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ABSTRACT 

The rapid expansion of global maritime industries has increased the risk of oil spills, which can cause 

extensive marine pollution. Due to their rapid spread, oil spills often negatively impact marine biodiversity 

and coastal communities. Such accidents require rapid detection to mitigate their rapidly spreading negative 

impact. In recent years, deep learning (DL) techniques for oil spill detection (OSD) have advanced rapidly, 

particularly through the use of SAR images. However, obtaining a large number of labelled images that 

correspond to ground truth data of oil spill events is challenging. This limitation in input data presents a 

main obstacle to achieving optimal semantic segmentation results in the development of DL-based.  

This study investigates optimizing DL-based models by configuring relevant hyperparameters to 

accommodate limited datasets and adapt the oil spill appearance in SAR images for semantic segmentation 

in OSD. This study implements a Fully Convolutional Network-Dilated Kernel with 6 layers (FCN-DK6) 

model with fewer network parameters by optimizing the image preprocessing hyperparameter, specifically 

the patch size. Additionally, this study develops a hybrid CNN-XGBoost model based on convolutional 

networks from the FCN-DK6 model and a pre-existing XGBoost algorithm as an alternative solution in 

optimizing the FCN-DK6 model for OSD. This hybrid model has the potential to augment small datasets 

by generating multiple synthetic feature maps through its CNN component, which are then classified by 

XGBoost algorithm.  

The results show that the FCN-DK6 model despite having fewer network parameters can perform semantic 

segmentation in OSD on a limited dataset by optimizing a patch size to 512x512. This configuration achieves 

an optimal IoU accuracy of 51.03% for oil spills, outperforming smaller patch size settings. Furthermore, 

reducing the number of classes during training the model significantly improves the FCN-DK6 mode’s 

ability to segment oil spills by 98.80%. Meanwhile, the hybrid CNN-XGBoost model optimally performs 

OSD with semantic segmentation by configuring CNN filters and obtaining the optimal number of feature 

maps for feeding the XGBoost classifier. Combining optimal feature map settings with XGBoost 

hyperparameter tuning proves beneficial by achieving optimal performance with an IoU accuracy of 51.40% 

for OSD in a reduced class number scenario. While optimizing the FCN-DK6 model and developing the 

hybrid CNN-XGBoost model result in positive findings, the accuracy of OSD still needs more improvement 

to achieve reliable performance.  

This study provides scientific advancements by demonstrating the use of optimizing hyperparameters, 

particularly patch size in the DL-based model, to enhance OSD using a limited dataset. Additionally, the 

hybrid CNN-XGBoost model addresses input data limitations in OSD by generating multiple synthetic 

feature maps from a single input image to expand the dataset and fine-tune hyperparameters. These 

contributions advance deep learning techniques for marine environmental monitoring, particularly in data 

resource-limited scenarios. 

 
Keywords: oil spill detection, FCN, hybrid model, CNN-XGBoost, XGBoost, limited dataset, SAR, 

machine learning, convolutional layer, hyperparameters, feature extraction. 
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1. INTRODUCTION 

1.1. Background 

1.1.1. The Causes and Impacts of Oil Spills on Marine  

The oil spill is an environmental pollution that mostly occurs at sea caused either by human activities or 

natural phenomena. Over 50% of oil spill events in the marine environment are caused by human activities 

associated with maritime industries (Kvenvolden & Cooper, 2003). The expansion of worldwide maritime 

industries has risen the risk of oil spills, such as offshore oil operations and petroleum tanker transport, 

increases the risk of oil spills in the oceans (J. Chen et al., 2019; Galieriková & Materna, 2020). Various 

accidents in oil operations, such as pipeline ruptures and drilling rig failures, can result in oil spills into the 

sea. Equally, accidents often occur in the tanker transport sectors, involving collisions and shipwrecks that 

cause oil to be released into the water column. Accidents involving ships or vessels are the primary cause of 

oil spills in the ocean, and they are responsible for about 73% of total incidents (Nagalakshmi et al., 2018). 

Meanwhile, natural oil slicks also occur when oil seeps out from the ocean floor due to internal earth 

activities, causing the escape of liquid hydrocarbons into the water column. Additionally, organic materials 

excreted by sea creatures can potentially create natural oil slicks. These biogenic slicks occur when lipids and 

other organic substances are released into the water and form a thin film on the sea surface (Gade et al., 

1998; Song et al., 2020). These oil spill causes, especially those related to human activities, have been 

discovered for many years and remain a pressing issue today, and they still pose threats to the marine 

environment. 

The impact of oil spills is directly associated with a decline in marine biodiversity and adversely affects 

coastal communities. The toxic nature of the oil substances can lead to the immediate death of marine 

creatures and long-term damage to their body systems that increases the risk of population decline. 

Mangroves and coral reef ecosystems that support various marine life are often severely affected by exposure 

to oil pollution. This damage can provoke potential collapses in local ecosystems. For instance, around 8 

million liters of crude oil spilled in the Caribbean Sea, Panama in 1986 affecting 307 ha mangroves. A report 

showed that 34% of them began showing defoliations within two months following the spill, and 18% of 

oiled trees eventually died (Duke et al., 1997). In another situation, coastal communities that rely on fishing 

and tourism suffer economically as fish stocks decrease and polluted beaches discourage visitors. The 

contamination of coastal waters also poses health risks to residents that affect their quality of life. Ordinioha 

& Brisibe (2013) and Atonye (2023) revealed that oil spills cause several acute health problems such as 

respiratory issues, skin irritation, gastrointestinal stress, extensive epidermolysis, and esophagitis. The losses 

marine ecosystems and human communities face from oil spill events highlight the need for effective 

response strategies. Effective monitoring effort is needed to mitigate the risk of the far-reaching effects of 

such incidents. 

1.1.2. Remote Sensing and Semantic Segmentation for Oil Spill Detection  

An oil spill monitoring system is required to take control of the spreading effects in an undesired manner. 

The remote sensing (RS) technology of space-based satellite sensors has already proved its ability to perform 

large-scale monitoring of oil spills on the sea surface. There are diverse types of RS data to be used for oil 

spill monitoring. Active microwave sensors are widely used in oil spill monitoring since they are able to 

capture images both during the day and at night, and in any weather condition. Unlike optical sensors, active 

microwaves are not affected by cloud cover, making them a preferred choice for capturing accurate imaging 

of oil spill events (Sommervold et al., 2023). An active sensor that uses a radar type of waveform to map 

the Earth’s surface is known as a Synthetic Aperture Radar (SAR). This technology identifies dark spots in 
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sea areas as oil slicks. Such dark features are associated with low backscattering coefficients showing smooth 

surfaces due to the oil presence suppressing sea surface roughness (Alpers et al., 2017). Nevertheless, the 

dark spots observed in SAR imagery do not solely represent oil spills. They can also be attributed to various 

other factors, such as low wind areas, natural films, wind fronts, wind shadows near islands, upwelling 

events, and algae blooms (Alpers et al., 2017; Solberg, 2012).  

The various natural phenomena that closely mimic the appearance of oil spills in SAR images are called 

look-alikes. This similarity complicates the accurate identification of actual oil spills from other natural 

environmental features. Despite the advantages of SAR for oil spill detection (OSD), the presence of look-

alikes makes the use of SAR sensors more challenging. Lentini et al. (2022) observed look-alikes in an oil 

spill event in three sites of Brazilian waters using SAR images with patch classifier methods. Although the 

proposed method could identify most false positive targets, such as rain cells, ships, and low wind 

conditions, it misclassified biofilm slicks as look-alikes due to their high similarity to oil spills. This 

misclassification highlights the well-known challenge in OSD in distinguishing between actual oil spills and 

other natural features. It shows that there is still a need for further development of algorithms or models in 

the future. 

In recent years, the integration of deep learning (DL) with RS has become a popular method for developing 

OSD models. Semantic segmentation using DL applied to RS images offers advantages for OSD efforts by 

modelling oil spread at the pixel level, which provides precise information on the extent of oil spills on the 

sea surface. Practically, this method labels each pixel in an image and groups it with others of the same class 

to provide a complete understanding of the entire scene (Garcia-Garcia et al., 2017). Detailed pixel-wise 

classification is important for OSD tasks, as it allows the precise delineation to localize oil objects from their 

surroundings (Krestenitis et al., 2019b). Sudha & Vijendran (2021) stated that DL models for semantic 

segmentation tasks effectively discriminate oil spills and make this technique highly effective for identifying 

oil spills. Fan & Liu (2023) presented an efficient multi-task generative adversarial network for localizing oil 

spills on three different SAR datasets. The study showed that the proposed frameworks, which include 

semantic segmentation, are generally effective in distinguishing between actual oil spills and look-alikes. This 

situation indicates that DL is one of the important keys to improving the accuracy of applications such as 

automatic OSD and locating oil objects. Localizing oil spills at the pixel level helps in accurately determining 

the position of oil spills in the real world, which can provide early warnings and support the decision-making 

process.  

1.2. Problem Statement 

OSD with SAR is increasingly incorporating DL techniques to achieve high accuracy. DL techniques with 

multiple layers of depth in neural networks are recognized for learning complex patterns and extracting 

high-level features through end-to-end learning. These advancements allow the precise pixel-wise 

classification in an image with more detailed and accurate identification of oil spills. Nevertheless, successful 

execution of DL requires a large dataset for training the model, where the amount of dataset is crucial to 

enable the model to generalize complex features on target objects. Generalization in DL refers to how 

effectively a model can apply its training to predict unseen data. However, the large amount of data becomes 

a common challenge to provide when developing DL models, especially for OSD. 

The problem of implementing DL in OSD efforts lies in the difficulty of collecting ground truth data in 

terms of both quantity and quality. The dynamic nature of the ocean, such as strong currents, influences the 

rapid movement of oil on the sea, making it challenging to capture accurate ground truth information or 

direct observation that matches the satellite sensing period (Kolokoussis & Karathanassi, 2018). Many 

studies rely on experts to manually label oil spills by visual interpretation in satellite images, often 

supplemented by adaptive thresholding techniques (Arslan et al., 2023; de Moura et al., 2022; Pelizzari & 

Bioucas-Dias, 2007; Singha et al., 2012; Yang et al., 2022; Zakzouk et al., 2021). This process provides 

labelled images needed for segmentation in OSD. However, this manual labelling is time-consuming, prone 
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to human error, and may not be scalable for large datasets. Thus, this situation leads to the scarcity of labelled 

image issues and becomes a challenge for developing effective DL models because training them with small 

datasets potentially leads to overfitting (Pasupa & Sunhem, 2016). Overfitting occurs when a model 

memorizes training data rather than generalizing, which results in poor performance on unseen data. DL 

models with relatively lightweight network architectures and additional fine-tuning hyperparameters can 

perform well even with limited samples (Feng et al., 2019; Y. Wang et al., 2018; Younis & Keedwell, 2019). 

Besides, machine learning (ML) seems to be capable of dealing with a small number of training datasets for 

classification tasks (Chawla et al., 2003; Sheykhmousa et al., 2020). ML techniques have performed well with 

smaller datasets by relying on feature inputs to capture the most relevant information for achieving high 

classification performance (Khalid et al., 2014). However, in ML, feature extraction often requires expertise 

and manual interpretation. This process can be time-consuming and may introduce bias, as the quality of 

extracted features depends on the human’s judgment.  

Based on the aforementioned problems, this study focuses on handling limited data for semantic 

segmentation in OSD. First, it will implement the Fully Connected Network (FCN) model capability with 

simpler network parameters with hyperparameter configurations to accommodate limited data for semantic 

segmentation in detecting oil spills. Second, this study proposes a hybrid model that combines convolution 

network elements from FCN-DK6 to automatically extract image features and the existing boosting ML 

algorithm to deal with limited data for semantic segmentation tasks in OSD. 

1.3. Research Gap 

Current approaches to semantic segmentation in OSD often rely on large datasets to achieve high accuracy 

and generalization. The FCN-DK6 with a simpler DL network shows promise in handling limited datasets. 

This makes it less prone to overfitting, which overfitting is a common problem when training on small 

datasets. This study initially implemented the FCN-DK6 adopting learning-related hyperparameters from 

Najmi et al. (2022) as the initial setting applied to OSD with SAR data. These initial settings may require 

adjustment when applied to different and limited datasets. Since the model’s performance can potentially 

degrade without proper hyperparameter tuning for specific datasets. The FCN-DK6 model’s performance 

in OSD with the initial hyperparameter setting serves as a baseline for comparing the proposed solutions in 

achieving optimal accuracy in OSD. Two alternative approaches are proposed to address this potential 

shortfall. First, a hyperparameter tuning process includes learning-related and image-preprocessing 

hyperparameters to optimize the FCN-DK6 model specifically for accurately detecting oil spills. Many 

studies focus on tuning learning-related hyperparameters such as learning rate, activation function, batch 

size, number of epochs, and optimizer type (Baydaroğlu & Demir, 2024; Benamrou et al., 2020; Koroniotis 

et al., 2022; Nair et al., 2022; Rawat et al., 2021; Stofa et al., 2020; Yaloveha et al., 2022) but only a few 

consider the impact of image preprocessing hyperparameters on optimizing DL models to accurately detect 

oil spills. The second alternative is a hybrid model approach to address the potential limitations of the initial 

FCN-DK6 setting in achieving optimal segmentation for OSD using limited datasets. It utilizes the 

convolutional network elements of FCN-DK6 as a model for automatic feature extraction, combined with 

XGBoost for segmentation tasks. XGBoost is highly effective for pixel-wise classification with structured 

data, such as tabular data where relationships between features are clearly defined, but may not capture 

complex patterns in images without advanced feature extraction. Convolutional Neural Network (CNN) 

can automatically augment images by creating multiple synthetic image features to expand the size of data. 

Combining these models can potentially enhance performance on small datasets in detecting oil spills by 

enhancing the number of relevant feature representations. Few studies have explored hybrid models that 

integrate CNN with XGBoost for semantic segmentation. The application of CNN-XGBoost in this 

research addresses challenges in OSD-specific data and cases by leveraging its capabilities to deal with 

limited datasets. 
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1.4. Research Objectives and Questions 

The main objective of this research is to optimize the DL-based models for semantic segmentation tasks in 

OSD using a limited dataset by configuring their relevant hyperparameters. The main objective is then 

divided into specific objectives with the following research questions. 

1.4.1. Sub-objective 1 

To implement and examine FCN-DK6 model for handling limited datasets in semantic segmentation for 

OSD. 

1.1. What is the performance of the FCN-DK6 model with initially defined learning-related 

hyperparameters in detecting oil spills using a limited dataset? 

1.2. What are the main hyperparameters that affect model performance in detecting oil spill, in particular 

when using a limited dataset? 

1.4.2. Sub-objective 2 

To develop and evaluate a hybrid model combining two techniques: CNN element from FCN-DK6 model 

and existing XGBoost algorithm for semantic segmentation using limited datasets in OSD. 

2.1. What are the optimal convolutional network elements from FCN-DK6 and the XGBoost 

hyperparameters to achieve the best performance in semantic segmentation for OSD? 

2.2. What are the inefficacies of the hybrid model for OSD ? 

1.5. Relations to Water Resources and Environmental Management 

Water resources and environmental management focus on the sustainable use and protection of water 

resources both on land and in the ocean. In particular, marine management which includes water quality 

monitoring and marine ecosystem protection is related to controlling marine pollution. This priority is 

emphasized in Sustainable Development Goals 14 (Life Below Water), which focuses on conserving and 

sustainably using the oceans. SDGs 14 prioritizes reducing marine pollution in the first place because our 

seas are currently threatened by pollution from environmentally unfriendly human activities. Sources of this 

pollution include industrial waste, domestic waste, plastic, oil spills, etc. Therefore, it is urgently necessary 

to take every possible action to prevent, protect against, and reduce the spread of marine pollution. 

For these reasons, large-scale detection of oil spills using satellite imagery becomes an effective strategy to 

mitigate the impact of such events. Therefore, this research aims to take proactive steps to prevent the 

severe impacts of oil spills by developing a reliable method for detecting them with satellite images and 

computer vision techniques, even with limited data available. 
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2. LITERATURE REVIEW 

2.1. Remotely Sensed Data for Oil Spill Detection 

Over the past few decades, RS data have been widely used to detect and monitor oil spill events. Among 

the various RS technologies, such as aerial photography, drones, LiDAR, and hyperspectral imaging, 

satellites equipped with active sensors such as Synthetic Aperture Radar (SAR) turn out to be one of the 

most effective tools in this regard. Consequently, its ability to continuously acquire data day and night and 

under all almost weather conditions makes SAR a preferred choice for many oil spill monitoring operations 

(Girard-Ardhuin et al., 2005; Kostianoy et al., 2006; Singha et al., 2013). In particular, the effectiveness of 

SAR lies in its ability to detect variations in the sea surface roughness. The sea surface appears bright in SAR 

images due to the capillary waves on the ocean reflecting radar energy (Fingas & Brown, 2011). On the 

contrary, the presence of oil spills on the sea surface dampens these capillary waves, and then they create 

smoother areas that appear as dark spots in SAR images (Guo et al., 2018), as illustrated in Figure 2.1. These 

contrast feature appearances allow the rapid identification of oil spill locations and extents through SAR 

images. Despite these advantages, one still major issue is the presence of natural phenomena resembling oil 

spills in SAR images, such as natural films, rain cells, wind front areas, low wind areas, etc, known as look-

alikes (Alpers et al., 2017; Solberg, 2012) and illustrated in Figure 2.1. These look-alikes have caused false 

positives and misidentifications using both human interpretation techniques or even advanced algorithms. 

  
Figure 2.1 An example of oil spill (left) and look-alikes (right) in a Synthetic Aperture Radar (SAR) image 

(source: Krestenitis et al. (2019b) 

Many previous studies on oil spills have highlighted the use of SAR imagery as an effective tool for detecting 

oil presence in the ocean. For instance, Topouzelis (2008), Chehresa et al. (2016), and Dutta et al. (2018) 

extracted oil spills from SAR images in their respective studies. Some studies even gave particular focus to 

the unique characteristics of SAR images as a base for developing effective methods in OSD. El-Zaart & 

Ghosn (2013) developed a thresholding-based algorithm derived from grey levels and texture on SAR, while 

Y. Li & Li (2010) utilized the identical gamma distribution on the pixels from SAR intensity to introduce a 

marked point process algorithm. As we have moved into the era of artificial intelligence, ML has been 

employed to develop automatic and robust models that integrate with SAR data for detecting oil spills. 

Robust refers to the models’ ability to consistently perform accurately and reliably under diverse conditions. 

Magri et al. (2021) demonstrated a remarkable Support Vector Machine (SVM) algorithm for discriminating 

oil spills, especially when training samples are limited. Some studies also find that the SVM algorithm is 

useful for OSD using SAR images (Matkan et al., 2013; H. Zhou & Peng, 2018; Zou et al., 2016). Conceição 

et al. (2021) developed a new open-source methodology for detecting oil spills using a random forest (RF)-

based algorithm. Tong et al. (2019) utilized RF to develop a multi-feature-based model for detecting oil 

spills. They argued that RF can suppress the classification error caused by the fact that in almost all SAR 

images, water or sea surface represents the most part. These studies highlight the growing use of SAR images 

and advanced detection methods for effectively identifying oil spills. This trend promises continuous 

development that can be conducted and synced with the advancement of the modern technology era like 

DL era. 
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2.2. Deep Learning-based for Oil Spill Detection 

DL has improved the detection and monitoring of oil spills. For instance, Jiao et al. (2019) compared OSD 

using Unmanned Aerial Vehicles (UAVs) with DL and traditional ML. They found that Deep CNN achieved 

a mean average precision (mAP) accuracy of 99.30%, significantly outperforming Adaboost’s 12.11%. 

Additionally, their DL detection system reduced the cost of OSD by 57.2% compared to traditional manual 

inspection process. DL uses complex computational models, several layers of processing, and hidden layers 

(Lecun et al., 2015). Through these techniques, the models can automatically extract and learn various 

features directly from the training data they are given. According to Vasconcelos et al., (2023), research into 

neural networks (NN) and multilayer texture analysis in OSD using CNN has increased significantly over 

the last 5 years. For instance, Krestenitis et al. (2019a) developed an early warning system for identifying oil 

spills by taking advantage of a deep CNN and applied it to SAR images. Meanwhile Das et al. (2023) 

demonstrated that CNN effectively extract features in images to support categorizing images into different 

classes in oil spill classification with high accuracy, more than 90%. The advancement of CNN led to the 

development of Fully Convolutional Networks (FCNs), which allow for classification at the pixel level, 

known as semantic segmentation. This technique is suitable for providing detailed mapping for oil spill 

identification. 

2.3. Semantic Segmentation 

Several works have adopted semantic segmentation with deep CNN and SAR images to detect oil slicks on 

the sea surface (Fan et al., 2023; Fan & Liu, 2023; Orfanidis et al., 2018; Sudha & Vijendran, 2021). In theory, 

semantic segmentation is part of the scene understanding that deals with pixel-based classification. Where 

the main task of pixel-wise segmentation is to provide a class label for each pixel in an entire image with a 

predefined class (Hao et al., 2020). This approach offers a detailed and precise mapping of multiple elements 

within an image and provides category information at the pixel level, as illustrated in Figure 2.2. This 

approach has become essential to the marine field, especially for OSD. It models oil spread at the pixel level 

in images to reflect real phenomena. Further, the modelling results can provide valuable information on 

each pixel associated with the precise location and extent of oil objects on the sea surface (Gallego et al., 

2019). With the advancement of computer vision technology through the emergence of DL, a new approach 

offers promising performance improvements for image semantic segmentation tasks. One such approach is 

the Fully Convolutional Network (FCN), which adopts end-to-end learning for pixel-wise prediction. 

  
Figure 2.2 An example of semantic segmentation of oil spills (right) with default colour coding and 

Synthetic Aperture Radar (SAR) image (left). Purple is for sea surface, blue is for oil spills, green is for 
look-alikes, yellow is for land (source: author) 

2.3.1. Fully Convolutional Network for Oil Spill Detection 

Long et al. (2015) introduced the first DL technique for semantic segmentation using FCN. They replaced 

the traditional fully connected layers in CNN with convolutional layers to make dense predictions at the 

pixel level that maintain the same dimension as the input. By doing so, the FCN model can preserve spatial 

hierarchies and capture complex details across all pixels in the entire image. The FCN architecture utilized 

a series of convolutional and pooling layers to downsample the input image, which reduces the spatial 

dimension while capturing high-level features. Afterwards, it is followed by upsampling layers, which are 
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known as deconvolutional layers, to restore the pixel-wise prediction to the original image resolution (Long 

et al., 2015). This architecture allows the FCN to maintain detailed spatial information throughout the 

segmentation process. Figure 2.3 illustrates the sequence of the FCN architecture model in an oil spill 

prediction case. Since its introduction, FCN has become a foundational technique for further research and 

development of image semantic segmentation with DL-based approaches. 

 

Figure 2.3 Fully Connected Network model framework for Oil Spill Detection (Source: Li, Yang, et al. 

(2018)) 

Several studies have examined and developed the FCN model-based for segmenting at the pixel level on oil 

spills. These studies highlight the effectiveness of FCN in accurately identifying oil spill regions. For 

instance, Mahmoud et al. (2023) and Song et al. (2024) demonstrated that FCN trained with SAR images 

can achieve high accuracy with more than 90% accuracy for isolating oil objects. Meanwhile, Li et al. (2021) 

examined the use of FCN trained with small data training and showed that FCN can moderately predict oil 

spills in SAR images. Subsequently, several researchers, including Li, Yang, et al. (2018) and Shamili et al. 

(2022) developed a new model based on FCN. They created a model that combines FCN with ResNet and 

Googlenet, with the result showing that it is feasible to use the advanced model based on FCN for detecting 

oil spills with substantial accuracy. Shanmukh et al. (2024) developed two stages for predicting oil spills by 

taking advantage of FCN with skip connections and combining it with a U-net model to precisely identify 

oil spill pixels within patches. 

With the versatility of FCN, several studies outside of the oil pollution field have also developed novel 

models based on FCN. Bi et al. (2017) utilized FCN as a base to introduce a new model, stacked FCN 

architecture with multi-channel learning (SFCN-ML). Then, they continue to develop dual-path adversarial 

learning (DAL) with FCN-based architecture (Bi et al., 2018). Wang et al. (2020) proposed a CRACK-FCN 

model that combines multi-scale structured forests for edge detection (SFD) for crack image segmentation. 

Additionally, Persello & Stein (2017) presented FCN model using dilated kernel (FCN-DK) for slum 

mapping. It is claimed that the proposed model is able to learn features with a limited number of networks 

and parameters. Table 2.1 compares various DL models for semantic segmentation tasks that highlight the 

FCN-DK6 model has a smaller network depth and parameters than other models. This indicates that FCN-

DK6 model is more lightweight and potentially more effective for handling small datasets due to its lower 

complexity. However, this advantage may come at the cost of a reduced ability to capture complex features 

compared to deeper models like Segnet and U-net. 

Table 2.1 Comparison of network depth and total parameters in various Deep Learning models for 
semantic segmentation 

Model Depth of Networks Total Parameters 

Segnet 36 layers 19,265,989 

DeepLabv3 27 layers 11,855,221 

PSPnet 26 layers 15,965,189 

U-net 23 layers 34,456,869 

FCN-DK6 12 layers 117,445 

*the numbers in the table above obtained through self-observation by the author 
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2.4. Convolutional Neural Network 

CNN is the most utilized DL networks in computer vision for image classification and recognition. 

According to Lecun et al. (1998), the main idea of CNN was to use convolutional layers to handle the spatial 

hierarchies of features from input data. Convolutional refers to the convolution operation, which applies 

filters to detect patterns such as edges and textures to create feature maps that highlight the complex patterns 

across images (Yamashita et al., 2018; C. Yu et al., 2023). This enables CNN to automatically and effectively 

extract features from input images. A typical CNN model consists of three types of layers and one classifier 

that includes convolutional, pooling, a few fully connected layers, and a softmax (Albelwi & Mahmood, 

2017), as illustrated in Figure 2.4. Convolutional layers use a series of learnable kernels of filters which aim 

to extract low-level features such as edges, textures, colours, etc., and output new feature maps (Albelwi & 

Mahmood, 2017). While, pooling layers perform to reduce the spatial dimensions of the input feature maps 

through a process known as downsampling, also reducing parameters to make a model more efficient 

(O’Shea & Nash, 2015). Fully connected layers perform to compile the output features from convolutional 

and pooling layers to interpret high-level features and make final decisions (Basha et al., 2020). 

 
Figure 2.4. Convolutional Neural Network structure, consisting of convolutional, pooling, and fully 

connected layers (Source: (Albelwi & Mahmood, 2017) 

2.5. eXtreme Gradient Boosting (XGBoost) 

XGBoost is an ensemble learning method used to address various classification and regression problems. 

This classifier uses the gradient-boosting algorithm which sequentially builds new trees to predict the 

residuals or errors from the previous trees (G. Zhou et al., 2022). As a result, each step in the optimization 

process is dependent on the outcomes of the previous step. By applying the gradient descent algorithm, 

XGBoost minimizes loss when adding a new tree. Tree boosting is an effective ensemble learning approach 

that integrates several weak classifiers into a single strong classifier, it leads to improving classification 

performance (Ren et al., 2017). The final prediction is derived by combining the predictions of all the 

individual tress, as illustrated in Figure 2.5. 

XGBoost controls model complexity and prevents overfitting through its objective function, which consists 

of two parts: the loss function and the regularization term (Tanha et al., 2020). The loss function works with 

gradient descent by iteratively adding weak learners, which corrects the previous error, ensuring accurate 

predictions (Shao et al., 2024). The regularization term penalizes complex models with L1 (lasso) providing 

noise resistance and robustness and L2 (ridge) offering lower computational complexity and faster 

processing (Zhang et al., 2022). This balance allows XGBoost to achieve both high performance and 

computational efficiency. The algorithm stands out for two key features: it computes faster than other 

gradient-boosting tools and performs exceptionally well in classification and regression modelling (Zhou et 

al., 2022). Additionally, XGBoost can handle non-linearities and interactions between input features. 

With its robust capabilities, XGBoost has been widely used in many research fields, particularly in RS 

applications. Zhou et al. (2022) demonstrated that XGBoost achieved higher overall accuracy than the 



DEEP LEARNING-BASED SEMANTIC SEGMENTATION FOR DETECTING MARINE OIL SPILLS 

 

9 

spectral angle mapper method in identifying bamboo species using hyperspectral RS imagery. Zhen et al. 

(2024) proved that XGBoost is highly effective in detecting mangrove species using very high-resolution 

satellite imagery despite their similar spectral properties. Shao et al. (2024) compared the performance of 

Random Forest and XGBoost classifiers for mapping urban impervious surfaces using integrated optical 

and SAR images. They concluded that XGBoost outperforms Random Forest in terms of accuracy. These 

studies suggest that XGBoost offers robust performance and reliability for classification tasks, making it a 

useful option for various RS applications. 

 
Figure 2.5 Simplified structure of XGBoost algorithm (Source: Wang et al. (2021)) 

2.6. Hybrid Model of Deep and Machine Learning in Semantic Segmentation 

DL models, including Artificial Neural Network (ANN) and CNN perform well in image classification and 

segmentation. However, their limitations include a heavy reliance on large amounts of labelled training data 

and prone to overfitting due to their high capacity to learn complex patterns in training data. The fully 

connected layers in DL used for classification tasks typically account for nearly 80% of the model’s total 

parameters, significantly increasing computational demands and memory usage (Jiang et al., 2018). This 

situation makes the models less efficient when deployed on devices with limited sources.  

A few research studies have formulated the hybrid technique to substitute the fully connected layer in DL 

with ML classifiers to avoid overfitting and lower computational requirements. Nijhawan et al., 2018) 

worked with Landsat 8 images to map debris-covered glaciers. They leveraged the AlexNet pre-trained 

model with CNN-based for extracting deep features and classifying those features with random forests to 

accurately map debris. Lee et al. (2018) adopted the same technique by separating the feature extraction and 

output layers classifier (fully connected layer) of CNN, then substituting the output layer classifier with the 

AdaBoost algorithm. Their study proved that Boost-CNN improved CNN performance by 3%. Sudiana et 

al. (2023) utilized CNN with a 1-dimensional array for feature extraction from optical and SAR images to 

identify burned areas. The high-level features extracted from CNN were then classified with a random forest 

classifier, achieving an accuracy of 96% for optical images and 70% for SAR images. Kwak et al. (2021) 

studied early crop mapping using a hybrid classification approach that combines CNN-random forests using 

limited input data from UAVs. They found that the hybrid model increased accuracy by 7% compared to a 

standalone CNN model. These studies demonstrate the high potential of hybrid techniques in image 

classification and segmentation in various fields and purposes. Since such hybrid techniques have become 

promising for automatic feature extraction and classification of image-based semantic segmentation, this 

study follows a similar approach. 
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3. DATA AND METHODOLOGY 

3.1. Dataset 

This study uses two different datasets to train and evaluate the proposed model, including benchmark and 

Indonesian datasets. The benchmark dataset consists of extracted images from Sentinel-1 SAR scenes which 

contain oil spills and obtained from MKLab (Krestenitis et al., 2019b). This dataset was used to implement 

and evaluate the proposed model. Besides, the Indonesian dataset includes Sentinel-1 SAR images collected 

from selected specific areas. Its purpose was to test the effectiveness of a model trained on a benchmark 

dataset when applied to different locations with the same case. 

3.1.1. Benchmarking Dataset 

The benchmark dataset was derived from the Sentinel-1 SAR satellite images with C-band acquired from 

European Space Agency (ESA) Copernicus Open Access hub collected by MKLab. The selected 

polarization mode of the SAR images in the dataset was vertical-vertical (VV) with a spatial resolution of 10 

metres. The SAR images had been processed through some standard pre-processing procedures, including 

radiometric calibration, speckle filtering, and linear transformation to convert the coefficient backscattering 

in decibels (dB). Then, the region containing oil spills and other valuable context was cropped from the pre-

processed SAR images and rescaled to 1250x650 pixels. All SAR images in the OSD dataset provided by 

MKLab were formatted in 3-channel RGB images. Additionally, SAR images were accompanied by their 

corresponding labelled images containing 5 classes of interest, including sea surface (considered 

background), oil spill, look-alike, ship, and land, as illustrated in Figure 3.1. The labelled images were 

provided in 1D or single-channel format, which assigns an integer value from 0 to 4 corresponding to 

defined classes, as shown in Table 3.1. All labelled images have been verified with ground truth information 

and data by the European Maritime Safety Agency (EMSA) through the CleanSeaNet service. Based on this 

information, all SAR images and their corresponding labels were located in the European waters that cover 

23 EU coastal states (EMSA, 2019). There are 1002 images provided with pixel distribution for each class, 

as shown in Table 3.1. This highlights the extreme diversion in pixel distribution across classes, leading to 

class imbalance. This study selected 500 images along with their labels, then splitting them into 400 images 

(80%) for training and 100 images (20%) for validation to simulate a limited data scenario. Selecting half of 

the images helps mitigate class imbalance by ensuring a more representative dataset for training the selected 

models. The image selection process involved visually inspecting images and calculating pixel distributions 

across classes to ensure an optimal balance across classes. 

 

  
(a) Synthetic Aperture Radar image (b) Labelled image 

Figure 3.1 Sample of a Synthetic Aperture Radar image (a) and corresponding labelled image (b). Black is for the sea 
surface, cyan represents oil spills, red for look-alikes, brown for ships, and green for land. 
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Table 3.1 Name of classes, respective labels, and pixel distribution of each class in MKLab dataset 

Class Colour Labels 1D Labels Pixel distribution 

Sea Surface Black 0 88.38% 

Oil Spills Cyan 1 0.95% 

Look-Alikes Red 2 5.49% 

Ship Brown 3 0.04% 

Land Green 4 5.14% 

3.1.2. Indonesian Dataset 

The Indonesian dataset was processed from the raw Sentinel-1 SAR images and produce the labelled images. 

SAR images and their corresponding labels covered two specific locations in Indonesian waters: Karawang 

and Balikpapan. These locations had witnessed incidents of oil spills due to subsea pipeline ruptures. 

Karawang waters are located in the central-western region of Indonesia, part of West Java province. An oil 

spill was first identified on the sea surface on July 16th, 2019, and estimated to have spilled around 500 

tonnes (Phady et al., 2019). The second site is in Balikpapan, located in the central region of Indonesia, as 

part of East Kalimantan province. The oil spill incidents occurred on March 31st, 2018, and resulted from 

the discharge of approximately 7.000 tonnes of oil (Muin et al., 2022). Figure 3.2 illustrates the study area's 

location in Indonesian waters, covering two specific locations. It is accompanied by SAR images showing 

the indicated oil spills in the areas. 

 

Figure 3.2 Study area map includes Synthetic Aperture Radar images indicating oil spill events across two locations in 
Indonesia. (A) Oil spills in Karawang; (B) Oil spills in Balikpapan 

Sentinel-1 SAR images were collected from the Copernicus Open Access hub belonging to ESA 

(https://browser.dataspace.copernicus.eu/). To build the SAR image dataset, we only collected Sentinel-1 

SAR images with VV polarization in Ground Range Detected (GRD) format. VV polarization mode was 

selected for its effectiveness as compared to vertical-horizontal (VH) polarization in distinguishing oil slick 

regions due to its sensitivity to the roughness of sea surface (Chaturvedi et al., 2019). The dataset was then 

complemented with information regarding geographic coordinates and timestamps of the oil spill events 

provided by direct field observation, study report (Abimanyu et al., 2021) and the Government Agency of 

Indonesia (the Ministry of Environment and Forestry; East Kalimantan Provincial Government) as ground 

truth information. Subsequently, the dark spots in the SAR images indicated as oil spills were confirmed by 

that ground truth information. 

https://browser.dataspace.copernicus.eu/


DEEP LEARNING-BASED SEMANTIC SEGMENTATION FOR DETECTING MARINE OIL SPILLS 

 

12 

3.1.3. Pre-processing and Preparation of Indonesian Dataset 

The collected Sentinel-1 SAR images for generating an Indonesian dataset were then processed in two 

procedures to produce SAR images and their corresponding labels to test the trained model from the 

benchmark dataset. In total, 11 scenes of Sentinel-1 SAR images were collected across two selected locations 

on dates associated with documented oil spill events. Then, all images were pre-processed using standard 

pre-processing procedures, including radiometric calibration, speckle filtering, and linear transformation to 

convert the coefficient backscattering in decibels (dB). The pre-process started by subsetting SAR scenes to 

focus on relevant areas. Only certain regions containing oil spills and other relevant regions to support the 

context of OSD are carefully chosen through image subsetting. Following this, precise orbit files were 

applied to the subsetted images to correct any satellite orbital position. The next steps involved removing 

thermal noise and followed by calibrating digital numbers to sigma to standardize backscatter values across 

images. This was then complemented by speckle filtering to reduce radar interference, and then the terrain 

correction was proceeded to adjust for topographical variations. Finally, the backscatter values were 

converted to decibles (dB). To ensure the consistency of output images with images in the benchmark 

dataset, which are formatted in 3-channel RGB format, we also save our SAR images output in RGB. This 

standardization guarantees that all images in this study are uniform and comparable with benchmark dataset. 

After SAR images were pre-processed and formatted in backscattering coefficient with dB unit, they were 

used in the next step to create labelled images with the procedure as shown in Figure 3.4. The flowchart 

outlines the procedure for creating labelled images from Sentinel-1 SAR images. To begin with, we identified 

the backscattering coefficients range in the regions containing oil spills. After identifying the range of dB 

values, the pixel values are then classified into two binary classes by setting a threshold for dark spots. This 

threshold helps differentiate areas as oil spills from those that are not. It is important to note that this 

threshold is not a static value, it may vary for dark spots in each different scene due to the environmental 

conditions and background noise which affect the radar pulse reflectivity of different areas. Following this, 

the binary-classified raster images were converted into vector polygons for more precise spatial analysis. The 

binary-classified polygons were then matched with ground-truth information by considering the coordinate 

point source of oil spill and its presence in the SAR images to select oil spills and eliminate the noise polygon. 

For land and ship classes are digitized manually. Once all area in the polygon vector were assigned their 

corresponding labels, the polygon was converted back into a raster format and then resized to 1250x650 

pixels. Finally, the outputs of this process were single-channel labelled images, and each label was assigned 

an integer value corresponding to predefined classes. 

 
Figure 3.3 Procedures to create labelled images 
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3.2. Semantic Segmentation for Oil Spill Detection with FCN-DK Model 

Some studies on OSD using an FCN model combined with ResNet, GoogleNet, and U-net can accurately 

identify oil spills down to the pixel (Li et al., 2018; Shamili et al., 2022; Shanmukh et al., 2024). These models 

have deep networks with many parameters, which enable them to learn intricate features and patterns from 

the input data. This makes them highly adaptable to new and various problems. However, such networks 

are prone to overfitting when trained on limited data, such as in cases of OSD. 

FCN-DK6 model (Persello & Stein, 2017) with a dilated kernel in each layer is capable of maintaining the 

same output dimensions as the input. By preserving these dimensions throughout the network, the FCN-

DK6 model can maintain high-resolution feature maps to detect the fine details in oil spills. This capability 

allows the model to effectively distinguish between oil spills and look-alikes. Additionally, the dilated kernel 

approach eliminates the need for upsampling layers, which reduces the network’s complexity and number 

of parameters. The reduction in network parameters enables the model to handle limited data more 

effectively during training (Younis & Keedwell, 2019), addressing challenges faced in OSD. 

3.2.1. FCN-DK Model Architecture 

Persello & Stein (2017) designed FCN-DK6 model with 6 main layers. Each layer is constructed using 

convolution operations to extract features at different levels of abstraction. The key component of this 

model is the dilated convolutions, which are embedded in each convolution layer. Dilated convolutions can 

exponentially expand the receptive fields without adding more learnable parameters per layer and losing the 

original resolution (Persello & Stein, 2017; F. Yu & Koltun, 2015). With the support of spatial dilated 

convolution, the kernel is transformed by the equation 3.1.  

𝐻′  × 𝑊′ = 𝑑(𝐻 − 1) + 1 × 𝑑(𝑊 − 1) + 1 (3.1) 

Where 𝐻 and 𝑊 are the height and width of the original kernel and 𝑑 is the dilation factor. This approach 

keeps the number of parameters low, which enhances computational efficiency and reduces the chance of 

overfitting during training with a limited dataset in OSD. By dilating the kernels, the model can capture 

broader contextual information, such as the spatial characteristics and patterns of oil spills, such as its distinct 

boundaries over a wider region of the ocean surface, while also identifying fine details of oil spills patterns 

within these larger areas. Figure 3.6 illustrates how the receptive field (coloured box) enlarges as the dilation 

factor (red dots) increases. In Figure 3.6(a), when the dilation factor 𝑑 = 1 (no dilation) is applied, there is 

no enlargement of the receptive field. However, as dilation factor increases to 𝑑 = 2 and 𝑑 = 3, the 

receptive field grows exponentially as shown in Figure 3.6 (b) and 3.6(c). 

 

Figure 3.4 Kernel with increasing dilation factors to expand the receptive field (Source: (F. Yu & Koltun, 2015) 

FCN-DK6 architecture generally has six convolutional layers with dilated kernels and one final classification 

layer with a 2D convolution and a softmax loss function, as illustrated in Figure 3.7. Each convolutional 

layer includes a zero padding 2D layer, a convolution 2D layer with a dilation rate, a batch normalization 

layer, a leaky ReLu layer, another zero padding 2D layer, and a max pooling 2D layer. Zero padding in this 
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architecture takes a role in maintaining the spatial dimensions of the input when performing convolution 

operations. It reduces the risk of deforming patterns in the image (Hashemi, 2019). Batch normalization 

layers in this network work to normalize the inputs to neural networks, which gives them a zero mean and 

a constant standard deviation across all layers. This helps to make the gradients more stable, leading to the 

network train faster, improving accuracy, and allowing for higher learning rates (Bjorck et al., 2018). Leaky 

ReLu plays a role as an activation function to capture the nonlinearity relationships among the outputs 

between layers of a neural network. This activation function allows for a small non-zero gradient when the 

unit is not active, which helps prevent the dying gradient. The dying gradient occurs when the neurons 

become inactive and stop learning during training (Banerjee et al., 2019). Following this, the max pooling 

layer works to reduce the spatial dimension of the input feature maps and leads to a decrease in the 

computational load. The model architecture is then finalized with a softmax loss function for classification 

tasks. This function calculates the probability that the input image belongs to each class. Then, the cross-

entropy loss measures the difference between the ground truth labels and the predicted probabilities (Zhu 

et al., 2020). Table 3.2 presents the detailed structure and parameters used in the model. 

 

 
Figure 3.5 Fully Convolutional Network-Dilated Kernel 6 (FCN-DK6) model architecture (source: author) 
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Table 3.2 The detailed structures and parameters of the FCN-DK6 model 

Layer Modules Parameters Dilation 

DK1 

ZeroPadding 2D kernel=2 x 2  

Convolution 2D kernel=5 x 5, filters=16 1 

BatchNormalizaton -  

Leaky ReLu α=0.1  

ZeroPadding 2D kernel=2 x 2  

MaxPooling2D kernel=5 x 5  

DK2 

ZeroPadding 2D kernel =4 x 4  

Convolution 2D kernel=5 x 5, filters=32 2 

BatchNormalizaton -  

Leaky ReLu α=0.1  

ZeroPadding 2D kernel=4 x 4  

MaxPooling2D kernel=9 x 9  

DK3 

ZeroPadding 2D kernel=6 x 6  

Convolution 2D kernel=5 x 5, filters=32 3 

BatchNormalizaton -  

Leaky ReLu α=0.1  

ZeroPadding 2D kernel=6 x 6  

MaxPooling2D kernel=13 x 13  

DK4 

ZeroPadding 2D kernel=8 x 8  

Convolution 2D kernel=5 x 5, filters=32 4 

BatchNormalizaton -  

Leaky ReLu α=0.1  

ZeroPadding 2D kernel=8 x 8  

MaxPooling2D kernel=17 x 17  

DK5 

ZeroPadding 2D kernel=10 x 10  

Convolution 2D kernel=5 x 5, filters=32 5 

BatchNormalizaton -  

Leaky ReLu α=0.1  

ZeroPadding 2D kernel=10 x 10  

MaxPooling2D kernel=21 x 21  

DK6 

ZeroPadding 2D kernel=12 x 12  

Convolution 2D kernel=5 x 5, filters=32 6 

BatchNormalizaton -  

Leaky ReLu α=0.1  

ZeroPadding 2D kernel=12 x 12  

MaxPooling2D kernel=25 x 25  

Classification 
Convolution2D kernel=1 x 1, filters=n_classes  

Activation functions Softmax  

 

 

 

 

 

 

 



DEEP LEARNING-BASED SEMANTIC SEGMENTATION FOR DETECTING MARINE OIL SPILLS 

 

16 

3.2.2. FCN-DK6 Model Training 

Initial FCN-DK6 model training as baseline 

The initial training of the FCN-DK6 model involved configuring learning-related hyperparameters, which 

included the learning rate, batch size, number of epochs, and optimizer type (Yaloveha et al., 2022). The 

initial learning-related hyperparameters are presented in Table 3.3 referred to Najmi et al. (2022). These 

hyperparameters were chosen due to their proven effectiveness in similar semantic segmentation tasks. 

Although Najmi et al. (2022) successfully demonstrated their hyperparameter in the FCN-DK model for 

slum mapping, OSD presents different challenges. It requires distinguishing oil spills from various marine 

phenomena in large areas. These specific requirements highlight the need for adaptable hyperparameters for 

the specific patterns of OSD. The model training was conducted on the benchmark dataset comprising 400 

training images and 100 validation images for OSD. The results of training the model with these initial 

hyperparameter settings were used as a baseline to assess how well the proposed improvement work on the 

FCN-DK6 model for OSD. 

Table 3.3 Initial learning-related hyperparameter in FCN-DK6 model referred to Najmi et al. (2022) 

Hyperparameter Range Tested 

Optimizer SGD (Stochastic Gradient Descent) 

Learning rate 1x10-5 

Momentum 0.9 

FCN-DK6 model optimization through hyperparameter tuning 

Hyperparameter optimization refers to finding the optimal set of hyperparameters that minimize the loss 

function on a validation dataset to achieve the best model performance (X. Yu & Lary, 2021). 

Hyperparameter tuning directly impacts the model’s ability to learn from data efficiently and accurately. This 

study optimized the FCN-DK6 model by tuning two types of hyperparameters: the learning-related 

hyperparameter and the data/image preprocessing hyperparameter. Optimizing learning-related 

hyperparameters involved manually adjusting parameters by iteratively testing and fine-tuning the 

parameters within a specified range presented in Table 3.4. This tuning allows for the identification of 

hyperparameter settings that optimize the model’s accuracy. The mini-batch size determines the number of 

images processed simultaneously, influencing both training speed and memory usage. Additionally, the 

optimizer is an algorithm that adjusts model weights to minimize a loss function. Typically, an optimizer 

works with a learning rate, which can influence how quickly the model learns. The cross-entropy loss 

function quantifies the difference between the actual labels and the predicted probabilities. Lastly, the 

number of epochs indicates how many times the model iterates over the training dataset. By carefully tuning 

these hyperparameters, this study aimed to optimize the performance of the FCN-DK6 model in OSD, 

ensuring efficient learning and accurate predictions. 

Table 3.4 Tuning hyperparameter settings in FCN-DK6 model 

Hyperparameters Range Tested 

Mini-batch size 12, 14, 16 images 

Optimizer Adam, SGD 

Learning rate 1x10-5, 5x10-5, 1x10-4, 5x10-4 

Cross entropy loss categorical_crossentropy 

Number of epochs 60, 80, 100 

The second approach involves hyperparameter testing related to data/image preprocessing. The 

hyperparameter set is the patch size, where the images are preprocessed using a patch-based technique by 

dividing each original image into smaller patches of a specified size. Processing smaller patches in DL instead 

of the entire image, reduces memory requirements during the training. This approach also allows the model 

to capture detailed local features more effectively, affecting model performance and accuracy (Hamwood et 
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al., 2018; Quintana et al., 2023). Additionally, patch size impacts the model’s ability to learn and generalize 

the complex oil spill patterns identification mixed with look-alikes. Smaller patches than the original image 

dimension help the model focus on finer details in distinguishing oil spills from similar features (Farooq et 

al., 2018; Martins et al., 2021). Training the network using a patch-based approach enables the model to 

manage images of any size by dividing them into smaller patches (Volpi & Tuia, 2017). Determining the 

optimal input patch size is critical for the network to learn complex features of the target objects that enable 

it to distinguish from the similar objects (Martins et al., 2021). Setting the patch size too small does not 

capture enough relevant features of oil spills from SAR images for the DL network to accurately identify 

complex oil spill patterns. Conversely, setting the patch size too large may include mixed features of oil spills 

along with look-alikes and other similar objects that negatively affect the accuracy of oil spill predictions. 

Each training image in this study was split into a specified size with non-overlapping patches. The patch 

sizes examined in this study included 128x128, 256x256, and 512x512 pixels. Subsequently, the FCN-DK6 

model was trained using each of the three image patch sizes. This experiment aimed to identify the most 

effective patch size configuration and understand its influence on achieving optimal model performance. 

Optimizing the model through the number of class reduction 

As stated earlier in this methodology section, this study implemented multiclass segmentation for five 

classes: sea surface, oil spills, look-alikes, ships, and land. Additionally, we conducted experiments to reduce 

the number of classes to four by merging sea surface and land into a single “background” class. Since our 

focus was on detecting oil spills in the open ocean, the land class is less relevant, where it introduces 

unnecessary complexity to the model. Accurate monitoring of oil spills relies on detecting the slicks on water 

surfaces without the interference of land signals. Thus, four class scenarios, including background, oil spills, 

look-alikes, and ships, can potentially improve the model accuracy by simplifying the segmentation task. 

Krestenitis et al. (2019a) demonstrated that reducing the number of classes from five to three in an OSD 

study using Deep CNN improved accuracy. This class reduction allowed the model to focus more effectively 

on the remaining classes. Thus, we trained the model under both 5-class and 4-class scenarios and then 

compare the performance of these two class settings. 

3.3. Semantic Segmentation for Oil Spill Detection with Hybrid CNN-XGBoost Model 

In this section, a hybrid model for semantic segmentation in OSD was proposed. This hybrid approach 

takes the strength of both DL and ML for specific tasks (Lee et al., 2018). DL is used for extracting high-

level features, while ML is used for classification tasks. ML algorithms have been widely applied in pixel-

level classification of RS images because of their ability to delineate complex and non-linear patterns 

accurately (Sheykhmousa et al., 2020). However, the success of classification with ML highly depends on 

the availability of spatial patterns or features within the image of interest. Extracting and selecting optimal 

features can be time-consuming and requires considerable effort before classification (Kwak et al., 2021). In 

OSD, obtaining ground truth data is difficult, resulting in limited training samples. Utilizing DL with limited 

training samples risks overfitting, while ML needs feature extraction as inputs to achieve optimal accuracy. 

A hybrid model offers automatic feature extraction by possibly generating many high-level features even 

with small training images and performs supervised classification to handle non-linear patterns and feature 

interactions effectively. This approach benefits OSD in semantic segmentation by achieving optimal 

accuracy with a small amount of training. Figure 3.8 illustrates the image classification process from input 

to output using different approaches. This study adopts the process illustrated by section C in Figure 3.8. 
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Figure 3.6 The classification process on different techniques. (A) Machine Learning technique; (B) Deep Learning 
technique; (C) a hybrid technique by combining Deep Learning and Machine Learning (Source: Bakasa & Viriri 

(2023)) 

3.3.1. A Hybrid CNN-XGBoost Model Architecture 

The model proposed in this study integrates the convolutional networks from FCN-DK6 as a DL element, 

and the pre-existing XGBoost algorithm as an ML element, as shown in Figure 3.9 to tackle the limited data 

problem in OSD. The model is divided into two parts: feature extractor and feature classifier. First, CNN 

functions as a feature extractor that captures essential patterns within input images and then generates 

feature maps. These two parts are synced by a flattening process that transforms the CNN outputs in feature 

maps into a format compatible with XGBoost. This structure is designed to optimize model performance 

by leveraging the effective feature extraction capabilities of CNN and the robust classification of XGBoost. 

Figure 3.9 shows a simplified architectural overview of the proposed hybrid model. 

 
Figure 3.7 Architecture overview of the proposed hybrid model in this research (source: author) 
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CNN for feature extraction 

In this study, only the convolutional networks from the FCN-DK6 are utilized excluding the classification 

layer. Instead, the role of classification layer is replaced by predefined XGBoost classifier. Convolutional 

networks are designed to automatically learn spatial hierarchies of features from input images using filters 

or kernels. Each kernel convolves across the input image to produce a feature map highlighting specific 

patterns within the image. This is particularly suitable for OSD cases with limited data issues, as CNN can 

generate multiple synthetic feature maps from one input image to expand the dataset for the training model. 

Figure 3.10 provides insight into how convolution layers work to produce multiple high-level feature maps 

from one input image of SAR image. 

 
Figure 3.8 Simplified Convolutional Neural Network architecture for feature extraction (source: author) 

The CNN architecture of our hybrid model consists of four convolutional layers. Each of these layers 

includes several sub-layers, which are designed based on the structure of FCN-DK6 as a base model. This 

study opted for four convolutional layers instead of six to reduce computational complexity and improve 

training efficiency. Each convolutional layer consists of a zero padding 2D layer, a convolution 2D layer, a 

batch normalization layer, a leaky ReLu layer, another zero padding 2D layer, and a max pooling 2D layer. 

However, dilated kernels from the FCN-DK6 were not included in this convolutional layer for the hybrid 

model to simplify the architecture and maintain a balance between capturing relevant features and 

computational efficiency. The CNN in this hybrid model utilize a 1x1 kernel window for padding across all 

layers. Furthermore, both convolutional and pooling operations utilize a 3x3 kernel window throughout the 

network. This approach is designed to keep the spatial dimension of the output feature maps the same as 

those of the input. Besides, the adjustment of kernel size is intended to manage the balance between spatial 

resolution and the receptive field. It also ensures that the model efficiently captures detailed and boundary 

spatial features. The number of filters in this model is designed to increase as the network goes deeper to 

generate more feature maps, capturing a wide variety of high-level features for final classification. This 

hierarchical feature learning helps improve the network's ability to classify images accurately. The structure 

overview and detailed parameters of the CNN layer for feature extraction can be seen in Figure 3.11 and 

Table 3.5. Since this study aims to identify the optimal model architecture, the structure of four 

convolutional layers as outlined in Table 3.5 are maintained, while the number of filters is systematically 

configured to meet the experimental requirements. 
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Figure 3.9 Convolutional Neural Network architecture in the hybrid model for feature extraction (source: author) 

Table 3.5 The initial structures and parameters of the Convolutional Neural Network for the hybrid model 

Layer Modules Parameters 

Conv 1 

ZeroPadding 2D kernel=1 x 1 

Convolution 2D kernel=3 x 3, filters=16 

BatchNormalizaton - 

Leaky ReLu α=0.1 

ZeroPadding 2D kernel=1 x 1 

MaxPooling2D kernel=3 x 3 

Conv 2 

ZeroPadding 2D kernel =1 x 1 

Convolution 2D kernel=3 x 3, filters=32 

BatchNormalizaton - 

Leaky ReLu α=0.1 

ZeroPadding 2D kernel=1 x 1 

MaxPooling2D kernel=3 x 3 

Conv 3 

ZeroPadding 2D kernel=1 x 1 

Convolution 2D kernel=3 x 3, filters=32 

BatchNormalizaton - 

Leaky ReLu α=0.1 

ZeroPadding 2D kernel=1 x 1 

MaxPooling2D kernel=3 x 3 

Conv 4 

ZeroPadding 2D kernel=1 x 1 

Convolution 2D kernel=3 x 3, filters=32 

BatchNormalizaton - 

Leaky ReLu α=0.1 

ZeroPadding 2D kernel=1 x 1 

MaxPooling2D kernel=3 x 3 
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XGBoost for Classification 

The hybrid model employs the pre-existing XGBoost algorithm, which is responsible for classifying high-

level features extracted by CNN. XGBoost constructs decision trees using gradient boosting, which is 

effective for OSD due to its ability to handle non-linear data and complex patterns in oil spill objects. This 

algorithm involves predicting the residuals or errors from previously trained trees. By sequentially adding 

these new trees, XGBoost can progressively minimize these errors and elevate the model’s accuracy. 

Gradient descent in this algorithm, on the other hand, functions to reduce the loss caused by adding a new 

tree (Zhou et al., 2022). In XGBoost, the predicted output for each sample is calculated by summing the 

weights of the leaves for all weak classifiers (Zhen et al., 2024). The general formula for prediction at step 𝑡 

is as follows in Equation 3.2 (T. Chen & Guestrin, 2016): 

𝑓𝑖
(𝑡)

=  ∑ 𝑓𝑘(𝑥𝑖

𝑡

𝑘=1

) =  𝑓𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖) (3.2) 

where 𝑓𝑡(𝑥𝑖) is the learner of step 𝑡, 𝑓𝑖
(𝑡)

 and 𝑓𝑖
(𝑡−1)

 are the prediction results of steps 𝑡 and 𝑡 − 1, and 𝑥𝑖 

is the input variable. This algorithm has numerous parameters that mainly address the bias-variance trade-

off (underfitting and overfitting risks), which involves balancing model accuracy and generalization 

capability. Two strategies can be used to prevent overfitting and also improve the model’s performance in 

this model, by configuring some parameters. The first strategy focuses on controlling the complexity of the 

model by adjusting four key parameters: n_estimators, max_depth, min_child_weight, and gamma. The 

second strategy is to strengthen the model's ability to handle noise by increasing randomness, which helps 

prevent the model from learning patterns that might not apply to general situations. This involves adjusting 

parameters such as subsample, colasample_bytree, and eta (learning rate) (Zhou et al., 2022). 

3.3.2. Hybrid CNN-XGBoost Model Training 

Training the hybrid model ensures that the model effectively captures detailed features from input images 

and utilizes them for accurate classification. The process of training hybrid models with an oil spill dataset 

included several steps: image preprocessing, feature extraction through convolutional layers, flattening the 

feature maps extracted from convolutional layers, and classification using XGBoost classifier. Additionally, 

optimizing the model by reducing the number of classes, as implemented in the FCN-DK6 model was also 

applied in this hybrid model. Below is a detailed procedure for training the hybrid model with the oil spill 

dataset: 

Image loading and preprocessing 

The preprocessing procedure involved several key steps to prepare the training data for a hybrid model. 

Initially, SAR and labelled images were loaded and resized from their original dimension of 1250x650 to a 

uniform size of 500x260 to reduce the computational burden and ensure consistency across all images in 

the dataset. Simultaneously, the labelled images in a single-channel format are mapped under both 5-class 

and 4-class scenarios, following the same reduction class experiment as in the FCN-DK6 model. These 

labels were then converted into one-hot encoding to transform them into binary vectors for the model. 

Each class index in the labelled images was set to 1 in the corresponding position of this new array, 

effectively encoding the class information into a format suitable for model training.  

Feature extraction through convolutional layers 

The feature extraction process involved the four convolutional layers adopted from FCN-DK6 model 

architecture. The number of filters in the convolutional layers progressively increased as the network 

deepens, as shown in Table 3.5. The CNN architecture with four convolutional layers was configured to 

independently generate feature maps with 32, 64, 128, 256, 512, and 1024 filters for the feature maps 

experiment. This experiment helps to determine how the filter quantity impacts performance and also 

identifies the optimal number of filters for optimal model performance. To examine the CNN architecture's 
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ability in producing various feature maps, we initially used only 100 images by selecting randomly to reduce 

training time. After identifying the optimal feature map configuration, the model was then trained with 400 

images. Subsequently, to efficiently handle the dataset and improve training stability, images were processed 

in mini-batch with 8 batches. This batching technique reduces memory usage and speeds up computation 

to enhance the model’s performance. These mini-batches were fed into the convolutional layers to extract 

high-level features. The output was feature maps served in four-dimensional arrays in image data, where the 

dimensions represent the number of images, height, width, and channels. Here, the channels correspond to 

the number of feature maps produced for each input image. At the end of the feature extraction process, 

the CNN model independently produces 32, 64, 128, 256, 512, and 1024 feature maps for each input image. 

These feature maps were then transformed through a flattening procedure to fit the structured data input 

format required by XGBoost.  

Flattening the feature map 

To integrate CNN with XGBoost, the output feature maps from the convolutional layers must be 

transformed into a tabular format compatible with XGBoost. The process begun by flattening the extracted 

features from a four-dimensional array into a two-dimensional array, where each row represents a feature 

map. The labelled images were also transformed to align with the two-dimensional SAR image data to ensure 

each pixel in the feature map corresponds to its label. This transformation prepared the data for subsequent 

ML tasks by simplifying the structure. Subsequently, the transformed features and labels were combined 

into a tabular format with Pandas DataFrame. Features were stored in the DataFrame column, while labels 

were assigned to a ‘Label’ column. In this study, the number of column in the tabular data corresponds to 

the input of feature maps from the previous process, with each column representing one feature map. 

Additionally, one column was included in the last column for the label. This organized dataset was then used 

to redefine the variable 𝑋 and 𝑌 for training with XGBoost classifier. 𝑋 consisted of the tabular data with 

all features excluding the ‘Label’ column, while 𝑌 contained the labels. This preparation ensured that the 

data was compatible with XGBoost for classification tasks. 

Classification using XGBoost 

The next step was to classify all data in the tabular data from the previous process using the ML algorithm 

classifier. This involved XGBoost from Python library package. The classification process begun with 

setting hyperparameters to control the model’s complexity and elevate its predictive accuracy. The model is 

quite complex with over 20 hyperparameters to fine-tune. Some of the key parameters include n_estimator, 

learning rate, max_depth, min_child_weight, and gamma. The n_estimators parameter sets the number of 

trees in the model, where more trees potentially improve the performance but also increase computational 

cost. The eta or learning rate controls the step size during boosting. A lower learning rate makes the model 

more robust to overfitting by shrinking the contribution of each tree. The max_depth parameters determine 

the maximum depth of each tree that can grow, balancing model complexity and preventing overfitting. The 

min_child_weight parameter determines the minimum total instance weights required for a child node, with 

higher values making the model more conservative. Lastly, the gamma parameter introduces a regularization 

term in the loss function, which helps control overfitting. In this study, the hyperparameters were manually 

tuned and combined within a specified value range to find the optimal model configuration. The selected 

hyperparameters were then used to train the final hybrid model to ensure it was well-suited for the specific 

characteristics of the dataset and achieves optimal performance. Table 3.6 displays the hyperparameters 

tested within a range, including the selected values for final classification. 

 

 

 

 

 
 



DEEP LEARNING-BASED SEMANTIC SEGMENTATION FOR DETECTING MARINE OIL SPILLS 

 

23 

Table 3.6 Tuning hyperparameter settings in XGBoost for the hybrid model 

Hyperparameters Range Tested 

n_estimators 100, 150, 200, 300 

max_depth 6, 10, 12 

min_child_weight 0.1, 0.5, 1 

gamma 0, 0.1, 1 

learning_rate 0.1, 0.3, 0.5 

3.4. Evaluation Metrics 

Accuracy assessment with defined evaluation metrics is necessary for quantifying model sensitivity to 

hyperparameter settings. To evaluate the performance of FCN-DK6 and the proposed hybrid model, we 

employed several key metrics: confusion matrix, precision, recall, F1-score, and Intersection over Union 

(IoU). 

Confusion Matrix 

The confusion matrix (CM) provides cross-tabulation of classified against reference data (Comber et al., 

2012). This matrix typically uses terminology from the binary CM, where the class of interest is called the 

positive case and the background is called the negative case. The binary CM contains four components: true 

positives (TP) and true negatives (TN), which are correctly identified samples, and false positives (FP) and 

false negatives (FN), which are misclassified samples (Maxwell et al., 2021). Table 3.7 shows the structure 

of CM in binary classification. This assessment tool gives a better understanding of the distribution of 

classification outcomes and identifies areas where the model may be underperforming. 

 Table 3.7 Illustration of confusion matrix 

 Predicted Positive Predicted Negative 

Actual Positive TP FN 

Actual Negative FP TN 

Precision 

Precision evaluates how accurate the positive predictions are, by comparing the count of true positives to 

the combined count of true positives and false positives. This indicates how well the model identifies 

positive instances. A high precision means a few false positives. The calculation of precision is presented in 

equation 3.3. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.3) 

Recall 

Recall, also called sensitivity or true positive rate is calculated by dividing the number of true positives by 

the total of true positives and false negatives, as shown in equation 3.4. It indicates how well the model can 

find all positive instances. High recall means the model has a low rate of missing positive cases. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.4) 

F1-Score 

The F1-score combines precision and recall into one measure by calculating their harmonic mean. This 

metric is particularly helpful when class distribution is uneven. A higher F1-score means a better balance 

between precision and recall. The formula for the F1-score is given in equation 3.5. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑃

𝑇𝑃 + 0.5(𝐹𝑃 + 𝐹𝑁)
 (3.5) 
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Intersection over Union (IoU) 

The IoU is a widely used evaluation in semantic segmentation that measures the area of overlap between 

the predicted output and ground truth divided by both mask combined. In image semantic segmentation, 

the IoU metric quantifies the pixels common to both predicted and ground truth areas as a proportion of 

the total pixels for both areas. The model performance is assessed based on IoU accuracy 0 to 1 or served 

in percentage, which is described in equation 3.6: 

𝐼𝑜𝑈 =  
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∩ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∪ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
=  

𝑇𝑃

𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 (3.6) 

3.5. Software and Platform 

This study utilizes three main software tools: SNAP, ArcGIS, and Jupyter Notebook. SNAP version 9.0.0 

is used for Sentinel-1 SAR image preprocessing, while ArcMap 10.8 is employed to further process Sentinel-

1 SAR images to generate Indonesian images. Jupyter Notebook with Python programming environment is 

used for image preparation, model training, visualization, and performance evaluation. All processes in 

Jupyter Notebook are run on the Geospatial Computing Platform (GCP) from CRIB, ITC, University of 

Twente, equipped with an 8Vcpu NVIDIA ARMv8.2, NVIDIA GPU with 32GB memory (Girgin, 2021). 

All code is executed using the Python libraries TensorFlow, Keras, and scikit-learn. 
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4. RESULTS 

4.1. Pixel Distribution Across Classes 

In this study, we prepared images for training, validation, and testing to maintain a balanced distribution of 

classes. Specifically, 400 images were allocated for training, and 100 for validation from the benchmarking 

dataset (Krestenitis et al., 2019b). This 80%/20% split ensured sufficient data for training in a limited dataset 

simulation, while using the validation set to tune hyperparameters based on the model’s accuracy assessment. 

The Indonesian dataset, which consists of only 24 images, was dedicated to testing the model on unseen 

data from different region. The dataset presented a challenge with class imbalance, as illustrated by the 

percentage of pixels in Figure 4.1. In this figure, the percentage of the sea surface class outnumbers other 

classes, which takes over 90% of the total pixel count across all selected images. The other classes, such as 

look-alikes, land, oil spills, and ships, have smaller regions in SAR images, accounting for only 1% to 2% of 

the total pixels. The dominance of the sea surface makes it challenging for the model to learn and accurately 

detect the minority classes, particularly the oil spill class. Consequently, the model may become biased 

towards the majority class, potentially reducing its sensitivity to detecting oil spills as the main target class. 

This analysis aims to highlight the challenges of the dataset that may influence the final model performance. 

 

Figure 4.1 Pixels distribution across classes in selected images for training, validation and image prediction purposes 

4.2. Oil Spill Detection with FCN-DK6 Model 

4.2.1. Initial FCN-DK6 Model Performance 

The FCN-DK6 model was trained with a predefined hyperparameter referenced from Najmi et al. (2022) 

as a baseline to evaluate the proposed model’s performance. Table 4.1 shows that the IoU accuracy for 

FCN-DK6 model is suboptimal, with the main target oil spill class achieving only 23.59% and look-alike 

class is distinguished by the model at 24.94%. Similarly, Table 4.2 indicates that the model’s precision, recall, 

and F1-score for the oil spill class are 39.29%, 37.11%, and 38.17%, respectively. These metrics suggest that 

the current hyperparameters are not optimally applied for OSD due to their limited capability in capturing 

complex patterns of oil spills, highlighting the need for further optimization to improve the model 

performance. 

Table 4.1 IoU metrics accuracy of the FCN-DK6 with initial hyperparameter values 

IoU Accuracy (%) Mean IoU 
(%) Sea surface  Oil spill Look-alike Ship Land 

96.44 23.59 24.94 0.00 69.78 42.95 

0.07%
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Table 4.2 Evaluation metrics of the FCN-DK6 model with initial hyperparameter values 

Metrics 
Metric Accuracy (%) 

Mean (%) 
Sea surface  Oil spill Look-alike Ship Land 

Precision 97.74 39.29 57.37 0.00 81.77 55.23 

Recall 98.64 37.11 30.61 0.00 82.64 49.80 

F1-score 98.19 38.17 39.92 0.00 82.20 51.70 

 

4.2.2. FCN-DK6 Hyperparameters and Performance After Tuning 

Training a DL model requires hyperparameter tuning, as hyperparameters significantly influence the model’s 

performance. After fine-tuning to obtain the best combination within the tested range, the selected 

hyperparameter was implemented for further training the FCN-DK6 model. Hyperparameter tuning 

improves model evaluation metrics, as shown in Table 4.3 and Table 4.4. Table 4.3 compares the model’s 

IoU accuracy between the baseline and after hyperparameter tuning, highlighting an improvement in all 

classes, particularly for oil spills, increasing from 23.59% to 39.41%. Similarly, Table 4.4 shows evaluation 

metrics, including precision, recall, and F1-score, that also improve for the oil spill class: precision increased 

from 39.29% to 53.99%, recall from 37.11% to 59.30%, and F1-score from 38.17% to 56.53%. 

Table 4.3 Selected hyperparameter settings in FCN-DK6 model after fine-tuning 

Hyperparameters Range Tested Selected Value 

Mini-batch size 12, 14, 16 images 16 images 

Optimizer Adam and SGD (Stochastic gradient distance) Adam 

Learning rate 1x10-5, 5x10-5, 1x10-4, 5x10-4 5x10-5 

Cross entropy loss categorical_crossentropy categorical_crossentropy 

Number of epochs 60, 80, 100 100 

 
Table 4.4 Comparison of FCN-DK6 IoU metrics before and after hyperparameter tuning 

 IoU Accuracy (%) 
Mean IoU 

(%) Sea surface  Oil spill Look-alike Ship Land 

Baseline 96.44 23.59 24.94 0.00 69.78 42.95 

After tuning 97.49 39.41 33.93 12.33 80.93 52.82 

 
Table 4.5 Comparison of FCN-DK6 evaluation metrics before and after hyperparameter tuning 

 Metrics 
Metric Accuracy (%) 

Mean (%) 
Sea surface  Oil spill Look-alike Ship Land 

Baseline 

Precision 97.74 39.29 57.37 0.00 81.77 55.23 

Recall 98.64 37.11 30.61 0.00 82.64 49.80 

F1-score 98.19 38.17 39.92 0.00 82.20 51.70 

After 
tuning 

Precision 98.25 53.99 60.72 39.46 94.97 69.48 

Recall 99.22 59.33 40.12 15.21 84.55 59.69 

F1-score 98.73 56.53 50.66 21.96 89.46 63.47 

 

4.2.3. FCN-DK6 Model Performance in Patch Size and Training Size Experiments 

This section presents the results of experiments with various patch sizes and training sizes in the FCN-DK6 

model. The baseline FCN-DK6 model was initially trained with a 128x128 patch size, and the same patch 

size was used for training the model with selected hyperparameter tuning. To investigate the impact of patch 

size on model performance in detecting oil spills, experiments are conducted with larger patch sizes. Figure 

4.2 illustrates the trends of various evaluation metrics for the main target oil spill class across different patch 
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size settings, all trained with 400 images. It shows that the accuracy of oil spill segmentation increases with 

larger patch sizes, achieving optimal accuracy with 512x512 patch size setting. As the patch size increases, 

the model captures more details and relevant features of oil spills, such as texture and edges. Larger patch 

sizes provide better context and finer details needed to distinguish oil spills from the other classes. 

Furthermore, this study examined the FCN-DK6 model's capability for handling limited data in OSD cases. 

Table 4.5 shows that increasing training size does not significantly improve the model’s accuracy in OSD.  

The IoU accuracy for oil spills plateaus after training with 200 images, while the accuracy of the other metrics 

fluctuates as the training size increases. The increased noise and variability in the oil spill appearance in the 

SAR images of the larger training dataset could make the model unable to learn consistent patterns. Based 

on these results, the model achieve optimal performance in 400 images.  

 
Figure 4.2 Trends in oil spill detection accuracy metrics across various patch sizes in FCN-DK6 model 

Figure 4.3 Trends in oil spill detection accuracy metrics across various training sizes in FCN-DK6 model 
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4.2.4. FCN-DK6 Model Performance in a 5-Class and 4-class Scenario 

In this section, the model’s performance is evaluated under 5-class and 4-class scenarios using quantitative 

and qualitative analysis. The FCN-DK6 model is trained with a 512x512 patch size, which demonstrated 

the best performance in the patch size experiments. 

Table 4.6 presents the accuracy of IoU metrics of the FCN-DK6 model for both 5-class and 4-class 

scenarios. In the 5-class scenario, the model achieves a 51.03% IoU score for oil spill segmentation and 

detecting look-alike at 44.18%. The model faces challenges in accurately detecting due to the complex and 

variable patterns present in SAR images, such as the diverse texture of the ocean surface and the varying 

shapes and sizes of oil spills. However, when the number of classes is reduced to a 4-class scenario, the IoU 

accuracy for oil spills significantly increases to 98.80%. The results for oil spill accuracy show a similar 

pattern in both evaluation metrics and Iou metrics for both class scenarios. Table 4.7 shows that as the 

number of classes is reduced from 5 to 4, the accuracy in evaluation metrics for oil spills significantly 

increases. Precision improves from 70.66% to 99.29%, recall increases from 65.75% to 99.50%, and F1-

scores rises from 67.59% to 99.40%. These improvements suggest that simplifying the classification task 

allows the model to focus better on distinguishing oil spills. 

Table 4.6 Comparison of FCN-DK6 IoU metrics for a 5-class and 4-class scenarios 

Scenario 

IoU Accuracy (%) 

Mean IoU 
(%) 

Sea surface /  
Background 

Oil spill Look-alike Ship Land 

5-class 98.72 51.03 44.18 20.93 91.57 61.29 

4-class 97.76 98.80 42.26 13.81  63.16 

 
Table 4.7 Comparison of FCN-DK6 evaluation metrics for 5-class and 4-class scenario  

Scenario Metrics 
Metric Accuracy (%) 

Mean (%) Sea surface /  
Background 

Oil spill Look-alike Ship Land 

5-class 

Precision 99.34 70.66 60.76 33.58 95.66 72.00 

Recall 99.38 65.75 61.82 35.73 95.54 71.64 

F1-score 99.36 67.58 61.28 34.62 95.60 71.69 

4-class 

Precision 98.78 99.29 66.08 20.96 - 71.28 

Recall 98.96 99.50 53.97 28.83 - 70.32 

F1-score 98.87 99.40 59.41 24.27 - 70.49 

 

In the previous section, the quantitative results across multiple evaluation metrics indicate that a patch size 

512x512 provides better performance than the smaller patch size settings. This improvement is also reflected 

in the visual qualitative results, which represent similar findings. Figure 4.4 illustrates a comparison of visual 

outputs from the FCN-DK6 model trained with different patch size settings. In general, as the patch size 

increases from the baseline size of 128x128, the model is able to predict better results. The 512x512 patch 

size setting improves the model’s ability to predict visual outputs for semantic segmentation of oil spills, as 

the model performs better than the smaller patch size. This setting improves the accuracy and clarity of the 

visual results. 
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 (a) SAR Images  

   
(b) Ground truth 

   
(c) Predicted images with patch size 128 x 128 setting 

   
(d) Predicted images with patch size 256 x 256 setting 

   

(e) Predicted images with patch size 512 x 512 setting 

   
Figure 4.4 Example of qualitative results from the FCN-DK6 model with the 5-class scenario and various patch size 
settings. Black is for the sea surface, cyan represents oil spills, red for look-alikes, brown for ships, and green for land 

To reflect the aforementioned quantitative results, as indicated in Table 4.6, the oil spill IoU accuracy 

improved significantly from 51.03% to 98.80% when moving from a 5-class setting to a 4-class setting. 

Figure 4.5 compares the quality of predicted images produced by models trained with different patch sizes 

and class scenarios. Firstly, as the patch size increases, the segmentation results for oil spills become more 

accurate and closely align with the ground truth image. As shown in Figure 4.5 (c) and (d), the 128x128 

patch size does not adequately capture the full extent of the oil spill with incomplete segmentation for both 

5-class and 4-class. Meanwhile, the 256x256 patch size provides more coherent detections than the smaller 

patch size but still outputs incomplete segmentation, as seen in Figure 4.5 (e) and (f). Figure 4.5 (g) and (h) 

with 512x512 patch size settings provide the most accurate predictions that capture almost the full extent 

of the oil spill and closely align with the ground truth. Secondly, when comparing the predicted images from 

the model with a 5-class and from a 4-class across patch sizes, the predicted images with a 4-class show a 

better refinement of detecting and delineating oil spills, as shown in Figure 4.5 (c) versus (d) and (e) versus 

(f). For a detailed comparison between the 5-class and 4-class models with a 512x512 patch size, Figure 4.5 

(g) and (h) illustrate the results. The 4-class shows improved detection and delineation of oil spills, capturing 

almost the full extent of the oil spills and closely corresponding to the ground truth. Even though the model 

can semantically segment oil spills, it is unable to capture the look-alike class in this image sample due to the 

subtle appearance of the dark spots, which resemble the surrounding sea surface more closely than look-

alikes. 
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Figure 4.5 Examples of qualitative results from FCN-DK6 model comparing 5-class and 4-class scenarios with 

various patch size settings. Black is for the sea surface, cyan represents oil spills, red for look-alikes, brown for ships, 
and green for land 

4.2.5. FCN-DK6 Model Performance on Indonesian Dataset 

The FCN-DK6 model was trained and validated using the MKLab dataset. The trained model was utilized 

to predict oil spills from different datasets and regions and in order to investigate its generalization. The 

Indonesian dataset was used as unseen images to investigate the trained model to predict oil spills in different 

areas, which might have varying ocean characteristics. Since the model was trained using images that contain 

oil spill events in European waters. This section presents the model’s performance analysis in predicting oil 

spills in Indonesian water using a trained model on the MKLab dataset. 

Table 4.8 presents the IoU accuracy of the FCN-DK6 model for 5-class and 4-class scenarios on Indonesian 

dataset. We exclusively predicted the Indonesian dataset with the FCN-DK6 model trained with a patch 

size 512x512. As the previous quantitative and qualitative analysis indicates, this patch size yields the highest 

model performance compared to the other patch size settings. In the 5-class scenario, the model 

demonstrates low accuracy in segmenting oil spills at 26.44%, but the model barely segments look-alikes 

with considerably significantly low accuracy at 0.06%. When the class number is reduced to 4 classes, there 

is a substantial improvement in the accuracy of the oil spills from 26.44% to 80.52%. Table 4.9 shows that 

as the number of classes is reduced from 5 to 4, the accuracy in evaluation metrics for detecting oil spills in 

Indonesian water significantly increases. Precision improves from 52.30% to 91.88, recall increases from 

32.74% to 86.69%, and F1-scores rises from 40.27% to 89.21%. The FCN-DK6 model that is trained with 4-

(a) SAR Images (b) Ground truth 

  
(c) Predicted images with 5 classes and 128x128 (d) Predicted images with 4 classes and 128 x 128 

  
(e) Predicted images with 5 classes and 256x256 (f) Predicted images with 4 classes and 256x256 

  
(g) Predicted images with 5 classes and 512x512 (h) Predicted images with 4 classes and 512x512 
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class scenarios significantly improves the detection of oil spills in Indonesian waters. However, the model 

is unable to segment look-alikes, which could be due to the inadequate pixel representation of look-alikes 

in the Indonesian dataset.  

Table 4.8 Comparison of FCN-DK6 IoU metrics for 5-class and 4-class scenarios on Indonesian dataset 

Scenario 
IoU Accuracy (%) Mean IoU 

(%) Sea surface /  
Background 

Oil spill Look-alike Ship Land 

5-class 95.54 26.44 0.06 10.64 47.94 36.12 

4-class 94.43 80.52 0.00 7.15 - 45.53 

 
Table 4.9 Comparison of FCN-DK6 evaluation metrics for 5-class and 4-class scenarios on Indonesian dataset 

Scenario Metrics 

Metric Accuracy (%) 

Mean (%) Sea surface/ 
Background 

Oil spill Look-alike Ship Land 

5-class 

Precision 94.06 52.30 0.01 14.18 90.05 50.12 

Recall 98.66 32.74 0.00 26.16 52.37 41.99 

F1-score 96.30 40.27 0.00 18.39 66.22 44.24 

4-class 

Precision 96.16 91.88 0.00 17.72 - 51.44 

Recall 98.13 86.69 0.00 10.71 - 48.88 

F1-score 97.14 89.21 0.00 13.35 - 49.93 

 

Figure 4.6 presents the predicted images of Indonesian dataset, generated using the FCN-DK6 trained 

model with a patch size 512x512. These predicted images were used to assess the prediction images 

qualitatively and to align with the quantitative analysis from previous results. As indicated in Table 4.8, there 

is a significant improvement in IoU scores when moving from a 5-class scenario to a 4-class scenario. Figure 

4.6 visually demonstrates the comparison of predicted images under a 5-class and a 4-class scenario. The 

notable improvement is evident in the predicted images on the left side of Figure 4.6. In the 5-class scenario, 

the model misclassified oil spills as look-alikes on the predicted images as compared to its corresponding 

ground truth image. Meanwhile, when the model was trained with a 4-class scenario and predicted the same 

image, it performed better in detecting oil spills compared to the 5-class scenario, as shown in Figure 4.6. 

Although a small portion is still misclassified as look-alikes, the model’s predictions are substantially more 

accurate and closely align with the ground truth image. Figure 4.5 in the centre also shows improvements in 

delineating oil spills in a 4-class scenario. As shown in that figure, the model with a 5-class scenario 

misclassifies sea surface pixels as the land class and is slightly unable to accurately delineate dark spots as oil 

spill areas, resulting in a false negative. In contrast, the model with a 4-class scenario shows improved 

predictions that focus more accurately on oil spills. The oil spill area is better delineated, although there is a 

small overestimation, resulting in false positives where the model incorrectly predicts oil spills in areas where 

there are none. Based on the predicted images of Indonesian waters using the FCN-DK6 model, the model 

trained with a 4-class scenario detects oil spills more effectively than the 5-class scenario. This improvement 

is also supported by the previous quantitative analysis on the Indonesian dataset. 
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 (a) SAR Images  

   
(b) Ground truth 

   
(c) Predicted images with a 5-class scenario 

   
(d) Predicted images with a 4-class scenario 

   

Figure 4.6 Examples of qualitative results from FCN-DK6 model comparing 5-class and 4-class scenarios on 

Indonesian dataset. Black is for the sea surface, cyan represents oil spills, red for look-alikes, brown for ships, and 

green for land 

4.3. Oil Spill Detection with Hybrid CNN-XGBoost Model 

4.3.1. Hybrid Model Hyperparameters and Performance Comparison to Baseline 

The hyperparameter tuning in this hybrid model focuses on XGBoost. We fine-tune within a tested range 

to find the best combination that leads to optimal model’s performance. Table 4.10 presents the range of 

tested hyperparameter values, along with the selected values for each that result in the optimal combination. 

This optimal combination of hyperparameter values is used to train the model to compare the initial hybrid 

CNN-XGBoost model performance with the baseline, also for the further training model. The initial hybrid 

model is trained using 32 feature maps, then followed by further training with an increased number of 

feature maps. Table 4.11 shows the IoU accuracy of the oil spills, with the initial training of the hybrid model 

outperforming the baseline FCN-DK6 model. The baseline achieves 23.59%, while the initial hybrid model 

training achieves 33.94%. Similarly, the hybrid CNN-XGBoost model shows improved accuracy of oil spills 

in evaluation metrics compared to the baseline as shown in Table 4.12.  

Table 4.10 Selected hyperparameter settings in XGBoost after fine-tuning 

Hyperparameters Range Tested Selected Value 

n_estimators 100, 150, 200, 300 200 

max_depth 6, 10, 12 12 

min_child_weight 0.1, 0.5, 1 1 

gamma 0, 0.1, 1 0 

learning_rate 0.1, 0.3, 0.5 0.1 
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Table 4.11 Comparison of IoU metrics for baseline and initial training using hybrid CNN-XGBoost model 

 IoU Accuracy (%) Mean IoU 
(%) Sea surface  Oil spill Look-alike Ship Land 

Baseline 96.44 23.59 24.94 0.00 69.78 42.95 

Initial CNN-XGBoost 93.87 33.94 19.01 15.85 71.71 46.88 

Table 4.12 Comparison of evaluation metrics for baseline and initial training hybrid CNN-XGBoost model  

 Metrics 
Metric Accuracy (%) 

Mean (%) 
Sea surface  Oil spill Look-alike Ship Land 

Baseline 

Precision 97.74 39.29 57.37 0.00 81.77 55.23 

Recall 98.64 37.11 30.61 0.00 82.64 49.80 

F1-score 98.19 38.17 39.92 0.00 82.20 51.70 

Initial CNN-
XGBoost 

Precision 97.16 57.50 24.36 68.20 95.42 68.53 

Recall 96.47 47.33 46.78 20.20 67.46 55.65 

F1-score 96.81 51.92 32.04 31.20 79.04 58.19 

4.3.2. Hybrid Model Performance in Feature Map Optimization and Training Size Experiments 

This study set the filter configuration in convolutional 2D layers in the CNN from FCN-DK6 model to 

control feature map generation for feeding XGBoost. Additional features increase the number of columns 

in the tabular data, providing more data input to XGBoost and potentially capturing more complexity for 

classification tasks. Therefore, this study examined various numbers of feature maps to determine the 

optimal set for feeding into XGBoost. Additionally, the impact of training size on model performance was 

investigated, where each increase in training size corresponds to more rows in the training data.  

Figure 4.7 presents trends in oil spill detection accuracy metrics across various feature map settings. As the 

number of feature maps increases, the accuracy of the IoU and evaluation metrics for the oil spill class 

gradually improves, and optimal performance is achieved at the highest feature map setting. The IoU 

accuracy of oil spill improves from 33.94% in the initial training with 32 feature maps to 42.89% at 1024 

feature map setting. For the evaluation metrics, precision increases from 57.50% to 64.06%, recall rises from 

47.33% to 56.49%, and F1-score improves from 51.92% to 60.04%. Based on these results, the hybrid 

CNN-XGBoost effectively multiplies the number of training images by augmenting synthetic feature maps 

from a limited dataset in OSD. This approach optimizes performance in capturing oil spill areas from SAR 

images, as the model learns the oil spill features from more complex feature inputs, improving its ability to 

predict oil spills in unseen images. Additionally, Figure 4.8 shows there is no significant improvement in oil 

spill accuracy in all metrics as the training size increases.  

 
Figure 4.7 Trends in oil spill detection accuracy metrics across various numbers of feature maps setting in hybrid 

CNN-XGBoost model 
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Figure 4.8 Trends in oil spill detection accuracy metrics across various training sizes in hybrid model CNN-XGBoost 

model 

4.3.3. Hybrid Model Performance in a 5-Class and 4-Class Scenario 

Similar to the FCN-DK6 model, the hybrid CNN-XGBoost model was trained under both 5-class and 4-

class scenarios to investigate the assumption that reducing the number of classes would improve model 

accuracy. Table 4.13 presents the accuracy of IoU metrics of the hybrid CNN-XGBoost model for both 5-

class and 4-class scenarios. In the 5-class scenario, the model achieves a moderate IoU accuracy of 43.45% 

for segmenting oil spills in SAR images, while the model only achieves 30.74% for segmenting look-alike 

class. The model encounters challenges in accurately detecting oil spills that might be influenced by the 

variability of the appearance of SAR images, such as the varying shapes of the oil spills. When the number 

of classes is reduced to a 4-class scenario, the IoU accuracy for oil spills slightly increases to 51.40%. Table 

4.14 shows that as the number of classes is reduced from 5 to 4, the accuracy in evaluation metrics for oil 

spills slightly increases. Precision improves from 67.73% to 70.16%, recall increases from 54.80% to 58.23%, 

and F1-scores rises from 60.58% to 63.64%. These improvements suggest that simplifying the classification 

task allows the model to focus better on distinguishing oil spills. 

Table 4.13 Comparison of hybrid CNN-XGBoost IoU metrics for a 5-class and 4-class scenarios 

Scenario 
IoU Accuracy(%) 

Mean IoU (%) 
Sea surface Oil spill Look-alike Ship Land 

5-class 96.58 43.45 30.74 25.54 78.44 54.95 

4-class 97.47 51.40 30.00 21.09 - 49.99 

 
Table 4.14 Comparison of hybrid CNN-XGBoost evaluation metrics for 5-class and 4-class scenario 

Scenario Metrics 

Metric Accuracy (%) 

Mean (%) Sea surface /  
Background 

Oil spill Look-alike Ship Land 

5-class 

Precision 97.48 67.73 56.41 75.43 93.99 78.21 

Recall 99.06 54.80 40.31 27.86 77.06 59.82 

F1-score 98.26 60.58 47.02 40.69 84.69 66.25 

4-class 

Precision 98.96 70.16 53.26 64.02 - 71.60 

Recall 99.13 58.23 41.00 23.93 - 55.57 

F1-score 98.74 63.64 46.33 34.83 - 60.89 

 

Figure 4.9 complements the quantitative analysis in Table 4.13 with qualitative analysis by showing the 

hybrid model’s image prediction results. Figure 4.9 provides a visual comparison of image segmentation 

produced by the hybrid model under both class scenarios. In the 5-class scenario (c) on the left side, the 

model shows a false negative by failing to detect the oil spill area correctly. Instead, the model misclassifies 
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the oil spill as look-alike. In the center part of Figure 4.9, the model detects the oil spill but does not 

comprehensively capture the entire area. Additionally, the image segmentation on the right side successfully 

identifies the land and look-alike classes closely aligning with the ground truth image. However, there is a 

misclassification where a look-alike is incorrectly predicted as an oil spill. As indicated in Table 4.13, the 

IoU scores of oil spills improve when transitioning from a 5-class setting to a 4-class setting. As seen in 

Figure 4.9 on the left side, the image segmentation for the 4-class scenario shows improved coverage of the 

oil spill area. However, it still misclassifies some areas of oil spills as look-alikes, and look-alikes are also 

incorrectly identified in the background. The improvement in the 4-class scenario is also evident in the 

center part of Figure 4.9, where the model segments the oil spill area more effectively than in the 5-class 

scenario. Even though the notable quantitative improvement lies in the oil spill class, the 4-class setting also 

positively impacts the image segmentation on the right side of the figure. The 4-class setting reduces the 

misclassification of look-alikes as oil spills. These image predictions reveal that the hybrid model 

demonstrates capabilities in performing semantic segmentation for OSD, despite some remaining 

misclassifications that need improvement. 

 
(a) SAR Images 

   
(b) Ground truth 

   
 (c) Predicted  images in a 5-class scenario 

   
(d) Predicted images in 4-class scenario 

   

Figure 4.9 Examples of qualitative results from hybrid model comparing 5-class and 4-class scenarios. 

Black is for the sea surface, cyan represents oil spills, red for look-alikes, brown for ships, and green for 

land 
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4.3.4. Hybrid Model Performance on Indonesian Dataset 

The IoU metrics in Table 4.15 shows the model is ineffectively identifying oil spill, look-alike, and ship 

classes while it performs relatively better in segmenting sea surface/background and land. This indicates 

that the model is ineffectively identifying vital class objects in OSD. When transitioning to the 4-class 

scenario, the model shows improved performance on oil spill classes from 13.30% to 20.78%. Table 4.16 

demonstrates similar improvement in oil spill class across evaluation metrics from 5 to 4 classes. Precision 

increases from 48.30% to 55.87%, recall improves from 15.51% to 22.72%, F1-score rise from 23.48% to 

32.30%. Despite improvements in oil spill accuracy across metrics, the hybrid CNN-XGBoost trained with 

the benchmark dataset remains ineffective in detecting oil spills in Indonesian waters. This ineffectiveness 

is due to varying object patterns between the training images and the images from the Indonesian dataset, 

influenced by different ocean characteristics captured in SAR images. 

Table 4.15 Comparison of hybrid CNN-XGBoost IoU metrics for 5-class and 4-class scenarios on 
Indonesian dataset 

Scenario 

IoU Accuracy (%) 

Mean IoU (%) Sea surface /  
Background 

Oil spill Look-alike Ship Land 

5-class 89.65 13.30 0.34 11.37 37.55 30.44 

4-class 95.58 20.78 0.31 12.37 - 32.26 

Table 4.16 Comparison of hybrid CNN-XGBoost evaluation metrics for 5-class and 4-class scenarios on 

Indonesian dataset 

Scenario Metrics 

Metric Accuracy (%) 

Mean (%) Sea surface/ 
Background 

Oil spill Look-alike Ship Land 

5-class 

Precision 90.57 48.30 0.64 38.45 88.64 53.32 

Recall 98.88 15.51 0.73 13.9 33.96 32.60 

F1-score 94.54 23.48 0.68 20.42 49.11 37.65 

4-class 

Precision 96.81 55.87 0.56 49.80 - 50.76 

Recall 98.91 22.72 0.73 14.16 - 34.13 

F1-score 97.85 32.30 0.64 22.05 - 38.21 

 

To validate the results of the aforementioned quantitative analysis, Figure 4.10 displays the visual 

comparison of image predictions generated by the hybrid model under both 4-class and 5-class scenarios 

on Indonesian dataset. In the left column of Figure 4.10, the model is unable to segment oil spills and land 

areas, often misclassifying them as background or look-alikes in the 5-class scenario. While there is no 

significant difference overall in 4-class, but some improvement is observed at the edges of the oil spills 

where segmentation is accurate. In the center and right columns of Figure 4.10, the hybrid model’s image 

prediction in the 5-class scenario can delineate the major patterns of oil spills. However, there are issues 

with misclassification as look-alikes are found in areas that should be identified as oil spills. In the 4-class 

scenario, the segmentation of oil spills shows slight improvement. Areas that were misclassified as look-

alikes in the 5-class are correctly identified as oil spills. However, these improvements are minor and only 

slightly improve the accuracy of the segmentation. These findings suggest that the 4-class scenario offers 

slight improvements in oil spill segmentation for the hybrid model on the Indonesian dataset. However, 

through quantitative and qualitative analysis, the hybrid CNN-XGBoost model trained with benchmark 

dataset demonstrates ineffectiveness in predicting oil spills in Indonesian waters. 
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 (a) SAR Images  

   

(b) Ground truth 

   

(c) 5 Class scenario 

   

(d) 4 Class scenario 

   

Figure 4.10 Examples of qualitative results from hybrid model comparing 5-class and 4-class scenarios on 

Indonesian dataset. Black is for the sea surface, cyan represents oil spills, red for look-alikes, brown for 

ships, and green for land 
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5. DISCUSSION 

In this study, we optimized the implemented DL-based models by examining their hyperparameters to better 

learn oil spill features in SAR images. This approach aimed to achieve optimal accuracy in semantic 

segmentation for OSD despite the limitations of a small dataset. Our findings show that the FCN-DK6 

model with fewer network parameters can learn oil spill patterns in SAR images from a limited dataset. This 

is achieved by optimizing the learning-related and image-preprocessing hyperparameter, specifically fine-

tuning the patch size, which can better capture relevant oil spill features. Additionally, a reduced number of 

class impact significant improvement in segmenting oil spill using FCN-DK6 model. The alternative model 

development based on FCN-DK6 involves creating a hybrid CNN-XGBoost model. This model achieves 

optimal oil spill prediction performance with a limited dataset by increasing the number of filters in 

convolutional layers to generate multiple feature maps from input images for feeding XGBoost and also 

fine-tuning XGBoost hyperparameters. However, the trained FCN-DK6 and hybrid CNN-XGBoost 

models are ineffective at predicting oil spills in SAR images from different geographical contexts. 

5.1. Oil Spill Detection with FCN-DK6 Model 

Our findings indicate that training the FCN-DK6 model with a patch size of 512x512 improves performance 

compared to smaller patch sizes. The finding of this study in terms of patch size setting aligns with Farooq 

et al. (2018), who demonstrated 500x500 patch size in weed classification using RS and deep CNN achieved 

higher accuracy compared to smaller patch sizes of 125x125 and 250x250. Large patch sizes are more likely 

to capture the variations of oil spills such as shape, size, texture, and appearance within a single patch that 

enables the model to learn these differences effectively during training. Additionally, smaller patch sizes can 

split oil spill boundaries across multiple patches, making it harder for the model to capture the entire oil 

spill. A larger patch size can minimize this issue by capturing oil spills in one patch, providing a more 

complete view and improving detection accuracy. FCN-DK6 model achieves an IoU accuracy of 51.03% 

for segmenting oil spills with large patch size setting. In the previous study, Krestenitis et al. (2019b) 

investigated oil spill identification using several deep neural network models, including DeepLabv2, PSPNet, 

UNet, and DeepLabv3+. They trained the models with 1002 images from the same dataset and the same 5 

classes used in this study, achieving IoU accuracy for oil spills of 25.27%, 40.10%, 53.79%, and 53.38% for 

the same sequence of the models. All the DL models used in that study are highly complex with extensive 

parameters to capture oil spill features from SAR images. Nevertheless, the FCN-DK6 model, with its 

simpler network parameters and training on only 400 images, can learn complex oil spill variability. Its 

prediction accuracy of oil spills outperforms the more complex DeepLabv2 and PSPNet models as detailed 

previously. Despite the evaluation accuracy of how the model predicts oil spills, the results indicate that the 

FCN-DK6 model can handle a limited dataset for OSD. Specifically, it achieves almost the same oil spill 

segmentation accuracy with 200 training images as it does with 400 training images. This could be due to 

increased noise such as speckle noise inherent in SAR imaging and variability such as different ocean surface 

conditions, weather effects, and varying oil spill features within the larger training dataset, which may prevent 

the model from learning consistent patterns. Nevertheless, the accuracy of oil spill remains moderate that 

only achieves 51.03%. This could be caused by class imbalance in the dataset, where the FCN-DK6 model 

ineffectively to learn less frequent oil spill features due to the dominance of sea surface class. This imbalance 

can lead the model to prioritize sea surface features over oil spill that reduce OSD accuracy. 

The highest OSD accuracy in the FCN-DK6 model was achieved when the model was trained with a 

reduced number of classes from 5 to 4. In the 5-class scenario, the IoU accuracy for an oil spill is 51.03%, 

where in the 4-class scenario, IoU accuracy significantly improves to 98.80%. This quantitative improvement 

is reflected in the prediction image in Figure 4.5 and Figure 4.6. These results could be that merging 

simplifies the classification task and reduces the complexity of distinguishing between multiple classes that 
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may have overlapping features. By merging sea surface and land into one background class, the model can 

focus on learning the dark spots and characteristics of oil spills without being confused by the similar 

features of this class. These dark spot characteristics could include shapes and contextual patterns that are 

highly different from the background, making oil spills more effectively detected. Figure 5.1 illustrates the 

backscattering profiles of oil spills, sea surface and land in SAR images. It shows that the backscattering 

coefficient of oil spills is considerably lower than sea surface and land, highlighting the distinct characteristics 

of oil spills in images compared to the sea surface and land. This suggests that merging the sea surface and 

land into a single background class simplifies the FCN-DK6 model’s task. The model can treat sea surface 

and land as one class and focus on learning distinct characteristics of oil spills such as boundary shapes, 

improving the accuracy of OSD. Even though this study uses RGB channels for the SAR image format to 

train the model, this backscattering analysis provides similar insights into how the model perceives dark 

areas in SAR images. 

(a) (b) 
Figure 5.1 Backscattering profile plots of Sentinel-1 SAR images: (a) Sea surface and oil spills; (b) Sea surface and 

land. Yellow line represents the transect line (source: author) 

5.2. Oil Spill Detection with Hybrid CNN-XGBoost 

Based on this study's experiment, configuring the filters in convolutional layers can improve the accuracy of 

oil spills in the hybrid CNN-XGBoost model. Increasing the number of filters in the CNN generates more 

high-level feature inputs, providing the XGBoost algorithm with diverse features. This can expand the 

dataset used to train the XGBoost algorithm. This enriched dataset allows the XGBoost to better distinguish 

between oil spills and other classes by capturing variations and patterns that may not be evident with fewer 

features. Additionally, more diverse feature inputs from a single image help the model more effectively learn 

the characteristics of oil spills such as their shape, texture and size. With the configured filter setting in CNN 

and selected optimal hyperparameters in XGBoost trained with 400 images, this proposed hybrid model 

achieves IoU accuracy for oil spills in 5 classes of 43.45%. The accuracy outperforms the baseline of FCN-

DK6 model, which achieves 23.59% with its initial hyperparameter. The previous study conducted by Diana 

et al. (2021) utilized CNN to identify oil spills with the same dataset and the same number of class, reaching 

an IoU of 25.8% for segmenting the oil spill class. By substituting the fully connected layer in CNN for 

classification tasks, the hybrid CNN-XGBoost model outperforms the standard CNN model in OSD. This 

suggests that the hybrid model achieves comparable results using XGBoost for classification tasks. Kwak et 

al. (2021) stated that incorporating high-level features in ensemble learning achieves better accuracy in 

classification tasks compared to using only spectral information or digital values of the images. We also 

examine the capability of the hybrid CNN-XGBoost model in handling limited dataset by varying training 

size. The result in Figure 4.8 demonstrates there is no significant improvement in oil spill accuracy in all 

metrics as the training size increases. This suggests that the model may have reached its capacity to learn oil 

spill features from the initial training size. Furthermore, the additional training data could be introducing 

more variability from other classes, which might influence the model’s ability to improve its accuracy 

specifically for oil spills.  



DEEP LEARNING-BASED SEMANTIC SEGMENTATION FOR DETECTING MARINE OIL SPILLS 

 

40 

Despite the potential of the hybrid CNN-XGBoost model in OSD, three inefficacies have been identified: 

noise in feature maps, suboptimal feature selection for XGBoost, and training inefficiencies. First, SAR 

images naturally contain ‘salt-and-pepper’ noise characterized by randomly distributed black-and-white 

pixels, and this noise can be carried into the feature maps generated by the CNN. This noise in the feature 

maps can potentially degrade the quality of the input provided to the XGBoost. Additional preprocessing 

steps to reduce noise could help mitigate this issue. Second, as the CNN element generates a large number 

of features, some of which may be redundant or irrelevant, where it can reduce the effectiveness of XGBoost 

in segmenting oil spills. Implementing feature selection to identify only the most relevant features can 

improve the performance of XGBoost in detecting oil spills. Lastly, the hybrid CNN-XGBoost model 

requires significant computational resources for training as filters in convolutional layer are set to generate 

hundreds or thousands of feature maps from to expand the dataset. 

5.3. Oil Spill Detection with FCN-DK6 and Hybrid CNN-XGBoost Models on Indonesian Dataset 

The FCN-DK6 and hybrid CNN-XGBoost were trained using MKLab dataset, which comprises images 

collected from European waters. Based on the evaluation metrics, the IoU accuracy for segmenting oil spills 

indicate suboptimal performance for both models. When the FCN-DK6 model predicts Indonesian SAR 

images containing oil spills using 4-class scenario, it achieves an IoU accuracy of 80.52% for segmenting oil 

spills. This is higher than 26.44% IoU accuracy that achieves in 5-class scenario in Indonesian waters. This 

improvement demonstrates that reducing the number of classes from 5 to 4 positively impacts the model’s 

ability to predict unseen images from the Indonesian dataset. However, the hybrid CNN-XGBoost model 

shows only a small improvement in the accuracy of oil spill segmentation. Despite an improvement in 

accuracy, the IoU accuracy of oil spills on the Indonesian dataset predicted by the FCN-DK6 and hybrid 

CNN-XGBoost models trained with MKLab remains ineffective, as shown in Table 4.7 and Table 4.9. To 

address this issue, future work could explore the use of transfer learning to adapt the trained model to new 

geographical context. 

The overall quantitative and qualitative analysis indicates that the FCN-DK6 and hybrid CNN-XGBoost 

model does not perform well in segmenting oil spills in Indonesian waters. This shortcoming may be due 

to the difference in ocean characteristics between European and Indonesian waters. One of the 

oceanographic characteristics that differ between European waters and Indonesian waters that influence the 

presence of oil spills in SAR images is sea surface temperature (SST). Figure 5.2 shows the mean seasonal 

SST in several European sea regions versus the Indonesian waters obtained from NOAA data. European 

seas experience seasonal variations in SST due to their temperate climate, with ranges from 2oC in winter to 

20oC in summer depending on the regions, as shown in Figure 5.2. Colder temperatures could increase oil 

viscosity, causing it to spread more slowly and maintain a thicker layer of oil on the surface. This state can 

create an oil spill more contrast in SAR images. In contrast, Indonesian waters are characterized by 

consistently high SST throughout the year, ranging from 28–30oC (shown in Figure 5.2) due to their tropical 

climate. This warm state decreases oil viscosity, causing it to spread more thinly and evenly, which can 

reduce the contrast between the oil spill and the surrounding water in SAR images. These conditions suggest 

that a model trained on SAR images from regions with significantly different oceanographic characteristics 

may be unable to accurately predict oil spills in different locations with different conditions. It highlights 

the importance of considering local variability in oceanographic characteristics when training models for 

OSD, as regional differences can impact model performance. 
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Figure 5.2 Monthly mean sea surface temperatures in European and Indonesian waters processed by the author from 

daily Optimum Interpolation Sea Surface Temperature (OISST) data from NOAA period Jan-Dec 2023 

5.4. Limitations 

While this study provides valuable insights into the optimizing DL-based model for semantic segmentation 

in OSD, three main limitations must be acknowledged.  

1. The limitation of this study in segmenting oil spills using the optimized FCN-DK6 and the hybrid 

CNN-XGBoost model is that the accuracy of OSD still needs improvement. This could be due to 

the class imbalance in the dataset, which results in the model being trained on fewer oil spill samples 

compared to other classes. This class imbalance can lead to biased learning, where the model 

becomes better at identifying the more dominant classes and ineffective to accurately detect the less 

frequent oil spills. Consequently, this prevents the model from achieving high accuracy. 

2. The models in this study were trained using RGB channels instead of the original of SAR images 

that contain the backscattering coefficient typically used in SAR data. This approach may have 

limited the model’s ability to fully exploit the unique properties of SAR data, such as specific texture 

and scattering characteristics that are critical for accurately identifying and segmenting oil spills. By 

not utilizing the backscattering coefficient, the model may not capture the full extent of information 

available in SAR images, which can potentially reduce its effectiveness in OSD.  

3. The dataset does not include geographical coordinates for the SAR images. This means the trained 

model cannot identify the exact locations of oil spill evens. Without this spatial information, the 

model can predict oil spills but cannot provide the necessary details for precise monitoring and 

response.  

4. Hyperparameter tuning in both models was performed manually and stepwise without using 

structured automatic tuning methods. This manual approach may have missed optimal 

configurations that structured methods like GridSearchCV, RandomSearcCV, or HyperOpt could 

identify more effectively. These automated tuning methods systematically explore a wide range of 

hyperparameter combinations to search for the best possible model performance. The study could 

limit the model’s performance by not implementing these advanced techniques. 
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6. CONCLUSION 

6.1. Research Conclusion 

The problem of implementing DL in OSD efforts lies in larger dataset availability since obtaining a high-

quantity and quality dataset of oil spills is challenging. Factors such as the rarity of oil spill events, the need 

for extensive labelling, and the variability in the marine environment make it difficult to compile a large and 

representative dataset. This study proposes optimizing DL-based models for semantic segmentation in OSD 

by adjusting their hyperparameters to achieve optimal performance with a limited dataset.  

This study discovered that the FCN-DK6 model with fewer network parameter is capable of performing 

semantic segmentation in OSD on a limited dataset by optimizing the learned-related and image 

preprocessing hyperparameter, specifically in patch size configurations. We find that a large patch size 

setting provides optimal accuracy in segmenting oil spills using a limited dataset. Large patch sizes can 

capture the variations of oil spills such as shape, size, texture, and appearance in SAR images within a single 

patch, allowing the model to learn these differences effectively during training. Additionally, the experiment 

by reducing the number of classes during training significantly improves the accuracy of detecting oil spills. 

This approach allows the model to focus on identifying the dark spots and characteristics of oil spills without 

being confused by the similar features of this class. 

This study developed a hybrid CNN-XGBoost model based on convolutional networks from the FCN-

DK6 model and a pre-existing XGBoost algorithm as an alternative solution in optimizing the FCN-DK6 

model. This model achieves optimal oil spill prediction performance with a limited dataset by increasing the 

filters in convolutional layers to generate multiple feature maps from input images and by fine-tuning 

XGBoost hyperparameters. This enriched dataset improves XGBoost’s ability to distinguish oil spills from 

other classes by capturing subtle variations and patterns. Furthermore, the diverse features help the model 

effectively learn the distinctive shape, texture, and size of oil spills in SAR images. 

Although optimizing the FCN-DK6 mode and developing the hybrid CNN-XGBoost model demonstrate 

positive findings, this study still has some limitations. The trained FCN-DK6 and hybrid CNN-XGBoost 

models are ineffective in accurately predicting oil spills in SAR images from different geographical regions. 

Additionally, the accuracy of OSD remains moderate and requires further improvement to achieve reliable 

performance.  

6.2. Recommendations for future works 

Based on the content of this study, there are three recommendations for future research: 

1. Training dataset development 

The OSD dataset provided by MKLab (Krestenitis et al., 2019b) is the only publicly available dataset 

suitable for training DL model for semantic segmentation purposes. However, this dataset only 

offers SAR images in RGB channels, lacking the backscattering coefficient typically included in 

SAR images. Further standard SAR images with backscattering coefficients are needed to meet the 

criteria of SAR images, providing specific texture and scattering characteristics that are potentially 

effective for semantic segmentation in OSD. Providing the real SAR dataset for OSD is expected 

to provide a trained model that can be used in real operations for monitoring oil spill events using 

SAR images. The development of this SAR dataset should include geographic coordinates to enable 

the trained model to pinpoint the exact location of oil spill events for quick response in the fields. 

2. Transfer learning 

To strengthen the effectiveness of OSD using deep learning, we recommend the use of transfer 

learning. Transfer learning allows the pre-trained model to be fine-tuned with specific SAR image 
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dataset relevant to oil spills. This approach not only improves model accuracy but also enables the 

DL network to learn and adapt to local characteristics and unique environments in specific 

geographical areas. This can provide more effective model to detect oil spill events in different local 

contexts. 

7. ETHICAL CONSIDERATIONS 

This study utilized a dataset from MKLab group that is part of Center Research and Technology Hellas, 

Greece. This dataset is licensed for non-commercial use and is exclusively available for academic research. 

Official permission from the provider was secured to use the dataset for this MSc research as for academic 

purposes. The study intentionally utilized the SAR images and their labelled images from this dataset, as 

they meet the necessary criteria for developing a DL-based model in OSD. All research activities that are 

related to this dataset strictly followed ethical standards and complied with provider guidelines. 
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APPENDIX 

Appendix 1: Ground truth information for Indonesian dataset 

Karawang 

Date Sentinel-1 satellite data 

July, 18th 2019 S1A_IW_GRDH_1SDV_20190718T111514_20190718T111539_028170_032E9E_8AD1 

July, 30th 2019 S1A_IW_GRDH_1SDV_20190730T111514_20190730T111539_028345_0333FB_3615 

August, 11th 2019 S1A_IW_GRDH_1SDV_20190811T111515_20190811T111540_028520_03397F_CEB8 

August, 19th 2019 S1A_IW_GRDH_1SDV_20190819T223326_20190819T223351_028644_033DBE_7ABF 

August, 23rd 2019 S1A_IW_GRDH_1SDV_20190823T111516_20190823T111541_028695_033F86_ED5E 

August, 31st 2019 S1A_IW_GRDH_1SDV_20190831T223327_20190831T223352_028819_0343DC_3E1A 

September 4th 2019 S1A_IW_GRDH_1SDV_20190904T111516_20190904T111541_028870_0345A8_DF0F 

September 12th 2019 S1A_IW_GRDH_1SDV_20190912T223327_20190912T223352_028994_0349EF_FC80 

Field observations overlaid with Sentinel-2 image in the same timestep (28th August 2019, 10:28 local time) 

 

Historical reports from authority in the field (Abimanyu et al., 2021) 

Date Report from Authority 

July, 16th 2019 Oil sheen visible at the sea surface 

July, 18th 2019 Oil sheen starts to spread towards the west of YYA-1 Rig 

July, 30th 2019 8 villages in Karawang and Bekasi are affected 

August, 11th 2019 The oil boom and emergency posts installation along the coastline of six 

villages, cleaning of the oil spill in the affected villages 

August, 23rd 2019 6,825 meters of shoreline oil boom along Karawang  towards Seribu Islands 

September, 4th 2019 7,995 meters of shoreline oil boom along Karawang, Bekasi, and Seribu 

Islands, 9 health services posts in Karawang Regency 

September, 16th 2019 9,950 metres of shoreline oil boom along Karawang, Bekasi, and Seribu 

Islands, cleaning of the oil spill in the affected villages 
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Balikpapan 

Date Balikpapan 

April, 1st 

2018 

S1A_IW_GRDH_1SDV_20180401T215050_20180401T215115_021279_0249B3_2C21 

S1A_IW_GRDH_1SDV_20180401T215115_20180401T215140_021279_0249B3_7FED 

 

Ground truth information Source 

- The oil spill incident in Balikpapan Bay, occurred 

on Saturday, March 31st 2018 at 02:00 local time. 

- The oil spill occurred around 3 km from the Pig 

launcher station at coordinates 116°47'22.96" E; 

1°14'44.75" S. 

- The estimated oil spill is approximately 44, 868 

barrels 

East Kalimantan Provincial Government 

(https://www.kaltimprov.go.id/berita/pernyataan-

resmi-pemprov-kaltim-tentang-tumpahan-minyak-

di-teluk-Balikpapan) 

- The area affected by the oil spill is estimated to 

be approximately 7,000 hectares, with the length 

of the impacted coastline extending about 60 

kilometers, encompassing parts of Balikpapan 

City and North Penajam Pasir Regency 

Ministry of Environment and Forestry of the 

Republic of Indonesia (Kementerian Lingkungan 

Hidup dan Kehutanan Republik Indonesia, 2018) 

 

Appendix 2: Flowchart for Sentinel-1 SAR image pre-processing 

Appendix 3: FCN-DK6 Architecture 
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Appendix 4: Loss curve and accuracy curve of FCN-DK6 during training 

 

Appendix 5: CNN architecture in the hybrid  CNN-XGBoost model 

 

Appendix 6: Sample of feature maps generated by CNN 
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Appendix 7: Transformation of feature maps into structured tabular data for XGBoost input 

In this tabular data, rows represent the number of pixels from input images, while columns represent the 

number of feature maps 

 

 

 

 

 

 


