
BSc Thesis Applied Mathematics

Two-Face-Colourable Maps

Chendo Helmink

Supervisor: B. Manthey & J. van Rhijn

June 28, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science



Preface

I want to thank Bodo Manthey and Jesse van Rhijn for their help in producing this
paper.



Two-Face-Colourable Maps

Chendo. E. Helmink∗

June 28, 2024

Abstract

We consider the following problem. We are given a plane graph G = (V,E).
What is the smallest number of edges that we have to add to G to make it two-
face-colourable? We show that a plane graph is two-face-colourable if and only if
its inner vertices all have even degree. We present an algorithm that solves this
problem in polynomial time.

Keywords: two-face-colourable, maps, face colouring, graph editing, edge addition,
plane graphs

1 Introduction

The four-colour theorem is a fundamental theorem within graph theory. The theorem
states that every plane map could be coloured so that two faces that border each other
are coloured differently by using only four colours. The history of the four-colour theorem
goes back to the year 1852, when Francis Guthrie realised he could colour the map of
England using only four colours. He soon realised that this worked for every map he
could find. It took until 1976 before Kenneth Appel and Wolfgang Haken produced a
valid proof. It was the first major theorem to be proved by a computer [1].

Since then, graph coloring grew into a large field within graph theory [6]. An example
is sports scheduling, where edge coloring plays a big role [7]. In a lot of cases it can be
suprising that graph coloring can provide a solution. An example is solving Sudokus [10].

These graph coloring examples all look at the properties of a graph. There are also fields
within graph theory that look into modifications to graphs to obtain certain properties.
This field of graph theory is called graph editing. A famous family of graphs are Eulerian
graphs. All vertices in an Eulerian graph have even degree. An example of graph editing
is the article of F.T. Boesch, C. Stuffel and R. Tindell called “The Spanning Subgraphs
of Eulerian Graphs” [2]. This article describes an algorithm that finds the smallest
number of edges to add to a graph to make the graph Eulerian. Another paper about
graph editing related to Eulerian graphs is the paper by Konrad K. Dabrovski, Petr A.
Golovach, Pim van ’t Hof and Daniël Paulusma called “Editing to Eulerian graphs” [5].

There are no efficient algorithms known yet to check if a graph is three-face-colourable
and it is possible that such an algorithm does not even exist. However, checking for
a graph to be two-face-colourable is efficiently possible. If a graph is Eulerian, then
the graph is two-face-colourable. By allowing certain operations, every plane graph can
be made two-face-colourable. This paper focuses on achieving two-face-colourability by
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adding edges. We present an algorithm that finds a smallest set of edges to add to a
graph to make it two-face-colourable.

One of the fields where two-face-colourable maps can be of importance is livestock farm-
ing. For example, bulls and boars (male pigs) are both known to become aggressive
when they see a male of the same species. If one were to build the pens of these animals
in such a way that a bear does not see another bear and a bull does not see another bull,
this could reduce aggression.

2 Preliminary

This part of the paper explains some of the concepts that are used within the rest of the
paper.

2.1 Basic terminology and notation

In this paper we look at planar graphs. A graph is said to be planar if it can be drawn
in the plane so that its edges only intersect in their ends. A plane graph is a drawing
of a planar graph such that its edges only intersect in their endpoints. Such a drawing
is called an embedding. If G = (V,E) is a plane graph, then G divides the plane into
connected regions which are called faces. The face with unbounded area is called the
outer face. A face-dividing edge we define to be an edge between two vertices within a
face, such that the face gets divided into two new faces. Two faces are adjacent if they
share an edge.

We focus on two-face-colourable graphs. A graph is two-face-colourable if its faces can
be coloured with two distinct colours in such a way that if two faces are adjacent, they
receive distinct colours. A plane graph that is two-vertex-connected, we call a map.
When the embedding of a graph is fixed, we can divide the vertices of the graph into
outer vertices and inner vertices. Outer vertices are adjacent to the outer face and inner
vertices are not adjacent to the outer face. The parity of a vertex is even when a vertex
has even degree and odd when a vertex has odd degree.

Given a plane graph G, one can define another graph G∗ as follows: Corresponding to
each face f of G there is a vertex v∗ of G∗ and corresponding to each edge e of G there
is an edge e∗ of G∗; two vertices v∗1 and v∗2 are joined by the edge e∗ in G∗ if and only
if their corresponding faces f and g are separated by the edge e in G. The graph G∗ is
called the dual of G. The dual of a graph is planar [3, Chapter 9.2].

A graph H is a subgraph of G (written H ⊆ G) if V (H) ⊆ V (G) and E(H) ⊆ E(G).
Similarly, a graph GS is called a supergraph of G if and only if G is a subgraph of GS . A
subset M of E is called a matching in G if no edges in M are adjacent in G. A matching
that covers every vertex of G is called a perfect matching.

From now on, G = (V,E) denotes a map G, with the set of vertices V and the set of
edges E, where |V | = n and |E| = m. The set of faces of a map we denote by F . The
dual of a map G we denote by G∗.
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3 Two-face-colourable maps

A plane graph is called two-face-colourable if every face of the graph can be coloured in
such a way that no two faces that are adjacent to each other have the same colour and
the number of distinct colours is at most two. Not every graph has this property.

An example of a plane graph that is not two-face-colourable is shown in Figure 1.

Figure 1: Example of a plane graph that is not two-face-colourable

One possible way to obtain a plane map that is two-face-colourable is by adding edges
to a map G. We focus on the following research question.

Research Question: Given a map G = (V,E), what is the smallest k ∈ Z such that
there exists a set D of k face-dividing edges with G′ = (V,E ∪D) is two-face-colourable?

3.1 Assumptions, observations and restrictions

For this bachelor’s thesis, we look at plane graphs and therefrom follow some restrictions.

The first restriction is that we can only add edges that do not intersect each other except
from their endpoints. This restriction follows from the fact that if edges intersect, then
the embedding of the graph is not planar anymore. We are only allowed to add edges
within inner faces. We chose to do so as otherwise a vertex that was an outer vertex
in the original graph, could become an inner vertex after adding an edge. We do allow
multiple edges between vertices since otherwise not every graph can be made two-face-
colourable by adding edges. All maps G can be made two-face-colourable by duplicating
every edge in G since this results in an Eulerian map.

We assumed that the embedding of the graph is given. This makes the problem well-
defined as it is now clear which edges we are allowed to add to the graph and which face
is the outer face. The edges which we are allowed to add to a graph, we call the potential
edges. Since the set of potential edges of a graph is easy to determine, we assume this
set of potential edges to be given as input. Potential edges that lie within distinct faces
are considered distinct edges.

We also assume that the graph is two-vertex-connected. If the graph is not two-vertex-
connected, then we can divide the faces into two subsets, such that for every face in the
first set, none of the faces of the second set are adjacent to that face. We can look at
these two subsets separately.

Since we only consider maps, having loops in our graph makes no sense. Therefore we
consider all graphs to be loopless graphs.
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3.2 Properties

If within a map there exists an inner vertex that is adjacent to an odd number of
faces then this graph is not two-face-colourable. This shows that if a map is two-face-
colourable, then all inner vertices have even degree. We need this to prove Theorem 3.
We include a simple proof.

Theorem 1. If a map is two-face-colourable, then all inner vertices have even degree.

Proof. Let G be a map. Let there exist at least one inner vertex with odd degree. Let
v0 be an inner vertex with odd degree, where its degree is denoted by d0. Since all maps
are two-vertex-connected, d0 ≥ 3. Let f1, ...., fd0 be the faces adjacent to v0. Let G0 be
the subgraph of G that consists only of the vertices and edges of the faces f1, ...., fd0 .
The dual (without the outer face of G0) corresponding to G0 is a cycle of length d0.
Since d0 ≥ 3 and d0 is odd, the chromatic number of the dual is at least 3. This implies
that the chromatic number of G0 is at least 3 as well [3, Page 158]. The graph G0 is
therefore not two-face-colourable. Since G0 is not two-face-colourable, the supergraph G
is not two-face-colourable either. This shows that if a graph is two-face-colourable, then
all inner vertices have even degree.

From now on we consider the number of faces that a vertex is adjacent to, to be the
number of faces minus the outer face. This comes from the fact that when colouring a
graph, we decide to only assign colours to the faces that are not the outer face. If we
would assign a colour to the outer face, then the only graphs that are two-face-colourable
are graphs that consist of only faces that all completely lie within another face (except
the outer face). In our case we are colouring a map. The outer face is also not part of
the map itself and therefore it does not make sense to colour the outer face.

Let G = (V,E) be a plane graph. Let f1 and f2 be two faces in G that share an edge e.
Let G∗ = (V ∗, E∗) be a dual of G. Let v∗1 and v∗2 be the vertices in G∗ that represent f1
and f2 respectively. Since f1 and f2 share an edge, there exists an edge e∗ in G∗ with
v∗1 and v∗2 as endpoints. Since faces are connected and both f1 and f2 contain e, we can
draw a line from v1 to a point p on the edge e and a line from v2 to p, such that the edge
consisting of these two lines combined, intersects with e and has v1 and v2 as endpoint.
Since the faces are connected and have no edges of G within the area enclosed, e does not
intersect any other edges in G. Therefore we can always draw a dual of a graph in such a
way that every edge uv in G∗ only intersects with the shared edge of the corresponding
faces f and g in G. From now on we assume that every dual of a graph is drawn in such
a way.

This way of drawing the dual helps us to prove the next theorem. We need this theorem
to prove Theorem 3.

Theorem 2 (From Graph theory with applications [3, Exercise 9.2.3]). If a plane map
G is Eulerian then G∗ is two-colourable.

Proof. Let G be a plane map. Assume G∗ is not two-colourable. This implies that G∗

is not bipartite. If a graph is not bipartite then it contains an odd cycle so G∗ contains
an odd cycle C.

Let FC be the set of faces of G that correspond to the vertices in C. Since C is odd, C
contains of an odd number of edges. An edge between two vertices in G∗ implies that
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the two faces in G corresponding to these two vertices share an edge. Since C contains
an odd number of vertices, FC contains of an odd number of faces.

Since every edge in C intersects exactly one shared edge of faces FC and C contains an
odd number of edges, there are an odd number of edges contained in the faces of FC

that intersect C.

Let Ecross be the set of edges in G that intersect C. Note that every edge in C corresponds
to exactly one edge in Ecross. Since C contains an odd number of edges, Ecross contains
an odd number of edges as well. Since C is a closed cycle, C encloses an area in G.

Let Vin be the vertices that lie within the area enclosed by C. Let Ein be the set of edges
between vertices in Vin.

For v ∈ Vin let deg(v) = din(v) + dcross(v). Here din(v) is the number of edges in Ein

that has v as an endpoint and dcross(v) is the number of edges in Ecross that has v as
an endpoint. Let sd be the sum of the degrees of the vertices Vin. Since all edges in Ein

have two endpoints in Vin,
∑

v∈Vin
din(v) = 2k, with k ∈ N. The edges in Ecross all have

exactly one endpoint within Vin. Therefore
∑

v∈Vin
dcross(v) = l, with l an odd positive

integer. Since sd =
∑

v∈Vin
din(v) + dcross(v) = 2k+ l, we have that sd is an odd number.

Since sd is odd, there must exist at least one vertex v0 in Vin such that deg(v0) is odd.

Since G contains an odd vertex, G is not Eulerian. Thus, we have shown that if G∗ is
not two-colourable then G is not Eulerian. This implies that if G is Eulerian, then G∗

is two-colourable.

We have now given a proof that works for Eulerian plane graphs. All vertices in Eulerian
graphs have even degree. The maps we are looking at do not have this property. The
proof of the next theorem shows why even parity for all inner vertices is sufficient and
necessary for a map to be two-face-colourable.

Theorem 3. A map is two-face-colourable if and only if all inner vertices have even
degree.

Proof. If a map is two-face-colourable, then all inner vertices have even degree by The-
orem 1.

Let G be a map such that all inner vertices have even degree. The sum of the degrees of
all inner vertices is even. Since the degree sum of all vertices must be even, the degree
sum of the outer vertices must be even as well. This implies that there are an even
number of odd outer vertices.

Let C be the cycle of outer vertices. Let v0 be an outer vertex with odd degree. Walk
around C clockwise until we find another vertex v1 with odd degree. Connect v0 to v1
with an edge via the outer face. Continue walking around C until we find two more
vertices with odd degree and connect them with an edge via the outer face as well.

Since there are an even number of odd outer vertices, we can continue this process until
all odd outer vertices are connected to another odd outer vertex via an edge. None of
these edges intersect, so the resulting graph G1 is still a plane graph.

Since all vertices of G1 are even, G1 is Eulerian. By Theorem 2 the dual G∗
1 is two-

colourable. Note that adding edges in the outer face adds new vertices in G∗
1 compared
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to G∗. All edges and vertices in G∗ still exist in G∗
1. Therefore the chromatic number of

G∗ is smaller or equal to the chromatic number of G∗
1.

Since G∗
1 is two-colourable, G∗ is two-colourable. Since G∗ is two-colourable, G is two-

face-colourable.

We have now showed that to answer our research question, we can look at the following.
Given a map G = (V,E), what is the smallest k ∈ Z such that there exists a set D of k
face-dividing edges with all inner vertices in G′ = (V,E ∪D) having even degree?

4 Algorithm

We design an algorithm to compute the smallest number of edges k that we have to
add to a graph to make the graph two-face-colourable. This algorithm should be able
to compute the value k in a time that is polynomial in |V |. Since the embedding of the
graph is given, we also know which vertices are the outer vertices of the graph.

By Theorem 3, to make a graph two-face-colourable it is necessary and sufficient that
all inner vertices have even degree. Let v0 and vk be two distinct odd inner vertices. If
we add edges v0v1,v1v2,...,vk−1vk to create a path v0v1....vk−1vk between two odd inner
vertices v0 and vk, then the degree of both odd inner vertices increases by one and they
become even inner vertices. All other vertices that lie on the path do not change parity
since they are not endpoints of the path and therefore two edges of the path are adjacent
to such a vertex.

We can also add a path from an odd inner vertex to an outer vertex. As shown before,
the degrees of the outer vertices do not play a role for our problem. By adding a path
between an odd inner vertex and an outer vertex, the degree of the odd inner vertex
increases by one. The degree of the outer vertex also increases by one. The degrees of
all other vertices on the path increase by two.

The potential graph GP is the graph consisting of vertices V and the set of potential
edges EP . With potential distance between two vertices we mean the distance between
these vertices in the potential graph. A potential path is a shortest path of potential edges
between two vertices.

4.1 Finding distance between odd inner vertices

We now have to determine for every odd inner vertex how many edges we have to add to
create a new path between this vertex and every other odd inner vertex. We also have
to find how many edges we have to add to create a new path from this odd inner vertex
to the boundary of the graph. We now want to compute the potential distance between
all odd inner vertices.

Since the set of potential edges of our graph is given, we can compute the shortest
potential path between two vertices. The potential distance between two odd inner
vertices is the length of the shortest potential path between two odd inner vertices. To
find the potential distances between vertices we make use of the breadth-first search
algorithm [8, Chapter 5.1]. This algorithm is often used to find the shortest distance
between two vertices.
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4.2 Adding edges

Now that we have found the potential distances between all odd inner vertices and the
potential distances to the boundary of these odd inner vertices, we have to determine
which edges to add to our original graph. For all odd inner vertices we either connect
them to another odd inner vertex or to a boundary vertex.

Note here that when connecting an odd inner vertex v0 to another odd inner vertex v1,
this not only changes the parity of v0 from odd to even, but also the parity from v1 from
odd to even. When an odd inner vertex is connected to the boundary, only one odd
inner vertex changes parity from odd to even.

4.3 Finding smallest number of edges to add to our graph

To find the smallest number of edges k that we have to add to our graph, we have to
find a minimum weight perfect matching [9, Page 262]. We set up a matching graph.
The graph GM = (VM , EM ) we denote as the matching graph. The set of vertices VM

of our matching graph consists of all odd inner vertices and a copy of all these vertices
that all represent the boundary. The set of edges EM of our matching graph consists of
edges between every pair of vertices in VM .

The cost of matching two odd inner vertices is equal to the potential distance between
these vertices. The cost of matching an odd inner vertex with a boundary representing
vertex is equal to the potential distance to the closest outer vertex. The cost of matching
two boundary representing vertices is zero, since the degree of outer vertices is not of
importance to us and therefore we never add a potential path between boundary vertices.
When we match two vertices, we add the edges of a shortest potential path between the
two vertices to our set of added edges. It could occur that added edges intersect each
other. This causes our graph to not be planar anymore. We rearrange the edges in a
way that they do not intersect.

We first run BFS. The total running time of BFS is O(|V | + |E|) [4, Page 534]. The
weighted minimum perfect matching algorithm has total running time of O(|V |4) [9,
Page 261]. Every vertex in a face is adjacent to at most one potential edge. Therefore
rearranging the edges has a total running time O(|V | · |F |). We conclude that our
algorithm computes a solution in polynomial time in |V |.

4.4 Pseudocode

In the following pseudocode, we use several symbols. The symbols which have not been
introduced earlier are defined as follows.

With p we denote |VM |. We define added edges to be potential edges that are added
to our graph. The cost(vi, vj) equals the potential distance between vi and vj and is
the cost of using an edge vivj in the graph GM . Since the potential distance between
vi and vj is the same as between vj and vi, cost(vi, vj) = cost(vj , vi). The potential
distance between two vertices v0 and v1 we abbreviate with pd(v0,v1). A set of vertices
that are adjacent to an added edge within a face f we denote by Saf . We denote the set
of edges contained in the shortest potential paths between vertices that are matched by
our algorithm by DM .

The input of our algorithm is a plane map G = (V,E) with faces F .
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Algorithm 1 Finding optimal solution
1: for all odd inner vertices v in V do
2: Let BFS run in GP from v to find pd(v,u) for all vertices u ̸= v

and compute a sp(v,u).
3: end for
4:
5: Create graph GM with EM and VM empty
6: Create empty set DM

7: Let VM = v1, v2, . . . , vp ∪ b1, b2, . . . bp
8: for i = 1, 2, . . . , p do
9: for j = i+ 1, i+ 2, . . . , p do

10: Add edge vivj to EM with cost(vi, vj) = pd(vi,vj) in G
11: Add edge bibj to EM with cost(bi, bj) = 0
12: end for
13: Add edge vibi to EM

14: Find outer vertex b∗ with smallest potential distance from vi.
15: cost(vi, bi) = pd(vi,b∗).
16: end for
17:
18: Find a minimum weight perfect matching M for GM

19:
20: for all edges e ∈ EM do
21: Add all edges from sp(e) to DM

22: end for
23:
24: Run Algorithm 2

Algorithm 2 Rearranging edges
1: for all faces f in G do
2: i = 0
3: for all v in f clockwise do
4: if v is adjacent to an added edge within f then
5: i = i+ 1
6: Add v to Saf with label i.
7: end if
8: end for
9: Remove all added edges within f from G

10: while Saf is not empty do
11: for two vertices (u,v) with lowest label in Saf do
12: Add edge uv to G
13: Remove u,v from Saf

14: end for
15: end while
16: end for
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v3 v4

v5 v6

e1

e2

Q2

R2

v1v2

Q1

R1

Figure 2: The path P1 is v3Q1v1v0Q2v4. The path P2 is v5R1v2v0R2v6. The
path P3 is v3Q1v1v2R

∗
1v5 and the path P4 is v4Q

∗
2v0R2v6. The vertices v0 until

v6 could be nondisjoint and Q1, Q2, R1 and R2 could be empty.

5 Proof of correctness

This section provides a proof that our algorithm returns an optimal solution. For this
section we need some definitions. We define an added path to be a path consisting of
added edges. We define Ea to be the set of potential edges that is added to our graph
by the algorithm before rearranging the edges.

We first give a proof that the algorithm returns a feasible solution. By Theorem 3 our
final graph needs to be a plane graph and all inner vertices need to obtain even degree.
Algorithm 1 computes a set of edges Ea that can intersect. We show that these edges
can be rearranged such that they do not intersect, while returning a set of edges with
same cost as Ea and not changing degrees of vertices in G.

The idea of rearranging the edges is as follows. Within a face we look at all vertices
that are adjacent to an added edge within that face. We remove the edges between all
vertices within the face. The vertices that were adjacent to an added edge within the
face we connect to each other pairwise and clockwise such that all these vertices are still
adjacent to exactly one added edge within the face. To prove that this works we need
that all vertices are adjacent to at most one added edge within the face and that there
are an even number of vertices within the face that are adjacent to an added edge. The
following two lemmas are needed to prove Lemma 6.

We introduce a new notation for following a path in opposite direction. Let P1 be the
path from v0 to v1. The opposite path from v1 to v0 we denote by P ∗

1 . A drawing is
included in Figure 2 to get a better image of the next proof.

Lemma 4. Within Ea, all vertices are adjacent to at most one added edge within a face.

Proof. We give a proof by contradiction. Let M be the minimum perfect matching found
by our graph. Let SM be a set of shortest potential paths between the matched vertices.
Recall that Ea is the set of edges that are contained in SM .
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Let f1 be a face that contains a vertex v0 that is adjacent to two added edges e1 and
e2 in f1. Let v1 and v2 be the second endpoints of e1 and e2 respectively. There exists
paths P1 and P2 in SM such that e1 lies on P1 and e2 lies on P2. We distinguish two
cases.

The first case is that P1 is the same path as P2. Since both e1 and e2 lie on P1, part of
P1 is v1v0v2. However, replacing this part of P1 by v1v2 lowers the number of edges on
the path and does not change the endpoints of the path. This contradicts that P1 is a
shortest potential path.

The second case is that P1 and P2 are two distinct paths.

Let v3 and v4 be the endpoints of P1. Let v5 and v6 be the endpoints of P2. Let P1 be
v3Q1v1v0Q2v4 such that Q1 contains all edges between v3 and v1 on P1 and Q2 contains
all edges between v0 and v4 on P1. Let P2 be v5R1v2v0R2v6, with R1 the edges between
v5 and v2 and R2 the edges between v0 and v6.

Let P3 be v3Q1v1v2R
∗
1v5. Let P4 be v4Q

∗
2v0R2v6. The paths P1 and P2 correspond

to a matching of v3 to v4 and v5 to v6 in the matching graph. The paths P3 and P4

correspond to a matching of v3 to v5 and v4 to v6 in the matching graph. In both cases
all four vertices are matched. See Figure 2 for an image of this situation.

The paths P1 and P2 together consists of the same edges as P3 and P4 together, except
that in the second case e1 and e2 are removed and v1v2 is added. Since P3 and P4

together contain of one edge less than P1 and P2 together, the cost of matching v3 to v5
and v4 to v6 is at least one less than matching v3 to v4 and v5 to v6.

Note that it could happen that this new matching matches two boundary vertices to
each other, matching such two vertices gives a cost of zero in the matching graph so this
still gives a lower cost. Matching v3 to v5 and v4 to v6 gives a matching with lower cost
than M . This contradicts that M is a minimum perfect matching.

Note that P1 matches (v3,v4), P2 matches (v5,v6), P3 matches (v3,v5) and P4 matches
(v4,v6). Let ti (v,u) be the edge in M such that Pi matches v and u.

We have not made any assumptions on v0, v3, v4, v5 and v6 being distinct. We now look
at the cases where some of these vertices are the same. Note that v0 can not be the same
vertex as v3 and v5 since v1 lies on the path between v3 and v0 and similarly v2 lies on
the path between v5 and v0. Since both paths P1 and P2 have distinct endpoints, v3 can
not be the same vertex as v4 and v5 can not be the same vertex as v6.

The first case is that v3 and v6 are the same vertex. In this case we can replace v6 by
v3 in our matching. In this case we get t2 (v5,v3) and t4 (v4,v3). All vertices are still
matched the same number of times and no vertices are matched to themselves so nothing
changes in our reasoning. The case v4 = v5 has the same reasoning.

The second case is that v4 is the same vertex as v6. In this case we can replace v6 by v4
in our matching. In this case we get t2 (v5,v4) and t4 (v4,v4). Note that v4 was matched
twice via both P1 and P2. This implies that v4 is a boundary vertex. We now have
the case that v4 is matched to itself. Since v4 is a boundary vertex, it is represented
by two distinct boundary representing vertices in GM . We can match these two distinct
boundary vertices to each other with cost zero. This still yields a perfect matching with
lower cost than M so our reasoning still holds.
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We now still remain with the case that v4 or v6 equals v0. If exactly one of the vertices
v4 and v6 is the same as v0 we just replace v4 or v6 by v0 and the rest of our reasoning
remains the same.

If both v4 and v6 are equal to v0 then we get the following sub case of the second case.
We have t1 (v3,v0), t2 (v5,v0) and t3 (v3,v5). In the case that v0 = v4 = v6, both Q2 and
R2 are empty. This is the only case that causes one of the paths P1 until P4 to be empty,
namely P4. If a path is empty then that path simply does not exist. Therefore after
replacing P1 and P2 by P3 we have that v0 was matched twice, but is now not matched
anymore.

Since v0 was an endpoint of two paths, we have that v0 is a boundary vertex. Therefore
v0 is represented by two distinct boundary vertices. We can match these boundary
representing vertices to each other with cost zero and the rest of our reasoning is the
same as the second case.

We have now looked at all cases. We conclude that within Ea, all vertices are adjacent
to at most one added edge within a face.

From Lemma 4, we can easily get to the following lemma.

Lemma 5. Within Ea, every face has an even number of vertices that is adjacent to an
added edge within that face.

Proof. By Lemma 4, every vertex within a face is adjacent to at most one added edge
within that face. Therefore no added edges share an endpoint within a face. Since every
added edge has two endpoints, the total number of vertices that is adjacent to an added
edge within a face is even.

The following lemma shows that we can rearrange the edges such that they do not
intersect.

Lemma 6. It is always possible to rearrange the edges of Ea, such that no edges intersect
and all vertices are still an endpoint of the same number of edges.

Proof. Recall that all our added edges lie within a face. By Lemma 4 a vertex is never
adjacent to more than one added edge within a face. Therefore all vertices within a face,
are either adjacent to one added edge or to zero added edges within that face.

By Lemma 5, there are an even number of vertices within a face that are adjacent to an
added edge. Let Vface be the set of vertices within a face f1 that are adjacent to an added
edge within f1. Let q = |Vface|. Start at one vertex within the face that is adjacent to
an added edge within f1 and call this vertex v1. Now walk around the vertices of the
face f1 clockwise and call the next vertex, that is adjacent to an added edge, v2 and so
forth until we arrive at vertex vq.

The set of edges X could have two added edges that intersect in f1. If we remove the
added edges of X that lie within f1 and replace them with the following new added
edges, we could make sure that no two added edges intersect anymore: add an added
edge between v1 and v2, between v3 and v4 and so forth until vq−1 and vq. Still all
vertices v in Vface are adjacent to exactly one added edge. Therefore this returns a set of
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edges that has the same cost as Ea, contains no intersecting edges and does not change
the degree of vertices.

We now give a proof that our algorithm computes a set of edges such that in the resulting
graph all inner vertices have even degree and show that our algorithm computes a feasible
solution.

Lemma 7. All inner vertices have even degree after adding the edges in Ea.

Proof. Let M be the minimum perfect matching found by our graph. Let SM be a set of
shortest potential paths between the matched vertices. Recall that Ea is the set of edges
that are contained in SM . All odd inner vertices are an endpoint of exactly one path in
SM . All even inner vertices are not an endpoint of a path in SM . Outside of these added
paths, no other edges are added to our graph. Therefore all odd inner vertices change
parity and all even inner vertices do not change parity.

Theorem 8. Algorithm 1 computes a feasible solution.

Proof. By Lemma 7 all inner vertices have even degree. By Lemma 6 no edges intersect.
Therefore our algorithm computes a plane graph. By Theorem 3 these two properties
are sufficient for a graph to be two-face-colourable. We conclude that the algorithm
computes a feasible solution.

We now show that Algorithm 1 computes an optimal solution. We do this by showing
that an optimal solution can be partitioned into paths such that we can compare these
paths with the paths between the matched vertices in our matching graph. To perform
the partitioning into paths, we first have to show that an optimal solution is acyclic.

Lemma 9. An optimal solution contains no cycles.

Proof. Let X be an optimal solution. Let EX be the set of edges that X contains.
Assume that there exist edges e1 until ec in EX such that e1 until ec form a cycle C. All
vertices in a cycle have degree 2. Therefore deleting e1 until ec from EX does not change
the parity of any vertex. Therefore removing e1 until ec from EX gives a solution with
lower cost than X. This contradicts that X is an optimal solution.

We now show how an acyclic solution can be partitioned into paths with desired prop-
erties. These properties are the endpoints of the paths and the edge-disjointness of the
paths.

Theorem 10. Given an acyclic solution X there exists a collection of paths PP such that
this collection contains the same edges as X, with all odd inner vertices in G being an
endpoint of a path in PP exactly once, all even inner vertices in G not being an endpoint
of a path in PP and all paths in PP being edge-disjoint.

Proof. Let X be an acyclic solution. Let EX be the set of edges that X contains. Let
PX be the set of paths such that every path consists of one edge of EX and every edge
is contained in exactly one path.

Let v0 be an inner vertex that is an endpoint of at least two paths in PX . Let v1 and v2
be endpoints of two paths with endpoint v0. Since X is acyclic, the vertices v1 and v2
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are distinct. We remove the paths v0 . . . v1 and v0 . . . v2 from PX and replace them with
the path v1 . . . v0 . . . v2 containing the same edges as contained in the paths v0 . . . v1 and
v0 . . . v2 together. This reduces the number of paths with v0 as endpoint by two.

Since every edge in EX is contained in exactly one path in PX , PX was edge-disjoint at
the start of this process. During our process, every time we remove paths and replace
them with a new path, the new path consists of the exact same edges as the paths that
get removed. During this process replacing paths in PX is the only operation. Therefore
PX is still edge-disjoint after replacing paths by new paths.

Since even inner vertices are an endpoint of an even number of paths and odd inner
vertices are an endpoint of an odd number of paths in PX , we can continue this process
for all inner vertices until all even inner vertices are an endpoint of zero paths in PX and
all odd inner vertices are an endpoint of exactly one path in PX .

We now show that Algorithm 1 computes an optimal solution.

Theorem 11. Algorithm 1 computes an optimal solution.

Proof. Let X be an optimal solution. By Lemma 9 an optimal solution is acyclic. By
Theorem 10, the solution X can be partitioned into paths, such that the paths are edge-
disjoint, all odd inner vertices are an endpoint of exactly one path and all even inner
vertices are not an endpoint of a path. After partitioning X into paths, if two odd inner
vertices are connected by a path in the potential graph, then we match them in the
matching graph. If an odd inner vertex is connected by a path to the boundary then we
match the odd inner vertex to a boundary representing vertex in the matching graph.

The cost of matching two vertices in the matching graph equals the shortest potential
path between these vertices. Since the potential paths created by partitioning X into
paths have length at least as large as the shortest potential path, the total number of
edges in X equals at least the cost of the matching M1 that matches all endpoints of the
paths created by partitioning X into paths.

Let cost(M1) be the cost of matching M1. There are an even number of boundary
representing vertices that are unmatched. Matching these boundary representing vertices
pairwise to each other does not increase the cost. Matching these boundary vertices,
together with M1 gives a perfect matching. Let cost(M2) be the cost of matching M1,
together with matching all unmatched boundary vertices. Since matching boundary
vertices does not increase the cost, cost(M2) = cost(M1).

Let M∗ be a minimal perfect matching. Since every perfect matching has cost of at least
cost(M∗), we have that cost(M2) ≥ cost(M∗). Let cost(Alg) be the cost of the solution
found by our algorithm. Since the algorithm computes a minimal perfect matching,
cost(Alg) = cost(M∗). We conclude that cost(Alg) ≤ cost(X). By Theorem 8 our
algorithm computes a feasible solution. We conclude that our algorithm computes an
optimal solution.

6 Conclusion and discussion

We have described an algorithm that finds a smallest set of edges such that adding
these edges results in a two-face-colourable map. The algorithm finds this solution in
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polynomial time in |V |. For further research one can consider an algorithm that finds
the smallest number of edges that have to be removed from a map to make it two-face-
colourable. Since one can always reduce the number of faces in a map to at most two
by removing edges, there always exists such a number. Designing an algorithm that
finds the smallest number of operations to make a map two-face-colourable can also be
interesting. We considered edge addition in this paper and we already discussed edge
removal. One can consider the problem if we allow both edge removal and edge addition.

A relevant paper is the earlier mentioned paper “Editing to Eulerian graphs” [5, Chapter
3] by Dabrovski et al. Part of this article is about edge addition and edge removal. Their
question is if given a positive integer k, it is possible to perform k operations to end up
with an Eulerian graph. They have described an algorithm that finds an answer to this
question in polynomial time, when only edge addition and edge removal are allowed.
The maps we considered are not Eulerian so it is possible that no such algorithm exists
for two-face-colourable maps, when allowing edge addition and removal. For further
research we recommend to take a look into this problem.
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