving items from storage loca>ons in the 

warehouse, following a customer request or pick list (Dukic & Oluic, 2007). In literature on 

performance management in warehouses it is the most discussed topic, by far (van Gils et al., 

2018b). The reason for this is that from all warehouse ac>vi>es, order picking is the most labor-

intense opera>on, and therefore the most >me-consuming (Koster et al., 2007; Dukic & Oluic, 

2007; van Gils et al., 2018b). This is especially the case for warehouses that have a picker-to-

parts system, (i.e. a system where items are picked from storage loca>ons and brought to 

packing sta>ons). Alterna>ves to this would be a parts-to-picker systems or automated storage 

and retrieval systems, where the order picker can stay at one loca>on where the items that 

need to be picked are presented by the system. The second dis>nc>on lies in low-level versus 

mid-level order picking. In low-level picking, goods are stored within easy reach, allowing 

pickers to access and pick items without the need for equipment like forklies or reach trucks. 

Mid-level picking requires such machinery, as the goods are stored beyond manual reach 

(Koster et al., 2007). A third dis>nc>on can be made between sort-while-pick systems and pick-

and-sort system, which is only applicable when orders are batched for picking. Batched picking 

means that the order picker picks more than one order on its route, instead of returning each 

>me aeer comple>ng the items on one order.  Sort-while-pick means that the order picker 

sorts the separate orders while picking them at once, while pick-and-sort means all items are 

picked without sor>ng them and the items are being sorted per order aeerwards (Parikh & 
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Meller, 2010). This study focuses on low-level, manual order picking in a system that combines 

a picker-to-parts with a sort-while-pick system.  

 

2.2 Measuring efficiency order picking efficiency 
The reason why order picking is the most labor-intense, and therefore the most expensive, is 

the travel component. Order pickers are travelling between loca>ons a significant amount of 

their >me: from the start loca>on to the storage loca>on, between the storage loca>ons, and 

to the end point. On average, total order picking >me consists of 10% setup >me, 15% pick 

>me, 20% search >me, 5% other, and 50% travelling >me (van Gils et al., 2018b).  Next to that, 

Aboelfotoh et al. (2019) found that it accumulates to 60% of the total cost of order picking on 

average. Improving order picking efficiency directly contributes to cost savings, making it a 

cri>cal focus area for process improvement (de Koster et al., 2007). 

 

In order to evaluate the efficiency of the current state of the order picking process, or to test 

changes, an objec>ve indicator is needed. To measure the efficiency of the order picking 

process, the travel distance is the most used indicator in literature. Table 1 below shows the 

frequency of several variables used, based on a literature review. This can be either the total 

travel distance (e.g. of a >me period) or the average travel distance (per order) (Koster et al., 

2007). An alterna>ve is the order picking >me, which shows the same results under the 

assump>on that the order picking speed is the same throughout the warehouse (van Gils et 

al., 2018a). Chan & Chan (2011) adds order retrieval >me as a metric and states that measured 

with different performance indicators, the performance of combina>ons of factors can be 

different. This can be the case when indicators as total order retrieval >me versus travel 

distance are used. Since travel distance is the most objec>ve and consistent metric which 

cannot be influenced by other factors like disrup>ons or worker fa>gue, this metric is used in 

this study.  
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Table 1 

Order picking efficiency indicators in literature 

Variable Count Sources 

Travel distance 7 (Koster et al., 2007; van Gils et al., 2018b; Dukic & Oluic, 

2007; De San>s et al., 2018; Aboelfotoh et al., 2019; 

Petersen, 2002; Caron et al., 1998) 

Travel >me 2 (Van Gils et al., 2018; Chan, 2011) 

Order throughput >me 1 (Yu & de Koster, 2009) 

Order retrieval >me 1 (Chan, 2011) 

 
2.3 Improving order picking efficiency 
In academic studies focused on advancing order picking efficiency, the literature consistently 

recognizes five key categories that represent challenges or concerns within the order picking 

process. Table 2 shows which categories are studied by other literature that study two or more 

categories. These are the factors impac>ng the order picking produc>vity.  

1. Storage: assigning products to storage loca>ons. 

2. Batching: the process of grouping customer orders together and jointly releasing 

them for picking.  

3. Rou>ng: the sequence of the items on the picking list which determines the route 

for the order picker in combina>on with the general rou>ng policy.  

4. Zoning: dividing the whole picking area into a number of smaller areas (zones) and 

assigning order pickers to pick requested items within the zone. 

5. Layout: the quan>ty and the arrangement of blocks and aisles   

 

Table 2 

Order picking problem categories in literature 

Category Sources 

Storage (De San>s et al., 2018; van Gils et al., 2018b; Koster et al., 

2007; Chen et al., 2010; Yu & de Koster, 2009; Henn, 

2012; Dukic & Oluic, 2007) 
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Batching (De San>s et al., 2018;van Gils et al., 2018b; Koster et al., 

2007; Yu & de Koster, 2009; Henn, 2012; Dukic & Oluic, 

2007) 

Rou>ng (De San>s et al., 2018; van Gils et al., 2018b; Koster et al., 

2007; Chen et al., 2010; Yu & de Koster, 2009; Henn, 

2012; Dukic & Oluic, 2007) 

Zoning (De San>s et al., 2018; van Gils et al., 2018b; Koster et al., 

2007; Yu & de Koster, 2009)  

Layout (De San>s et al., 2018; Yu & de Koster, 2009) 

 

2.3.1 Storage 
It is proven that storage assignment can be an effec>ve measure to improve order picking 

efficiency, but there is a variety of methods that could be applied. What method is the most 

efficient depends on the variables like the type of products and the order composi>on, but 

also the zoning, rou>ng, etc. Chan & Chan (2011) found that the picking density (i.e. the variety 

of items in an order) has an influence on which storage assignment method is the most 

effec>ve. One way of storage assignment is through grouping, which according to Liu (1999) 

can be done in three ways: based on complementarity (i.e. items oeen ordered together 

should be located next to each other), based on compa>bility (i.e. based on prac>cal 

condi>ons), or based on popularity (items that are picked oeen should be located close to 

outbound point). This last op>on is also known as a volume-based storage policy, that assigns 

items to loca>ons based on the picking volume. A proven method to apply this, is to combine 

an IQ (order quan>ty of each item) analysis with an ABC classifica>on (Chan & Chan, 2011). 

ABC classifica>on sorts products into three categories based on their contribu>on to turnover, 

the number of picks, or other relevant variables. A-items, which have high turnover or are 

frequently picked, are posi>oned close to the in- and outbound points for easy access. In 

contrast, C-items are less accessible due to their lower turnover or pick frequency. The 

distribu>on of these categories varies depending on specific opera>onal circumstances. 

Alongside item quan>ty, factors such as storage space and customer orders are also considered 

to op>mize storage assignment. The Cube-per-order index (COI) combines the items’ required 

storage space with the picking volume (Dukic & Oluic, 2007). The COI method is the most 

beneficial when combined with the within-aisle placement, as shown on the figure 1 below. 
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Cri>cism on the COI method is that it in principle it assumes that every pick is a direct return 

trip, where in reality most picks are followed by another pick, except the last one (Mantel et 

al., 2007). The Order Oriented SloPed strategy (OOS) introduced by Mantel et al. (2007) 

approaches this differently, so that the total travelling >me of all tours is minimized.  

 

Figure 1 

Placement of items with a storage assignment policy 

 
Note. Figure from Dukic & Oluic (2007) p.4. The dark squares indicate items with a high COI. 

 

Babni et al. (2015) introduces a storage assignment and travel distance es>ma>on (SA&TDE) 

method that provides guidelines for warehouse design to reduce travelling >me by improving 

efficiency. In a case study, items were assigned to other storage loca>ons, leading to a 

significant decrease in travel distance. In conclusion, an appropriate inventory classifica>on 

method is of vital importance to divide products into classes to increase efficiency, regardless 

the type of order picking system (Chan & Chan, 2011).  

 

2.3.2 Batching 
There is a high variety of batching methods that has been studied in literature, with order 

batching in general being an effec>ve way to reduce travel distances (M. B. M. De Koster et al., 

1999; Dukic & Oluic, 2007). According to Koster et al (1999), the best batching method is by 

applying a seed selec>on rule, which creates a batch by selec>ng the ini>al and the addi>onal 

order based on a specified rule. In a simula>on, this was proven more effec>ve than for 

example the Clarke and Wright algorithm, that groups orders into batches based on the savings 

that can be made on the travel distance. Henn (2012) also tested this algorithm together with 

other op>ons and found the Iterated Local Search (ILS) method to be the most efficient 

method. This method refines batches of orders by making small changes to the current method 
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and then searching nearby solu>ons, aiming to minimize the total picking >me or distance. 

Another op>on is batching by a selec>on of heuris>cs, which was proven to be more efficient 

than a First Come First Serve (FCFS) method or a mathema>cal model by Aboelfotoh (2019). 

In all studies, FCFS turned out to be less efficient compared to its alterna>ves. According to 

Dukic and Olic (2007), order batching in general is the measure showing the greatest poten>al 

in reducing travel distances.  

 

2.3.3 Rou?ng 
A general rou>ng policy determines in what sequence the items will appear on the order 

pickers’ (digital) pick list and how to navigate through the warehouse aisles. In the literature 

several rou>ng heuris>cs are discussed. Their effec>veness is not universally applicable but 

varies depending on other variables, such as the storage assignment and the order batching. 

Table 3 shows the list of heuris>cs discussed in four studies. 

 

Table 3 

Rou=ng policies with defini=ons 

Rou>ng 
policy 

Defini>on Men>oned by 

Aisle-by-aisle Picker visits every aisle containing at least 

one pick 

(van Gils et al., 2018b) 

S-shape Picker goes through aisles with at least 

one pick in an S-shape 

(Henn, 2012; Koster et al., 

2007) 

Traversal Picker traverses every subaisle containing 

at least one pick 

(van Gils et al., 2018b) 

Return Picker enters and leaves every aisle on the 

same end containing at least on pick 

(van Gils et al., 2018b; Koster 

et al., 2007) 

Largest gap Picker enters an aisle as far as the start of 

the largest gap within an aisle 

(van Gils et al., 2018b; Koster 

et al., 2007) 

Op>mal Based on an algorithm or calcula>on (van Gils et al., 2018b; Koster 

et al., 2007) 
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Midpoint Picker enters aisles from one side and 

picks items >ll the midpoint and does the 

same from the other side.  

(van Gils et al., 2018b; Koster 

et al., 2007) 

Combined Picker either traverses or returns  (van Gils et al., 2018b, Koster 

et al., 2007) 

 

The op>mal rou>ng to minimize the travel distances in some cases can be found by an 

algorithm (De San>s et al., 2018). However, the most op>mal rou>ng can be complex for the 

order picker when there is no apparent logic behind it. According to Dukic & Oluic, rou>ng has 

some effect on efficiency, but it is insignificant for prac>cal purposes in that specific case study. 

In a simula>on by Chan & Chan (2011), a combina>on of the transversal and the return rou>ng 

heuris>cs turned out to be the most effec>ve policy.  

 
2.3.4 Zoning  
The concept of zoning has been iden>fied as a cri>cal factor influencing efficiency. Van Gils et 

al. (2018) highlighted the significance of warehouse zoning, a topic that had not been given as 

much aPen>on as storage assignment, batching, and rou>ng in previous literature. The 

configura>on of zones within a warehouse is not a one-size-fits-all solu>on; it requires careful 

analysis and considera>on of various parameters, such as product categories, the space 

available, etc. However, Van Gils (2007) makes a general claim that making the zones in a 

warehouse smaller is an effec>ve way to improve efficiency. Koster et al. (2010) conducted a 

detailed inves>ga>on into the op>mal zone configura>on for a retail warehouse in the 

Netherlands, yielding valuable insights into the ideal number of zones, as well as associated 

layout and rou>ng policies. The findings of Petersen (2002) suggest that the op>mal zone setup 

is con>ngent upon several factors, including average order size and batch size. It is important 

to make the dis>nc>on between sequen>al and simultaneous zone picking. Sequen>al zone 

picking is where the picking in one zone begins only aeer the comple>on in the preceding 

zone, typically suited to smaller order sizes, while simultaneous zone picking allows for the 

picking of different parts of an order to occur concurrently across various zones, with 

consolida>on occurring subsequently (Parikh & Meller, 2008; Petersen, 2002).  
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2.3.5 Layout 
While some studies do not include layout when discussing methods to improve order picking 

efficiency, Yu & de Koster (2009) includes it with the other four categories. Layout is less oeen 

men>oned in literature, because it is simply easier to change the rou>ng or assign products to 

different storage loca>ons, compared to moving racks or changing the shape of a building. A 

dis>nc>on can be made between the facility layout, concerning the loca>ng of several 

departments in the building, and the internal layout, concerning the number of blocks, the 

width of aisles, etc. (Koster et al., 2007). This study only focuses on the internal layout. The use 

of cross-aisles has proven to improve efficiency significantly. Layout is compared to the other 

order picking problems highly dependent on the warehouse structure (Babni et al., 2015). 

This is why layout decisions are important when designing a warehouse from scratch but 

difficult to change once implemented.   

 

2.3.6 Combining storage, batching, rou?ng, and zoning problems 
To achieve efficiency in the order picking process, warehouse managers have to look beyond 

single-dimensional performance and consider trade-offs among the four different problems of 

storage, batching, rou>ng, zoning, and layout (Chen et al., 2010). A combined approach is more 

effec>ve to increase efficiency (van Gils et al., 2018a).  Where most literature that studies them 

in rela>on to each other only include storage, batching and rou>ng, Van Gils et al (2018) stated 

the importance of integra>ng zoning. In the above-men>oned case study by Petersen (2002), 

the zone configura>on was studied, also taking into account the storage assignment policies. 

It was found that different combina>ons have different impacts. The same goes for storage 

and rou>ng, which should be considered as combined decision problems, because the storage 

assignment impacts the rou>ng method according to De Koster et al. (1999) and Koster et al. 

(2007). Figure 2 below shows examples of how storage and rou>ng policies can be combined. 

While in most literature studied separately, Yu et al. (2009) found batching and zoning are also 

closely related and are therefore oeen simultaneously applied in warehouses.  
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Figure 2 

Examples of combing storage and rou=ng policies 

 

Note. Figure from van Gils et al., (2018). The dark squares indicate the storage loca>ons of 

items that are picked more oeen. 

 

2.4 Simula?ng order picking performance 
To study the effect of various policies in the domains of storage, batching, rou>ng, zoning, or 

layout, conduc>ng experiments, running simula>ons, or both is essen>al. In the majority of 

studies inves>ga>ng warehouse efficiency, the preferred approach is to simulate the impact of 

changes in a model, as you can see in table 4. To be able to conduct a simula>on, a model is 

necessary to measure the parameter(s) of interest, in this case at least the travel distance 

(Caron et al., 1998). Furthermore, the model should be able to test the impact of changing 

parameters due to changing storage policies, zone layouts, or batching policies (Chen et al., 

2010). Petersen & Aase (2004) take into account the parameters average order size, warehouse 

shape, and the loca>on of the pick-up drop-off point, resul>ng in a more accurate 

measurement of the effect of storage, batching and rou>ng policies. Tsai et al., (2008) conducts 

a set of simula>ons, each with different order characteris>cs and warehouse environments, 

studying the impact of batch picking policies on travel distance. In order to take a combined 

approach on the closely related picking problems, a factorial design could be used to simulate 

the effect. This would measure the effect of each factor combina>on, finding the most op>mal 

one. To effec>vely analyze the closely related problems in picking processes, employing a 

factorial design in simula>on studies can show the impact of various factor combina>ons 
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(Petersen & Aase, 2004). This approach measures the outcome of each factor combina>on and 

iden>fies the most op>mal one. An alterna>ve to this is to measure the effect of each factor 

individually against the baseline, which would be the current state of warehouse policies. In 

both scenarios, the simula>on process begins by defining the parameters. Next, it entails 

recording the travel distances and concludes with a comparison of the varying performances 

(Chan & Chan, 2011). 

 

Table 4 

Methods of studies that study order picking efficiency 

Research method Number of studies Studies 

Simula>on model 8 

(Liu, 1999;Chan, 2011; Koster et al., 1999; 

Tsai et al., 2008; Caron et al., 1998; Petersen, 

2002; Petersen & Aase, 2004; Dukic & Oluic, 

2007) 

Other type of model 

(approxima>on, 

analy>cal, cost, or 

mathema>cal)  

5 

(Yu & de Koster, 2009; Parikh & Meller, 2010; 

Parikh & Meller, 2008; Koster et al., 2007; 

Aboelfotoh et al., 2019) 

Experiment 1 (Henn, 2012) 
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3. Methodology 
 
3.1 Research design 
The approach used in this study to answer the research ques>ons has both deduc>ve and 

induc>ve characteris>cs. On one hand, observa>ons are made and the research is formed 

around those observa>ons. Observa>ons are made by the researcher in the warehouse that is 

subject of the case study and experts are interviewed. On the other hand, theory from 

literature is used to formulate efficiency improvement approaches. Because interviews are 

needed in the preliminary research and quan>ta>ve data is needed for further analysis, this 

research fits a mixed method approach. This method of combining qualita>ve and quan>ta>ve 

research components is used to reach breadth and depth of understanding of the research 

topic (Johnson et al., 2007)  

 

3.1.1 Qualita?ve data collec?on in interviews 
The baseline that is used for the order picking efficiency model is based on the current state 

of the warehouse opera>ons and policies. Semi-structured interviews were conducted to gain 

a deeper insight into the exis>ng opera>ons and to understand the considera>ons influencing 

the current state. Next to that, insights were derived from these interviews on possible 

changes that can be implemented in the warehouse that could improve order picking 

efficiency. The exper>se from employees is needed to determine feasibility of the op>ons 

suggested by literature. Employees possess firsthand knowledge of the specific opera>onal 

context, challenges, and constraints within the organiza>on. While literature may provide 

generalized recommenda>ons, it lacks the nuance required to account for unique factors in 

the organiza>on. Table 5 below shows the company experts that were interviewed. These were 

all semi-structured interviews, revolving around the following topics: the current state of 

warehouse opera>ons, factors impac>ng produc>vity, and the feasibility of policies. 
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Table 5 

Interview respondents 

Expert Posi>on 

Expert 1 Opera>ons Director 

Expert 2 Head of Logis>cs 

Expert 3 Team leader 

Expert 4 Logis>cs employee 

Expert 5 Logis>cs employee 

 

3.1.2 Qualita?ve data from literature review 
To gather informa>on on the measurement, the improvement strategies for order picking and 

the research method, literature reviews were conducted. First, the metric for measuring order 

picking efficiency was determined based on other literature. Next, a review of literature on 

order picking enhancement techniques was conducted to develop strategies for improvement. 

This was supplemented with insights gathered from interviews with company experts. The 

combina>on of findings from literature and interviews resulted in a set of improvement 

policies that are evaluated on efficiency improvement based on the created simula>on model. 

And finally, the research methods employed in the studies in the beforemen>oned literature 

reviews were analyzed to gain insights on the most suitable method to evaluate the 

improvement policies.  

 

The literature review is conducted using the website Web of Science. For both subjects shown 

in table 5 below, searches were done using specific keywords. Search results were sorted based 

on the number of cita>ons (highest first). The studies that matched the requirement as listed 

in table 5, the references were stored in Mendeley.  
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Table 6 

Literature reviews 

Literature review Keywords (including, but not 
limited to) 

Requirements 

Order picking efficiency 

indicators 

Warehouse AND Efficiency 

Logis>cs AND Efficiency 

Warehouse AND produc>vity 

Warehouse AND metrics 

Studies studying the order 

picking performance, 

evaluated on a specific 

metric. 

Order picking problem 

categories 

Warehouse AND efficiency AND 

improving 

Warehouse AND produc>vity 

Produc>vity AND measures AND 

logis>cs 

Studies studying two or 

more categories of order 

picking problems.  

Research method 

(simula>on, 

experiment, etc.) 

N/A 

The studies form the 

above two literature 

reviews were used.   

 

3.1.3 Quan?ta?ve data for simula?on model  
As discussed in Chapter 2.4, a simula>on model is the most suitable methods to analyze the 

impact order picking policies in a warehouse. A simula>on model will be created based on the 

warehouse data, that can give the travel distance as output, based on an order cluster as input. 

Based on the storage loca>ons of the items in the order, the model will follow the given 

parameters and calculate the travel distance to pick this order. The data that will be used is 

sourced from the opera>ng system of the warehouse that is subject of the case study. In this 

system, data is collected by the terminals that order pickers to scan each item that is picked. 

Next to that, the warehouse has exact measurements of warehouse sec>ons and distances 

between storage loca>ons available. Using the current state of the warehouse as the baseline, 

the model will have parameters that determine the distance an order picker will travel based 

on a certain cluster, or number of order lines. To test certain policies, inputs of the model can 

be changed, which could impact the order picking performance. An example of input that can 

be changed is a different storage assignment for each product. With items stored in different 

loca>ons, order picker will travel to different loca>ons to pick the same order, which could 
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result in a shorter or longer travel distance. The main requirements for the simula>on model 

are that it could directly leverage the company's proprietary data and can be applied across a 

broad range of policies. To address the specific needs of the case company, a custom-made 

simula>on mode has been developed instead of using an off-the shelf solu>on. This method 

was chosen because it seamlessly integrates with the company's databases, allowing for a 

highly tailored analysis of warehouse and order picking efficiency based on historical data. 

Furthermore, all necessary soeware was already available in-house, so no extra licensing was 

required. Well-known alterna>ve simula>on tools are FlexSim, Simio, and AnyLogic, which 

offer robust modeling capabili>es and are widely recognized for their effec>veness in various 

industries. However, these off-the-shelf solu>ons oeen require adjustments to align with 

specific organiza>onal data structures and may not offer the same level of customiza>on or 

integra>on with exis>ng systems as a custom solu>on. The chosen approach not only ensures 

greater accuracy and relevance of the simula>on results but also enhances the scalability and 

adaptability of the model to future changes within the company’s opera>ons. Chapter Five 

delves into more detail on the simula>on model. 
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4.Case Study 
 
4.1 Case introduc?on 
In this study, a warehouse (called XYZ warehouse) storing educa>onal products is studied as a 

case. The case is used to create a custom model to test the effect of order picking policies on 

efficiency and to evaluate the proposed changes. The XYZ warehouse consist of two floors with 

products assigned to floors based on their size and weight. Heavier and larger products are 

stored on the first floor for easy access, while items on the second floor are picked and 

transported using bins. These bins are transported on conveyors belts. Figure 3 shows the bins 

on the conveyor belt.  

 

Figure 3 

Bins in a storage loca=on on the conveyor belt 

 

This study only takes the second floor into account, for several reasons: 

1. The order picking process starts on the second floor and is therefore not dependent on 

an order flow from another sec>on. This is the case for the order picking process on 

the first floor.  
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2. The zoning problem is not relevant for the first floor, as the number of zones cannot be 

changed due to layout reasons.  

3. The data available on order picking on the first floor is not clean enough for analysis. 

Order picking policies could be tested using experiments here, but this does contribute 

to a framework, which is the goal for this study.  

Any men>on of warehouse XYZ specifically refers to the second floor. In warehouse XYZ all 

order picking is done through low-level, picker-to-parts order picking. Batching or clustering is 

done through a sort-while-pick system where bins are placed on a cluster cart with a capacity 

of eight bins where the order picker sorts the items per order while picking. For efficiency 

reasons, orders are clustered for picking based on manual selec>on by a small team of logis>cs 

employees. This is based on some simple heuris>cs, but no automated system is in place, 

which is further discussed in 4.2.2. One bin could be one order, but for a larger order it could 

be that one order consists of several bins. Because the order picker is equipped with a 

terminal, it requires minimal effort to make sure the picked items end up in the correct bins.  

 

Figure 4 

Cluster cart with bins 
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At the star>ng point, the order picker scans the cluster that is first in line and places all bins on 

the cluster cart. The pick list appears on an order pickers terminal, which will show the loca>on 

of the next item that needs to be picked. An example of a loca>on iden>fier is 2D10B3. Table 

4 below shows what this key means. When the order picker scans an item, the terminal will 

give the ID of the bin in which the items must be placed. Instead of picking the contents for 

each bin, one aeer another, the terminal navigates the order picker based on the op>mal route 

for the cluster. The rou>ng is determined by the sort code, which is further discussed in 4.3.3.  

 

Table 7 

Example of loca=on iden=fier 

Sec>on ID Aisle ID Rack ID Loca>on in Rack 

2 D 10 B3 

 
4.2 Seasonality 
The nature of the products make that the demand is highly seasonal, with a spike in the 

months leading up to the summer. This results in a high volume of orders that need to be 

processed in the high season, compared to a lower number of orders in the off season. As 

men>oned in the literature review, the order volume can influence the performance of policies 

such as storage assignment. Therefore, this should be considered when simula>ng order data. 

Figure 5 below shows the difference in order output the warehouse has during those high 

season months over the last three years.  
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Figure 5 

Number of orders shipped per month 

 

  
 

Next to the increasing volume, the order composi>on of orders also changes during those 

months. The average number of order lines on an order increase from 5 to 11.3 and the 

average number of items per order lines increase from 5.3 to 8.1. The key to managing the 

increased workload during the high season is effec>ve workforce management. During these 

peak periods, a large number of temporary workers are employed and quickly trained to meet 

the demand. Apart from that, the warehouse processes remain the same throughout the 

whole year. 

 

4.3 Current state 
The current state of the warehouse is further described through the five order picking problem 

categories that were iden>fied in the literature: storage, batching, zoning, rou>ng, and layout.  
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4.3.1 Storage 
With a recent move to a new loca>on, the storage assignment was completely revised. Items 

were reallocated based on historical volume data and heuris>cs such as product families.  

Given the dynamic nature of the company's product assortment, the storage assignment has 

been an ongoing process since then. As men>oned earlier, this research focuses on a specific 

sec>on of the warehouse where items are picked in bins for transporta>on inside the 

warehouse. This results in items that do not fit the bins, based on the size and weight, being 

excluded from this sec>on. Apart from these excluded items, the storage assignment is based 

on the order/picking volume of an item and product families. A team of warehouse employees 

monitors this and makes adjustment when deemed necessary. There is no structured, data-

driven approach in place.   

 

4.3.2 Batching  
The terminology used at warehouse XYZ for picking mul>ple orders at the same >me is called 

clustering, which is the term that will be used form now on. Orders are clustered for order 

picking, to improve the efficiency of the order picker, who is now able to pick up to eight orders 

at the same >me. The order picker does not need to return to the drop-off point aeer 

comple>ng each order, which results in efficiency gains. When an order is received, the system 

divides the order lines that need to be picked on the second floor over several ‘works’ (Dutch: 

werken), based on the volume and weight of the products in the order. Each work is a bin, and 

these bins have a max capacity of 12.0 kilograms and 0.027 CBM. For each item the dimensions 

and weight are stored in the system, enabling the system to automa>cally assign order lines 

to works or bins. As orders come in during the day, the number of works in the backlog builds 

up, divided into several categories. A warehouse employee monitors the number of works in 

each category. Once there are sufficient orders in a category, works are added to a cluster 

based on the start loca>on of the work. Works are added to a cluster un>l the maximum of 

eight works on a cluster is met, or there are no works lee. The average number of works in a 

cluster lies around six. The point of release is determined by a warehouse employee, who 

considers the number of works in the backlog, the amount of work needed in the warehouse, 

and the work category. When released, all clusters in the backlog are made available for 

picking. Groups of clusters that are released for picking are called ‘waves’, which are released 

several >mes a day, depending on the number of orders coming in.    
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4.3.3 Rou?ng  
The current rou>ng in the warehouse is based on the s-shaped rou>ng, as discussed in Chapter 

2.3.3. Figure 6 below illustrates the path an order picker would follow if at least one item was 

picked from each rack. By arranging order lines in a specific order based on the storage 

loca>on, the terminal directs the order picker to the next loca>on. The sequence of the order 

lines is determined in the system based on the sort code, which is a list of all loca>ons in the 

sequence of the rou>ng. In prac>ce, not every cluster has order lines in each rack, which 

means the order picker may some>mes take the quickest path to the next loca>on instead of 

adhering to the prescribed route. 

 

Figure 6 

Warehouse map with current rou=ng 

 

4.3.4 Zoning 
The warehouse consists of a single zone, as shown in Figure 6, with one route traveling 

through the en>re warehouse. According to company experts, dividing the warehouse into 

zones has been under discussion for quite some >me. It should be noted that the warehouse 

sec>on under inves>ga>on can already be regarded as a zone within a larger warehouse. 

 

4.3.5 Layout 
In this one zone, the warehouse can be divided in three main sec>ons, making it asymmetrical. 

It has three horizontal aisles and 33 ver>cal aisles, with the ver>cal aisles not being the same 

aisles for each block. In total there are 132 racks with a varying number of shelfs. Figure 7 

shows an example of a rack and figure 6 the warehouse map. The star>ng point is located at 
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the top middle of the map, just above the grey squares, where order pickers collect their 

cluster carts and load them with bins. The endpoint is in the same area, where order pickers 

deposit the completed bins onto the conveyor belt posi>oned at the top middle of the map. 

 

Figure 7 

Rack in warehouse XYZ 

 

4.4 Order picking efficiency improvement approaches 
Based on the current state of the warehouse policies, the insights derived from company 

experts and the literature review on order picking efficiency improvement, improvement 

policies are selected. The criteria are that the policy (1) is proven successful according to 

literature, (2) shows poten>al according to company experts, and (3) its effect can be simulated 

using a simula>on model.  

 

Scenario 1: storage assignment following class-based (ABC) storage 

Although the current state of storage assignment is based on item volumes and other 

heuris>cs, warehouse experts agree there is no structured data-driven approach to this. 

Consequently, item’s loca>ons are updated occasionally, when for example the volume stands 

out or new items are added to the assortment. According to theory, the storage assignment 

problem can be approached by analyzing the items order volume and use ABC analysis to 
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create zones. The number of order lines over a specific period will be used to allocate the SKUs 

to a new loca>on. In the simula>on model the two factor levels are the baseline (current 

storage assignment) and the class-based storage assignment.   

 

First, an analysis is conducted on the ac>ve SKUs and available loca>ons. Approximately 20% 

of SKUs are assigned to Zone A, 30% to Zone B, and 50% to Zone C. Notably, the 20% of SKUs 

in Zone A account for nearly 80% of the total items picked over the last twelve months. Table 

8 below shows the division in of SKUs over the zones and the items picked in each zone. Based 

on the capacity of the warehouse racks, it is determined which racks fall into which zone. The 

number of loca>ons varies from six to forty. Figure 8 below shows the A zone in green, the B 

zone in orange, and the C zone in red.  

 

Table 8 

ABC classifica=on with items picked over the last 12 months 

 SKUs % of loca>ons Items picked % of total items 

Zone A 2386 20,1% 1,076,522 77,6% 

Zone B 3560 30,0% 247,252 17,8% 

Zone C 5924 49,9% 64,270 4,6% 

 

Figure 8 

ABC classifica=on on warehouse map 

 
Next, the SKUs with the highest number of items are assigned to loca>ons in zone A, star>ng 

with loca>ons the closest to the start and end point. Subsequently, the SKUs are assigned to 

loca>ons in zones B and C. As a result, all items are assigned to a new loca>on following the 

class-based storage principle. Appendix II displays a snippet of the input u>lized for the model. 



 34 

Scenario 2: divide warehouse in two zones 

For this change the warehouse layout should be taken into account, as well as the technical 

possibili>es. According to company experts, dividing the one zone into two zones is possible 

and therefore worth simula>ng what possible efficiency gains could be. Depending on the 

outcome of this simula>on, a scenario with three or more zones could also be tested. When 

dividing the area into two zones, the average travel distance of one cluster is expected to be 

lower. However, this requires a business-case approach, since adding a zone would result in 

more >me needed to consolidate orders aeer picking. Furthermore, where one bin could be 

used for a work with items all over the warehouse, this would now be split into two bins, 

meaning extra handling. Another factor to consider is the difference in performance between 

the high and off season. Petersen (2002) found that average order size is a factor that impacts 

the op>mal number of zones. The simula>on model compares two factor levels, being the 

baseline (one zone) and two zones.  

 

Figure 9 

Warehouse map divided in two zones 

 
 

 

Scenario 3: introducing an (extra) smaller bin  

Following the interviews that were conducted with company experts, another improvement 

sugges>on came up, that does not fit one of the categories derived from literature. Chen et al. 

(2010) includes it as policy that impacts order picking performance but assumes that 

warehouse items all have the same size and does not consider the effect on the bin size and 

clustering. As described in the case introduc>on, the items are picked in bins for transport 

purposes. For small orders that include only a few lines with small items, there is oeen 
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significant space remaining in the bin. Company experts proposed the op>on of introducing 

small bins with 50% of the capacity of the current bin. This could result in (1) efficiency gains 

as more bins can be placed on cluster carts, enabling bigger clusters and (2) less storage space 

needed in between processes because of less empty space is being stored. This requires a 

similar business case approach to the zoning problem because the efficiency gains need to be 

significant enough to jus>fy an investment or the efficiency losses elsewhere in the process. 

The model simula>on compares two factor levels: the baseline (current bin) and a smaller bin. 

  

Figure 10 

Current bin from front and top, both filled and empty 

 
 

 

Analysis revealed that approximately 40% of the exis>ng bins could be replaced with smaller 

bins, determined by the volume and weight of their contents. Table 9 below shows the max 

volume that fits a bin and the max weight the bin can have. In this scenario, the introduc>on 

of smaller bins is proposed alongside retaining the current bin.  

 

Table 9 

Bin capacity and max weight 

 Capacity (CBM) Max weight (KG) 

Large bin 0.027 12.0 

Small bin 0.0135 8.0 

When comparing the three described scenarios with the policy categories from literature, 

policies for batching, rou>ng, and layout are absent. The primary, overarching considera>on 

has been whether simula>ng a policy offers prac>cal added value for the case company. The 
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absence of a batching scenario is because the current approach relies on manual heuris>cs 

that have proven to be effec>ve. Moreover, the exis>ng warehouse management system does 

not accommodate the implementa>on of complex cluster algorithms. For the rou>ng policy, it 

holds that the current route is in general deemed a simple and efficient. Past aPempt to 

introduce alterna>ve rou>ngs have failed due to the limited tools to direct orders pickers. In 

prac>ce, order pickers tend to find their own most efficient route and s>ck to old habits. This 

does not imply that altering rou>ng policies couldn't prove effec>ve, but it does suggest that 

simula>on outcomes are poten>ally non-representa>ve. Regarding layout, there are no 

improvement sugges>ons that could be tested using the simula>on model. The reasons for 

this are that (1) the layout is highly dependent on the warehouse structure and therefore not 

easy to change, (2) layout problems should be considered when designing a warehouse from 

scratch, as changing the layout is expensive, and (3) the main sugges>ons made from literature 

the use of cross-aisles, which is already implemented (Babni et al., 2015; de Koster et al., 

2007). Warehouse experts concurred with this conclusion, affirming changes to the warehouse 

layout are not realis>c. 
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5.Simulation 
 
As described in Chapter Two, simula>on is a common method to measure the efficiency of 

improvement policies in a warehouse. The goal of the simula>on is to evaluate the proposed 

improvement policies, whether these have a significant impact on the efficiency. This requires 

a simula>on model that can simulate the order picking performance of an order picker, based 

on order data. The model uses actual, historic order data from the case company.  

 

5.1 Model structure 
The star>ng point of the simula>on model is the layout of the warehouse, which is a constant 

factor since no layout varia>ons will be simulated. Based on a warehouse map in MS Excel, 

coordinates can be allocated to each warehouse loca>on. The coordinates derive from the 

rows and columns of the sheet, which are then converted into X and Y values. Figure 11 below 

shows the warehouse map. Order data from the ERP system MS AX gives order lines for a 

specified >me frame, with a storage loca>on for each line. By referencing the storage loca>on 

of each storage line, coordinates can be assigned, thereby providing a specific loca>on within 

the model for each order line. The difference between loca>on A and B is the travel distance.  

 

Figure 11 

Warehouse map 

 

To sequence the order lines correctly for the calcula>on of the travel distance and for further 

simula>on, MS SQL Server is u>lized. Leveraging order data and coordinate inputs, a series of 

SQL queries constructs a model to generate travel distance as output. When calcula>ng the 

travel distance between loca>on A and B, the model keeps into accounts the racks and 

navigates through the aisles. Further informa>on on how the travel distance will be calculated 

will be discussed in subsec>on 5.2. 
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Table 10 

SQL pseudocode to calculate the distance between loca=ons 

For each set of storage locations 'loc1' en 'loc2': 
        - calculate distance between isles: 
            [distance Y isle] = absolute value of (w.y - loc1.y) + absolute 
value of (w.y - loc2.y) 
            [distance X isle] = absolute value of (w.x - loc1.x) 
            [distance Y isle min] = minimum of (absolute value of (w.y - loc1.y) 
+ absolute value of (w.y - loc2.y)) over (partitie per a.recid) 
 
        - Calculate the distance between storage locations within an isle: 
[distance Y] = if the first two characters of b.location differ from the first 
two characters of a.location: 
                    then 0 
                else: 
                    absolute value of (loc1.y - loc2.y) 
[distance X] = if the first two characters of b.location differ from the first 
two characters of a.location: 
                    then 0 
                else: 
                    absolute value of (loc1.x - loc2.x) 
 

 
Table 10 shows a snippet of the code of queries used for the simula>on model. With this model 

as base, scenarios can be simulated by changing the input parameters and store these in the 

model as scenarios. Table 11 below shows a snippet of pseudocode how the different scenarios 

are selected to conduct the simula>on. This is all done in a non-produc>on environment, so 

edits to parameters are not implemented in the ERP system. All the input parameters are 

described in Chapter 5.2. Figure 12 shows the complete model structure.  

 

Table 11 

SQL pseudocode to select scenario for simula=on 

If  @scenario_sections equals 1 then 

    set @scenario_sections_name = 'split sections' 

else if @scenario_sections_name equals 2 then 

    set @scenario_sections_name = 'current sections 2-3' 

endif 

 

if  @scenario_sorteercode equals 1 then 

    set @scenario_sorteercode_naam = 'sorting_code_1 

else if @scenario_sorteercode equals 2 then 
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    set @scenario_sorteercode_naam = 'sorting_code_2' 

endif 

 
Figure 12 

Simula=on model structure 

 
 

 

5.2 Input parameters 
In addi>on to the coordinates of the warehouse loca>on and the order date, the model 

incorporates various other input parameters. Some of these parameters are needed for 

simula>ng specific scenarios, such as realloca>ng order lines to clusters or bins when 

necessary.  

 

Storage loca=on coordinates 

As described in Chapter 5.1, a warehouse map is created in MS Excel with the propor>ons of 

the warehouse layout. Each rack and each isle subsec>on have X and Y coordinates, based on 

the columns and rows of the map. For example, loca>on 3W23 has the coordinates (21, 19) 

and loca>on 2E10 has the coordinates (71, 12). The subsec>on of isles also has coordinates, 

that are needed to calculate the route the order picker is travelling, as this cannot be a straight 
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line from loca>on A to B. This distance is calculated along the gridlines, traveling the X distance 

and the Y distance, also known as the ManhaPan distance.  

 

Order data 

Datasets with actual historic datasets are used to simulate the scenarios. For a simula>on the 

input is a full day of orders. An order file consists of several levels: 

- Waves: A wave is a buffer of works that is released to be picked once it reaches a certain 

level, or work is required in the warehouse 

- Clusters: A cluster is a batch of works that is combined to be picked by an order picker 

in one go using a cluster cart  

- Works: A work is a set of order lines that is ordered on the same customer order. Once 

a work does not fit in one bin, it is split up in two or more works, each with a unique 

work ID. Each work also has a unique bin ID, once it has been picked in a bin.  

- Order lines: An item or a number of the same items that needs to be picked 

Next to this, each order line has informa>on like the storage loca>on, the weight of the item(s) 

in the order line, the volume of the item(s) in the order line, etc.  

 

Storage loca=on of SKUs 

The order data contains both the product SKU and the product loca>on where the product is 

stored. However, one of the scenarios tests a different storage assignment, meaning the 

storage loca>on of each SKU will be different. A file with the new storage loca>ons will be used 

for the travel distance calcula>on. 

 

Sort code 

The sort code is the sequence the terminal will display the items that need to be picked in, and 

thus to a certain extent the route that the order picker will travel. The model calculates the 

fastest route to the next loca>on.  

 

No. of zones & zone division 

Splibng the warehouse into two zones is one of the scenario’s that will be simulated. In the 

scenario with two zones, parameters such as the clusters and the storage assignment will be 

different.  
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Table 12 below contains some other notable input parameters that are not discussed above. 

 
Table 12 

Input parameters 

Input parameters Descrip>on 

Max capacity bins For a normal bin this is 0.027 CBM. The 

combined volumes of items in a bin cannot 

exceed this.  

Max weight bins For a normal bin this is 12 KG. The 

combined weight of items in a bin cannot 

exceed this.  

Max capacity cluster cart The number of bins that can be placed on a 

cluster cart. For the normal cluster cart this 

is eight.  

 
5.3 Assump?ons 
The assump>ons form the framework upon which the model operates, influencing its results 

and real-world applicability. The assump>ons below, provide clarity on its scope and 

limita>ons, and enable a nuanced interpreta>on of the simula>on outcomes. 

 

- A picker-to-product system is assumed for the order picking process. 

- Products stored in the same rack have the same storage loca>on. When picking 

mul>ple items from different storage loca>ons from the same rack, no addi>onal 

distance is covered. With a width of 130 cm, all loca>ons on the rack are accessible 

without the need for movement.  

- Each order picker stops and start at the same loca>on. When dropping of bins aeer 

comple>ng the picking process, the picker can place the bins on a roller conveyor belt. 

In reality the exact drop off point could vary a few meters, but in the model this in one 

loca>on. 

- Running out of inventory in the warehouse is not considered. 
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- A dedicated storage system is considered, where each storage loca>ons stores on SKU 

and each SKU is only stored at one loca>on. 

 

5.4 Sensi?vity analysis 
To ensure the robustness of the simula>on, varia>on in key parameters is assessed. By varying 

these parameters within defined ranges biases are avoided. As described in chapter 4.2, as a 

result of the nature of the products stored in the warehouse of the case company, there is a 

high variety in the number of order lines that is being processed in the high season compared 

to the off season. Roughly 60% of the total order lines is shipped in the high season, which is 

the period June to September. In the high season the average order composi>on is different, 

with more average items per order line. Also, because more works are being processed, the 

expecta>on is that clusters can be more efficient, due to the pool of works being larger.  To 

avoid biases caused by the seasonality effect, ten different order files are used, five order files 

in the high season and five order files in the off season. Table 13 below shows the ten order 

files. Because there also is a varia>on in average order lines processed on a day, depending on 

the day in the week, this is also considered.  

 

Table 13 

Order files for simula=on 

Order batch Season 

20-06-2023 High season 

30-06-2023 High season 

04-07-2023 High season 

12-07-2023 High season 

20-07-2023 High season 

15-02-2024 Off season 

22-02-2024 Off season 

28-02-2024 Off season 

05-03-2024 Off season 

13-03-2024 Off season 
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6.Results and analysis 
 
This chapter presents the results of the simula>ons conducted for each scenario. Each 

scenario's results are analyzed in detail, evalua>ng the significance of the observed effects. 

Addi>onally, this chapter examines other influencing factors such as seasonality, which might 

impact the results. Following this analysis, the findings can be used to prepare the business 

cases in Chapter Seven.  

 

6.1 Data prepara?on 
As described in Chapter Five, the simula>ons are conducted based on order batches that 

contain orders processed on one day. To ensure reliable results, the order files are cleaned 

before running the simula>on. Specific order categories, such that are processed outside the 

normal order stream are excluded. An example of such order category is the Single SKU (SSKU) 

category, that is for orders with only one order line. Addi>onally, outliers such as products with 

temporary loca>ons that have numerous order lines are not included in the results. 

Occasionally, a new item with many order lines is temporarily placed in an unregistered 

loca>on that is not visible in the model. Order files displaying unusual paPerns due to such 

incidents, which cannot be rec>fied by excluding subsets of data, are replaced with order files 

from other dates.  

 

6.2 Scenario 1 
Scenario 1 simulates an alterna>ve storage assignment based on ABC-classifica>on, where 

items are assigned to a loca>on based on the number of order lines this item is in over a period. 

As table 14 shows, this new storage assignment does not perform bePer on efficiency, with an 

increased travel distance for each order batch. With an average increase of 28.7% the 

difference between the current state and the scenario is significant (p-value: 0.0026).  

 

Table 14 

Difference in travel distance for scenario 1 

Date Order Lines Distance 
Current State 

Distance 
Scenario 

Difference 
% 

20-06-2023 17,431 57,417 79,402 38,3% 
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30-06-2023 15,242 52,520 73,628 40,2% 

04-07-2023 22,068 70,395 96,228 36,7% 

12-07-2023 20,211 64,351 88,038 36,8% 

20-07-2023 13,777 47,443 64,263 35,5% 

15-02-2024 1,799 13,219 15,324 15,9% 

22-02-2024 2,093 13,374 16,425 22,9% 

28-02-2024 3,847 23,522 27,880 18,5% 

05-03-2024 3,612 22,438 26,592 18,5% 

13-03-2024 3,668 21,692 26,901 24,0% 

 

Figure 13 

Bar chart of the travel distance of the current state and scenario 1 

 
The reason for this nega>ve effect seems to be that the heuris>cs used by the warehouse 

team, which rely on their experience, are effec>vely suited to the product offerings of the case 
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company. Where fast-moving product are placed close to the in- and outbound point in the 

current state, just like the scenario, ‘product families’ are also considered. Based on years of 

experience, certain product groups are iden>fied which oeen appear on the same orders, 

which are assigned to loca>ons in the same racks, or isles. Figures 14 and 15 below show the 

spread of order lines for the current state and the scenario for the same order batch. Figure 

14 shows that many items are picked on the lee side of the warehouse. This is not par>cularly 

close to the in- and outbound point, but it indicates that a specific type of order is stored 

together, which enables efficient picking. Although the scenario shows an even spread around 

the picking route, it does not match the efficiency of the current storage assignment. 

 

Figure 14 

Spread of order lines current state  

 
Note. Dark blue indica>ng a high number of order lines picked form this storage rack 

Figure 15 

Spread of order lines scenario 1  

 
 Note. Dark blue indica>ng a high number of order lines picked form this storage rack 

 

To inves>gate whether the effect of the implemented policies differed between high season 

and off season, addi>onal tests were conducted. High season includes the order batches from 

the dates in June and July, and off season are the other months in 2024. This difference is 
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significant, with 37.5% increase in high season and 20.0% in off season, see table 15 (p-value: 

0.008). The stronger effect in high season could be explained by the already men>oned 

placement of products in groups, which is even more effec>ve during this >me when these 

types of products are ordered more frequently. 

 

Table 15 

Difference high- and off season scenario 1 

 
Distance 
current 
state (avg) 

Distance 
scenario 
(avg) 

Difference % 

High season 58,425 80,312 37.5% 

Off season 18,849 22,624 20.0% 

 

In conclusion, scenario 1 did not enhance efficiency and actually resulted in a significant 

increase in travel distance for order picking, par>cularly during high season. The current 

storage policy performs bePer, sui>ng the product assortment. Further inves>ga>on is needed 

to explore storage policies that can improve efficiency. Since the effect of this scenario on 

efficiency is nega>ve, it will not be developed further into a business case in Chapter Seven.   

 

6.3 Scenario 2 

In scenario 2 the effect of the division of the warehouse in 2 zones is simulated. Table 16 below 

shows the results and compared the travel distance of each order batch, showing a decrease 

for each date. The implementa>on of this policy resulted in an average reduc>on of 15.8% 

distance travelled, which is sta>s>cally significant (p-value: 0.0002).  

 

Table 16 

Difference in travel distance for scenario 2 

Date Order Lines Distance 
Current State 

Distance 
Scenario 

Difference 
% 

20-06-2023 17,431 57,417 47,486 -17.3% 

30-06-2023 15,242 52,520 49,398 -5.9% 

04-07-2023 22,068 70,395 59,924 -14.9% 
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12-07-2023 20,211 64,351 54,166 -15.8% 

20-07-2023 13,777 47,443 39,140 -17.5% 

15-02-2024 1,799 13,219 10,785 -18.4% 

22-02-2024 2,093 13,374 10,698 -20.0% 

28-02-2024 3,847 23,522 18,638 -20.8% 

05-03-2024 3,612 22,438 17,539 -21.8% 

13-03-2024 3,668 21,692 17,634 -18.7% 

 

Figure 16 

Bar chart of the travel distance of the current state and scenario 2 

 

With the division of the warehouse into two zones, it was an>cipated that the number of bins 

in use would increase since each bin could only be filled with items located within its respec>ve 

zone. This expecta>on is confirmed, with an observed increase of 15.4% in the number of bins 

used. Corresponding to this increase in bins, the number of clusters also increased, with an 
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average increase of 19.3%. This rise in clusters, coupled with a reduc>on in travel distance, led 

to a significant decrease in the average distance traveled per cluster, dropping from 139 meters 

to 94 meters. With the increase in bins for the same quan>ty of items, the fill rate of the bins 

drops with 14.2% on average. 

 

Table 17 

Difference in cluster and bin u=liza=on for scenario 2 

Date Clusters 
Current 
State 

Clusters 
Scenario 

Difference 
% 

Bins 
Current 
State 

Bins 
Scenario 

Difference 
% 

20-06-2023 467 550 17.8% 3,512 3,949 12.4% 

30-06-2023 433 502 15.9% 3,211 3,573 11.3% 

04-07-2023 549 643 17.1% 4,159 4,666 12.2% 

12-07-2023 494 588 19.0% 3,698 4,179 13.0% 

20-07-2023 372 436 17.2% 2,828 3,186 12.7% 

15-02-2024 84 114 35.7% 544 662 21.7% 

22-02-2024 103 127 23.3% 728 845 16.1% 

28-02-2024 147 181 23.1% 1,087 1,301 19.7% 

05-03-2024 141 176 24.8% 1,026 1,215 18.4% 

13-03-2024 144 177 22.9% 1,084 1,272 17.3% 

 

The percentages for the dates in high season show lower values that low season, so a test is 

performed to determine whether this difference is significant. The p-value of the paired t-test 

suggests there is no significant difference between the seasons (p-value: 0.075). However, the 

value is close to the threshold, indica>ng poten>al prac>cal significance. 
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Table 18 

Differences high- and off season scenario 2 

 
Distance 
current 
state (avg) 

Distance 
scenario 
(avg) 

Difference % 

High season 58,425 50,023 -14.4% 

Off season 18,849 15,059 -20.1% 

 

In conclusion, the results of the simula>on of scenario 2 demonstrate that the simulated policy 

significantly improves the warehouse efficiency, by reducing the travel distance. At the same 

>me, the number of bins rises which requires addi>onal handling capacity. Although there is 

no strong sta>s>cal evidence to suggest that the effect of the policy differs between high and 

off season, it poten>ally has prac>cal significance.  

 
6.4 scenario 3 
In scenario 3 the effect of the introduc>on of a small bin, with half of the capacity and volume 

of a normal bin, is simulated. Table 19 below shows the results of the simula>on with the travel 

distance of both the current state and the scenario for each order batch. The use of the smaller 

bin resulted in an average reduc>on of 11.9% in travel >me, which is a significant effect (p-

value: 0.001).   

 

Table 19 

Difference in travel distance for scenario 3 

Date Order Lines Distance 
Current State 

Distance 
Scenario 

Difference 
% 

20-06-2023 17,431 57,417 51,845 -9.7% 

30-06-2023 15,242 52,520 47,826 -8.9% 

04-07-2023 22,068 70,395 62,698 -10.9% 

12-07-2023 20,211 64,351 57,237 -11.1% 

20-07-2023 13,777 47,443 41,777 -11.9% 

15-02-2024 1,799 13,219 11,392 -13.8% 

22-02-2024 2,093 13,374 11,988 -10.4% 
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28-02-2024 3,847 23,522 19,889 -15.4% 

05-03-2024 3,612 22,438 19,215 -14.4% 

13-03-2024 3,668 21,692 18,970 -12.5% 

 
 
Figure 17 

Bar chart of the travel distance of the current state and scenario 3 

 
 
The use of smaller bins has increased the capacity of the cluster carts, which is the sole reason 

for the decrease in travel distance in this scenario. Table 20 indicates an average decrease in 

the number of clusters by 26.6%, while maintaining the same number of bins. Although the 

average travel distance per cluster increased to 167 meters from the current 139 meters, the 

significant reduc>on in the number of clusters results in an overall decrease in total travel 

distance. 
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Table 20 

Difference in cluster and bin u=liza=on for scenario 3 

Date Clusters 
Current 
State 

Clusters 
Scenario 

Difference No. of 
bins 

% of bins 
that are 
small bins 

20-06-2023 467 354 -24.1% 3,512 62.2% 

30-06-2023 433 325 -24.9% 3,211 64.7% 

04-07-2023 549 405 -26.2% 4,159 64.9% 

12-07-2023 494 365 -26.1% 3,698 64.8% 

20-07-2023 372 282 -24.2% 2,828 60.9% 

15-02-2024 84 66 -21.4% 544 70.2% 

22-02-2024 103 70 -32.0% 728 75.1% 

28-02-2024 147 102 -30.6% 1,087 73.2% 

05-03-2024 141 99 -29.8% 1,026 73.9% 

13-03-2024 144 106 -26.4% 1,084 65.7% 

 

With an 10.5% decrease in travel distance in high season and a 13.6% decrease in off season, 

there is a significant difference in effect (p-value: 0.021). This difference can be explained by 

the higher percentage of small bins that can be u>lized in the off season. On average, 71.6% 

of the bins used in off season can be small bins, while in the high season this is only 63.5%. A 

different order composi>on is the cause of this difference, with many more items per bin in 

the high season. In the off season there are more small orders, resul>ng in more works with 

low volume and weight that can fit a small bin. Figure 21 shows the significant difference in 

items per order with a high season average of 36.5 items against a low-season average of 15.2 

items per bin.  
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Table 21 

Differences high- and off season scenario 3 

 
Distance 
current 
state (avg) 

Distance 
scenario 
(avg) 

Difference % % of bins that 
are small bins 

Average 
items per bin 

High season 58,425 52,276 -10.5% 63.5% 36.5 

Off season 18,849 16,291 -13.6% 71.6% 15.2 

 

Figure 18 

Quan=ty per bin in high- and off season 

 

In conclusion, the introduc>on of smaller bins significantly reduces travel distances in by 

increasing cluster cart capacity, reducing the number of clusters needed. This efficiency is 

par>cularly pronounced in the off season, with a notable 13.6% travel distance reduc>on due 

to a different order composi>on.  Therefore, it is worth further inves>ga>ng the feasibility of 

implemen>ng smaller bins.  
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6.5 Scenario 4 
Given the significant and posi>ve effect of scenario 2 and 3, the combined policies were also 

simulated. The combined effect is an average decrease of 27.5% in travel distance (p-value: 

0.0002). The average difference in low season is slightly higher compared to high season, -

30.5% compared to -26.6%. 

 

Table 22 

Difference in travel distance for scenario 4 

Date Order Lines Distance 
Current State 

Distance 
Scenario 

Difference 
% 

20-06-2023 17,431 57,417 41,617 -27.5% 

30-06-2023 15,242 52,520 38,995 -25.8% 

04-07-2023 22,068 70,395 51,779 -26.4% 

12-07-2023 20,211 64,351 47,130 -26.8% 

20-07-2023 13,777 47,443 34,927 -26.4% 

15-02-2024 1,799 13,219 9,420 -28.7% 

22-02-2024 2,093 13,374 9,787 -26.8% 

28-02-2024 3,847 23,522 15,651 -33.5% 

05-03-2024 3,612 22,438 15,406 -31.3% 

13-03-2024 3,668 21,692 15,220 -29.8% 
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Figure 19 

Bar chart of the travel distance of the current state and scenario 4 

 
Where scenario 2 sees an increase in clusters because of the increase in bins, scenario 3 sees 

a decrease in clusters because more bins can be assigned to one cluster. This results in a 

decrease in cluster for this scenario, but less strong than scenario 2. The number of bins is the 

same as scenario 2.  

 

Table 23 

Difference in cluster and bin u=liza=on for scenario 4 

Date Clusters 
Current 
State 

Clusters 
Scenario 

Difference 
% 

Bins 
Current 
State 

Bins 
Scenario 

Difference 
% 

20-06-2023 467 396 -15.2% 3,512 3,951 12.5% 

30-06-2023 433 376 -13.2% 3,211 3,631 13.1% 

04-07-2023 549 459 -16.4% 4,159 4,677 12.5% 
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12-07-2023 494 427 -13.6% 3,698 4,291 13.4% 

20-07-2023 372 318 -14.5% 2,828 3,198 13.1% 

15-02-2024 84 87 -3.6% 544 662 21.7% 

22-02-2024 103 90 -12.6% 728 845 16.1% 

28-02-2024 147 120 -18.4% 1,087 1,301 19.7% 

05-03-2024 141 120 -14.9% 1,026 1,215 18.4% 

13-03-2024 144 126 -12.5% 1,084 1,274 17.5% 

 

In conclusion, this scenario demonstrates the greatest poten>al for efficiency improvement 

with the highest reduc>on in travel distance. The combina>on of smaller bins and two zones 

op>mizes the use of bins and clusters.   
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7.Business Cases 
 
This chapter presents three business cases, based on the results from the scenario simula>ons 

discussed in Chapter Six. Scenario 1 is not further discussed, since it showed no improvement 

in efficiency, ruling out a posi>ve outcome for a business case. Business case 1 is based on the 

results of scenario 2, where the warehouse is divided into zones. Business case 2 is based on 

the results of scenario 3, where a small bin is introduced to the warehouse process. Business 

case 3 is based on the scenario that combines scenario 2 and 3. 

 
Business case 1: Divide warehouse into zones 
Based on the results from Chapter Six, splibng the warehouse into two dis>nct zones can 

significantly improve order-picking efficiency. However, it is essen>al to consider poten>al 

challenges, such as increased bin usage and poten>al boPle necks. In the business cases the 

benefit of the efficiency improvement is measured in cost savings.  

 
Benefits  
The significant decrease in travel distance shows an efficiency improvement, however, 

according to van Gils et al. (2018b), 50% of the >me spent on order picking can be aPributed 

to traveling from loca>on to loca>on and the other 50% to searching, setup and picking. This 

is a reasonable assump>on for a picker-to-parts system like the one used at the case company. 

Therefore, the efficiency improvement is calculated on 50% on the hours logged on order 

picking. Addi>onally, the analysis considers the difference between high and off seasons. This 

difference is significant because, first, in the high season the travel distance improvement is 

lower as shown in Chapter Six. Second, the hours per day spent on order picking is higher, 

because of the increase in order volume being processed daily (see figure 5). And third, the 

cost per hour is lower in high season, compared to off season.  
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Table 24 

Efficiency improvement scenario 2 in hours 

 Average order 
picking hours 
per day 

Part of order 
picking that is 
travel >me (50%) 

Efficiency 
improvement 

Efficiency 
improvement in 
hours 

High season 450 225 14.4% 32.4 

Off season 140 70 20.1% 14.1 

 

The average order picking hours per day in table 23 is based on the average of the number of 

hours logged on order picking in the specific sec>ons. The cost per hour in high season is higher 

because the company hires temporary, young holiday workers during this period. These 

workers have a rela>vely lower hourly wage compared to employees with permanent 

contracts. In the off-season, the company also employs workers through an employment 

agency, who are more expensive. Where an hour in high season costs €15 on average, this is 

€20 in off season. Consequently, these agency-employed hours are the first to be reduced. 

With the savings in hours per day and the cost per hour, the daily savings can be calculated, 

which can then be used to determine the annual savings. This calcula>on considers seven 

weeks of high season and forty weeks of off season. The total savings es>mate in a year adds 

up to €73,410, of which the breakdown is in table 25 below.  

 

Table 25 

Yearly savings scenario 2 in euros 

 Saving in hours 
per day 

Cost per hour 
(€) 

Savings per day 
(€) 

Savings per 
year (€) 

High season 32.4 €15 €486 €17,010 

Off season 14.1 €20 €282 €56,400 

 
Considera?ons & mi?ga?on strategies 
A reduc>on in travel distance is not the only consequence of splibng the warehouse into two 

zones. It also significantly increases the number of bins used for order picking. In the off 

season, the average number of addi>onal bins is 165, an 18.5% increase compared to the 

current state. In the high season, the increase is 12.3%, resul>ng in an average increase of 429 
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bins. While this change does not impact the order picking process itself, it does affect 

subsequent stages of the order processing line. 

 

Firstly, the addi>onal bins lead to increased handling at the sor>ng and consolida>on point, 

where bins are transported once picking is finished. At this stage, all bins are taken from the 

roller conveyor and temporarily stored in racks, so more >me is required when extra bins are 

received. According to es>mates by company experts sta>oned at this point, every 50 extra 

bins result in an addi>onal 12 minutes of work. Secondly, the packing area also experiences 

increased workload due to the addi>onal bins. Similar to the sor>ng and consolida>on point, 

the extra bins extend the throughput >me needed to process and pack all orders. Since items 

are distributed across more bins, more bins need to be handled, stored, and returned. An 

es>mate from company experts sta>oned here, is that every 50 bins is an addi>onal 7 minutes 

of work. At both stages there are two employees present, meaning the 50 extra bins add 

respec>vely 24 and 14 minutes of work. Table 26 shows the average hours a day these extra 

bins add, with table 27 showing the extra costs these extra hours add up to.  

 

Table 26 

Extra hours at sor=ng & consolida=on and packing stage 

  Average 
extra bins 
per day 

Addi>onal 
>me per 50 
added bins 
(minutes) 

Average >me 
per day 
added 
(minutes) 

Average 
>me per 
day added 
(hours) 

Sor8ng & 

consolida8ng 

High season 429 24 206 3.4 

Off season 165 24 79 1.3 

Packing 
High season 429 14 120 2.0 

Off season 165 14 46 0.8 

Table 27 

Extra cost scenario 2 in euro’s 

 Extra hours per 
day 

Cost per hour 
(€) 

Cost per day (€) Cost per year 
(€) 

High season 5.4 €15 €81 €2,835 

Off season 2.1 €20 €42 €8,400 
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Finally, the increase in bins may create a poten>al boPleneck in the order processing workflow 

at the sor>ng and consolida>on point. Figure 20 below shows the bins placed in the racks at 

this stage. The combined capacity of all racks is 672 bins. In the high season, the number of 

bins processed in one day can exceed 4,000, crea>ng a boPleneck during peak >mes. With this 

scenario, the number of bins increases by an average of 12.3%, resul>ng in more than 400 

addi>onal bins that need to be processed. Since the consolida>on and sor>ng point is already 

overflowing during peak >mes in the current state, it is expected that these addi>onal bins will 

further Intensify this effect. The number of bins in storage not only depends on the influx from 

the warehouse sec>on that is being analyzed, but also on the items that are picked in other 

sec>ons, which are consolidated here. Therefore, the es>mated number of bins at specific 

>mes cannot be calculated.  However, this scenario is likely to create a boPleneck at the sor>ng 

and consolida>on point if the capacity is not expanded. The loca>on offers the possibility to 

expand with addi>onal racks, of which the cost of material and labor is es>mated at a total of 

€3,000. It should be noted that even with this increased capacity, there is no guarantee this 

will not be a boPleneck during peak periods.  

 

Figure 20 

Sor=ng and consolida=on point 

 
Cost-benefit analysis 
Dividing the warehouse into two dis>nct zones reveals a notable increase in order-picking 

efficiency, resul>ng in substan>al annual savings. The projected savings add up to €73,410 in 

cost of hours, with €17,010 saved in the high season and €56,400 in the off-season. However, 
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the efficiency gain is counterbalanced by increased handling >mes and costs due to addi>onal 

bins, adding €11,235 to annual costs and dilu>ng the net savings to €62,175. Moreover, the 

increased bin usage could intensify exis>ng boPlenecks at the sor>ng and consolida>on point 

during peak >mes, necessita>ng capacity expansion to fully realize the benefits of the new 

zoning strategy. This expansion would require a one->me investment in extra racks and a 

realloca>on of space in the warehouse, es>mated at €3,000.  

 
Business case 2: Implement small bins 
The results in Chapter Six show a significant decrease in travel distance for this scenario, 

showing an improvement of order picking efficiency. Next to these gains, poten>al challenges 

and investments should be considered. 

 
Benefits 
Similar to business case 1, the efficiency is allocated to 50% of the hours that are logged on 

order picking. Also here, the difference between high- and off season turned out to be 

significant. The analysis shows the cost savings calcula>on for both seasons separately.   

 

Table 28 

Efficiency improvement scenario 3 in hours 

 Average order 
picking hours 
per day 

Part of order 
picking that is 
travel >me (50%) 

Efficiency 
improvement 

Efficiency 
improvement in 
hours 

High season 450 225 10.5% 23.6 

Off season 140 70 13.6% 9.5 

 

Refer to business case 1 for the explana>on on the hours and hourly rates used for the 

calcula>on in table 28. The savings in hours translates to a total annual savings in cost of 

€50,565, which is specified in table 29 below. Another area where savings are achieved is in 

storage space, thanks to the reduced volume. By making adjustments to the sor>ng and 

consolida>on area, more bins can be stored within the same space. Especially in combina>on 

with business case one, where this area creates a boPleneck due to the increase in bins, this 

could be a crucial benefit, which is further analyzed in business case three.  
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Table 29 

Yearly savings scenario 3 in euros 

 Saving in hours 
per day 

Cost per hour 
(€) 

Savings per day 
(€) 

Savings per 
year (€) 

High season 23.9 €15 €359 €12,565 

Off season 9.5 €20 €190 €38,000 

 
 
Considera?ons & mi?ga?on strategies 
Since switching from a normal-sized bin to a smaller bin only occurs when the bin's contents 

permit it, this will not result in an increase in the number of bins. Therefore, this does not 

impact the hours spend on handling, sor>ng, and consolida>ng. However, introducing a small 

bin entails an investment in the bins themselves and poten>ally in aligning the process for 

compa>bility.  

 

First, there is the investment in the new, small bins. These can be purchased from the same 

supplier that the company uses for its regular bins. The new bin has the same length and width 

but is half the height, thereby halving its capacity. Considering the fluctua>ng use of bins 

during high- and off season, both periods should be considered when determining the quan>ty 

of bins to purchase. Table 30 below shows the calculated quan>ty required, based on the 

percentages of bins replaceable with small bins as detailed in Chapter Six: 63.5% for the high 

season and 71.6% for the off season. This is based on the volume of items in the system, which 

is added up based on the items that are in one bin. In prac>ce, according to company experts, 

it happens that items that should fit into a bin according to the system, may not fit due to their 

shape or weight. This results in more large bins being used than predicted by the system. 

Therefore, an error margin of five percent points is in place. Table 30 shows the final 

percentage of small bins that are needed.  
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Table 30 

Number of small bins needed 

 Bins per day 
needed 

% small bin.  Small bins 
needed 

Small bins needed 
(rounded) 

High season 4500 58.6% 2637 2,700 

Off season 3000 66.6% 1998 2,000 

To ensure sufficient bins are available throughout the whole year, 2,700 bins are needed. To 

prepare for future order growth and unexpected peaks, it is advisable have an addi>onal 10% 

buffer, which is also the case now with the current bin. With a cost per unit of €8, the total 

purchase value of 2,970 bins is €23,760. 

 

Secondly, the warehouse system and workflow need to be compa>ble with this new bin size. 

The current system is designed for a single size, so both the soeware and hardware used for 

bin processing should be assessed for compa>bility. Table 31 below lines out all considera>ons 

and the mi>ga>ons or solu>ons. The direct costs associated with these poten>al adjustments 

are minimal since they can be managed in-house, but this requires further inves>ga>on. 

 

Table 31 

Compa=bility considera=ons for the small bin 

Problem Descrip>on Mi>ga>on or Solu>on 

Scanning of the bin on 

the roller conveyor 

Each bin has a barcode that is 

scanned at a scanning point on the 

roller conveyor. The new bins are 

shorter, with the barcode located 

lower on the bin. 

Scanning points are 

adjusted.  

Different sizes of bins 

on the roller conveyor 

Bins are advanced on the roller 

conveyor as one bin pushes another. 

Issues may arise when a small bin 

pushes a larger bin, and vice versa. 

According to experts, this 

will not pose any 

problems. 
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Capability of system 

and soeware 

The system is not designed to make 

a dis>nc>on in bin sizes to e.g. make 

clusters. 

According to experts, 

necessary changes can be 

made.  

Cluster carts Cluster carts as shown in figure 4 can 

only fit 8 bins, regardless the size. 

The cluster carts can be 

modified to a capacity 

carrying 12 small bins.  

Finding bins on 

clusters carts 

Due to the increased number of bins 

on cluster carts, it is more difficult to 

find the correct bin for the picked 

items. 

Solu>on in soeware need 

to be explored.  

Storage racks capacity The capacity of the sor>ng and 

consolida>on point fits the same 

number of bins regardless the size. 

Either the capacity of the 

storage racks can be 

increased, or bins can be 

placed on each other.  

 
Cost-benefit analysis  
The major benefit is a significant decrease in travel distance and >me for order picking, 

resul>ng in improved efficiency. During the high season, the efficiency improvement translates 

to 23.6 hours saved per day, and 9.5 hours during the off-season. Annually, this results in cost 

savings of €12,565 in high season and €38,000 in off season, adding up to €50,565 (see table 

29). Another benefit is the improved storage space u>liza>on. With smaller bins, more items 

can be stored in the same area, allevia>ng boPlenecks, which shows even higher poten>al in 

combina>on with business case 1. On the other hand, this implementa>on involves an ini>al 

investment. The purchase of 2,970 small bins, each cos>ng €8, totals €23,760. Addi>onally, 

warehouse systems and workflows need modifica>ons to accommodate the new bin size. 

Overall, the long-term savings and opera>onal efficiencies outweigh the ini>al investments, 

making this a profitable improvement. 

 

Business case 3: Divide warehouse in zones & implement small bins 

The results of scenario 4, which simulates the combined policies of scenarios 2 and 3, show 

the greatest impact on efficiency. Where the increase in bins is a crucial considera>on for 

scenario 2, scenario 3 present a solu>on with reducing the storage space needed per bin.  
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Benefits 
Using the same calcula>ons as in the previous business cases, the savings in hours and euros 

can be found in tables 32 and 33 below. Total yearly savings amount to €117,065. 

 

Table 32 

Efficiency improvement scenario 4 in hours 

 Average order 
picking hours 
per day 

Part of order 
picking that is 
travel >me (50%) 

Efficiency 
improvement 

Efficiency 
improvement in 
hours 

High season 450 225 26.6% 59.9 

Off season 140 70 30.5% 21.4 

 

Table 33 

Savings scenario 4 in euros 

 Saving in hours 
per day 

Cost per hour 
(€) 

Savings per day 
(€) 

Savings per 
year (€) 

High season 59.9 €15 €899 €31,465 

Off season 21.4 €20 €428 €85,600 

 
Considera?ons & mi?ga?on strategies 
With a smaller bin, the issue of the sor>ng and consolida>on point as a boPleneck is mi>gated. 

Due to their smaller size, parts of the racks can be adjusted for the small bins by approximately 

25%. Since the new bins are lower, shelves can be added to racks, increasing the capacity per 

rack by 50%, making it exclusively for small bins. These smaller shelves would not fit a normal 

bin, so this adjustment should be applied to approximately 50% of the racks. During high 

season, 58.6% of the bins are small bins, and this allows us to maintain a buffer, as small bins 

will fit in a normal spot, but not vice versa. If the capacity of 50% of the racks will be increased 

with 50%, the total bin capacity increases with 25%. With the current capacity being 672 bins, 

the new capacity will be 840: 420 for all bins, 420 for small bins only. The cost components are 

a combina>on of the previous scenarios, of which the background is further explained in 

business case one and two. The yearly extra labor cost as a result of the increase in bins is 

es>mated at €11,234. Due to the division of zones causing an average increase in bins of 15.4%, 
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the number of small bins that need to be purchased is also increased by this percentage. 2,970 

bins plus 15.4% results in 3,428. The total purchase value of the bins would be 3,428 x €8 which 

is €27,424.  

 
Cost-benefit analysis  
In conclusion, this scenario presents the most improvement on efficiency, resul>ng in a yearly 

cost saving of €117,065. The addi>onal labor cost due to the increased number of bins is 

es>mated at €11,235 annually. The one->me cost for purchasing 3,428 small bins is €27,424. 

Therefore, the ini>al investment will be quickly offset by the annual savings, leading to a net 

posi>ve financial impact. 

 
Table 34 

Overview savings business cases 

 Cost savings 

(yearly) 

Cost added 

(yearly) 

One->me 

investment 

Net savings 

aeer one year 

Business case 1 €73,410 €11,235 €3,000 €59,175 

Business case 2 €50,565 €0 €23,760 €26,805 

Business case 3 €117,065 €11,235 €27,424 €78,406 
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8.Conclusion & discussion 
 

8.1 Main findings 
The main findings of this study are derived from both a literature review and a custom-made 

simula>on model tailored to the company's specific warehouse opera>ons. The literature 

review highlights travel distance as the metric for order picking efficiency. While literature 

brings alterna>ve op>ons forward, travel distance is used in most studies since it is objec>ve 

and consistent. A variety of improvement policies are suggested by literature, in the categories 

storage assignment, batching, rou>ng, zoning, and layout. From these categories a selec>on 

of improvement policies was made with the help of company experts, of policies that showed 

poten>al and are realis>c to implement. The selected improvement policies are a new storage 

assignment using ABC-classifica>on based order lines, splibng the warehouse into two zones, 

and the u>liza>on of a small bin in the order picking process. Literature also emphasizes the 

suitability of simula>on models in measuring the effec>veness of these improvement policies. 

To validate the theore>cal findings supported by warehouse management exper>se, a custom-

made simula>on model was developed, integrated with the company's databases. This 

integra>on enabled a highly customized analysis of warehouse and order picking efficiency 

based on historical data. The scenario simula>ons provided insights on the performance of the 

efficiency improvement policies. Firstly, the suggested storage assignment method did not 

yield any improvement in efficiency, but instead, it shows an increase in travel distance.  On 

the other hand, splibng the warehouse into zones demonstrated a significant improvement 

in efficiency and revealed substan>al cost-saving poten>al. Similarly, the introduc>on of small 

bins also showed notable improvements in efficiency and poten>al cost savings. Since the 

previously men>oned scenarios performed well, a combina>on of splibng the warehouse into 

two zones and u>lizing small bins was also simulated. This combined scenario demonstrated 

the greatest reduc>on in travel distance and yielded the highest cost savings. 

 

8.2 Conclusions 
The purpose of this research is to answer the following research ques>on: How can order 

picking policies be evaluated on efficiency using a simula>on model to support decision 

making in warehouse management? This is addressed by formula>ng four sub ques>ons, 

which are answered through the findings from the literature and the scenario simula>on. 
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1. What metric(s) should be used to measure order picking efficiency in a simula;on 

model?  

Measuring efficiency in this context involves assessing the amount of >me required to pick 

items—the less >me needed, the more efficient the process. However, using order picking >me 

as a metric necessitates assump>ons about the picking speed, which can vary among workers 

and across different warehouse sec>ons (Koster et al., 2007). To avoid these assump>ons, the 

dominant metric used in literature is travel distance. This metric is preferred over alterna>ves 

such as travel >me, order throughput >me, or order retrieval >me. Traveling is the most >me-

consuming and, consequently, the costliest component of order picking, making it the focus 

areas for warehouse process improvement (Aboelfotoh et al., 2019; Koster et al., 2007; van 

Gils, et al., 2018b). Research that studied picking setups where picking >me is a variable 

observed varia>ons between throughput >me and travel distance (Chan et al., 2011). 

However, for the case company being studied, this is not the case. The >me spent picking items 

at a loca>on is the same for all simulated policies. A simula>on model can calculate the travel 

distance of orders based on storage loca>ons, making it a suitable performance metric, that is 

in line with literature. The business cases show that decisions on order picking policies also 

influence variables other than travel distance, such as the number of bins. These might not 

directly measure the order picking efficiency, but they do have an impact on subsequent stages 

of the warehouse opera>ons. 

 
 

2. What methods to improve order picking efficiency exist, according to literature?  

In literature five key areas impac>ng order picking efficiency are iden>fied: storage 

assignment, batching, rou>ng, zoning, and layout, which are discussed in Chapter Two. Each 

of these categories has been studied, with various methods suggested to enhance efficiency. 

Effec>ve strategies for storage assignment include ABC-classifica>ons based on order volume 

or turnover (Chan et al., 2011). Depending on the nature of products, SKUs can also be placed 

in groups based on complementarity or compa>bility (Liu, 1999). In the current state of the 

case company, these heuris>cs are implemented, placing SKUs in groups of similar products, 

or that oeen appear on the same order. As an alterna>ve, a simula>on was conducted where 

products were assigned to loca>ons solely based on order volume. This storage assignment 

showed a decrease in efficiency, contrary to studies presen>ng this as the most effec>ve 
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method. It emphasizes the effec>veness of considering the complementarity of SKUs in 

storage assignments. Although batching methods like the seed selec>on rule, Iterated Local 

Search, and other algorithms have proven effec>ve for specific cases, no batching method was 

simulated in this study (Aboelfotoh et al., 2019; Koster et al., 1999; Henn, 2012). This is due to 

the reliance on effec>ve manual heuris>cs and the limita>ons of the current warehouse 

management system, which does not support complex clustering algorithms. Literature 

suggests a variety of rou>ng policies, including the currently applied s-shape rou>ng, of which 

no one best-performing is suggested (Koster et al., 2007; van Gils, et al., 2018b). The 

performance of a route depends on variables like the storage assignment or the zoning (van 

Gils, et al., 2018b). However, introduced alterna>ves in the past have failed due to being 

unable to direct the order pickers and the order pickers' tendencies to s>ck to familiar routes. 

While changing rou>ng policies could be effec>ve, simula>on outcomes may not accurately 

reflect real-world behavior, which is why no alterna>ve rou>ng policies were simulated. 

Regarding warehouse zoning, literature generally agrees that splibng a warehouse into zones 

effec>vely improves efficiency (van Gils et al., 2018b; Yu & de Koster, 2009). The op>mal zone 

configura>on depends on factors such as layout and product categories (Petersen, 2002; van 

Gils et al., 2017). For the case company, experts helped determine the number of zones, 

resul>ng in a two-zone split. The results aligned with literature, showing an improvement in 

efficiency. While several layout improvement sugges>ons were proposed, warehouse experts 

confirmed that they could not be feasibly implemented in prac>ce. The use of sub-aisles has 

been shown to be an effec>ve layout method, but this is already employed by the case 

company (Babni et al., 2015; Koster et al., 2007). In conclusion, the literature brings forward 

improvement methods across various areas, among which zoning, and a storage assignment 

method show poten>al for the business case. The improvement methods suggested in the 

literature are complemented by an addi>onal method proposed by the case company: the use 

of a small bin. 

 
3. How can the suggested order picking improvement methods be evaluated in a 

simula;on model?  

These selected improvement methods are formulated into scenarios and simulated using the 

model described in Chapter Five. By adjus>ng parameters in the model, each scenario can be 

simulated, with the travel distance for a specific order batch as the output. Simula>ng these 
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scenarios based on mul>ple order files ensures robust and reliable results, also allowing for 

the analysis of seasonality effects and the impact on the number of bins and clusters. First the 

parameters for each scenario where determined. Examples of this are the new storage 

loca>ons for scenario 1, that are used as input for the model, or the new capacity threshold of 

the small bin. For each simula>on run, the appropriate parameters need to be selected. Then, 

the simula>on is run ten >mes for each scenario using the same order files for each scenario. 

As a result, all scenario results can be compared against the same baseline. Chapter Seven 

analyzes the effects of the scenarios based on the travel distance metric. All three scenarios 

show a significant impact, with only Scenario 1 having a nega>ve effect. To further evaluate 

the performance of these scenarios for the case company, business cases are developed. 

 
4. How can the simula;on model support warehouse managers in decision making?  

To support decision-making, the effects measured in the simula>on results need to be 

translated into business implica>ons. Chapter Seven discusses three business cases for the 

scenarios that show poten>al based on the simula>on results. A cost-benefit analysis presents 

the poten>al cost savings and considera>ons for each scenario. For the business case of 

splibng the warehouse into two zones, the analysis considers cost savings, addi>onal handling 

costs due to an increase in bins, and the required capacity expansion, resul>ng in an es>mated 

net outcome of €59,175 aeer one year. For the business case involving the introduc>on of a 

small bin, the analysis accounts for cost savings, investment costs, and compa>bility 

considera>ons, yielding an es>mated net outcome of €26,805 aeer one year. Finally, a business 

cased is presented for combina>on of methods of business case one and two, with a net result 

of €87,406 aeer one year. Based on this, warehouse management can make informed 

decisions on the proposed methods.  

 
8.3 Theore?cal implica?ons 

This study validates the use of a simula>on model as a robust method for evalua>ng 

effec>veness of order picking policies, aligning with exis>ng literature(Chan & Chan, 2011; 

Petersen & Aase, 2004; Tsai et al., 2008; van Gils et al., 2018b). The custom-made simula>on 

model developed for this study highlights the importance of tailoring a simula>on model to a 

specific organiza>onal context. In this context, this study presents a model that not only 

measures travel distance as a performance metric for each simula>on but also incorporates 
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addi>onal variables that can influence decision-making. This approach contributes to exis>ng 

literature, where models typically focus solely on efficiency metrics like travel distance or 

throughput >me (Chan & Chan, 2011; Chen et al., 2010; Tsai et al., 2008). The number of 

clusters or the number of bins u>lized are examples of such addi>onal variables, of which the 

impact is demonstrated in the business cases. Furthermore, by integra>ng the model with the 

company’s database, accurate and recent data can be effec>vely leveraged for analysis. This 

suggests that future theore>cal work should focus on versa>le, integrated simula>on 

frameworks so accurate, up-to-date data can be u>lized for decision-making. By using the 

actual warehouse map and historic order files, factors like seasonality are more accurately 

simulated compared to using data samples or fabricated data. This robustness is strengthened 

by the high number of simula>on runs with representa>ve datasets (n=10).  

 

One of the policy changes of which the effect is simulated and assessed is that of u>lizing a 

smaller bin in the order picking process. With this policy change, this research iden>fies a 

previously overlooked area for poten>al improvement. While picking cart capacity is 

men>oned as a factor impac>ng order picking efficiency, it does not fit one of the dominant 

improvement areas in exis>ng literature (Chen et al., 2010). This study not only reaffirms its 

impact on efficiency but also demonstrates how changing picking cart capacity affects order 

processing, such as the clustering process and storage. For warehouses with a picker-to-parts 

system, this is crucial to consider and should therefore be added as an area of improvement. 

The ABC classifica>on method based on the number of picks or other indicators proved very 

efficient in specific warehouses (Chan & Chan, 2011). However, this study emphasizes that 

factors like product categories, product type, and fluctua>ng demand should be considered 

when assigning storage loca>ons, advoca>ng a hybrid approach. In par>cular the seasonality 

of demand, with product groups having a high number of order lines in specific seasons, asks 

for more dynamic loca>ons management. This approach could include grouping principles like 

compa>bility and complementarity based on data and exper>se (Liu, 1999).  Furthermore, this 

study highlights the posi>ve effect of using zones in warehouses, consistent with current 

literature (van Gils et al., 2018; Yu & de Koster, 2009).  
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8.4 Prac?cal implica?ons 

This study presents several prac>cal implica>ons for warehouse management, par>cularly in 

improving order picking efficiency through the use of a simula>on model and data-driven 

decision-making. As warehousing is a major cost driver in supply chains, and order picking is 

the costliest ac>vity within warehouses, enhancing efficiency can result in significant cost 

savings (Koster et al., 2007; Dukic & Oluic, 2007). The simula>on model developed for the case 

company can support warehouse management in making decision on which policies to 

implement. The business implica>ons arising from suggested improvement policies are 

presented in the business cases in Chapter Seven. More general, this study offers prac>cal 

insights into how a company can leverage its available data to enhance decision-making 

processes. By for example u>lizing warehouse parameters and historical order data, which are 

all available within the company, this research demonstrates an effec>ve applica>on of data 

in decision-making. As many companies aim to become more data-driven and struggle with 

the how (Bean & Davenport, 2019; Gupta & George, 2016), this study presents a valuable 

example of how to achieve this effec>vely. 

 

To confirm the validity of the results that are intended for decision-making, actual efficiency 

performance numbers of the implemented two-zone policy (scenario two) are compared with 

the simula>on results. The realized efficiency performance, as detailed in aPachments IV and 

V, aligns with the simula>on results. Actual measurement in the warehouse of the case 

company in off season showed an efficiency improvement of 21.6%, compared to a 20.1% 

improvement in the simula>on. The increase in bins showed a more divergent, but beneficial 

effect, namely an 10.0% increase compared to a 18.5% increase in the simula>on. Especially 

the efficiency improvement demonstrates the accuracy of the simula>on model, making it 

suitable for warehouse management for decision-making.  

 

8.5 Limita?ons & future research 
This research is conducted in the specific context of case company XYZ. Where general 

implica>ons regarding the use of simula>on models for order picking efficiency are presented, 

the results and conclusions drawn from the simula>on are influenced by the unique 

characteris>cs of the case company. These include the market the company is opera>ng in, 

the layout of the warehouse, the type of products, etc. This limits the generalizability for other 
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companies. Furthermore, this study does not consider human factors like adherence to picking 

procedures or order picking experience. All assump>on that are in the model that could 

influence the real-world applicability of the results are listed in chapter 5.3.  

 

Future research could include further developing the model, making it able to simulate an 

even wider set of policies. Since the simulated storage assignment scenario showed 

ineffec>ve, alterna>ve storage assignment methods could be explored, combining the 

exper>se of warehouse management and SKU analysis to determine an op>mal assignment. 

The current state of the case company’s storage assignment performs well, so the principles 

used to assign loca>ons cannot be ignored. To op>mize this process, a data mining-based 

algorithm that extracts and analyzes the associa>ons between different products could be 

explored (Pang & Chan, 2017). A method that examines the correla>ons among items picked 

in an order could also be effec>ve for this type of stock, considering not only individual items 

but groups of items are required (Zhang et al., 2019). Addi>onally, given the seasonality of the 

demand, dynamic storage could be explored, where SKUs don’t have a dedicated storage 

loca>on. Research on clustering methods can be included for this case company, exploring 

advanced methods. While the current setup does not support this, it may be possible in the 

future. The same holds for strategically managing peak periods by changing policies in high- 

and off season. The results indicate that policy performance varies across these periods, 

sugges>ng the need for a dynamic approach to determine which policies to implement at 

different >mes.     
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Appendix I: Informa?on in order file (columns) 
 

Informa>on in order file (columns): 

Cluster  

Dataareaid  

Einde werkregel  

Gebruiker  

Gebruiker naam  

Inventdimid  

Loca>e  

Loca>e_sleutel  

Magazijn  

Modifieddate>me  

Nummerplaat-id  

Cluster   

Sec>e Sleutel  

Start werkregel  

Werk-id  

Werkgroep-id  

Werkklasse-id  

Werkordertype  

Werkstatus  

Werktype  

Zending  

Gewicht  

Index  

Par>>on  

Qtywork  

Recid  

Volume 
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Appendix II: Classed based storage assignment model input snippet 
Class based storage assignment model input snippet: 

loca>on zone code 

2A01A1 A 015003 

2A01A2 A 081061 

2A01A3 A 061065 

2A01B1 A 165020 

2A01B2 A 081060 

2A01B3 A 075004 

2A03A1 A 165021 

2A03A2 A 080058 

2A03A3 A 081070 

2A03B1 A 061240 

2A03B2 A 165022 

2A03B3 A 165023 

2A05A1 A 080333 

2A05A2 A 080029 

2A05A3 A 025055 

2A05B1 A 080184 

2A05B2 A 080023 

2A05B3 A 061006 

2A07A1 A 061004 

2A07A2 A 061012 

2A07A3 A 165050 

2A07B1 A 752506 

2A07B2 A 080182 

2A07B3 A 080063 

2B01A1 A 061014 

2B01A2 A 061010 

2B01A3 A 139002 

2B01B1 A 061007 

2B01B2 A 061002 
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2B01B3 A 061001 

2B02A1 A 061008 

2B02A2 A 084013 

2B02A3 A 061005 

2B02B1 A 061016 
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Appendix III: T-test results scenarios 
Paired t-test scenario 1 

data:  datascenario1$currentstate and datascenario1$scenario1 

t = -4.1244, df = 9, p-value = 0.002581 

alterna>ve hypothesis: true mean difference is not equal to 0 

95 percent confidence interval: -19868.394 - -5793.406 

sample es>mates:mean difference  -12830.9 

 

Paired t-test scenario 2 

data:  data$currentstate and data$scenario3 

t = 5.8891, df = 9, p-value = 0.0002322 

alterna>ve hypothesis: true mean difference is not equal to 0 

95 percent confidence interval: 3754.544 - 8438.056 

sample es>mates: mean difference 6096.3 

 

Paired t-test scenario 3 

data:  data$currentstate and data$scenario4 

t = 6.3902, df = 9, p-value = 0.0001267 

alterna>ve hypothesis: true mean difference is not equal to 0 

95 percent confidence interval: 2812.273 - 5894.527 

sample es>mates: mean difference 4353.4 

 

Paired t-test Scenario 4 

data:  combinedscenario$cs and combinedscenario$scenario 

t = 6.0346, df = 9, p-value = 0.0001941 

alterna>ve hypothesis: true mean difference is not equal to 0 

95 percent confidence interval: 6653.862 - 14633.938 

sample es>mates: mean difference 10643.9 
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Appendix IV: Realized efficiency data order picking scenario 2 
 

Date 
Average order lines 
picked per hour 

Hours needed for 1000 
orderlines Policy 

27-feb 34 29,4 one zone 
28-feb 41 24,4 one zone 
29-feb 38 26,3 one zone 
01-mrt 32 31,3 one zone 
04-mrt 43 23,3 one zone 
05-mrt 43 23,3 one zone 
06-mrt 38 26,3 one zone 
07-mrt 39 25,6 one zone 
08-mrt 35 28,6 one zone 
11-mrt 43 23,3 one zone 
12-mrt 38 26,3 one zone 
13-mrt 43 23,3 one zone 
14-mrt 38 26,3 one zone 
15-mrt 34 29,4 one zone 
18-mrt 35 28,6 one zone 
19-mrt 28 35,7 one zone 
20-mrt 41 24,4 one zone 
21-mrt 29 34,5 one zone 
22-mrt 37 27,0 one zone 
26-mrt 46 21,8 two zones 
27-mrt 44 23,0 two zones 
28-mrt 45 22,2 two zones 
29-mrt 98 10,2 two zones 
02-apr 72 13,9 two zones 
03-apr 42 24,0 two zones 
04-apr 43 23,2 two zones 
05-apr 54 18,6 two zones 
06-apr 37 27,3 two zones 
08-apr 46 21,9 two zones 
09-apr 43 23,1 two zones 
10-apr 39 25,8 two zones 
11-apr 41 24,4 two zones 
12-apr 51 19,6 two zones 
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Appendix V: Realized data bin u?liza?on scenario 2 
 
Date Average order lines per 

bin 
Bins per 1000 order lines Policy 

27-feb 3,35 298,51 one zone 
28-feb 3,35 298,26 one zone 
29-feb 3,30 302,67 one zone 
01-mrt 3,12 320,83 one zone 
04-mrt 2,93 341,10 one zone 
05-mrt 3,30 303,35 one zone 
06-mrt 3,21 311,26 one zone 
07-mrt 3,23 309,17 one zone 
08-mrt 3,02 331,02 one zone 
11-mrt 2,94 340,52 one zone 
12-mrt 3,09 323,94 one zone 
13-mrt 3,14 318,19 one zone 
14-mrt 3,21 311,39 one zone 
15-mrt 3,05 327,55 one zone 
18-mrt 3,09 323,15 one zone 
19-mrt 3,11 321,21 one zone 
20-mrt 3,04 328,70 one zone 
21-mrt 3,15 317,02 one zone 
22-mrt 2,87 348,83 one zone 
26-mrt 2,58 388,34 two zones 
27-mrt 2,48 402,73 two zones 
28-mrt 2,90 345,22 two zones 
29-mrt 2,74 365,41 two zones 
02-apr 2,77 360,95 two zones 
03-apr 2,88 347,51 two zones 
04-apr 3,06 326,80 two zones 
05-apr 2,87 347,89 two zones 
06-apr 3,71 269,80 two zones 
08-apr 2,74 364,32 two zones 
09-apr 3,01 332,45 two zones 
10-apr 2,67 374,36 two zones 
11-apr 2,85 350,85 two zones 
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Appendix VI: SQL Code Snippet 
 

SQL Code Snippet 

 

if OBJECT_ID('tempdb..#tmp_hulptabel_zending_sectie') is not null drop table 

#tmp_hulptabel_zending_sectie 

 

select a.*,ROW_NUMBER() over (order by zending) as index_zending  into 

#tmp_hulptabel_zending_sectie 

 

from  

 

(select distinct zending,  

 

Sectie_scenario as sectie 

 

,count(*) over (partition by zending,sectie_scenario) as [aantal regels] from 

#tmp_update ) as a 

 

--select * from #tmp_hulptabel_zending_sectie --where zending = 'Z2206080'  

--order by zending 

         

if OBJECT_ID('tempdb..#tmp_bakken') is not null drop table #tmp_bakken 

 

        Create table #tmp_bakken  

        (Zending nvarchar(15), Sectie nvarchar(10) ,[index] int, gewicht 

float,som_gewicht float, volume float, som_volume float, bak int, indicator int, 

        locatie nvarchar(10), Locatie_sleutel nvarchar(4), zone nvarchar(2), 

sorteercode int, [wave-id] nvarchar(12), [wave naam] nvarchar(30), recid bigint, 

        qtywork float, volume_per_qty float, gewicht_per_qty 

float,volume_restant float, gewicht_restant float, qty_erbij float, 

qty_erbij_volume float, qty_erbij_gewicht float ,qty_restant float 

        ) 

 

truncate table #tmp_bakken 

 

        Declare @volume float 

        Declare @som_volume float 

        Declare @gewicht  float 
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        Declare @som_gewicht  float 

        Declare @index int = 1 

        Declare @index_zending int = 1 

        Declare @max_index int --= 17 

        Declare @max_index_zending int = 100 

        Declare @bak int = 1 

        Declare @max_volume float = 0.0313-- 0.0313 --0.05 

        Declare @max_gewicht float = 10  

        Declare @Indicator int 

        Declare @Indicator_splitsen int 

         

        Declare @zending nvarchar(15) 

        Declare @Sectie nvarchar(5) 

        Declare @sorteercode int 

        Declare @locatie nvarchar(10) 

        Declare @locatie_sleutel nvarchar(4) 

        Declare @zone nvarchar(2) 

        --Declare @start_werkregel datetime = '2024-01-01 08:00:00' 

        Declare @wave_id nvarchar(12) 

        Declare @wave_naam nvarchar(30) 

        Declare @recid bigint 

        Declare @qtywork float 

        Declare @volume_per_qty float 

        Declare @gewicht_per_qty float 

        Declare @volume_restant float = 0  

        Declare @gewicht_restant float = 0 

        Declare @qty_erbij_volume float 

        Declare @qty_erbij_gewicht float 

        Declare @qty_erbij float 

        Declare @qty_restant float 

 

         

 

        select @max_index_zending = max(a.index_zending) from 

#tmp_hulptabel_zending_sectie a 

                 

        while (@index_zending<=@max_index_zending) 

        begin 
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        select @zending=a.zending, @sectie=a.sectie,@max_index=a.[aantal regels] 

from #tmp_hulptabel_zending_sectie a where a.index_zending=@index_zending 

        --print(@zending+'-'+@sectie) 

 

            while (@index is not null and @index <=@max_index) 

                    Begin 

             

                        select  

 

                        @gewicht=a.Gewicht, 

                        @volume=a.Volume, 

                        @locatie=a.Locatie, 

                        @locatie_sleutel=a.Locatie_sleutel, 

                        @zone=left(a.locatie_sleutel,2), 

                        @sorteercode=a.sorteercode, 

                        @wave_id=a.[Wave-id], 

                        @wave_naam=a.[Wave naam], 

                        @recid = a.recid,  

 

                        @qtywork = a.Qtywork, 

                        @volume_per_qty = a.volume/a.qtywork, 

                        @gewicht_per_qty = a.gewicht/a.qtywork 

                         

                        from #tmp_update a 

 

                        where a.Zending=@zending and Sectie_scenario =@Sectie 

and Index_scenario=@index 

                                                 

                        --set @som_gewicht = isnull(@som_gewicht,0) + 

isnull(@gewicht,0) 

                        --set @som_volume =  isnull(@som_volume,0) + 

isnull(@volume,0)  

                        --set @indicator = case when @som_gewicht>@max_gewicht 

or @som_volume>@max_volume then 1 else 0 end                      

                        set @indicator = case when ( isnull(@som_gewicht,0) + 

isnull(@gewicht,0))>@max_gewicht or (isnull(@som_volume,0) + isnull(@volume,0) 

)>@max_volume then 1 else 0 end                         

                        set @volume_restant = case when @Indicator = 1 then 

@max_volume- @som_volume end  
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                        set @gewicht_restant = case when @Indicator = 1 then 

@max_gewicht- @som_gewicht end  

                         

                        Set @qty_erbij_volume = case when floor(@volume_restant 

/ @volume_per_qty)<@qtywork then floor(@volume_restant / @volume_per_qty) else 

@qtywork end  

                        Set @qty_erbij_gewicht = case when 

floor(@gewicht_restant / @gewicht_per_qty)<@qtywork then floor(@gewicht_restant 

/ @gewicht_per_qty) else @qtywork end  

                        set @qty_erbij = case when 

@qty_erbij_gewicht<@qty_erbij_volume then @qty_erbij_gewicht else 

@qty_erbij_volume end 

 

                        set @Indicator_splitsen = case when @qty_erbij > 0 and 

@qty_erbij< @qtywork then 1 else 0 end 

 

                        set @volume = case when @Indicator_splitsen=1 then 

@qty_erbij*@volume_per_qty else @volume end  

                        set @gewicht = case when @Indicator_splitsen=1 then 

@qty_erbij*@gewicht_per_qty else @gewicht end  

                        Set @qty_restant = case when @Indicator_splitsen =1 then 

@qtywork - @qty_erbij else 0 end  

                        set @qtywork = case when  @Indicator_splitsen=1 then 

@qty_erbij else @qtywork end  

                         

                        set @som_gewicht = isnull(@som_gewicht,0) + 

isnull(@gewicht,0) 

                        set @som_volume =  isnull(@som_volume,0) + 

isnull(@volume,0) 

                         

                         

                        --set @volume_restant = case when @Indicator = 1 then 

@som_volume end  

 

                        If @Indicator = 1 and @Indicator_splitsen=0 

             

                        begin 

                             

                            set @som_volume = @volume 
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                            set @som_gewicht = @gewicht 

                            set @bak = @bak + 1                  

                              

                        end  

                     

                         --insert into #tmp_bakken select 

@zending,@Sectie,@index,@gewicht,@som_gewicht,@volume,@som_volume,@bak, 

@Indicator, 

@locatie,@locatie_sleutel,@zone,@sorteercode,@wave_id,@wave_naam,@recid 

                         insert into #tmp_bakken select 

@zending,@Sectie,@index,@gewicht,@som_gewicht,@volume,@som_volume,@bak, 

@Indicator, 

@locatie,@locatie_sleutel,@zone,@sorteercode,@wave_id,@wave_naam,@recid,@qtywork

,@volume_per_qty,@gewicht_per_qty,@volume_restant,@gewicht_restant,@qty_erbij,@q

ty_erbij_volume,@qty_erbij_gewicht,@qty_restant 

                         --Print convert(varchar,@index)+' test 

'+convert(varchar,isnull(@som_gewicht,0)) 

   

                                If @Indicator = 1 and @Indicator_splitsen=1 

                        begin  

                        set @som_gewicht = 0  

                        set @som_volume = 0  

 

                        while @qty_restant > 0 

                                 

                                begin  

                                 

                                set @bak = @bak + 1 

                                Set @volume_restant=@max_volume 

                                Set @gewicht_restant=@max_gewicht 

                                 

                                Set @qty_erbij_volume = case when 

floor(@volume_restant / @volume_per_qty)<@qty_restant then floor(@volume_restant 

/ @volume_per_qty) else @qty_restant end  

                                Set @qty_erbij_gewicht = case when 

floor(@gewicht_restant / @gewicht_per_qty)<@qty_restant then 

floor(@gewicht_restant / @gewicht_per_qty) else @qty_restant end  
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                                set @qty_erbij = case when 

@qty_erbij_gewicht<@qty_erbij_volume then @qty_erbij_gewicht else 

@qty_erbij_volume end 

                                 

                                set @volume = @qty_erbij*@volume_per_qty 

                                set @gewicht = @qty_erbij*@gewicht_per_qty 

                                 

                                set @som_gewicht = isnull(@som_gewicht,0) + 

isnull(@gewicht,0) 

                                set @som_volume =  isnull(@som_volume,0) + 

isnull(@volume,0) 

                                Set @qty_restant = @qty_restant - @qty_erbij 

                                Set @qtywork=@qty_erbij 

                                 

                                insert into #tmp_bakken select 

@zending,@Sectie,@index,@gewicht,@som_gewicht,@volume,@som_volume,@bak, 

@Indicator, 

@locatie,@locatie_sleutel,@zone,@sorteercode,@wave_id,@wave_naam,@recid,@qtywork

,@volume_per_qty,@gewicht_per_qty,@volume_restant,@gewicht_restant,@qty_erbij,@q

ty_erbij_volume,@qty_erbij_gewicht,@qty_restant 

 

                                end 

                        end 

 

                         set @index = @index + 1 

                         --set 

@start_werkregel=Dateadd(second,1,@start_werkregel) 

 

                    end  

 

                set @index_zending=@index_zending+1 

                set @index=1 

                set @bak=1 

                set @som_gewicht=0 

                set @som_volume=0 

 

        end 

 

 


