
LLMs for OCR Post-Correction

Martijn Veninga
s1803727

University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science

July, 2024

Abstract

In this thesis, I examine the use of Large Lan-
guage Models (LLMs) on the task of Optical
Character Recognition (OCR) post-correction.
OCR post-correction is the task of correcting
mistakes in optically identified texts from im-
ages or documents. Publicly available OCR
engines are limited in accuracy and correcting
their output can lead to better performance of
downstream tasks.

Pretrained LLMs exhibit an understanding of
language which can be exploited to correct mis-
takes in OCR output, but for good performance
fine-tuning of the models is needed. In this
thesis I show that fine-tuned versions of the
ByT5 LLM, a publicly available character-level
LLM, are able to correct mistakes in OCR text
in a language it was pretrained on better than
a state-of-the-art method can. Preprocessing
techniques are shown to impact the capability
of the language models to correct OCR errors.
ByT5 models achieve the highest Character Er-
ror Rate (CER) reduction rates when using low-
ercasing as well as removing strange charac-
ters. Context length is also shown to have a
strong impact on the effectiveness of the mod-
els. The best context length was found to be
50 characters, with longer and shorter context
lengths having worse CER reduction and worse
F1 scores. I also show that few-shot learning is
not able to teach a generative LLM to correct
OCR text without fine-tuning the model. Future
research can investigate the potential increase
in effectiveness of fine-tuning larger language
models on the post-OCR error correcting task.

1 Introduction

1.1 What is OCR

Optical Character Recognition (OCR) is a method
of extracting the text data from images of docu-
ments. The process is often required in settings
where a digital version of the text is not available.
This occurs when documents are scanned from

physical copies, or when digital documents con-
taining text do not have a computer-readable text-
layer in them. OCR techniques have been used for
decades now to process large amounts of scanned
documents [9, 20]. State of the art models based
on deep learning methods are efficient and achieve
high accuracies in the OCR task [12]. Still, many
errors remain in the output of OCR techniques
which lead to lower performance of downstream
natural language processing tasks like text summa-
rization, part-of-speech tagging and named entity
recognition [12, 25, 28].

1.2 Challenges in Modern Documents

Documents originating from computers normally
contain an image layer and a text layer. The im-
age layer is the physical appearance of the docu-
ment. The text layer is a hidden information layer
included in documents which separately from the
image shown on screen encodes information on the
positioning of text on the page. This information
is used by computers to read the contents of the
files. When this textlayer has been lost, optical
techniques are required to get the text from the
image layer of the documents. The problem we
see in industry is that some documents which origi-
nated from computers have lost their text layer, and
got degraded by noisy copying and compression
techniques. Some examples of lossy compression
techniques are Chroma Subsampling, where the
color component of images is sampled at a lower
rate than the brightness component to reduce stor-
age need while achieving similar image quality to
the human eye, and the K-Means algorithm, where
colors are grouped into K clusters reducing the col-
ors in an imperceptible way [14]. These techniques,
coupled with the loss of the original textlayer, result
in documents that are difficult to OCR perfectly,
leading to character errors.



1.3 Post-correcting

As the output of OCR systems is not perfect, im-
provements can still be made. One method of doing
so is to improve the primary OCR technique. An-
other path to improvement is by using post process-
ing. Historically, post processing of the OCR out-
put has been an effective technique for improving
the initial results obtained from the OCR system
[15]. Commonly used automatic techniques in-
clude merging the outputs of several OCR engines
together based on a voting scheme [22], or using
n-gram language models to detect errors on char-
acter level to then suggest candidate corrections
on word level [8]. Google have used a form of
crowd-sourced post-OCR correction through their
ReCAPTCHA service [45]. ReCAPTCHA is used
by websites to protect against bots. This is done
by requiring users to transcribe two words shown
in images. One of them has a known text and is
used for determining if the user is human, the other
word does not have a known text and will at a later
stage be determined by majority vote. Users are not
aware of the fact that one of the words is unknown,
so they fill in both words correctly based on their
own best effort.

The effectiveness of these techniques has been
promising, but improvements can still be made.
The final accuracy of these methods is not 100%.
The popular Tesseract OCR engine was shown to
have a Character Error Rate (CER) of 0.4% depend-
ing on the quality of the document that is processed.
Still, reducing the number of character errors can
yield better output in downstream tasks such as ac-
cessibility readers and language processing tasks
[12, 25, 28]. Schaefer et al. show that their two-
step error correcting method can reduce OCR er-
rors by 20% [35]. Still, humans reading through
the output of these OCR techniques will still be
able to find misplaced or missing characters, and
with their understanding of language are able to
improve the OCR accuracy. Manually correcting
all documents is expensive and slow and thus not a
viable solution for real-time low-cost applications.
By automating the task, notable improvements to
the performance of down-stream tasks like part-
of-speech tagging and named entity recognition
can be achieved compared to using the uncorrected
OCRed texts, while keeping costs low and speed
high [28]. Hegghammer et al. show that named
entity recognition quality is impacted by the quality
of OCRed text [12]. Huynh et al. similarly show

that OCR post-correction is able to improve the
quality of named entity recognition when applied
to already reasonably accurate OCR output [15].

1.4 Large Language Models
In recent years a new automated learning-based
technique called Large Language Models (LLMs)
has emerged boasting a strong understanding of lan-
guage, opening the door to automated human-like
understanding of texts for post-OCR error correc-
tion.

LLMs first gained considerable attention through
the seminal paper "Attention is all you need" [43].
The paper proposed an architecture of language
models which does away with recurrence as used
in LSTM and RNN models, instead using only
the attention mechanism to draw global dependen-
cies. The attention mechanism consists of a map-
ping of a query, and key-value pairs to an output.
The attention mechanism allows transformers to
take into account and weigh the relevance of each
part of the complete context for any section of the
prompt. It also allows for greater model sizes, as it
solves the parallelization issue LSTMs and RNNs
had [43]. With increased size, the performance of
these models keeps increasing, allowing for super
large models to become especially good at under-
standing language [4, 16]. More recently, the on-
line available ChatGPT became popular because
of availability and its ability to perform a plethora
of language-based tasks. The model shows an un-
derstanding of language which generalizes well to
tasks like coding, sarcasm detection, emotion detec-
tion and question & answering among others [17].
Publicly available models like Llama show similar
language understanding [49]. This understanding
of language might be useful in improving OCRed
text. Rigaud et al. showed that LLMs can leverage
their basic understanding of language in order to
improve the OCRed text [32].

ChatGPT and Llama models are of very large
size. The GPT3 model of OpenAI has 175 billion
parameters, the smallest Llama model has 7 billion
parameters [41]. The size not only leads to large
inference times, but also makes fine-tuning very
challenging. Fine-tuning these models needs to be
done on servers with depending on the model 100s
of gigabytes of VRAM, which is costly and not
readily available to students. Still, these models can
be tested on new tasks by using few-shot learning.

Using smaller LLMs than Llama and Chat-
GPT results in faster inference, and through fine-

2



tuning of such a model, previous researchers have
achieved state-of-the-art performance in the IC-
DAR 2019 competition for post OCR text correc-
tion [33]. In the 2019 competition, the first publicly
available BERT model was used. Since then, newer
architectures have come out that may lead to bet-
ter performance than the model used in the 2019
competition.

For the input, the text is split up into tokens.
Most models use sub-word tokens, meaning that
the input is split into blocks of several characters
which are given a unique integer representation for
the model. Some models use character-level tok-
enization, meaning that each individual character
has an integer representation. Sub-word tokeniza-
tion works well and is used in many of the highest
performing language models available. Mielke et
al. note that tokenization of larger sections of text
leads to faster inference [24]. Using character-level
representations however allows for the model to
take note of specific one-character modifications
between strings. This can be especially useful in
the context of OCR post-correction, in cases where
single characters are misidentified.

1.5 Proposed Solution

I propose a post-OCR text correction technique that
leverages the language understanding of modern
LLMs to detect mistakes and suggest corrections
in modern documents processed with the Tesser-
act OCR engine [40]. For comparison to other
methodologies, the same technique is tested on
old documents from the ICDAR dataset. OCRing
large amounts of modern customer documents is
done using open-source OCR engines like Tesser-
act, whose results might be improved by the so-
lution provided here. The LLMs tested in this re-
search include fine-tuned versions of the character-
level LLM Byt5 trained on OCRed and ground-
truth text, as well as the general generative LLM
Llama 7B [41, 48]. For ByT5, the models ByT5
small and ByT5 base are used which consist of 300
million and 580 million parameters respectively.
The Llama 7B model consists of 7 billion param-
eters. Llama 7B was selected because it is one
of the best performing publicly available genera-
tive large language models that is small enough to
run locally [41]. ByT5 is selected because of its
character-level architecture which can be uniquely
beneficial in spotting the character-level mistakes
in OCR output [48].

1.6 Research Questions

In creating this LLM based post-OCR text correc-
tion technique, several pre-processing methods are
employed in experiments to test if their application
aids or hinders the ability of the LLM to correct the
text. Lowercasing of the input text and removal of
special characters are examined.

Researching the capability of post-OCR error
correction of LLM models is done in this thesis to
answer the following research questions:

• RQ1. Can character-level LLMs perform bet-
ter in correcting OCR output than state-of-
the-art non-pretrained language model based
methods?

• RQ2. Do finetuned character-level LLMs out-
perform the generative LLM Llama in post-
correcting OCRed text?

• RQ3. How do preprocessing techniques im-
pact the effectiveness of the LLM post-OCR
correcting techniques deployed?

2 Related Work

In their 2011 summary, Volk et al. note three
methodologies for OCR text improvement: improv-
ing the input images, improving the OCR system
or OCR post-processing [44]. In this thesis I focus
on an automated OCR post-processing approach.

The topic of post-OCR error correction has been
the subject of various competitions and a large
amount of research. Non-transformer based meth-
ods have been shown capable of improving OCRed
text [23], but in recent years transformer based
methods have achieved slightly better results [33].
Although the two approaches reach similar perfor-
mance, the potential for further improvement is still
large in transformer based methods as more sophis-
ticated models become available to researchers.

In this section, the history of OCR post-
correction is described. The first subsection inves-
tigates the methodologies used before transformer
models were invented. Next, the ICDAR compe-
titions on OCR post-corrections are discussed [5,
33]. Next the ensemble of sequence-to-sequence
model approach by Ramirez et al. is described
[30]. Lastly, a history of large language based text
correction methods is given.

3



2.1 Pre-transformer Post-OCR Correction
Methods

Before the advent of transformers and large lan-
guage models, post-OCR text correction was done
using a variety of techniques. Automatic meth-
ods include those that only take into account the
specific word being corrected (merging of OCR
outputs, lexical approaches), but also context-
dependent techniques involving statistical or neural-
network based language models [28].

Dictionary based approaches involve building a
dictionary of n-grams that are found in known texts.
The dictionary is used to look up the text resulting
from noisy inputs like OCR, to find out if the text
is known and likely to appear. In the case that it is
not, the program detects it as a potential error, but
the correcting task is left to the user [18].

An unsupervised corpus-based method that uses
high quality lexicons to automatically improve
OCR errors was developed by Reynaert et al. [31].
The method calculates Levenstein distances be-
tween known words and the words found in the
input text to correct the OCR text.

Schaefer et al. [35] proposed a two-step error
detection and error correction methodology based
on bi-directional LSTM models. The first step,
detector, is an error detection mechanism which
identifies potential OCR errors and forwards them
to the second step of the process. This second step
is the error correcting mechanism called the trans-
lator which predicts the correct text given its input.
By using the two-step approach, non-erroneous text
is filtered out and skipped by the correcting model,
which reduces the number of false positives. Both
the detector and the translator are bi-directional
LSTM models trained on their dataset. They show
that their methodology can reduce character error
rate by up to 20% in text coming from Tesseract
OCR engine. Their method shows good perfor-
mance of improving OCRed text, without using
large language models.

2.2 ICDAR Competitions

In 2017 and 2019, competitions on post OCR text
correction were held by ICDAR [5, 33]. In the 2017
competition, the best solution used a character level
machine translation based on the 4 character con-
text surrounding each character [27]. Most recently,
in the 2019 competition, the best solution was a
multilingual fine-tuned BERT [6] as a character
sequence machine translation model.

Since 2019, extensive research has been done
on the capabilities of transformer models, lead-
ing to advances in model language understanding.
New language models have since been proposed
that improve upon BERT in several ways, such as
roberta, deberta and debertav3 [10, 11, 21], but
generative AI models have also been improving.
Meta released their Llama generative AI model
[41] as open source. These new models show im-
proved performance on language processing tasks,
indicating that their performance on the OCR post-
correction task may well also be better than the
older models.

2.3 Ensemble Sequence-to-Sequence
Ramirez et al. [30] proposed an ensemble of
trained sequence-to-sequence models for OCR
post-correction in 2022. In their paper they show
that combining the results of a large set of sequence-
to-sequence models trained on the target task is
able to reduce character error rates on the ICDAR
data that matches the state-of-the-art reported dur-
ing the original competition in 2019. These models
are not pre-trained on large sets of text data, but
instead are trained directly on the target task.

In their method, Ramirez et al. split up the in-
put text into shorter windows to separately correct.
The output from the model on these windows is
then separately combined using a beam search algo-
rithm to find the most likely intended output from
the model. Using this splitting and then reassem-
bling approach, large documents can be processed
without the need for training sets with many docu-
ments, or very high memory compute units. Figure
1 illustrates their process.

Figure 1: Description of Steps in the Methodology Pro-
posed in Ramirez et al. (My Baseline)

2.4 Large Language Models for Text
Correction

Alikaniotis et al. [2] showed in their paper that
large language models are able to correct gram-
mar mistakes. They used BERT, GPT-1 and GPT-2
along with different preprocessing techniques to
correct source text containing grammar mistakes.

4



They show that the GPT models significantly out-
perform BERT on the grammar correction task.

Kuznetsov and Urdiales [19] use a transformer
architecture for spelling-correction. The trans-
former architecture is the basis of the LLMs dis-
cussed earlier. They show that transformers are
able to learn from a dataset of spelling mistakes, to
be able to correct spelling mistakes in real-world
settings. Just like spelling errors, OCR errors often
involve single-character replacements. Therefore,
techniques used for correcting spelling errors may
also be useful for fixing OCR errors.

The transformer architectures used by Kuznetsov
and Urdiales are not trained to fully understand lan-
guage, but solely leverage the attention-mechanism
for better context understanding. Pre-training trans-
former models gives them knowledge of languages
and biases them towards proper language gener-
ation [6]. Thus using a pre-trained transformer
model could be effective in correcting text inputs.
Stankevivcius et al. [37] took this approach in their
paper, fine-tuning a pre-trained ByT5 character-
level transformer model to correct words with miss-
ing diacritics. They show that their methodology
was able to detect missing diacritics in over 98%
of cases, vastly outperforming dictionary based-
techniques and rivalling state-of-the-art in the task.
This was achieved whilst being trained on much
less data than the state-of-the-art methodologies.
They also showed that their model was able to de-
tect missing diacritics in words not seen in the
training dataset with 76% accuracy.

2.5 Generative Models for Text Correction

Sutter et al. [39] showed that using a pipeline of
detecting mistakes in text, combined with prompt-
engineering on Llama2, they were able to correct
grammatical errors. Their prompt uses very par-
ticular instructions to make the model output only
the answer to correct the input, without extra ex-
planations or contexts. The prompt they used uses
HTML-style start and end tags to enclose the ex-
pected answer.

This is an example of their prompt:

Reply with a corrected version of the in-
put sentence delimited by <input> </in-
put> with all grammatical and spelling
errors fixed. If there are no errors, re-
ply with a copy of the original sentence.
Output the corrected version of the sen-
tence delimited by <output> </output>

tags directly without any explanations.
Please start: <input>She like to walks
her dog</input> <output>

Using this method, they showed that the model
was able to correctly identify and correct grammar
mistakes more effectively than GPT3.5, but still
worse than state-of-the art in grammatical error
correction solution GECToR [29, 39].

3 Datasets

3.1 ICDAR dataset
This thesis makes use of two datasets. The first one
is the 2019 ICDAR competition on post-OCR text
correction dataset, which contains aligned OCR
and ground truth data for multiple languages in-
cluding English, Dutch and German [33]. This
dataset is freely available for non-commercial use.
The dataset does not come with the original doc-
uments which were OCRed, but for the purpose
of investigating the capability of LLMs to correct
OCRed text the original OCRed text and a gold
standard is sufficient. For this thesis, the English
portion of this dataset is used, in order to compare
the results with those obtained in literature.

The ICDAR dataset is created from old docu-
ments, including 18th and 19th century documents.
These documents contain language that is not rep-
resentative of the language found in current age
documents. Some examples of the text found in
this dataset is given in Figure 2. The dataset is use-
ful for evaluating the performance of this method
against a baseline method in the literature, but as
the trained model will tend to make the text similar
to that found in the training set i.e. 18th and 19th
century language, the final model would not be
very useful for usage on modern documents. The
ICDAR dataset is thus used for comparison against
the baseline.

Because the character error rate of some of the
documents in the ICDAR dataset was very high,
above 50%, some of the entries were filtered out
for more realistic results. The final dataset size in
words and characters as well as the character error
rate before correction for the train, evaluation and
test splits is given in Table 1. The base character
error rate for the different splits of the ICDAR
dataset is around 5.1%.

3.2 Custom Modern Documents Dataset
In order to get access to more relevant current-
age documents, a collaboration with a local tech

5



The beste knyght.and the @moost manly man As myne
wait your coming at the Greyhound Tavern in Palace-Yard

VIRGINIA WATERS. The Royal Pavilion THE UPPER LAKE, With the Frigate
Have found the fame your shores refuse; Their place of birth alone is

Figure 2: ICDAR: Examples of Ground Truth Text

Dataset Characters Words CER (%)

ICDAR - train 109002 19561 5.13
ICDAR - eval 33421 5950 5.10
ICDAR - test 21209 3715 5.15

Custom - train 704449 99970 5.44
Custom - eval 175796 25122 5.55
Custom - test 98264 14304 5.42

Table 1: Dataset Overview

company was started. This company specializes in
providing document anonimization services using
LLM anonimization suggestions. For training this
LLM and testing their product, they have acquired
a set of 5000 PDF documents. They have been
scraped from a Dutch website posting spatial plan-
ning of Dutch municipalities [26]. The same type
of documents are often seen needing anonimiza-
tion in practice. These documents are scanned by
the free to use Tesseract OCR [40] to generate the
OCRed text which contains character errors due
to the imperfect nature of the OCR method. The
documents also include a ground-truth textlayer.

Originally, the idea was to match up this ground-
truth textlayer embedded in the PDF documents
with text obtained from OCRing those same docu-
ments, but whilst analyzing this data, it was found
out that the order of the text obtained from the em-
bedded text layer and the text in the OCR layer
was not the same. The reason for this is that the
embedded text layer contains the text in the proper
document order, based on the tags of the document,
whereas the OCRed textlayer only takes into ac-
count the spacing of text on the page, not the tags
given to the text. This problem with text order
is an issue for training the correction models, as
they require the text to be aligned properly. A new
methodology was thus used to create this dataset.

To get the custom dataset of recent documents,
the original text was scraped from the ruimtelijke-
plannen documents. This text represents the ground
truth data. After scraping this data, a new PDF doc-
ument was made which only contains this ground

truth data in order on the pages. Using a similar
approach as Ding et al. [7] to reduce the quality of
the PDF, this new PDF document was artificially
degraded using white noise. OCRing the PDF doc-
ument yielded noisy OCR data to be used for train-
ing the models. The entire process of generating
the dataset is summarized in Figure 3.

The final dataset size in words and characters as
well as the character error rate before correction for
the train, validation and test splits are given in Table
1. The train split consists of 72% of the dataset,
the validation split consists of 18% of the dataset
and the test set consists of 10% of the dataset. The
base character error rate for the different splits of
the custom dataset is around 5.4%.

The quality of OCRed output text depends not
only on the OCR engine used, but also the quality
of the input text. Depending on how clear and high-
resolution the input images are, and how distorted
the input is, the character error rate of the same
OCR engine can be different. For the datasets used
in this thesis, the initial OCR character error rate
is just above 5%. That is the error rate seen in the
ICDAR dataset, and the custom dataset was made
to be similar so that the results can be compared.

4 Data Preparation and Cleaning

Model training was attempted with whole pages
of text data, but this proved ineffective. Both the
ByT5 and Llama models "go off the rails" with
such large text inputs, yielding an output where the
first bit of text corresponds to corrected text, but
the last section becomes made up text that does not
correspond to the original OCRed input.

Because of this, a dataset was required that can
be split up into smaller sections of 10 to 100 char-
acters at a time. To split the dataset like this, an
alignment is needed. For the ICDAR dataset, this
alignment was already given in the original dataset.
For the custom dataset of modern documents, the
OCR and ground-truth text is aligned so that any
subsection of the two strings would correspond to
the same piece of text. The alignment was per-
formed using a dynamic programming approach

6



Text Doc-
uments

Extract
Textlayer

Store as
Ground-truth

Place on
Blank PDF

Add White
Noise

Scan with
Tesseract

OCR

Align OCR
Output

Correct Dutch text:
"Dit is een voorbeeld van correcte tekst."

Noisy OCR text:
"Dlt is ’afn voorbld vn corrpcte t0kst."

Aligned text:
Aligned OCR : "Dlt is ’afn voorb@@ld v@n corrpcte t0kst."

Aligned ground-truth : "Dit is @een voorbeeld van correcte tekst."

Figure 3: Custom dataset creation from original Dutch documents | Extra high CER used for illustration

which is explained in the following section.

4.1 Sequence alignment

Alignment of the strings is done by inserting gap
tokens ("@") into the strings in such a way that
most characters from the original strings are index-
matched, while using the fewest modifications pos-
sible.

Aligning the two strings was done using a dy-
namic programming approach commonly used in
DNA alignment [34]. Dynamic programming is
useful for this approach as it is an efficient method-
ology for aligning the sequences. Other method-
ologies like an exhaustive search of all the pos-
sible ways of alignment grow exponentially with
the number of characters in the strings, where this
dynamic programming approach only scales with
O(M*N) where M and N are the lengths of the se-
quences to be aligned. This makes it feasible to
align large enough sequences for the task of gener-
ating the dataset.

The dynamic programming approach is done in
6 steps:

1. Creating the dynamic programming matrix.
The matrix will contain the final solution and is
of size M * N, where M and N are the sizes of
the input strings that are to be aligned. Filling
this table is where the overall time complexity of
O(M*N) comes from. The table is filled with zeros,
representing the cost to align sub-sequences of the

original strings.
2. The dynamic programming table is filled. The

table is iterated over from the top left to the bottom
right. At each step, if the character is the same
in both strings, the penalty value from the top left
diagonal is copied in the current cell, representing
no action taken. If the characters are not the same,
the minimum value of the cell on the left and the
cell on the right is taken along with a penalty of 1,
representing the modification of the string to align
the sequences needed.

3. The aligned sequences are built. In this step,
the algorithm is started from the bottom right of the
dynamic programming table and builds back up to
the top left. At each step, if the characters are the
same, they are added to the aligned sequences.

If the characters are not the same, the algorithm
checks which of the cells on the left, top left and top
has the lowest penalty value. The penalty values
given in the dynamic programming table indicate
whether the characters are to be left unaligned (in
the case that the top left diagonal cell has the lowest
penalty value), whether the first sequence should
include a gap token (when the cell on the left has
the lowest penalty value) or when the second se-
quence should include a gap token (when the cell
on the top has the lowest penalty value).

4. When either of the sequences still has char-
acters left but the other does not, the remainder is
filled with gap tokens ("@").

7



5. The resulting recreated aligned strings are
built up from the end of the strings first. The final
results are thus reversed in order to get the strings
back in their original direction. These reversed
strings are the final aligned sequences.

4.2 Misaligned documents

At times, the alignment algorithm fails to create
a proper alignment between the OCR and ground-
truth data. These misaligned inputs need to be
removed from the dataset, as they do not train
the model to perform better OCR correction. Mis-
aligned texts are identifiable by there being a much
larger character error rate compared to properly
aligned documents. Properly aligned texts tend to
have an error rate below 15% in the custom dataset,
where misaligned documents have a character er-
ror rate above 50%. The dataset was thus filtered
to only contain input strings with a base character
error rate below 50%.

4.3 Documents with high number of digits

The original custom dataset includes some docu-
ments that contain a high number of digits from ta-
bles and the like. These mostly random numbers do
not contain much information for the model to train
on as their order is more or less random. To prevent
the model from fine-tuning on this random data, the
documents containing more than 15% digit charac-
ters were removed from the document set. Table 1
shows the statistics for the custom dataset after this
initial cleaning step was performed.

5 Dataset Preprocessing

5.1 Input Lengths

The LLM models used in this thesis have shown
problems with learning from large input lengths.
Requesting large inputs to be corrected leads to
hallucination by the model, reducing the error cor-
rection effectiveness. Because of this, the strings in
the dataset were split into smaller pieces for train-
ing. Different input lengths were tested to find out
what balances the extra context achieved by a larger
input length with without leading to hallucination
of the models. For this, input lengths of 10, 25, 50
and 100 characters were tested. This was done by
splitting the aligned OCR and GT texts into smaller
chunks depending on the number of characters for
the input being tested. We can be sure that the OCR
and GT texts still correspond after because the texts
were aligned before splitting.

5.2 Text Preprocessing

In order to reduce complexity of the machine learn-
ing task, a variety of preprocessing techniques are
tested. These techniques lead to lower variability in
characters and sets of characters, potentially lead-
ing to better post-OCR error correction through a
decreased search space. At the same time, these
preprocessing techniques lead to reduced informa-
tion content of the text context. This could also
have adverse effects on the capability of the mod-
els to correct the OCR errors. This is why tests
are ran both with and without these preprocessing
techniques, to investigate the effect of them.

5.2.1 Lowercasing
Lowercasing of OCRed text as well as the ground-
truth text can be used to reduce the distinct number
of characters and combinations of characters that
the model has to learn and choose from. This tech-
nique thus greatly reduces the search space of the
model, but it comes at the cost of losing the in-
formation of which words were capitalized, which
often correspond to personal and street names, com-
pany abbreviations and the like. It may thus be
more difficult to distinguish erroneous OCR output
from names which look like common words, as the
names would not be identifiable by their capitalized
first letter anymore.

5.2.2 Strange Symbols Removal
Removing strange symbols could help the model
by denoising the output of the OCR engine. Often-
times when it is not possible for the OCR engine
to detect which characters are present in the text,
a series of quite unusual characters is produced.
The question is whether this series of characters
contains enough useful information about the true
text that it is worth keeping them. Removing these
characters is thus tested as method of reducing the
search space while removing noise from the input
of the model.

6 Methodology

6.1 Error Correction Models

6.1.1 ByT5
For the character-level LLM model, the ByT5-
small and ByT5-base models are used, which have
300 million and 580 million parameters respec-
tively. These models have previously shown capa-
bility of being fine-tuned for sequence-to-sequence
translation tasks. By framing the post-OCR error

8



correction task as a sequence-to-sequence task, we
can fine-tune ByT5 to correct OCR errors. This
model is also available in larger versions of 1.2
billion, 3.7 billion and 13 billion parameters, but
fine-tuning these very large versions was not feasi-
ble on the resources available for this thesis.

10% of the dataset is reserved for evaluation in
the test step. For training, the rest of the dataset is
split into an 80% and a 20% subsection. 80% of
the data is used during the training process, whilst
the remaining 20% remains unseen by the model
and is used for the validation step of the training
process. I opt not to use a k-fold cross validation
technique, as it would require fine-tuning the ByT5
model once for every fold, which is not feasible in
the time of this thesis project.

The models were fine-tuned using an early-
stopping approach. In this way, the models were
allowed to train for as long as the validation loss
was still decreasing, ending with a model that bal-
ances input data fit and generalization to achieve
the best results. This early stopping mechanism
resulted in two to 5 epochs trained per model per
dataset. The learning rate used was 0.0003. In-
put data was grouped into batches of 20, and in
order to get a higher artificial batch size, gradient
accumulation was used of 16 steps. The gradient
accumulation adds together the loss values for the
individual batches to achieve the same results as a
batch of 320 would, but without requiring the same
VRAM levels.

6.1.2 Llama
As alternative to the character-level ByT5 model, a
larger generative AI model is also tested for perfor-
mance in this task. Through zero-shot and few-shot
learning, this type of model is able to perform a
wide variety of language tasks. 0-shot learning
involves explaining the task to the generative AI,
without showing any examples of how to perform
the task. In few-shot learning, some examples of
the task correctly being performed are given [1].
The Llama 7B model is steered through prompt-
engineering to take in a couple sentences of OCRed
text, and return the expected original text in a stan-
dardized format [46]. No training data is needed
for this model, as the 0-shot and few-shot learning
methodologies depend only on the input data to the
model to be able to perform the language task.

Testing of this model is done on the same 10%
subsection of the dataset that was reserved as the
test set for the ByT5 model.

In the first iteration of using Llama, the follow-
ing prompt was used:

You are a language model tasked with
correcting OCR text. OCR text con-
tains errors as the algorithm sometimes
misidentifies characters, misses charac-
ters or adds characters where they were
not originally. Use your understanding of
language to find these errors and correct
them.

This prompt leads to an unstructured output, as
the model is not given a specific structure to answer
in. Besides the corrected output, a lot of extra
output is given explaining the corrections made and
that the model understands the task. This output
is not wanted and we want to filter it out. To do
so, we specifically tell the model to leave out any
outside explanation:

You are a language model tasked with
correcting OCR text. OCR text con-
tains errors as the algorithm sometimes
misidentifies characters, misses charac-
ters or adds characters where they were
not originally. Use your understanding of
language to find these errors and correct
them. In your response, do not give an
explanation of the task or an explanation
of the output. Only give the corrected
text.

Although we specifically instruct the model not
to give extra explanations, the output still contains
unwanted extra information about the corrections.
Asking the model to give the answer contained in
specific tags as explained in [46] helps, as we can
later filter the answer to only be the content in-
between these tags. The prompt is thus modified
once more into the following:

You are a language model tasked with
correcting OCR text. OCR text con-
tains errors as the algorithm sometimes
misidentifies characters, misses charac-
ters or adds characters where they were
not originally. Use your understanding of
language to find these errors and correct
them.

In your response, do not give an ex-
planation of the task or an explanation
of the output. Only give the corrected

9



text. Give your answer in-between <cor-
rected> and </corrected> tags like would
be seen in HTML code.

Example 1:

input: "is er vanuit de ecologie van het
opperviaktewater verbetering"

output: "<corrected>is er vanuit de
ecologie van het oppervlaktewater ver-
betering nodig</corrected>"

Example 2:

input: "functies in het betrelfende gebied.
om aan deze doelen structure! te kunnen
voldoen,"

output: "<corrected>functies in het betre-
ffende gebied. om aan deze doelen struc-
tureel te kunnen voldoen,</corrected>"

Using this prompt, the model consistently out-
puts the answer in-between the tags given, so the
answer is taken from this through a regex search.

6.1.3 Baseline model
A comparison is also made with non-LLM based
post-OCR error correction techniques. The method-
ology of [30] is implemented consisting of an en-
semble of sequence-to-sequence models.

Ramirez et al. published their full working code
to GitHub1, enabling the usage of the models on the
datasets created for this thesis. The models are first
trained using the training dataset, which is done on
each of the individual datasets tested in this thesis.
The final output of the training process is tested
on the 10% subsection of the dataset designated as
test set. This gives the baseline performance for
the LLM-based methodology to beat.

6.2 Performance measures

Performance evaluation of the proposed methods in
combination with their pre-processing techniques
is done using an OCR-specific metric called Char-
acter Error Rate (CER) reduction, the general pre-
cision, recall and F1 metrics. The metrics are calcu-
lated for the performance of our fine-tuned models,
as well as for the baseline methodology trained on
the ICDAR and custom datasets, for a full compar-
ison of the methodologies.

CER is a metric based on the number of charac-
ters that were incorrect in the OCR output. This is

1https://github.com/jarobyte91/post_ocr_
correction

calculated based on the number of characters that
are different between the ground truth text and the
OCR output text. By comparing the CER before
the post-OCR error correction and after the post-
OCR error correction, the effect of the correction
method can be quantified. An example of CER
calculation is shown in Figure 4.

a l i g n e d

a l l g n @ d

+1 +1

Total Errors: 2 errors
Total CER: 2/7 = 28%

Figure 4: Character Error Rate Calculation

Another method of determining the performance
of the post-OCR error correction method is through
precision, recall and f1. Precision is the proportion
of correctly corrected characters to the total num-
ber of characters corrected. Recall measures the
proportion of correctly corrected characters as a
proportion of the total number of errors present
in the OCR output. The F1 score measures the
harmonic mean between the precision and recall
metrics, giving a balanced measure of the two. An
example of the calculations are given in Figure 5

6.3 Resources

LLMs require vast resources to run. The university
supplies a shared Jupyter space for students contain-
ing the NVIDIA A16 GPU with 64GB or VRAM.
A private machine learning computer with a 24GB
NVIDIA RTX 4090 GPU is also available through
the collaboration with the local tech company. Be-
cause the RTX 4090 GPU is faster in training and
inference than the university’s Jupyter space, that
GPU was used in the training and evaluation steps
of this thesis.

7 Results

After finetuning with and without preprocessing
techniques applied, the baseline and ByT5 models
were tested on the test section of the custom and
ICDAR datasets. The summary of these results are
shown in tables. Table 2 shows the CER improve-
ment of each configuration on each dataset. Table

10

https://github.com/jarobyte91/post_ocr_correction
https://github.com/jarobyte91/post_ocr_correction


n o 1 s y t 3 x t

n o i s y t e x t

n o 1 s y t e * 1

Precision (total correctly edited / total num character edited): 1
3 = 0.33

Recall (errors corrected / total original errors): 1
2 = 0.5

F1 Score: 2× Precision×Recall
Precision+Recall = 0.4

OCR

Ground Truth

Prediction

Figure 5: Precision, Recall, and F1 Score Calculation

3 shows the calculated F1 scores. Tables 4 and 5
show the recall and precision scores respectively.

Higher character error rate reductions are seen
in the results of the fine-tuned ByT5 models for
the custom dataset. For the ICDAR dataset the
higher character error rate reductions are seen in
the results from the baseline method. For most
datasets, the F1 score is highest in ByT5 models,
with the exception of the non-preprocessed ICDAR
dataset, in which the baseline has the highest F1
score. The F1 scores of the baseline method are not
that high on the ICDAR dataset primarily because
of low recall.

7.1 Llama results
Although the output of the model was consistently
found using regex, the results were not correct for
improving character error rate. The model was not
fine-tuned, but only told what to do. The Llama
model was not able to improve the OCR results for
either dataset. The Llama model was not able to
consistently output text that resembled the input
text, and would often hallucinate extra pieces of
output which were not present in the original input
text. This leads to a reduction in the text quality, as
the original text has not been preserved. Examples
of such errors in the output of Llama are given in
Section A.

7.2 Custom Dataset
The ByT5 model was fine-tuned on the custom
dataset as described in section 6. The results for
the different variations of the models and the differ-

ent preprocessing techniques are given in the top
section of Tables 2, 3, 4 and 5.

The leftmost section of each table shows the met-
rics for the baseline method. The middle section
shows the results for the base variant of the ByT5
model, this model is larger than the small model
shown on the right side of the figure.

The best results on the custom dataset are seen
in the experiment with all preprocessing applied by
the fine-tuned ByT5 model with a context length
of 50. In this configuration, the CER is reduced
by 56%. The best performance of the baseline
method is seen in the custom dataset with strange
characters removed, with a CER reduction of 48%.

7.2.1 Baseline Methodology
The baseline method improves the CER of the cus-
tom dataset in all preprocessing scenarios. The
biggest improvement is seen for the dataset with
strange characters removed, with 48.1% CER re-
duction. This is slightly better than for the dataset
without preprocessing, where the baseline method
gets a 47.8% CER reduction. Interestingly, lower-
casing the dataset reduced the performance of this
model by a lot: it only reduced the CER by 42% on
that dataset. The worst performance of the baseline
model was seen on the dataset with all preprocess-
ing techniques applied, in which case it reduced
the CER by 35%. Not all preprocessing techniques
are thus effective for improving the baselines CER
reduction.

The highest F1 score was seen in the experi-
ments with the base dataset without preprocessing

11



and with the dataset with strange characters re-
moved. This corresponds with the results that the
CER is reduced most for these datasets as well.
Precision values were very high, above 86% for the
lowercased dataset, up to 99% for the dataset with
strange characters removed. Recall values were
around 50% for all datasets except the one with
all preprocessing options enabled, where the recall
was only 39%. Precision values were higher than
the ByT5 models, but recall values were lower for
all datasets. The very low recall values compared
to the precision values is also why the F1 scores
for the baseline method consistently are lower than
those of the ByT5 models.

7.2.2 ByT5 Fine-tuned Model
The ByT5 model was fine-tuned and evaluated on
each dataset with context lenghts of 10, 25, 50 or
100 characters. The context length selected made
for large differences in CER reduction seen in all
datasets. The models with 10 and 100 character
context lengths consistently under-performed for
both model sizes (small and base), as well as for
all datasets.

The best results were seen in the experiments
with context lengths of either 25 or 50 characters.
The highest overall CER reduction in the thesis
was seen in the experiment with all preprocessing
techniques enabled, using the ByT5 model with
a context length of 50 characters. This yielded a
CER reduction of 56%.

The overall best result was seen in the larger
base model size. The small model was able to
outperform the base model in the experiment with
strange character removal and a context length of
25 characters. The results of the base model were
more consistent across preprocessing techniques
and context lengths however.

The highest F1 scores were seen for the ByT5
models. The base ByT5 model scored the high-
est overall F1 score of the results in this thesis, at
75% for the all preprocessing custom dataset with a
context length of 50 characters. The 50 characters
context length base model scored the highest F1
scores in all datasets except for the no strange char-
acters dataset, where the ByT5 small 25-character
context length model scored best. The ByT5 mod-
els scored better F1 scores in all datasets than the
baseline method.

The main reason that F1 scores are higher in the
ByT5 models is because of higher recall values.
Recall is consistently above 60% for ByT5 base

with a context length of 50 characters, compared
to the baseline at 50%. Precision scores were not
as high for the ByT5 model as for the baseline,
with the best scoring F1 models for ByT5 having
precision scores between 73% and 85%, whereas
the baseline has a precision rate between 86% and
99%.

7.3 ICDAR Dataset

Also for the ICDAR dataset, the different prepro-
cessing techniques have been applied in training
and testing of the baseline and ByT5 models. The
results for the different variations of the models and
the different preprocessing techniques are given in
the bottom section of Tables 2, 3, 4 and 5.

The leftmost section of the table shows the met-
rics for the baseline method. The middle section
shows the results for the base variant of the ByT5
model. The results for the small variant of the
ByT5 model are shown on the right side of the
table.

The best results on the ICDAR dataset are seen in
the experiment with the non-preprocessed dataset
by the baseline method. It reduces the CER by
21%. the best results on the ICDAR dataset ob-
tained by fine-tuning the ByT5 model is seen in the
experiment with all preprocessing, a small context
length of 10 characters and the small ByT5 model.
It reduces the character error rate by 4% in that
experiment.

7.3.1 Baseline Methodology
The baseline method scored worse on the ICDAR
datasets than on the custom datasets for all prepro-
cessing options. Still, the method was able to re-
duce CER in the base dataset by 21%. The method
performed worst on the lowercased dataset, only
reducing CER by 9%.

F1 scores were also lower for the ICDAR dataset
compared to the custom dataset in each of the pre-
processing options. The highest F1 score on IC-
DAR was seen in the experiment of the baseline
method on the base ICDAR dataset. For the other
datasets, ByT5 models scored better in F1, because
of their higher recall values.

Precision of the baseline method on ICDAR
datasets is very high, 100% on all datasets ex-
cept for the lowercased dataset where it scored
73%. Recall is very low for this method however,
with the best recall seen in the base dataset at 21%.
The lower recall values seen in the preprocessed
datasets are the reason that the F1 score for those

12



falls below the F1 score for the ByT5 models.

7.3.2 ByT5 Fine-tuned Model
The ByT5 models were not able to achieve high
CER reduction percentages in any of the context
length configurations. The best CER reduction
from ByT5 models on the ICDAR datasets was
seen in the experiment using ByT5 with a context
length of 10 characters on the ICDAR dataset with
all preprocessing. Most other experiments yielded
negative CER reductions, meaning that CER actu-
ally went up after using the model.

Both recall and precision values are very low
for the ByT5 models on the ICDAR datasets. The
highest recall was 39% for ByT5 small on the low-
ercased dataset. The highest precision value was
seen in the experiment using ByT5 small on the
all-preprocessing dataset with a context length of
10 characters. Low precision in the models leads to
many mistakes being introduced which increases
the CER more than it is reduced.

F1 values are higher for ByT5 models than the
baseline models in most ICDAR datasets, even in
experiments where CER actually increased. This is
because of the low recall that the baseline achieved
on the ICDAR data. Still, as the precision of the
baseline on ICDAR was very high, not many new
errors were introduced while consistently removing
a small subsection of the errors, overall leading to
a better result than that seen by ByT5 models.

8 Discussion

This thesis has shown the effectiveness of using
large language models in correcting OCRed text
in a sequence-to-sequence translation setting. The
proposed fine-tuned ByT5 base model showed bet-
ter performance than the currently available base-
line OCR correction method tested in our custom
modern documents datasets using preprocessing.
Llama 0-shot and few-shot learning proved inef-
fective in improving OCR results mostly due to
hallucinations of the model after several tokens of
input correction. The ByT5 fine-tuning approach
proved ineffective in correcting the publicly avail-
able ICDAR dataset. Most configurations of the
models showed an increase in the CER on most
datasets.

The ICDAR dataset is comprised of 18th, 19th
and early 20th century documents, which is likely
why the models fail to correct these OCR inputs.
The ByT5 model was trained on modern publicly
available data with the intention of use in modern

products, making it difficult for the model to learn
to correct text that looks incorrect in the eyes of
a modern English speaker. The baseline model
was able to show improvement on this dataset, it
does not rely on pre-trained language understand-
ing from modern documents and can thus adapt to
the old-English style text without issue. Finetuning
of large language models is aimed at modifying
the behavior of the model slightly in order to be-
come good at a particular task of interest. This is
done after pre-training so that the model already
has the basic understanding of the language be-
fore learning the specific task that the end-user
requires it for [13, 38]. For most applications, this
process works very well but for the case of OCR
correction on historic documents, the pre-trained
models proved incapable of adapting to the new
language. The same issue is seen in other tasks
that pre-trained LLMs are used on. For example,
where the task of named entity recognition is per-
formed with great accuracy on modern texts [42],
fine-tuning a named entity recognition LLM for
historic documents gives worse results [36]. Pre-
training an LLM on historic documents so that it
can specifically understand the language used in the
target texts can overcome this problem, but requires
a very large amount of historic documents. This
task has been performed successfully by Schweter
et al. [36], who pre-trained a custom BERT model
using historic documents, after which they fine-
tuned it on the named entity recognition task to get
competitive results in the HIPE-2022 competition.

For the custom dataset, the ByT5 base model
with a context length of 50 characters performed
the best out of all models. On the dataset with
all preprocessing options, 56% of character errors
found in the text before correction were removed.
This is a large improvement compared to the base-
line method which was only able to achieve a 48%
reduction in CER in the best case on the dataset
that had removed strange characters.

The results show that in combination with the
LLM models, preprocessing is able to increase
the performance of the models a lot. The best
result achieved without preprocessing is 8 percent-
age points worse in removing OCR errors than the
best result achieved with preprocessing. Not all
preprocessing options are equally effective, and
the effectiveness is dependent on the model de-
ployed. For the ByT5 models, lowercasing the
input raised the effectiveness of error correction
most, whereas this was the second worst option

13



Model Baseline ByT5-base ByT5-small
Context Length 30 10 25 50 100 10 25 50 100
Dataset

custom all preprocessing 0.3503 0.5041 0.5379 0.5564 0.4665 0.4944 0.5277 0.4744 0.3953
custom base dataset 0.4780 0.4139 0.4560 0.4178 0.3414 0.4119 0.4585 0.3747 0.3496
custom lowercased 0.4185 0.3975 0.4510 0.4770 0.2999 0.4194 0.4442 0.4457 0.2843
custom no strange characters 0.4813 0.4392 0.4773 0.3877 0.4061 0.4533 0.5030 0.4494 0.2705

ICDAR all preprocessing 0.1765 0.0185 -0.1350 -0.2613 -2.0097 0.0398 -0.0899 -2.0226 -1.2945
ICDAR base dataset 0.2083 -0.1789 -0.1566 -0.4590 -1.1584 0.0239 -0.3140 -0.3574 -0.8392
ICDAR lowercased 0.0929 -0.1570 -0.1285 -0.3125 -1.6214 -0.1224 -0.3385 -0.8723 -2.0093
ICDAR no strange characters 0.1176 -0.0186 -0.1297 -0.3355 -2.6247 -0.0238 -0.1814 -1.1110 -1.1123

Table 2: CER reduction of the models on the different datasets as a fraction of pre-OCR correction error rate

Model Baseline ByT5-base ByT5-small
Context Length 30 10 25 50 100 10 25 50 100
Dataset

custom all preprocessing 0.5455 0.6980 0.7357 0.7512 0.7228 0.6885 0.7235 0.7196 0.6907
custom base dataset 0.6581 0.6459 0.6886 0.6914 0.6633 0.6419 0.6858 0.6733 0.6567
custom lowercased 0.6313 0.6306 0.6863 0.7092 0.6591 0.6376 0.6760 0.6885 0.6460
custom no strange characters 0.6527 0.6632 0.7042 0.6848 0.6954 0.6616 0.7086 0.6949 0.6453

ICDAR all preprocessing 0.3000 0.2483 0.2771 0.3056 0.1835 0.2269 0.2922 0.1885 0.2202
ICDAR base dataset 0.3448 0.2475 0.3009 0.2489 0.2241 0.2690 0.2817 0.2910 0.2216
ICDAR lowercased 0.2462 0.2785 0.3028 0.2956 0.1943 0.2709 0.2817 0.2407 0.2046
ICDAR no strange characters 0.2105 0.2515 0.2752 0.2679 0.1624 0.2433 0.2601 0.2304 0.1953

Table 3: F1 scores of the models on the different datasets

for preprocessing in the baseline test. Lowercas-
ing is effective in reducing the number of possible
characters the model sees. This can be helpful for
fine-tuning the ByT5 model which now only has
to focus on the content of the text without needing
to perform on predicting the case of the text, al-
lowing it to more quickly adapt to the task of OCR
post-correction. Lowercasing also removes some
information however. Capital letters are used in
language for pre-determined reasons, giving extra
information on the words that can be expected. As
also noted by Brandsen et al. in [3], when pre-
processing the input data, the right balance needs
to be struck between reducing the variation of the
input so that the models are able to learn the pat-
terns we care about, whilst not throwing out too
much information which may be helpful in find-
ing the patters. Potentially, the baseline method
which did not have any pretraining done was able
to effectively use case-information in the correction
decisions, leading to a drop in performance when
such information was not available.

For the ICDAR datasets, preprocessing did help
improve scores in the best experiments for the

ByT5 models, but for the baseline method prepro-
cessing only hindered CER reduction. This shows
that before selecting pre-processing techniques, the
effectiveness of such techniques for the specific
model deployed need to be evaluated, as not all
models work well with preprocessing.

One- and few-shot learning showed not to be an
effective method for enabling OCR post-correction
in Llama models. The models did not consistently
output text based on the input given, and often
hallucinate large portions of text. This leads to
large mismatches between the output text and the
ground-truth text, as the ground-truth text in most
cases largely resembles the input text.

8.1 Limitations

In this thesis the general feasibility of using large
language models in OCR post-correction is shown.
There are also some limitations however. For one,
it is not shown that the methodology proposed here
is functional on datasets that are publicly available.
In searching for a dataset to test this on, it proved
difficult to find one that is representative of the task
for which this methodology was designed. It is

14



Model Baseline ByT5-base ByT5-small
Context Length 30 10 25 50 100 10 25 50 100
Dataset

custom all preprocessing 0.3898 0.5730 0.6430 0.6696 0.6956 0.5586 0.6178 0.6743 0.6751
custom base dataset 0.5024 0.5346 0.6016 0.6523 0.6487 0.5270 0.5910 0.6444 0.6221
custom lowercased 0.4978 0.5143 0.6005 0.6378 0.6768 0.5106 0.5799 0.6126 0.6530
custom no strange characters 0.4875 0.5521 0.6222 0.6652 0.6779 0.5344 0.6044 0.6269 0.6637

ICDAR all preprocessing 0.1765 0.1621 0.2176 0.2776 0.3383 0.1409 0.2250 0.3509 0.3240
ICDAR base dataset 0.2083 0.1939 0.2490 0.2417 0.3116 0.1796 0.2577 0.2785 0.2618
ICDAR lowercased 0.1481 0.2233 0.2451 0.2754 0.3162 0.2085 0.2625 0.2968 0.3870
ICDAR no strange characters 0.1176 0.1711 0.2145 0.2444 0.3514 0.1646 0.2077 0.3160 0.2563

Table 4: Recall scores of the models on the different datasets

Model Baseline ByT5-base ByT5-small
Context Length 30 10 25 50 100 10 25 50 100
Dataset

custom all preprocessing 0.9079 0.8927 0.8595 0.8554 0.7522 0.8969 0.8727 0.7713 0.7070
custom base dataset 0.9537 0.8158 0.8051 0.7356 0.6786 0.8206 0.8169 0.7050 0.6954
custom lowercased 0.8626 0.8150 0.8006 0.7986 0.6423 0.8484 0.8104 0.7859 0.6391
custom no strange characters 0.9873 0.8302 0.8111 0.7056 0.7138 0.8682 0.8563 0.7793 0.6280

ICDAR all preprocessing 1.0000 0.5302 0.3816 0.3400 0.1259 0.5823 0.4167 0.1288 0.1668
ICDAR base dataset 1.0000 0.3421 0.3804 0.2565 0.1749 0.5356 0.3107 0.3046 0.1921
ICDAR lowercased 0.7283 0.3700 0.3961 0.3190 0.1403 0.3866 0.3040 0.2025 0.1391
ICDAR no strange characters 1.0000 0.4743 0.3839 0.2965 0.1056 0.4663 0.3480 0.1813 0.1577

Table 5: Precision scores of the models on the different datasets

important that the documents have character error
rates low enough for the model to get a general
understanding of the task, but datasets of modern
documents in particular with low character error
rates were not available.

Another limitation of this thesis is that it was not
possible to test the large variant of the ByT5 model
for OCR correction. This is due to a hardware con-
straint. Fine-tuning large language models takes
vast resources and time, in particular the amount
of VRAM on available GPU devices is leading in
the feasibility of fine-tuning LLMs. This thesis
showed that the larger base ByT5 model performed
much better than the small ByT5 model, indicat-
ing that a larger variant of ByT5 might see more
improvement.

8.2 Future Work

For an improvement on the work done here, future
research could validate if the 50% CER improve-
ment found here is also achievable in other modern
document datasets. The best way to investigate this
would be by organizing a new competition specifi-
cally for modern documents. This requires curating

the ground-truth for a set of modern documents, to
create a dataset on which future methodologies can
be tested.

Another question left open is whether larger
language models perform better at the OCR post-
correcting task than the ByT5 model sizes tested
here. Future work investigating the effectiveness
of larger language models should make use of sev-
eral GPUs with enough VRAM to train these larger
models. For additional speedup, the different ex-
periments like they are done in this thesis can be
performed in parallel when more GPUs are avail-
able.

For future work, researchers could investigate
the possibility of fine-tuning the open-source
Llama models for OCR post-correction. The Llama
models have substantially larger architectures than
the ByT5 model fine-tuned in this thesis, making it
challenging to get the right resources to be able to
do so effectively, but the models also boast stronger
results in benchmark tests. Fine-tuning Llama mod-
els on the OCR post-correction task may reduce
issues with hallucination which would fix the main
problem encountered with the model here. Wu et

15



al. [47] describe the process of finetuning a Llama
model for question-answering on a domain spe-
cific task. Their published code can be adapted to
finetune the model for OCR post-correcting.

Future research could also investigate the pos-
sibility of pre-training a large language model on
older texts specifically, leading to a model which
might be more receptive to training to correct OCR
errors in this niche of documents in particular. In
that way, the effectiveness of large language mod-
els for OCR correction on old texts can be properly
evaluated. This was done for the task of named en-
tity recognition in [36]. The same methodology can
be adapted to fine-tune ByT5 for historic document
OCR correction.

As recall showed to be one of the areas which
could use more improvement in the ByT5 models
fine-tuned here, a hybrid approach making use of an
OCR-error detector alongside the ByT5 model for
OCR-error correction could be developed. Such an
OCR-error detector is part of the two-step approach
found in Schaefer et al. [35], Using a similar two-
step approach could show improvements above the
methodology here, as the model could be more
certain of the need for character modification when
the helper algorithm indicates possible OCR errors.

An optimisation that can be done to slightly im-
prove the results found here is to investigate the
exact context length that balances sufficient con-
text without overwhelming the model with input.
In this thesis it is shown that too little context leads
to worse performance, but too much context also re-
duces performance of the model. Within the range
between 10 to 50 characters this thesis has tested
the context length of 25 characters, but the ideal
context length could be anywhere in this range. For
a final optimization of the methodology, the opti-
mal context length could be investigated. Through
a sensitivity analysis where the context length is
increased by 1 character each time, the optimal
context length can be found which could slightly
improve on the results seen here.

The size of the model is more important than
the context length. A larger version of ByT5
likely scores significantly better at the OCR post-
correction task. This thesis shows the feasibility of
using LLMs for OCR post-correction, but future
work could improve on this by deploying larger
more resource-intensive models for the best per-
formance. Depending on the need for super high-
quality OCR output, the added compute time cost
of implementing these more resource heavy models

might be worth it, but this has to be analyzed on a
case-by-case basis, as in most cases the slight ben-
efit of OCR error correction over simpler models
might not be worth the extra latency and process-
ing cost that would come with deploying the larger
models.

9 Conclusion

9.1 Answers to Research questions
The research questions were introduced in section
1.6. Here I will shortly answer each of the research
questions based on the results of the experiments.

• RQ1: Can character-level LLMs perform bet-
ter in correcting OCR output than state-of-
the-art non-pretrained language model based
methods?

– The character-level LLM ByT5 outper-
forms the baseline of a state-of-the-art
non-pretrained language model on mod-
ern documents. However, it does not per-
form better on the ICDAR dataset.

• RQ2: Do finetuned character-level LLMs out-
perform the generative LLM Llama in post-
correcting OCRed text?

– Yes, finetuning the character-level LLM
ByT5 results in better performance than
the generative LLM Llama. While Llama
struggles to reliably correct OCR errors,
a finetuned version of ByT5 is effective
in reducing these errors.

• RQ3: How do preprocessing techniques im-
pact the effectiveness of the LLM post-OCR
correcting techniques deployed?

– Preprocessing has a large impact on the
effectiveness of ByT5 for error correc-
tion. Techniques such as lowercasing
and removing strange characters greatly
enhance the model’s ability to reduce the
character error rate.

9.2 ByT5 for OCR post-correction
The ByT5 models fine-tuned in this thesis show
the capability of recognizing and correcting OCR
errors in modern documents. The ability to do so is
strongly dependent on the context length given to
the models and the size of the models. The larger
"base" ByT5 model showed capability in learning
to correct OCR errors with the best configuration of

16



the input length of 50 characters on the dataset with
all preprocessing options, reducing the number of
OCR errors by 56%. This performance was better
than the performance of the baseline model which
scored a CER reduction of 48% on the dataset with
strange characters removed. The precision of the
baseline model was higher for all datasets, but the
recall was worse, leading to a lower level of CER
reduction for the baseline. This is also represented
in the higher F1 scores for the ByT5 models com-
pared to the baseline model in all datasets.

Context length has a strong impact on the effec-
tiveness of the ByT5 models. differences in CER
reduction of 13 percentage points are seen between
the best and worst selection of context lengths. In
the case of ByT5 small on the all preprocessing
dataset, choosing a context length of 25 charac-
ters reduced CER by 53%, whereas using the same
model but with a context length of 100 characters
reduced CER by only 40%. This shows that context
length is a very important parameter to get right
when fine-tuning pre-trained large language mod-
els on OCR post-correction. This is likely due to
the model having trouble "keeping in line" as the
context length increases, with the model tending
towards more random generation as opposed to the
specific task of correcting the input text.

For the best performing configurations of the
base model, the recall was much worse than the
precision, indicating that the models are generally
able to leave correct OCR text as-is, whilst some-
times being able to correct encountered OCR errors.
In the outputs of the models with low precision it
means that a lot of characters which were correct in
the OCR output were modified for the prediction.
This modification then leads to an error. As there
are far more correct than incorrect characters in
the original input, modifying characters when not
absolutely sure that they are in fact incorrect leads
to the introduction to many new errors. It is thus
more important that a model has high precision
than high recall. Missing a few errors (low recall)
is less bad than incorrectly adding errors through
low precision.

The highest recall was 0.696 from the 100-
character context length base model on the dataset
with all preprocessing options. This shows that the
area where most improvement is still to be had is
in the recall ability of the models. The models are
often able to correctly identify if a piece of text
is correct and should not be modified, but tend to
conserve OCR errors in order to prevent making

false-positive modifications.
Although ByT5 models have shown slightly bet-

ter performance on the custom dataset, they were
not able to improve the OCR on the ICDAR dataset.
Besides the higher performance on the custom
dataset, the increased processing time due to the
larger model size compared to the baseline makes
it hard to justify using the model. Only in settings
where the output needs to have the best possible
result, would using ByT5 be preferable over the
simpler baseline solution.

9.3 Llama for OCR post-correction
The Llama model did not show promising results
in correcting OCR text. zero-shot, as well as few-
shot learning did not get the model to perform the
task of correcting OCR errors reliably. In some
occasions the original text was left mostly intact,
with some corrections made, but in most cases only
the beginning of the original text was kept, where
the rest of the output consisted of hallucinated text
that could have followed the beginning of the input
text but which was not in fact in the true input. This
leads to a large mismatch between the predicted
text and the ground-truth text, making this method
of OCR correcting infeasible for practical use in
document error correction.

17



A Example Outputs of the Models

Example Outputs on ICDAR Dataset

ByT5
Semi-Correct Output. Some of the characters in this example are correctly modified. "thert" was correctly
changed to there, and "theit" to "their". It did not correctly identify that "we<" should have become "was",
and the "," has incorrectly been modified to be a ";".

INPUT : thert we<, theit pots a
GT : there was, their pots a
OUTPUT : there we ; their pots a

Baseline
Correct Output. The baseline method correctly modified the word offenffve to offensive. It also started
the quote that comes after it.

INPUT : which are offenffve : Not to l
GT : which are offensive:' Not to l
OUTPUT : which are offensive:' Not to l

Example Outputs on Custom Dataset

ByT5
Correct Output. The model has correctly identified that the comma in front of "burgemeester" should
not have been there. It also notes that a space is likely to come after the word "burgemeester". It did not
correctly predict the last character of the window, but this is to be expected as this could have realistically
been a variety of characters.

INPUT : lege van ‘burgemeester@@
GT : lege van @burgemeester e
OUTPUT : lege van @burgemeester v

Wrong Output. In this example, the word "ruimtelijkfysieke" has many mistakes in the OCR text.
Because of these mistakes, the model incorrectly assumes that the correct word should have been
"ruimtelijke". It therefore omits a large section of the word and adds more mistakes than corrections.

INPUT : gie op het hele ruimteli@xtysieke domein. voor dit
GT : gie op het hele ruimtelijkfysieke domein. voor dit
OUTPUT : gie op het hele ruimtelij@@@@@@ke domein. voor dit

Long Input Hallucination. In this example, the model is given a long input string. After the first few
characters, the prediction becomes surrealistic, as the output shows a continuous sequence of alterations
on the word "lokalings". A lot of mistakes are added in this output.

INPUT : @ings@sbiodn die voorkomen in diverse landschapsty pen
en waar eer ruimte is voor antwikkeling@@ van

GT : lingsgebieden die voorkomen in diverse landschapstypen
en waa@@@@r@ruimte is voor ontwikkeling@@ van

OUTPUT : lings@@@@lokalingslo@k@@@alin@@@gslokalings@@@@lokalin@
gsloka@lingslokalings@lokalingslokalingslokal

Baseline
Correct Output. In this example, the model correctly identifies that "_" should have been omitted.

INPUT : e planregels, veranderd _daadwe
GT : e planregels, veranderd @daadwe
OUTPUT : e planregels, veranderd @daadwe

Missed Identification Of Mistake. Here the baseline incorrectly modifies the "-" from the input into a
"·". In the GT text this should have been omitted entirely, leaving only a space.

18



INPUT : uurzame woonomgeving, - in rel
GT : uurzame woonomgeving, @@in rel
OUTPUT : uurzame woonomgeving, · in rel

Llama errors

Llama hallucinates text to the end of the correction. This extra text leads to very high error rates, as all the
extra characters are incorrect.

INPUT : waarbi) : aanpak van de bron prevaleert boven maatregelen
GT : waarbi) : aanpak van de bron prevaleert boven maatregelen
OUTPUT : waarbi) : aanpak van de bron prevaleert boven maatregelen en de afwenteling van lokale

Llama misses part of the output. Here the Llama model fails to include the last bit of text in its output,
leading to a large portion of text being missing which results in large character error rates.

INPUT : water van _ verschillende kwaliteit wordt zoveel mogelik gescheiden. ‘wanneer ook berg
GT : water van@@ verschillende kwaliteit wordt zoveel mogelijk gescheiden. @wanneer ook berg
OUTPUT : water van verschillende kwaliteit wordt zoveel mogelik gescheiden.

19



References

[1] Toufique Ahmed and Premkumar Devanbu.
“Few-shot training LLMs for project-specific
code-summarization”. In: Proceedings of the
37th IEEE/ACM International Conference
on Automated Software Engineering. 2022,
pp. 1–5.

[2] Dimitris Alikaniotis and Vipul Raheja. “The
Unreasonable Effectiveness of Transformer
Language Models in Grammatical Error
Correction”. In: Proceedings of the Four-
teenth Workshop on Innovative Use of NLP
for Building Educational Applications. Ed.
by Helen Yannakoudakis et al. Florence,
Italy: Association for Computational Lin-
guistics, Aug. 2019, pp. 127–133. DOI: 10.
18653 / v1 / W19 - 4412. URL: https : / /
aclanthology.org/W19-4412.

[3] Alex Brandsen. “Information extraction and
machine learning for archaeological texts”.
In: Discourse and Argumentation in Archae-
ology: Conceptual and Computational Ap-
proaches. Springer, 2023, pp. 229–261.

[4] Tom Brown et al. “Language models are
few-shot learners”. In: Advances in neural
information processing systems 33 (2020),
pp. 1877–1901.

[5] Guillaume Chiron et al. “ICDAR2017 com-
petition on post-OCR text correction”. In:
2017 14th IAPR International Conference
on Document Analysis and Recognition (IC-
DAR). Vol. 1. IEEE. 2017, pp. 1423–1428.

[6] Jacob Devlin et al. “BERT: Pre-training of
Deep Bidirectional Transformers for Lan-
guage Understanding”. In: Proceedings of
the 2019 Conference of the North Ameri-
can Chapter of the Association for Com-
putational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers). Ed. by Jill Burstein, Christy Do-
ran, and Thamar Solorio. Minneapolis, Min-
nesota: Association for Computational Lin-
guistics, June 2019, pp. 4171–4186. DOI:
10 . 18653 / v1 / N19 - 1423. URL: https :
//aclanthology.org/N19-1423.

[7] Xiaoqing Ding, Li Chen, and Tao Wu. “Char-
acter independent font recognition on a sin-
gle chinese character”. In: IEEE Transac-
tions on pattern analysis and machine intel-
ligence 29.2 (2007), pp. 195–204.

[8] John Evershed and Kent Fitch. “Correcting
noisy OCR: Context beats confusion”. In:
Proceedings of the First International Con-
ference on Digital Access to Textual Cultural
Heritage. 2014, pp. 45–51.

[9] Karez Hamad and Kaya Mehmet. “A de-
tailed analysis of optical character recog-
nition technology”. In: International Jour-
nal of Applied Mathematics Electronics and
Computers Special Issue-1 (2016), pp. 244–
249.

[10] Pengcheng He, Jianfeng Gao, and Weizhu
Chen. “DeBERTaV3: Improving DeBERTa
using ELECTRA-Style Pre-Training with
Gradient-Disentangled Embedding Sharing”.
In: The Eleventh International Conference
on Learning Representations. 2023. URL:
https://openreview.net/forum?id=
sE7-XhLxHA.

[11] Pengcheng He et al. “{DEBERTA}:
{DECODING}-{ENHANCED} {BERT}
{WITH} {DISENTANGLED} {ATTEN-
TION}”. In: International Conference
on Learning Representations. 2021. URL:
https://openreview.net/forum?id=
XPZIaotutsD.

[12] Thomas Hegghammer. “OCR with Tesseract,
Amazon Textract, and Google Document AI:
a benchmarking experiment”. In: Journal of
Computational Social Science 5.1 (2022),
pp. 861–882.

[13] Wenbo Hu et al. “Bliva: A simple multi-
modal llm for better handling of text-rich vi-
sual questions”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 38.
3. 2024, pp. 2256–2264.

[14] Abir Jaafar Hussain, Ali Al-Fayadh, and
Naeem Radi. “Image compression tech-
niques: A survey in lossless and lossy al-
gorithms”. In: Neurocomputing 300 (2018),
pp. 44–69.

[15] Vinh-Nam Huynh, Ahmed Hamdi, and An-
toine Doucet. “When to use OCR post-
correction for named entity recognition?” In:
Digital Libraries at Times of Massive So-
cietal Transition: 22nd International Con-
ference on Asia-Pacific Digital Libraries,
ICADL 2020, Kyoto, Japan, November 30–
December 1, 2020, Proceedings 22. Springer.
2020, pp. 33–42.

20

https://doi.org/10.18653/v1/W19-4412
https://doi.org/10.18653/v1/W19-4412
https://aclanthology.org/W19-4412
https://aclanthology.org/W19-4412
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD


[16] Jared Kaplan et al. “Scaling Laws for
Neural Language Models”. In: CoRR
abs/2001.08361 (2020). arXiv: 2001.08361.
URL: https : / / arxiv . org / abs / 2001 .
08361.

[17] Jan Kocoń et al. “ChatGPT: Jack of all trades,
master of none”. In: Information Fusion
(2023), p. 101861.

[18] Karen Kukich. “Techniques for automati-
cally correcting words in text”. In: ACM com-
puting surveys (CSUR) 24.4 (1992), pp. 377–
439.

[19] Alex Kuznetsov and Hector Urdiales.
“Spelling Correction with Denoising Trans-
former”. In: CoRR abs/2105.05977 (2021).
arXiv: 2105.05977. URL: https://arxiv.
org/abs/2105.05977.

[20] Kalev Leetaru. “Mass book digitization: The
deeper story of Google Books and the Open
Content Alliance”. In: First Monday (2008).

[21] Yinhan Liu et al. “RoBERTa: A Robustly
Optimized BERT Pretraining Approach”. In:
CoRR abs/1907.11692 (2019). arXiv: 1907.
11692. URL: http : / / arxiv . org / abs /
1907.11692.

[22] William B Lund, Daniel D Walker, and
Eric K Ringger. “Progressive alignment and
discriminative error correction for multiple
OCR engines”. In: 2011 International Con-
ference on Document Analysis and Recogni-
tion. IEEE. 2011, pp. 764–768.

[23] Lijun Lyu et al. “Neural OCR post-hoc cor-
rection of historical corpora”. In: Transac-
tions of the Association for Computational
Linguistics 9 (2021), pp. 479–493.

[24] Sabrina J Mielke et al. “Between words
and characters: A brief history of open-
vocabulary modeling and tokenization in
NLP”. In: arXiv preprint arXiv:2112.10508
(2021).

[25] David Miller et al. “Named entity extrac-
tion from noisy input: speech and OCR”. In:
Sixth Applied Natural Language Processing
Conference. 2000, pp. 316–324.

[26] Netherlands Ministry of Infrastructure and
Water Management. Ruimtelijkeplannen.nl.
Accessed 2024. URL: https : / / www .
ruimtelijkeplannen.nl/.

[27] Thi Tuyet Hai Nguyen et al. “Neural ma-
chine translation with BERT for post-OCR
error detection and correction”. In: Proceed-
ings of the ACM/IEEE joint conference on
digital libraries in 2020. 2020, pp. 333–336.

[28] Thi Tuyet Hai Nguyen et al. “Survey of post-
OCR processing approaches”. In: ACM Com-
puting Surveys (CSUR) 54.6 (2021), pp. 1–
37.

[29] Kostiantyn Omelianchuk et al. “GECToR
– Grammatical Error Correction: Tag, Not
Rewrite”. In: Proceedings of the Fifteenth
Workshop on Innovative Use of NLP for
Building Educational Applications. Ed. by
Jill Burstein et al. Seattle, WA, USA →
Online: Association for Computational Lin-
guistics, July 2020, pp. 163–170. DOI: 10.
18653/v1/2020.bea-1.16. URL: https:
//aclanthology.org/2020.bea-1.16.

[30] Juan Antonio Ramirez-Orta et al. “Post-ocr
document correction with large ensembles
of character sequence-to-sequence models”.
In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 36. 10. 2022,
pp. 11192–11199.

[31] Martin Reynaert. “OCR post-correction eval-
uation of early dutch books online-revisited”.
In: Proceedings of the Tenth International
Conference on Language Resources and
Evaluation (LREC’16). 2016, pp. 967–974.

[32] Christophe Rigaud et al. “ICDAR 2019 Com-
petition on Post-OCR Text Correction”. In:
Proceedings of the 15th International Con-
ference on Document Analysis and Recogni-
tion (2019). 2019.

[33] Christophe Rigaud et al. “ICDAR 2019 com-
petition on post-OCR text correction”. In:
2019 international conference on document
analysis and recognition (ICDAR). IEEE.
2019, pp. 1588–1593.

[34] Michael S Rosenberg. Sequence alignment:
methods, models, concepts, and strategies.
Univ of California Press, 2009.

[35] Robin Schaefer and Clemens Neudecker.
“A two-step approach for automatic OCR
post-correction”. In: Proceedings of the The
4th Joint SIGHUM Workshop on Compu-
tational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature.
2020, pp. 52–57.

21

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2105.05977
https://arxiv.org/abs/2105.05977
https://arxiv.org/abs/2105.05977
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://www.ruimtelijkeplannen.nl/
https://www.ruimtelijkeplannen.nl/
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://aclanthology.org/2020.bea-1.16
https://aclanthology.org/2020.bea-1.16


[36] Stefan Schweter et al. “hmbert: Historical
multilingual language models for named
entity recognition”. In: arXiv preprint
arXiv:2205.15575 (2022).

[37] Lukas Stankevičius et al. “Correcting dia-
critics and typos with a ByT5 transformer
model”. In: Applied Sciences 12.5 (2022),
p. 2636.

[38] Riste Stojanov et al. “A fine-tuned bidirec-
tional encoder representations from trans-
formers model for food named-entity recog-
nition: Algorithm development and valida-
tion”. In: Journal of Medical Internet Re-
search 23.8 (2021), e28229.

[39] Gustavo Sutter Pessurno de Carvalho. “Mul-
tilingual Grammatical Error Detection And
Its Applications to Prompt-Based Correc-
tion”. MA thesis. University of Waterloo,
2024.

[40] Tesseract OCR. Tesseract OCR 4.1.1.
GitHub Repository. https://github.com/
tesseract-ocr/tesseract. 2019.

[41] Hugo Touvron et al. LLaMA: Open and Ef-
ficient Foundation Language Models. 2023.
arXiv: 2302.13971.

[42] Asahi Ushio and Jose Camacho-Collados.
“T-NER: an all-round python library for
transformer-based named entity recogni-
tion”. In: arXiv preprint arXiv:2209.12616
(2022).

[43] Ashish Vaswani et al. “Attention is all you
need”. In: Advances in neural information
processing systems 30 (2017).

[44] Martin Volk, Lenz Furrer, and Rico Sennrich.
“Strategies for reducing and correcting OCR
errors”. In: Language Technology for Cul-
tural Heritage: Selected Papers from the
LaTeCH Workshop Series. Springer. 2011,
pp. 3–22.

[45] Luis Von Ahn et al. “recaptcha: Human-
based character recognition via web secu-
rity measures”. In: Science 321.5895 (2008),
pp. 1465–1468.

[46] Jules White et al. A Prompt Pattern Catalog
to Enhance Prompt Engineering with Chat-
GPT. 2023. arXiv: 2302.11382.

[47] Chaoyi Wu et al. “Pmc-llama: Further fine-
tuning llama on medical papers”. In: arXiv
preprint arXiv:2304.14454 (2023).

[48] Linting Xue et al. “Byt5: Towards a token-
free future with pre-trained byte-to-byte
models”. In: Transactions of the Association
for Computational Linguistics 10 (2022),
pp. 291–306.

[49] Yazhou Zhang et al. DialogueLLM: Context
and Emotion Knowledge-Tuned Large Lan-
guage Models for Emotion Recognition in
Conversations. 2024. arXiv: 2310.11374.

22

https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2310.11374

	Introduction
	What is OCR
	Challenges in Modern Documents
	Post-correcting
	Large Language Models
	Proposed Solution
	Research Questions

	Related Work
	Pre-transformer Post-OCR Correction Methods
	ICDAR Competitions
	Ensemble Sequence-to-Sequence
	Large Language Models for Text Correction
	Generative Models for Text Correction

	Datasets
	ICDAR dataset
	Custom Modern Documents Dataset

	Data Preparation and Cleaning
	Sequence alignment
	Misaligned documents
	Documents with high number of digits

	Dataset Preprocessing
	Input Lengths
	Text Preprocessing
	Lowercasing
	Strange Symbols Removal


	Methodology
	Error Correction Models
	ByT5
	Llama
	Baseline model

	Performance measures
	Resources

	Results
	Llama results
	Custom Dataset
	Baseline Methodology
	ByT5 Fine-tuned Model

	ICDAR Dataset
	Baseline Methodology
	ByT5 Fine-tuned Model


	Discussion
	Limitations
	Future Work

	Conclusion
	Answers to Research questions
	ByT5 for OCR post-correction
	Llama for OCR post-correction

	Example Outputs of the Models

