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Abstract

This thesis describes how data from an Environmental Digital Twin of Cyprus (GAEA)

can be turned into an insightful data story. By using an explorative method typical in

data journalism, a subset of geospatial data was selected for study. These data were

preprocessed via Python and used in QGIS to spatially align AI-derived Tree

Classification data with the underlying soil, aspect, slope, and elevation.

By achieving alignment between multiple data layers they could each be joined to the

Tree Class data and prepared for further study. After obtaining descriptive statistics,

various tests including Logistic Regression and Chi-2 were performed in order to

identify and validate patterns in the data for the data story.

These analyses showed highly significant result across all studied correlations,

indicating that all classes of trees tended towards very distinct enviornmental

preferences. In comparing the two types of pines prevalent on Cyprus: Brutia Pine

(Pinus brutia) and Black Pine (Pinus nigra), the data story emphasizes their stark

differences and points to potential implications for forestry.
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Chapter 1 — Introduction

These past years have seen rapid advances in the fields of Artificial Intelligence and Big

Data, and a newfound ability to analyse large swaths of it with machine learning [1], [2]. This

bridging of the gap between a large availability of data with the prospect of training AI agents to

analyse it for one’s purposes can have far reaching consequences in many domains of research.

One such domain is that of Environmental Digital Twins. These are systems and tools

based on geospatial data which aim to produce models of environments across many data

dimensions to grant insight into the workings of the environment in question. Since the

modeling of any complex system requires accurate input, and the modeling of a real

environment requires a large amount of real data about that environment, AI methods may be

used in the classification and analysis of environmental big data [1], [2].

Remote Sensing of the Earth’s surface, especially by means of satellites, has been a

prolific source of environmental big data. The modern analysis thereof, especially by means of

machine learning, accurate modeling, and the layering of data dimensions, has lead to the

creation of Geosptatial Tools which may be described as EDTs. GAEA, a tool developed by Jamil

et al. which aims to be an EDT of Cyprus, is one of the earliest examples of such a tool [2], and is

the impetus behind this thesis. Since an EDT can provide many different dimensions of

geospatial data, there are likely latent insights in GAEA’s particular aggregation of data, should

it be novel. In consultation with the client representative working on the GAEA EDT it was

determined that GAEA’s data should be investigated, and that if interesting correlations could

be found that these should be communicated to a general audience via a data story, as a means

of combining data communication and visualisation.

In order to produce a data story based on this EDT, the capabilities of GAEA and its

peers must first be understood, and found to be novel. Further, if an interesting combination of

data can be found, an approach to narrativising the data is needed. To facilitate these tasks, the

following research questions were considered:

RQ 1. "How can GAEA be used in the making of interesting and insightful data stories

on the physical characteristics of Cyprus?”

RQ 2. "How can such data stories be feasibly identified, produced, and made suitable

for the appropriate audience?"

As such, this review shall be split in two parts. First, the potential of GAEA as an EDT

must be understood, and thereafter theory on the proper production of data stories may be

covered to facilitate communicating to a general audience.
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Chapter 2 — Background Research

2.1 Context

In keeping with the research questions, the contents of this review are informed by the

twin needs of understanding the fields in which GAEA is situated and the tools available therein,

as well as finding out how GAEA may be used in the making of interesting and insightful data

stories on the physical characteristics of Cyprus.

In order to produce a Data Story based on GAEA and other geospatial tools, its

capabilities and those of its peers must first be understood. With an understanding of what

kinds of data and tools are out there, and what dimensions of data these tools and GAEA offer,

we may get a picture of what we can work with in producing narratives from these data and with

these tools, and finally how we may identify these data stories, and present them to an interested

audience in a compelling way.

When considering GAEA’s position in the field of geospatial tools and environmental

digital twins, comparisons may be made by considering the type of data and methods of analysis

used, the area covered, the environmental services offered, as well as the ability to generate data

visualizations. Particular interest must be paid to challenges faced in this field, so that

roadblocks may be avoided and gaps in current knowledge may be found.

In looking to produce a good data story, it is important to to consider the state of the art

in techniques for data visualization and data storytelling. We need theory to structure the search

for potential stories, and to later make judgements about what approaches and elements are

desirable, and which are not. Further, examples produced with typical modern tools can give

some inspiration for what is possible, and an overview of available data can support novelty.

2.2 GAEA & other Enviornmental Digital Twins

Digital Twins need to accurately represent what they are modeling, and so their scope is

often limited. As GAEA aims to be a digital twin of the whole island of Cyprus, its services cover

the entire breadth of the island at some 9,000 km2, and aims to do so at a granular resolution.

GAEA’s services cover the categories of Land Use Monitoring, Geohazards, Proximity to

locations, Climate Monitoring, and Geomorphological Characteristics. Data from various

sources is combined to produce these services, including from the Land registry of Cyprus,

weather stations, EU soil data, and satellite imagery up to a resolution of 50 centimeters [2].
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This high resolution remote sensing data may be used with machine learning to perform tasks

such as the counting of the number of trees in a given area, and these types of output may be

used in internal models to make predictions, such as the risk for wildfires. An overview of all the

available dimensions is given in figure 1 [2]. The breadth of geospatial data dimensions covered

by GAEA, together with the high resolution of critical data lends credence to the claim that

GAEA constitutes an environmental digital twin

Figure 1: GAEA’s services / geospatial data dimensions — via Jamil et al. [2]

The combination of the kind of geospatial data available in Geographic Information

Systems (GIS) with machine learning to produce models of risk has earlier been applied by

Palaiologou et al. to simulate wildfires and produce risk assessments thereon [3]. Further, tools

such as Earth Map as presented by Morales et al. can show this kind of output, or past burn

evidence data, as a map overlaying selected regions across the globe [4]. By combining risk

assessments with clear to read visulizations on maps a user of a geospatial tool may inform

themselves about risks they care to avoid, and a researcher or producer of such visualizations

may leverage this method to inform those who might be affected.

Both GAEA’s and Palaiologou et al.’s wildfire risk assessment tools offer georisk

information based on machine learning models, but differ in intended mode of presentation.
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Instead of aiming to produce a national registry, resulting in a static map, GAEA offers a

web-based dashboard service for user accessibility. This approach to geospatial data

presentation is not only seen in Earth Map [4], but more closely in Zhang et al.’s “City

appearance environment management system”, which aims to make geospatial data readily and

clearly available to support the governance of Changchun [5]. There is a congruence in the

method by which the user interacts with the tool and the type of output produced between

Zhang et al.’s dashboard tool and GAEA’s own web-application. GAEA does not however offer

the type of map-overlay layer as seen in these other tools [4], [5], while it does possess the

necessary type of data to visualize dimensions such as wildfire risk in this manner [2], [3], which

points to a potential opportunity for data visualizations to be produced based on these outputs.

All these tools have in common that in order to process data and arrive at any

visualizations, they must work with GIS tools. Yang et al. contend that Geospatial big data, such

as remote sensingis challenging to work with, especially for conventional GIS systems [6]. They

argue this is to a great extent caused by the sheer amount of data, and the high resolution of the

data, which besides the difficulties in processing also gets in the way of AI training. Verma et al.

see these challenges also, and offer an “integrated” tool for managing these data in the context of

machine learning projects [7].

And yet conventional GIS tools are varied and essential tools for processing remote

sensing data. Macarringue et al. provide an overview of the various approaches to land

use/change data and remote sensing generally, and compare the functionality of different GIS

options for these uses [1]. From their tabular comparison especially it may be noted that among

free, open source GIS tools capable of using and manipulating remote sensing data, QGIS stands

out for the combination of its features, usability, and possible integration with languages such as

Pyton.

Besides the types of data and how they are processed the granularity is also of interest.

Whilst Morales et al. with Earth Map [4] make an impressive set of open data covering the globe

available easily to users, and visualize this data well on map layers, much of the data available is

not of great resolution. Ignatius et al. in their highly detailed simulation of the climate of

Singapore and how it is affected by buildings and energy infrastructure show that given a high

enough resolution of data and a sophisticated model, useful‌information may be provided to

experts [8]. This implies a gap between the local and global scale which GAEA’s data fills, even

as it also models aspects of buildings. GAEA’s 50cm resolution image data combined with its ML

models might prove to show a gap in interesting data which might interest both experts as well

as laypeople.
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2.3 Data Visualization and Story Techniques

The field of journalism has been one of the most prolific producers of data stories in

recent years, as publications move from print to digital storytelling. Weber et al. provide a study

based on structured interviews with journalists engaged with this form of storytelling with data

to derive insights on approach and elements [9]. A sizable analysis by Segel and Heer identifies

many of the same relevant features, and provides an extensive list of specific techniques as

compared with the context in which they are most typically used [10].

One principle bifurcation in method lies in where to begin. To start with a story, and to

then find data to support that story, or to start with a dataset and to find notable patterns in that

set which then lead to a potential story [9]. The former approach allows one to have a good grasp

of the intended narrative ahead of time, and to already identify any stakeholders to which this

story might be relevant. The alternative, exploratory approach however is more typical for

truth-finding, relevant to both research and journalism. As our starting point is a collection of

geospatial data and geo-analysis, the exploratory approach detailed by interviewees in Weber et

al.’s study may be more suitable to producing data stories from EDTs.

Commentary from these studies imply that data suitable for narrativization must reveal

some inherently interesting pattern, and bring some novel insights to whom it is presented.

Further, though many means of executing data visualisations and stories are covered, consistent

emphasis is put on the need for aesthetic appeal, which is corroborated both by near unanimous

agreement among Weber et al.’s interviewee’s [9] as well as in the cases examined by Segel and

Heer [10].

2.4 Literature Review Conclusion

The purpose of this review has been to lay a foundation of understanding of GAEA’s data

and systems, as well as how data should be approached in producing an effective data story. By

seeking to understand GAEA in its peer context, the challenges of working with big data sets in

training AI models and producing client-facing tools were especially highlighted. As GAEA’s

client cannot easily be used in producing data stories, a GIS tool should be utilized on extracted

data layers to produce the visual foundation for a data story, utilizing the results of AI models

where data accuracy is well validated. Furthermore, the data aggregates found in this review

allow for novelty testing, as exported data layer may be compared for differences.

By combining these insights and this knowledge to data storytelling with an exploratory

methodology, a data story may be produced by extracting GAEA’s data as layers into a GIS, and
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applying the type of visualizations appropriate to those data. Whilst applying the exploratory

method to GAEA’s data one must consider patterns that result from these data, the novelty of

the data, and the aesthetic potential afforded by the dimensions one is working with.

Big geospatial data has the potential to grant crucial insights into our environment, and

EDTs may play a large role in accurately representing our world to us. At present however, it is

hard to work with the tools that produce them, and those that exist cannot derive from

themselves those data and narratives most pertinent to an average user. That this review seeks

to aid in the manual production of this value is demonstrative of the present limitations of the

field. From what point these tools can even be considered an EDT has no clear answer in the

literature, a taxonomy of features and data quality requirements might bring more objectivity to

this determination.

Likewise, though data storytelling has exploded as a field, few bridges exist between its

approach and EDTs, a gap which this review has hoped to begin to address. The scope of this

review ultimately centered around one EDT, and found that literature on the ‘How?’ questions

directly was sparse. As the literature on data stories and the results of GIS use both show,

practitioners of these tools and methods are currently leading the way. Until theory catches up

to practice, what makes a data story interesting or insightful is part art, part science.

2.5 State of the Art

2.5.1 State of the Art: Data Visualization and Story Examples

Firstly, the client provided an example data story by Eftychiou under internship at

CYENS, utilizing data dimensions now present in GAEA [11]: Natura 2000 areas * Land Use

Change. By means of this map based visualization as seen in Figures 2, 3 and an accompanying

textual narrative, the argument that recent construction work is occurring very nearby Natura

2000 areas can be made clear. An effective and commonly used technique with visualizations

made on geospatial data (via GIS tools) employwed here is the introduction of subsequent

layers. By first clarifying where Natura 2000 areas are present, and only then as the reader

scrolls further progressing to showing LUC as a layer on top (whilst fading harsh borders for

visual clarity), the added layer is automatically going to be considered in relation to the one

previous. The argument is made visually and implicitly in support of the explicit textual

argument that follows.
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Figure 2: Map of Natura 2000 areas in Cyprus — via Eftychiou [11]

Figure 3: Map of Land Use Change near Natura 2000 areas in Cyprus — via Eftychiou [11]
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Castro-Salazar et al. utilized Earthmap to produce the data visualization in Figure 4

[4][12], showing in a few panels a number of climate and vegetation trends affecting lake Chad,

together with a model’s interpretation of where adjustments might be most effective. This story

is notable for demonstrating how an argument can be visually laid out by adding and removing

map layers combined with graphs that track a variable across time. A correlation is quickly and

effectively implied. The inclusion of the last panel is puzzling, as no pattern appears discernable.

Figure 4: Lake Chad surface water restoration and temp — via Castro-Salazar et al. [12]
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Chapter 3 — Methods and Techniques

3.1 Adaptating the CreaTe Design Process

Mader and Eggink provide a design process used extensively in the Creative Technology

programme [13]. An adapted version of this process is used throughout this project, and for the

structure of this document. The method calls for starting with a design question, here RQ 1, and

progresses through four stages to ultimately produce a technological artefact. In this case the

product is a Data Story, most concepts inherited from this method apply. The greatest point of

deviation is in moving user-stakeholder requirements to specification, as we are also applying

the data-exploration method called for by Weber et al. [9].

3.1.1 Ideation: Divergence -> Convergence

Starting from our research questions, GAEA’s data dimensions were considered for

potential interesting patterns, novelty of these data and these patterns, and on the aethetic

potential of any visualisations that might result. Further, practical constraints regarding the data

such as resolution were considered. This was carried out in biweekly consultation with the client

representative, a domain expert on the GAEA tool and data visualization.

From the outset, the aim was to identify a handful of candidate stories, and to then pick a

main candidate from these. In order to converge in this manner, many data combinations were

first tried, and initially promising categories of stories were considered.

3.1.2 Specification

In the specification phase, requirements will be defined to in consultation with the client

representative, to clarify what elements of the central idea are crucial, and which are simply nice

properties to enable the project to run smoothly. This phase is adjusted from its typical

implementation within the CreaTe method as the end-product, the data story, shall deliberately

not be fully envisioned in keeping with the explorative method, where the data story only comes

out of the data after they have been thoroughly studied.

3.1.3 Realisation

The realisation of the data story, which shall be rendered also in this chapter, requires a

lengthy much data processing and analysis to arrive at. This is the results phase, and the
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corresponding chapter shall also render account of the process by which the data story is

ultimately created.
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Chapter 4 — Ideation

4.1 Divergence: Considering GAEA’s Data

We come armed with three positive qualities to look for: (1) interesting patterns, (2)

novelty, (3) aesthetic potential. It is important to note that the only objective elements in these is

the mere presence of correlations, the absence of these in existing work, and what is technically

possible to render visually. “What is interesting about a pattern?”, ”What is new information to

an imagined reader?”, “What is beautiful?”: these are all very subjective questions, which can

only be approximated in any objective sense by finding other subjects to discuss with and

noticing patterns of answers. In this ideation process such feedback was obtained from the client

representative, but subjective judgements nonetheless had to be made about which data

dimensions to consider in depth, and which not to pursue. This approach is ultimately in line

with the Divergence part of the CreaTe design method [13].

When brainstorming in Divergence, one typically does not want to limit the design space.

Limiting factors are usually applied when the concept space is largest in order to thin down on

options to continue further with. In the case of this project the number of potential

combinations from the data were so large that limiting factors were needed early in ideation.

Especially when combining multiple data dimensions, and including data sources outside

GAEA’s set, the combinations are endless. As such, the availability and quality of the data

weighed strongly, together with the feasibility of working with said data. Also, in keeping with

the need to have a designer’s eye for determining what patterns might be interesting, a good

number of environmental services could be dismissed from consideration for this project, for

being unlikely to combine in interesting ways with any other data dimension. ‘Detection of

Swimming Pools’ for instance appeared unlikely to synergize well with other data. Furthermore,

at up to 77% accuracy of detection, the data quality is not as high as most other dimensions.

4.1.1 Divergence: Interesting Data Dimensions in GAEA

While considering GAEA’s data dimensions narrative synergy was strongly considered.

For example, the prevalence of climate, geomorphological, georisk, and landcover type factors

produced many combinations with a shared theme related to climate. Data dimension

combinations which seemed to share such a theme were clustered hierarchically. For instance:

● Vegitation type * Factor

○ Vegitation type * Geomorphological Char.
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■ Vegitation type * Slope & Aspect

4.1.2 Divergence: External Data

After combinations native to GAEA were made, some data external to GAEA were

considered. Most of these external dimensions were aggregated by Earth Map [4], covering

similar dimensions as GAEA, though often at a lower resolution. A dataset of Archeo-sites

compiled by Crawford was also considered to potentially work with natura 2000 areas [14].

Ultimately, there were few interesting outside sources of data found at this stage, as the

vast majority of outside data dimensions regarding the physical characteristics of Cyprus were of

similar or worse resolution than a data dimension in GAEA, bringing neither the potential for

novely nor ease of work through higher granularity data.

4.2 Convergence: Obtaining Five Potential Data Stories

After a sizable number of potential combinations were made and discussed in

consultation with the client representative, the method calls for converging back down to a

handful of potential options. This step involved turning the most promising data combinations

into potential story concepts, and then testing these concepts against the parameters we care

about. A short description of each story concept as considered and discussed in this phase is

given below together with the data dimensions it looks to combine:

● 1. “For a given area of land, we can look at the amount and type of vegetation and find

how this relates to the soil type & depth and the geomorphological characteristics of the

land.”

○ Vegetation presence & type * Slope & Aspect & Elevation * Soil type & Depth

● 2. “For a given area of land, we can look at the amount and type of vegetation and find

how this relates to the precipitation & humidity””

○ Vegetation presence & type * Precipitation & Humidity

● 3. “For a given area of land, we can look at the amount and type of vegetation and find

how this relates to the risk of wildfires.”

○ Vegetation presence & type * Wildfire risk & burn proof

● 4. “By comparing various landcover / landuse datasets and overlaying them,

differences in their classification of the same area might be found, especially as

resolution differers greatly between datasets”

○ Various landcover type datasets
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● 5. “GAEA offers many goerisk services, which could be overlaid with natura and

archeological site clusters to determine which are most at risk.”

○ Archeo-sites * Natura 2000 areas * Georisks

Out of all categories of data combinations “Vegitation presence & type * factor” yielded

the greatest number of potential combinations. As other story options up until this stage could

be rejected by some fatal flaw it was not yet necessary to consider each in detail for all the factors

we care about. For example, one potential story hinging on a difference in solar irradiance across

the island could be rejected on the basis of insufficient difference in this factor across space. The

remaining stories were considered for a number of discussed factors, and these judgements were

then again considered in consultation.

The table below sums up the result of that process, which each of the options’s strengths

and weaknesses compared with the alternatives. As Vegetation type also covers tree types, and

as this is a novel data set, the first three similar options performed well. The version testing

principally against geomorphological characteristics outperformed because vegetation type as

compared to wildfire modeling or water factors was judged as likelier to lead to interesting and

novel stories, more space was opened up as a result of this data set than for the alternatives.

Though there is a lot of hydromorphological data available, the pattern tends to be quite

uniform. Wildfire risk is an interesting comparison, but since underbrush cannot yet be

distinguished from trees it would be hard to draw strong causal links. The fourth option would

consider different land cover datasets, and so cannot suffer from low data quality, but would

require comparatively much data manipulation and analysis, requiring more expertise with GIS

tools and data science than the scope of this project might permit. Finally, Archeo-sites did not

yield interesting combinations in this phase, as there was no discernable pattern of interest in

site distributions.

1. Geomorph 2. Hydromorph 3.Wildfire 4. Diff 5. Archeo

How interesting

is the pattern? ++ + ++ +/++ -

Is the data

combination novel? ++ + + + +

Aesthetic

potential +/++ + +/++ +/++ +
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Data Quality + + + n/a +/-

Feasibility + ++ - - +

Uses outside

data no no no yes yes

Figure 5: Convergence table

As a result of the convergence step of ideation, the principle data combination to chosen

is then “Vegetation presence & type * Slope & Aspect & Elevation * Soil type & Depth”. These

data then are obtained, analysed for interesting patterns, and supplemented as needed.
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Chapter 5 — Specification

Specification marks the start of the second half of the project, beginning with further

concept validation of the chosen potential data story through unstructured in-person discussion

with the client representative. Potential requirements were broadly covered, and the availability

of the needed data and the means of obtaining these were confirmed. It was decided in this stage

that an explorative approach would be taken, whereupon data would be fully processed and

analysed in search of patterns. A data story would then result from whatever patterns were

present in these data, an assumption previously validated as likely.

It was clear at this stage that the nature of this project required a slight deviation from

the CreaTe design method, as it was estimated that a good portion of the work would be research

oriented. Whereas this design method would usually require a clear potential target audience,

the order of operations taken instead demanded that the right audience would be found for

whatever actual patterns emerged from the research. For these reasons, specification focused on

those requirements necessary to conduct the research, in the estimation that this would allow us

to find a subset of the general population interested in the results. For these reasons, the needed

data and tools to process and analyze these data were the principle focus at this stage, and would

greatly inform the set of requirements generated.

Further, since stakeholder validation was to take place through regular meetings with the

client representative, the shared vision of how the story might take shape was deemed sufficient

at this stage not to warrant further envisioning. By not committing to any further specification

to the data story itself beyond those already discussed, it was reasoned that research could be

conducted without undue preconceptions. Only by not marking the end-point ahead of time, can

explorative research of this kind allow a data story to be truely driven by the data, as opposed to

the existing preferences of the researcher.

5.1 Tools

5.1.1 Geographic Information Systems

As noted in the review of the literature, GIS tools are extremely useful, bordering

necessary, for studying geospatial data [1]. Since QGIS offers a free opensource platform with

plentiful documentation and integration with libraries such as GDAL for the reading and

processing of geospatial data, it was quickly chosen as the preferred tool for the job. The client

representative indicated that members of his team who would aid in providing the needed data
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were familiar with ArcGIS, and it was found that these were capable of similar operations, and

that data formats likely to be used were compatible between them. Since this choice was clear, it

played no further part in specification.

5.1.2 Python

Similarly, the python programming language is available on a host of opernsource

platforms, and has a wealth of libraries frequently useful to the processing, analysing, and

visualizing of data. These data tasks likely to be encountered, such as joining tables or

performing various statistical tests, are so frequently performed with Python that these

functionalities are essentially available as boilerplate code, needing very little adjustment to

perform any needed tasks. For these reasons Python was chosen as the second main tool in

executing this project. The pandas library was selected for data manipulation and analysis, and

seaborn as well as matplotlib for visualization for these same reasons.

5.2 Data

From the findings in ideation the data dimensions required to conduct the research

necessary for this project were initially clear: “Vegetation presence & type * Slope & Aspect &

Elevation * Soil type & Depth”. Since the client indicated at this stage that “Tree Classification”

data marking the most predominant type of trees across Cyprus would be available, this specific

data was chosen for “Vegetation presence & type”. In order to obtain the correct data from the

client, it was necessary to understand how these data are typically formatted for GIS software,

which was done via online research and confirming with the client representative.

It was found that two principle methods of representing geospatial data were most

prominent and likely to be used: vector and raster data, via the “Shapefile” and “GeoTIFF”

formats respectively. Since vector representations are not bound by resolution, but may equate

and be converted to rasters, shapefiles were deemed preferable where possible. The

geomorphological characteristics of “Slope, Aspect, Elevation” are frequently rasterized in the

Digital Terrain Model (DTM) format as GeoTIFF files, so this was a viable alternative these data.

At this stage it was unclear what format the Tree Class data would come in, but

discussions with the client representative made it clear that it would consist of a grid-like

structure where each cell of the grid would be coded with the tree most common in that cell, and

that this classification was carried out by means of an AI algorithm, which had predicted labels,

and was corrected where these predictions were incorrect. Recalling that the granularity of data

is crucial to representing the underlying reality, and to analysing it successfully, as high a
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resolution as possible was desired. Early discussions indicated that a resolution of 25m
2
might

be available.

GIS systems have to project data about the earth’s surface, which is curved, onto a flat

representation on screen. To this end, geospatial data formats frequently encode a Coordinate

Reference System (CRS), ensuring proper representation of the data and allowing conversion

between multiple projections or reference systems. The World Geodetic System (WGS 84) is the

standard for QGIS, it would be preferable if all data conformed to this CRS, else conversion

operations would be necessary to properly align the data later. These data formats also

frequently include metadata alongside a CRS, which may include information such as when the

data was obtained. Though these are not crucial, the inclusion of metadata is noted in the

research as positive feature of data stories [9]. This section of properties that may come with the

data represent non-essential elements which nonetheless are helpful.

Finally, the workstation available for this research had 16GB of RAM, 1TB of available

storage, and a slow processor. The data would have to not exceed this size in either storage or in

loading tables into RAM. Some testing indicated that tables represented as .csv files should not

exceed ~20m rows * 10 columns of typical geospatial data, lest operations could not be

performed.

5.3 Functional Requirements

Requirements may be split into those about the research project on which the data story

is to be based, and the data story itself. Functional requirements pertain to the essential

requirements that allow something to function, whereas non-functional requirements describe

how something might be done: things which are nice to have but will not be missed in a

minimum viable product.

5.3.1 FR: Data & Research

● Tree Classification data

● Available in a format which can be made to work in QGIS.

○ Vector representation

○ Raster representation

○ Tables

● Not exceeding 1TB in total dataset size.
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● Not exceeding individual, unsplittable data sizes such that a computer with 16GB of

working memory cannot compute simple data operations.

○ read, join, etc.

● The data is the best consistent and contingent representation of the requested data

dimensions available at the time of research.

● The research conducted on these data shall correlate the available data dimensions in

search of notable patterns, and will seek to validate these patterns to the extent that the

researcher’s time and abilities allow.

● All conclusions resulting from this research which are presented in the resulting data

story or thesis documentation shall be a truthful representation of the researcher’s

interpretation of the data, so that these may be useful to readers.

5.3.2 FR: Data Story

● Describes the physical characteristics as captured by the selected data dimensions and

their combinations.

● Presents results of research on these patterns to readers in a text and image based format

compatible with publication on the web.

5.4 Non-Functional Requirements

5.4.1 Non-FR: Data & Research

● All other requested data dimensions

● A consistent CRS to skip alignment operations

● A consistent format within each data dimension to minimize preprocessing operations

● Lossless conversion and transfer of data where possible

● The highest resolution available not exceeding functional limits.

● Explicit or else implicit model accuracy data and/or test results.

● Availability of metadata where possible

● Research shall focus on finding patterns that are interesting, novel, or that have good

aesthetic potential in a data story.

● Research shall focus on correlations between Tree Class data and the other data

dimensions available, not on correlations between non-Tree Class data.
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● Research interpretation shall be limited to the domain knowledge of the researcher,

leaving complex potential implications to future researchers.

5.4.2 Non-FR: Data Story

● Presents results in such a way that they are clear to the average informed reader, and

potentially useful or informative to the subset of readers with a specific interest in the

data and characteristics covered.

● The visualizations chosen are easy to read and understand to those familiar with the

mode of representation.

● The patterns presented are novel

● The patterns presented could lead to future research

5.5 Client Validation

These requirements were discussed and validated with the client representative before

they were formalized, and before eventual further stakeholders could be identified. These

capture the set of considerations that were informally present from the start of the realisation

phase, and no major alterations or additions were deemed necessary in these phases. These

specifications capture the researcher’s understanding of the shared intention and vision as the

project entered the research phase of realisation.
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Chapter 6 — Realisation

In documenting a project using the CreaTe design process, the realisation chapter both

demonstrates the resulting design artefact of the project, and documents the process by which it

was produced. It seems producent to first show the Data Story in full, and to then after cover the

steps and methods used in creating it. Following the Data Story, this chapter shall therefore

continue where specification left off with the process of data acquisition, processing, research,

analysis, and the selection process of the results that would form the basis of the data story.

Finally, evaluation was conducted with respect to the requirements.

The data story is ultimately intended for publication on the web, unconstrained by the

the margins of the A4 format, the included visualizations are therefore represented slightly

smaller here than they likely will be in final publication. Figures are intended to be

self-explanatory given the context, and figure numbering is here adjusted to follow the thesis

format, included (in parentheses). References likewise are included separately after the

conclusion in future rendition.

6.1 — The Data Story

Data Story:
Cyprus lies in the ‘Mediterranean Forests, Woodlands, and Scrub’ biome, hosting a variety of

vegetation across its landscape. In this data story, we will explore how geospatial data may be

used to better understand the relations between various flora and their enviornment. Our data

shall come from the recently released ‘GAEA’ geospatial tool, developed by CYENS’s

SuPerWorld Research Group as a digital twin of Cyprus [2]. They have developed an AI model

for classifying trees from satellite images, letting us know where in the country each type of tree

is most predominant. Let us consider the spatial distribution of Figs andWalnuts for an

example:
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Figure 1 (6)

Your eyes may first be drawn to the northeast, where these trees appear to be quite

common compared to their sparse presence around the coasts. Then, you may notice the blank

void in the middle of the country. If we add an elevation map underneath we are likely to get a

clear picture of the cause of this distribution:

Figure 2 (7)
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It would appear that these trees share in common that they prefer to grow at lower

elevations. We cannot however be sure if what we are seeing holds unless we confirm by

running the stats and seeing exactly how these trees are distributed across elevation. Our data

covers 13 different classes of trees, each dot on the map representing a 45m2area where that

class of tree is judged more common than the rest. We can count all these up and distribute

them across elevation via a box plot:

Figure 3 (8)

The center of each box marks the average elevation where each tree occurs, with

whiskers and individual dots extending beyond each whisker to indicate the full range of each

tree, even where it is less common, or where there are individual outliers. Walnuts and figs

show a very similar pattern, much preferring lower elevations as compared with trees further up

the plot. We might be able to identify further patterns by grouping tree classes by their apparent

distribution across elevation:
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Figure 4 (9)

There are many ways to group these classes, but the 5th grouping here is perhaps the

most striking, as these might correspond to the area in the center of the country where other

trees are relatively rare. By looking only at this group of trees over elevation we get a clear

picture of trees common to the Paphos Forest in the Troodos Mountains: Brutia Pine, Black

Pine, Golden Oak, and Juniper.



31

Figure 5 (10)

Juniper appears to be a special case, present in two large clusters to the far west and

central heights of the mountains. To gain a deeper understanding of the patterns we are seeing

it is necessary to consider other data dimensions, such as the Slope, Aspect Facing, Soil Type,

and Soil Depth. As we zoom into our area of study we can overlay the Soil Type over the relief

map:
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Figure 6 (11)

We find Rock is the most common soil in this region, with patches of Loam and Clay

present also. By now overlaying our grouped tree data we may learn more:

Figure 7 (12)

Rocky soil, which permits little depth for water, is fine for these trees [15], though they

appear scattered also across Loam. Further, we can see that Fig clusters together with Black

Pine around the highest area of the forested mountains. Some hard edges are visible in the tree

class data. Since a patch-wise algorithm has to determine which of the tree classes is more

common than the rest, when both are present slight variations across patches can produce

these artefacts, which average out across the data. To study these relationships in more depth,

and to make confident claims about the patterns we are observing, we can turn to statistical

software to analyse further.

Firstly, we can confirm that the AI algorithm correctly assigned tree classes by checking in what

percentage of cases the initial label had to be corrected. Juniper had the lowest initial label

accuracy at a strong 98.71%, whereas Brutia and Black Pine scored 99.08% and 99.35%

respectively:
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Figures 8, 9 (13, 14)
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By referencing the confusion tables we can see which combinations caused trouble with

assignment, namely those that grow very close together in densely forested areas. Our

grouping from the elevation data shows up again, the Pines are initially relatively commonly

confused for nearby trees. By replacing these known misclassified labels with known actual

labels early on the validity of future analysis is greatly improved.

The two types of pines common to Cyprus may have a complicated relationship. In a

recent study, Petrou et al. showed that in the elevation areas Black Pine prefers, they grow

adjacent to each other in “mixed stands” [15]. Further, it was discovered that Brutia Pine

promotes biodiversity especially well in areas which were not of “bad productivity”, low soil

depth:

Figure 10 (15)

Recalling soil type, the lowest soil depth corresponds with bedrock, whereas deeper soil

depths are found in loam, especially clay loam and clay proper. Through correlating these Tree

Classes with soil, we can find that Brutia Pine is found predominantly on rocky soil, at 83.97% of

cases, and secondly in loam, at 12.64%. It shows to some extent in all soil types, confirming

older research claims that this species can adapt to any soil type present on Cyprus, as cited by

Petrou et al. [15].

Interestingly, Black Pine only grows on bedrock in 78.54% of cases, being more common in
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loam than Brutia Pine (16.91% v. 12.64%), and especially relatively common in Clay (3.27% v.

1.72%). It is relatively less common in sand (0.38% v. 0.69%), yet more common in sandy loam

(0.59% v. 0.48%). Surely then Black pine must also be more common in Clay Loam? Not so:

(0.27% v. 0.40%). This is a surprising result, the number of Black Pines is low enough in general

that their presence may be underrepresented in classification data at this resolution, or there

may be some unexplored interaction in this particular soil.

We can also consider slope and aspect with respect to our trees. There is little difference with

regard to preference for slope, Brutia averages a few degrees higher than black pine at 23.98

degrees, only beaten by the mean slope of the Cyprus Cedar and Golden Oak at ~26-27.

Aspect was considered as the nearest cardinal direction a slope faces, due north, east,

south, west. Here we find some significant patterns:
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Figure 11 (16)

The great outlier in this subset is Juniper, caused by its presence on cliffs near the

north-western shore. Differences here may seem minor, but note that Brutia Pine prefers the

west facing slope at 32.04% of all cases v. 26.84% in Black Pine. We can observe a strong

preference for south over north among all tree classes, understandable given where the sun

shines in the northern hemisphere. Random as these distributions may seem, a Chi2 test can

find out if this is the case, or if the distribution of each tree reveals an underlying preference. For
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each direction, the average preference across all classes is taken and compared with the

observed variance.

Since this test uses the total counts of each rather than percentages, it is stronger when

we have a lot of data, which we do for most trees. Out of all 52 combinations, 51 were highly

significant. Tree Classes v. Aspect Facing resulted in: (Chi2: 44577, df = 36, p < .00001),

confirming a very strong correlation. Tree Classes v. Soil Type was similarly tested:

(Chi2:710203, p < .00001, df = 96), we again find there is a very strong pattern between the type

of tree and soil of preference.

Conclusion:
By exploring these geospatial data we have gained significant insight into what

geomorphological characteristics are relevant to the flourishing of several types of trees

important to Cyprus. The pines of Cyprus especially have a relationship too complicated to

pierce from the outside, but these data and analysis may show that digital twins such as GAEA

have an important role to play in monitoring large environments. It is hoped that these results

are already of some use for purposes of forestry, or even just in growing one’s understanding

and appreciation of the many preferences of trees, or of those who plant them. In either case,

as more data becomes increasingly available at increasing resolutions, and as data of this kind

becomes available across time, the general method herein may prove vital in monitoring an

environment changing with the climate.
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6.2 — Data Aquisition

6.2.1 Initial Tree Data

Following specification, with the data requirements in hand it was possible to request the

needed data from the client. These data met all functional requirements, and were provided at

native resolution with metadata including various CRSs. Tree Class data was provided as a set of

4890 .csv tables, which each covered rectangular patches of area across Cyprus. Tree Class data

was given as two columns: ‘Predicted Label’, and ‘Actual Label’, the latter being not applicable if

the predicted label was initially correct. As was ultimately discovered, the Latitude and

Longitude columns represent the center coordinate of each patch, whereas the min/max

long/lat columns represent the bounding box where the Tree Class data of that row applies.

These were assumed to represent an area of roughly 25m
2
. The first column is an ID non-unique

across tables, and so had no further use and would have to be cut. Figure 17 gives a snippet of

this initial format:

Figure 17: example Tree Class table section (IMG0001.csv)

6.2.2 Geomorphological Data

The geomorphological data of Aspect, Slope, and Elevation was given in raster format, as

GeoTIFF packages. A raster is ultimately an image comprised of pixels, each of these data was

provided as 4 such packages, which had to be combined for further analysis. On import into
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QGIS they become represented as layers, and appear as seen in Figures 18-20:

Figure 18: Raw Aspect layers

Figure 19: Raw Slope layers (colour inverted)
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Figure 20: Raw Elevation layers (colour inverted)

From the metadata included with these packages, it was clear that each came at a

resolution of 5m
2
, with data ranging from 360 degrees for aspect, 87 degrees for slope, and up to

1934 meters for elevation, the latter being a continuous variable. If the Tree Class data could be

aligned with these layers it would permit accurate analysis, as each Tree Class cell could contain

exactly the same subset of geomorphological data.

As a consequence of the border situation in Cyprus, data accuracy to the north-eastern

end of the country appeared limited, as evident from the regular patterns in figure 18. Further,

in flat areas aspect data also showed regular patterns. Fortunately, since these correspond to

areas with no slope, this could be accounted for. Metadata indicates that all these layers are

known to represent the underlying data at extreme accuracy. The CRS and custom projection

used for these data is the same as is used in the GAEA tool, a variation on “ETRS89 / UTM zone

36N (N-E)”.

6.2.3 Soil Data

Soil type and depth were provided as vector layers in the Shapefile format. Soil type is

classified by the relative concentration of clay, silt, sand, and gravel present, and covers 9 classes

distributed across non-intersecting irregular polygons to comprise the dataset. Figure 21 shows

this classification and the extent of the data.
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Figure 21: Soil Type class map, including legend

Soil depth refers to how deep into the soil water and nutrients are available for

vegetation. Soil depth was classified into bins of 5, 17, 30, 37, 50, 62, 87, and 120cm, coded in

figure 22 from light to dark blue. These data were provided in the “WGS-84” CRS format. Both

sets of soil data originate from government surveys, and the extent is thereby limited.

Figure 22: Soil Depth class map
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6.3 Data Processing

6.3.1 Processing the Tree Class data

With all data imported, an ultimately lengthy task of processing, reconciling and aligning

the various datasets could begin. First, the tree data had to be combined into a single table,

comprising nearly 5 million rows, while culling patchID data and combining “Actual/Predicted”

Tree Class data. Initially, such as a data set is imported as a “Delimited Text Layer”, which must

be asigned a CRS to be represented as a point layer, wherein the coordinates contained within

must be assigned to some geometry. Without providing instructions on how to convert these

data into polygons, it would not be possible to produce a vector layer, which is the condition for

rasterizing such that we can ultimately compare our data.

By overlaying the initial point layer over the aspect raster as illustrated in figure 23, it

became evident that there existed a significant amount of overlap at the edges of the various

patches of data. After this layer could be converted into vector, the overlap would have to be

resolved in such a way that the integrity of the data is maintained.

Figure 23: Tree Class data as dot layer over Aspect raster

In order to vectorize the data, it was found that the bounding box coordinates had to be

converted into the Well-Known Text (WKT) format. Figure 26 depicts this conversion:
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Figure 24: Polygon encoding via WKT format

After vectorizing the Tree Class data, a sample patch was further rasterized to to observe

the resulting pattern, so that with the aid of the client these issues could be resolved. Figure 25

depicts the overlay of one such patch over the Tree Class vector layer, where it becomes clear

that it is well aligned, but overlapped. Much time was spent in this stage resolving these issues,

until the combination of a consistent method for reprojecting to a shared CRS and rasterizing



44

using the greatest overlap over each cell allowed this issue to be resolved.

Figure 25: rasterized patch over combined Tree Class vector

Next, alignment with the underlying geomorphological raster data layers was sought. In

this process, it was discovered that the Tree Class data has a resolution of roughly ~44.6-44.8m
2
,

explaining why the process was stuck. Fortunately, by creating a 45m
2
vector grid aligned with

our underlying data, the Tree Class data could be filtered into this grid, introducing but a small

margin of error, which in consulting with the client representative deemed unlikely to

significantly affect analysis. This grid layer now containing the Tree Class data was aligned, and
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since 45m is a multiple of 5m it ensures that 81 data points of underlying raster layers become

associated with that Tree Class data. Figure 26 illustrates this property:

Figure 26: perfect raster alignment at 9:1 scale

6.3.2 Aligning the Data

In order to perform meaningful correlational analysis, the area of study should be

limited to one where there is full overlap of all layers studied. Since the soil layers are of the

smallest extent, they were used as the cut-off for the Tree Data, which would itself only be

compared to the data underneath it, which was also clipped by this same process. Figures 26-29

demonstrate this process visually, which was achieved by clipping. Fortuitously, this process

culls only unwanted data, such as tree classifications in the sea, or the aforementioned

northeastern aspect data, corresponding to the urban area of Nicosia.
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Figure 27: Clipped Tree Class raster

Figure 28: Clipped Tree Class Layer (All Classes)
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Figure 29: Clipped Aspect Layer

6.4 — Data Joining

In order to ready the data for statistical analysis, the soil layers were similarly filtered

into the overlaying vector grid, and each of the five types of geodata were correlated based on

their coordinate position, and had zonal statistics performed, providing summary statistics.

These data could then all be assigned to an extensive table, such that correlative and other

statistical analysis could be performed. Aside from the zonal statistics operation in QGIS, all

these further joins were carried out via simple Python scripts utilizing Pandas. Data columns

were also rearranged, renamed, and culled as needed, as ID or coordinate data was no longer

necessary for further analysis outside QGIS. Figure 30 shows the largest of the combined data

table, including for each row of known Tree Class the soil type, soil depth, aspect facing, and for

slope, elevation, aspect, the {mean, std deviation, variance, median, min, max, range, minority,

majorit, variety}. Most analyses conducted took a subset of this table.
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Figure 30: full results tabel first rows (All_data_for_stats.csv)

6.5 — Statistical Analysis Results

Various analyses were conducted throughout the course of this project; especially

correlative analysis between Tree Class and the other five data dimensions and their zonal

statistics. This section shall cover those results which were of potential relevance to the data

story. As discussed earlier, stock standard functions for these tests were employed from the

Pandas library of Python, as the format of these data well fit dataframes.

It is to be kept in mind that a value such as the ‘Slope mean’ of an individual row

represents the average of the 81 slope instances integrated into that cell, now row of data. By

taking the average of those averages can we represent the entire data set, it is essentially

equivalent to binning the original slope data, and averaging over those bins. 2,936,160 such

rows exist in the full table.

6.5.1 Descriptive Statistics

Tree Class data was first correlated with each of the geomorphological characteristics, as

captured in the boxplots of figures 31-33. These follow the standard of a box ranging from Q1-Q3

with Q2 at the median and whiskers at 1.5*IQR, with outliers noted separately. data story figures

(8, 9) display this same data rearranged by grouping.
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Figure 31: mean Elevation by Tree Class

Figure 32: mean Slope by Tree Class
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Figure 33: mean Aspect by Tree Class

6.5.2 Aspect Facings

The 360 degrees of aspect data may be converted to Aspect Facings corresponding to the

cardinal directions by a simple formula: if (aspect >= 0 and aspect <= 45) or (aspect >= 315 and

aspect <= 360): return 'North'. Else if aspect > 45 and aspect <= 135: return 'East', etc.

This categorization creates four 4 bins of high count for aspect data of each Tree Class to

fit in, see: [Appendix.II.1, pg. 67]. This data may then be normalized into percentages for visual

representation, such as in data story figure (16), or its full version in figure 34 below.
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Figure 34: Distribution of Tree Class Across Aspect Facings (Normalized)

As detailed in the data story, Chi
2
tests were conducted to determine if the correlation

between Aspect Facings and Tree Classes observed were strongly correlated, and they were. This

test should be possible because the data consists of two categorical variables with high counts

relating them. See [Appendix.II.2, pg. 67-69] for the table of individual results.

6.5.3 Soil Type

Soil type data is also straightforwardly categorical, and can be similarly tabulated; see:

[Appendix.II.3, pg. 69-70]. Chi
2
test again yields extreme significance: (Chi

2
:710203, df = 96, p

< .00001).

6.5.4 Confusion Matrices

Via the merged Tree Class data before it was further preprocessed for QGIS, it is possible

to plot the “Predicted Label” vs the “Actual Label” in a confusion matrix as described in data

story figures (13, 14), via matplotlib using colour remapping to ensure contrast. These results

were not saved separately, as they were already available to the client.

6.5.5 Logistic Regression

If Tree Class is treated as a categorical dependent variable and Slope, Aspect, Elevation

means as continuous independent variables, the potential direction of their relationships can be
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tested and it may be estimated if these relationships are significant. Using the

statsmodels.api.Logit function, logistical regression analysis was performed on these

combinations. As figures 35, 36 indicate below, the results were highly significant. Only Bananas

v. Elevation did not render significant results. For all other combinations of Tree Class and

underlying geomorphological data the relationships plotted in figures 31-33 are quantified, as

the resulting coefficients give indication of the strength of each relationship. Misc results are

available in [Appendix II.4, pg. 70-75].

Figure 35: Logit results for Brutia Pine v. {Slope, Aspect, Elevation}_mean

Figure 36: Logit results for Black Pine v. {Slope, Aspect, Elevation}_mean
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6.6 — Data Visualization: Maps

Aside from the analyses ran outside of QGIS, the tool itself provides ample means for

visualization in the form of maps, as evident from data story figures (6, 7, 10-12, 15). By

excluding specific parts of a data set, such as specific Tree Classes, and by adjusting the opacity

of remaining data, it is possible to layer multiple datasets on top of each other in a manner that

implies correlation. This implication is powerful by itself, but becomes informative only when

matched with further analysis of the data presented.

The number of combinations and variations of these data possible to fit on a map is

endless, while the space in a story, and even a thesis, is ultimately limited. 60 maps were

exported and considered for potential inclusion as the story took shape, of which only those that

fit the emergent story best were ultimately retained. It is nonetheless possible that some of these

maps contain hints for future research, and so a subset of these are included in [Appendix I, pg.

62-66].

6.7 — Determining the Story

As results come in it became evident that there were somewhat distinct groupings of Tree

Classes present in the data set, as illustrated by data story figure (9). Though it was attempted to

head into analysis with as few preconceived notions as possible, the client representative had

mentioned that there was likely to be some interaction between the two types of pines, as the

Cyprus Department of Forests had expressed preliminary concerns that black pine could be

encroaching on the habitat of brutia pine. These two Tree Classes were both present in the most

interesting grouping, and thereby became the main focus of the data story. Since the statistical

results pertaining to these trees were significant it was possible to maintain this course in the

latter part of the realisation phase.

With further feedback from the client representative it was determined best if the data

story would be of interest both to an informed citizen looking to better understand the

environment of Cyprus, as well as potentially to policy makers, as the results available could be

relevant to preservation efforts.

6.8 — Evaluation

When a CreaTe design artefact is meant to meet specific end-user needs beyond what the

client representative can verify, user evaluations may be carried out to determine if the product

is meeting intended goals. In this case, it was determined in concert with the client
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representative that this step was of diminished relevance, and should only be carried out if an

abundance of time was available, which ended up not being the case. The nature of this project

has provided ample opportunity for the types of analysis one would carry out on survey results.

When considering if the functional and non-functional requirements outlined in the

specification phase were met, it seems evident that those requirements relating to the data and

research were. The non-functional requirements for the data story require further examination

to determine if the present story meets these needs:

● The patterns presented are novel

● The patterns presented could lead to future research

This set of Tree Class data is exceptionally new, having to the writer’s present

understanding been based in part on recent lessons learned together with S. Karatsiolis et al. in

automating annotation of landsat data [16], and having only been become available with the

specification phase of this project. This indicates that significant patterns found are likely novel,

potentially enabling future research. The remaining set of non-functional requirements are

harder to judge, as they are ultimately subjective in a way impervious to the writer:

● Presents results in such a way that they are clear to the average informed reader, and

potentially useful or informative to the subset of readers with a specific interest in the

data and characteristics covered.

● The visualizations chosen are easy to read and understand to those familiar with the

mode of representation.

It is here that a survey seeking to measure the reader’s knowledge of the topics covered

before and after reading the data story would have been helpful, together with any

persistent feedback regarding the way the data is presented. Further, had the data story

been completed earlier the present rendition could have been discussed with the client

representative, which would undoubtedly have resulted in actional feedback. The way

each person processes and presents information may be particular to them, a data story

must be iterated on if the writer deviates significantly from the expected norm.
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Chapter 7 — Discussion

7.1 — Limitations

In order to properly contextualize the results and findings presented herein it is

important to first consider any applicable limitations. In dividing this project into the needs of

data analysis and data story telling, the first half of the project focused partially on data story

telling and data selection, while much time was spent on background research not relied upon

much later on. A great amount of time was spent on enabling and performing analysis in the

latter half of the project, preventing additional feedback and validations steps on the final story.

In retrospect, ensuring a great familiarity with QGIS and a rapid formulation of data required

would have freed up a lot of research time, enabling further iteration. Though this emphasis on

the data is not without result, these results could likely have been better communicated given

this further iteration. The large size and complexity of the data also frequently resulted in

required operations taking many hours to compute, evading nearly every attempt at

optimization. By choosing to minimize loss of quality in the data in processing a great many

hours of extra computing time were necessary.

Whilst much was learnt in the conduct of this project, in order to fully match these

findings with existing knowledge on the complex interactions between the Tree Classes studied

and the terrain in which they are embedded, further domain expertise and embodied knowledge

about these ecosystems is required.

The Tree Classification data studied and correlated in this project is derived from an

algorithm still very much in development, of which the exact specifications were unknown.

Though it is clear that it assigned classifications based on whichever class of tree best fit its

understanding, and that these were properly assigned to specific sets of coordinates, since it is

required to assign something in all cases it may produce misleading classifications on a local

level when made to classify a patch of sea or a densely urban area. Further, though the known

prediction accuracy is impressive, it is not known how many false classifications remained

unspotted. By concentrating research on those species predominant in the mountainous

forested area in the center of the country, these issues were somewhat mitigated. Given the large

number of cells classified and the high resolution of the underlying data layers, if classification
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errors are somewhat uniformly distributed then by the law of large numbers the impact on the

validity of results may be minimized.

This same argument may hold for the filtration process whereby the raw Tree Class data

was matched to a regular 45m
2
grid, a minor uniform shift is likely evened out across space. This

data resolution is limiting however, as smaller patches of trees surrounded by another species

may not be spotted. Straight line border artefacting across the Tree Class data indicate that there

is some form of variance in classification logic between patches, causing some patches to see no

classification of a certain type of tree. This is surprising as the distribution surrounding these

areas would make it seem likely that some pixels would be classified with the missing tree type.

See [Appendix I, pg. 66] for examples.

The dimension of time is also still missing, as without being able to consider this dataset

as it develops over the years we cannot yet get a full picture of how the relative distribution of

each species is progressing. Likewise, since the the available resolution is presently bound by

what landsat data is available to classify, the effectiveness of classification itself is limited by the

quality of images available to classify. Finally, though this dataset hosts a great quantity of data,

which may mitigate some of the effects discussed here, the Tree Classes of Palm and Banana

especially had low sample sizes relative to the rest, and so no general claims about these data

should be taken to apply to these with the same certainty as might be ascribed elsewhere.

7.2 — Interpreting Results

Both the data story produced as well as the analysis from which it was derived may be

considered as the results of this project. Though the ultimate objective has always been to

produce this data story, the central question of how these data could lead to an interesting and

insightful data story has produced a set of results which should not be considered as only

secondary to this main goal. If the limitations discussed do not invalidate these data, both the

research findings and any insights derived from the data story may prove to be of future utility.

Firstly, the descriptive statistics derived from the combined dataset implied that there

may be significant variance in the “preferences” of each Tree Class with respect to the elevation,

slope, aspect, aspect facing, soil type, and soil depth that they grow in with respect to other Tree

Classes. Logistic regression analysis together with Chi
2
tests appear to confirm this strongly,

with exceptionally significant results showing these data correlate, showing that for each pairing

of Tree Class to any other single data class there is some firm non-random relationship waiting

for a causal explanation.
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The use of corrected labels where available, together with strong implied initial accuracy

of the provided labels, further underscores the likely scenario that these results will hold true.

The confusion matrix from this result is derived incidentally also indicates where classification is

most difficult.

By focusing on the Black and Brutia Pines in the data story, not only was the relevance of

these findings underscored, but an appearantly new pattern was found in their distinctive soil

preferences. As interpretation of the factors involved in causing these relationships was

regarded as best left to others, the data story also focused on relaying correlations, only referring

to outside research to point out a straightforward confirmation of existing knowledge.

The data story itself is a microcosm of the explorative method employed throughout this

project, aiming to be approachable to a wide range of readers, leading them through increasingly

complex results to convey the most relevant findings accurately, without too many readers

giving up part of the way.

7.3 — Implications

Given that the tests conducted hold, and that the efforts taken to mitigate any limitations

where possible were successful, there are a wide range of possible implications from this

research. Someone who lives within the area studied may now be more informed about the

conditions of their natural environment, may experiment when planting these trees with

conditions where those trees are plentifully found.

By considering what the data story relays about the relationship between the two pines, a

policy maker interested in the conservation of either species, or in the halting of its spread to

unwanted habitats, can consider the differences in conditions preferred by each tree, and note

for example the outsized preference Black Pine seems to have for clay and loam.

Even by just considering the spatial distributions of these tree classes, rare occurrences

of particular trees may be identified, and culled if deemed undesirable. By looking at common

trees such as Vine, any encroachment of agricultural flora on protected areas may be studied.

When projects such as this are able to validate correlations in data incorporated into an

Environmental Digital Twin such as GAEA, the purpose of these tools as representations of the

underlying physical reality is reinforced. The methods and processes described within this paper

can be used as general guidelines for those who seek to undertake similar projects.

It is prudent to be conservative when estimating the direct implications of this type of

work, as almost any consequence one can think of will soon imply future work.
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7.4 — FutureWork

It would be very interesting to further improve the data story by processing more

feedback and running surveys. By continuing to iterate data stories on these data more of these

patterns can be clearly communicated to those who would be interested in knowing about them.

An effective transfer of information that is engaging and non-discouraging, with a low attrition

rate this data story and others like it can be made more informative by simply reaching more

readers, and retaining those that begin reading better.

Different data stories could be produced from the same data, focusing on different

combinations of trees for different audiences. The great numbers of Olive and Vine for example

indicate that a group of readers who cultivate these is likely out there, and could be well served

by a focused story which better incorporates existing literature on optimizing growth conditions

for these trees.

Specific significant results, such as the strong specific preference for particular Aspect

Facings provide claims which can be tested in future research, and which may support existing

hypotheses not considered within the scope of this work.

If new, higher resolution landsat images become available, and these are further

classified, many of the limitations discussed will be mitigated. By enabling the dimension of

time those parties interested in the preservation and management of the trees of Cyprus will

suddenly have an extremely useful set of data. Any future confirmation of the claims and data

laid out in this project also increases the value of the existing data.

The datasets produced in this work may serve as a jumping off point for further research.

Tree Class data could be correlated with multiple other data dimensions, whereupon unique

combinations of these data could be found and studied on the ground.

This project focused on analysing correlations between Tree Classes and other data, but

correlations between these other data classes can also be studied, and their correlation may

reveal more about the influence of each of these data dimensions on the overal picture.

[Appendix II.5, pg. 76] contains a correlation matrix which was not pursued further in the scope

of this project, but which may be a starting point to this end.
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Chapter 8 — Conclusion

This thesis has sought to demonstrate how the data from an Environmental Digital Twin

can be selected, processed, and analysed in order to produce data stories relevant to readers. An

explorative technique to data story creation was employed, and the many data dimensions

available via GAEA were considered based on factors resulting from review. The essential tools

for this, consisting of QGIS and Python were identified, and requirements for both the story and

the data from which it would be derived were generated. By exchanging ideas with the client

representative early and frequently a vision could be established toward which research could be

conducted. By carefully processing data and using common statistical techniques, various

significant results came out of this research, which could form the foundation for the data story.

By leading the reader through a miniature version of this process, it is hoped that the

conclusions presented in the final data story will stick with them, as they did for the researcher.

By showing a data story can be derived in this way from the first country-wide

Environmental Digital Twin, it is demonstrated that so long as the data are accurate and made

readily available in a digestible format, many insights can be gained by simply exploring the

data. This combination of bountiful data and an effective means of digesting it shows imminent

potential for lowering the barriers of entry, such that an interested citizen or policy maker can

more much easily become informed about the true state of their environment.
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Appendixes

Appendix I —Misc Maps

Appendix I.1: Cyprus Cedar Extent
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Appendix I.2: Carob Extent

Appendix I.3: Juniper Extent
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Appendix I.4: Leafy-Fruitbearing Extent

Appendix I.5: Olive Extent
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Appendix I.6: Golden Oak Extent

Appendix I.7: Vine Extent
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Appendix I.8: Black Pine over Clay Loam Rock Sandy Loam

Appendix I.9: Black Pine over Clay Loam Rock Sandy Loam Gravely sand outlier
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Appendix II — Raw Stats

Appendix.II.1: Tree Class v. Aspect Facing crosstab

Tree_Class Total_Count Direction
Observed_Co
unt

Expected_Co
unt Chi2_Statistic p_value

Walnuts 155039 North 30633 13109.9834 8171.512695 0

Walnuts 155039 East 48449 44750.7907 209.6950469 1.60E-47

Walnuts 155039 South 44789 54148.17107 1299.933702 1.17E-284

Walnuts 155039 West 28414 42181.42384 3475.863845 0

Vine 408860 North 60878 34572.89981 8206.773698 0

Vine 408860 East 146681 118014.2305 4590.300624 0

Vine 408860 South 141577 142796.4656 8.004470036
0.004666201

716

Vine 408860 West 58927 111238.4429 20306.43485 0
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Figs 181780 North 38376 15371.18262 11553.69323 0

Figs 181780 East 66902 52469.3705 2597.653491 0

Figs 181780 South 46051 63487.60336 3972.030341 0

Figs 181780 West 25096 49456.84135 10012.72309 0

Golden Oak 143199 North 26645 12108.80174 6304.772637 0

Golden Oak 143199 East 43307 41333.26761 65.26782112 6.54E-16

Golden Oak 143199 South 43398 50012.98995 694.9778925 3.70E-153

Golden Oak 143199 West 29754 38960.11786 1622.394399 0

Leaved Tree -
Fruit Bearing 220660 North 37630 18658.84672 7327.858398 0

Leaved Tree -
Fruit Bearing 220660 East 77682 63691.7774 2036.706795 0

Leaved Tree -
Fruit Bearing 220660 South 73309 77066.64406 142.352883 8.14E-33

Leaved Tree -
Fruit Bearing 220660 West 31671 60034.9137 11073.09515 0

Palm 9313 North 1824 787.5004058 477.5468605 7.30E-106

Palm 9313 East 2119 2688.124367 90.49995558 1.85E-21

Palm 9313 South 2518 3252.613324 135.128483 3.09E-31

Palm 9313 West 2709 2533.785694 8.056839078
0.004533220

341

Olive 937221 North 152652 79250.71597 26512.20734 0

Olive 937221 East 346858 270521.4869 14073.95616 0

Olive 937221 South 312085 327329.2722 551.5303093 5.85E-122

Olive 937221 West 122120 254989.4945 58604.41235 0

Juniper 64363 North 8095 5442.487772 580.3717928 3.11E-128

Juniper 64363 East 16863 18577.87487 114.368826 1.08E-26

Juniper 64363 South 27723 22479.10999 897.6023691 3.26E-197

Juniper 64363 West 11180 17511.2261 1797.233957 0

Pine (Pinus
brutia) 398680 North 68105 33712.08652 13317.49457 0

Pine (Pinus
brutia) 398680 East 118567 115075.8534 73.74422856 8.89E-18

Pine (Pinus
brutia) 398680 South 130796 139241.048 399.2600033 7.98E-89

Pine (Pinus
brutia) 398680 West 80629 108468.7727 5372.51152 0
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Carob 371932 North 65206 31450.29539 13548.41031 0

Carob 371932 East 111656 107355.2531 119.6397287 7.59E-28

Carob 371932 South 121245 129899.1709 450.1123853 6.82E-100

Carob 371932 West 71794 101191.4508 6509.236259 0

Bananas 3109 North 507 262.8947451 87.61179249 7.96E-21

Bananas 3109 East 847 897.3884525 1.943569524
0.163281484

4

Bananas 3109 South 1003 1085.834299 4.827865331
0.028003282

41

Bananas 3109 West 738 845.8648903 9.674621496
0.001868307

56

Pine (Pinus
nigra) 41264 North 7958 3489.253382 2024.534179 0

Pine (Pinus
nigra) 41264 East 13567 11910.52979 155.606422 1.03E-35

Pine (Pinus
nigra) 41264 South 12081 14411.66501 301.7176055 1.39E-67

Pine (Pinus
nigra) 41264 West 7556 11226.68666 928.2251121 7.18E-204

Cyprus Cedar 16900 North 3784 1429.051526 1256.755483 2.82E-275

Cyprus Cedar 16900 East 6016 4878.052379 175.0894153 5.72E-40

Cyprus Cedar 16900 South 4808 5902.412239 163.4038164 2.04E-37

Cyprus Cedar 16900 West 2289 4597.978979 971.3800735 2.99E-213

Appendix.II.2: Tree Class v. Aspect Facing Chi2 test raw results

Tree_Cla
ss Clay

Clay
loam Gravel

Gravelly
sand Loam

Loamy
sand Rock Sand

Sandy
loam

Bananas 1164 35 0 7 1352 3 409 88 37

Carob 26678 10330 25 619 105290 203 216703 6549 3506

Cyprus
Cedar 172 6 0 1 592 0 16082 3 41

Figs 59020 1589 0 52 77852 322 31906 4333 1376

Golden
Oak 1702 512 0 23 15233 14 125032 90 498

Juniper 6253 303 14 70 17854 44 35604 3383 336

Leaved
Tree -
Fruit 28322 5980 5 268 74644 226 104852 3762 2235
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Bearing

Olive 191243 27562 12 1630 350442 1772 321570 25027 14494

Palm 5474 47 0 0 2147 13 1123 204 162

Pine
(Pinus
brutia) 6876 1577 0 367 50304 39 334287 2731 1916

Pine
(Pinus
nigra) 1347 113 0 1 6963 10 32331 156 241

Vine 64526 13822 4 173 182488 234 135925 7225 3671

Walnuts 70004 1102 0 92 54092 154 21892 3490 1481

Appendix.II.3: Tree Class v. Soil Type table
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Appendix.II.4: Logit Results
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Appendix.II.5: Correlation Matrix
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Appendix II.6: Percentage distribution of Tree Class v. Soil Type


