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ABSTRACT 

The future projections sketched in the various Climate reports predict a global increase in severe weather 

conditions, particularly excessive decline both in summer precipitation and winter snowfall accompanied by 

periods of extremely high temperatures. Consequently, these projections are expected to intensify the 

frequency and intensity of drought events affecting thereby water and food security on a global scale. Due 

to expected local shifts in weather conditions, understanding the effect on drought dynamics at a local 

catchment will be critical for coordinated risk management and informed mitigations of drought impacts on 

both water resources and the ecosystem. However, complexities in the development of drought scenarios 

limit the capacity to establish a conclusive link of drought propagation in a local area. Moreover, the uneven 

distribution of the Root Zone Soil Moisture (RZSM) dataset also limits the assessment of the relationship 

between drought and vegetation anomalies.  

The purpose of this study is to analyze the spatial-temporal dynamics of drought anomalies and their causal 

relationships with vegetation conditions in Overijessel, Netherlands.  To address the issue of limited 

coverage of the RZSM dataset, the readily available data on Surface Soil Moisture at 1km (1KmSSM) was 

validated with the in-situ Twente soil moisture measurements. These data were then used to calibrate the 

two models to derive RZSM from Surface Soil Moisture (SM). The Cumulative Distribution Function 

(CDF) and Exponential Low Pass Filter (ELPF) models. The optimal calibrated model was used to retrieve 

the RZSM time series in the Witharen groundwater monitoring network (location: Twente the Netherlands). 

Thereafter, the estimated RZSM time series, along with precipitation measurements, and groundwater time 

series were used to estimate soil moisture and meteorological, and groundwater anomalies for drought 

monitoring in the region. Additionally, optical vegetation indices Near-Infrared reflectance of vegetation 

(NIRv) and Normalized Difference Water Index (NDWI) were used to monitor both the anomalies of the 

vegetation photosynthetic activities and hydrology dynamics during various drought conditions. Finally, a 

Convergent Cross-Mapping (CCM) was used to assess the causal relationships between drought and 

vegetation anomalies in the Witharen region. 

The findings of this study showed that the ELPF method estimated the most optimal RZSM time series 

from 1KmSSM in Twente stations, with a mean unbiased Root Mean Square Error (ubRMSE) of 0.056 

m3/m3. The temporal analysis of drought anomalies indicated a higher drought frequency and intensity in 

the last decade, while spatial analysis revealed an association between groundwater depth and the 

development of groundwater drought. Issues such as delayed response and periodic recovery of vegetation 

anomalies during drought events were identified in the time series analysis. Moreover, the detected 

significant drought interactions aligned with the prior knowledge of the Witharen region.  For instance, the 

interaction between shallow groundwater levels (0.7 to 3 m) and both vegetation and soil moisture 

anomalies.  

Moreover, this study also highlighted the use of both surface and root zone soil moisture anomalies for 

monitoring meteorological drought propagation and the initiation of vegetation and groundwater anomalies 

respectively. Nevertheless, this study suffered from key sources of uncertainties related to the spatial and 

temporal resolution of the analysis, and the accuracy of the grid soil moisture datasets. Future studies should 

address these issues to improve the comprehensive assessment of drought development in local areas. This 

study concludes that CCM can be used to reveal valuable information about the local causal interactions 

between drought and vegetation anomalies through time series analysis. The use of both surface and root 

zone soil moisture in drought analysis opens a potential to uncover significant drought interactions both on 

the surface and sub-surface. 
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1. INTRODUCTION 

1.1. Background 

Drought is one of the most destructive natural disasters, characterized by limited water availability below 

the climatological average. Drought significantly impacts vegetation health and food productivity among 

other dimensions. Recently, a significant decline of 30% in Gross Plant Productivity (GPP) was reported in 

Europe during the 2003 and 2018 drought episodes (Buitink et al., 2020). Global climate projections predict 

a warming climate that could potentially increase drought frequency, severity, and vegetation sensitivity to 

drought (AghaKouchak et al., 2014; Christian et al., 2023). Additionally, the impacts on global food security 

are expected to be compounded by the global population increase (UN, 2022). Therefore, understanding 

drought causations and the dynamics with vegetation conditions is relevant for both effective water 

resources management and global food security. 

 

Impacts of drought can be manifested in a range of aspects from hydrometeorological conditions and socio-

economic factors that influence both water availability and its demand. Because of this, various approaches 

can be used for the interpretation of drought events (Rutger Weijers, 2020). The most popular approach 

considers the disciplinary perspective of drought impacts, to classify the four critical stages of drought 

severity. Wilhite et al. (1985) illustrated these stages as meteorological, agricultural, hydrological, and finally 

socio-economic drought. Soil moisture anomaly was identified as an indicator of agricultural drought 

indicating a link with vegetation health. However, Van Hateren et al. (2021) indicated the ambiguity 

concerning the use of the term agricultural drought. Hereafter, the aforementioned stages will be referred 

to as drought types and soil moisture drought will be used in place of agricultural drought for consistency.  

 

Despite a vague separating boundary between the identified drought types, the classification provides a way 

to physically identify drought phenomena, quantifying their impacts and characterizing their development. 

Meteorological drought refers to a measure of precipitation deficiency, which when prolonged can develop 

into soil moisture and hydrological (also groundwater) drought as a result of critical values of soil moisture, 

streamflow, and groundwater (Z. Han et al., 2021; Park et al., 2021). Socio-economic drought, on the other 

hand, occurs in extreme drought situations leading to socioeconomic losses such as loss of lives, conflicts, 

and migration (Su et al., 2017). 

 

While it is common to conceptualize the propagation of drought across the identified stages, it is far less 

convenient to conclude with certainty their causal interactions. Since the introduction of the drought stages, 

studies have used various approaches such as probabilistic linkages, time series analysis, and temporal 

correlation to highlight the linkages between meteorological, soil moisture, and groundwater anomalies (Dai 

et al., 2022; Q. Li et al., 2019; Z. Xu et al., 2023; H. Zhang et al., 2021). However, evidence in these studies 

highlights the temporal variation in the nature and magnitude of the relationship between drought stages 

complicating the drought causation conclusion. 

 

The interplay of issues such as delayed response, accumulated impacts, and a third-factor influence has been 

explained to constrain drought causation conclusions. For instance, severe hydrological drought in the 

Netherlands during the summer of 2019 is associated with precipitation anomalies from the summer of 
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2018 to the early spring of 2019 (Philip et al., 2020). In another study, using a non-linear Spearman's 

correlation analysis H. Zhang et al. (2021) found a delayed response of soil moisture and groundwater 

anomalies to meteorological drought which is shorter during summer and autumn compared to spring and 

winter. Furthermore, Rutger Weijers (2020) explained the seasonal decoupling and changes in causation 

direction between precipitation, soil moisture, and groundwater dynamics.  

 

Adding vegetation degradation to the equation further complicates the dynamics of the drought relationship. 

Although, drought events have been mostly associated with vegetation degradation (Su et al., 2017; Wilhite 

et al., 1985), their relationship has been explained to be equally complicated. A study by Buitink et al. (2020) 

found a significant vegetation-delayed response to critical soil moisture levels highlighting the impact of 

vegetation self-coping mechanisms on the nature of vegetation response (W. Zhang et al., 2023). External 

factors such as temperature and land elevation were also found to dictate the reaction of vegetation to 

drought conditions (Van Hateren et al., 2021). Additionally, other studies found that the impact of drought 

anomalies on vegetation is both spatially and temporally variable (AghaKouchak, Farahmand, et al., 2015; 

AghaKouchak, Feldman, et al., 2015). 

 

The discussed issues have motivated a shift from linear correlation analysis into non-linear approaches for 

studying drought causations. The most recently adopted non-linear approach is the use of the Convergent 

Cross-Mapping (CCM) method. Originally proposed by Sugihara et al., (2012) for the analysis of ecological 

interactions between species and environmental factors, CCM has gained popularity in the field of hydrology 

due to its ability to detect causal relationships between hydrological variables (Bonotto et al., 2022; Kadir et 

al., 2020; Y. Wang et al., 2018). In drought studies, CCM has demonstrated a capacity to unravel drought 

causation dynamics by inferring the time series of drought anomalies which are also complex and non-linear 

(Ionita et al., 2022; Shi et al., 2022; Shiau, 2023). 

 

Another notable development in drought analysis has been the application of Root Zone Soil Moisture 

(RZSM) to infer soil moisture drought rather than Surface Soil Moisture (SSM). Although SSM has reported 

advantages in monitoring soil water and energy dynamics, it lacks reliability when it comes to measuring soil 

water availability for plants. This is because primarily, SSM reflects the conditions on shallow soil typically 

about 5cm deep as explained by Cai et al., 2022 and Wakigari & Leconte, 2022.  RZSM, on the other hand, 

is a more reliable measure of a plant’s soil water availability as the saturation of the soil root zone reflects 

the actual amount of water available for plant roots (Grillakis et al., 2021; Zhuang et al., 2020). RZSM has 

also been explained to be a key indicator of plants’ water stress and vegetation productivity, highlighting its 

applicability in vegetation drought monitoring (Carranza et al., 2021). 

 

From the literature reviewed above, it is apparent that significant progress has been made in the analytical 

approaches for characterizing, quantifying, and analyzing the interaction between drought and vegetation 

anomalies. The promising results demonstrated by the application of CCM causal analysis to decipher time 

series non-linear causality interactions offer an opportunity to address non-linear links between drought 

types in various spatial scales. Moreover, a more physically explainable RZSM for reflecting the plant’s water 

availability over SSM improves the prospect of understanding the link between drought and vegetation 

anomalies.  

 

In the Netherlands however, the application of these developments for the monitoring of drought 

development is still limited. This is a concern considering the projected warming climate that aligns with the 

global climate projections. The KNMI’14, a 4-scenarios translation of the IPCC 2013 climate change 
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scenarios specific to the Netherlands projected a decline in summer precipitation and winter snowfall 

coupled with a temperature rise, solar radiation reaching the earth’s surface, and of course the potential 

evapotranspiration (Van Den Hurk et al., 2014). Reports also predict a decrease in the return period of 

severe drought episodes similar to the 2018 drought (Philip et al., 2020). Understanding drought causation 

dynamics in the Netherlands is crucial, especially considering the impacts of the 2018 drought on the 

ecosystem conditions and water resources (Brakkee et al., 2021, 2022), to inform the development of rational 

mitigation measures.  

 

The limited spatial-temporal coverage of the in situ RZSM dataset, as reported by Carranza et al. (2021) and 

Pezij et al. (2019), along with the available low-resolution grid dataset for instance Martens et al. (2017) has 

led to its underutilization in localized soil moisture drought studies. However, the development of promising 

less data-demanding methods to derive RZSM from the high-resolution grid SSM time series provides an 

opportunity for retrieving RZSM for localized drought studies (X. Gao et al., 2017; Zhuang et al., 2020). 

Moreover, the documented potential of using remote sensing for soil moisture and vegetation condition 

monitoring provides a viable solution to address the demand for spatial-temporal continuous monitoring 

(B. C. Gao, 1996; Q. Han et al., 2023; Zeng et al., 2022). 

 

1.2. Research Objectives and Questions 

Based on the identified research gaps, there seems to be an opportunity to improve the state of research in 

the Netherlands. This study was designed to address the holistic understanding of the causal dynamics of 

drought and vegetation anomalies in the selected area of the Netherlands. The main aim of this study is to 

comprehensively assess the interactions of water-induced stress with vegetation conditions. Specifically, this 

objective was broken down into the following sub-objectives and questions: 

 

I. To assess the most effective method for estimation of high-resolution Root Zone Soil Moisture 

(RZSM) in Twente spanning 2000-2020. 

o What is the feasibility of using a 1 Km global surface soil moisture dataset (1KmSSM) for 

monitoring soil moisture content in the Twente region? 

o How do various methods, both analytical and statistical, capture and depict variations in 

RZSM trends in the Twente region? 

o Which methodology is the most suitable method for estimating RZSM spanning 2000-

2020 from the 1KmSSM dataset in the study area? 

o Can the calibrated 1km RZSM estimation model be transferred and generalized with 

acceptable accuracy? 

II. To assess the spatial-temporal dynamics of soil moisture, meteorological, and groundwater drought 

indices in the study area spanning the period from 2000-2020. 

o What are the spatial-temporal dynamics and trends of  soil moisture, meteorological, and 

groundwater drought indices, in the study area? 

III. To assess vegetation conditions across the study area under different water availability conditions. 

o How is the vegetation condition associated (or varies) with various water availability indices 

in the study area? 
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o What insights will be gained regarding vegetation conditions by utilizing the plant 

hydrology and biophysical vegetation optical indices? 

IV. To unravel the cause-effect relationship between climate variability (net precipitation), water availability 

(drought indices), and vegetation conditions (spectral indices). 

o How do water availability (groundwater, soil moisture) and the anomalies of climate 

variables (net precipitation) causally relate to the fluctuations of plant conditions?  

 

This study enhances the existing knowledge of drought-based studies in the Netherlands through the 

following contributions: 

I. Investigating the robustness of  the methods for Root Zone Soil Moisture (RZSM) estimation from 

grid Surface Soil Moisture (SSM), enhancing the analysis of  the plants’ water availability. 

II. Determining spatial factors for drought development and propagation, improving insights into the 

localized drought resilience and vulnerability for dedicated mitigation and adaptation measures. 

III. Detecting causal links enhances the ability to predict and mitigate the impacts of  drought on 

vegetation, agriculture, and water resources. 

 

This study sets itself from the existing literature, for instance, studies by Shiau (2023) and Shi et al. (2022) 

by adopting a comprehensive approach to evaluate the causalities between three drought types and 

vegetation anomalies. Furthermore, it enhances the existing study on Root Zone Soil Moisture (RZSM) 

estimation and application in soil moisture drought analysis. The findings of this study offer insight into the 

feasibility of 1KmSSM for surface soil moisture monitoring at a local scale and RZSM estimations. 

Additionally, it contributes to the investigation of approaches for the RZSM estimation from satellite soil 

moisture datasets and addresses spatial-temporal issues associated with drought development complexities. 

Finally, through the application of a non-linear model, this study aims to contribute to drought propagation 

analysis by uncovering non-linear causation interactions between drought types and vegetation anomalies. 
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2. STUDY AREA AND DATASETS 

2.1. Study Area 

This study was conducted in the Overijssel province of the Netherlands, focusing on two specific locations: 

Twente and Witharen region. In the Twente region moisture monitoring network was used for the validation 

of the 1KmSSM dataset as well as the calibration of the RZSM estimation method. Witharen groundwater 

monitoring network was used as the primary location for the analysis of drought and vegetation anomalies 

interactions for its dense network of groundwater monitoring wells. 

 

Figure 1A shows the location of the Overijssel province within the Netherlands. The distribution of the soil 

moisture and groundwater monitoring networks together with the study area topography are shown in 

Figure 1 B. Soil moisture monitoring sites are placed between 5km to 13km apart and cover a rough area of 

1800 km2.  Groundwater monitoring wells, on the other hand, are more nucleated within a rough box area 

of 69.4 km2 separated by a distance of about 120 m to 3 km between the closest monitoring stations. 

 

Figure 1 C and 1 D presents the land cover properties of the two monitoring locations. The main land cover 

properties identified in the study area include croplands, built-ups, and grasslands. Relatively, the Withren 

region is dominated by an extensive cropland area together with woodlands and grasslands whereas the 

Twente monitoring stations are mostly in built-up areas and cultivated land. Surface water bodies range from 

small features such as ponds, and drainage canals to rivers such as Dinkel, and Ommerkanaal river streams 

form the surface water system in the study area. 

 

 
Figure 1: Study area map a) Location in Netherlands map, B) Elevation, C) and D) Land Cover Map for 

Witharen and Twente region 

 
The climate of the study area is mostly influenced by the Ocean-atmospheric interactions in the west and 

landmass on the east side bringing moisture and heat (Van Der Velde et al., 2021). As a result, the area 

experiences uniformly distributed precipitation throughout the year with April (33.5mm) and August 
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(86.8mm) being the driest and wettest months of the year respectively. The area has an annual water surplus 

of approximately 145.8mm after balancing precipitation with evaporative water demand. The temperature, 

on the other hand, ranges between below -60 c to above 300 c in winter and summer respectively. Literature 

reports extreme conditions during 2018, 2019, and 2020 as the most extreme dry years experienced whilst 

August 2010, 2011, and 2013 were the wettest periods (Guardamino et al., 2021; Rutger Weijers, 2020; Van 

Den Hurk et al., 2014). 

2.2. Data Sources 

2.2.1. Remote Sensing datasets 

 
In Table 1, an overview of the remote sensing datasets utilized in this study is provided. Classified as remote 

sensing products include primary satellite products such as MODIS MOD09GA dataset as well as secondary 

spatial continuous datasets such as Bofek 2020 Soil Map and 1KmSSM. 

 

Table 1: An overview of the remote Sensing datasets utilized in this study. 

Dataset Used Variable Rationale Source,  
Access 

Spatial 
Resolution 

Temporal 
Resolution 

Global 
Surface Soil 
Moisture 
(1KmSSM) 

Surface Soil 
Moisture  

Soil moisture 
drought 
monitoring 

(Q. Han et al., 
2023), 
Earth Engine 
Catalog 

1 Km Daily,  
2000-2020. 

ECMWF 
Reanalysis v5 
(ERA5) 

Precipitation and 
Actual 
Evapotranspiration 
Dataset 

Meteorological 
drought index 
computation 

European Centre 
for Medium-
Range Weather 
Forecasts 
(ECMWF), 
Earth Engine 
Catalog 

11132 m Daily,  
1979-Now. 

Netherlands 
Land Cover 
Maps 

Land cover classes The analysis of  
land cover 
properties. 

Statistics 
Nederland and 
Top10NL 

1:10000 Not Applicable. 

Soil Map 
(Bofek 2020) 

Soil texture and 
hydrological 
properties 

Analysis of  soil 
properties 

(Schröder et al., 
2021), 
Netherlands 
Data Portal 

1:50000 Not Applicable. 

Actuell 
Hoogetebesta
nd Nederland 
(AHN3) 

Topographical 
information; 
Elevation and slope 

Topography 
analysis 

(Actuell 
Hoogetebestand 
Nederland, 
2015), 
Earth Engine 
Catalog 

0.5 m Not Applicable. 

MOD09GA Land surface 
reflectance. 

Retrieving 
Vegetation 
indices 
(NDWI, NIRv) 

United States 
Geological 
Survey (USGS), 
Earth Engine 
Catalog 

500 m 2000-Now 

 

https://code.earthengine.google.com/?asset=users/qianrswaterr/GlobalSSM1km0509
https://code.earthengine.google.com/?asset=users/qianrswaterr/GlobalSSM1km0509
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://www.cbs.nl/en-gb
https://www.cbs.nl/en-gb
https://service.pdok.nl/brt/top10nl/wms/v1_0
https://data.overheid.nl/dataset/27137-bro---bodemkaart-van-nederland-1-50-000#panel-description
https://data.overheid.nl/dataset/27137-bro---bodemkaart-van-nederland-1-50-000#panel-description
https://developers.google.com/earth-engine/datasets/catalog/AHN_AHN2_05M_INT
https://developers.google.com/earth-engine/datasets/catalog/AHN_AHN2_05M_INT
https://lpdaac.usgs.gov/products/mod09gav061/
https://lpdaac.usgs.gov/products/mod09gav061/
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2.1.1 In-situ Measurements 

2.1.1.1 Soil Moisture Measurements. 

Soil moisture measurements in the Twente region were used as the in-situ soil moisture inputs for the 

calibration of RZSM estimation models and evaluation of 1KmSSM accuracy. The Twente soil moisture 

monitoring site includes 22 soil moisture monitoring stations installed in various locations around the 

Overijssel province (figure 1). Measurements are taken at five soil depths by the probes installed at the 

surface (5cm deep), 10 cm, 20 cm, 40 cm, and 80 cm from the ground surface. Van Der Velde et al. (2022) 

published a calibrated and corrected dataset that includes soil moisture and soil temperature measurements 

at the 5 depths for the period 2008-2020 at a fine temporal scale of 15 minutes. However, due to 

maintenance issues and instrumentation limitations, soil moisture measurements are not consistently 

available at all depths. In this study, 15 out of 22 soil moisture stations were retrieved for their consistency 

in dataset availability at the depths of 5 to 40 cm for an extended period of at least 5 years (2016-2020).  

2.1.1.2 Meteorological variables. 

In-situ measurements of precipitation were required to validate the use of a spatially continuous ERA5 

dataset. In this study, precipitation measurements from the Koninklijk Nederlands Meteorologish Instituut 

(KNMI) were used to test the accuracy of the ERA5 precipitation dataset. KNMI is the Dutch Royal 

Meteorological institution operating the system of automatic weather stations in the Netherlands with data 

from 1951 to the present. Time series of daily validated precipitation measurements for the 3 KNMI stations 

close to the study area i.e., Heino, Hupsel, and Twenthe were retrieved via the KNMI database. 

2.1.1.3 Groundwater Measurements. 

Groundwater time series datasets were retrieved from the publicly available Dinoloket soil research database. 

The database was developed and managed by the TNO Geological Survey of the Netherlands is the center 

for accessing deep and shallow underground data and models. Groundwater datasets including geographical 

location, water elevation, filter depth, and surface elevation were downloaded in a CSV format. The temporal 

resolution of groundwater level measurements was available in 14 days while 3-hour measurements became 

available in 2006.  

 

Out of 42 available groundwater monitoring wells in Witharen, 27 wells were selected to be used in this 

study due to their consistency and temporal coverage. Groundwater analysis focused on the time series 

retrieved from the phreatic filters (between 0.7 to 3 m deep from the ground surface). Figure 2 shows the 

distribution of the 20-year average groundwater depth for the retrieved time series. Most of the monitoring 

wells are shallow with a water table depth suggesting a significant interaction between groundwater and 

surface water dynamics should be expected.  

https://dataplatform.knmi.nl/dataset/etmaalgegevensknmistations-1
https://www.dinoloket.nl/ondergrondgegevens
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Figure 2: Histogram showing the distribution of the groundwater depth for the monitoring wells 
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3 DATA PROCESSING AND METHODOLOGY 
APPROACH 

3.1 Data Processing and Preparation 

This study used datasets from various sources, leading to challenges caused by the heterogeneity of data 

formats and resolutions in addition to individual data errors. In this section, two main data processing 

procedures are presented in detail. First, the processing and preparation of the optical remote sensing 

datasets together with the resolution matching are illustrated. Second, the accuracy of the grid datasets ERA5 

and 1KmSSM time series are presented together with the process used to prepare in-situ Root Zone Soil 

Moisture (RZSM) time series. It should be noted that preparation procedures for each dataset including 

outlier treatment and unit conversions presented in their respective objectives in the methodology section.  

 

3.1.1 Optical Data Processing 

Land surface reflectance information was derived from MOD09GA version 6.1. A multispectral optical 

image dataset containing 7 surface reflectance spectral bands has been available since February 24, 2000. An 

atmospherically corrected dataset for aerosols, gases, and aerosols was derived from the Google Earth 

Engine code editor. In addition to the constituent bands that are designed within specific wavelength ranges 

to study various properties on the earth’s surface. Additionally, data quality pixels are also available to 

provide information about pixel quality (Roger et al., 2020).  

 
Before computing vegetation indices, MOD09GA surface reflectance was processed to remove unwanted 

pixels. Pixels polluted by clouds and snow cover, together with empty pixels were identified using 

‘state_1km’ and ‘num_observations_1km’ bands respectively. Clouds, cloud shadow, and snow cover labels 

were all retrieved from the ‘state_1km’ band, by using specific Bits (1,2, and 10-15). Empty pixels were 

identified by label 0 in the ‘num_observations_1km’ band. A custom-made clouds-empty pixels mask was 

created in the Google Earth engine code editor in which unwanted clouds, cloud shadow, and snow-covered 

pixels together with empty pixels were removed from the final image collection to be used for vegetation 

indices computation. 

 

3.1.2 Resolution Matching 

As indicated in the previous section, datasets used in this study were retrieved from their respective 

databases, each with its own temporal and spatial properties. This sub-section illustrates the matching 

process as well as the rationale used to align the temporal and spatial resolution of the data inputs. 

 
Grid format datasets i.e., 1KmSSM, MOD09GA, ERA5, and AHN3 were originally retrieved with the 

spatial resolution of 1Km, 500 m, 11 Km, and 0.5 m respectively. Spatial downscaling of soil moisture and 

precipitation datasets requires the integration of auxiliary datasets that account for the factors influencing 

the hydrological cycle at a target resolution (Bai et al., 2019; Chen et al., 2020). Data quality issues associated 

with optical datasets have been reported to influence uncertainty to the downscaled products while 

microwave high-resolution datasets are limited in a long-term study (Sang et al., 2022). 

 
Consequently, this study utilized a simple median to rather upscale MOD09GA extractions into a 1 Km 

resolution matching 1KmSSM dataset. A spatial median of the neighboring pixels was used as it provides 
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an average condition of the pixels while avoiding complexities that can be introduced by regressing models. 

At each location of the monitoring station of interest, a buffer of 500 m was used to extract the median 

value for the pixel neighboring pixels. Extractions from a course resolution ERA5 dataset (11 Km) and 

vector format soil map could not be rescaled to 1 Km resolution using the median method. For that case, a 

less variable precipitation trend was assumed across the 69 Km2 areas of the Witharen monitoring wells, 

and soil information was assessed at a 500 m buffer scale. 

 
On the other hand, the temporal resolution of the retrieved datasets was in 2-week and 3-hours records for 

groundwater measurements, 15 minutes for in-situ soil moisture, and daily for ERA5, MOD09GA, and 

1KmSSM datasets. In the first objective in-situ soil moisture was aggregated into a daily mean to match daily 

records of 1KmSSM datasets. Clouds and cloud shadow pixel cleaning led to the loss of daily availability of 

the optical data MOD09GA, resulting in an average 13-day temporal resolution. Therefore, for the second 

to the fourth objective, drought indices computation as well as the causal analysis was conducted on a 

monthly resolution to ensure maximum consistency of the temporal resolution. 

 

3.1.3 Remote Sensing Dataset Validation 

1KmSSM Validation. 
In this subsection, the accuracy of the 1KmSSM gridded surface soil moisture dataset is presented before 

application in RZSM estimations. The assessment was conducted on the 15 monitoring stations with 2016-

2020 soil moisture measurements consistently available in all 4 soil depth levels. RMSE and correlation 

coefficients were used to assess the accuracy of the 1KmSSM in terms of linear agreement and residual 

measurements respectively (Equations 4 and 6). 

 
Figure 3 presents the distribution of the two-accuracy metrics with respect to temporal-matched surface soil 

moisture measurements. Quantitative measures of the 1KmSSM performance indicate an agreement with 

in-situ soil moisture measurements in most stations. Specifically, Figure 3 B reveals a median correlation 

coefficient of 0.57 between 1KmSSM and in-situ surface soil moisture measurements highlighting the 

capacity of the 1KmSSM to match the temporal dynamics of the in-situ surface soil moisture.  

 

However, the results of the residual measurements by RMSE suggest a significant deviation of 1KmSSM 

from the actual SSM measurements. The median RMSE of 0.1 m3/m3 provides a general overview of the 

average difference between 1KmSSM and in-situ soil moisture measurements. A minimum RMSE of 0.07 

m3/m3 indicates that in all monitoring stations, 1KmSSM failed to accurately reproduce surface soil moisture 

incidences at a desirable measure of residuals of 0.04 m3/m3 (Van Der Velde et al., 2021).  

 

Following the accuracy assessment of 1KmSSM, seven stations that scored a moderately strong correlation 

(>0.6) with in-situ soil moisture were used for the calibration and evaluation of RZSM estimation methods. 
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Figure 3: 1KmSSM accuracy matrices A) RMSE and B) Correlation Score 

In Figure 4, the time series of the 1KmSSM and in-situ surface soil moisture for the three of the selected 

stations are demonstrated. Visible gaps in the soil moisture time series are from the missing in-situ soil 

moisture dates, labeled -99.999 on data files of the calibrated time series published by Van Der Velde et al. 

(2022). Evidently, 1KmSSM time series showed agreeing seasonality dynamics respective of in-situ 

measurements hence the correlation coefficient >0.60.  

 

However, extreme values of in-situ surface soil moisture, including peak values and low measurements were 

not replicated by 1KmSSM. In stations ITC_SM02 and 07, the 1KmSSM time series consistently 

underestimated the surface soil moisture peaks in winter 2018 and 2020 while in dry periods of summer 

2016, 2018, and 2019 1KmSSM overestimated soil moisture content for station ITC_SM13. The deviations 

in critical measurements account for the residual distance measure as indicated by the average RMSE>0.1 

m3/m3. 

 

 
Figure 4: 1KmSSM vs In-situ surface soil moisture (5cm) time series for stations ITC_SM02, 07, and 13 

(A, B, and C respectively). 
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ERA5 Validation 
This subsection validates the accuracy of the ERA5 dataset to represent the meteorological information of 

the study area using in-situ measurements retrieved from KNMI stations. The validation process was 

conducted by quantifying the linear correlation and average deviation of ERA5 precipitation measurements 

(stored in band ‘total_precipitation_sum’) using correlation coefficient and Root Mean Square Error 

(RMSE) respectively (Equations 4 and 6). Table 2 below summarizes the scores of the two-accuracy metrics, 

correlation score, and RMSE used for the validation of ERA5 precipitation (‘total_precipitation_sum’) 

against corresponding KNMI precipitation measurements by stations closest to the study area.  

 

The statistical metrics from the validation analysis indicated ERA5 precipitation dataset adequately 

replicated the KNMI precipitation measurements. Specifically, the ERA5 precipitation dataset achieved 

correlation and RMSE values between 0.74 to 0.78 and 2.67 to 3.26 mm, respectively, across all three KNMI 

stations. The lowest correlation score of 0.74 was scored by Hupsel station which also scored 3.265mm 

RMSE value, the weakest performance among the three stations. Further analysis indicated that the anomaly 

detection improved an agreement up to 0.86 correlation coefficient between SPI-1 anomalies computed 

from ERA5 and the KNMI precipitation dataset over the study period (Appendix figure S1). 

 

Table 2: Root Mean Square Error and Correlation scored by ERA5 precipitation dataset in the three KNMI 
weather stations between 2000-2020. 

Metric Heino Twente Hupsel 

RMSE (mm) 2.68  2.8 3.26 

Correlation score 0.78 0.78 0.74 

 

 

3.1.4 Root Zone Soil Moisture Computation 

Twente soil moisture stations were used as the in-situ measurements (available for 5cm, 10cm, 20cm, and 

40cm) for the estimation of RZSM. The threshold depth of 40 cm depth was used to account for the 

identified depth with the significant distribution of perennial crop roots. According to Fan et al. (2016), 

about 70% of the roots for crops such as grains and cereals are distributed at about 30 cm depth suggesting 

a significant depth for RZSM monitoring for the one leading agricultural products in the Netherlands (Ellen, 

1992).  

 

RZSM in this study was defined as the mean value of soil moisture content in the depths of 0 to 40cm. 

However, soil moisture measurements at Twente stations are only available at the 4 selected soil depths 

(figure 5). For that case, to account for the unrepresented depths, a depth scaling approach in equation 1 

was used to compute RZSMin-situ from the discrete depth measurements.  

 

𝑅𝑍𝑆𝑀𝑖𝑛−𝑠𝑖𝑡𝑢 =
∑ 𝛩𝑗δ𝑍𝑗

𝑛
𝑗=1

𝑧
     equation 1 

 

Where Θj
 is the volumetric water content (in m3/m3) measured at a depth of j (cm), z (cm) is the total depth 

(cm) and δ𝑍𝑗 is the soil thickness associated with the Θj measurements. At each measuring depth, the 

measured soil moisture was associated with half of the soil thickness from the following station. 
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Figure 5: Demonstration of the soil moisture measurements setup across different depths. (Carranza et al., 

2021) 
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3.2 Methodology  

To assess the relationship between drought and vegetation conditions, a causal analysis was conducted using 

vegetation and drought anomaly time series spanning 2000-2020. In this section, a methodology design is 

presented that shows the stages of the conducted study divided into various objectives to achieve the causal 

analysis of drought anomalies. The flowchart demonstrating the overview of the methodological design is 

presented in Figure 6 below.  

 

i. Investigation of  the best RZSM estimation model: For the first objective, two RZSM 

estimation methods were calibrated and evaluated to determine the best-performing model using 

Twente monitoring stations. 

ii. Drought indices computation and analysis: In the second objective, meteorological and 

groundwater drought indices were computed from meteorological and groundwater datasets 

respectively. Soil moisture drought was computed using the RZSM time series retrieved using the 

best-selected method in the first objective. 

iii. Vegetation indices and anomaly computation: For the third objective, optical-based vegetation 

indices were computed from the optical remote sensing dataset. 

iv.  Causal analysis: Finally, for the fourth objective, causal interactions between the computed 

drought indices together with vegetation anomalies time series were analyzed. 

 

The setting for the first objective was in Twente soil moisture monitoring stations, while a high network of 

groundwater monitoring stations in Witharen justified the shift in the causal relation analysis from the 

second to the fourth objective. A detailed explanation of the methods is explained in the sub-sections below. 

 

 
Figure 6: Demonstration of the overall methodological design adopted in this study  



 

15 

3.2.1 RZSM Estimation Methods 

In this subsection, two methods for RZSM estimation from 1KmSSM: Exponential Low Pass Filter (ELPF) 

and Cumulative Distribution Function (CDF) matching are presented. Figure 7 provides a demonstration 

of the steps and methodology adopted to achieve this objective. Before the modeling process, the in-situ 

soil moisture and the extracted 1KmSSM time series per location were preprocessed for consistency. Missing 

values treatment and daily mean aggregation were conducted for the already pre-processed in-situ soil 

moisture measurements to produce a clean daily time series. For the 1KmSSM, the pixel values are stored 

in 1000*m3/m3 so, the actual soil moisture time series was extracted by dividing pixel values by 1000. 

Finally, the complete training set was created from the temporal matchups of the daily aggregates of in-situ 

soil moisture measurements and the extracted 1KmSSM time series. 

 

From the complete training set, five-year time series (2016-2020) with consistent in-situ soil moisture 

measurements at the depths of 5 to 40 cm were prepared for the 7 selected soil moisture stations (Section 

3.1.3). Time series splitting into calibration and validation sets included 2016, 2017, and 2018 data inputs 

and 2019 and 2020 respectively. X. Gao et al. (2017) indicated that 2-year daily measurements of soil 

moisture are enough to create sets for both ELPF and CDF model parameter fitting and 1-year dataset for 

the evaluation. A simple splitting procedure was adopted in this study to ensure each set included both 

severely dry years (2018 and 2019) and less dry years (2016, 2017, and 2020) (Buitink et al., 2020; Van Der 

Velde et al., 2022). Finally, the best method was selected between the two evaluated models as the one that 

produces the most desirable accuracy metrics. Method transferability was also tested for the best-performing 

model using two uncalibrated Twente soil moisture stations.  

 

A detailed explanation of the working principles and steps taken for both CDF and ELPF methods is 

provided in the sub-sections below. 
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Figure 7: Demonstration of the methodological approach applied in the first objective 
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3.2.1.1 Cumulative Distribution Function (CDF) Matching Method  

CDF matching method estimates RZSM by eliminating systematic differences between grid Surface Soil 

Moisture (1KmSSM) and in-situ Root Zone Soil Moisture (RZSMin-situ) in terms of residuals (Zhuang et al., 

2020). A line-fitting approach was used to explain the difference between 1KmSSM and RZSMin-situ 

dynamics using the 1KmSSM dynamics as the predicting variable. A successful CDF matching results in the 

matching cumulative frequencies for the predicted and the observed RZSM time series (figure 8).  

 

 
Figure 8:Demonstration of the CDF matching results. 

 
To estimate the RZSM time series from 1KmSSM, the following steps were adopted in this study: 

 

I. After the splitting process, both 1KmSSM and RZSMin-situ calibration sets were ranked in 

descending order. The ranking process is done to match the percentiles of  the two-time series 

(1KmSSM and RZSMin-situ), to reduce their systematic differences (L. Wang & Chen, 2014). 
II. Ranked difference (Δ) was computed between ranked RZSMin-situ and 1KmSSM.  

Δ=1KmSSM - RZSMin-situ. 

III. Fitting a polynomial line between ranked difference and ranked 1KmSSM on the calibration 

set. Various polynomial lines were calibrated to find a method that better predicts the ranked 

difference using the ranked 1KmSSM data inputs. 

IV. Select the best-fitted polynomial line in the calibration process to estimate the Δ (Δpred) using 

1KmSSM time series. The best-fitted polynomial line was selected as the one with the least 

RMSE error estimate. For instance, figure 9 demonstrates the decline in RMSE with an 
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increased polynomial degree, however, no significant improvement was observed after 

polynomial 5 for that case it was adopted as the best polynomial fit. 

V. Estimate RZSM using the computed Δpred and 1KmSSM of  the validation set. 

RZSMCDF = 1KmSSM - Δ. 

VI. Steps I, IV, and V were then repeated in the validation set to estimate RZSMCDF. 

VII. Equations 4,5,6, and 7 were used to evaluate the accuracy of  the RZSMCDF was evaluated 

against the RZSMin-situ time series in the validation dataset. 

 

 

 

Figure 9: Demonstration of the changes in the RMSE with an increase in polynomial degree during CDF 
matching. 

3.2.1.2 Exponential Low Pass Filter (ELPF) Smoothing Method 

ELPF involves the application of the time series smoothing algorithm, delaying the upper-level soil moisture 

content signals to match the temporal dynamic of the deeper level. The original approach was introduced 

by Wagner et al., (1999) in which satellite soil moisture estimates were used to estimate profile soil moisture. 

In this study, however, a recursive approach introduced by (Albergel et al., 2008) as an improvement of 

Wagner’s approach was used. In contrast to Wagner’s approach, Albergel’s approach uses a more simplified 

formulation but produces similar results to Wagner’s approach. 

 

Equation 2 below summarizes the mathematical formulation of Albergel’s approach:  

 

𝑆𝑊𝐼𝑛 = 𝑆𝑊𝐼𝑚 + 𝐾𝑛 ∗ (𝑚𝑠𝑡𝑛
− 𝑆𝑊𝐼𝑚)   equation 2 
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Where 𝑆𝑊𝐼𝑛 is the estimated deep Soil Water Index (i.e, at 10, 20, and 40 cm depth) on a day n, 𝑆𝑊𝐼𝑚 is 

the Soil Water Index a day prior (n-1) and 𝑚𝑠(𝑡𝑛) is the SSM at time n. Kn is the gain factor at time n. Kn 

can be expressed as equation 3 below: 

 

 𝐾𝑛 =
1

1+∑ 𝑒
−

𝑡𝑛−𝑡𝑚
𝑇𝑛−1

𝑖

   equation 3 

 

 

Where 𝑡𝑛𝑎𝑛𝑑 𝑡𝑚 are the time indices for the SWI estimation date and the day prior respectively. T, on the 

other hand, represents the characteristic time length taken for the surface soil moisture measurements to be 

translated to SWI. T parameter is also defined as the integral parameter that accounts for the soil properties 

and hydrological processes that influence the interaction between surface soil moisture and deep soil 

moisture dynamics (X. Gao et al., 2017; Wagner et al., 1999).  

 

In the current study, the estimation of RZSM was implemented following steps 

I. After the data splitting process, in the calibration phase, for a particular depth, the SWI and Kn 

computations were initiated by assigning SWI=SSM and Kn=1 to the first-row entry in the 

time series (Albergel et al., 2008). 

II. SWI and Kn computations were iterated through a range of  T values from 1 to 100 using 

equations 2 and 3 respectively and saved respectively of  the T value. Paulik et al. (2014) 

explained that the optimal T value increases with depth, while most studies found 20 days as 

the optimal value for root zone depth up to 60 cm (M. Li et al., 2023).  

III. The estimated SWI that correlates the most with the in-situ soil moisture measurements at the 

respective depth was saved as the predicted SWI and its T value was selected as the optimal T 

parameter for the respective depth and location. 

IV. Steps I to IV were then repeated to estimate SWI at the depth of  10, 20, and 40 cm (SWI10, 

SWI20, and SWI40 respectively). 

V. Finally, SWI10, SWI20, and SWI40 were used to estimate RZSMELPF using the depth-weighted 

mean method introduced in Equation 1. 

VI. Steps II to V were repeated for the validation set. 

VII. Finally, the performance evaluation was done on the RZSMin-situ time series in the validation 

dataset using equations 4, 5, 6, and 7.  

 

Notably, two different techniques were applied by the ELPF and CDF approaches to RZSM estimations. 

While CDF was calibrated and validated directly to the RZSMin-situ, ELPF was applied to each depth 

independently before being depth-scaled into RZSM. The choice of the technique is based on the 

performance of each approach respective of the two techniques used. (Appendix figures S7 and S8 compare 

the performance of the two techniques in both CDF and ELPF) 

 

3.1.1.1 RZSM Accuracy Evaluation Metrics  

The accuracy of each method was evaluated to investigate the best-performing method for estimating RZSM 

from the existing 1KmSSM dataset. Four widely used accuracy metrics in soil moisture studies, Root Mean 

Square Error (RMSE), Bias term, correlation coefficient (r), and the unbiased Root Mean Square Error 

(ubRMSE) were utilized for the evaluation process. H. Zhang et al. (2021) utilized similar indices to provide 

a mathematical quantification of the average difference between the predicted and actual measurements, 

systematic errors in the modeling results, the strength of the linear correlation, and the average difference 
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in the absence of systematic errors respectively. Equations 4, 5, 6, and 7 were adopted for the computation 

of the respective metrics.  

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑖−𝑌𝑖)2𝑛

𝑖=1

𝑛
  Equation 4 

 

𝐵𝑖𝑎𝑠 =  
∑ (𝑌𝑖−𝑋𝑖)𝑛

𝑖=1

∑ 𝑋𝑖
𝑛
𝑖=1

  Equation 5 

 

𝑟 =
∑ (𝑋𝑖−X̄)(𝑌𝑖−Ȳ)𝑛

𝑖=1

√∑ (𝑋𝑖−X̄)2𝑛
𝑖=1 ∗√∑ (𝑌𝑖−Ȳ)2𝑛

𝑖=1

  Equation 6 

 

𝑢𝑛𝑅𝑆𝑀𝐸 =  
1

𝑛
√𝑛 ∑ (𝑌𝑖 − 𝑋𝑖)2𝑛

𝑖=1 − (∑ (𝑌𝑖 − 𝑋𝑖)2)𝑛
𝑖=1  Equation 7 

 

 

3.2.2 Drought Indices Computation and Characterization: 

In this objective, a time series of 3 types of drought indices, meteorological drought, soil moisture, and 

groundwater drought were computed. SPEI-1, SSWI-1, and SGWI-1 time series were extracted at a 

groundwater location to monitor the evolution of the three drought types in the Witharen groundwater 

monitoring region. Figure 10 presents an overview of the methodological approach as well as steps 

undertaken to compute these drought indices. 

 

Before drought anomalies computations, data processing steps were applied to 1KmSSM, groundwater, 

precipitation, and evapotranspiration separately.  

• Groundwater time series underwent data exploration procedures using time series plotting and 

histogram plots to detect outliers. Extreme groundwater values were replaced by the 2.5th and 97.5th 

percentile scores of  the groundwater level for the respective stations. (Demonstration: Appendix 

figure S2) 

• Time series extraction and unit conversion used in the first objective were adopted to prepare the 

1KmSSM time series before applying the RZSM estimation model calibrated in the first objective 

to retrieve the RZSM time series.  

 

Finally, together with the extracted precipitation and evapotranspiration time series, both datasets were 

monthly aggregated using the monthly median score of the respective variables before temporally matching 

to generate a complete drought analysis dataset which was fed into drought computation models explained 

below. 
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Figure 10: Demonstration of the methodological approach applied in the second objective 
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Computation and interpretation of drought indices are based on various temporal scales, most commonly 

1, 3, 6, 9, 12, or 24 months (Su et al., 2017). Guardamino et al. (2021) indicated an increase in the correlation 

of the meteorological drought index with soil moisture and groundwater drought indices as one increases 

the monthly scale for the computation of SPEI. This is because a precipitation deficit over an extended 

period will impact the soil water storage. Rutger Weijers (2020) explained the use of SPEI-3 for 

meteorological drought propagation to soil moisture and groundwater drought respectively. In addition to 

the SPEI-1, SSWI-1, and SGWI-1 for the monitoring of the onset and duration of drought events, the 

current study also utilized SPEI-3 to account for the accumulated precipitation deficit in the causation 

analysis (Section 4.4.1).  

 

Below a detailed explanation of the approaches used for each drought index is presented. 

3.1.1.2 Standardized Precipitation Evapotranspiration Index (SPEI) Computation 

SPEI is an energy-based atmospheric water demand index for the estimation of meteorological drought. 

The computation of SPEI is based on the difference between the recorded precipitation intensity and the 

unit Evapotranspiration measure also referred to as net precipitation. The steps for the computation of 

SPEI followed these of SPI with one key difference of using the net precipitation over the actual 

precipitation (Guardamino et al., 2021). In the current study, the following main steps were taken after data 

collection and preprocessing: 

I. A moving average computation on the selected time scale of  3 months. 
II. Fitting the climatic records of  net precipitation and normalizing the skewed distribution to a 

normal distribution with mean and standard deviation of  0 and 1 respectively. 
III. Computing the anomalies from the normalized distribution using the general standardization 

equation below. 
 

(𝑥𝑖−𝑥𝑜)

𝜎(𝑥)
   equation 5 

In which xi is the newly computed average over the identified time scale, xo is the mean score for 

the whole time series and 𝜎(𝑥) is the standard deviation of  the selected time scale compared to the 

rest of  the time series. 
 

 

3.2.2.1 Standardized Soil Water Index (SSWI) Computation 

SSWI was used as an index for soil moisture drought monitoring. RZSM time series extracted using the 

1KmSSM surface soil moisture time series was used as an input for the estimation of SSWI. The 

standardized equation 6 below was used to compute SSWI in the study period spanning 2000-2020: 

 

𝑆𝑆𝑊𝐼 =
𝑅𝑍𝑆𝑀𝑖−𝑅𝑍𝑆𝑀∝

𝑅𝑍𝑆𝑀𝜎
   equation 6 

 
Whereby SSWI is the Standardized Soil Water Index, RZSMi is the RZSM at a given time step, RZSMα is 

the mean value in the time step and RZSMσ is the standard deviation for the RZSM value in the time step. 

 
Additionally, SSM anomaly (SSWI-1u) was computed using 1KmSSM time series instead of RZSM. SSWI-

1u was used in the causal analysis (Section 4.4.2) to assess the ability of surface soil moisture anomaly to 

capture drought propagation in comparison with RZSM anomalies 
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3.2.2.2 Standard Groundwater Level Index (SGWI) Computation 

The Standardized Groundwater Level Index (SGWI) was computed to detect the onset of groundwater level 

declines as well as the temporal trend (Halder et al., 2020). In this study, SGWI was computed on a temporal 

scale and classified as indicated by Table 3. SGWI will be estimated using equation 7 below: 

 

𝑆𝐺𝑊𝐼 =
𝐺𝑊𝐿𝑖−𝐺𝑊𝐿∝

𝐺𝑊𝐿𝜎
   equation 7 

 

SGWI is the standardized Groundwater Level Index, 𝐺𝑊𝐿i is the groundwater level at a given time step, 

GWLα is the mean value in the time step and GWLσ is the standard deviation for groundwater level in the 

time step.  

3.2.2.3 Drought Characterization 

Unlike other hydrological phenomena such as floods, it is often less straightforward to precisely identify 

properties such as the onset and offset of drought events (Wanders et al., 2010). In this study, run theory 

was used to quantitatively classify characteristic features of drought events using the time series of the three 

computed drought indices (W. Zhang et al., 2023). Initially, meteorological, soil moisture, and groundwater 

drought events (DE) were identified based on the magnitude of the net precipitation, soil moisture, and 

groundwater departure from the climatological mean respectively (Su et al., 2017). For this case, a 20-year 

climatological average. Table 3 presents the drought classifications and corresponding standard deviation 

measures as identified by WMO (2012). 

 

Table 3: Drought classification according to SPI values 

DEVIATION 

RANGE 

ASSIGNED 

VALUE  

DROUGHT 

CATEGORY 

F ≥ µ+2σ ≥ 2.00 Extremely wet 

µ+1σ to µ+1.99σ 1 to 1.99 Wet 

µ-0.99σ to µ+0.99σ -0.99 to 0.99 Near Normal 

µ-0.99σ to µ-1.99σ -1 to -1.99 Dry 

F ≥ µ-2σ ≤2.00 Extremely dry 

 

Thereafter, drought duration (DD) was identified as the period from the occurrence to the termination of 

the classified dry anomaly, whereas Drought Severity (DS) was computed as the absolute sum of the 

respective drought index and drought intensity (DI) as the ratio of DD and DS. Moreover, Drought 

Frequency (DF) was calculated as the number of drought events over the time scale of interest. The 

demonstration of the drought characterization approach is presented in Figure 11.  
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Figure 11: Drought characterizing using run theory. Where DE, DD, and DS refer to Drought episodes, 
Duration, and Severity respectively. 

 

DS and DD were computed using equations 8 and 9 respectively. 

 

DS = ∑ |𝑆𝐼𝑖|𝑖 = 1, … , 𝑛𝑛
𝑖=1  equation 8 

 

DI =
𝐷𝑆

𝐷𝐷
 equation 9 

 

Where SIi is the standardized drought index of interest, in this case, SPEI, SSWI, or SGWI, scored from i-

time index to n. 

 

3.2.3 Vegetation Condition Indices Computation 

In this sub-section, two vegetation condition indices were used to monitor the dynamics of the distinct 

vegetation properties during drought conditions. NDWI monitors the plant hydrology conditions by 

utilizing the high reflectance from the cell mesophyll and water absorptions at NIR860 and SWIR1240 

wavelengths respectively (B. C. Gao, 1996). Conversely, NIRv quantifies the attribution of vegetation on 

the pixel reflectance by computing a multiple of the Normalized Difference Vegetation Index (NDVI) and 

NIR band reflectance (Zeng et al., 2022). NDVI refers to the normalized difference between the Red640 and 

NIR860 bands. Figure 12 shows the reflectance curves of vegetation and soil across the wavelengths of 

interest. 
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Figure 12: Reflectance behavior of vegetation and soil across wavelengths of interest. Diagram edited from 
the original version by Zeng et al. (2022). 

 
From the extensive collection of optical vegetation indices, NIRv and NDWI were selected to be used in 

this study due to their proven robustness to various sources of uncertainty in optical vegetation monitoring 

(Zeng et al., 2022). NIRv enhances the impacts of vegetation on the NDVI by multiplying with NIRv to 

mask the contributions of the background noises whereas the use of long wavelength SWIR makes NDWI 

less sensitive to clouds compared to other plant biochemical indices such as red-edge Normalized Difference 

Vegetation Index (NDVIre). Moreover, Leaf Area Index (LAI), NDVI, and Enhanced Vegetation Index 

(EVI) were used for the development of 1Km datasets thus they won’t be used in this study. 

 

Figure 13, demonstrates the steps taken to extract vegetation condition anomalies from the broadband 

remote sensing dataset, MOD09GA latest version 6.1. Initially, MOD09GA was retrieved and processed in 

the Google Earth Engine code editor, cloud platform. The image processing procedures i.e., clouds and 

cloud shadow masking as well as no-data pixel values treatment explained in detail in the data processing 

section was the first procedure before indices computation. Additionally, spatial upscaling and temporal 

aggregation of the daily, are also explained in detail in the data processing stage. Below the methods used to 

compute vegetation indices from the MOD09GA bands are presented. 
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Figure 13: Demonstration of the methodological approach adopted for the third objective. 

 

3.2.3.1 Vegetation Condition and Anomalies Computation 

NIRv and NDWI were computed using MOD09GA version 6.1 bands as shown in equations 10 and 11 

respectively:  
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𝑁𝐼𝑅𝑣 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
∗ 𝑁𝐼𝑅  equation 10 

 

𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅1240

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅1240
 equation 11 

 

Where SWIR1240 NIR and Red are MOD09GA reflectance bands 5, 2, and 1 respectively, NIRv is the Near 

Infrared reflectance of terrestrial Vegetation index. Finally, a monthly time series of vegetation indices was 

generated by computing an average value of both NIRv and NDWI throughout the respective month. 

 

Equation 12 was used to derive the vegetation indices anomaly (Veganom) for each location. A simple 

vegetation anomaly representing the deviation of a vegetation index (Vegi) from the mean pixel value over 

the 20-year study period.  

 

𝑉𝑒𝑔𝑎𝑛𝑜𝑚 =
𝑉𝑒𝑔𝑖−𝑉𝑒𝑔∝

𝑉𝑒𝑔𝜎
  equation 12 

 

Where Vegi is an incident vegetation index of interest (NIRv or NDWI) at a certain point in time and 𝑉𝑒𝑔𝜎 

and  𝑉𝑒𝑔∝ represent the mean and standard deviation of the respective vegetation index at a pixel level. 

 

After the extraction of the vegetation indices time series, preprocessing was necessary to ensure a clean 

vegetation indices time series for the computation of vegetation anomalies. In addition to the clouds and 

No data pixel cleaning explained in section 3.1.1, time series visualizations (line plots) were used to detect 

extreme and abnormal vegetation indices values. The sensitivity of NDWI to noises such as from soil water 

and snow cover absorption impacts was also addressed during NDWI computations (B. C. Gao, 1996; Zeng 

et al., 2022). Enhanced absorbance by soil water and snow cover at SWIR1240 bandwidth leads to an 

extremely positive difference between SWIR1240 and NIR, especially in scattered vegetated areas. For 

anomaly computations, outliers in the time series can significantly alter the interpretations of drought 

intensity (Rutger Weijers, 2020). To prevent corrupting the vegetation index time series, in this study, 

extremely negative and positive NDWI and NIRv values were substituted by the 97.5th and 2.5th percentiles 

of the pixels’ time series (Example Appendix Figure S4).  

 

3.2.4 Causal Effect Analysis with Convergence Cross Mapping (CCM) 

In the current objective, a causal-effect analysis was performed to assess the causation interactions between 

drought and vegetation anomalies computed in the Witharen groundwater region for the period spanning 

2000-2020. Figure 14 provides an overview of the approach adopted in this objective. Meteorological, soil 

moisture, and groundwater drought anomalies were acquired from objective 2 outcomes while from the 

third objective NDWI and NIRv anomalies were retrieved. Both indices were temporally matched into a 

monthly scale time series yielding on average 220 matchups in each location. 

 

Recent studies explore a range of Causal Inference Methods (CIMs) including but not limited to graph-

based algorithms, Ganger causality, Transfer Entropy, and Convergent Cross Mapping (CCM) to infer 

causalities in complex systems, particularly in the field of hydrometeorology (Bonotto et al., 2022; Ombadi 

et al., 2020; Z. Zhang et al., 2023). For instance, Delforge et al. (2022) emphasized the suitability of CIMs 

to decipher non-linear causations. In light of these developments, the selection of non-linear CCM to infer 

drought causalities in the current study is well-founded. Moreover, the demonstrated capacity to detect 
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physically explainable hydrometeorological causal interactions on a local scale motivated the selection of 

non-linear CCM to infer drought causalities in the current study (Ombadi et al., 2020). 

 

CCM was designed to quantify the predictability of one variable (Y) in a time series to infer the causal 

influence of another variable (X) in a series (Sugihara et al., 2012). CCM assumes that if X causes Y, then in 

a historical time series of affected variable Y, the causal variable X leaves information signatures to influence 

the affected variable. For that case, by using Takens’ theorem (Time-delayed embedding) the causal variable 

was estimated from the signature information in the affected variable. The process is also called cross-

mapping and the information is referred to as shadow manifolds (Ionita et al., 2022). 

 

Cross-mapping skill (ρ) was computed as the correlation between the observed and cross-mapped X time 

series to quantify the cross-mapping accuracy. The actual causal interaction of X on Y was then distinguished 

from spurious causation if the ρ score increases with the increase in library size, hence convergence (Bonotto 

et al., 2022). CCM causal inferring model can be summarized using equation 13: 

 

𝑋𝑡+1 = 𝑋𝑡(𝑟𝑥 − 𝑟𝑥𝑋𝑡 − 𝛽𝑥,𝑦𝑌𝑡) equation 13 

 

Where rx is the variable X intrinsic growth rate, 𝛽𝑥,𝑦 is the quantified influence of X on Y dynamics, and t 

and t+1 are the consecutive time steps of the time series dynamics. To estimate the causal influence of Y 

on X the equation can be reversed. 

 

A detailed explanation of how CCM establishes causation can be referred to in a study by Sugihara et al. 

(2012). 

 

In this study, CCM causal analysis was implemented in the R environment using the ‘multispatialCCM’ 

package. A uniform time lag (τ = 1), and the best embedding dimension (E) were obtained as the one that 

produces the best ρ output were the specified CCM parameters. For each CCM interaction modeling, a 

default 100 number bootstrap iterations were simulated to obtain median ρ, a representative of the CCM 

causal results for the particular location. 
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Figure 14: Demonstration of the methodological approach adopted for Objective 3 
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4 RESULTS 

This chapter provides an overview of the results of the application of the methodologies explained in the 

previous chapter. It is structured into four sub-sections, each corresponding to a specific objective that 

collectively contributes to unraveling the causal dynamics between drought and vegetation anomalies.  

• The first sub-section delves into the results and evaluation of the two Root Zone Soil Moisture 

(RZSM) estimation methods.  

• The second sub-section explores the estimated time series of the three drought anomalies 

(Meteorological, Soil moisture, and groundwater drought) 

• The third sub-section examines the time series couplings and the correlations between drought 

anomalies and vegetation anomalies. 

• Finally, this chapter concludes with a detailed analysis of the Convergent Cross Mapping (CCM) 

causal inferences detected between vegetation conditions and drought anomalies. 

4.1 RZSM Estimation Methods.  

In this subsection, an overview of the results of RZSM estimations by the two evaluated methods is 

presented. In the first part, the optimal model parameters for the evaluated methods ELPF and CDF 

matching method are examined. Thereafter, the performance of the two models was evaluated using 4 

accuracy metrics, Root Mean Square Error (RMSE), Bias term, correlation coefficient (r), and the unbiased 

Root Mean Square Error (ubRMSE). In the concluding subsection, the time series examination of the most 

suitable method for RZSM estimation based on the evaluated accuracy metrics is presented. 

4.1.1 Optimal RZSM Model Parameters. 

 
a) Exponential Low Pass Filter (ELPF). 

In Table 4, the optimal delayed time required for the 1KmSSM signals to match in-situ soil moisture signals 

at 10cm, 20cm, and 40cm are presented for the selected soil moisture monitoring stations. Generally, there 

is an increase in the optimal T value with the depth of the target in-situ soil moisture signals. For the 7 

evaluated stations, the median optimal delayed T value was 16, 17, and 33 days for 10 cm, 20 cm, and 40 cm 

depths respectively. Indicating an immediate response to surface soil moisture dynamics at the shallow soil 

depths (10 and 20 cm) compared to the deeper layers (40 cm). 

 

Interestingly, some stations had an opposite trend in the optimal delayed time respective to the matching 

depth. For instance, stations ITC_SM07, 09, and 15 required longer delayed signals to match 10 cm soil 

moisture compared to the 20 cm soil moisture signal. ITC_SM09 located by the river Buursebeek had the 

highest difference of 12 days between the optimal T value required to match 10cm and 20cm soil moisture 

dynamics. The soil profile of the ITC_SM09 station is composed of a loamy texture at the topsoil with fine 

sand in the sub-surface layer. A significantly high resistance to vertical water movement due to the 

compaction of top loamy textured soil might explain a highly dynamic 20 cm soil moisture dynamic 

compared to the top layer (10 cm). 

 

Moreover, the analysis reveals significant variability in the mean optimal delayed time for the three depths 

among the seven evaluated stations. Specifically, stations ITC_SM03, 07, and 15 had an average optimal T 

parameter above 25 days while ITC_SM09 and 18 required less than 11 days, the lowest among the evaluated 
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stations. The difference in optimal T parameter among stations further the difference in coupling nature 

between 1KmSSM and in-situ deeper soil moisture content time series across the study area. 

 

Table 4: Optimal delayed time in days for the selected stations and 10, 20, and 40cm depths 

Station ID 10 CM 
(DAYS) 

20 CM 
(DAYS) 

40 CM 
(DAYS) 

ITC_SM02 5 17 27 

ITC_SM03 34 44 69 

ITC_SM07 19 12 48 

ITC_SM09 14 2 15 

ITC_SM13 16 18 30 

ITC_SM15 23 20 35 

ITC_SM18 2 6 12 

 

b) CDF Matching 
The optimal polynomial fit that produces the most accurate RZSM at 40 cm from 1KmSSM is presented in 

Table 5. From these outputs, it is evident that in most of the soil moisture stations, a complex polynomial 

line was required to model the relationship between 1KmSSM dynamics and the respective difference with 

RZSM incidences. Specifically, at least an optimal degree of 3 was required for each station to achieve 

maximum accuracy in predicting Δ from 1KmSSM dynamics. 4 monitoring stations out of the 7 evaluated 

achieved a maximum accuracy using a 5th order polynomial model while only the ITC_SM03 station required 

the 6th order polynomial model fitting suggesting a more complex relationship. 

 

Table 5: Optimal polynomial fit for each station. 

Station 
(ITC_) 

SM01 SM03 SM07 SM09 SM13 SM15 SM18 

Polynomial 
Fit 

5 6 5 5 3 3 5 

 

4.1.2 RZSM Accuracy Assessment 

Figure 15 presents the distribution summary of 4 accuracy metrics used to evaluate the predicted RZSMELPF 

and RZSMCDF estimated using ELPF and CDF matching methods respectively. In general, both methods 

were able to reproduce the time series dynamics of the in-situ RZSM, consistently scoring a satisfactory 

correlation coefficient of above 0.73. A strong linear correlation scored by both RZSMELPF and RZSMCDF 

indicates a reliable ability of the two models to infer the time series dynamic of RZSM from the 1KmSSM 

time series. However, the ubRMSE range between 0.04 m3/m3 to 0.08 m3/m3 suggests an alarming 

performance in some locations. 

 

Between methods, RZSMELPF consistently scored more desirable accuracy metric scores as compared to 

RZSMCDF. A median Pearson correlation coefficient of 0.87 scored by RZSMELPF outperformed RZSMCDF 

by 0.08 (Plot 15 B). Moreover, similar to the correlation coefficient results, Plot 15 A reveal that, RZSMELPF 

outperformed RZSMCDF by an average RMSE difference of 0.002 m3/m3. Station ITC_SM07 scored an 

RMSE of 0.08 m3/m3 between 1KmSSM and in-situ soil moisture. This station consistently produced the 
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highest residual measure after the application of both ELPF and CDF matching methods. This indicates the 

impact of the accuracy of the 1KmSSM dataset on the RZSM estimation results. 

 

Bias estimation results indicate that the two methods constantly overestimated RZSM (Plot 15 D). 

Specifically, in at least 5 of the 7 evaluated stations, both RZSMELPF and RZSMCDF exhibited positive biases. 

An outstanding result was observed in station ITC_SM07 in which RZSMELPF dramatically underestimated 

RZSM, reaching a bias of -0.095 m3/m3 leading to an RMSE of 0.12 m3/m3, the highest to be recorded by 

the approaches. 

 

Moreover, improved ubRMSE evaluation compared to RMSE results indicated that most of the residuals 

on the estimated RZSM by both ELPF and CDF methods are mostly contributed by bias and less by error. 

Specifically, plot 15 C reveals that RZSMELPF had an average improvement of 0.016 m3/m3 while for 

RZSMCDF the RMSE improved by an average of 0.007 m3/m3. Moreover, RZSMELPF for the station 

ITC_SM07 produced an ubRMSE of 0.072 m3/m3, a significant improvement from the RMSE of 0.12 

m3/m3, further indicating a significant contribution of biases on the computed RMSE.   

 

 
Figure 15: Distribution of accuracy metrics scored by the two evaluated methods. A. RMSE, B. 

Correlation Score, C. ubRMSE, and Bias term. 

 

4.1.3 Best Performing Method 

In this sub-section, the time series of the estimated RZSM using the best-selected method compared to the 

in-situ RZSM, is presented. From the accuracy assessment sub-section, it is evident that RZSMELPF 

consistently outperformed RZSMCDF in both correlation and residual assessment. Additionally, the 
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complexity of the lines fitted by polynomial degrees 3, 5, and 6 complicates the intuitive interpretation of 

the relationship between SSM and Δ. For that case, a median optimal T value of 16, 17, and 33 days for 10 

cm, 20 cm, and 40 cm depths respectively was used to depth filter 1KmSSM time series before scaling to 

RZSM estimates.  

 

The application of median optimal T values on the calibrated stations yields a mean correlation coefficient 

and RMSE of 0.86 and 0.07 m3/m3 respectively. Moreover, two uncalibrated stations ITC_SM08 and 14 

were tested and both scored an RMSE score less than 0.07 m3/m3 and a correlation coefficient higher than 

0.81. This indicates the potential of the ELPF method transferability and generalizability. However, 

extremely low 1KmSSM accuracy and missing data in stations such as Hupsel and Twente Airport limited 

the testing across other uncalibrated Twente stations 

 

Figure 16 demonstrates the RZSMELPF time series covering the validation period of the three selected 

stations of which two (A, C) were not involved in the original experiment to calibrate the optimal T value. 

From the time series, the predicted RZSMELPF was able to match most of the in-situ measurements of RZSM 

peaks during the validation period. However, steep rises in the in-situ soil moisture for instance in March 

2020 of plots 8, A, and B were not matched by the RZSMELPF time series. A similar pattern was observed 

in July 2019 and 2020 of the same plots. On the other hand, the smooth peak observed in March 2020 for 

plot 6, C was perfectly matched by the RZSMELPF time series. 

 

 
Figure 16: RZSMELPF vs In-situ RZSM time series for stations ITC_SM08, 13, and 14 (A, B, and C 
respectively). 
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4.2 Drought Anomalies and Drought Characterization: 

 

In this part, the temporal drought evolution of the 27 Witharen groundwater monitoring stations for the 

period spanning 2000 to 2020 is presented. Three drought indices, i.e., SPEI-1, SSWI-1, and SGWI-1 were 

computed for the monitoring of meteorological, soil moisture, and groundwater drought conditions. 

Validated ERA5’s precipitation and actual evapotranspiration, RZSMELPF, and in-situ point scale 

groundwater measurements were used as input for the computation of the three indices respectively. The 

calibrated ELPF parameters from the first objective were transferred and used for the estimation of the 

RZSM time series in the Witharen region.  

 

Figure 17 provided the temporal evolution of the mean meteorological, soil moisture, and groundwater 

drought indices, as assessed using SPEI-1 together with the mean SGWI-1 and SSWI-1 score to provide a 

general overview of the drought anomalies in the study area. The time series of the drought indices indicated 

a variation in the onset and offset of the mean drought events among the three indices. Typically, drought 

events are initiated by the SPEI-1 anomalies before proceeding to the mean anomalies of both SSWI-1 and 

SGWI-1 indices. Episodes such as wet anomalies in 2007, 2010, and 2014, as well as dry episodes in 2011 

and 2020, demonstrate this phenomenon. During those episodes, SPEI-1 experienced more pronounced 

positive or negative anomalies together with a quick recovery to a normal condition compared to SSWI-1 

and SGWI-1. This observation was expected as it indicates the general propagation of the natural drought, 

initiated by precipitation scarcity before propagated to soil water anomalies. 

 

Contrary to the general trend, various seasons in the time series of the drought indices revealed 

developments that contradict the expected general flow of natural drought. Observations of the dry episodes 

in 2003 and the wet episodes in 2004 indicated the fall and rise of SSWI-1 and SGWI-1 anomalies that not 

only proceeded but also outscored, and outlasted the severity measured by the SPEI-1 index. Additionally, 

the time series observations indicated the seasonal decoupling of water anomalies. For instance, dry episode 

detected by SPEI-1 and SGWI-1 during the winter of 2006 was matched with near-wet anomalies of SSWI-

1. These observations suggest the complexities in drought association analysis and the impacts of other 

hydrometeorological factors on the occurrence of water storage anomalies apart from meteorological.  

 

 
Figure 17: Temporal pattern of Meteorological, Soil Moisture, and Groundwater drought indices as 
monitored using SPEI-1, SSWI-1, and SGWI-1 indices respectively for a study period spanning 2000-2020. 
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Figure 18 presents the frequency, duration, and intensity of drought events identified using the mean study 

area drought indices. Within the study timeframe, SPEI-1 identified the highest frequency of dry episodes 

(35 ) while 21 and 17 episodes were identified by SSWI-1 and SGWI-1 respectively. Most of the drought 

episodes were identified during the last 10 years of the study period, such that, 65% of the SSWI-1 and 

SGWI-1 dry anomalies were detected while 54% of SPEI-1 drought events were detected in the same period.  

The observed intermittent nature of meteorological drought, marked by the periodic recovery of some 

episodes contributes to the high number of drought events. For instance, 4 evanescent meteorological 

droughts were identified from February to November 2018 with brief recoveries in April, May, August, and 

September.  

 

The intensity of drought episodes varied depending on the type of index of interest. Specifically, SPEI-1 

identified the 2011 drought episode as the most intense meteorological drought with the highest DI score 

of 2.15 while SSWI-1 and SGWI-1 scored the highest DI values of 2.1 and 1.6 during the 2018 and 2019 

drought episodes respectively. A progressive increase in SPEI-1, SSWI-1, and SGWI-1 intensity was 

observed between 2017-2019, during which neither of the drought indices recovered to a wet anomaly 

during that period suggesting a propagation of drought effects between episodes (figure 17). Additionally, 

the average DI across the study period stood at 1.23, 1.44, and 1.27 for the drought indices SPEI-1, SSWI-

1, and SGWI-1 respectively suggesting soil moisture experienced the most intense drought anomalies 

compared to groundwater and precipitation. 

 

 
Figure 18: Change of Drought Intensity (DI) score across various identified drought episodes. 

In examining the relationship at individual monitoring locations, temporal coupling was quantified using 

linear correlation coefficient scores. Figure 19 provides an overview distribution of the linear correlation 

scores between drought index pairs. The analysis reveals a significant positive linear relation between the 

three pairs of drought indices. Notably, SSWI-1 association with SGWI-1 scored a median correlation 

coefficient of 0.56, the highest between the pairs. This was closely followed by the other two pairs with 

median scores of 0.54 and 0.47. A more consistent correlation score among monitoring locations was 

observed in the SPEI-1 and SSWI-1 linear coupling while the SSWI-1 and SGWI-1 pairs showed much-

elongated boxplots, suggesting a variable linear correlation. 
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Figure 19: Distribution of linear correlation coefficient between drought indices. 

 

To assess the impacts of spatial variables on the association between drought anomalies, the linear 

correlation coefficient scores were analyzed against various factors that might influence the linear coupling 

between drought indices. Dominant land cover properties, soil texture, and water table depth were all 

considered. A heterogenous land use activity at a 1 km soil moisture pixel meant it was difficult to assign an 

exclusive land cover property to an individual pixel. Moreover, only 4 distinct sandy soil classes were 

identified among the monitoring locations based on the Bofek 2020 with an overlapping correlation score 

between indices meant that it was not enough to explain the variation. 

 

A notable association was found between the mean groundwater depth of the location with the occurrence 

of groundwater drought anomalies. As highlighted in the data exploration section, the study area is 

characterized by a shallow aquifer with only two wells deeper than 2.7 m and 3 under 0.75 m with the 

remaining wells falling between 0.89 m to 1.3 m. The comparisons between the deepest and shallowest 

monitoring locations indicated that shallow groundwater aquifers are more linearly coupled with surface 

water dynamics. Specifically, SGWI-1 of the deepest aquifer locations (B22C0129 and B22C0131) scored 

the lowest correlation coefficient with SPEI-1 (<0.25) while B22C0134 and B22C0107 both scored above 

0.6.  

 

However, this pattern weakened when considering correlation scores between SSWI-1 and SGWI-1. The 

highest correlation between SSWI-1 and SGWI-1 (>0.70) was scored by B22C0551, B22C0558, B22C0559, 

and B22C0068 wells whose depth range between 0.7 m to 1.4 m. Two wells B22C0086 and B22C0132 which 

are 0.6 m and 1.3 m deep respectively both scored a correlation score below 0.3, the lowest SSWI-SGWI 
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correlation score. Whereas the identified shallowest wells B22C0134 and B22C0107 as well as the deepest 

well, B22C0129 scored a correlation coefficient ranging between 0.5 to 0.57. 

 

Furthermore, Figures 20 A and B present the time series of the three drought indices for the monitoring 

well B22C0134 (the shallowest at 0.59 m) and B22C0129 (the deepest at 3.7 m) respectively. Revealed, a 

more stable B22C0129 groundwater anomaly time series compared to B22C0134. A total of 32 episodes 

were observed in the B22C0134 time series, 14 more episodes of negative SGWI anomaly when compared 

to B22C0129. Monthly negative SGWI-1 anomaly was endured in B22C0134 for 42 months whereas 

B22C0129 experienced only 38 months throughout the study period suggesting a more monthly propagated 

SGWI in B22C0129. The highest DI score by B22C0134 was 2.6 while 1.1 was scored by B22C0129.  

 

 
Figure 20:  Temporal pattern of SPEI-1, SSWI-1, SGWI-1 for monitoring well A) B22C0134 and B) 

B22C0129 
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4.3 Vegetation and Drought Anomalies Association 

 

In this objective, the association between drought anomalies (SPEI-1, SSWI-1, and SGWI-1) and vegetation 

anomalies (NDWI and NIRv) is illustrated. Initially, linear correlation and time series analysis between the 

vegetation anomalies were conducted to assess the coupling of the two indices. Furthermore, a zoom-out 

of the mean vegetation condition development during various drought episodes is presented to assess the 

decline and recovery of vegetation conditions during the on-set and off-set of drought episodes. 

 

A correlation analysis between NDWI and NIRv was performed to evaluate the coupling between the 

vegetation indices in both the spatial and temporal dimensions. An overall linear correlation of 0.49 between 

the median NDWI and NIRv time series reveals a moderate linear relationship. Spatially, a correlation 

coefficient of 0.88 between the median NDWI and NIRv of the 27 used locations reveals a near-perfect 

agreement in the distribution of vegetation conditions. A notable deviation from the linear relationship was 

observed by station B22C0136 which had a moderate NDWI score despite scoring the lowest median NIRv 

(Supplementary figure S5). 

 

Figure 21 presents the time series of the median NIRv and NDWI. A general agreement in the temporal 

trend of the vegetation anomalies can be observed with the synchronized rising and falling of the vegetation 

anomalies. Despite a near-perfect time series sync, the divergence can be observed at the onset of the 

negative anomalies. For instance, the dry anomalies of 2000, 2003, 2005, 2010, 2011, 2013, and 2014 were 

all preceded by NIRv-negative anomalies matched by an average of two months lag in NDWI anomaly 

before catching up with NIRv. During this, the trajectory of NIRv has started recovery to near normal 

condition. Another disparity was observed with the depth of the negative anomalies. During the drought 

episodes of the summer of 2003, 2018, 2019, and 2020 NDWI had a notably higher negative anomaly 

compared to NIRv. 

 

 
Figure 21: Time series of the median NDWI and NIRv in the study area 

The linear correlation coefficient was also used to quantify the association between vegetation anomalies 

and drought indices (SPE-1, SSWI-1, and SGWI-1) (figure 22). Overall, linear correlation analysis revealed 

a generally positive but weak linear between vegetation anomalies and drought indices, indicating 

deterioration of vegetation conditions with drought intensity.  Over the entire study period, a weak linear 

interaction was observed between anomalies of drought indices and NDWI while NIRv showed a majority 

of non-linear relationship with drought anomalies. 
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Furthermore, seasonal variations of the relationship were examined, adhering to the four seasons of the year 

as classified by KNMI (Siegmund, 2022). For the entire study area, the summer season showed the strongest 

positive relation between drought indices and vegetation anomalies with a mean coefficient of 0.21 by NIRv 

and 0.4 by NDWI followed by spring. In contrast, the winter season showed the weakest linear relation with 

both NDWI and NIRv scoring a mean non-linear correlation coefficient. This suggests a strong coupling 

between vegetation and water availability dynamics during the growing seasons (May to October) compared 

to the non-growing seasons (November to April) 

 

Moreover, the difference in the correlation between the drought anomalies was also detected. NDWI had 

the highest mean correlation coefficient of 0.26 with SSWI-1 followed by SPEI-1 and then SGWI-1. A 

similar rank of linear relation was observed with NIRv correlation coefficient scores in the summer season. 

For NDWI, this rank was however different in Autumn, where a stronger linear correlation was scored with 

SSWI-1 (0.49) but followed by SGWI-1 and lastly SPEI-1. Whereas, with NIRv, SGWI-1 scored the highest 

linear correlation coefficient (0.2) during the winter season. Moreover, during the spring season, SPEI-1 

consistently scored the highest linear correlation coefficient with the two vegetation anomaly indices. 

 

 

 
Figure 22: Pearson Correlation coefficient between drought and A) NIRv and B) NDWI anomaly. Whole 

TS refers to the whole time series of the study period. 

 
Figure 23 presents the temporal development of the median vegetation conditions during various drought 

episodes. Coupling between vegetation anomalies and drought indices in summer, for example, the summer 

of 2003, 2006, and 2010 reflects on the observed positive temporal relationship (figure 22). However, 

focusing on the general time series, a complicated vegetation condition response to the general trend in the 

rising and falling of the monthly drought anomalies was observed. 

 

Temporal lagging after the wet and dry anomalies of the drought indices is mostly observed in the time 

series. Drought episodes of summer 2003, 2006, and 2016, as well as wet episodes in the summer of 2010 

and 2011, demonstrate this phenomenon. Periodic recoveries of vegetation conditions were also observed 

during the prolonged drought episodes of 2018 as well as that of the spring of 2011. The timing of vegetation 

anomaly changes relative to drought indices varied significantly, with delayed decline and recoveries of 

vegetation conditions observed in most cases. 

 

Decoupling in the vegetation and drought anomalies was another phenomenon observed in the time series. 

For instance, less intense drought episodes of the summer of 2009 and 2013 were matched by the positive 

anomalies of both vegetation condition indices. Another example was observed during the winter of 2005, 

2010, and 2011 in which wet drought anomalies were matched by negative vegetation anomalies by both 
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NIRv and NDWI. These temporal disparities in the vegetation response explain the observed weak linear 

correlation with the drought indices (figure 22). 

 

 
Figure 23: Vegetation condition development during intense drought episodes of a) 2003, 2006, b) 2011, 

and c) 2016, 2018, 2019, and 2020. 
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4.4 Drought Causal Analysis Results 

 

In this section, the results of applying Convergent Cross-Mapping (CCM) for the analysis of causations in 

drought indices are presented. A total of 30 plausible drought causation interactions were evaluated using 

drought and vegetation indices computed in objectives 2 and 3 (flowchart in Figure 24). Additionally, the 

ability of Surface Soil Moisture anomaly (SSWI-1u) to capture drought causation interactions was tested in 

section 4.4.2. SSWI-1u was computed using the same approach as SSWI-1 (in section 3.2.2) but using SSM 

instead of the originally used RZSM. The reason for using SSWI-1u is to test if RZSM and SSM dynamics 

can provide different signals in drought causation analysis compared to RZSM. 

 

 
Figure 24: Flowchart of the drought causality analysis 

 

Two main conditions were used to identify significant causation from spurious causality. First, is the 

convergence of the CCM, that is the cross-map skill (ρ) increases with the library size (Sugihara et al., 2012). 

Second, non-spurious causation was determined by having a ρ score at the maximum library size both 

significant at a 95% confidence level and higher than the linear correlation score between the time series 

pair (Ionita et al., 2022). In cases where significant cross-mapping skill was observed in both causation 

directions of the causation, the direction with the highest ρ value at the maximum library size was identified 

as a dominant causal direction. 

 

The interpretation of the causation results was based on what the index signifies at a particular scale. At a 

1-month scale, drought indices identify the on-set and off-set of drought anomalies hence the causation 

results were associated with the initiation and decline of drought episodes. Both SPEI-1 and SPEI-3 were 

used in the current analysis to account for both the occurrence and propagation of meteorological drought 

(Rutger Weijers, 2020). 

 

4.4.1 CCM Analysis Between Drought Anomalies 

The results from Figure 25 provide a comprehensive overview of the CCM results in terms of the cross-

mapping skill (ρ) and linear correlation coefficient between pairs of drought and vegetation indices. The 

median ρ among the evaluated 27 locations is presented by the solid line while the shaded area provides the 

upper and lower standard deviation boundaries. Hereafter, the median ρ is used as the representative ρ score 

in each causation direction. 
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Notably, the highest cross-mapping skill was observed between meteorological drought indices (from SPEI-

1 to SPEI-3, ρ=0.92) indicating a robust interconnection between meteorological drought initiation and 

accumulations. On the other hand, the lowest cross-mapping skill was observed in NDWI => SGWI-1 

causal link (ρ = 0.02), suggesting a minimal association between vegetation water content and groundwater 

anomalies. 

 

Based on the explained conditions of significant causality, a total of 12 significant causal interactions were 

identified, of which 3 causal interactions were bidirectional. These bidirectional causalities were identified 

in Figure 25 A, L, and O between index pairs SPEI-1 and SPEI-3, SSWI-1 and NIRv, as well as NDWI and 

NIRv respectively. The SPEI-1=>SPEI-3 causal interaction had the highest ρ than SPEI-3=>SPEI-1 

indicating a stronger causal influence by SPEI-1 than the opposite causation direction. In the interaction 

with SSWI-1, NIRv demonstrated a weaker causality influence compared to the opposite direction whereas, 

with NDWI, NIRv scored the highest ρ hence the strongest causal influence. 

 

Additionally, the analysis identified significant unidirectional causalities particularly from SPEI-1 to SSWI-

1, SPEI-3 to SSWI-1, SSWI-1 to SGWI-1, SSWI-1 to NDWI, SGWI-1 to NDWI and SGWI-1 to NIRv as 

shown on Figure 25 B, F, J, K, M, and N respectively. The opposite direction of these causal interactions 

either didn’t converge or scored a lower cross-mapping skill at a maximum library size. For instance, causal 

directions from NDWI to SSWI-1, NDWI to SGWI-1, and NIRv to SGWI-1 did not converge significantly, 

hence they were considered insignificant causal interactions. For the causation directions from SSWI-1 to 

SPEI-3 and SPEI-1 there was convergence, however, the ρ at the maximum library size was lower than their 

respective linear correlation coefficients suggesting a weak or spurious causation. 

 

On the other hand, several anomaly interactions did not demonstrate significant causalities, notably in Figure 

25 C, D, E, H and I between anomalies SPEI-1 and SGWI-1, SPEI-1 and NDWI, SPEI-1 and NIRv, SPEI-

3 and NDWI as well as between SPEI-3 and NIRv respectively. Both causation interactions between SPEI-

1 and SGWI-1, as well as SPEI-3 and SGWI-1, showed the convergence of ρ however, the ρ score at the 

maximum library size was lower than the linear correlation indicating spurious causation. 
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Figure 25: Causal analysis results between the drought and vegetation anomalies. 
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To summarize the drought propagation from the causation results above, the most influential drought 

anomaly for each drought type was determined as the one with the highest ρ score among the analyzed 

interactions. Figure 26 demonstrates the summary of drought propagation in the study area by displaying 

the direction of the dominant causal interactions. The demonstrated summary of the dominant drought 

causations indicates that drought propagation in the Witharen region is initiated by a monthly meteorological 

drought anomaly which propagates into a 3-month anomaly (SPEI-3). Despite a weak but significant causal 

influence SPEI-3 propagates to SSWI-1. Parallelly, SSWI-1 propagates to SGWI-1 and NIRv anomalies, 

with a relatively strong causation influence in both (ρ >0.8). Finally, NIRv anomalies propagate into NDWI 

anomalies. 

 

 
Figure 26: Summary of drought causalities propagation. 

4.4.2 Soil Moisture Causal Interactions. 

This sub-section presents the results of assessing the drought causal interactions between Surface Soil 

Moisture anomaly (SSWI-1u) and other drought anomalies. In general, Figure 27 indicates that CCM was 

able to capture two significant bidirectional causations between SSWI-1u and vegetation anomalies with 

SSWI-1u being the dominant causal index. Specifically, SSWI-1u=>NIRv and SSWI-1u=>NDWI scored a 

cross-mapping skill of 0.71 and 0.49, the highest cross-mapping skill in their respective causal interactions. 

Similar to the causal results of RZSM anomalies, NIRv had the strongest causal relationship with SSM 

anomalies than NDWI. Additionally, unidirectional causal relationships were detected between SSWI-1u 

and SGWI-1 as well as SPEI-3. A similar interaction type was also observed with RZSM anomalies 

suggesting a similar response shown by surface and root zone soil moisture.  

 

Divergence was however noted in the strength of the causations between SSWI-1 and SSWI-1u causation 

interactions. Particularly, vegetation and groundwater anomalies scored higher cross-mapping skills with 

SSWI-1 while SPEI-3 demonstrated the highest cross-mapping skill values with SSWI-1u. The causal 

interaction of SSWI-1u on  NDWI and NIRv, scored a ρ value of 0.49 and 0.71 while  SSWI-1 scored 0.81 

and 0.53 respectively. A similar trend was observed in interactions with SGWI-1, SSWI-1 scored ρ value of 

0.86 while SSWI-1u scored 0.75. In the case of SPEI-3 however, SSWI-1u scored 0.4, a surpassing ρ value 

of 0.33 scored by SSWI-1. This indicates that the surface soil moisture time series is more coupled with the 

surface dynamics while the root zone soil moisture time series is more coupled with subsurface hydrological 

dynamics. 
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Figure 27: Causal analysis results between the drought and vegetation anomalies. Surface Soil Moisture 

anomaly was used to compute SSWI-1 instead of Root Zone Soil Moisture time series. 
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5 DISCUSSIONS 

Understanding local drought development processes is crucial for monitoring and forecasting, thereby 

improving community resilience to drought impacts (X. Zhang et al., 2022). Studies have consistently 

identified key factors for drought propagation analysis, including delayed response, accumulated impacts, 

and the demonstrated capability of Root Zone Soil Moisture (RZSM) to infer drought propagation to 

vegetation anomalies (Dai et al., 2022; Ho et al., 2021; Wu et al., 2018). Despite the understanding of these 

key features, issues such as the limited spatially detailed and continuous RZSM datasets have restricted the 

investigations on the drought propagation to vegetation anomalies (Zhuang et al., 2020). Moreover, linear 

correlation methods are still limited in detecting causal directions (Grillakis et al., 2021). 

 

To address these two issues, this analysis discusses i) the justifications for using 1KmSSM, ii) evaluating the 

two RZSM estimation methods iii) the general trend of the local computed drought anomalies iv) the linear 

association between vegetation and drought anomalies, and v) results using Convergent Cross Mapping 

(CCM) and RZSM to infer local drought and vegetation anomalies relationships and finally vi) The relevance 

of RZSM and SSM anomalies in drought monitoring. 

5.1 Justifications for Using 1KmSSM  

The most used standard validation measure for grid soil moisture datasets is Root Mean Square Error 

(RMSE) to quantify the deviation from the in-situ soil moisture. The benchmark RMSE score of 0.04 m3/m3 

imposed by global scale soil moisture datasets such as SMAP and SMOS has also been implemented in most 

soil moisture prediction studies at a local scale (Entekhabi et al., 2010; Kerr et al., 2010). At the Twente soil 

moisture monitoring stations, the average RMSE score by 1KmSSM grid dataset among the 15 evaluated 

soil moisture monitoring stations was 0.1 m3/m3. Because of the low accuracy, only stations whose 

1KmSSM time series was able to score a linear correlation coefficient >0.6 were used for the calibration of 

RZSM estimation methods. Nevertheless, two stations out of the selected 9 stations had an RMSE above 

0.149 m3/m3 highlighting further deviation of 1KmSSM from in-situ soil moisture measurements. 

 

It is worth noting, however, that 1KmSSM is a recently published dataset, meaning a limited study on the 

bias and applicability on a local scale has been conducted. Nevertheless, despite the limitations, analysis by 

Han et al. (2023), supported the use of 1KmSSM in this study. A detailed comparison with other global 

long-term soil moisture datasets such as SMAP and ESACC106.1 revealed that 1KmSSM consistently 

outperformed other datasets in terms of residual measurements at Twente monitoring stations. Additionally, 

1KmSSM has proven effective in capturing the spatial variability of soil moisture in temperate regions and 

was also able to detect the onset and offset of soil moisture anomalies, crucial for soil moisture drought 

monitoring. 

5.2 The Most Effective Method for RZSM Estimation 

The saturation of the root zone is the key determinant of soil water availability for plant absorption (Gautam, 

2018). Accurate monitoring of the Root Zone Soil Moisture (RZSM) is therefore crucial for the prediction 

of plants' response to various water availability conditions. The development of remotely sensed Surface 

Soil Moisture measurements (SSM) has provided an opportunity to reduce costs associated with the 

installation of soil moisture monitoring stations while improving spatial coverage (Baldwin et al., 2019; 

Gautam, 2018). However, most spatial detailed datasets monitor soil moisture just up to 5cm deep (Wakigari 
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& Leconte, 2022). In this objective, the performance of two methods to infer RZSM from the SSM time 

series is compared against the in-situ measurements at Twente soil moisture monitoring stations to 

determine the most optimal method for RZSM estimation from the grid SSM dataset. 

 

The results of this objective indicated that the Exponential Low Pass Filter (ELPF) method is more suitable 

for RZSM estimations from 1KmSSM grid data in the Twente region compared to the Cumulative 

Distribution Function (CDF) matching method. ELPF consistently produced the most desirable accuracy 

scores in the seven soil moisture stations used for calibration and accuracy evaluation, (Figure 15). These 

findings are consistent with observations made by Tian et al. (2020) and X. Gao et al. (2019). For instance, 

Tian et al. (2020) found that ELPF outperformed both CDF matching and Artificial Neural Network (ANN) 

by best capturing the subsurface soil moisture time series accurately in a watershed-dominated grassland and 

scattered woodland. In this study, a less accurate SSM time series input (1KmSSM) (figure 3) is the likely 

reason for the poor performance by CDF matching whose accuracy is mostly affected by the linear coupling 

between SSM and RZSM (Z. Xu et al., 2022). 

 

Additionally, the analysis examined the generalizability of the ELPF method, finding that the calibrated 

ELPF method can be generalized and transferred to other uncalibrated stations while maintaining 

reasonable RZSM estimation results. Specifically, no significant change in the accuracy metrics score was 

observed after adopting the depth-specific median optimal T values for all stations as the generalized local-

specific T parameter on both calibrated and uncalibrated stations. Similar results were reported by Tian et 

al. (2020) by using the median T value across a homogenous climatic region. Considering also the reported 

CDF matching requirements for the calibrated method parameters at each pixel (X. Gao et al., 2017; M. Li 

et al., 2023), these findings underscore the superiority of ELPF over CDF matching and its applicability in 

the current study which requires the transferable RZSM estimation model. 

5.3 The Spatial-Temporal Pattern of the Drought Indices 

Building on the improved aspects of drought monitoring, run theory has been used for quantitative drought 

identification, monitoring, and characterization (L. Wang et al., 2020). As the means to obtain prior 

knowledge of drought events in the study area, this section discusses the results of the run theory application 

on the three drought anomalies time series spanning 2000-2020. The time series analysis of the two 

properties, drought frequency, and drought intensity provides an overview of the drought trends in the 

study area. Moreover, spatial analysis of the detected drought properties provides an understanding of the 

influencing factors of drought development. 

 

5.3.1 General Trend of Drought Episodes and Their Properties 

The drought characterization results revealed that the study area experienced a higher drought frequency 

between 2010 and 2020. The last 10 years of the study period were found to have the greatest number of 

drought episodes as well as the most intense drought episodes. Figure 18 establishes that more than 65% of 

drought episodes occurred between 2010-2020. This increase in frequency can be attributed to the episodes 

of extreme precipitation and temperature anomalies in 2011, 2016, 2018, 2019, and 2020 endured in the 

Netherlands. These findings are consistent with findings by Philip et al. (2020), who explained a climate 

change-induced increase in drought frequency from 1950 to 2018. Furthermore, the projected climate 

change trends discussed by Van Den Hurk et al. (2014)  and Christian et al. (2023) support the observed 

higher drought frequency in the past decade. 

 



 

48 

Additionally, the most intense meteorological, soil moisture, and groundwater drought episodes were 

detected in 2011, 2018, and 2019 respectively. Figure 17 shows that the drought episode in 2011 featured a 

highly negative SPEI-1 anomaly that only lasted for three months. Guardamino et al. (2021)  similarly 

identified the 2011 drought as a brief and extremely dry episode detected by the meteorological drought 

index at 1, 3, and 6-month scales only. This short-lived SPEI negative anomaly followed by rapid recovery 

to a positive anomaly explains the less severe SSWI and SGWI negative anomaly. In contrast, droughts of 

2018 and 2019 experienced prolonged episodes of SPEI negative anomalies that propagated to severe SSWI 

and SGWI negative anomalies. This observation is supported by the reported climatic records of extreme 

temperature and evapotranspiration rates during the summer of 2018 intensified the propagation of 

precipitation deficiency to groundwater and soil moisture anomalies (Philip et al., 2020). 

5.3.2 Spatial Patterns of the Drought Occurrence and Development 

The analysis of drought indices and the influencing factors indicated that the propagation of meteorological 

drought to groundwater anomalies is mostly influenced by the aquifer depth. SGWI time series in areas with 

shallow aquifers showed more variability compared to locations with deeper aquifers. Also, areas with a 

shallow aquifer experienced the greatest number of groundwater drought episodes which were rather shorter 

suggesting a quick feedback interaction between unsaturated and saturated zones. Moreover, a higher 

positive correlation between SPEI and SGWI was observed in locations with a shallow aquifer compared 

to the deeper ones suggesting a strong link. Similar observations were made by Brauer et al. (2018) in the 

Hupsel Brook catchment in which more coupled vadose and saturated zone water dynamics were observed 

in shallow aquifers suggesting the restoration of the evapotranspiration impacts in these areas by capillarity 

action from the water table as well as quick groundwater recharge. 

 

However, the current analysis detected no significant association between SWI correlations with both SPEI 

and SGWI or the intensity of SSWI drought and groundwater depth. This observation contradicts the 

findings above which associated depth with the interaction between saturated and unsaturated water 

dynamics. Moreover, it also contradicts the conclusion that the capillarity movement of groundwater from 

the shallow water table to the root zone is significant, especially during soil moisture drought episodes (Mu 

et al., 2021). Additionally, soil texture and land cover properties influence soil water-holding capacity and 

topsoil permeability respectively. However, in this study, limitations associated with accurately assigning 

land cover classes to 1Km-pixel and a uniform sand texture across the study area couldn’t explain the 

variation in drought correlations. 

5.4 Vegetation Condition Anomalies Under Drought Conditions 

Vegetation is the critical component of terrestrial ecosystems, forming a natural link for the water-carbon-

energy exchange between the atmosphere and soil. By influencing surface albedo and through processes 

such as photosynthesis and evapotranspiration, vegetation influences water and energy circulation (Chi et 

al., 2020; Kong et al., 2020). Therefore, understanding the dynamics of vegetation conditions in various 

water availability conditions is crucial for effective water resources and ecosystem health management. In 

this sub-section, the time series of two vegetation condition indices were analyzed to reflect on the dynamics 

of the distinct vegetation properties during drought conditions.  

 

The linear correlation analysis indicated an overall weak linear association was consistent between NDWI 

and all three drought indices (SPEI-1, SSWI-1, and SGWI-1), whereas NIRv exhibited a similar relationship 

with soil moisture anomalies. Consistently, both vegetation anomalies showcased the strongest linear 

correlation with soil moisture anomalies followed by precipitation and then groundwater anomalies. 
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Moderate correlations were observed during the spring and summer seasons, which are the periods of active 

vegetation growth and the strongest linear link to drought anomalies.  

 

Furthermore, time series analysis revealed a less intuitive interpretation of the association between drought 

and vegetation anomalies. A periodic coupling for instance during most of the summer periods indicated a 

seasonal linear response to soil moisture anomalies. However, issues in the time series such as the delayed 

vegetation responses, and quick recoveries, together with or followed by recurrent negative vegetation 

anomalies, were also observed during the drought periods of 2003, 2006, 2009, and 2018. Moreover, the 

median drought and vegetation anomalies time series indicated a decoupling between the drought and 

vegetation anomalies during the summer drought of 2005. These temporal attributes contribute to the weak 

linear relationship between vegetation and drought anomalies, highlighting the complexity of drought-

vegetation interactions. 

 

The general weak linear link between vegetation and water anomalies is not a novel finding in this study. 

Studies have highlighted various factors that can account for the asynchronous dynamics of drought and 

vegetation anomalies. Kong et al. (2020) highlighted the impacts of the vegetation self-regulatory system 

both during and after a particular drought episode leading to a cumulative and delayed response to water 

scarcity anomalies. Studies on the vegetation response to water scarcity in humid and temperate climatic 

zones have indicated a range of time scales required to obtain a peak linear relationship between drought 

and vegetation anomalies, varied across vegetation types, ranging from 1 to 11 months (Kong et al., 2020; 

Weng et al., 2023; Zhao et al., 2020).  

 

Additionally, the energy-limited and water-limited soil regimes have been reported to determine the duality 

of vegetation-to-drought interaction especially in humid temperate areas. (Van Hateren et al., 2021) 

explained that below the critical soil moisture content, the system is said to be in a water-limited state and 

vegetation will respond to the changes in moisture content. However, above that, an increase in incoming 

solar radiation will lead to an increase in vegetation productivity and enhanced evapotranspiration and not 

soil moisture content. This duality explains the decoupling between vegetation and drought anomalies 

during the winter season when the system can be said to be energy-limited and coupled during the summer 

and spring seasons when the system is water-limited. 

5.5 Drought Causality Relationships 

In line with the expectations of this study, results have indicated a general increase in drought frequency and 

intensity in the study area in the last decade of the study period. Furthermore, the linear association analysis 

between drought and vegetation anomalies in the proceeding subsections highlighted the complexity of 

drought propagation analysis in the Witharen region. Seasonal variability, delayed responses, and periodic 

recovery of vegetation indices complicated the assessment of the nature of the drought interactions. 

Furthermore, a moderate linear relationship between drought anomalies was not enough to indicate the 

direction of interactions. In this sub-section, the results of applying a non-linear model (CCM) to detect 

drought causation interactions as well as causation directions of the causal influences are discussed in detail. 

 

Despite the assessment complexities identified by the linear association of drought anomalies, CCM analysis 

successfully captured significant causal relationships that reflect the prior understanding of the local 

hydrological system. Specifically, the strongest causation interaction following SPEI-1=>SPEI-3 was from 

SSWI-1 to SGWI-1. This reflects the characteristic shallow aquifer in the study area, with groundwater depth 

ranging between 0.7 and 3 m, a strong relationship between RZSM dynamics at 0.4 m depth and 
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groundwater time series is expected. This also explains the significant causal impact of SGWI-1 on 

vegetation anomalies despite the area being dominated by croplands, shrubs, and grasslands that are 

expected to have shallow roots. Groundwater buffering influence on the propagation of meteorological 

drought to vegetation anomalies aligns with the findings by Fawen et al. (2023) in which a Cross Wavelet 

Transform model was used to identify drought response.  

 

Moreover, CCM analysis also revealed that soil moisture anomaly is the link for the meteorological drought 

propagation to other types of drought anomalies. The summary of the highest cross-mapping skill scores 

for each anomaly indicated general drought propagation in the study area begins with accumulated monthly 

precipitation anomalies, leading to soil moisture anomalies, from which both groundwater and vegetation 

anomalies are initiated. This supports the argument that the combination of precipitation deficiency and 

high evaporative demand is the typical initiator of drought events (Wilhite et al., 1985). High temperatures, 

strong winds, and low humidity coinciding with prolonged periods of precipitation deficit, result in enhanced 

impacts of drought anomalies on soil moisture, groundwater, and vegetation anomalies. A similar pattern 

was observed in the Netherlands, where the 2018 summer precipitation anomaly propagated into soil 

moisture and groundwater drought in the subsequent winter (Philip et al., 2020; Rutger Weijers, 2020).  

 

In addition to the general drought causality propagation, the following discussion explores other drought 

and vegetation anomaly causality relationships, considering the expected physical relationship and the 

literature arguments. 

 

a. Soil Moisture and Plants 
This study revealed a consistent causal interaction between root zone soil moisture anomalies and both 

vegetation water content and vegetation productivity anomalies. A significant bidirectional interaction was 

detected between SSWI-1 and NIRv, while with NDWI a unidirectional interaction was prominent. A 

consistent relationship between root zone soil moisture anomalies and vegetation conditions echoes findings 

by Rigden et al. (2020). Similarly, Buitink et al. (2020) in the Twente region, Netherlands, showed that both 

vegetation water depth and aboveground biomass have a strong but non-linear relationship with soil 

moisture critical values.  

 

In both interactions, CCM indicated the soil moisture anomalies to vegetation anomalies as the most 

dominant causal directions suggesting the dependency of vegetation conditions on the root zone soil water 

potential. Moreover, a weak but significant causal influence of NIRv on SSWI-1 suggests a feedback 

response of the aboveground biomass to the temporal evolution of root zone soil moisture anomalies. 

Processes such as rainfall interceptions, stem flow, and throughfalls by the local ecosystem may account for 

the vegetation influence on the spatiotemporal distribution of soil moisture content (C. Wang et al., 2019).  

 

b. Soil Moisture and Precipitation 
In this study, a consistent unidirectional causal interaction was observed between meteorological and soil 

moisture anomalies, with both 1-month and 3-month precipitation anomalies exerting a significant causal 

influence on monthly soil moisture anomalies. Conversely, no significant causal impact was observed from 

SSWI-1 to either SPEI-1 or SPEI-3. This absence of causal influence of soil moisture anomaly on 

meteorological drought aligns with the observation by Van Der Velde et al. (2021),  who noted that both 

the atmospheric moisture content and temperature of the study area are the product of dry and cold winds 

blowing from the land mass and moist and warm winds blowing westward from the sea. This suggests that, 

in a study area, although meteorological drought can propagate to soil moisture anomalies, the desiccation 
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level of the local soil moisture does not have a significant influence on the dynamics of the local 

meteorological forcings. 

 

c. Plants and Precipitation 
CCM analysis did not find a consistent significant causal relationship between vegetation indices and 

meteorological drought. Both SPEI-1 and SPEI-3 to NDWI CCM results showed a unidirectional 

insignificant convergence suggesting a spurious causation interaction. On the other hand, no convergence 

was observed with both SPEI-1 and SPEI-3 causation interactions with NIRv. These findings contradict 

the vegetation’s bidirectional feedback relationship with temperature and precipitation dynamics involving 

processes such as changes in latent heat flux, albedo, and surface roughness (Jiang et al., 2020; Kong et al., 

2020; W. Zhang et al., 2023). 

 

The dynamic nature of vegetation response to precipitation anomalies could explain the lack of significant 

convergence. Van Hateren et al. (2021) explained vegetation responses to precipitation anomalies are 

significantly weakened during energy-limited regimes in temperate and humid areas. A decline in 

photosynthesis during the energy-limited regimes in humid and temperate regions is likely to render the 

vegetation conditions irresponsive to the precipitation anomalies.  

 

Additionally, shallow groundwater levels and drainage canals (Figure 28) in the study area are likely to 

weaken the impacts of precipitation anomalies on the vegetation conditions during the summer season. 

Verdonschot & Piet (2017) discussed how the ‘Room for River’ project improved soil water retention during 

the dry season. However, drainage canals are well distributed in the study area posing a challenge in the 

comparison of their impact on the coupling of drought indices at a 1 Km resolution. These findings suggest 

that despite a significant positive seasonal coupling between meteorological drought and vegetation 

anomalies (figure 22), at a monthly scale and 1 km resolution, vegetation anomalies do not exhibit a causal 

interaction with meteorological drought anomalies.  
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Figure 28: Average groundwater depth for the Witharen monitoring network) 

 

d. Plants and GW 
CCM results also revealed that both NDWI and NIRv time series can cross-map SGWI-1 at a significant 

convergence indicating significant groundwater causal impacts on vegetation conditions. This is consistent 

with the study area's shallow aquifer properties. Higher cross-map skill was scored by the SGWI-1=>NIRv 

than SGWI-1=>NDWI causation direction suggesting a stronger response by NIRv to groundwater 

anomalies compared to NDWI. In both interactions, the causation direction was, however, unidirectional 

suggesting that although groundwater influences vegetation condition, at a 1 Km and monthly scaled 

analysis, no vegetation to groundwater anomaly causations was detected.  

 

These findings align with the interpretation of the study area properties by the Advies Commissie Schade 

Grondwater (ACSG) in the Netherlands. According to ACSG (2023), groundwater storage influences 

vegetation conditions through capillarity water movement to the soil’s root zone, especially in periods of 

dry precipitation anomalies. This buffering impact is much more pronounced in shallow aquifers (Rutger 

Weijers, 2020), for instance, the Witharen region.  
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Moreover, the interaction can be bidirectional considering how the evapotranspiration and interception by 

vegetation influence groundwater levels and distribution (Q. Zhang et al., 2022). However, the lack of 

significant convergence in both NDWI and NIRv to SGWI-1 CCM causal analysis in the current analysis 

suggests the presence of other dominant factors influencing the groundwater dynamics. 

 

e. Precipitation and GW 
Groundwater drought is typically thought to develop from precipitation anomalies through soil moisture 

drought but with a delayed and complicated response (Leelaruban et al., 2017; Petersen-Perlman et al., 2022). 

In the current study, a medium to high linear correlation was observed between meteorological drought 

anomalies and SGWI-1. However, no consistent significant causation was detected by CCM causal analysis. 

Despite the convergence, the cross-mapping skill at a maximum library size was lower than the linear 

correlation suggesting a spurious causation. Nevertheless, SPEI-3=>SGWI-1 had a higher cross-mapping 

skill at the maximum library size compared to SPEI-1=>SGWI-1 suggesting increased impacts with 

prolonged precipitation anomaly.  

 

Despite the shallow aquifer, the commercial groundwater exploration activities in Vitens groundwater 

extraction activities in Witharen might be the primary influencing factor for SGWI-1 anomaly hence weak 

causation by SPEI. At a certain rate, groundwater extraction can induce groundwater depression leading to 

deep groundwater flow. For instance, during the drought period of 2018, water production from this area 

was reported to increase by 40% to accommodate demands leading to the inflated risk of salinization (Van 

Wijnen & Schotting, 2019). Similarly, linear coupling between SGWI-1 and SPEI-1 was higher in shallow 

wells, away from the extraction area than in deeper wells which are close to the extraction zone (section 4.2). 

However, the impact of groundwater extraction on the decoupling of SPEI and SGWI in the Witharen 

region remains to be tested and quantified.  

 

f. NIRv and NDWI 
The CCM analysis in this study found a moderate linear correlation and a consistent bi-direction significant 

causation between NDWI and NIRv indicating a feedback-like mechanism. NIRv=>NDWI causation 

direction scored the highest cross-map skill compared to the opposite causation direction. Similarly, with 

causal analysis involving SSWI-1 and SGWI-1 anomalies, vegetation productivity had shown a stronger 

causal response than vegetation water content. Buitink et al. (2020) indicated similar results when comparing 

the response of the optical vegetation productivity and vegetation water content to the soil moisture drought 

using daily time series datasets. Buitink’s analysis conducted in Overijssel revealed that at the beginning of 

the soil moisture drought, vegetation water content was increasing while NIRv kept up with the soil moisture 

anomalies. Furthermore, vegetation water content took a longer time to recover compared to vegetation 

productivity. 

 

Vegetation expresses a complicated response mechanism to drought stress that can be simplified into a 

simple model that includes processes such as stomata closure and shading leaves that preserve water but 

impact productivity (Farooq et al., 2009). The mechanism is even more complicated considering the stages 

of the response and variation among species (Farooq et al., 2009; Yang et al., 2021). The data-driven CCM 

causal analysis results in this study indicated that vegetation productivity experiences a stronger causal 

interaction with drought anomalies compared to vegetation water content suggesting a stronger link between 

drought and vegetation productivity, whereas vegetation regulatory influences can be linked to the weakens 

the vegetation water content response to drought anomalies. 
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5.6 The Relevance of RZSM and SSM Anomalies for Detecting Drought Causalities. 

In line with the hypothesis that RZSM anomaly has the most causal influence on the vegetation anomaly 

than SSM anomaly, in this analysis, the implications of both SSM and RZSM in capturing various drought 

relations in the study area are evaluated. Depth distribution of plants' roots of most crops (Fan et al., 2016; 

Foxx et al., 1984) suggests that RZSM can be associated the most with the water content available for plant 

growth (Grillakis et al., 2021). On the other hand, sensible and latent heat flux at the surface level has been 

more associated with the moisture dynamics on the soil surface than on the root zone (Qing et al., 2023; 

Taylor et al., 2012). The relevance of the two-time series in the detected drought interactions is analyzed in 

this sub-section. 

 

Similarity in the detected relationships was observed with drought association analysis using either SSM or 

RZSM anomalies. A consistent similarity in the correlation score signs with other drought anomalies 

highlighted the similarity in linear relationships. Moreover, CCM results found that both SSM and RZSM 

anomalies had a unidirectional causal interaction with both groundwater and precipitation anomalies while 

with NIRv a bidirectional causal interaction was prominent. This suggests the uniformity in SSM and RZSM 

causal interactions with other anomalies. 

 

However, the variation in relations was observed with the magnitude of the correlation and cross-mapping 

skills. SSM anomalies demonstrated a stronger association with SPEI-3, whereas RZSM showed more 

coupling with groundwater and vegetation anomalies. These findings align with the observations that SSM 

has been on the surface is more sensitive to precipitation and evapotranspiration processes compared to 

RZSM which is more related to sub-surface activities such as infiltration, capillarity of groundwater, and the 

soil water absorption by plants’ roots. 

 

Furthermore, a stronger association with SGWI-1 reflects on the proximity in the sub-surface environment, 

where the root zone soil moisture (typically at 40cm depth) influences the dynamic of groundwater level 

(average range 0.7 to 3 m in the study area). On the other hand, a stronger coupling between SPEI-3 and 

SSM than with RZSM anomalies was expected as both precipitation and evapotranspiration impact the 

earth’s surface before developing into sub-surface dynamics through processes such as capillarity and 

infiltration. 

 
In light of these findings, it is evident that both SSM and RZSM play integral roles in the detection of 

drought causalities, each reflecting different aspects of the soil moisture continuum and its interaction with 

other drought variables.  
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6 LIMITATIONS OF THE RESEARCH 

This study was able to assess the causality interactions between drought and vegetation condition anomalies. 

By analyzing the predictability of the causal anomaly based on the signals on the time series of the affected 

anomaly significant causal interactions were detected. Although most of the detected causations aligned with 

the general knowledge of the study area, it is crucial to highlight that, the detected causal interactions are 

purely data-driven. A comprehensive analysis of the underlying physical process will be crucial to support 

these findings. Additionally, this study didn’t account for the seasonality and the long-term trend of the 

causal interactions.  

 

This study is fundamentally dependent on the availability of both in-situ measurements and accurate remote 

sensing estimates of drought-related variables. To replicate this study in a different geographical context, 

there are specific data requirements. Firstly, at least three years’ worth of in-situ measurements of RZSM 

for the calibration of both the CDF matching and ELPF methods, as outlined by X. Gao et al. (2017). 

Secondly, a comprehensive and continuous groundwater monitoring network is required, robust enough to 

generate at least 100-time series match-ups with other drought variables. The data size was identified by 

Kurths & Herzel (1987) and Smith (1988) as the minimum data requirement to establish causation using 

CCM. 

 

Moreover, this study has endured various sources of uncertainty that may limit the application of the 

highlighted findings. Der Kiureghian & Ditlevsen (2008) classified uncertainty into two main classes intrinsic 

randomness and systematic errors. Intrinsic randomness, also called aleatoric uncertainty, is inherited from 

the dataset while systematic also called epistemic uncertainty can be reduced as it arises from a lack of 

enough knowledge about the system or model uncertainty. In this section, some of the main sources of 

uncertainty observed in this study are presented as well as the potential alternatives with less emphasis on 

classification. 

6.1 Spatial Scaling 

The main source of systematic uncertainties in this study arose from the low-resolution spatial continuous 

datasets used for the monitoring of the drought indices. Using course resolution datasets, the retrieved time 

series of soil moisture drought, and vegetation anomalies provided only the generalized compounding 

overview of the variables of interest that can be misleading in some areas within the 1 Km surface grid.  

 

Furthermore, the heterogeneity of the spatially governing factors at the grid scale compounds the 

uncertainties of the generalized physical parameter (Lee et al., 2017). For instance, 1KmSSM time series 

retrievals from stations surrounded by highly mixed land cover within a 1km grid scale demonstrated a 

relatively high mean residual distance. For example, ITC_SM01 containing two Dinkel River tributaries 

together with grasslands and a tarmac road scored an RMSE of 0.14 m3/m3, similar observations were noted 

with ITC_SM05 and 14. This limitation is hence more relevant to the replication of the method in areas 

with a high degree of land cover heterogeneity within a 1 km grid scale. 

 

Moreover, the coupling between in-situ measurements of groundwater and grid values of soil moisture and 

optical indices aggregates the scaling dilemma. The in-situ time series presents the temporal records of the 

parameter of interest at a specific point in space whereas, the grid datasets provide a grid-scale generalized 
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overview time series. Consequently, this spatial discrepancy may impact the coupling between the time 

series. Likely, the uncertainty in the spatial representation can be propagated to the causal analysis hence 

impacting the detected causation results. 

 

The most viable alternatives would involve the use of in-situ measurements of the drought parameters. 

However, this solution is constrained by the limited availability of in-situ measurements as well as the uneven 

distribution of the available monitoring stations. Another solution will be the use of high spatial resolution 

raster datasets such as X. Li (2023) and Shorachi et al. (2022), however, the temporal coverage limits the 

application of such datasets in drought monitoring. A well-documented option involves upscaling or 

downscaling using spatially regressed models (Cai et al., 2022; Crow et al., 2012; Tu, 2019; Van Der Velde 

et al., 2021; Zhuang et al., 2021). However, Lee et al., (2017) discussed the inherent uncertainty from 

determinant variables which compounds with the increase of target resolution. 

6.2 Temporal Dynamics 

Temporal attributes of the datasets also introduced uncertainties, impacting various phases of the research. 

The tradeoff between spatial resolution and temporal coverage of the analysis justified the data choices. 

However, the computation of drought indices requires the use of a long time series for a more objective 

interpretation of the anomalies, preferably 30 years (AghaKouchak, Farahmand, et al., 2015; Su et al., 2017). 

Data choices in this study limited the analysis to 20 years meant that potential errors in the presentation of 

climatological mean conditions could be expected. Similarly, the monthly temporal scale risks the possibility 

of generalizing important drought information such as the duration, response time, and cumulative effects 

of drought.  

 

The issues caused by the temporal coverage of the input datasets are likely to be aggravated with the CCM 

analysis. Although Ombadi et al. (2020) argued that CCM can establish significant convergence between 

hydrometeorological variables using at least 100 days long daily time series, various studies have suggested 

a different minimum data length requirement to establish convergence (Kurths & Herzel, 1987; Smith, 

1988). Additionally, Bonotto et al. (2022) found that the strength and significance of CCM convergence 

between groundwater and streamflow were significantly decreased by the use of monthly time series 

compared to the results of using daily time series. Moreover, Sugihara et al. (2012) argued that the more 

enriching time series increases the probability of reconstructing the manifolds and finding the true close 

neighbors. Therefore, the causal analysis using the 20-year, monthly datasets may influence the significance 

of the convergence, and strength of the cross-map skill hence the direction of drought causation may also 

be impacted. 

6.3 Other Sources of Uncertainty 

Other sources of uncertainty were introduced by the methods of choice.  

• First, both the ELPF and CDF matching method utilizes the coupling between surface and 

subsurface moisture dynamics to infer RZSM from SSM. Rendering the RZSM estimation is 

vulnerable to natural or human-induced decoupling as well as changes in the complexity of  the 

SSM-RZSM (AghaKouchak, Feldman, et al., 2015; Rutger Weijers, 2020).  

• Second, drought indices particularly SGWI and SSWI anomalies were both computed at a monthly 

scale to infer drought episodes in the time series. However, Guardamino et al. (2021) have indicated 

the application of  the multiscaled monthly anomalies to provide more details in drought monitoring 
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and detecting the most propagated drought events. W. Zhang et al. (2023) indicated how various 

scales of  drought indices impact the coupling which can be translated into the causal interactions. 

• Additionally, SPEI, SSWI, and SGWI were used for the monitoring of  meteorological, soil 

moisture, and groundwater drought respectively. However, drought impacts a range of  variables 

that are not limited to precipitation, root zone soil moisture, and groundwater only allowing 

different approaches to drought quantification. 

• Moreover, CCM assumes a deterministic system to detect significant causality.  Ombadi et al. (2020) 

highlighted the susceptibility of  CCM to noises and stochastic interactions, suggesting its 

superiority in less chaotic time series. In this study, considering issues with the accuracy of  the input 

datasets, the uncertainty estimation of  the CCM results remains the decisive task for the future.  

• Furthermore, this study is also vulnerable to errors associated with the optical vegetation indices 

used in the computation of  vegetation anomalies. Both Zeng et al. (2022) and B. C. Gao (1996) 

highlighted the potential unquantified impacts of  soil water absorption, clouds, and snow cover on 

the NDWI time series furthermore NIRv time series also contains NDVI signals which were also 

used for the creation of  1KmSSM suggesting the unquantified impacts on the causal signals with 

SSWI-1 time series.  

 

Additionally, it is worth noting that in-situ Twente soil moisture measurements used as the objective measure 

of the RZSM estimation accuracy, are themselves subject to uncertainty. The impacts of the land cover and 

local drainage differences associated with the measurement setup of the soil moisture stations at the edge 

of the agricultural fields as addressed during field campaigns of 2016 affect the long-term objectivity of the 

measurements. Furthermore, general issues such as probe calibration inconsistency and the varied impacts 

of the soil depth and root distribution have been discussed to impact the objective comparability with in-

situ soil moisture measurements (M. Li et al., 2023; Tian & Zhang, 2023; Van Der Velde et al., 2022).  

 

In general, the discussed findings of this study underscored the potential of detecting drought-causal 

interactions in a local catchment. Emphasis on the use of the non-linear Convergent Cross-Mapping (CCM) 

method and the applicability of both surface and root zone soil moisture anomalies to capture various 

dimensions of the process. The potential to retrieve RZSM time series from grid SSM datasets was also 

evaluated as well as the relevance of using both SSM and RZSM in the drought propagation analysis. Despite 

the physically explainable results, a conservative approach to the findings should be preferred considering 

the discussed limitations. 
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7 CONCLUSION AND RECOMMENDATIONS. 

7.1 Conclusion 

This study has shed light on the potential of unraveling the general interaction of drought anomalies through 

the detection of causal relationships between drought indices and vegetation condition anomalies within the 

local context, for this case the Witharen groundwater monitoring network. Initially, the study underscored 

the complications associated with the interpretation of the linear correlation analysis of drought interactions, 

emphasizing the need for a non-linear drought analysis to understand interactions among drought and 

vegetation anomalies in the study area. 

 

The key finding of this study is the demonstrated ability to detect reasonable causal relationships between 

drought anomalies and vegetation conditions. The detected relationships reflected the general knowledge of 

the physical and hydrological processes of the study area despite the highlighted complexities of linear 

correlation interpretations. A notable weak influence of precipitation can mostly be attributed to commercial 

groundwater extractions and water management activities.  

 

Additionally, this study successfully calibrated a localized transferable method that can infer Root Zone Soil 

Moisture (RZSM) time series using grid Surface Soil Moisture (SSM) with reasonable accuracy. However, 

less accurate results were observed in pixels with less precise grid SSM estimates. Moreover, the application 

of RZSM in the analysis of soil moisture drought interaction demonstrated superiority in detecting causal 

impacts on vegetation and groundwater anomalies, whereas, for meteorological drought propagation, SSM 

demonstrated more superiority. 

 

The highlighted findings of this study can be used to enhance the understanding of the general drought 

interactions in the Witharen region, consequently improving insights into drought forecasting and 

preparation. Knowledge of the most influential process for local water resources and vegetation conditions 

will help agricultural and drought authorities plan for rational drought mitigation and adaptation plans. For 

instance, in the Witharen region, soil moisture anomaly was at the center of the propagation of other drought 

anomalies from the meteorological anomaly.  

 

Moreover, the approach used in this study can be replicated in other regions where the analysis of drought 

interactions with vegetation anomalies will be required, especially in areas where linear correlation analysis 

failed to provide conclusive results of the drought associations or where the knowledge for causal direction 

is of more importance than just linear association. This approach can also be beneficial for studies that 

require RZSM time series but are limited due to non-uniform soil moisture monitoring stations. In such 

cases, the study can serve as a blueprint for the research design. However, issues such as the availability of 

the in-situ measurements of soil moisture and groundwater, temporal coverage as well as chaotic time series 

may limit both the calibration of the two described RZSM estimation methods and the CCM ability to infer 

causation of drought types. 

 

To sum up, this study not only contributes to the understanding of the interaction between drought types 

but also proposes an effective methodology for future research in the field of drought monitoring. The 

findings of this study have shown that nonlinear analysis and the use of multiple drought indices can provide 

a better understanding of drought dynamics and their effects on vegetation conditions. This research, 

therefore, holds significant implications for drought forecasting, preparation, and management strategies. 
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7.2 Recommendations 

Building from the limitations of this study, any future research on the subject could address the following 

issues to strengthen drought causation analysis. 

I. Utilizing a more precise surface soil moisture dataset could ensure a more reliable estimate of  

soil moisture anomalies. Areas with a high network of  soil moisture monitoring stations will be 

ideal for this considering most of  the publicly available global grid soil moisture datasets have 

a very coarse spatial resolution. 

II. Utilize a finer spatial resolution analysis that could strengthen the causal results by reducing 

uncertainties introduced by a coarse resolution dataset. Similarly, to achieve this a long-term 

record of  a network of  soil moisture monitoring stations would be ideal.  

III. For RZSM estimation, use a less coupling-dependent method to reduce the impacts of  surface-

to-root zone soil moisture decoupling on the resultant time series. For instance, machine 

learning models such as Random Forest regression have demonstrated a promising capacity to 

estimate RZSM time series (Carranza et al., 2021). 

IV. Assessing the robustness of  the detected causalities by testing the impacts of  temporal 

resolution on the detected causal interactions. Using datasets utilized in this study, one approach 

could focus on soil moisture, groundwater, and precipitation anomalies which are available daily 

from 2006 to 2020.  

V. Validation of  the detected causal interactions using physically informed models. For instance, 

MODFLOW and GSFLOW have been implemented to model the impacts of  precipitation, 

soil moisture, and vegetation on groundwater levels (Das et al., 2023; Martínez-De La Torre & 

Miguez-Macho, 2019). 

VI. Performance comparison: The drought causation results from Convergent Cross-Mapping 

(CCM) used in this study could be compared against results from other less deterministic 

drought causation methods such as machine learning, wavelet transform, probabilistic, and 

piecewise correlation approaches (Chi et al., 2020; Q. Li et al., 2019; Y. Xu et al., 2021). 

VII. A sensitivity analysis of  the causality approach to factors such as groundwater depth, land cover 

properties, and climate scenarios can be tested by replicating the approach in various locations 

with varied properties.  

VIII. Utilize methods such as CDF matching to first undertake bias treatment on the grid SSM 

dataset at a local level to improve soil moisture monitoring (L. Wang & Chen, 2014). 
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8 ETHICAL CONSIDERATIONS 

This study assesses the causal relationship between drought and vegetation anomalies in Overijssel province, 

Netherlands. The study did not generate, use, or collect personal information. The datasets utilized in this 

study are publicly available. Published in-situ and grid soil moisture measurements were properly cited and 

referenced in the reference list. 

Furthermore, for open science, the Data Management Plan (DMP) is provided to highlight the details of 

the storage and sharing of the datasets used in this study. 
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10 APPENDIX A 

10.1 Data Management Plan (DMP) 

10.1.1 Research Data Collection 

 

Table S1: RDM considerations, best practices, and planned strategies. 

 
1. NAME OF 

DATA FILE 

2. SOURCE (PRIMARY 

OR SECONDARY 

DATA) 

3. IF SECONDARY, 

WHO IS THE 

OWNER? 

4. 

RESTRICTIONS 

AND LICENSE 

5. DATA FORM 6. DATA 

FORMAT 

7. CONTAINS 

PERSONAL DATA 

(Yes/No) 

Global 

Surface Soil 

Moisture 

(1KmSSM) 

Secondary data 

Earth Engine Data 

Catalog 

(Han et al., 2023) No license 

available 

Imagery  .tiff No 

ECMWF 

Reanalysis v5 

(ERA5) 

Secondary data 

Earth Engine 

Data Catalog 

European 

Centre for 

Medium-Range 

Weather 

Forecasts 

(ECMWF) 

License 

available 

here. 

Imagery GRIB No 

Netherlands 

Soil Map 

Secondary data 

Netherlands Data 

Portal 

(Schröder et al., 

2021) 

License 

available 

here. 

Vector .shp No 

Actuell 

Hoogetebesta 

nd Nederland 

(AHN3) 

Secondary data 

Earth Engine Data 

Catalog 

Actueel 

Hoogtebestand 

Nederland 

No license 

available 

Lidar 

Imagery  

.tiff No 

MOD09GA 

version 6.1 

Secondary data 

Earth Engine Data 

Catalog 

United States 

Geological 

Survey (USGS) 

No license 

available 

Satellite 

Imagery 

.tiff No 

Twente Soil 

Moisture  

Secondary data 

Source 

(Van Der Velde 

et al., 2022) 

Creative 

Commons, 

CC BY 4.0 

license 

Spreadsheet .csv No 

Netherlands 

Meteorological 

data 

Secondary data 

Source 

The Koninklijk 

Nederlands 

Meteorologish 

Instituut 

(KNMI) 

Creative 

Commons, 

CC BY 4.0 

license 

Spreadsheet .csv No 

Groundwater 

measurements 

Secondary data 

Source 

Dinoloket Creative 

Commons, 

CC BY 4.0 

license 

Spreadsheet .csv No 

 

https://code.earthengine.google.com/?asset=users/qianrswaterr/GlobalSSM1km0509
https://code.earthengine.google.com/?asset=users/qianrswaterr/GlobalSSM1km0509
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
https://data.overheid.nl/dataset/27137-bro---bodemkaart-van-nederland-1-50-000#panel-description
https://data.overheid.nl/dataset/27137-bro---bodemkaart-van-nederland-1-50-000#panel-description
https://data.overheid.nl/dataset/27137-bro---bodemkaart-van-nederland-1-50-000
https://developers.google.com/earth-engine/datasets/catalog/AHN_AHN2_05M_INT
https://developers.google.com/earth-engine/datasets/catalog/AHN_AHN2_05M_INT
https://www.ahn.nl/
https://www.ahn.nl/
https://www.ahn.nl/
https://lpdaac.usgs.gov/products/mod09gav061/
https://lpdaac.usgs.gov/products/mod09gav061/
https://phys-techsciences.datastations.nl/dataset.xhtml?persistentId=doi:10.17026/dans-xr2-m6d8
https://dataplatform.knmi.nl/dataset/etmaalgegevensknmistations-1
https://www.dinoloket.nl/ondergrondgegevens
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10.1.2 Organizing and Documenting Research Data 

 

Table 6: RDM considerations, best practices, and planned strategies. 

Name of  main folder(s):  Msc_Thesis_Data_2024/06/24 

Name of  secondary and 

tertiary folders (if  

applicable): 

Secondary: Objective_1, Objective_2, Objective_3 and Objective_4 

Version control strategy: Raw Data: "Objective_n_RawData_YYYYMMDD" 

Processed Data: " Objective_n_ProcessedData" 

Analysis Script: " Objective_n_AnalysisScript" 

Metadata standards used:  

Readme file contents: 

 

 

 
 

10.1.3 Storage and Sharing of Research Data  

 

Table 7: RDM considerations, best practices, and planned strategies. 

Data Storage 

locations  

 

Back-up 

location and 

frequency 

 

Strategy to prevent 

unauthorized access 

to data during 

research 

Strategy for 

pseudonymization 

or anonymization of  

data (if  applicable) 

 

Master files On my laptop’s 

local drive. 

 

This ensured 

convenience 

during analysis. 

Google Drive. 

 

 

 

Access was regulated 

through strong 

passwords and 

fingerprints 

 

Copy of  the data My external 

Drive. For easy 

access. 

My external 

Drive 

Access was regulated 

through strong 

passwords and 

fingerprints 
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Figure S9: Data Storage and Organization  
 

10.1.4 Research Data Long-Term Storage for Reuse 

 

Table 8: RDM considerations, best practices, and planned strategies. 

Names of  data sets selected for 

long-term storage. 

Groundwater_Datasets 

RZSM_estimates 

Long-term storage option 

selected and time for data 

preservation: 

Long-term 

Preferable file formats used or to 

be used for long-term storage. 

Preferred Format: Tiff, CSV (Comma-Separated Values) 

Example: Thesis_objective_1_sm_2011-2020.CSV 

Thesis_objective_3_NDWI_January_2020.CSV 

Long-term data access 

(public/restricted) and why: 

Public Access: I strongly believe in open science. By sharing 

my data with everyone, I hope to speed up the study and 

deepen our understanding of  drought dynamics. This allows 

many different researchers to check, verify, and build on my 

work. This not only makes sure my work is accurate and can 

be repeated, but also helps science to move forward including 

the implementation of  the recommendations derived from 

my research. 
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10.2 Other Figures 

The capacity of ERA5 to reproduce KNMI-measured precipitation anomalies was assessed by comparing 

SPI-1 computed using both ERA5 and KNMI stations. Figure S1 illustrates that SPI computed with ERA5 

effectively reproduced the time series of the SPI index computed from KNMI precipitation measurements. 

With RMSE below 0.5 and correlation score between 0.82 and 0.86, SPI computed using ERA5 for the 

period between 2000-2020 exhibited both similarity and close linear relation with to SPI computed using 

KNMI precipitation measurements. 

 

 
Figure S1: KNMI vs ERA5 Anomalies for KNMI stations a) Twente, b) Hupsel, and c) Heino 

meteorological stations. 

 
Figure S2: Groundwater level time series of the B22C0675 monitoring well showing outlier in the time 

series. 
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Figure S3: Temporal pattern of SPEI-1, SSWI-1, SGWI-1 for monitoring wells A) B22C0107, B) 

B22C0086, C) B22C0131 and D) B22C0089. 

 

 
Figure S4: Temporal pattern of median NDWI of the Witharen showing extreme values in the time series. 
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Figure S5: A scatterplot of the median NDWI and NIRv showing deviation of the monitoring well 

B22C0136’s NDWI from the linear relationship. 

 

 
Figure S6: A snapshot of the Top10NL land cover properties around the B22C0136 monitoring well. 
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Figure S6: Performance of the two CDF techniques i.e., CDF applied directly to the RZSMin-situ (CDF 

Direct) and the one which was applied separately on each depth. 

 

 
Figure S7: Performance of the two CDF techniques i.e., CDF applied directly to the RZSMin-situ (CDF 

Direct) and the one which was applied separately on each depth. 
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Figure S8: Snapshot of the detailed land cover terrain of the Witharen region. Source Top10NL 

(WMS:https://service.pdok.nl/brt/top10nl/wms/v1_0). 

 

 


