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Abstract

In a single machine scheduling problem where the machine can handle only one
job at a time and is non preemptive, we look at schedules on a finite horizon [0, T ].
These schedules are defined by a vector containing the completion times of each job.
For positive processing times, a polyhedron P can be constituted that completely de-
scribes the convex hull of these feasible schedules. In this thesis we find this P and
prove that it is the convex hull of all feasible schedules on the horizon [0, T ]

Keywords: linear program, job scheduling, polyhedra, single-machine scheduling

1 Introduction

Imagine we have a single machine processing a set J of n jobs. We are given the processing
time vector p where each element pj > 0 denotes the time the machine needs to process
job j ∈ J . This means that when the processing of any job j ∈ J starts, exactly pj units of
time later job j is completed. The machine can process only one job at a time and can not
be interrupted by a job once it is processing another job. Before execution of the machine
the order of the jobs is determined, we store this order in a vector that is called a schedule,
where every component denotes the completion time of job j. We will define this schedule
more formally later.

Which schedule to choose for an execution of a single machine is an interesting problem.
In the literature this problem is called a single machine scheduling problem, which is a
special case of the class of optimal job scheduling problems. A lot of research has been done
for optimal job scheduling. Actually so much, that a whole notation has been developed
to meaningfully name all different kind of job scheduling problems [2].

Smith, for example, showed in 1956 in [5] how to solve a 1||
∑

wjCj problem, i.e.,
minimising the weighted sum of completion times. But there are also other interest-
ing directions on this single machine scheduling problem. Queyranne [3] found a linear
programming (LP) formulation that bounds all possible schedules on an infinite horizon,
i.e., [0,∞). And together with Wang [4], he elaborated later on this problem by also adding
the option of having precedences of jobs.

Why is research on single machine scheduling jobs important? Firstly, it is easy to see
that optimal job scheduling problems have a wide variety of usage. From the production
of products to the scheduling of tasks on a computer, these problems are relevant. When
researching single machine scheduling problems one has the option to find underlying
structure which can be extended to more complicated problems. For example, Smith’s

∗Email: S.A.J.horjus@student.utwente.nl

1



paper on finding the minimum weighted sum works on a single machine, but for multiple
machines it won’t work. Finding bounds for the possible schedules works for both single
and multiple machines. For single machines this is exactly what Queyranne investigated
[3].

But Queyranne investigated the case for schedules on the infinite horizon, while in
practice we are more interested in bounds for schedules on the finite horizon [0, T ].

In this thesis we will close this gap by showing that on a finite horizon [0, T ], certain
inequalities make a complete linear programming (LP) formulation for this problem. We
will do this by showing that the intersection of the LP formulations for the horizons [0,∞)
and (−∞, T ] constitutes the complete LP formulation using proof techniques from [1].
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2 Definitions and preliminary results

To be able to formulate our problem more precisely, we have to define a few things, which
we will do in this section. We will also prove some lemmas and a proposition in this section
to make the proof in the next section shorter and easier to understand.

We start by stating how we keep track of when each job is being processed. In the
literature starting times are often used for modeling purposes and completion times when
intuitive notation is preferred. However, in this thesis we will make use of half times. By
the half time of a job we mean the time at which half of a job has been processed by
the machine, i.e., the average between the starting and completion time of a job. The
advantage of using half times will become clear later in this section.

We now use these half times in the definition of a feasible schedule on the finite horizon
[0, T ].

Definition 2.1. A vector h ∈ Rn, where each element hj denotes the half time of
job j, is called a feasible schedule of all jobs on a finite time horizon [0, T ] if it
satisfies the following inequalities

hj ≥
pj
2
, for all j ∈ J

hj ≤ T − pj
2
, for all j ∈ J

hj ≥ hk +
pk
2

+
pj
2

or hk ≥ hj +
pj
2

+
pk
2
, ∀j, k ∈ J, j ̸= k.

H0,T denotes the set of all feasible schedules on the finite time horizon [0, T ].

Note that these inequalities in the definition of a feasible schedule imply that H0,T = ∅
if T <

∑
j∈J pj .

The following Proposition is a generalised result from Smith’s Rule [5], which in addition
to the classical Smith’s Rule, also allows for negative weights. This result will be essential
this thesis.

Proposition 2.2 (Smith’s Rule). Let w ∈ Rn and T ≥
∑

j∈J pj. Then a feasible
schedule h ∈ H0,T minimizes

∑
j∈J wjhj if and only if

wi

pi
≥ wj

pj
holds for all i, j ∈ J with hi < hj (2.1)

and

all idle time is in between job k and k + 1 in J for which
wk

pk
≥ 0 and

wk+1

pk+1
< 0.

(2.2)
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Proof. We can look at the idle times as jobs with a positive processing time but with
corresponding weight being zero, since they do not add anything to the objective value.
Then, let the total idle time T−

∑
j∈J pj be distributed over k ≤ n−1 jobs (since there is at

max room for n−1 spots of idle times in a schedule) and let these k ‘idle’ jobs be contained
in I. Then the total job set J ′ = J∪I contains n+k jobs, such that

∑
j∈J ′ pj = T , meaning

all jobs in J ′ are scheduled directly after each other.
Firstly, we prove that for all k ≤ n − 1 and all distributions of idle time among these k
jobs, that g ∈ Rn+k is an optimal feasible schedule if and only if

wi

pi
≥ wj

pj
holds for all i, j ∈ J ′ with gi < gj . (2.3)

(=⇒) Suppose now we have a feasible schedule g ∈ Rn+k containing the half times
of all jobs in J ′, that does not satisfy (2.3) but is optimal. Then there must exist jobs
i, j ∈ J ′ such that wi

pi
<

wj

pj
while gi < gj and are scheduled directly after each other. Now

suppose a feasible schedule g′ that is equal to g except that the order of jobs i and j is
flipped, thus g′i > g′j . Then the objective value change is∑

j∈J ′

wjg
′
j −

∑
j∈J ′

wjgj = wi(g
′
i − gi) + wj(g

′
j − gj)

=wi(pj +
pi
2
− pi

2
) + wj(

pj
2

− pi −
pj
2
) = wipj − wjpi < 0,

Where that last inequality is true since wi
pi

<
wj

pj
implies wipj < wjpi. This contradicts

optimality of g.
(⇐=) For the reverse direction, following the same logic, we see that if we have a

feasible schedule g ∈ Rn+k satisfying (2.3), then swapping any two jobs i, j ∈ J ′, that are
scheduled next to each other, results in a higher objective value, except when wi

pi
=

wj

pj
.

Then swapping the two jobs does not change the objective value.

Lastly (2.3) implies (2.2), because the weights of the ‘idle’ jobs j ∈ I are all zero. This
concludes the proof.

■

The following results will play a big part in constructing the LP in the next section.

Definition 2.3. g(S) := min{
∑

j∈S pjhj : h ∈ H0,T } for S ⊆ J .

A useful result of this definition is presented in the following lemma.

Lemma 2.4. For all S ⊆ J we have

g(S) = min{
∑
j∈S

pjhj : h ∈ H0,T } =
1

2
(
∑
j∈S

pj)
2.

Proof. Let us try to find h∗ ∈ H0,T that is optimal for the minimisation problem. We
define weights such that

wj :=

{
pj for j ∈ S

0 for j /∈ S.
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We then see that

min{
∑
j∈S

pjhj : h ∈ H0,T } = min{
∑
j∈J

wjhj : h ∈ H0,T }.

Since the weights are all non-negative, by Proposition 2.2 we know that
∑

j∈J wjhj is
minimised for a feasible schedule h∗ if the only idle time is after all processed jobs and
the jobs in S are ordered by wj

pj
from high to low. Note, wj

pj
is either 1 (if j ∈ S) or 0 (if

j /∈ S). This means putting the jobs in S first, the jobs in J\S second and the idle times
last. Assuming S = {s1, s2, . . . , sk} ⊆ J , then any such schedule results in the following
objective value

ws1

1

2
ps1 + ws2(ps1 +

1

2
ps2) + · · ·+ wsk(ps1 + · · ·+ psk−1

+
1

2
psk) + 0

= ps1
1

2
ps1 + ps2(ps1 +

1

2
ps2) + · · ·+ psk(ps1 + · · ·+ psk−1

+
1

2
psk)

=
1

2
(ps1 + ps2 + · · ·+ psk)

2 =
1

2
(
∑
j∈S

pj)
2.

■

Should we have used completion times instead of half times, then g(S) = 1
2((

∑
j∈S pj)

2+∑
j∈S p2j ) [4], which is harder to work with than the outcome of Lemma 2.4. Similarly,

starting times will also gives a result, which is harder to work with. This shows us already
an advantage of using half times.

Lemma 2.5. For all S ⊆ J ,

max{
∑
j∈S

pjhj : h ∈ H0,T } = −g(S) + T
∑
j∈S

pj .

Proof. We know that

max{
∑
j∈S

pjhj : h ∈ H0,T } = −min{
∑
j∈S

−pjhj : h ∈ H0,T }

Let us try to find h∗ ∈ H0,T that is optimal for the minimisation problem min{
∑

j∈S −pjhj :

h ∈ H0,T }. We define weights such that

wj :=

{
−pj for j ∈ S

0 for j /∈ S.

We then see that

−min{
∑
j∈S

−pjhj : h ∈ H0,T } = −min{
∑
j∈J

wjhj : h ∈ H0,T }.

Since the weights are all negative, by Proposition 2.2 we know that
∑

j∈J wjhj is
minimised for a feasible schedule h∗ if the only idle time is before all jobs and the jobs
are ordered by wj

pj
from high to low. Note, wj

pj
is either −1 (if j ∈ S) or 0 (if j /∈ S).
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This means putting the idle times and jobs in J\S first and the jobs in S last. Assuming
S = {s1, s2, . . . , sk} ⊆ J , then any such schedule results in the following objective value

− (0 + ws1(T − 1

2
ps1 − ps2 − · · · − psk)

+ ws2(T − 1

2
ps2 − ps3 − · · · − psk) + · · ·+ wsk(T − 1

2
psk))

= −(0− ps1(T − 1

2
ps1 − ps2 − · · · − psk)

− ps2(T − 1

2
ps2 − ps3 − · · · − psk)− · · · − psk(T − 1

2
psk))

= 0 + ps1(T − 1

2
ps1 − ps2 − · · · − psk)

+ ps2(T − 1

2
ps2 − ps3 − · · · − psk) + · · ·+ psk(T − 1

2
psk)

= T
∑
j∈S

pj − (ps1(
1

2
ps1 + ps2 + · · ·+ psk)

+ ps2(
1

2
ps2 + ps3 + · · ·+ psk) + · · ·+ psk(

1

2
psk))

= T
∑
j∈S

pj −
1

2
(
∑
j∈S

pj)
2 = T

∑
j∈S

pj − g(S).

Thus we have shown that

max{
∑
j∈S

pjhj : h ∈ H0,T } = −g(S) + T
∑
j∈S

pj .

■

Also in this proof we can see the advantage of using half times over completion times or
starting times. Describing half times from the endpoint T instead of the starting point 0
works out nicely and gives a nice short result. This works because of the symmetric nature
of half times.
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3 Main result

Inspired by Queyranne’s research [3] on this topic, we define the following polyhedra

P 0,∞ = {h ∈ Rn :
∑
j∈S

pjhj ≥ g(S) for all ∅ ̸= S ⊆ J}

P−∞,T = {h ∈ Rn :
∑
j∈S

pjhj ≤ −g(S) + T
∑
j∈S

pj for all ∅ ̸= S ⊆ J}

P = P 0,∞ ∩ P−∞,T . (3.1)

The main theorem of this paper is the following theorem.

Theorem 3.1 (Main Theorem). Let J be a set of n jobs, let pj > 0 be the processing
time of job j ∈ J and T ≥

∑
j∈J pj, then

conv(H0,T ) = P ,

where P is the polyhedron defined in (3.1).

In order to prove Theorem 3.1 we consider a bijective linear mapping Π to transform
our P and H0,T into something that is easier to work with. We try Π(x) = p⊙x, where ⊙
is the element-wise product and p is the processing time vector. Then given p ∈ Rn, the
mapping Π gives us

X := Π(H0,T ) = {p⊙ h : h ∈ H0,t} (3.2)

and

Q := Π(P )

= {Π(h)|h ∈ P}

= {p⊙ h|h ∈ Rn,
∑
j∈S

pjhj ≥ g(S) and
∑
j∈S

pjhj ≤ −g(S) + T
∑
j∈S

pj for all ∅ ̸= S ⊆ J}

= {p⊙ h|h ∈ Rn,
∑
j∈S

(p⊙ h)j ≥ g(S),
∑
j∈S

(p⊙ h)j ≤ −g(S) + T
∑
j∈S

pj for all ∅ ̸= S ⊆ J}.

Now with the substitution of x = p⊙ h we get

Q = {x ∈ Rn|
∑
j∈S

xj ≥ g(S) and
∑
j∈S

xj ≤ −g(S) + T
∑
j∈S

pj}. (3.3)

Indeed we see that it easier to use these mapped sets, since Theorem 4.29 in [1] uses
almost the exact same polyhedron as Q. Therefore, to prove Theorem 3.1 we first prove
the following theorem using similar proof techniques as in [1].

Theorem 3.2. Let J be a set of n jobs, let pj > 0 be the processing time of job
j ∈ J and T ≥

∑
j∈J pj, then

Q = conv(X),

where X and Q are defined in (3.2) and (3.3), respectively.
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Proof of Theorem 3.2. To prove that Q = conv(X) it is enough to show that for all c ∈ Rn

min
x∈X

c⊺x
!
=min

x∈Q
c⊺x (3.4)

holds. Without loss of generality, reorder the jobs such that cj ≥ cj+1 for all j ∈ J\{n}.

Let x = p⊙ h, where hj =

{
pj
2 +

∑
i<j pi if cj ≥ 0

T − pj
2 −

∑
i>j pi if cj < 0.

Note that because of the definition of h and T ≥
∑n

j=1 pj that h ∈ H0,T , which implies
that x ∈ X. We claim that minx∈X c⊺x = c⊺x = minx∈Q c⊺x.

To show that c⊺x̄ = minx∈Q c⊺x or similarly that x is optimal for

minimize
x

∑
j∈S

cjxj

subject to
∑
j∈S

xj ≥ g(S) for all S ⊆ J,

∑
j∈S

xj ≤ −g(S) + T
∑
j∈S

pj for all S ⊆ J,

(3.5)

we first have to show that x is a feasible solution for this linear program.
From the definition of g(S) it is clear that

∑
j∈S xj ≥ g(S) for all S ⊆ J . From Lemma

2.5 it is also clear that
∑

j∈S xj ≤ −g(S) + T
∑

j∈S pj for all S ⊆ J . Thus x is feasible.

To show that x is optimal for the the linear program in (3.5) we use its dual, which is

maximize
y, y′

∑
S⊆J

g(S)yS + (−g(S) + T
∑
j∈S

pj)y
′
S

subject to
∑
S∋j

yS + y′S = cj for all j ∈ J,

yS ≥ 0 for all S ⊆ J,

y′S ≤ 0 for all S ⊆ J.

Now we define two special subsets of J as follows

Sj :=

{
∅, if j = 0

{1, . . . , j}, if j = 1, 2, . . . , n

S′
j :=

{
∅, if j = n+ 1

{j, . . . , n}, if j = 1, 2, . . . , n.

Let k ∈ {0, 1, . . . , n} be the unique number such that ck ≥ 0 and ck+1 < 0. If all
elements of c are positive then k = n and if they are all negative then k = 0. We formulate
a dual solution (y, y′) as follows

yS :=


cj − cj+1, for S = Sj , j = 1, . . . , k − 1

ck, for S = Sk

0, otherwise
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y′S :=


cj − cj−1, for S = S′

j , j = k + 2, . . . , n

ck+1, for S = S′
k+1

0, otherwise.

It is easy to see that y′S ≤ 0 and yS ≥ 0. In addition, since the following holds

∑
S∋j

yS + y′S =

{∑k
i=j ySj for j ≤ k∑j
i=k+1 y

′
S′
j

for j ≥ k + 1

=

{
(cj − cj+1) + · · ·+ (ck−1 − ck) + ck for j ≤ k

ck+1 + (ck+2 − ck+1) + · · ·+ (cj − cj−1) for j ≥ k + 1

= cj ,

(y, y′) turns out to be a feasible solution to the dual.
Now we can start showing equality of the two objective functions using the defined dual

and primal solutions. We start with splitting up the primal objective function as follows

n∑
j=1

cjxj =
k∑

j=1

cj(pj(
pj
2

+
∑
i<j

pi)) +
n∑

j=k+1

cj(pj(T − pj
2

−
∑
i>j

pi)). (3.6)

The first part of equation (3.6) becomes

k∑
j=1

cj(pj(
pj
2

+
∑
i<j

pi))

=
k∑

j=1

cj(
1

2
(2p1pj + 2p2pj + · · ·+ 2pj−1pj + p2j ))

=
k∑

j=1

cj(
1

2
(p1 + p2 + · · ·+ pj)

2 − 1

2
(p1 + p2 + · · ·+ pj−1)

2)

=
k∑

j=1

cj(g(Sj)− g(Sj−1))

=g(Sk)ck +
k−1∑
j=1

g(Sj)(cj − cj+1)

=
k∑

j=1

g(Sj)yS =
∑
S⊆J

g(S)yS .
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The second part of equation (3.6) becomes

n∑
j=k+1

cj(pj(T − pj
2

−
∑
i>j

pi))

=

n∑
j=k+1

cj(pjT + pj(−
pj
2

− pj+1 − · · · − pn))

=

n∑
j=k+1

cj(pjT − 1

2
(p2j + 2pj+1pj + · · ·+ 2pnpj))

=
n∑

j=k+1

cj(pjT − 1

2
((pj + pj+1 + · · ·+ pn)

2 − (pj+1 + pj+2 + · · ·+ pn)
2))

=

n∑
j=k+1

cj(pjT +
1

2
(pj+1 + pj+2 + · · ·+ pn)

2 − 1

2
(pj + pj+1 + · · ·+ pn)

2)

=

n∑
j=k+1

cj(pjT + g(S′
j+1)− g(S′

j))

=
n∑

j=k+1

cjpjT +
n∑

j=k+1

cj(g(S
′
j+1)− g(S′

j))

=

n∑
j=k+1

cjpjT − ck+1g(Sk+1)−
n∑

j=k+2

g(S′
j)(cj − cj−1)

=

n∑
j=k+1

cjpjT +

n∑
j=k+1

−g(S′
j)y

′
S .

Since (y, y′) is a dual solution we know that
∑

S∋j yS + y′S = cj , therefore

n∑
j=k+1

cjpjT +

n∑
j=k+1

−g(S′
j)y

′
S =

n∑
j=k+1

(pjT
∑
S∋j

y′S) +
n∑

j=k+1

−g(S′
j)y

′
S

= T
∑
S⊆J

∑
j∈S

pjy
′
S +

∑
S⊆J

−g(S)y′S

=
∑
S⊆J

(−g(S) + T
∑
j∈S

pj)y
′
S .

Conclusively

n∑
j=1

cjxj =

k∑
j=1

cj(pj(
pj
2

+
∑
i<j

pi)) +

n∑
j=k+1

cj(pj(T − pj
2

−
∑
i>j

pi))

=
∑
S⊆J

g(S)yS + (−g(S) + T
∑
j∈S

pj)y
′
S .

But this is exactly the objective function of the dual. Since the two objective values from
the primal and dual have the same value, x must be optimal for the primal in (3.5).
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Now to show that x is optimal for the left hand side of equation (3.4), i.e. show that
c⊺x = minx∈X c⊺x, we let wj = cjpj . Then by Proposition 2.2 the schedule that minimizes∑

j∈J wjhj is ordered such that c1 ≥ c2 ≥ ... ≥ cn and has only one idle time between the
job k and k + 1 for which ck ≥ 0 and ck−1 < 0. The schedule that does exactly this is h.
Now since X = {p⊙ h : h ∈ H0,T } and cj =

wj

pj
, minx∈X cTx = minh∈H0,T w⊺h. Therefore

h minimizes w⊺h implies that x = p⊙ h minimizes c⊺x over X.

This means that we have shown that

min
x∈X

c⊺x = c⊺x = min
x∈Q

c⊺x,

which implies that Q = conv(X). ■

Now that we have shown that Q = conv(X) it remains to show that P = conv(H0,T ).

Proof of Theorem 3.1. By Theorem 3.2 we know that Q = conv(X). Then Π−1(Q) =
Π−1(conv(X)) must also be true. Since Π is a linear bijective mapping and X = Π(H0,T )
by equation (3.2), we see that Π−1(conv(X)) = conv(Π−1(X)) = conv(H0,T ). Similarly,
since Π is a linear bijective mapping and Q = Π(P ) by equation (3.3) , Π−1(Q) = P .
Consequently P = conv(H0,T ). ■

4 Conclusion

In this thesis we demonstrated that the polyhedron in (3.1) is a complete LP formulation
of the convex hull of all feasible schedules on the finite time horizon [0, T ]. We chose to
use half times and they came in very helpful for proving. This proof could have also used
completion times or starting times, but we showed it was easiest this way.

Considering that all schedules on the finite horizon are possible, this result remains
still very general. For future research one might look at schedules with special constraints
and use methods in the thesis to find its corresponding polyhedron and prove that it is
complete. For example, in [4] a polyhedron was found for schedules with precedence con-
straints on the infinite horizon. One could try to see if it is easy to apply techniques
used in this thesis on this problem for a finite horizon [0, T ]. Additionally, it might be
worth investigating other single-machine scheduling, such as those involving release times
or deadlines, using the methods in this thesis

Furthermore, our findings have implications beyond single-machine scheduling. They
could contribute to establishing optimal bounds for schedules involving multiple machines.
Lastly, it would also be interesting what would happen if one makes the T a variable such
that the horizon [0, T ] fluctuates. Investigating how the polyhedron evolves under such
conditions could yield valuable insights.
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