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Abstract

Skin lesions represent a category of dermatological condi-
tions where timely and accurate analysis is crucial for pre-
venting malignancy. Assessing the symmetry of a lesion is
a critical factor in determining its malignancy. This report
presents a Multi-Task Learning (MTL) approach to skin le-
sion analysis that leverages lesion symmetry as a key feature
for skin lesion classification. The study proposes a cascaded
MTL architecture for comprehensive skin lesion analysis,
incorporating three distinct tasks: skin lesion segmentation,
lesion symmetry classification, and skin lesion classification.
The proposed Symmetry Enhanced Lesion Classification Net-
work (SE-LCN) leverages segmentation masks to refine the
performance of two classification networks, enhancing the
overall diagnostic accuracy. Class Activation Maps (CAMs)
from the symmetry classification network are employed to
augment the lesion classification network, aiming to pro-
vide more targeted and effective predictions. An extensive
ablation study is conducted to analyze the impact of using
various masking strategies on both classification networks
and the efficiency of CAM transfer between the networks.
This study not only analyzes the impact of these features
on the predictive performance of these networks, but also
the localization accuracy of the CAMs generated by these
networks. The results demonstrate that integrating CAMs
improves the predictive performance, and localization ac-
curacy of the lesion classification network, validating the
effectiveness of the proposed cascaded MTL architecture.

1 INTRODUCTION

Skin lesions are abnormal changes in the skin’s appearance, tex-
ture, color, or structure, attributed to various factors such as acne,
chickenpox, injuries, or allergies. However, lesions are also devel-
oped due to the presence of skin cancer, which is one of the most
widespread diseases in the world (around 40% of all cancers) [1].
The most dangerous type of skin cancer is melanoma, developed
from pigment-producing cells known as melanocytes [2]. One of
the main causes of melanoma is exposure to ultraviolet light [3].
Despite being incurable, the early detection of melanoma can lead
to successful interventions in up to 90% of the cases [4].

Dermoscopic imaging is a valuable tool in dermatology that is
used in inspecting skin lesions. It is a technique that involves a

handheld device called a dermatoscope which is equipped with spe-
cialized magnifying lenses and lighting systems. This facilitates an
extensive analysis of the skin’s surface for structures and patterns.
Currently, the standard method of melanoma diagnosis is a visual
analysis by a specialist [2]. This method, however, is cumbersome
and often leads to incorrect analysis because of the complexity of
skin lesions. Such kind of analysis is also subjective and can depend
upon the experience of the specialist due to which only 84% of the
visually inspected cases are accurate [5]. Consequently, there is
a pressing need for computer-aided diagnosis (CAD) systems to
enhance early-stage melanoma detection accuracy.

Various computer vision techniques have been employed for skin
lesion analysis and melanoma detection. One crucial step in skin
lesion analysis is segmentation, an efficient technique to delineate
the foreground from the background, yielding a region of interest
[6]. This helps diagnostic systems focus more on the interior of
the lesion and improves the robustness of classification. Recently,
with the research advancements in the field of deep learning, many
Deep Convolutional Neural Network (DCNN) [7] based approaches
have been implemented for skin lesion segmentation [8].

The segmented images also feed into rule-based diagnostic systems
which estimate features like asymmetry, border irregularity, lesion
size, and color or texture smoothness to detect melanoma. One of
the most popular rule-based algorithms is the ABCD algorithm
(Asymmetry, Border, Color, Diameter) [9] which is based on the
lesion. This algorithm was later improved by ABCDE (ABCD and
Evolution of lesion area) [10] and ABCDEF (ABCDE and the "ugly
duckling" sign) [11]. Similarly, the 7-point checklist [12] and the
Menzies method [13] are popular rule-based algorithms to classify
lesion malignancy. Recently, state-of-the-art results on lesion classi-
fication have been achieved through deep learning models. DCNNs
excel in extracting complex spatial features and pixel patterns that
outperform traditional feature-based classification methods.

Lesion symmetry is considered a crucial feature while assessing
the malignancy of a lesion, especially in rule-based diagnostic sys-
tems. The classification of symmetry, however, can be altered by
the judgment of the individual inspecting the lesion [14]. Recently,
there has been some research on the automatic classification of
symmetry of skin lesions, using classical methods [15] and deep
learning approaches [16, 17]. These methods classify a lesion into
three categories – fully asymmetric, symmetric through one axis,
and symmetric through both axes.
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Most deep learning models are typically trained for specific tasks,
such as segmentation or classification, each requiring separate mod-
els. However, in the context of skin lesion analysis, segmentation
and classification are intricately related. Segmentation helps remove
distractions (like hair and other artifacts) from the background for
better feature extraction and classification by the model. Classifica-
tion, on the other hand, extracts useful class-specific features that
could enhance segmentation accuracy [18]. The approach of train-
ing a network to do multiple tasks is called Multi-Task Learning
(MTL) [19] offering a compelling framework capable of leveraging
information from various tasks relevant to skin lesion analysis. In
2020, Xie et al. [18] proposed a mutual bootstrapping approach uti-
lizing a coarse segmentation network to generate amask, whichwas
subsequently used to train a mask-guided classification network.
The Class Activation Maps (CAMs) from this network were then
used as features for an enhanced segmentation network, refining
the segmentation masks. While exploring the impact of symme-
try classification in an MTL framework, Talavera-Martinez et al.
[17] mention that the model is coherent while classifying malig-
nancy and symmetry. 72.5% of the "malignant" lesions are classified
as "asymmetric", and 93.4% of the "benign" lesions are classified
as "symmetric". This means that the region of neurons activated
during symmetry classification could be useful in determining the
malignancy of a lesion. Hence, the CAMs extracted from a sym-
metry classification model could aid in classifying the type of skin
lesion. The goal of this research is to address the following research
question:

(1) How does the inclusion of Class Activation Maps (CAMs)
from the symmetry classification network impact the pre-
dictive performance of the skin lesion classification network
in a Multi-Task Learning (MTL) framework?

(2) How does the inclusion of Class Activation Maps (CAMs)
from the symmetry classification network impact the lo-
calization accuracy of CAMs generated from the skin le-
sion classification network in a Multi-Task Learning (MTL)
framework?

We also aim to answer the following subquestions:
(1) How does using skin lesion segmentation to mask the in-

puts impact the predictive performance of symmetry clas-
sification and skin lesion classification networks?

(2) How does using skin lesion segmentation to mask the in-
puts improve the localization accuracy of CAMs generated
from the symmetry classification and skin lesion classifica-
tion networks?

To address these questions, we propose the Symmetry Enhanced
Lesion Classification Network (SE-LCN), a cascaded MTL architec-
ture that includes three tasks: skin lesion segmentation, symmetry
classification, and skin lesion classification. In the implemented
MTL architecture, Class Activation Maps (CAMs) from the symme-
try classification encoder are used to enhance the performance of
classifying dermoscopic skin lesion images into 7 classes provided
in the HAM10000 dataset [20]. To merge the CAMs with features of
the lesion classification network we use the E-Layer [18]. Addition-
ally, a segmentation network is trained to mask the images that are
used as inputs for both classification networks. An ablation study is

conducted to compare the impact of two distinct masking strategies
on both classification networks. The evaluation metrics focus on
the predictive performance of the networks, and the localization
accuracy of the CAMs, providing a comprehensive overview of the
proposed methods. The major contributions of this work are as
follows:

(1) Introduction of a novel MTL architecture that utilizes CAMs
from the symmetry classification network to enhance skin
lesion classification.

(2) Analysis of the impact of two masking strategies on both
symmetry classification and skin lesion classification.

(3) Introduction of a novel method of utilizing segmentation
masks to measure the localization of CAMs using three
metrics - Intersection over Union, Percentage Overlap, and
Pointing Game score.

The report structure entails a section for scientific background
(Section 2), containing the technical background of all the relevant
terminologies, which is followed by a section that discusses related
works (Section 3) in skin lesion analysis and multi-task learning ap-
proaches in this field. This section also provides a detailed overview
of the available datasets for skin lesion analysis. A methodology
section follows outlining the proposed approach (Section 4). Next,
the experimental framework for this research is presented (Sec-
tion 5), including the results obtained. Subsequently, this report
contains a detailed discussion analyzing the findings (Section 6),
after which the report concludes by outlining the conclusions and
future scope of this research (Section 7).

2 SCIENTIFIC BACKGROUND

This section presents a detailed description of the technical back-
ground of the methodologies used in this work.

2.1 Multi-Task Learning
Multi-Task learning (MTL) is an approach that was first introduced
in the field of machine learning in 1992 [19]. The paper states that
it is an approach of inductive transfer that improves generalization
by using the domain information contained in the training signals
of related tasks as an inductive bias.

There are several advantages of employing an MTL architecture
[21]:

• Implicit Data Augmentation: Training a common model
on multiple tasks with different noise patterns brings ro-
bustness to various types of noise, reducing the chances of
overfitting.

• Attention Focusing within Tasks: Auxillary tasks can
provide evidence for the relevance of specific features.

• Cross-Task Feature Learning:MTL helps certain tasks to
eavesdrop and learn useful features that are easier to learn
from other tasks.

• Representational Bias: MTL encourages the learning of
representations favored by all tasks, thus promoting gener-
alization.
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Figure 1: The four types of multi-task deep learning archi-
tectures include (a) cascaded, (b) parallel (c) interacted, and
(d) hybrid.

.

• Regularization MTL acts as a form of regularization, pre-
venting model overfitting.

MTL architectures can be broadly classified into 4 types [22]:

• Cascaded Architecture: Here, the output of the previous
task is used as the input to the subsequent task, with no
shared layers between tasks.

• Parallel Architecture: This architecture has a common
input, common layers, and separate task-specific layers.
Typically, parallel architectures are trained end-to-end.

• Interacted Architecture: This is similar to parallel ar-
chitecture, but the task-specific layers share information
within themselves, often facilitated by skip connections or
attention mechanisms.

• Hybrid Architecture: Combining elements of both par-
allel and cascaded designs, this architecture incorporates
shared layers, with outputs from one task-specific layer
feeding into another.

These architectures are illustrated in Figure 1. Previous works em-
ploying MTL in skin lesion analysis are detailed in Section 3.

One important aspect of training an MTL network is that, when
trained end-to-end, different loss functions are optimized at the
same time. These loss functions may be of the same type or dif-
ferent types. For instance, in the case of an MTL architecture that
is trained for segmentation and classification, the segmentation
network may use a dice loss and the classification network may
use a cross-entropy loss. Since different tasks (whether of the same
or different types) have different learning curves, it is essential to
strategize the optimization of each loss function. However, this is
not the case for a non-end-to-end architecture since each model is
trained separately for optimal performance.

In a vanilla end-to-end MTL, the loss values of each task are added
to get a scalar value of the overall loss. In this case, each task is con-
sidered equal throughout the training. However, this is not the best
strategy. According to [23], two common loss weighting strategies
are generally used in MTL frameworks:

• Dynamic Weighting Strategy: This involves adjusting
the weights assigned to each task’s loss value during train-
ing based on the gradients of each task. Tasks exhibiting
steeper gradients are given greater importance for learning.

• Uncertainty-Based Weighting: Tasks with higher uncer-
tainty in predictions are prioritized, allocating more weight
to such tasks during training

In architectures that have tasks with different output types, a multi-
phase training strategy is often adopted. This involves training tasks
with similar output tasks together, followed by joint fine-tuning of
all tasks.

2.2 Class Activation Maps
Class Activation Maps (CAMs) were first introduced in [24] by a
team of researchers at MIT. This method is used to analyze the
regions of interest within an image that a network focuses on while
predicting the image’s class. CAMs are visualizations that highlight
the discriminative image regions, typically extracted from the final
convolutional layer, just before the final output layer. Global aver-
age pooling is applied to compute the spatial average of each unit’s
feature map at this layer, resulting in a single value per feature map.
The outputs of the global average pooling are used as features for a
fully connected layer that produces the final output.

To generate CAMs, the weights of the output layer are projected
back to the convolutional feature maps to highlight the importance
of different regions for final classification. The resulting weighted
combination is then upsampled to the image size for accurately
visualizing the CAMs.

Several enhancements to the original CAM method have been de-
veloped to improve localization accuracy. One such development is
Grad-CAM [25], which utilizes the gradients of the target class flow-
ing into the final convolutional layer instead of using the weights
as used in conventional CAM. Building on this, Grad-CAM++ [26]
was introduced which extends Grad-CAM by incorporating both
positive and negative gradients. Furthermore, Score-CAM [27] was
introduced byWang et al. (2020) which assigns importance scores to
each pixel based on their contribution to the final output prediction
score, utilizing the entire model rather than just the output layer.
Finally, Ablation-CAM [28] explores a different angle by identifying
significant regions through the iterative removal of image portions,
subsequently observing the effects on prediction confidence.

CAMs are extremely useful for qualitative evaluation of a model.
Visually inspecting the CAMs of a model gives a good idea of what
region the model focuses on to make the predictions. However, to
measure and compare the localization of CAMs among multiple
models, it is important to have ground truth information about the
location of objects within an image. This information is generally
present in datasets with either bounding box annotations or with
segmentation masks. Given the region information, here are a few
commonly used metrics to evaluate the localization of CAMs:

• Intersection over Union (IoU): This metric was first used
in the original paper of CAMs [24] andmeasures the overlap
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between regions highlighted by CAM and the ground truth
bounding box.

• Pointing Game: Introduced in [29], it is a metric to mea-
sure the percentage of images in a dataset where the highest
activation point from the activation map lies inside the class
region. If the highest activation point of the image lies in
within the class region, it is considered a hit, else a miss.
The point game is then calculated as follows:

Pointing Game = Number of Hits
Number of Hits + Number of Miss . (1)

• Weakly Supervised Localization: This method of evalu-
ation, also introduced in [24], involves treating the CAM
outputs as an object detection problem. A bounding box
is drawn around the largest connected region in the CAM
heatmap, and compared with the ground truth bounding
box of the image.

3 RELATEDWORKS

This section provides a comprehensive overview of related stud-
ies in skin lesion analysis, categorized into subsections discussing
available skin dataset, skin lesion segmentation, skin lesion classi-
fication, symmetry classification, and Multi-Task Learning (MTL)
approaches.

3.1 Skin Datasets
The availability of larger annotated datasets has played a crucial
role in improving the accuracy of skin lesion analysis over the
years (as shown in Table 2). One of the pioneering datasets in this
domain is the Interactive Atlas of Dermoscopy [12], popularized
through the works of Celebi et al. [30]. Initially released on CD-
ROM, this dataset comprises 1,039 dermoscopic images of 1,024x683
pixels, categorized into the classes melanomas, carcinomas, and
nevus. Subsequently, the 𝑃𝐻2 dataset [31] emerged as the first
publicly available dataset that contained segmentation masks com-
prising 200 dermoscopic images of 768x560 pixels from three classes
- melanoma, atypical nevus, and common nevus.

Another notable release in the same year was the DermoFit Im-
age Library [32], a collection of 1,300 clinical images captured in a
controlled environment. Clinical images are captured using typi-
cal cameras and are different from dermoscopic images which are
captured using a dermatoscope. This dataset has images from 10
categories of skin lesions of varying sizes. The 10 categories in-
clude actinic keratosis, basal cell carcinoma, melanocytic nevus,
seborrhoeic keratosis, squamous cell carcinoma, intraepithelial car-
cinoma, pyogenic granuloma, haemangioma, dermatofibroma, ma-
lignant melanoma.

Currently, the most extensive collection of labeled dermoscopic im-
ages is the ISIC (International Skin Imaging Dataset) archive. Every
year, the ISIC challenge [33–35] is conducted where a new dataset is
publicly released for researchers to develop state-of-the-art results
on segmentation and classification. The details of these datasets can
be seen in Table 2. The ISIC 2016, 2017, and 2018 challenges com-
prised segmentation, feature extraction, and lesion classification

Table 1: Class distribution of SymDerm v2.0 along with data
source distribution.

Fully asymmetric Symmetric to 1 axis Symmetric to 2 axis
dermis 42 12 14
dermquest 89 18 27
EDRA 52 11 14
𝑃𝐻2 52 31 117
HAM10000 936 505 559
ISIC2018 57 56 63
Total 1228 633 794

tasks, whereas the ISIC 2019 and 2020 only comprised lesion clas-
sification. The type of lesion classification also varied throughout
the years. The ISIC 2018 contained separate datasets for each task.
While the challenge provided 3,694 images for segmentation and
feature extraction, the HAM10000 [20] dataset was provided for
classification. This is a large dataset consisting of 10,015 training
images which was acquired over 20 years at the Medical University
of Vienna. This dataset consisted of lesion images belonging to 7
classes namely melanoma, melanocytic nevus, basal cell carcinoma,
actinic keratosis, benign keratosis, dermatofibroma, and vascular
lesion. As part of a study [36] in 2020, the segmentation masks of
the HAM10000 dataset were created and publicly released. This is
the largest publicly available segmentation dataset. The ISIC 2019
and ISIC 2020 have much higher amounts of training images (25,331
and 33,126 respectively) but do not have segmentation masks like
their predecessors. Both datasets have 8 classes but are highly im-
balanced as shown in Table 2. Recently, an in-depth analysis was
conducted on all the ISIC datasets (2016-2020) [37] where the au-
thors found both overlaps among the datasets and duplicates within
each dataset. The authors created a new dataset without the du-
plicates that consisted of 45,590 training images. The authors also
released a balanced dataset (balance between melanoma and non-
melanoma) with 7,848 images.

To classify the symmetry of a lesion, Talavera-Martinez et al. [16]
created a dataset of labels called SymDerm following the taxon-
omy present in the 𝑃𝐻2 dataset [31]. As mentioned above, the
𝑃𝐻2 dataset consists of 200 images and also contains labels for
the ABCD rule [10], hence also consists of labels for symmetry.
This dataset was extended by first introducing simulated hair to
the images which was done in [38]. This increased the dataset size
from 200 to 438. The dataset was further extended by randomly
selecting images from publicly available datasets and asking three
expert dermatologists to label them. The images were classified
into three categories: asymmetric, symmetric with respect to one
axis, and symmetric with respect to two axes. Overall, the final
dataset consists of 1,052 annotated images based on symmetry. In
later works [17], the authors extended the SymDerm dataset and
created the SymDerm v2.0 dataset which consists of around 2,000
new annotations. This dataset contains a total of 2,665 annotations
which was curated using the same procedure used for the original
SymDerm dataset. The class distribution of these datasets and the
source of data can be seen in Table 1.
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3.2 Skin Lesion Segmentation
Semantic segmentation is a fundamental technique in computer
vision that involves partitioning an image into multiple segments,
each representing a distinct class. It is a pixel-level classification
task that requires both translation-invariant global features for
accurate categorization, and localized features for delineating spe-
cific regions. The use of CNNs for segmentation tasks began in the
mid-2000s [41], but gained prominence after the paper on Fully
Connected Networks (FCNs) [42] in 2015. FCNs, along with U-Net
[43], became the basis of many state-of-the-art segmentation mod-
els.

Segmentation architectures for skin lesion analysis can be broadly
categorized into four groups [8]: single-network models, multiple-
network models, hybrid feature models, and transformer models.
While the first two categories are self-explanatory, hybrid feature
models integrate deep-learning-based features with manually se-
lected features to enhance performance. Transformer models, on
the other hand, utilize the transformer architecture [44].

Early works on skin lesion segmentation utilized single-network
models that often adopted either FCN [42] or U-Net [43]. The U-Net
architecture has been widely adopted for skin lesion segmentation,
both in its original form [45, 46] and in modified forms [47, 48].
Both these modified U-Net works [47, 48] incorporate depth-wise
separable convolutions to reduce the number of parameters. Simi-
larly, recurrent CNN variations of U-Net were also introduced in
RU-Net [49] and R2U-Net [50]. Another network family that has
been frequently used to obtain state-of-the-art segmentation perfor-
mance is DeepLab [51] and its variants DeepLabv2 [51], DeepLab
v3 [52], and DeepLabv3+ [53]. These networks utilize atrous con-
volution, allowing flexible aggregation of contextual information
effectively without compromising image resolution. For skin lesion
segmentation, numerous works have adopted the DeepLab family
architectures [54–56].

Multiple-network models could be further subdivided [8] into multi-
task learningmodels (discussed in Section 3.5) and ensemble models.
Ensemble networks, popular in machine learning, often improve
stability and predictive performance by leveraging the comple-
mentary strengths of various models [57]. These models can be
implemented via early fusion at the feature level or late fusion at
the prediction level. In skin lesion segmentation, ensemble learn-
ing typically involves applying different configurations to a single
deep-learning architecture. Variations in the ensemble models may
include adjusting network hyperparameters like the number of
filters per block and their size [45], optimization technique [58],
training splits [59, 60], different color spaces [61], and different
initialization techniques [55, 62].

3.3 Skin Lesion Classification
Numerous studies have led to advancements in the field of skin
lesion classification. A dynamic graph cut algorithm combined with
a Naive Bayes classifier was utilized for robust segmentation and
classification [63] on the ISIC 2017 dataset [34]. A complete analysis
[64] was conducted on the use of EfficientNets [65] for skin lesion

classification, comparing performance across all versions (B0 to
B7) and suggesting optimal hyperparameters; EfficientNet B4 was
found to yield the best performance on the HAM10000 dataset [20].
A model that combines MobileNet V2 and LSTM, demonstrating
superior performance over traditional single network architectures,
was developed in [66].

Enhancements inmulti-type skin disease classificationwere achieved
using an Optimal Path Deep Neural Network (OP-DNN) that im-
proved feature extraction, significantly enhancing classification
accuracy [67]. A classification model that integrates DenseNet and
ConvNeXt, benchmarking its performance across multiple datasets,
was also developed [78]. Other significant works include [68], incor-
porating multi-scale attention blocks, and improving the specificity.
An enhanced deep bottleneck transformer model was suggested by
[69] to improve the performance of classification.

Further innovations include [70], which presented a hybrid model
merging various deep learning models with traditional classifiers.
An approach of optimized region-growing segmentation and an
autoencoder-based classification model that accurately identified
affected skin regions was developed by [71]. A model that used
Wiener-filtering preprocessing and a whale optimization algorithm
was introduced in [72]. This traditional technique showed promis-
ing results compared to more recent techniques. A study [73]
trained 23 CNNs on a collection of skin lesion images for diag-
nosing Lyme disease using transfer learning and offered model
selection advice, in which they concluded that ResNet50 gave the
best performance. The authors also examined the explainability of
the models using a qualitative evaluation of the Grad-CAMs. The
performance comparison of the recent works in skin lesion classi-
fication on the HAM10000 [20] dataset is summarized in Table 3.

3.4 Symmetry Classification
As mentioned in Section 1, the symmetry of a lesion is one of the
key features used in rule-based clinical criteria for skin disease
identification like the ABCD rule [10], and the 7-point checklist
[84]. Previous works on symmetry detection for skin lesions pre-
dominantly used classical image processing techniques. These tech-
niques include analyzing the irregularity of color distributions [85],
using Fourier descriptors to quantify the asymmetry of shape [86],
and computing the non-overlapping areas of a lesion by folding
it across an axis of symmetry [87]. However, these methods use
symmetry classification as one of the features for classifying lesions
without explicit symmetry evaluation.

In 2020, [15] proposed novel methods to classify symmetry based
on shape and texture. In this work, symmetry based on shape is
assessed by parameterizing the candidates to be axes of symmetry
by passing lines through the center of mass and using the Jaccard
index to find the similarity between the two sets (in this case, lesion
regions on both sides of the axis). A random forest classifier was
used to classify the symmetry of the lesion into "1-axis symmetry",
"2-axis symmetry" and "Asymmetry". Symmetry based on texture
is based on determining the similarity of different lesion patches
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Table 3: Summary of recent work on skin lesion classification on the HAM10000 dataset. The table provides a comparison of
numerous works on the same dataset using six metrics: Accuracy, Sensitivity, Specificity, Recall, Precision, and F1 Score.

Method Accuracy Sensitivity Specificity Recall Precision F1Score
EfficientNet B4 [64] 87.7 88 88 88 88 87
DLNN + MobileNet V2 + LSTM [66] 90.21 90.24 95.1 92.24 - -
ML + CNN [74] 95.18 94 - 85 88 86
DenseNet + ConvNext [75] 95.29 92.58 - 92.58 88.35 89.99
DenseNet 201 + ML [70] 99.94 91.48 98.82 91.48 97.01 -
S2C-DeLeNet [76] 91.03 90.58 90.58 90.58 90.38 90.48
EDBTM [69] 95.84 - - - 96.1 -
HSBSO-LSTM [77] 93.8 93.9 93.8 - 33.9 49.8
WT-DRNNet [78] 95.36 - 98.62 - 95.59 93.37
DBN-MEFOA [79] 97.99 92.99 97.00 - 96.99 91.99
ESVMKRF-HEAO [80] 97.4 95.9 96 - 96.3 97.4
DenseNet169 [81] 92.25 93.59 - - - 93.27
CNN-layered BLSTM [82] 89.47 88.33 97.17 - - -
MC-SVM [83] 98.57 93.89 96.37 - - 94.98

across an axis. This method uses two random forest classifiers to
assess the symmetry of two 32x32 patches and to aggregate infor-
mation across different orientations.

Additionally, a few DCNN-based methods for classifying symmetry
have emerged. For instance, [16] which is the first of such methods
proposed a simple CNN architecture with three blocks to classify
the symmetry of a lesion. This study also introduced the SymDerm
dataset, which is a collection of publicly available dermoscopic
images that have been labeled for symmetry by three expert derma-
tologists. The details of this dataset are described in Section 3.1. The
proposed method outperforms the traditional symmetry classifica-
tion techniques mentioned previously. SymDerm v2.0, an extension
of the SymDerm dataset was introduced in [17], along with an MTL
architecture performing symmetry and malignancy classification.
Furthermore, the study analyses the effect of different augmenta-
tion techniques on symmetry classification. The study concludes
that although symmetry classification does not show any improve-
ment in performance measures by including the task of skin lesion
classification, it does benefit from the auxiliary task of classifying a
lesion as malignant or benign. The comparison of existing methods
on the SymDerm and SymDerm v2.0 datasets is summarized in
Table 4.

3.5 Multi-Task Learning
Based on the training strategy, multi-task learning can be broadly
classified into two types: end-to-end and non-end-to-end. As dis-
cussed in Section 2, most cascade architectures are trained non-end-
to-end, and most parallel architectures are trained end-to-end. For
skin lesion analysis, MTL methods commonly focus on skin lesion
segmentation and classification tasks.

Most non-end-to-end methods leverage segmentation masks as
a background removal strategy to enhance classification perfor-
mance [89–91]. These methods often employ a cascaded architec-
ture, leveraging segmentation outcomes to improve classification.

Yu et al. [89] proposed a non-end-to-end network that utilized a
fully connected residual network (FCRN) for skin lesion segmenta-
tion. The output mask of this network was used to crop the image
to obtain just the lesion patch. This patch was then used as an input
to a deep residual network to classify the presence of melanoma.
Another non-end-to-end approach was proposed in [92], which
implemented a four-stage architecture for skin lesion segmentation.
The first stage was feature extraction using a ResNet50 architecture.
This was followed by a network for region proposal. The Proposed
regions were used as input to an R-CNN network that was used for
bounding box classification and adjustment. The bounding boxes
that are classified as lesions were sent to the final stage which uti-
lized the SkinNet [93] architecture for segmentation. Few methods
propose sharing parameters between segmentation and classifica-
tion. For instance, [18] proposes a mutual bootstrapping method
called MB-DCNN for segmentation and classification. This method
initially uses a coarse segmentation network to generate segmen-
tation masks. These masks are then used with the original image
as input to a classification network. Class activation maps [24] (as
explained in Section 2) from the classification network are then
utilized to train an enhanced segmentation network. This method
shows that CAMs from the classification network help refine the
segmentation results.

On the other hand, end-to-end methods generally consist of a
shared encoder and distinct outputs for each task, either paral-
lel or interacted architectures. For instance, [94] employs a shared
encoder for feature extraction and three separate output branches
for segmentation, melanoma classification, and seborrheic keratosis
classification. Similarly, [56, 95] also propose end-to-end architec-
tures for segmentation and classification. The study by [95] in-
troduces an end-to-end architecture encompassing three primary
tasks: skin lesion detection, segmentation, and classification. In con-
trast, [56] focuses solely on lesion segmentation and classification
tasks, integrating a feature passing branch to facilitate feature trans-
fer between the segmentation and classification branches. More
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Table 4: Summary of recent work on skin lesion classification on the SymDerm and SymDerm v2.0 datasets. The table provides
a comparison of numerous works on the two datasets using five metrics: Balanced Accuracy (B.Acc), Kappa Score, andWeighted
Average of Precision, Recall, and F1 Score.

Method Dataset Num. Classes B.Acc Kappa Score Weight. Avg.
Precision

Weight. Avg.
Recall

Weight. Avg.
F1-Score

SIFT + Decision Tree [88] SymDerm 3 0.479 0.256 0.563 0.523 0.539

SIFT + Decision Tree [88] SymDerm 2 0.676 0.353 0.678 0.676 0.677

Shape + Colour based [15] SymDerm 3 0.498 ± 0.018 0.291 ± 0.025 0.566 ± 0.015 0.562 ± 0.016 0.560 ± 0.015

CNN [16] SymDerm 3 0.615 ± 0.019 0.429 ± 0.030 0.690 ± 0.026 0.627 ± 0.022 0.645 ± 0.021

CNN [16] SymDerm 2 0.719 ± 0.029 0.441 ± 0.059 0.735 ± 0.035 0.722 ± 0.029 0.718 ± 0.029

CNN with data augmentation [17] SymDerm v2.0 2 0.711 ± 0.010 0.422 ± 0.020 0.715 ± 0.012 0.714± 0.012 0.712 ± 0.011

CNN with MTL [17] SymDerm v2.0 2 0.699 ± 0.035 0.398 ± 0.073 0.702 ± 0.035 0.699 ± 0.038 0.699 ± 0.038

recently, [96] proposed MTL-CNN that included the task of edge
prediction to boost the performance of segmentation. This network
consists of one encoder for feature extraction, two parallel decoders
for the dense prediction tasks of edge detection and lesion segmen-
tation, and one classification subnet for skin lesion classification.
In this architecture, the output from the edge decoder is utilized to
improve the segmentation results by using multiple Edge Informa-
tion Enhancement (EIE) modules along the skip connections from
the encoder to the segmentation decoder. Incorporating the EIE
modules on each skip connection ensures enhancement at different
scales of feature extraction. Similarly, the output of the segmen-
tation decoder is utilized to improve the classification results by
using multiple Lesion Area Extraction (LAE) modules along the
skip connections from the encoder to the classification subnet.

4 METHODOLOGY

This section contains the details of the proposedmodel architectures
and training strategies. The core idea of utilizing these networks is
to leverage segmentation masks to improve symmetry classifica-
tion and utilize CAMs from the symmetry classification network to
improve the performance of skin lesion classification. For this pur-
pose, a cascaded architecture, trained in a non-end-to-end manner,
is proposed (as depicted in Figure 2).

4.1 Symmetry Enhanced Lesion Classification
Network (SE-LCN)

The proposed architecture consists of three distinct networks, each
trained for specific tasks:

4.1.1 The Segmentation Network is responsible for generating
lesion masks of dermoscopic images to aid classification of symme-
try and lesion type. For this task, we train and evaluate DeepLabv3+
[52], and U-Net [43], and the better-performing model is utilized as
the network for segmentation. These two models were chosen for
comparison because these two are the best-performing standalone
models, as discussed in Section 3. The model is trained with a hybrid
loss function that was introduced in [18], and is defined as follows:

𝐿ℎ𝑦𝑏𝑟𝑖𝑑 = 𝐿𝑑𝑖𝑐𝑒 + 𝜆𝐿𝑟𝑎𝑛𝑘 , (2)
where 𝜆 is a weighting factor and 𝐿𝑑𝑖𝑐𝑒 [97] and 𝐿𝑟𝑎𝑛𝑘 represent the
dice loss and the rank loss respectively. The dice loss is a loss func-
tion derived from the dice similarity coefficient, which measures
the similarity between two sets. The dice loss is defined as:

𝐿𝑑𝑖𝑐𝑒 = 1 − |𝑋 ∩ 𝑌 |
|𝑋 | + |𝑌 | , (3)

where |𝑋 ∩ 𝑌 | counts the number of true positive pixels (i.e., the
intersection where both the prediction and the ground truth are
positive), |𝑋 | is the number of positive pixels in the ground truth,
and |𝑌 | is the number of positive pixels in the prediction. The rank
loss is employed to pose additional constraints on hard and easy
pixels based on prediction error [18]. In this function, pixels from
both foreground and background are ranked by their error after
forward propagation of each batch. The top K pixels with the largest
error in lesion or background are selected as hard pixels in this
area. If 𝐻0

𝑛𝑖
and 𝐻1

𝑛𝑗
are prediction values of the 𝑖𝑡ℎ hard pixel of

the background (denoted by 0) and the 𝑗𝑡ℎ hard pixel of the lesion
(denoted by 1) for the 𝑛𝑡ℎ input image, and𝑚 be the margin value,
the rank loss is defined as:

𝐿rank (𝑋𝑛, 𝑌𝑛) =
1
𝐾2

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=1

max(0, 𝐻0
𝑛𝑖 (𝑋𝑛, 𝑌𝑛) −𝐻

1
𝑛𝑗 (𝑋𝑛, 𝑌𝑛) +m),

(4)
which enforces 𝐻1

𝑖 𝑗
> 𝐻0

𝑖 𝑗
+m in the training stage. Such a design

enables a segmentation network to pay more attention to those
hard pixels and thus learn more discriminative information.

The segmentation outcomes were utilized by both the classification
networks by masking the input image. Throughout the experimen-
tation, two distinct masking strategies were explored, each with the
aim of optimizing classification accuracy. The strategy that demon-
strated better results was integrated into the final architecture. The
two masking strategies are:

• SegmentationMasks:Thesemasks are obtained by simply
using the binary masks (obtained from the segmentation
model) to the input image. The mask keeps the segmented
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Figure 2: Symmetry Enhanced Lesion Classification Net-
work (SE-LCN): The proposed non-end-to-end architecture
includes (a) the segmentation network, the output of which
is used to mask input images for both (b) the symmetry clas-
sification network and (c) the lesion classification network.
Class Activation Maps (CAMs) from the symmetry classifica-
tion networks are merged with the featuremaps of the lesion
classification network using an Enhanced Layer (E-Layer).

.

(a) Input Image (b) Segmented Mask (c) LAE Mask

Figure 3: Two types of masking strategies for the input image
shown in (a) are the Segmentationmask (b) and the LAEmask
(c).

region (foreground) of the input image as it is and converts
the remaining pixels (background) to black pixels. Such a
masking strategy ensures that the model only focuses on

the exact region where the lesion is segmented. An example
of this mask applied to an input image is shown in Figure 3b.

• Lesion Area Extraction (LAE) Masks: The LAE masks
were implemented in [96] where a box region around the
lesion is kept in the input image. In this mask, a bounding
box is detected around the lesion, the box is dilated by
a factor of 1.4, and this resultant box region is retained
while the remaining pixels are converted to black pixels.
This mask aims to ensure that the model focuses on the
lesion area and the surrounding skin region, which may be
helpful in classification. An example of this mask applied
to an input image is shown in Figure 3c.

4.1.2 The SymmetryClassificationNetwork utilizes themasked
inputs (using masks generated by the segmentation network) to
classify the symmetry of a lesion. Four light-weight architectures
were considered for this network: ResNet34, EfficientNetB0, Shuf-
fleNet, and SqueezeNet. On training and evaluating these networks
on the SymDerm v2.0 dataset using the same hyperparameters,
SqueezeNet gave the best performance. Hence, a SqueezeNet [98]
architecture pre-trained on Imagenet [99] is trained to classify the
symmetry of a skin lesion into two classes: symmetric and asym-
metric. A weighted cross-entropy loss is employed to tackle the
class imbalance between the two classes. The weight for a class ‘i’
(𝑤𝑖 ) is calculated as follows:

𝑤𝑖 =
total_samples

num_samples_in_class_i ∗ num_classes , (5)

where ‘total_samples’ is the total number of samples in the dataset
‘num_samples_in_class_i’ is the number of samples in class i, and
‘num_classes’ is the total number of classes in the dataset (in this
case, 2). The weighted cross-entropy loss for binary classification
is calculated as follows:

Weighted CE(𝑝,𝑦,𝑤) = − (𝑤 · 𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)) , (6)

where 𝑝 is the predicted probability of class ’symmetric’, 𝑦 is the
actual label (0 for asymmetric and 1 for symmetric), and𝑤 is the
weight of class ’symmetric’.

4.1.3 The Lesion Classification Network utilizes the masked
inputs from the segmentation network and CAMs from the sym-
metry classification network to classify the type of skin lesion into
7 distinct classes. The EfficientNet B4 [65] architecture pre-trained
on Imagenet [99] is fine-tuned using a weighted cross-entropy loss
function to tackle class imbalance. The weights for each class are
calculated using eq. (5), and the weighted cross-entropy loss for
multi-class classification is calculated as:

Weighted CE(𝑝,𝑦,𝑤) = −
𝑁∑︁
𝑖=1

𝑤𝑖 · 𝑦𝑖 log(𝑝𝑖 ), (7)

where 𝑝𝑖 is the predicted probability of class 𝑖 , 𝑦𝑖 is the label of
class 𝑖 , and𝑤𝑖 is the weight of class 𝑖 .

The enhanced layer (E-Layer), introduced in [18], is applied to
fuse the CAMs from the symmetry classification network into the
features of the lesion classification network. The E-layer, present in
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Figure 4: The E-Layer concatenates image features with the
Grad-CAM++ output of the symmetry classification model.
This is followed by a 1x1 convolution layer and a batch nor-
malization layer with a ReLU activation function.

the lesion classification network, concatenates the incoming CAMs
with feature maps extracted from the encoder, and employs a 1x1
convolution, which is followed by a batch normalization and a ReLU
activation function to fuse the image features with the localization
features (provided by the CAM). The resultant feature maps are
flattened and fed to the classifier of the network. The architecture
of the E-Layer can be seen in Figure 4. To extract CAMs from the
symmetry classification network, we use Grad-CAM++ [26].

5 EXPERIMENTAL SETUP AND RESULTS

This section contains a detailed description of the data preprocess-
ing steps used for each network, the experimental framework for
the experiments, and the results of all the experiments conducted
in this work.

5.1 Data and Preprocessing
To train the lesion segmentation and the lesion classification net-
works, the HAM10000 dataset [20] was used. This dataset, however,
consists of numerous images containing skin hair, which could
cause distractions to the model and negatively impact its perfor-
mance. To remove these distractions, we implemented a hair re-
moval technique that was used in [100]. This technique uses a
thresholded image from the output of blackhat transform for seg-
menting the hair pixels, and uses the fast marching method [101]
for inpainting using the surrounding pixels. Representative exam-
ples of skin lesion images, before and after the application of hair
removal, are illustrated in Figure 5.

HAM10000 dataset consists of lesion images belonging to 7 classes
which include: melanoma, melanocytic nevi, basal cell carcinoma,
actinic keratosis, benign keratosis-like lesions, dermatofibroma,
and vascular lesions. However, the distribution of images in these
classes is highly imbalanced. To prevent class bias in the model, we
balanced the dataset, aiming to have 2,000 images for each class.
The classes that had a higher number of images were downsampled
by randomly selecting 2,000 images, and the classes with a lower
number of images were upsampled using data augmentation. The

(a) (b) (c)

(d) (e) (f)

Figure 5: Examples of the hair removal step on three images
of the HAM10000 dataset. Subfigures (a), (b), and (c) represent
images with hair, while subfigures (d), (e), and (f) represent
the corresponding images after hair removal.

.

Figure 6: Class distribution of HAM10000 dataset before and
after dataset balance.

augmentation techniques used were vertical flip, horizontal flip,
and 90-degree rotation. The distribution of classes before and after
balancing can be seen in Figure 6. Notably, certain classes such as
basal cell carcinoma, actinic keratosis, vascular lesions, and der-
matofibroma could not be augmented to the 2,000-image target due
to their limited initial sample quantities.

To train the symmetry classification model, the SymDerm v2.0
dataset [17] is used. Although this dataset contains images belong-
ing to three classes, we consolidate the classes ‘Symmetry w.r.t. 1
axis’ and ‘Symmetry w.r.t.2 axes’ into a single ‘Symmetric’ class for
simplicity, as done in [17].

10



Symmetry Enhanced Skin Lesion Classification Network: A Cascaded Multi-Task Learning Approach

5.2 Implementation and Learning Details
The experiments in this research are carried out using the PyTorch
framework and were run on the EEMCS HPC Cluster provided by
the University of Twente. The cluster consists of several GPU nodes
that use SLURM to manage submitted jobs.

Each network of the proposed architecture is trained separately
in a sequential order. Each dataset is split where 80% of the data
is used for training and validation, and 20% is used for testing. A
stratified split is used to ensure that the class ratio remains the
same on both splits. The training and validation data is initially
further split where 75% is used for training and 25% is used for
validation. Using this split data, a Bayesian hyperparameter search
[102] is conducted to find the optimal hyperparameters. The hyper-
parameters yielding the highest validation accuracy are selected.
The hyperparameters used in this search are batch size, learning
rate, momentum, weight decay, and weighted loss function. The
selected hyperparameters are then used to conduct experiments on
a network (comparing masking strategies). The experiments are
conducted by employing a K-fold stratified cross-validation on the
initial training and validation set (80% of the entire dataset). The
average performance is evaluated across K folds on the validation
set of each fold, and the separate test set. The experimental setup
is visualized in Figure 7. Each fold is trained for a maximum of
100 epochs, where the weights are saved from the epoch with the
lowest validation loss. An early stopping strategy is applied with a
patience of 10 epochs to prevent overfitting. All three networks are
trained with the ADAM optimizer [103]. For the symmetry classifi-
cation network, a 3-fold cross-validation is implemented, whereas
for the final SE-LCN, a 4-fold cross-validation is implemented. The
final SE-LCN model that is trained on the HAM10000 dataset is
also evaluated on the ISIC 2019 dataset to test the generalization
capabilities of the model. The ISIC 2019 dataset consists of 8 classes,
the seven classes from the HAM10000 dataset and squamous cell
carcinoma (SCC). The images belonging to SCC category were omit-
ted to restrict the evaluation to images belonging to 7 classes.

The following experiments are designed in this work:

• Experiment 1: Training and evaluating DeepLabv3+ (seg-
mentation network) on HAM10000 dataset.

• Experiment 2: Training and evaluating SqueezeNet (sym-
metry classification network) on SymDerm v2.0 dataset
o Without masked input.
o Using Segmentation masks as input.
o Using LAE masks as input.

• Experiment 3: Training and evaluating EfficientNet B4
(lesion classification network) on HAM10000 dataset:
o Without masked input.
o Using Segmentation masks as input.
o Using LAE masks as input.

• Experiment 4: Training and evaluating EfficientNet B4
(lesion classification network) on HAM10000 dataset with
CAMs from symmetry classification network using all com-
binations of masking the symmetry classification network
and lesion classification network.

(a) Hyper-parameter Tuning

(b) Cross-validation training and evaluation

Figure 7: The experimental framework includes (a) a
Bayesian search for hyper-parameter tuning and (b) a k-fold
cross-validation training and evaluation strategy.

• Experiment 5: Evaluating the models trained in Exper-
iment 4 (using the HAM10000 dataset) on the ISIC2019
dataset.

• Additional Experiment: Training and evaluating the fi-
nal SE-LCN models on the ISIC2016 dataset (binary classi-
fication) using all combinations of masking the symmetry
classification network and lesion classification network.
Results are presented in Appendix C.

5.3 Evaluation Metrics
5.3.1 Evaluation of predictive performance To evaluate the
performance of the segmentation network, the dice index, pixel-
wise sensitivity, pixel-wise specificity, and pixel-wise accuracy are
used. To evaluate the performance of the symmetry classification
network, the balanced accuracy, kappa score, and weighted average
of precision, recall, and F1-score are calculated. To evaluate the
lesion classification network, the accuracy, kappa score, and macro
average of precision, recall, and F1-score are calculated.

5.3.2 Evaluation of localization of CAMs To evaluate the best
masking strategy for the symmetry classification network and the
impact of including class activation maps to SE-LCN, apart from a
quantitative measure of performance using the metrics mentioned
previously, we measure the localization accuracy of the generated
CAMs. This is done by comparing the CAMs generated by these
models and the ground truth segmentation masks. For this com-
parison, we use a threshold of 0.5 on the activation map (which
consists of values between 0 and 1) and consider any value above
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Figure 8: To evaluate the localization of CAMs, the ground
truth segmentation mask is used as a reference. The segmen-
tation mask is dilated twice, and a threshold of 0.5 is used to
find the activation points in the CAM.

the threshold as an activation point. Next, the ground truth seg-
mentation mask is dilated twice to increase the area of the ground
truth region. This is done to consider activation points on the edges
of the lesion and surrounding skin tissues as true positives. Finally,
the localization is evaluated using three metrics: Intersection over
Union (IoU), Percentage Overlap, and Pointing Game (refer eq. (1)).
The IoU is calculated as:

IoU =
|𝑋 ∩ 𝑌 |
|𝑋 ∪ 𝑌 | , (8)

and the percentage overlap is calculated as

Percentage Overlap =
|𝑋 ∩ 𝑌 |
|𝑋 | , (9)

where |X| represents the number of activation points in the CAM,
and |Y| represents the number of points in the lesion region calcu-
lated after dilation. The process of evaluating the localization of
CAMs is illustrated in Figure 8.

5.4 Results
5.4.1 Skin Lesion Segmentation Table 5 presents the perfor-
mance measures of the DeepLabv3+ and U-Net segmentation mod-
els, assessed on the HAM10000 test set. The DeepLabv3+ model
achieves a dice index of 0.8882, a pixel-wise sensitivity of 0.9083, a
pixel-wise specificity of 0.9178, and a pixel-wise accuracy of 0.9184.
The U-Net model achieves a dice index of 0.8807, a pixel-wise sen-
sitivity of 0.8873, a pixel-wise specificity of 0.9328, and a pixel-wise
accuracy of 0.9150. Both models have similar performances on the
HAM10000 dataset. However, since DeepLabv3 + gave better per-
formance in 3 metrics, we decided to utilize the same in the SE-LCN
pipeline.

5.4.2 Symmetry Classification The comparative analysis of
SqueezeNet models trained on the SymDerm v2.0 dataset, employ-
ing different masking strategies is summarized in Table 6a and
Table 6b. These models were evaluated using five metrics, where
the values represent the mean and standard deviation across 3
cross-validation folds. Four models are compared in these tables,

Table 5: The performance of DeepLabv3+ and U-Net models
evaluated on the HAM10000 test set. Performance is eval-
uated using four metrics: dice index, pixel-wise sensitivity,
pixel-wise specificity, and pixel-wise accuracy.

Metric DeepLabv3+ [52] U-Net [43]

Dice Index 0.8882 0.8807
Pixel-wise Sensitivity 0.9083 0.8873
Pixel-wise Specificity 0.9178 0.9328
Pixel-wise Accuracy 0.9184 0.9150

one model trained from scratch without any masking (model 1),
one pre-trained model without any masking (model 2), and two
pre-trained models with segmentation masking and LAE mask-
ing (models 3 and 4). The pre-trained models (models 2-4) were
fine-tuned to the SymDerm v2.0 dataset. Table 6a shows the model
performances on the corresponding validation sets across 3-folds.
Across three folds, the model that was trained from scratch had
a mean balanced accuracy of 0.664, a mean kappa score of 0.392,
and a mean weighted average precision, recall, and F1-score of
0.669, 0.668, and 0.665 respectively on the validation set. The values
indicate a consistent enhancement in model performance with a
pre-training and fine-tuning approach for symmetry classification.
Among the three pre-trained models, the model employing segmen-
tation masking (model 3) outperformed the others in validation
metrics, having a mean balanced accuracy of 0.740, a mean kappa
score of 0.481, and a mean weighted average precision, recall, and
F1-score of 0.744, 0.742, and 0.742 respectively. This was followed
by the model employing LAE masking (model 4) while the model
without input masking (model 2) gave the worst performance.

Table 6b shows the model performances on a separate test set
across 3-folds. The model that was trained from scratch had a mean
balanced accuracy of 0.673, a mean kappa score of 0.347, and a mean
weighted average precision, recall, and F1-score of 0.680, 0.679, and
0.678 respectively on the test set. A similar trend can be observed in
which the pre-trained networks that are fine-tuned to classify sym-
metry perform better than the model trained from scratch. However,
the masking strategies do not show improvement in results over
the model trained without input masking. The pre-trained model
without input masking (model 2) exhibits superior performance
across all metrics, having a mean balanced accuracy of 0.758, a
mean kappa score of 0.511, and a mean weighted average precision,
recall, and F1-score of 0.761, 0.757, and 0.758 respectively. Among
the two masking strategies, using the LAE masks (model 4) demon-
strated better performance on all metrics except for the kappa score.

Furthermore, the localization of CAMs generated by the three pre-
trained models (models 2-4) was evaluated using the segmentation
masks of the HAM10000 dataset, as shown in Table 7. The best-
performing fold (using test accuracy) of each model was used to
generate CAMs. Out of the three models, the model with no in-
put masking (model 2) gave the best mean IoU of 0.321, whereas
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the segmentation masking strategy (model 3) gave the best perfor-
mance on all mean percentage overlap and pointing game scores
with values of 0.940 and 0.812 respectively. Notably, the pointing
game score is significantly higher for this model. A few examples
of CAMs generated by different masking strategies are illustrated
in Figure 9. A general difference among the CAMs generated by
the models using different masking strategies can be observed from
Figure 9. The models that do not use input masking have activation
points spread across the image, including the background region.
On the other hand, the models that use segmentation masking have
activation points along the borders of the lesion area. The models
that use LAE masking have activation points along the edges of the
LAE box.

5.4.3 Symmetry Enhanced Lesion Classification Network
(SE-LCN) The performance comparison of the SE-LCN models
trained on the HAM10000 dataset, employing various input mask-
ing strategies for the lesion classification network and the symmetry
classification is summarized in Table 8a and Table 8b. It comprises
12 models, of which three are baseline models (models 1, 5, and 9),
with no transfer of CAMs’ information, and the remaining nine
are complete symmetry-enhanced models with different masking
combinations. The tables are divided into three groups, based on
the masking strategy of the lesion classification model. Models 1-4
do not utilize input masking for the classification model, models 5-8
utilize the segmentation masking strategy, and experiments 9-12
utilize the LAE masking strategy.

Table 8a shows the SE-LCN performances on the corresponding
validation sets across 4-folds. First, we analyze the inclusion of
CAMs in each group of models. For the first group (models 1-4),
where the classification model does not have an input mask, all
three models that utilize transfer of CAMs (models 2-4) show an
improvement in performance as compared to the baseline model
(model 1). Model 1 gives a mean accuracy of 0.859, whereas models
2,3, and 4 give a mean accuracy of 0.871, 0.869, and 0.883 on the
validation set. A similar trend is observed in the 3rd group (models
9-12) where the transfer of CAMs improves the performance when
compared to the baseline (model 9). However, the trend is different
for the second group (models 5-8), which utilizes segmentation
masks for the lesion classification model. In this group, the baseline
model with no transfer of CAMs (model 5) has a mean accuracy of
0.800 and slightly outperforms the other three models of the group,
which have mean accuracies of 0.797, 0.798, and 0.787 respectively.

It can be noted that irrespective of the masking strategy used in
the symmetry classification model, using no mask in the lesion
classification model (model 1-4) yields the best performance, where
the mean accuracies range from 0.859 to 0.883. Among the two
masking strategies, using the LAE masks for the lesion classifi-
cation models (model 9-12) gives better performance with mean
accuracies ranging from 0.787 to 0.800. Using the segmentation
masks (model 5-8). Among the four best models (model 1-4), using
LAE masks on the symmetry classification network gave the best
performance on all metrics. Therefore the best-performing model
on the validation set is a symmetry network trained with LAE input
masks transferring CAMs to a lesion classification network trained

(a)

(b)

(c)

(d)

Figure 9: Four examples of Grad-CAM ++ of different mask-
ing strategies for symmetry classification on SymDerm v2.0
test set. The type of input masking (no mask, segmentation
mask, and LAE mask) is mentioned above each input-CAM
pair, and the predicted class is mentioned below. GT denotes
the ground truth prediction of that image.

with no input masks.

Table 8b shows the SE-LCN performances on the separate test
set across 4-folds. A trend similar to Table 8a is observed where the
lesion classification networks trained with no input masks (model
1-4) perform the best, followed by classification networks trained
with LAE input masks (model 9-12). Among the four models with
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Table 6: Performance comparison of SqueezeNet models trained on the SymDerm v2.0 dataset, employing various masking
strategies to classify lesion symmetry. Each model’s performance is quantified using five metrics: Balanced Accuracy, Kappa
Score, Weighted Average Precision, Recall, and F1-Score, with values representing the mean and standard deviation calculated
on the corresponding validation and test sets across 3 folds of cross-validation. The highest value of each metric is highlighted
in bold.

(a) Evaluation on corresponding validation sets

Model Validation Set
Mean ± Std. Dev

Model Masking Pretrained Balanced Acc. Kappa Score Weight Avg Precision Weight Avg Recall Weight Avg F1

1 None FALSE 0.664 ± 0.017 0.329 ± 0.033 0.669 ± 0.015 0.668 ± 0.015 0.665 ± 0.017
2 None TRUE 0.733 ± 0.021 0.465 ± 0.041 0.735 ± 0.022 0.733 ± 0.020 0.733 ± 0.020
3 Segmentation TRUE 0.740 ± 0.013 0.481 ± 0.029 0.744 ± 0.016 0.742 ± 0.016 0.742 ± 0.015
4 LAE (bbox) TRUE 0.736 ± 0.009 0.475 ± 0.019 0.741 ± 0.010 0.741 ± 0.009 0.739 ± 0.009

(b) Evaluation on separate test set

Model Test Set
Mean ± Std. Dev

Model Masking Pretrained Balanced Acc. Kappa Score Weight Avg Precision Weight Avg Recall Weight Avg F1

1 None FALSE 0.673 ± 0.025 0.347 ± 0.045 0.680 ± 0.023 0.679 ± 0.019 0.678 ± 0.021
2 None TRUE 0.758 ± 0.010 0.511 ± 0.019 0.761 ± 0.010 0.757 ± 0.009 0.758 ± 0.009
3 Segmentation TRUE 0.730 ± 0.010 0.458 ± 0.018 0.733 ± 0.009 0.729 ± 0.009 0.729 ± 0.009
4 LAE (bbox) TRUE 0.732 ± 0.006 0.466 ± 0.013 0.736 ± 0.006 0.736 ± 0.006 0.735 ± 0.006

Table 7: Evaluation of localization of CAMs of SqueezeNet
models trained on the SymDerm v2.0 dataset, employing
various masking strategies to classify lesion symmetry. The
best fold (from cross-validation) of each model is used for
evaluation on the HAM10000 dataset. Metrics shown include
Intersection over Union (IoU), Percentage Overlap, and Point-
ing Game scores, utilizing segmentation masks for reference
comparison.

Model HAM10000 dataset

Model Masking IoU Overlap Point Game

2 None 0.321 ± 0.182 0.758 ± 0.263 0.673

3 Segmentation 0.249 ± 0.148 0.940 ± 0.130 0.812

4 LAE 0.161 ± 0.159 0.564 ± 0.367 0.407

no mask for the lesion classification network (model 1-4), the model
with segmentation masks (model 3) used in the symmetry classi-
fication network, and the baseline model (model 1) achieved the
highest accuracy of 0.849. However, the highest kappa score and
the highest macro average of precision and recall are achieved by
the model that uses segmentation masks in the symmetry classi-
fication network (model 3) with mean values of 0.721, 0.770, and
0.792 respectively. The highest macro average of recall is 0.824,
achieved by the model that uses LAE masks (model 4) for symmetry
classification. Overall, on the test set, the transfer of CAMs does

not improve the classification accuracy but shows considerable
improvements in all other metrics.

Table 9 summarizes the evaluation of localization of CAMs gener-
ated by all 12 models. The three baseline models (model 1, 5, and
9) have low mean IoU scores of 0.273, 0.270, and 0.260 respectively.
However, these models have high mean overlap scores of 0.964,
0.967, and 0.967 respectively, and high pointing game scores of
0.952, 0.956, and 0.956 respectively. The transfer of CAMs to these
baseline models shows a significant increase in IoU scores. The
mean IoU scores for models with the transfer of CAMs range from
0.415 to 0.487. However, a slight drop in percentage overlap and
pointing game score is observed with the inclusion of CAMs. The
pointing game score for the remaining models ranges from 0.828
to 0.941 and the mean percentage overlap ranges from 0.888 to
0.959. The Grad-CAM ++ from all masking combinations of the
SE-LCN framework on one example image is illustrated in Figure 10.

Table 10 summarizes the same SE-LCN model performances when
evaluated on the ISIC2019 dataset across 4-folds. The dataset used
for evaluation consisted of 24,703 images (the entire dataset except
for images belonging to the class SCC). It can be observed from the
table that the baseline model (model 1) with no masking and no
CAM transfer gives the worst performance with a mean accuracy
of 0.522. The inclusion of CAM in the classification models with-
out masks (models 2-4) improves the performance on this dataset.
Model 4, which transfers CAMs from symmetry models with LAE
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Table 8: Performance comparison of SE-LCN models trained on the HAM10000 dataset, employing various masking strategies
on inputs of both the symmetry classification network (that generates CAMs) and the lesion classification network. Each
model’s performance is quantified using five metrics: Accuracy, Kappa Score, Macro Average Precision, Recall, and F1-Score,
with values representing the mean and standard deviation calculated on the corresponding validation and test sets across 4
folds of cross-validation. The highest value of each metric among a lesion classifier masking strategy is highlighted in bold,
and the highest value of each metric among all experiments is highlighted in blue text. The baseline model is model 1, which
uses no input masking and no transfer of CAMs

(a) Evaluation on corresponding validation sets

Model Validation Set
Mean ± Std. Dev

Model Classification Model Symmetry Model Accuracy Kappa Score Macro Avg Precision Macro Avg Recall Macro Avg F1

1 Without Masks No CAM transfer 0.859 ± 0.014 0.828 ± 0.017 0.876 ± 0.013 0.884 ± 0.015 0.879 ± 0.014

2 Without Masks Without Masks 0.871 ± 0.009 0.843 ± 0.010 0.889 ± 0.011 0.897 ± 0.008 0.892 ± 0.009

3 Without Masks Segmentation Masks 0.869 ± 0.026 0.841 ± 0.032 0.883 ± 0.026 0.893 ± 0.022 0.887 ± 0.025

4 Without Masks LAE Masks 0.883 ± 0.006 0.858 ± 0.007 0.902 ± 0.003 0.909 ± 0.005 0.905 ± 0.003

5 Segmentation Masks No CAM transfer 0.800 ± 0.017 0.757 ± 0.021 0.813 ± 0.013 0.825 ± 0.016 0.818 ± 0.014

6 Segmentation Masks Without Masks 0.797 ± 0.007 0.753 ± 0.008 0.817 ± 0.004 0.820 ± 0.009 0.817 ± 0.003

7 Segmentation Masks Segmentation Masks 0.798 ± 0.005 0.754 ± 0.006 0.817 ± 0.007 0.824 ± 0.006 0.819 ± 0.006

8 Segmentation Masks LAE Masks 0.787 ± 0.023 0.741 ± 0.028 0.809 ± 0.025 0.812 ± 0.019 0.808 ± 0.023

9 LAE Masks No CAM transfer 0.847 ± 0.011 0.814 ± 0.013 0.860 ± 0.013 0.874 ± 0.009 0.865 ± 0.011

10 LAE Masks Without Masks 0.859 ± 0.014 0.829 ± 0.017 0.875 ± 0.008 0.884 ± 0.016 0.878 ± 0.012

11 LAE Masks Segmentation Masks 0.852 ± 0.016 0.820 ± 0.019 0.864 ± 0.013 0.879 ± 0.015 0.870 ± 0.014

12 LAE Masks LAE Masks 0.869 ± 0.014 0.841 ± 0.017 0.882 ± 0.008 0.894 ± 0.013 0.888 ± 0.011
(b) Evaluation on separate test set

Model Test Set
Mean ± Std. Dev

Model Classification Model Symmetry Model Accuracy Kappa Score Macro Avg Precision Macro Avg Recall Macro Avg F1

1 Without Masks No CAM transfer 0.849 ± 0.012 0.713 ± 0.005 0.750 ± 0.020 0.814 ± 0.013 0.777 ± 0.009

2 Without Masks Without Masks 0.845 ± 0.004 0.716 ± 0.005 0.756 ± 0.013 0.822 ± 0.010 0.785 ± 0.008

3 Without Masks Segmentation Masks 0.849 ± 0.008 0.721 ± 0.011 0.770 ± 0.027 0.819 ± 0.005 0.792 ± 0.014

4 Without Masks LAE Masks 0.844 ± 0.009 0.716 ± 0.012 0.766 ± 0.014 0.824 ± 0.005 0.792 ± 0.008

5 Segmentation Masks No CAM transfer 0.782 ± 0.009 0.618 ± 0.013 0.638 ± 0.020 0.738 ± 0.012 0.680 ± 0.015

6 Segmentation Masks Without Masks 0.781 ± 0.009 0.617 ± 0.010 0.647 ± 0.029 0.742 ± 0.007 0.684 ± 0.016

7 Segmentation Masks Segmentation Masks 0.776 ± 0.010 0.610 ± 0.011 0.642 ± 0.025 0.738 ± 0.017 0.679 ± 0.010

8 Segmentation Masks LAE Masks 0.782 ± 0.007 0.616 ± 0.006 0.644 ± 0.021 0.723 ± 0.008 0.674 ± 0.014

9 LAE Masks No CAM transfer 0.804 ± 0.002 0.653 ± 0.001 0.670 ± 0.014 0.778 ± 0.008 0.713 ± 0.008

10 LAE Masks Without Masks 0.817 ± 0.005 0.672 ± 0.007 0.689 ± 0.002 0.784 ± 0.012 0.728 ± 0.005

11 LAE Masks Segmentation Masks 0.812 ± 0.008 0.666 ± 0.011 0.671 ± 0.018 0.776 ± 0.017 0.714 ± 0.016

12 LAE Masks LAE Masks 0.819 ± 0.004 0.677 ± 0.006 0.702 ± 0.017 0.801 ± 0.005 0.742 ± 0.011

input gives the best performance among all models with a mean
accuracy of 0.676. Interestingly, the models that use some type of
masking for lesion classification, but do not transfer CAMs (models
5 and 9) have a good performance with mean accuracies 0.622 and
0.643 respectively. However, all the models show a significant drop
in performance when compared to performance on the HAM10000

test set. The localization accuracy of CAMs could not be evalu-
ated on the ISIC2019 dataset since the dataset does not consist of
segmentation masks.
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Table 9: Evaluation of localization of CAMs of SE-LCN trained on the HAM10000 dataset, employing various masking strategies.
The best fold (from cross-validation) of each model is used for evaluation on the HAM10000 dataset. Metrics shown include
Intersection over Union (IoU), Percentage Overlap, and Pointing Game scores, utilizing segmentation masks for reference
comparison. The highest value of each metric among a lesion classifier masking strategy is highlighted in bold. The baseline
model is model 1, which uses no input masking and no transfer of CAMs

Model CAM Localization
Entire Dataset

Model Classification Model Symmetry Model IoU Overlap Point Game

1 Without Masks No CAM transfer 0.273 ± 0.118 0.964 ± 0.156 0.952
2 Without Masks Without Masks 0.461 ± 0.187 0.895 ± 0.175 0.844
3 Without Masks Segmentation Masks 0.458 ± 0.190 0.888 ± 0.180 0.828
4 Without Masks LAE Masks 0.427 ± 0.171 0.894 ± 0.175 0.941
5 Segmentation Masks No CAM transfer 0.270 ± 0.110 0.967 ± 0.156 0.956
6 Segmentation Masks Without Masks 0.427 ± 0.171 0.958 ± 0.137 0.941
7 Segmentation Masks Segmentation Masks 0.415 ± 0.165 0.959 ± 0.139 0.94
8 Segmentation Masks LAE Masks 0.468 ± 0.193 0.955 ± 0.140 0.892
9 LAE Masks No CAM transfer 0.260 ± 0.107 0.967 ± 0.159 0.956
10 LAE Masks Without Masks 0.468 ± 0.193 0.950 ± 0.134 0.892
11 LAE Masks Segmentation Masks 0.475 ± 0.189 0.951 ± 0.133 0.899
12 LAE Masks LAE Masks 0.487 ± 0.195 0.949 ± 0.133 0.896

Table 10: Performance comparison of SE-LCN models trained on the HAM10000 dataset and evaluated on the ISIC2019 dataset,
employing various masking strategies on inputs of both the symmetry classification network (that generates CAMs) and
the lesion classification network. Each model’s performance is quantified using five metrics: Accuracy, Kappa Score, Macro
Average Precision, Recall, and F1-Score, with values representing the mean and standard deviation calculated on the entire
ISIC2019 dataset across 4 folds of cross-validation. The highest value of each metric among a lesion classifier masking strategy
is highlighted in bold, and the highest value of each metric among all experiments is highlighted in blue text. The baseline
model is model 1, which uses no input masking and no transfer of CAMs

Model ISIC 2019 Dataset
Mean ± Std. Dev

Model Classification Model Symmetry Model CAM Accuracy Kappa Score Macro Avg Precision Macro Avg Recall Macro Avg F1

1 Without Masks No CAM Transfer 0.522 ± 0.014 0.339 ± 0.012 0.376 ± 0.011 0.516 ± 0.008 0.403 ± 0.012

2 Without Masks Without Masks 0.669 ± 0.007 0.499 ± 0.008 0.505 ± 0.007 0.541 ± 0.009 0.511 ± 0.008

3 Without Masks Exact Segment Masks 0.675 ± 0.004 0.501 ± 0.007 0.512 ± 0.007 0.535 ± 0.006 0.514 ± 0.009

4 Without Masks LAE Masks 0.676 ± 0.009 0.505 ± 0.005 0.518 ± 0.007 0.539 ± 0.007 0.522 ± 0.004

5 Exact Segment Masks No CAM Transfer 0.622 ± 0.007 0.430 ± 0.012 0.465 ± 0.016 0.509 ± 0.008 0.465 ± 0.006

6 Exact Segment Masks Without Masks 0.622 ± 0.008 0.434 ± 0.009 0.453 ± 0.016 0.503 ± 0.006 0.457 ± 0.014

7 Exact Segment Masks Exact Segment Masks 0.621 ± 0.008 0.433 ± 0.009 0.461 ± 0.022 0.501 ± 0.008 0.461 ± 0.015

8 Exact Segment Masks LAE Masks 0.624 ± 0.007 0.430 ± 0.012 0.469 ± 0.009 0.495 ± 0.013 0.465 ± 0.018

9 LAE Masks No CAM Transfer 0.643 ± 0.009 0.454 ± 0.010 0.460 ± 0.017 0.525 ± 0.011 0.457 ± 0.018

10 LAE Masks Without Masks 0.639 ± 0.005 0.433 ± 0.017 0.472 ± 0.012 0.506 ± 0.018 0.457 ± 0.012

11 LAE Masks Exact Segment Masks 0.635 ± 0.005 0.434 ± 0.013 0.464 ± 0.009 0.507 ± 0.010 0.451 ± 0.012

12 LAE Masks LAE Masks 0.636 ± 0.007 0.425 ± 0.013 0.470 ± 0.013 0.502 ± 0.016 0.452 ± 0.019
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Figure 10: The figure illustrates Grad-CAM++ from all the masking combinations of the SE-LCN framework. Each row of
images represents four images having the same masking strategy for the lesion classification network. The first image of each
row represents a baseline approach with no CAM transfer. The following three outputs come from models with CAM transfer
from the symmetry classification network using different masking strategies.

6 DISCUSSION

This section provides a detailed analysis of the results described in
section 5.4.

6.1 Symmetry Classification
The results (refer Table 6a and Table 6b) show a clear performance
improvement when networks pre-trained on the ImageNet dataset
are fine-tuned for symmetry classification. This is because, pre-
training facilitatesmodel generalization [104], allowing the network
to develop a robust initial understanding of generic features before
adapting to more specific data characteristics found in dermoscopic
images. Notably, all three pre-trained networks also outperform
the existing works in the literature (mentioned in Table 4, which in-
clude classical approaches [15, 88] and D-CNN approaches trained
from scratch [16, 17].

The impact of masking strategies was compared among the three
pre-trained models on the validation sets and the test set. While the
performance on the validation sets is indicative of the robustness
of the model to different data distributions (since each fold has a
different training and validation split), the performance on the test
set indicates the model performance on unseen data. Notably, the
trends differ in the validation sets and the test sets. While input

masking methods showed superior performance on the validation
set, they caused a decline in performance on the test set. The perfor-
mance comparison among the two masking strategies also differs
in both datasets. The segmentation masks perform better when
evaluated on the validation set, the LAE masks perform better on
the test set.

On evaluating the localization of CAMs on the HAM10000 dataset
(refer to Table 7), the mean IoU was the highest for the model with
no input masking, whereas the percentage overlap and pointing
game score were the highest for the model with segmentation mask-
ing. One possible reason for this could be because the CAMs for
segmentation masking focused more on the edges of the lesion, as
seen in Figure 9, which could be useful while classifying symmetry.
Since the segmentation masking forces the model to focus on the
edges, the overall intersection between the activation points and
the segmentation mask is less, giving it a lower IoU score. However,
since the edges lie inside the dilated region of the segmentation
mask, the overlap and point game score are high for this masking
strategy, which indicates that most activation points lie within the
dilated segmentation region. All three CAM localization metrics
give the lowest score for the model using LAEmasking. As observed
in Figure 9, in many cases, this masking strategy forces the model
to focus on the edges of the LAE box. Therefore, most activation
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points do not lie within the dilated segmentation region. Hence, the
segmentation masking strategy yields the best CAM localization.

6.2 Symmetry Enhanced Lesion Classification
Network

Similar to the symmetry classification network, the SE-LCN was
evaluated on validation sets and the test set (refer Table 8a and
Table 8b), using a 4-fold cross-validation. We observed that on the
validation set, the inclusion of CAMs had a definitive improvement
in the performance over the baseline models when the lesion classi-
fier did not utilize segmentation masks (model 1-4), and when the
lesion classifier utilized LAE input masking (model 9-12). The same
was, however, only true for the LAE masking (model 9-12) models
when evaluated on the test set.

On evaluating on both the validation set and test set, the lesion
classification models trained without input masking (models 1-4)
showed the best performance, followed by the lesion classification
models trained with LAE masks applied to the input (model 9-12).
The segmentation input masks (model 5-8) yielded the worst perfor-
mance. This indicates that restricting the input image to the lesion
region negatively impacts the classification performance.

The trends again differ on both evaluation sets while varying the
masking strategy on the symmetry classification model. Among
the four best models (models 1-4), using the LAE mask on the sym-
metry classification model (model 4) gives a superior performance
on the validation set, while using segmentation masks (model 3)
gives the best performance on 3 metrics of the test set. Interest-
ingly, the accuracy on the test set remains the same for the baseline
network (model 1) and the network with segmentation masks on
the symmetry model (model 3), but the latter shows better perfor-
mances on macro averages of precision, recall, and F1-score. The
class-wise evaluation metrics of these two models are summarized
in Appendix B.

The SE-LCN models trained on the HAM10000 dataset were also
evaluated on the ISIC2019 dataset, to analyze the impact of masking
and CAM transfer on the generalization capabilities of the model.
It can be noticed that input masking and CAM transfer improve the
model performance on ISIC2019 over the baseline model (model
1). Interestingly, the models that did not utilize CAM transfer and
utilized input masking (models 5 and 9) had good performance
when compared to the baseline. Similarly, the models with no mask-
ing that utilized CAM transfer also performed well (models 2-4).
This shows that using either input masking or CAM transfer im-
proves the model’s generalizability. Overall the performance of
every model drops when tested on the ISIC2019 dataset. This shows
that the models do not maintain high performance when tested on
a larger variety of data.

Additionally, the SE-LCN models were trained and evaluated on
the ISIC2016 [33] dataset, a binary classification dataset to clas-
sify lesions as malignant or benign. The ISIC2016 dataset consists
of 900 images. The same approach of training and evaluation, as
mentioned in Figure 7, was implemented in this experiment where

20% of the data was used for testing and a 4-fold cross validation
was used on the remaining data. The results of these experiments
are summarized in Appendix C. Table 13 shows the results on the
corresponding validation set and Table 14 shows the results on
a separate test set. On the test set, the transfer of CAMs shows
an improvement in performance except when using segmentation
masks (models 5-8). Overall, using segmentation masking in the
classifier (models 5-8) gives the worst performance, similar to the
models when trained on the HAM10000 dataset. Among the mask-
ing strategies used in the symmetry model, using no input masking
gives the best performance.

Upon evaluation of the localization of CAMs generated by the
lesion classification model, the baseline models have a high per-
centage overlap score and a pointing game score. The inclusion of
CAMs slightly decreased the performance on these metrics. How-
ever, the inclusion of CAMs increased the mean IoU scores over the
baseline models. Figure 10 illustrates the impact of including CAMs
with different masking strategies on an input image. A general
observation is that the three baseline approaches (with no transfer
of CAMs from the symmetry model) generates smaller regions of
activation. When symmetry CAMs are transferred to these mod-
els, the output GradCAM covers more of the lesion region, which
explains the increase in IoU. The smaller region of CAMs for the
baseline approaches can explain the higher values of the mean per-
centage overlap and the pointing game score since the majority of
the activation points would lie inside the dilated segmented region.

6.3 Answers to Research Questions
Based on the results obtained from the experiments, the follow-
ing are the answers to the research questions mentioned in the
Section 1:

(1) Impact of inclusion of CAMs from symmetry classifi-
cation network on the predictive performance of the
lesion classification network: The impact of inclusion
of CAMs on the predictive performance can be observed
in Table 8 where Table 8a denotes the model performances
on the validation sets and Table 8b denotes the model per-
formances on the test set. First, we look at the inclusion of
CAMs (models 2-4) in the baseline model (model 1) which
uses no input masking on the classifier. In both datasets, we
observe that models 2-4 outperform the baseline, indicating
a positive impact on performance. There is no significant im-
provement in accuracy in the test set, but all other metrics
show an improvement over the baseline. A similar trend can
be seen in the models that use LAE masking for the lesion
classifier (models 9-12), where the models with CAM trans-
fer (models 10-12) show an improvement in performance
across all metrics over model 9 in both datasets. Hence,
while using LAE masking (models 9-12) or no masking
(models 1-4) on the lesion classifier, the inclusion of CAMs
has a positive impact on the predictive performance. How-
ever, this is not the case when using segmentation masks
(models 5-8). Here, the inclusion of symmetry CAM does
not show any improvement, and in certain cases decreases
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the performance in few of the metrics. Given that the mod-
els using segmentation masking in the lesion classifier have
lower performance than the other masking strategies, it
could have a negative impact on CAM transfer. Therefore,
the results suggest that the inclusion of CAMs from the
symmetry classification network has a positive impact on
the predictive performance of the SE-LCN model except
when segmentation masking is used on the lesion classifier.

(2) Impact of inclusion of CAMs from symmetry classi-
fication network on localization accuracy of CAMs
generated by lesion classification network: The impact
of inclusion of CAMs on the localization accuracy can be
observed in Table 9. The baseline models (models 1,5 and
9) already have a high Percentage Overlap and Pointing
Game score which decreases in all cases with the inclusion
of CAMs. However, the IoU score significantly increases in
all cases with the inclusion of CAMs. Figure 10 illustrates
the CAM for an input image generated by all the models
(1-12). It can be observed that the three baseline models
have a smaller region of activation. This could explain why
these models have a higher Percentage Overlap and Point-
ing game score since most of the activation points lie inside
the dilated lesion area. The models that utilize symmetry
CAMs generate larger CAMs, adding focus to the edges
and immediate surrounding regions of the lesion. This is
why they give a larger intersection with the segmentation
masks, yielding a higher IoU. Therefore, while the inclu-
sion of CAMs from the symmetry classification model does
not cause an improvement in two of the CAM localization
metrics, it helps the model focus more on the edges (and
thereby symmetry) of a lesion while classifying the lesion.

The following are the answers to the subquestions mentioned in
Section 1:

(1) Impact of input masks on the predictive performance
of symmetry classification and lesion classification
networks: Table 6 describes the predictive performance of
the symmetry classification models using different mask-
ing strategies. On the validation set (Table 6a), using input
masking (models 3 and 4) showed superior performance
over the baseline pre-trained model (model 2). However, on
the test set, the best performance was achieved by model 2
which does not use input masking. A higher mean perfor-
mance on the validation sets could indicate robustness to
varying data distributions since a cross-validation approach
was implemented, but the performance on the test set is
more indicative of the real-world performance. Hence input
masking does not benefit the predictive performance of the
model in real-world data.

Next, we analyze the impact of segmentation masking on
the predictive performance of the lesion classificationmodel
(indicated in Table 8). The performances of models evalu-
ated on the validation set and the test set show a similar
trend in which the best performance is obtained by the

models that do not use any masking (models 1-4), followed
by the models that use LAE masking (models 9-12). The
worst performance is obtained by the models that utilize
segmentation masks (models 5-8). Hence, the use of input
masking does not benefit the predictive performance of the
lesion classification network.

(2) Impact of input masks on the localization accuracy
of CAMs generated by the symmetry classification
and lesion classification networks: Table 7 describes the
localization accuracy of CAMs generated by the symme-
try classification model using different masking strategies.
While the baseline model with no masking (model 2) gives
the best IoU score, the model that uses segmentation mask-
ing (model 3) gives the highest Percentage Overlap and
Pointing Game score. The model that utilizes LAE mask-
ing gives the worst performance in all metrics. On visually
analyzing the generated CAMs illustrated in Figure 8, it
can be observed that the activation points of segmentation
masking focus on the edges of the lesion, which is useful
in determining the symmetry. This could explain the low
IoU score since the intersection region of the activation
points and segmentation masks is limited to the edges of
the lesion. Since most of these points lie within the dilated
lesion region, segmentation masking performs the best on
the other two metrics. Hence, using segmentation masks
generated by the lesion segmentation network gives the
best CAM localization, helping with the explainability of
the model.

The evaluation of localization accuracy of CAMs of the
SE-LCN model is shown in Table 9. The three baseline mod-
els that do not include CAMs from the symmetry model
(models 1, 5, and 9) show similar performances irrespective
of the masking strategy. The use of input masking on the
lesion classification network does not have any significant
impact on the already highly accurate baseline model.

7 CONCLUSIONS AND FUTUREWORK

This section provides an overview of the conclusions drawn from
this research, followed by its limitations and future scope for im-
provement.

7.1 Conclusions
This work introduces the Symmetry Enhanced Lesion Classification
Network (SE-LCN), an MTL approach for skin lesion segmentation,
lesion symmetry classification, and skin lesion disease classification.
The main focus of this research was two-fold: analyzing the impact
of input masking on symmetry classification, and analyzing the
impact of transfer of CAMs on skin lesion classification.

This study utilized the SqueezeNet architecture for symmetry clas-
sification. Utilizing a network pre-trained on a larger dataset (Ima-
genet) and fine-tuning for symmetry classification outperformed
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training a network from scratch. This method also outperformed ex-
isting works in the literature [16, 17] that trained CNN from scratch.
While input masking did not improve the predictive performance of
the model on the test set, it significantly improved the localization
of the CAM generated by the model. Hence, using segmentation
masks ensures that the activation points in an image lie within the
lesion region. Having accurate CAMs indicates the reliability of
model predictions, ensuring that the model focuses on the right
parts of the image while making predictions. This could be a useful
tool for diagnosticians who want to verify the credibility of certain
predictions made by a model.

The SE-LCN utilizes the E-Layer [18] to integrate CAMs with fea-
tures in the EfficienNet B4 model, which is trained to classify skin
lesions. An ablation study was conducted to analyze the impact of
CAM transfer and analyze the impact of different input masking
strategies. The best results were achieved when a lesion classifica-
tion model without input masking utilized CAMs from symmetry
classification models that employed input masking. Evaluation on
the HAM10000 dataset suggests that masking the inputs to the
lesion classifier does not enhance predictive performance, whereas
CAM integration improves it. Assessing the generalizability on
the ISIC2019 dataset indicated that both input masking and CAM
transfer improve generalizability. Additionally, including CAMs
from symmetry classification models increased the Intersection
over Union (IoU) score of the CAMs extracted from the classifier
but decreased the percentage overlap and pointing game scores.
This is because the inclusion of symmetry CAMs expanded the
region of activation points in the classifier network, focusing on
the edges of the lesion and surrounding pixels, as observed through
visual inspection.

7.2 Limitations and Future Work
This research has several limitations that can be addressed in future
work:

(1) Hyperparameter tuning for each experiment was conducted
for the baseline model, and the same hyperparameters were
used for every trained model within the experiment for a
fair comparison. However, each model may have different
optimal hyperparameter settings. It is evident from Fig-
ure 11, Figure 12, and Figure 13 that each model, when
trained with the same hyperparameters, converges after
a different number of epochs. Tuning the hyperparame-
ters for each model before training could maximize the
performance of each CAM transfer and masking strategy.

(2) The proposed SE-LCN model consists of three individual
networks trained separately, making training and infer-
ence computationally expensive. Future work could investi-
gate a symmetry-enhanced end-to-end classification model,
which would be more computationally efficient.

(3) The segmentation model implemented in SE-LCN is a stan-
dalone model with high performance. However, it does not
match the performance of state-of-the-art segmentation
approaches. It would be interesting to analyze the impact
of using a better segmentation model for masking both
classifiers, especially when using segmentation masking.

Overall, this work presents a comprehensive analysis of how the
combination of the inclusion of CAMs and the usage of segmenta-
tionmasks impacts the performance of a cascadedMTL architecture.
This analysis could be used in modifying the architecture and train-
ing models that could generate state-of-the-art results that provide
explainable predictions.
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Symmetry Enhanced Skin Lesion Classification Network: A Cascaded Multi-Task Learning Approach

A Training Plots

This section presents the training plots of the first fold of 12 masking combinations of the SE-LCN network.

Figure 11: Training plots of the first fold of four models that use no input masking for the lesion classifier model. The training
and validation loss and accuracies have been plotted across number of epochs.
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Figure 12: Training plots of the first fold of four models that use segmentation masking for the lesion classifier model. The
training and validation loss and accuracies have been plotted across number of epochs.
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Figure 13: Training plots of the first fold of four models that use LAE input masking for the lesion classifier model. The training
and validation loss and accuracies have been plotted across number of epochs.
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B Class-wise Evaluation

Table 11: Class-wise classification metrics mean and standard deviation for model with lesion classifier having no mask and no
transfer of CAMs (model 1) evaluated on the test set.

Class Precision Recall F1-Score Support
Nevus 0.94 ± 0.0071 0.90 ± 0.0158 0.92 ± 0.0071 1337

Melanoma 0.58 ± 0.0187 0.6875 ± 0.0228 0.6275 ± 0.0148 223
Benign keratosis-like lesions 0.725 ± 0.0229 0.6975 ± 0.0259 0.71 ± 0.0000 220

Basal cell carcinoma 0.75 ± 0.0596 0.865 ± 0.0296 0.8025 ± 0.0286 103
Actinic keratoses 0.765 ± 0.0403 0.815 ± 0.0572 0.7775 ± 0.0179 65
Vascular lesions 0.8025 ± 0.0622 0.875 ± 0.0150 0.835 ± 0.0364 28
Dermatofibroma 0.81 ± 0.0212 0.905 ± 0.0087 0.865 ± 0.0180 23

Table 12: Class-wise classification metrics mean and standard deviation for model with lesion classifier having no mask and
symmetry classifier having segmentation mask (model 3) evaluated on the test set.

Class Precision Recall F1-Score Support
Nevus 0.9425 ± 0.0083 0.8925 ± 0.0109 0.9175 ± 0.0043 1341

Melanoma 0.5725 ± 0.0192 0.6850 ± 0.0287 0.6225 ± 0.0109 223
Benign keratosis-like lesions 0.7100 ± 0.0361 0.7100 ± 0.0354 0.7075 ± 0.0083 220

Basal cell carcinoma 0.7675 ± 0.0130 0.8400 ± 0.0224 0.8000 ± 0.0122 103
Actinic keratoses 0.7700 ± 0.0458 0.7775 ± 0.0642 0.7700 ± 0.0300 65
Vascular lesions 0.7550 ± 0.0335 0.9025 ± 0.0295 0.8225 ± 0.0192 28
Dermatofibroma 0.7350 ± 0.0702 0.8900 ± 0.0200 0.8000 ± 0.0464 23
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C SE-LCN on ISIC2016 dataset

Table 13: Performance comparison of SE-LCN models trained and evaluated on the ISIC2016 dataset, employing various
masking strategies on inputs of both the symmetry classification network and the lesion classification network. Each model’s
performance is quantified using five metrics, with values representing the mean and standard deviation calculated on the
corresponding validation sets across 4 folds of cross-validation. The highest value of each metric among a lesion classifier
masking strategy is highlighted in bold, and the highest value of each metric among all experiments is highlighted in blue text.
The baseline is model 1.

Model ISIC 2016 Validation Dataset (2 classes)
Mean ± Std. Dev

Model Masking Symmetry Model CAM Accuracy Kappa Score Macro Avg Precision Macro Avg Recall Macro Avg F1

1 Without Masks No CAM Transfer 0.788 ± 0.024 0.392 ± 0.045 0.682 ± 0.025 0.719 ± 0.017 0.694 ± 0.023

2 Without Masks Without Masks 0.791 ± 0.024 0.365 ± 0.083 0.674 ± 0.038 0.694 ± 0.048 0.682 ± 0.041

3 Without Masks Exact Segment Masks 0.776 ± 0.018 0.345 ± 0.081 0.660 ± 0.034 0.693 ± 0.051 0.671 ± 0.040

4 Without Masks LAE Masks 0.797 ± 0.034 0.383 ± 0.095 0.684 ± 0.048 0.702 ± 0.049 0.691 ± 0.047

5 Exact Segment Masks No CAM Transfer 0.773 ± 0.039 0.366 ± 0.069 0.669 ± 0.034 0.708 ± 0.030 0.680 ± 0.037

6 Exact Segment Masks Without Masks 0.787 ± 0.017 0.351 ± 0.041 0.668 ± 0.022 0.685 ± 0.019 0.675 ± 0.021

7 Exact Segment Masks Exact Segment Masks 0.781 ± 0.017 0.340 ± 0.052 0.661 ± 0.024 0.682 ± 0.029 0.669 ± 0.026

8 Exact Segment Masks LAE Masks 0.787 ± 0.015 0.353 ± 0.031 0.669 ± 0.016 0.687 ± 0.017 0.676 ± 0.016

9 LAE Masks No CAM Transfer 0.810 ± 0.017 0.448 ± 0.037 0.709 ± 0.019 0.748 ± 0.022 0.723 ± 0.019

10 LAE Masks Without Masks 0.820 ± 0.024 0.450 ± 0.058 0.716 ± 0.030 0.737 ± 0.029 0.725 ± 0.029

11 LAE Masks Exact Segment Masks 0.827 ± 0.014 0.456 ± 0.031 0.725 ± 0.018 0.734 ± 0.021 0.728 ± 0.015

12 LAE Masks LAE Masks 0.824 ± 0.017 0.458 ± 0.035 0.723 ± 0.018 0.739 ± 0.024 0.729 ± 0.018
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Table 14: Performance comparison of SE-LCN models trained and evaluated on the ISIC2016 dataset, employing various
masking strategies on inputs of both the symmetry classification network and the lesion classification network. Each model’s
performance is quantified using five metrics, with values representing the mean and standard deviation calculated on a separate
test set across 4 folds of cross-validation. The highest value of each metric among a lesion classifier masking strategy is
highlighted in bold, and the highest value of each metric among all experiments is highlighted in blue text. The baseline is
model 1.

Model ISIC 2016 Test Dataset (2 classes)
Mean ± Std. Dev

Model Masking Symmetry Model CAM Accuracy Kappa Score Macro Avg Precision Macro Avg Recall Macro Avg F1

1 Without Masks No CAM Transfer 0.785 ± 0.023 0.392 ± 0.037 0.683 ± 0.021 0.717 ± 0.011 0.694 ± 0.020

2 Without Masks Without Masks 0.807 ± 0.013 0.418 ± 0.032 0.702 ± 0.017 0.719 ± 0.016 0.709 ± 0.016

3 Without Masks Exact Segment Masks 0.799 ± 0.020 0.411 ± 0.041 0.695 ± 0.024 0.719 ± 0.016 0.705 ± 0.021

4 Without Masks LAE Masks 0.802 ± 0.011 0.410 ± 0.021 0.696 ± 0.012 0.716 ± 0.011 0.704 ± 0.011

5 Exact Segment Masks No CAM Transfer 0.768 ± 0.028 0.362 ± 0.042 0.668 ± 0.021 0.706 ± 0.023 0.677 ± 0.023

6 Exact Segment Masks Without Masks 0.774 ± 0.016 0.356 ± 0.023 0.667 ± 0.012 0.696 ± 0.014 0.676 ± 0.012

7 Exact Segment Masks Exact Segment Masks 0.772 ± 0.004 0.345 ± 0.021 0.661 ± 0.008 0.689 ± 0.015 0.671 ± 0.010

8 Exact Segment Masks LAE Masks 0.770 ± 0.006 0.338 ± 0.020 0.658 ± 0.009 0.685 ± 0.014 0.668 ± 0.010

9 LAE Masks No CAM Transfer 0.782 ± 0.019 0.388 ± 0.026 0.680 ± 0.016 0.717 ± 0.012 0.692 ± 0.014

10 LAE Masks Without Masks 0.815 ± 0.012 0.438 ± 0.017 0.714 ± 0.013 0.727 ± 0.009 0.719 ± 0.009

11 LAE Masks Exact Segment Masks 0.818 ± 0.010 0.430 ± 0.018 0.714 ± 0.013 0.716 ± 0.006 0.715 ± 0.009

12 LAE Masks LAE Masks 0.807 ± 0.017 0.416 ± 0.021 0.703 ± 0.016 0.716 ± 0.011 0.707 ± 0.011

Table 15: Evaluation of localization of CAMs of SE-LCN trained on the ISIC2016 dataset, employing various masking strategies.
The best fold (from cross-validation) of each model is used for evaluation on the HAM10000 dataset. Metrics shown include
Intersection over Union (IoU), Percentage Overlap, and Pointing Game scores, utilizing segmentation masks for reference
comparison. The highest value of each metric among a lesion classifier masking strategy is highlighted in bold. The baseline
model is model 1, which uses no input masking and no transfer of CAMs

Model CAM Localization
Entire Dataset

Model Classification Model Symmetry Model IoU Overlap Point Game

1 Without Masks No CAM transfer 0.015 ± 0.034 0.134 ± 0.249 0.033
2 Without Masks Without Masks 0.025 ± 0.056 0.171 ± 0.287 0.072
3 Without Masks Segmentation Masks 0.032 ± 0.063 0.212 ± 0.316 0.11
4 Without Masks LAE Masks 0.041 ± 0.078 0.223 ± 0.311 0.12

5 Segmentation Masks No CAM transfer 0.048 ± 0.093 0.232 ± 0.314 0.063
6 Segmentation Masks Without Masks 0.114 ± 0.118 0.505 ± 0.355 0.293
7 Segmentation Masks Segmentation Masks 0.122 ± 0.133 0.500 ± 0.345 0.251
8 Segmentation Masks LAE Masks 0.139 ± 0.131 0.562 ± 0.352 0.408

9 LAE Masks No CAM transfer 0.068 ± 0.094 0.341 ± 0.340 0.177
10 LAE Masks Without Masks 0.123 ± 0.124 0.527 ± 0.343 0.342
11 LAE Masks Segmentation Masks 0.116 ± 0.123 0.492 ± 0.337 0.281
12 LAE Masks LAE Masks 0.061 ± 0.091 0.324 ± 0.344 0.153
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