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Abstract

This paper investigates the external and internal positivity of standard linear systems,
in which the input function is restricted to be positive. By using cone-invariant matrix
operators, we find parametric conditions on a system such that its state is contained
within a proper convex cone. Then, by use of the dual of said proper cone, we first
establish sufficient conditions for external positivity. From this result, we find con-
ditions for internal positivity based on the external positivity of an analog system.
Lastly, we investigate internal positivity independently of its external counterpart.

Keywords: LTI systems, external positivity, internal positivity, second-order cones,
polynomial cones, cone-invariant.

1 Introduction

In many fields of science, models are given by input dependent differential equations,
some of which describe and manipulate physical quantities that are positive by nature
[7, 1, 6, 4, 3, 2]. One can think of quantities such as concentrations, temperatures expressed
in Kelvin, masses, densities, volumes, areas, and population amounts.

Example 1.1 (Lotka-Volterra model). A predator-prey model [2] which describes, at time
t ≥ 0, the interaction of two populations N(t) and P (t) in a sealed ecosystem:

dN

dt
= rN(t)− aN(t)P (t), N(0) ≥ 0,

dP

dt
= bN(t)P (t)− sP (t), P (0) ≥ 0,

where r is the prey’s growth rate, s the predator’s mortality rate, a the predation efficiency,
and b the conversion efficiency of predation into offspring. □

Because of this positivity constraint in the modelization of this family of problems, one
could find useful to have a way, let it be numerical or theoretical, to verify that a proposed
model generates results that are positivity preserving during the simulation or conceptu-
alization process.

In this paper, we will constrain our investigation to a specific type of system. Namely, the
ones with continuous time-axis R≥0 and for which we can find an equivalent behaviour of
the form{

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rnx ,

y(t) = Cx(t) +Du(t),
(1.1)
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with input u ∈ Rnu , state x ∈ Rnx , output y ∈ Rny , and real matrices A,B,C,D with
dimensions nx × nx, nx × nu, ny × nx, and ny × nu respectively. Then, by defining vectors
to be positive when element-wise positive, we will investigate the external positivity [7, 5]
of said systems, which refers to the positivity of the output when provided a positive input
for t ≥ 0. Similarly, we will also take a look at the positivity of the state when provided a
positive input for t ≥ 0, which we will refer to as internal positivity [7, 5].

To do so we will rely the notion of cone invariant operators [7, 9, 11, 10], which, although
quickly noted as important by Luenberger [7, 8], has only recently gained notable attention
[7, 1, 5]. That is, provided that the input is positive for t ≥ 0, we will look for conditions
on matrices A,B,C and D such that we can find a proper convex cone [7, 9, 11, 10]
that contains the state for t ≥ 0 [7, 9]. Then, we will show that if the transpose of the
rows of matrix C are in the dual of that same cone, then external positivity is achieved
[7]. We will also show internal positivity is attained if the analog system with C = I
and D = 0 is externally positive, and, additionally, to not be constrained by this initial
condition x0 = 0, we will investigate results on internal positivity that are independent of
its external counterpart.

2 Convex cones

The goal of this section is to introduce to the reader the notion of convex cones and their
proper variant. Not only that, but we will also define the dual of said cones, as well as
investigating conditions on proper convex cones for them to be invariant under certain
matrix operators. Note that this section is mainly written as an attempt to group and
harmonize the various concepts and notions formulated in [7, 11, 10].

For the mathematical context, We will be working in real vector spaces represented as(
Rnx ,+, ·), with scalar field R and where for w, z ∈ Rnx and α ∈ R we have

w + z =

 w1 +R z1
...

wnx +R znx

 , α · z =

 α ·R z1
...

α ·R znx

 .

Furthermore, we equip those vector spaces with the 2-norm and the resulting euclidean
topology O. That is, S ⊂ Rnx is an element of O, and is thus an open subset of Rnx , if
and only if for all points z ∈ S there is a radius r > 0 such that

Br(z) =
{
w ∈ Rnx | ∥z − w∥2 < r

}
⊂ S.

Lastly, for convenience, we will sometimes denote the positive quadrant of Rnx as Rnx
≥0.

2.1 Proper convex cones

Proper convex cones will be at the center of our approach to both internal and external
positivity of standard linear systems. Thus, we start by defining convex cones.

Definition 2.1.1 (Convex cones). A set K ⊂ Rnx is said to be a convex cone if for
any elements x, z ∈ K and scalars α, β ∈ R≥0 it follows that αx+ βz ∈ K.

Naturally, there are many different types of convex cones one can construct from this
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definition. We provide a few examples and show that they indeed satisfy the definition:

Example 2.1.2 (Convex cones)

1. The set Rnx itself, as any linear combination of elements in Rnx is again an element
of Rnx , which then also includes positive linear combinations.

2. The positive span of finitely many vectors in Rnx ,

K = {α1v1 + · · ·+ αkvk | α1, . . . , αk ∈ R≥0},

where v1, . . . , vk ∈ Rnx . To show that this construct indeed satisfies Definition 2.1.1,
let us pick x, z ∈ K arbitrarily. Then, we can find coefficients β1, γ1, . . . , βk, γk ∈ R≥0

such that x = β1v1 + · · ·+ βkvk and z = γ1v1 + · · ·+ γkvk. Now, for λ, µ ∈ R≥0 we
know that λβi + µγi ∈ R≥0 for all indices i ∈ {1, . . . , k}, and, therefore, we see that

λx+ µz = (λβ1 + µγ1)v1 + · · ·+ (λβk + µγk)vk ∈ K.

3. The positive quadrant of Rnx . Indeed, for indices i, j ∈ {1, . . . , nx} we define ei ∈ Rnx

such that (ei)j = 1 for j = i and (ei)j = 0 otherwise. We then note that the positive
quadrant of Rnx is the positive span of those unit vectors.

4. The nx-dimensional ice cream cone [11], which we define as

K =
{
z ∈ Rnx

∣∣ nx−1∑
i=1

z2i ≤ z2nx
, znx ≥ 0

}
.

To show that this is indeed a convex cone, we consider the following equivalent
representation:

K̃ =
{
(z, w) ∈ Rnx−1 × R≥0

∣∣ ∥z∥2 ≤ w
}
.

Then, we arbitrarily pick (z1, w1), (z2, w2) ∈ K̃ and λ, µ ∈ R≥0. From there, we
define

y = λ(z1, w1) + µ(z2, w2) = (λz1 + µz2, λw1 + µw2),

where we can immediately see that λw1 + µw2 ∈ R≥0. Furthermore, by the triangle
inequality on the 2-norm, we also have

∥λz1 + µz2∥2 ≤ λ∥z1∥2 + µ∥z2∥2 ≤ λw1 + µw2,

and, therefore, it follows that y ∈ K̃. □

Now, for the family of systems mentioned in the introduction, our primary goal with con-
vex cones is to contain the state x produced by a positive input u. Then, we can focus on
proper convex cones.

Definition 2.1.3 (Proper convex cones). Let K ⊂ Rnx be a convex cone. If K
satisfies all of the following conditions:

1. K is a closed subset of Rnx ,

2. K is pointed, i.e. K ∩−K = {0}, and

3. K is solid, i.e. K has a non-empty interior,

then K is said to be a proper convex cone.
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The reason of this choice lies in the many advantages the conditions of Definition 2.1.3
bring. Indeed, as we will see later, computing the state will require taking the limit of
a convergent sequence whose terms all belong to a convex cone K. By making this cone
closed, we ensure that the limiting value is also an element of K. Furthermore, solidity
makes the confinement for a given system more tractable. That is, by the euclidean
topology, a solid cone has an interior that exploits locally all the dimensions of its space.

For nx ≥ 3, there are exactly two types of proper convex cones one can encounter. First, we
have the second-order case, which is defined using quadratic inequalities and hyperplane
separations.

Definition 2.1.4 (Second order cone). A proper convex cone K ⊂ Rnx is said to be
of second-order type if and only if there exist a symmetric matrix K ∈ Rnx×nx and
vector c ∈ Rnx such that

K =
{
z ∈ Rnx

∣∣ zTKz ≤ 0 , cT z ≥ 0
}
, (2.1)

which we alternatively also denote as KK,c.

An example of such construct would be the nx-dimensional ice cream cone that we’ve
investigated in Example 2.1.1. We now show that it is of second-order type and proper:

Example 2.1.5 (Second-order proper convex cone) Consider the convex cone K ⊂ Rnx

defined as

K =
{
z ∈ Rnx

∣∣ nx−1∑
i=1

z2i ≤ z2nx
, znx ≥ 0

}
. (2.2)

Then, we define the matrix Q ∈ Rnx×nx such that for indices i, j ∈ {1, . . . , nx} we have
the following:

Qi,j =


1 i = j ≤ nx − 1,

−1 i = j = nx,

0 i ̸= j.

We can immediately notice that Q is symmetric, and, furthermore, we can now rewrite our
original convex cone as

K =
{
z ∈ Rnx

∣∣ zTQz ≤ 0 , (0 . . . 0 1)z ≥ 0
}
, (2.3)

which confirms that K is a convex cone of second-order type. Now, since the inequalities
defining K in (2.3) are not strict, it follows that K is a closed subset of Rnx . To investigate
the solidity of K, we consider the point q = (0 . . . 0 1)T ∈ K. If we define the perturbation
ϵ ∈ Rnx

≥0 such that we have at least one ϵi > 0 for some index i ∈ {1, . . . , nx}, then we
observe that q + ϵ ∈ K if

(ϵ1)
2 + · · ·+ (ϵnx−1)

2 ≤ (1 + ϵnx)
2. (2.4)

Hence, no matter how much we initially perturbate the first nx − 1 entries of q, we can
take ϵnx to be large enough such that (2.4) holds. If, instead, we initially perturbate the
last entry of q, then ϵ1, . . . , ϵnx−1 can be taken to be small enough such that, again, (2.4)
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holds. Thus, for any direction along which we move away from q, we can always find a
step size small enough such that we remain within K, and, therefore, we can find a r > 0
such that the open ball of radius r centered at q is a subset of K. Because of this, q is in
the interior of K, which implies that the interior is non-empty, and, therefore, that K is
solid. Lastly, to investigate pointedness, we must take a look at the set K ∩−K, where

−K =
{
z ∈ Rnx

∣∣ zTQz ≤ 0 , (0 . . . 0 1)z ≤ 0
}
.

Then, z ∈ K ∩ −K if (0 . . . 0 1)z = 0 and zTQz ≤ 0. This indicates that znx = 0, which
implies that z21 + · · · + z2nx−1 = 0. Hence, zi = 0 for i ∈ {1, . . . , nx}, confirming that K is
pointed. □

Some might notice that verifying if a second order cone is proper can quickly become
cumbersome when relying solely on Definitions 2.1.3 and 2.1.4. Since those cones will be
slightly preferred when working on the positivity of systems, we make this whole process
simpler by using the following observation from Section 2.2 of [7].

Theorem 2.1.6 (Proper second order cones). Let KK,c ⊂ Rnx be a second-order
convex cone. Then, KK,c is proper if K has exactly nx−1 strictly positive eigenvalues,
and exactly one strictly negative eigenvalue.

Note that for the previously stated observation, [7] also makes mention of c being separat-
ing. That is,{

z ∈ Rnx | cT z = 0
}
∩
{
z ∈ Rnx

∣∣ zTKz ≤ 0
}
= {0}.

However, in our case, this condition is redundant, as we preemptively require the set KK,c

to be a convex cone.

Now, alternatively to the second-order case, there is the polynomial proper convex cone,
which is constructed by taking the positive span of finitely many vectors.

Definition 2.1.7 (Polynomial proper convex cone). A proper convex cone K ⊂ Rnx

is said to be of polynomial type if and only if there exists a matrix N ∈ Rnx×l such
that

K =
{
Nw ∈ Rnx

∣∣ w ∈ Rl
≥0

}
, (2.5)

which we alternatively also denote as KN .

The only instance of proper polynomial cone we will explicitly use during our investigation
of positivity will be the positive quadrant of Rnx . Since we’ve already shown in Example
2.1.2 that it is a convex cone, let us now prove that it is of polynomial type and proper.

Example 2.1.8 (polynomial proper convex cone) First, for indices i, j ∈ {1, . . . , nx} let
us define the unit vectors ei ∈ Rnx such that (ei)j = 1 for j = i and (ei)j = 0 otherwise.
Then, we notice that Rnx

≥0 is the positive span of those vectors. Furthermore, we can write

Rnx
≥0 =

{
z ∈ Rnx

∣∣ z ∈ Rnx
≥0

}
=
{
Iz ∈ Rnx

∣∣ z ∈ Rnx
≥0

}
, (2.6)
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and, thus, it follows that Rnx
≥0 is indeed of polynomial type. Now, we immediately observe

that Rnx
≥0 is a closed subset of Rnx . Additionally, to show that this convex cone is solid,

take q = (1 . . . 1)T ∈ Rnx
≥0. Then, we note that the open ball of radius 1/2 centered at q

is within Rnx
≥0, as any of it elements has strictly positive entries. This implies that q is in

the interior of our cone, which is then non-empty. To investigate pointedness, consider the
following equation:

α1e1 + · · ·+ αnxenx = (−α1)e1 + · · ·+ (−αnx)enx , (2.7)

where α1, . . . , αnx ∈ R≥0. By linear independence of those unit vectors, it follows that
Equation 2.7 holds only if αi = −αi = 0 for i ∈ {1, . . . , nx}. Thus, the only element of
Rnx
≥0 ∩ −Rnx

≥0, where

−Rnx
≥0 =

{
(−1)z ∈ Rnx

∣∣ z ∈ Rnx
≥0

}
,

is the zero vector. □

2.2 Cone invariance

The notion of cone-invariance is one that involves a cone and some matrix operator. It is
a form of set invariance which wants elements of the cone to still be within the cone after
the said matrix operator is applied.

Definition 2.2.1 (Cone-invariance). Let A ∈ Rnx×nx and K ⊂ Rnx be a convex
cone. Then K is said to be A-invariant if for any element z ∈ K we have that
Az ∈ K.

We can then immediately extend this definition to a form that will be the cornerstone of
our approach to positivity.

Definition 2.2.2 (Exponential cone-invariance). Let A ∈ Rnx×nx and K ⊂ Rnx be
a convex cone. Then K is said to be exponentially A-invariant if for any element
z ∈ K and t ≥ 0 we have that eAtz ∈ K.

Before we formulate results that enable to verify that Definition 2.2.2 is satisfied for a
proper cone K ⊂ Rnx and a matrix A ∈ Rnx×nx , we introduce the concept of the dual of
a convex cone.

Definition 2.2.3 (Dual of a cone). Let K ⊂ Rnx be a convex cone. Then the set

K∗ =
{
y ∈ Rnx

∣∣ yT z ≥ 0 ∀z ∈ K
}
.

is called the dual of K.

An interesting example of such construct would be the dual of the previously examined
nx-dimensional ice cream cone for nx = 2.
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Example 2.2.4 (polynomial proper convex cone) Consider the two dimensional ice cream
cone

K =
{
z ∈ R2 | z21 ≤ z22 , z2 ≥ 0

}
=
{
z ∈ R2 | z1 = α− β, z2 = α+ β for α, β ∈ R≥0

}
.

Then, for y ∈ R2 and z ∈ K we note the following:

yT z = y1z1 + y2z2 = ∥y∥2 ∥z∥2 cos
(
θ(y, z)

)
, (2.8)

where θ : R2\{0} ×R2\{0} → (−π, π] returns the angle formed by two vectors in R2\{0}.
We can now note that, for both y and z non-zero, yT z ≥ 0 if and only θ(y, z) ∈ [−π/2, π/2],
and, therefore, yT z ≥ 0 for all z ∈ K\{0} if and only if y ∈ K. Hence, K∗ = K. □

Now, as mentioned in the previous subsection, we will later have a preference for second-
order cones. Therefore, the first result we formulate enables us to verify that an element y
of Rnx is also an element of the dual of a given proper second-order cone K.

Theorem 2.2.5 (Dual cones). Let KK,c ⊂ Rnx be a proper second-order convex
cone. If for some y ∈ Rnx there exists a ζ ∈ R such that K + ζyyT is positive
definite, then y ∈ K∗.

Proof. Let KK,c ⊂ Rnx be a proper second-order cone. Then, we know, from Appendix A
of [7], that y ∈ Rnx is in the interior of K∗

K,c, and therefore in K∗
K,c, if there exists a ζ ∈ R

such that for all z ∈ KK,c\{0} we have

zTKz + ζzT yyT z = zT
(
K + ζccT

)
z > 0.

Again from Appendix A of [7], this is the same as requiring the matrix K + ζyyT to be
positive definite for some ζ ∈ R. Thus concluding the proof. ■

From Lemma 2.4 of [7] and Theorem 3.5 of [11], we obtain our main result on exponential
invariance for proper second-order cones.

Theorem 2.2.6 (Exponential invariance of proper second-order cones). Let
KK,c ⊂ Rnx be a proper second-order convex cone and A ∈ Rnx×nx . If there exist
ξ, ζ ∈ R such that

1. ATK +KA+ 2ξK is negative semi-definite,

2. and K + ζccT is positive definite,

then K is exponentially A-invariant.

Furthermore, [9] and (2.7) of [7] offer us a way to verify exponential invariance for the
proper polynomial cone Rnx

≥0.

Theorem 2.2.7 (Exponential invariance of Rnx

≥0). Let A ∈ Rnx×nx . If there exists
a λ ∈ R such that A + λI is element-wise positive, then Rnx

≥0 is exponentially A-
invariant.

Proof. From Equation (2.7) of [7], we know, for a matrix A ∈ Rnx×nx , that a proper
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polynomial cone KN ⊂ Rnx with N ∈ Rnx×l is exponentially A-invariant if there exist a
λ ∈ R and an element-wise positive matrix P ∈ Rl×l such that (A+ λI)N = NP . For the
proper polynomial cone Rnx

≥0 we find N = I, concluding the proof. ■

3 Positivity

Recall that, we will only consider systems with time axis R≥0, and for which we can find
an equivalent behaviour of the form{

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rnx ,

y(t) = Cx(t) +Du(t)
(3.1)

with input u ∈ Rnu , state x ∈ Rnx , output y ∈ Rny , and real matrices A,B,C,D with
dimensions nx × nx, nx × nu, ny × nx, and ny × nu respectively. Then, for convenience,
such systems will exclusively be referred to using the tuple (A,B,C,D). Furthermore, for
any matrix M ∈ Rn×k and index i ∈ {1, . . . , n}, we denote by M[i] the vector that contains
the elements of the ith row of M . Then, similarly, for index j ∈ {1, . . . , k} we define the
vector M(j) to contain the elements of the jth column of M . Lastly, a vector or matrix will
be called positive if it is element-wise positive.

Definition 3.1 (Positive matrix). A matrix M ∈ Rn×k is said to be positive, which
is denoted as M ≥ 0, if and only if Mij ≥ 0 for all indices i ∈ {1, . . . , n} and
j ∈ {1, . . . , k}.

Now, recall that we previously mentioned the idea of containing the state of a system
(A,B,C,D) within a proper cone K. We expand on this by using cone-invariance.

Theorem 3.2 (Cone confinement). Let K ⊂ Rnx be a proper convex cone, and
consider a system (A,B,C,D). If x0 ∈ K and the following conditions are satisfied:

1. the columns of B are in K,

2. and K is exponentially A-invariant,

then x(t) ∈ K for t ≥ 0 and u(t) ≥ 0.

Proof. Let (A,B,C,D) and K be such that the aforementioned conditions are satisfied.
First, we can write the product of B and u as a linear combination of the columns of B,
with the coefficients being the corresponding elements of u. But, provided that the input
u is positive on R≥0, it follows, by the definition of convex cones, that Bu(t) is an element
of K for t ≥ 0. Furthermore, we know that K is exponentially A-invariant, which implies
that eA(t−τ)Bu(τ) ∈ K and eAtx0 ∈ K for all t ≥ 0 and τ ∈ [0, t]. Now, recall that the
state of system (A,B,C,D) can be explicitly expressed as

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ) dτ. (3.2)

Then, by expanding the integral term as the limit of a Riemann sum, we can make use of
the definition of convex cones and the fact that K is closed to conclude that x(t) ∈ K for
all t ≥ 0 and u(t) ≥ 0. ■
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Now that we have found parametric conditions for the containment of the state within a
cone, we can start investigating the notion of external positivity.

Definition 3.3 (External positivity). A system (A,B,C,D) is said to be externally
positive if for x0 = 0 and t ≥ 0 we have that u(t) ≥ 0 implies that the output
y(t) ≥ 0.

Note that this restriction on x0 is an assumption we take from Definition 2.8 of [7]. Then,
by using the confinement of the state within a proper cone, together with the notion of
dual cones, we are able to formulate the following.

Theorem 3.4 (External positivity). A system (A,B,C,D) with x0 = 0 is externally
positive if D is positive and if there exists a proper convex cone K ⊂ Rnx that satisfies
the following conditions:

1. K is exponentially A-invariant.

2. The columns of B are in K.

3. The transpose of the rows of C are in K∗.

Proof. Let (A,B,C,D) and K be such that the aforementioned conditions are satisfied,
we also let u(t) be an input positive for t ≥ 0. Since K is proper, contains the columns of
B and is exponentially A-invariant, it follows, using Theorem 3.2, that x(t) ∈ K for t ≥ 0.
We then note that the transpose of the rows of C being in K∗ implies that

0 ≤
(
CT
[i]

)T
x(t) = C[i]x(t) =

(
Cx(t)

)
i

for t ≥ 0 and any index i ∈ {1, . . . , ny}. We can therefore write that Cx(t) ≥ 0 for
t ≥ 0. Lastly, D being positive implies that Du(t) also is positive for t ≥ 0, and thus
y(t) = Cx(t) +Du(t) ≥ 0 for t ≥ 0. ■

Note that this result is formulated in a way that makes it independent of the type of
proper cone one must find, which can be either second-order or polynomial. However,
for certain matrices, exponential invariance is achieved exclusively by proper second-order
cones. Because of this observation, we will use the many results of Section 2 to reformulate
the conditions of Theorem 3.4 in a way that addresses this limitation.
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Theorem 3.5 (External positivity). A system (A,B,C,D) with x0 = 0 is externally
positive if there exists a symmetric matrix K ∈ Rnx×nx such that the following
conditions are satisfied:

1. BT
(j)KB(j) ≤ 0 for all j ∈ {1, . . . , nu},

2. ∃ζi ∈ R : K + ζiC
T
[i]C[i] is positive definite for all i ∈ {1, . . . , ny},

3. ∃ξ ∈ R : ATK +KA+ 2ξK is negative semi-definite,

4. K has exactly nx − 1 strictly positive eigenvalues and exactly one strictly
negative eigenvalue,

5. D ≥ 0 and CB ≥ 0.

Proof. Let (A,B,C,D) and K be such that the aforementioned conditions are satisfied.
First, we notice, for any indices i ∈ {1, . . . , ny} and j ∈ {1, . . . , nu}, that the positivity of
CB yields the following:

(CB)ij = C[i]B(j) =
(
CT
[i]

)T
B(j) ≥ 0.

We now, again for any indices i ∈ {1, . . . , ny} and j ∈ {1, . . . , nu}, combine this observation
with the the fact that BT

(j)KB(j) ≤ 0, yielding via the symmetry of K that

B(j) ∈ KK,CT
[i]
=
{
z ∈ Rnx

∣∣ zTKz ≤ 0 , CT
[i]z ≥ 0

}
.

By the disposition of the eigenvalues of K, those second-order cones constructed on K
and CT

[i] can be verified to be proper using Theorem 2.1.6. Furthermore, the existence of
scalars ξ and ζi such that ATK +KA+ 2ξK is negative semi-definite, and K + ζiC

T
[i]C[i]

is positive definite for any i ∈ {1, . . . , ny}, tells us, via Theorem 2.2.6, that these cones are
all exponentially A-invariant. Now, for any i, k ∈ {1, . . . , ny}, there exist a ζi > 0 such
that K+ζiC

T
[i]C[i] is positive definite, then by Theorem 2.2.5, it follows that CT

[i] ∈ K∗
K,CT

[k]

.

Hence, for any i ∈ {1, . . . , ny} and proper convex cone KK,CT
[i]

, the conditions of Theorem
3.4 are satisfied for our system, which is thus is externally positive. ■

Example 3.6 (External positivity) Consider the following system defined for t ≥ 0:
ẋ(t) =

(
0 1

2 0

)
x(t) +

(
1 2

3 7

)
u(t), x(0) = 0,

y(t) =

(
1 2

−1 3

)
x(t) +

(
11

3

)
u(t),

Now, to investigate whether it is externally positive or not, we will go over every conditions
stated in Theorem 3.4. First, consider the symmetric matrix

K =

(
1 0
0 −1

)
,

whose diagonality indicates that it has eigenvalues 1 and −1. Now, we note that

ATK +KA+ 2ξK =

(
2ξ −1
−1 −2ξ

)
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is negative semi-definite for ξ = 0. Furthermore, for ζ1 = ζ2 = 1 we observe that the
following matrices:

K + ζ1

(
1
2

)(
1 2

)
=

(
2 2
2 3

)
, K + ζ2

(
−1
3

)(
−1 3

)
=

(
2 −3
−3 8

)
,

are positive definite. Finally, CB ≥ 0, C ≥ 0 and

(
1 3

)(1 0
0 −1

)(
1
3

)
= (−8) < 0,

(
2 7

)(1 0
0 −1

)(
2
7

)
= (−45) < 0.

Therefore, by Theorem 3.5, it follows that the system is externally positive. □

Now that sufficient conditions to verify external positivity have been derived, we can also
take a look at the notion of internal positivity.

Definition 3.7 (Internal positivity). A system (A,B,C,D) is said to be internally
positive if for t ≥ 0 we have that u(t) ≥ 0 implies that the state x(t) ≥ 0.

Then, for a system (A,B,C,D), one way to verify such property would be to apply Theo-
rem 3.4 to the system (A,B, I, 0).

Corollary 3.8 (Internal positivity). A system (A,B,C,D) with x0 = 0 is internally
positive if there exists a proper convex cone K ⊂ Rnx that satisfies the following
conditions:

1. K is exponentially A-invariant,

2. the columns of B are in K, and

3. K∗ contains the positive quadrant of Rnx .

Proof. Let (A,B,C,D) and K be such that the aforementioned conditions are satisfied.
Then, we immediately notice that the transpose of the rows of I are in the positive quad-
rant of Rnx , and, therefore, in K∗. Therefore, it follows by Theorem 3.4 that the system
(A,B, I, 0) is externally positive. Additionally, we note that the output of (A,B, I, 0) is
the state of (A,B,C,D). Hence, (A,B,C,D) with x0 = 0 is internally positive. ■

You might notice that Corollary 3.8 is, similarly to Theorem 3.4, formulated such that the
type of cone one must find matters not. However, for the investigation of internal posi-
tivity we will, surprisingly, prefer to use proper polynomial cones. Additionally, Corollary
3.8 has the default of being constructed on a result that investigates external positivity,
whose definition limit x0 to necessarily be null. However, from Theorem 3.2, we note that
it might be possible to formulate internal positivity for any x0 ≥ 0. As a stepping stone
for this new approach, consider the following corollary.

Corollary 3.9 (Internal positivity). A system (A,B,C,D) is internally positive if
there exists a proper convex cone K ⊂ Rnx

≥0 that is exponentially A-invariant and
contains the columns of B and x0.

Proof. Let (A,B,C,D) and K be such that the aforementioned conditions are satisfied.
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Then, by Theorem 3.2, we know that x(t) ∈ K for t ≥ 0 and u(t) ≥ 0. Lastly, since K is
in the positive quadrant of Rnx , it follows that x(t) ≥ 0 for t ≥ 0 and u(t) ≥ 0. ■

We can then use Corollary 3.9 to produce a result that is less restrictive and in practice
much easier to use than Corollary 3.8. This is done by preemptively picking the cone we
must find to be the positive quadrant of Rnx .

Theorem 3.10 (Internal positivity). A system (A,B,C,D) with x0 ≥ 0 is internally
positive if B ≥ 0 and if there exists a λ ≥ 0 such that A+ λI ≥ 0.

Proof. Let (A,B,C,D) and λ be such that the aforementioned conditions are satisfied.
Notice now that K = Rnx

≥0 is a proper polynomial cone. Hence, for all indices i ∈ {1, . . . , nu}
we can already observe that B(i) ∈ K. Furthermore, by Theorem 2.2.7, the existence of λ
tell us that K is exponentially A-invariant. Hence, by Theorem 3.2, for all positive inputs
we know that x(t) ∈ Rnx

≥0 for t ≥ 0. ■

Example 3.11 (Internal positivity) For t ≥ 0 consider the following system:ẋ(t) =

(
−2 2

9 1

)
x(t) +

(
1

3

)
u(t), x(0) = 0,

y(t) = Cx(t),

where C ∈ Rny×2. Then, we immediately note that(
−2 2
9 1

)
+ 2I =

(
0 2
9 3

)
≥ 0,

(
1
3

)
≥ 0.

Therefore, by Theorem 3.10, it follows that the system is internally positive. □

Note that, for an internally positive system (A,B,C,D), we can much more easily in-
vestigate the positivity of the output for any x0 ≥ 0 and positive input. In theory, this
verification would only require to investigate the positivity of matrices C and D. However,
even though many externally systems also are internally positive (see Example 3.13 for
counter case), the construction of our approach puts an emphasis on studying those con-
cepts separately. Nevertheless, for the sake of completeness, we also formulate the following.

Theorem 3.12 (Extended external positivity). Let (A,B,C,D) with x0 ≥ 0 be
an internally positive system. If matrices C and D are positive, then for t ≥ 0 and
u(t) ≥ 0 we have that the output y(t) ≥ 0.

Proof. Let (A,B,C,D) be such that the aforementioned conditions are satisfied. Then,
since the system is internally positive, it follows that for t ≥ 0 and u(t) ≥ 0 we have x(t) ≥
0. Furthermore, matrices C and D are positive, and, thus, for any index i ∈ {1, . . . , ny}
we can write

y(t)i =
(
Cx(t) +Du(t)

)
i
= C[i]x(t) +D[i]u(t) =

nx∑
j=1

[
Cijx(t)j

]
+

nu∑
j=1

[
Diju(t)j

]
≥ 0,

which then concludes the proof. ■
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Example 3.13 (Externally positive but not internally positive). For t ≥ 0 consider the
following system{

ẋ(t) = −Iu(t), x(0) = 0,

y(t) = −Ix(t),

with I ∈ R2×2. Then, we find the following expression for the state:

x(t) =

∫ t

0
−Iu(τ)dτ = −I

∫ t

0
u(τ)dτ.

Thus, for t ≥ 0, the positive input u(t) = (1 1)T produces the element-wise negative state
x(t) = (−t − t)T . Hence, it follows that our system is not internally positive. Now, we
can also compute the output, yielding

y(t) = −Ix(t) =

∫ t

0
u(τ)dτ.

Therefore, any positive input for t ≥ 0 provides a positive output, thus verifying external
positivity. □

4 Conclusion

We’ve taken a detour through convex analysis to define and illustrate proper convex cones
and many notions related to them. From those, we determined conditions for the confine-
ment of the state within a proper cone — a cone whose dual we then used to establish
sufficient conditions for external positivity. By using the external positivity of an analog
system, we then established conditions for internal positivity. Lastly, to liberate ourselves
from the limitation on the initial condition of our system, we investigated internal positiv-
ity independently of its external counterpart.

For future research, we suggest investigating more tractable methods to find the proper
convex cones required in the results on positivity we’ve established. Furthermore, we also
suggest taking a closer look at the possible consequences positivity has on the reachability
and observability of concerned systems.
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