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Management summary

This research is executed at ExpertCare. ExpertCare is an organisation that provides home care ser-
vices in several regions in the Netherlands. This study focuses on the Injection Team of ExpertCare.
ExpertCare strives to improve its planning process of appointments in order to decrease the travel
time. The Injection Team serves a large area with approximately 900 clients with a large variety in
their visitation frequencies. We focus on the medium-term schedule of the Injection Team with the
main aim to reduce the the travel time. For this we created an algorithm that schedules each client for
the medium-term schedule. Additionally, we analyze the effects of having an extra nurse, the influence
of the flexibility of planning clients’ appointments and the impact of not using the option to move
clients to other weeks.

Firstly, the current planning system of the Injection Team of ExpertCare is analyzed. At the moment
the planning and scheduling is done manually by the planners of the team. This leads to an inefficient
schedule, since the number of clients and the region in which they live is large. After analyzing the
data of the current client pool, it is evident that there are three visitation frequencies with the largest
number of clients, namely the monthly, quarterly and half-yearly frequency. Moreover, it is noticed
that there are three places with a high density of clients, namely Utrecht, Amersfoort and Zeist. The
average travel time per nurse per day is found to be 2.63 from the data of 2023. Additionally, the av-
erage number of appointments and the average number of nursing hours are 8.02 and 5.92, respectively.

In the literature review we investigated which solution approach fits best to the context of ExpertCare.
It was established that the problem of the Injection Team can be described as the home health care
routing and scheduling problem. It is clear from the literature that the visitation frequency of clients
of the Injection Team is considerably lower than that in the literature. This would advocate for a plan-
ning horizon much longer than usually considered in the literature. Therefore, a heuristic approach is
chosen to solve the problem, namely the adaptive large neighborhood search (ALNS). Firstly, a greedy
heuristic assigns a scheme to each client to create an initial solution. Then the ALNS further improved
this initial solution by destroying some scheme of clients and assigning new ones. The performance of
the ALNS is compared with an exact model and it was found that it provides results close to the exact
model. Additionally, the ALNS is able to find solutions on more complex instances in a reasonable
time compared to the exact approach.

We investigated different scenarios, including freely scheduling clients, allowing complete flexibility
in planning appointments, adding an additional daily route, giving clients the option to choose one
or two time slot(s), restricting the ability to move clients to other weeks and increasing the number
of clients to 1400. The results are shown in Table 1 on the next page. The third column gives the
total travel hours over half a year in hours and the fourth column gives the run time in seconds. The
fifth column gives the average number of traveling hours per nurse per day and the sixth column gives
the average number of appointments per nurse per day. The last column gives the average number of
nursing hours per nurse per day. The results show that when clients were freely scheduled, the total
travel time over half a year was 573.67 hours, averaging 2.21 hours per day per nurse. Comparing this
to the values found for the Injection Team in 2023 this gives a reduction in travel time of 16.14%. This
increases the productivity of ExpertCare by 1.7% to 60.40%. However, no clear patterns on how to
cluster clients effectively were identified. As a result, we are unable to offer guidelines for assigning
clients to specific clusters based on their visitation frequency, location, or appointment week. The
complex interplay between these parameters prevents clear categorization. Therefore, to improve the
medium-term planning and the productivity, a more advanced planning system is necessary. Further-
more, other experiments have been conducted to see the influence of those instances. In experiment
number 2 clients can be planned in any week and this gives a total travel time of 530.14 hours. This
gives a reduction of 153.94 hours compared to the Injection Team in 2023 and this reduction in the
travel time shows the effectiveness of using the possibility of moving clients from their starting weeks.
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Adding an extra daily route increased the total travel time due to the algorithm spreading clients too
widely across time slots. Another scenario allowed clients to choose their preferred time slots, resulting
in a total travel time of 785.87 hours over half a year, a significant increase compared to free schedul-
ing. This is expected as it reduces scheduling flexibility. A similar experiment was also conducted in
which clients could choose two time slots and this gave a total travel time of 727.27 over half a year.
Furthermore, fixing clients to their starting weeks also increased total travel time compared to freely
planning clients. This is again due to the algorithm’s inefficient planning clients spread out over all
time slots. Lastly, increasing the number of clients to 1400 gives an increase of 244.28 compared to the
Injection Team in 2023 which only served 879 clients.

Table 1: Results of all the experiments

Exp.
num.

Description
of experiment

Solution
of ALNS

Run
time

Avg.
travel.

Avg.
num. app.

Avg.
nurs.

- Injection Team 684.08 - 2.63 8.02 5.92
1 Flexible clients 573.67 3824.38 2.21 9.26 6.94

21 Complete
flexibility 530.14 10931.24 2.04 9.25 6.94

3 Number of
daily routes 610.68 4650.58 1.88 7.39 5.54

4 Clients choose
one slot 785.87 2039.16 2.02 6.18 4.64

5 Clients choose
two slots 727.27 2817.76 1.89 6.27 4.70

6 No movement
of clients 607.88 3777.97 1.71 6.86 5.14

7 More clients 928.36 5045.50 2.38 9.74 7.30
1 Infeasible in practise.

Recommendations given to ExpertCare are considering using a different way of planning clients in the
medium-term. Given that only four clients have a weekly frequency, relying on a weekly planning
method may be inefficient. Instead, considering a monthly planning method or a half-yearly plan-
ning system, would be recommended. Another strategy is employing a medium-term planning, where
each client is assigned specific days for all future appointments. When new clients join, an algorithm
can identify the best time slots based on the current schedule, prioritizing days with other nearby
clients. This would reduce time window and working time violations by recognizing fully booked time
slots. Additionally, allowing clients to book their appointments online could save time for planners
and nurses, despite increasing total travel time. As the number of clients grows and more daily routes
are added, this option may become more viable. So it is also recommend for the Injection Team to
establish for themselves what they want to offer clients, whether they would like the most efficient
planning in terms of traveling time or let the clients choose their own appointment moment.

This thesis offers several practical contributions. First, it conducted a comprehensive context analysis
of the Injection Teams’ current situation, providing valuable insights into their client pool. It clarified
for ExpertCare which data is easily accessible and which is challenging or unavailable. Additionally, a
prototype algorithm was developed to create an efficient medium-term plan for ExpertCare’s current
clients. The research concluded that due to the complex interplay of client parameters, clear patterns
for clustering clients were not found. Therefore, it is recommended that ExpertCare adopt a more
advanced planning system to enhance productivity. Additionally, it is recommended to have three
daily nurse instead of two, to decrease the workload of the nurses and due to the consistent increase
in number of clients over time.
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1 Introduction

This thesis aims to increase the productivity of the Injection Team of ExpertCare. The following chap-
ter introduces the research conducted at ExpertCare. Section 1.1 gives a background of ExpertCare
and the research motivation. Then in Section 1.2 the problem identification is given and in Section 1.3
the research questions are described. Lastly, in Section 1.4 the research design is discussed.

1.1 Background

1.1.1 The company

ExpertCare is a specialized home care organization that provides high-quality skilled medical and
nursing home care services. These services include hospital-at-home care for adults and children in
the comfort of their own homes or in Villa ExpertCare centres, ensuring personalized and compre-
hensive care. Villa ExpertCare provides specialised nursing care for children between 0 and 18 years
old, offering support for those with chronic or severe illnesses. These are located in Vleuten, Rijswijk,
Waalre and Wezep. The main office of ExpertCare is in Nieuwegein. ExpertCare employs over 300
staff members across its locations.

This study centres on the Injection Team, comprising six nurses delivering injections to more than
800 clients at their homes with frequencies such as weekly, monthly, quarterly, or semi-annually. This
is done on behalf of six hospitals. The majority of these clients are diagnosed with cancer. The In-
jection Team serves clients residing in a broad area spanning from Gouda to Barneveld, encompassing
both rural and (sub)urban areas. The Injection Team at ExpertCare was set up in 2022. With new
clients joining and existing ones leaving on a weekly basis, the route planning is never consistent. The
routes on a daily basis are made manually such that the travel time is minimized given all the client
appointments of that day. However, doing this manually requires a lot of time and it is more prone to
errors which increases the travel time. In addition, there is potential to further optimize the clustering
of the clients on a weekly basis to reduce overall travel time.

1.1.2 Research motivation

The goal of this research is to minimize the nurse travel time. This would enable the Injection Team
to assist more individuals and spend less time on traveling to the clients and on planning. Also,
client preferences should be considered, such as enabling stability in visitation time slots and enabling
continuity of care, meaning that the client is helped by the same nurse as much as possible. ExpertCare
is especially interested in the clustering of its clients, since it pursues to transition from 2 daily routes
to 3 daily routes.

1.2 Problem identification

Figure 1 illustrates the problem cluster demonstrating the interconnectedness of various problems and
their underlying causes. Some of these aspects will be elaborated on further below.
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Figure 1: Problem cluster

Low productivity
The low productivity of the Injection Team is experienced by the management. The target productiv-
ity score is set at 62%. However, in 2023 an average productivity score of 58.7% was reported from
internal reports which is below the target. This gives a difference of 3.3% which amounts to 226.57
hours. When considering that each year has 260 working days, this would amount to 0.87 hours per
day. Although the Injection Team was established in 2022, it has consistently failed to achieve the tar-
get score. Therefore, it is an important issue to tackle for the Injection Team. The productivity score
is calculated by dividing the direct working hours by the total amount of working hours. The total
amount of hours consists of the direct work hours and the indirect work hours. The indirect work hours
comprise of administration, yearly performance review meetings, oncology meetings, training hours,
office hours (other), travel time, planning hours, educational time, team discussions, on-call service,
work supervision hours, holiday hours and sick leave. The five indirect work hours categories with the
highest impact on the productivity in 2023 are the travel time (17.67%), the holiday hours (11.56%),
the training hours (3.50%), the office hours (other) (2.46%) and the planning hours (2.11%). The office
hours (other) refer to the time during which the nurse retrieves medication from the storage. The holi-
day hours and the office hours (other) are left out of the problem cluster since this cannot be influenced.

High travel time
The high travel time is caused by inefficient scheduling of appointments over a week and the daily
constructed routings. This would mean the nurses spend more time on the road and have less time for
helping clients.

High training hours
The increased client complaints can contribute to employee dissatisfaction, resulting in higher employee
turnover rates. Receiving many complaints during a working day negatively affects the nurses and may
therefore lead to a higher employee turnover. This means new employees will have to be hired which
leads to higher training hours since they must follow a training first.

High planning hours
The planners are the ones who make the daily routings for the nurses. Since this is done manually, this
requires a lot of time of the planners. Moreover, many daily adjustments in the schedule are necessary
and since the planning is done manually these disruptions in the schedule, takes up a lot of time of
the planners. The planners themselves are also nurses of the Injection Team. Therefore, if less time is
spent on making the planning, more time can be used to serve clients.

2



Manual planning and scheduling
The inefficiency in the planning is caused since the planning and scheduling of appointments and routes
are done manually. The planning and scheduling consist of two parts. Firstly, a blueprint for the weekly
schedule of appointments is used. This gives an indication at what moment of the week (morning or
afternoon) appointments can be planned in a certain region (cluster). The routing is not included in
the blueprint and we will elaborate more on the blueprint in Section 1.4. This blueprint is based on the
planners’ knowledge and intuition. It does not take into account how the clients are distributed over the
region. Secondly, the planning of the daily routes of the nurses must be made. This is done by the plan-
ners manually in a planning system called “Nedap ONS” given the appointments of a day. This simply
works by dragging the appointments to change the order and then examine what a good order could be.

Handling of daily adjustments
Many daily adjustments occur due to for example, new clients or discharge of a current client or a
change in the frequency of medication. These disruptions in the schedule have to be manually adapted
in the current schedule, which takes up a lot of time for the planners. This is considered as a potential
core problem, since a more efficient way of handling these changes in the schedule could be constructed.

The core problem
As indicated in the problem cluster depicted in Figure 1 the core problem of this research will be
formulated formally in this section. We selected this core problem over the others, because we believe
that this core problem will have the greatest impact effect. The core problem revolves around the
manual creation of the blueprint relying solely on the planners’ knowledge and intuition. This method
lacks efficiency and leads to prolonged travel times for the nurses. Figure 2 exemplifies the design of a
blueprint. The table indicates in which region the nurse will attend clients in the morning and in the
afternoon. The coloured regions in the map give an indication of what it covers and these are called
clusters. The clusters are based on the geographic location of clients and the planners’ knowledge and
intuition. Thus, to design a blueprint for the daily routes, an efficient method to cluster the clients is
necessary. As can be seen in Figure 2 clusters can be overlapping. This means that a client living in
two clusters has more appointment options available to them.

Monday Tuesday Wednesday Thursday Friday

Monday Tuesday Wednesday Thursday Friday

Daily route 1:

Daily route 2:

Morning

Morning

Afternoon

Afternoon

Figure 2: Blueprint of daily routes

1.3 Research questions

In order to solve the core problem, we formulate and answer the main research question:

How can we improve the medium-term planning in order to enhance the productivity of the Injec-
tion Team of ExpertCare?

3



To answer the main research question, several sub-questions are formulated to provide a framework
for the research.

1) Analysis of the current situation
First, we will analyse the current scheduling process for the client appointments within the system and
what current clusters are used. In addition, we will evaluate its impact on the overall performance. To
comprehend the existing process, we engage in interviews with the company’s planning staff. Through
these interviews, we gather insights into the current design of the process, its requirements, perceived
constraints and its performance. Thus, we will answer the following questions:

1. How is the current planning of the Injection Team organized?
(a) How does the Injection Team currently plan appointments?
(b) What is the current blueprint schedule used to plan appointments?
(c) What is the distribution of visitation frequency of the clients?
(d) How are the stakeholders involved and what do they want?
(e) What is the current performance of the planning system?

2) Literature review
After assessing the current situation, our next step involves exploring suitable methods and solution
approaches that align with our requirements. Subsequently, we will compare these options to determine
the most suitable one tailored to our specific needs. Through a comprehensive literature review and
analysis of its findings, we aim to establish a robust foundation for our forthcoming solution approach.

2. Which solution approach fits best to the context of ExpertCare?
(a) Which aspects of the home health care routing and scheduling problem have been addressed

in previous research?
(b) What other related problems exist in the literature?
(c) What are the solution approaches employed in the literature?

3) Solution design
Once the conducted literature research is done, we will develop a model used as a solution approach.
The found method from the literature research should still be tailored to our problem context.

3. How should the solution approach be designed?
(a) What are the characteristics of the problem that needs to be solved?
(b) What are the assumptions of the model used as a solution approach?
(c) How can we adapt the model used as a solution approach to our problem context?

4) Experiments
Once we have developed the solution approach, we can experiment with different settings to see how
the solution approach performs. Things to consider are for example, the flexibility of clients. It is
important to actively involve the planners in this part since they are the end-user of the product.

4. How can we tune the solution approach to ensure high-quality outcomes?
(a) How should the parameters of the model be set to generate high-quality solutions?
(b) How should the experimental settings be set?

5) Results analysis
After performing all the different experiments, we can analyze the influence of the different instances
on the performance of the model.

4



5. What is the influence of the different instances on the performance of the model?
(a) What is the performance of the model?
(b) What is the effect of freely planning clients?
(c) What is the influence of allowing complete flexibility in planning appointments?
(d) What is the influence of adding an additional daily route?
(e) What is the effect of clients choosing their own appointment moment?
(f) What is the influence of clients choosing two appointment moments?
(g) What is the influence of not allowing clients to be moved to a different week?
(h) What is the effect of having more clients?

6) Evaluation
Based on the results obtained in the previous phase, we can draw the conclusions and give recommen-
dations to ExpertCare. The deliverables to ExpertCare are guidelines on which criteria the clustering
of patients can be done and recommendations on how to improve their productivity.

6. What are the conclusions we can draw and the recommendations we can give to ExpertCare
based on the results of this research?
(a) What conclusions can be drawn based on the results compared to the current performance

of ExpertCare?
(b) What recommendations can we give to ExpertCare?
(c) What are other possibilities for future research?

1.4 Research design

Based on the research questions in Section 1.3, we divide our research in six phases in order to answer
the main research question. The six phases are shown in Figure 26 in Appendix A and each phase
represents a chapter in this report. First, we analyze the current situation of the Injection Team using
both qualitative and quantitative methods which is covered in Chapter 2. Following this, we conduct
a literature review to analyze, compare, and select established solution methodologies from existing
literature. This is discussed in Chapter 3. Next, we design a solution by adjusting the chosen approach
to fit the specific context of the study which is covered in Chapter 4. Subsequently, we conduct ex-
periments to fine-tune the parameters of the solution approach and establish the experimental settings
and this is covered in Chapter 5. Then, we analyze the performance of the solution under different
experimental settings which is covered in Chapter 6. Finally, we evaluate the research findings and
their implications for ExpertCare and this is covered in Chapter 7.
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2 Context analysis

This chapter analyses the current planning system used by the Injection Team of ExpertCare in order
to answer the first research question: How is the current planning of the Injection Team organized?.
Section 2.1 discusses the current planning system used by the Injection Team of ExpertCare. Addi-
tionally, in Section 2.2 the clusters of the Injection Team are analyzed and in Section 2.3 the different
visitation frequencies of the clients are analyzed. Moreover, Section 2.4 contains the stakeholder anal-
ysis to identify all the demands of the stakeholders. In addition, Section 2.5 discusses the performance
indicators of the planning system. Lastly, we will conclude this chapter in Section 2.6.

2.1 Current planning system

This section discusses the current planning system employed by the Injection Team of ExpertCare.
Firstly, the nurses and clients are introduced. Then the planning of appointments and the routing is
discussed.

Nurses
At the beginning of this project the Injection Team comprised six nurses, including one designated as
the team coach. While the coach primarily does not serve clients, she occasionally assists when needed.
From the remaining 5 nurses, three work one day a week, while two work three days a week. In case of
insufficient number of nurses, the coach or nurses from other teams step in, a situation currently occur-
ring weekly. For the remainder of this paper, we will refer to nurses who are not part of the Injection
Team, excluding the coach, and who step in to assist clients of the Injection Team, as substitute nurses.

Clients
The clients of the Injection Team of ExpertCare are patients that require medication via injections.
The hospital will refer them to ExpertCare such that the medication can be given at the client’s home.
Once the client has been forwarded to ExpertCare, an intake appointment will be made. Since new
clients register and current clients leave the Injection Team on a daily basis the number of clients is
never stable. In Figure 3 the evolution of the number of clients over time indicates that there is a clear
growth in the number of clients over time.

Figure 3: Number of clients of Injection Team over time

Appointment
There are two types of appointments, namely an intake appointment and a normal appointment. An
intake appointment, which is the initial appointment for new clients, requires more time. During this
appointment, the nurse educates the client about their medication and ExpertCare, and gathers nec-
essary information about the client. These appointments last for 75 minutes. Normal appointments
encompass all subsequent visits and have a duration of 45 minutes. Both types of appointments include
10-15 minutes of pre-appointment document review and approximately 5 minutes of post-appointment
reporting. Consequently, nurses spend approximately 25-30 minutes for normal appointments and 55-
60 minutes for intake appointments at the client’s residence. The pre-appointment document review
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is often done the day before and the post-appointment reporting is often done immediately after help-
ing the client. So the time that should be considered for planning the appointments within a day is
approximately 30 minutes.

The nurse always calls the client approximately 20-30 minutes before the appointment to let them know
they are coming. When the nurse has arrived, the nurse assesses the client’s health and administers
medication. Since the clients are referred by the hospital the assessment cannot be negative. Subse-
quently, the next appointment is scheduled, considering the client’s care frequency. Care frequencies
include weekly, bi-weekly, tri-weekly, four-weekly, six-weekly, eight-weekly, quarterly or semi-annually.
A new appointment is set in the week in which medication is needed by considering the blueprint
schedule as depicted in Figure 2. Based on the region where the client lives, several options for an
appointment are available. Then the client can choose their preferred option or choose an alternative
if needed. The blueprint is based on a specific clustering of the clients which will be elaborated on in
Section 2.2.

Daily routes construction
A few days prior to the start of the week, a planner utilizes the "Nedap ONS" software to manually
create daily routes based on scheduled appointments. The software presents a list of appointments for
each day in a particular order, along with corresponding routing information. Planners can easily ad-
just the order of appointments by dragging them within the software interface, visually observing how
routing changes occur. Planners strive to arrange routes logically within the software. Client-specific
preferences for time slots are inserted as notes in the system, but these are frequently overlooked by
planners, resulting in these preferences not being considered.

2.2 Clustering analysis

In September of 2023 the clustering of clients by region was introduced by one of the planners of the
Injection Team. The clients’ location of the Injection Team are shown in a map in Figure 4. The
percentages mentioned are from the total number of visits or total number of clients. The number of
clients is not equal to the number of visits in half a year due to the different frequencies of the clients.
In total there are 7 clusters:

• Cluster 1: covers the largest area of all the clusters. It stretches from Gouda to Utrecht. The
majority of their clients live in Utrecht. It is visited twice in the morning. This cluster contains
approximately 126 (14%) clients that in total need care 361 (15%) times over half a year.

• Cluster 2: lies centrally and covers Bunnik and Zeist among other places. The cluster is visited
once in the morning and twice in the afternoon. This cluster has around 99 (11%) clients. Over
half a year time they require about 265 (11%) visits in total.

• Cluster 3: is located in the south and also covers Bunnik and Zeist among other places. It is
visited once in the morning and once in the afternoon and it contains approximately 150 (17%)
clients. In total they require 407 (16%) visits in half a year.

• Cluster 4: covers the area around the office and Utrecht. It is visited once in the morning and
twice in the afternoon and it has around 106 (12%) clients. In total 307 (12%) visits are made
over half a year time to this cluster.

• Cluster 5: is located in the north and covers Hilversum and Huizen among other places. It is
visited twice in the morning and thrice in the afternoon and it contains approximately 103 (12%)
clients. They need to be visited 410 (17%) times in half a year in total.

• Cluster 6: covers Amersfoort and the northern region of Amersfoort. It is visited twice in the
morning and once in the afternoon and it contains around 193 (22%) clients. They need about
491 (20%) of visits over half a year time in total.

• Cluster 7: covers Amersfoort as well and the southern region around Amersfoort. It is visited
once in the morning and once in the afternoon and it has approximately 102 (12%) clients. Ap-
proximately 226 (9%) visits need to be made to all the clients over half a year.
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Figure 4: Map of client locations

Some clusters overlap slightly, namely cluster 1 & 4, cluster 2 & 3 and cluster 6 & 7. The clients in
the overlapping clusters are divided evenly among those clusters for our analysis. Moreover, the data
on the number of clients is based on the data as of 19/03/24.

To actually see which clients are in which cluster, it is assumed that the day of the last appoint-
ment of each client is repeated for every number of weeks in which they need an injection. So the
blueprint shown in Figure 2, is translated to the following clustering, shown in Figure 5. This shows
for each client when they are scheduled and since two nurses work on a day, there are two options. So
Monday Morning 1 and Monday Afternoon 1 is done by one nurse and Monday Morning 2 and Monday
Afternoon 2 is done by another nurse. This is the same for the other days of the week. In Table 10 in
Appendix C the number of clients and the average visits in half a year per cluster is displayed.
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Figure 5: Clustering of clients of current schedule of the Injection Team

2.3 Frequency analysis

As mentioned before there are eight different appointment frequencies that clients can have. In Table
2, the number of clients and number of visits in half a year per frequency is displayed. Furthermore,
in Figure 6 the map with the clusters are depicted with the according care frequency of each client.
From the analysis, it can be noticed that there are 3 main groups of frequencies that dominate. The
frequencies of 4-, 12- and 26-weekly amount to 96% of all the clients and 87% of the total number
of visitations over a year. The 12-weekly frequency contains the most clients (44%) and the monthly
frequency amounts to the most visitations (39%). The 4-weekly frequency is scattered over the whole
map, whereas the 12-weekly frequency has about 70% of their clients in clusters 5, 6 and 7 (the north-
east on the map in Figure 6). Additionally, the 26-weekly frequency has almost half of their clients in
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cluster 2 and 3 (centre and south-east on the map in Figure 6). All the other frequencies are scattered
over the map. Additionally, Figure 7 illustrates the density of all the clients highlighting the most
frequented places. The darker colour indicates a higher density of visitations. We can notice three
places in Figure 7 that are the most visited. These places are Utrecht, Amersfoort, and Zeist, with
157, 104, and 84 clients situated in each respective location and total average amount of visits over
half a year 440, 254 and 247, respectively. These 3 locations are the 3 overlapping parts of the clusters.

Table 2: Number of clients and visitations per frequency

Frequency Number of
clients

Approximate number
of visits in half year

Weekly 4 104.00

2-weekly 9 117.00

3-weekly 8 69.54

4-weekly 148 967.69

6-weekly 3 13.15

8-weekly 7 23.15

12-weekly 384 856.62

26-weekly 316 316.00

Total 879 2467.15
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Figure 6: Map of client locations and fre-
quency Figure 7: Density of the clients

2.4 Stakeholder analysis

The stakeholders in the planning process of the Injection Team of ExpertCare are the clients, the nurses
of the Injection Team and the board of ExpertCare. All three stakeholder groups have demands of the
planning system that they wish to be fulfilled. After some discussions with members of the Injection
Team, the wishes per stakeholder group are listed here below:

The clients:
• The clients want to be scheduled during their preferred time window. Currently, the nurses can

either arrive at the client in the morning from 9:00 to 13:00 or in the afternoon from 12:00 to
16:00. The overlap in the time slots allows for more flexibility for the nurses of the Injection
Team. For example, if the afternoon is busier than the morning they can already start helping
afternoon clients at 12:00 and vice versa.

• Many clients also prefer that they are helped by the same nurse for each appointment as much
as possible.
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The nurses:
• The nurses prefer to have balanced workdays, ensuring a consistent workload of approximately

8 ± 1 hours on a day. This includes the time slots as mentioned before (from 9:00 till 16:00) in
which they can arrive at clients homes. However, this also includes the time from the office to
the first client and from the last client to the office if this is not done between 9:00 and 16:00,
because nurses can leave the office already at 8:30. Additionally, it also includes the time that is
needed for the pre-appointment document review for each client which is usually done the day
before by the nurse.

The board of ExpertCare:
• The board requires that all clients have to be served.
• They also want that clients and nurses are satisfied such that they stay with the company.
• A nurse can work at most 12 hours on a day following the collective labor agreement.
• They aim to have a cost efficient solution.

2.5 Performance indicators

This section discusses the performance indicators and how the Injection Team performed in 2023.
Performance indicators are quantifiable metrics that indicate the performance of the schedules and
routes. It allows us to compare different schedules and routes. The data available over 2023 does
however not include substitute nurses, since it only takes the data from the nurses within the Injection
Team.

2.5.1 Travel time

The travel time is an important performance indicator since the less time is spent on traveling, the more
clients can be helped. The reported travel time is based on the system "Nedap ONS" which estimates
the travel time from one client to another. It does this by determining the Euclidean distance between
two clients and dividing this distance by a standard travel speed which is set to 50 km/h. However,
in reality the actual travel time is higher than reported by Nedap ONS, since they cannot drive in a
straight line to the clients and not everywhere a speed of 50 km/h is possible. Therefore, the difference
between the time in Nedap ONS and the actual time spend traveled is compared. Over a period of
one month the nurses measured their actual travel time and compared this with the time reported in
Nedap ONS. Figure 8 shows a histogram plot of the extra travel time measured by the nurses. It is
evident that, on average, each trip has an extra travel time of more than 5 minutes. In addition, in
Appendix B Figure 27 displays the measurements, the trendline of the measurements and the line if
the measurements are equal to the time in Nedap ONS. It can be noticed that there is a slight trend
that when routes are longer the extra travel time is likely to be also longer. All the measurements
can be found in Table 9 in Appendix B. To the reported data we add 5 minutes to each trip from one
customer to another in order to make the travel time more accurate.
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Figure 8: Minutes of extra travel time per route

We analyzed the data to determine the average travel time per nurse per day. To the reported data
we add 5 minutes to each trip from one customer to another in order to make the travel time more
accurate. In Figure 9 the boxplot of the average number of traveling hours per nurse is shown. It is
clear that the distribution is symmetric. In Figure 10, the boxplot of the average travel hours per day
of the week per nurse is displayed. There are no big differences between the different days of the week.
It is determined that on average the travel time per day per nurse is around 2.63 hours.

Figure 9: Average number of traveling
hours per nurse on a day

Figure 10: Average number of traveling
hours per nurse over a week

2.5.2 Continuity of care

Continuity of care is described as having steady and reliable healthcare services over time. It ensures
continuity and predictability in the treatment and support for the patient. Maintaining a consistent
nurse facilitates continuity of care. Having the same nurse for a client brings several advantages with it.
Firstly, it is preferred by the clients since it gives more trust and stability for them. Furthermore, when
a nurse attends to the same patient on each visit, they develop familiarity with the client’s location,
optimizing navigation, parking, and overall efficiency during subsequent visits.

Wirnitzer et al. [38] present several performance metrics for evaluating the continuity of care (coc).
One of their objectives is to minimize the relative number of different nurses per patient. This is
calculated by dividing the total number of different nurses that have visited a certain client by the
total number of visits to that client. Different from Wirnitzer et al. [38] is that we subtract this value
from 1 such that a higher value of coc corresponds with a better continuity of care. Also, from the
total number of different nurses 1 is substracted, since a client will always be helped by at least one
nurse. This shown in Equation 1. Wirnitzer et al. [38] do not mention what a good value for the coc
is. A coc of 0 would indicate that a client has had a different nurse for each visit and a coc of 1 would
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indicate that a client has had the same nurse for each visit. Thus, a higher coc is preferred.

coc = 1− Total number of different nurses − 1

Total number of visits
(1)

The continuity of care over the year 2023 is calculated by calculating for each client the coc according
to Equation 1 and then taking the average and the weighted average on the total number of visits.
When taking the average a value of 0.65 is found and when taking the weighted average a value of
0.67 is found. Note that only the clients that have had more than one visit in the year 2023 are taken
into account and that substitute nurses are not taken into account as we do not have this data. This
would mean that in reality the values found would be lower.

Another way of calculating the coc mentioned in Wirnitzer et al. [38] is the ratio of nurse switches
during subsequent appointments. This is done by computing the total number of nurse switches by the
total number of visits of a client. This is shown in Equation 2. From the denominator 1 is subtracted
since at least two visits are needed to have a nurse switch. A nurse switch means that a different nurse
visits a client than in the previous visit of that client. Wirnitzer et al. [38] do not mention what a
good value for the ratio of switches is. A ratio of switches of 0 would mean that a client has only had
the same nurse, and a ratio of switches of 1 would mean that the client has a different nurse compared
to the previous visit every time. Thus, a lower ratio of switches indicates that fewer switches are made
between nurses in subsequent switches, so a lower ratio is preferred.

Ratio of switches =
Total number of nurse switches

Total number of visits − 1
(2)

The ratio of nurse switches over the year 2023 is calculated by calculating for each client the ratio of
switches according to Equation 2 and then taking the average and the weighted average on the total
number of visits. When taking the average a value of 0.63 is found and when taking the weighted
average a value of 0.57 is found. Similarly, note that only the clients that have had more than one visit
in the year 2023 are taken into account and that substitute nurses are not taken into account as we do
not have this data. This would mean that in reality the values found would be higher. Additionally,
when a nurse leaves the team and a new nurse joins the team, this would lead to more nurse switches
for clients, because the nurse leaving cannot help them anymore and they will get a new nurse visiting
them.

2.5.3 Balanced working days for the nurses

Another performance indicator is the workload distribution for the nurses. The nurses prefer to have
consistency in the length of their working days. They prefer to work around 8 ±1 hours, which includes
nursing and traveling hours.

In Figure 11 the boxplot of the average number of appointments per nurse over a week is displayed for
2023. The average number of appointments on a day per nurse is around 8.02. Moreover, Figure 12
shows the boxplot of the average number of nursing hours per nurse over a week for 2023. The average
number of nursing hours on a day per nurse is around 5.92 hours and in general the distribution is
symmetric. Note that this excludes the travel time.
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Figure 11: Average number of appoint-
ments per nurse over a week

Figure 12: Average number of nursing
hours per nurse over a week

2.6 Conclusion

This chapter answered the following research question: How is the current planning of the Injection
Team organized?. First, we present the current planning system employed by the Injection Team. This
is done by first introducing the nurses and the clients and then discussing the planning of appointments
and the construction of the routes. Additionally, we analyzed the clusters and the frequency of the
clients. The analysis revealed the presence of 3 dominant frequencies that occur substantially more
relative to the remaining frequencies. Moreover, a stakeholder analysis is done to determine all the
wishes and requirements. Lastly, the chapter concluded with several key performance indicators to see
how the Injection Team is currently performing. In the next chapter, a literature review is done to
determine a suitable solution approach.
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3 Literature review

This chapter addresses the second research question: Which solution approach fits best to the context
of ExpertCare?. Firstly, Section 3.1 describes the home health care routing and scheduling problem
(HHCRSP) and examines various aspects of it. Secondly, Section 3.2 discusses a related problem,
namely the Vehicle Routing Problem and several variants of it. In addition, Section 3.3 describes a
variety of solution approaches applicable for solving this problem. Lastly, Section 3.4 concludes the
chapter by proposing a solution approach and addressing the existing literature gap.

3.1 Aspects of the home health care routing and scheduling problem

The planning of the nurses and the design of the routes to visit their clients greatly impact the quality
of the service as well as the travel time and associated costs. The problem of scheduling and designing
these routes is known in the literature as the HHCRSP. The problem has gained much more attention
over the recent years due to the increase in number of home care businesses and the reduction it can
have on the costs and client dissatisfaction [11]. The HHCRSP consists of two components, namely the
routing and the scheduling of the nurses. These two components can either be solved simultaneously or
separately depending on the nature of the problem. The HHCRSP is related to blueprints in terms of
planning and designing frameworks that guide the efficient delivery of home health care services. The
HHCRSP aims to minimize or maximize a criterion under certain constraints. This criterion and these
constraints are determined by the characteristics of the problem and the demands of the stakeholders.
In the context of home health care the three main stakeholder groups are the home care organization,
the caregivers and the patients [23]. Several literature reviews have been written about the HHCRSP,
see for example the papers of Chabouh et al. [8], Cissé et al. [9], Euchi et al. [11] and Goodarzian et al.
[14]. Since there are numerous papers about HHCRSP, the focus of this study lies on papers considering
the HHCRSP with a long planning horizon. Since not many papers have planning horizons longer than
a week, also planning horizons of a week are included. In the following subsections various aspects
concerning the HHCRSP are discussed, namely the planning horizon, objectives, constraints, pattern-
based and stochasticity. Then in the last subsection, we will discuss the problem of the Injection Team
considering these aspects and make a comparison to the literature.

3.1.1 Planning horizon

The planning horizon in the HHCRSP describes the time frame during which the scheduling and
routing is made. Its duration varies based on the availability and quality of information and the
planning horizon of interest [9]. In the HHCRSP model, the planning horizon commonly spans one
day or week. Several papers use a weekly rolling horizon (e.g. Wirnitzer et al. [38]). This means
that decisions are made for a fixed period and then updated as time progresses. The time horizon
shifts as each period passes and it allows for updates based on newly available information or changed
circumstances. There are only a few papers that use time horizons longer than a week. Nickel et
al. [29] construct a medium-term master schedule that plans over multiple weeks. Moreover, Hewitt
et al. [18] use a planning horizon of 2 to 3 months to demonstrate the advantages of using longer
planning horizons over shorter ones. This is done by comparing the longer horizon planning strategy
to a planning strategy using a weekly rolling horizon. The paper concludes that medium-term planning
leads to a significant decrease in travel time than short-term planning.

3.1.2 Objectives

There are various different objectives in the HHCRSP. We have classified them into three groups,
namely cost minimization, patient satisfaction maximization and nurse satisfaction maximization. The
most commonly used objective for the HHCRSP is cost minimization [9]. The cost could be described
as the traveling costs, the traveling time, the distance or the number of staff. Another objective used
in the context of HHCRSP is to maximize the satisfaction of the clients. For the clients this could be
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the continuity of care and whether their time or nurse preference is fulfilled. Furthermore, objectives
of the nurse satisfaction maximization could be workload balancing or minimizing overtime.

These objectives can either be used as a single objective or as multiple objective functions. Bard
et al. [2] have as a single objective that optimizes the total travel cost. For multi-objective opti-
mization frequently a weighted objective function is used. Nickel et al. [29] use a weighted objective
function for the overtime costs, the travel distance, the number of unscheduled tasks and the patient-
nurse loyalty. Moreover, Maya Duque et al. [25] perform a lexicographic optimization. Their most
important objective is maximizing the service level and their second objective is minimizing the travel
distance. In this case, a large decrease in travel time is allowed for a certain small drop in the service
level.

3.1.3 Constraints

There are numerous different constraints used in the literature of HHCRSP. In this section the most
frequently used ones are discussed. A very common constraint is the time window constraint. These
can either be a hard time window or a soft time window. In the case of a hard time window the
service must start and end within the time window. In the case of soft time windows, it is allowed
that the time window is violated but this could induce a penalty cost. For example, Lin et al. [24]
use soft time windows. Another frequently used constraint is the qualification constraint. It ensures
that the nurse with the right qualifications helps a client. It is modelled as a hard constraint, since
this condition cannot be violated. Additionally, working time regulation of the nurses are sometimes
considered. This includes for example, the work time, the break and holidays of the nurses. Guericke
and Suhl [17] consider many working regulations in their model to ensure applicability in practise. In
addition, the continuity of care is a common constraint in the context of HHC. This could either ensure
in consistency of the client’s time slot or the consistency of the nurse over a period of time.

3.1.4 Pattern-based

In a few HHCRSP the flexibility of client’s patterns is taken into account. A client’s pattern describes
the days on which they are visited. For example, a client needs to be visited 2 times a week, then
possible patterns are Monday and Wednesday or Tuesday and Thursday. The introduction of multiple
possible patterns for clients makes the problem more complex [35]. This is due to the fact that there
are more decision variables introduced to the problem. In the papers of Bard et al. [1], Cappanera
and Scutellà [7], Maya Duque et al. [25], Shao et al. [35] and Yalçındağ et al. [39] all deal with the
assignment of a pattern to a client. Often first, the patient is assigned to a nurse, taking into account
qualifications and workload balancing. Then, a pattern is assigned to a patient and lastly the routes
are determined. Nickel et al. [29] also work with a type of pattern, but they call it all possible shift
combinations for each job. However, they only use it for their weekly optimal plan and not for their
medium-term master schedule. In their master schedule they say that each job has only one possible
shift combination.

3.1.5 Stochasticity

Stochasticity is another aspect that can be considered in the HHCRSP. Stochasticity in the HHCRSP
introduces variability, which can manifest in different facets such as service time, nurse availability,
and client demand. Ignoring this uncertainty assumes a static environment where parameters like
client numbers and nurse availability remain constant. Conversely, accounting for stochasticity allows
for a dynamic model where these parameters fluctuate over time, yielding a more realistic scenario.
Notably, research on uncertainty in HHCRSP is limited compared to deterministic approaches. It
has recently been identified as a promising future research direction, especially in strategic planning
[8]. Fathollahi-Fard et al. [12] take into account the uncertainty in travel and service time as well as
patients’ satisfaction. Additionally, Hewitt et al. [18] take into account the uncertainty in when and
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where new patients will request care in the future. They do this by taking into account a set of dummy
patients for the future which is based on a point estimate which is the expected number of patients per
week. Furthermore, Nikzad et al. [30] take into account the stochasticity of travel and service times.

3.1.6 Classification of ExpertCare’s case

In Appendix D an overview of the HHCRSP literature is given in Table 11. We will examine the five
aspects discussed above in the context of the Injection Team. Firstly, the planning horizon seen in the
literature is often a week and at most 2-3 months. Since numerous clients of the Injection Team have
a visitation frequency of 26 weeks, a planning horizon of at least 26 is reasonable. This is a lot longer
than seen in the literature. Secondly, the objective of the Injection Team is to minimize the total
travel time. This objective is commonly used in the literature. Thirdly, the constraints the Injection
Team has are time windows of the arrival time at the clients and a maximum working time for the
nurses on a day. The skill linking constraint is not relevant for the Injection Team since all nurses are
able to give an injection to all clients. Fourthly, the problem of the Injection Team is a pattern-based
problem. This is because the timing of most injections is flexible. This means that the days on which
clients are visited is not fixed and the time windows can also be more flexible and larger. Therefore,
the papers using a pattern-based approach are the most relevant to our problem. These are Bard et
al. [1], Bowers et al. [4], Cappanera et al. [7], Maya Duque et al. [25], Nickel et al. [29], Shao et al.
[35] and Yalçındağ et al. [39], as can be seen in Table 11. Lastly, the stochasticity considered in the
found literature is the arrival of new clients, uncertainty in time windows, travel time, service time
and clients’ preferences. Since, we are focusing on the medium-term planning, we have chosen not to
consider the changes in appointments and the arrival of new clients. Additionally, the Injection Team
works with deterministic values for the service time and the travel time determined in Nedap ONS.
Thus, the HHCRSP literature has several relevant papers for the case of ExpertCare, but there are
also several differences between the case of ExpertCare and the analyzed literature.

3.2 Variants of Vehicle Routing Problems

Since the scheduling problem of the Injection Team has several differences from the HHCRSP, methods
from other industries are also relevant. For example, skill linking is no requirement for the Injection
Team and the days on which clients are visited are not fixed. This is because all nurses of the Injection
Team are qualified to give injections and with most injections they give the timing is not very strict.
There are numerous different sectors in which vehicle routing occurs, such as delivery of packages,
waste collection and repairs or installations at people’s home. We will discuss different variants of
vehicle routing problems (VRPs) which are relevant for the HHCRSP in the following subsections.

3.2.1 Vehicle Routing Problem with time windows

The classical Vehicle Routing Problem (VRP) deals with finding optimal routes to visit each customer
exactly once within a single period. The VRP with time windows (VRPTW) generalizes the VRP by
adding time windows in which customers have to be visited [5]. This could either be modelled as hard
time windows or as soft time windows. However, the VRPTW typically does not take into account a
planning horizon longer than a day. Therefore, it does not take into account consistency or working
regulations for nurses over longer periods.

3.2.2 Periodic Vehicle Routing Problem

The Periodic Vehicle Routing Problem (PVRP) extends the VRP concept to multiple periods, requiring
the determination of visit schedules and routes across a planning horizon to minimize total transporta-
tion costs. The PVRP was first introduced in 1974 by Beltrami and Bodin [3] in a paper discussing
garbage collection. It aimed to optimize routing plans for visiting a set of customers over multiple
planning horizons. Addressing the PVRP involves tackling two interconnected challenge: determining
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the optimal visiting schedule for each customer within the planning horizon, which corresponds to an
assignment problem, and subsequently planning the vehicle routes for each day, which corresponds to
the VRP [6]. This dual approach is essential for optimizing the overall transportation efficiency.

3.2.3 Consistent Vehicle Routing Problem

The Consistent Vehicle Routing Problem (ConVRP) was first introduced by Groër et al. [15]. The
time horizon for the ConVRP is multiple days. The ConVRP adds consistency to the VRP in two ways.
Firstly, it is ensured that each customer is always helped by the same person. Secondly, the visits of a
customer should occur roughly at the same time. The ConVRP assumes that the visit schedules of the
customers are known in advance. Kovacs et al. [22] generalize the ConVRP by allowing more than one
driver to visit a customer. They put a limit on the number of drivers per customer. Moreover, they
penalize the variation in arrival time in the objective function instead of having a constraint for this.

3.2.4 Periodic Vehicle Routing Problem with Driver Consistency

The Periodic Vehicle Routing Problem with Driver Consistency is introduced by Rodríguez-Martín
et al. [32] and it extends the PVRP by ensuring that each customer is served by the same driver in
each visit. In contrast to the ConVRP, the visit schedules of the customers are unknown and need to
be determined. The model does not take into account time consistency in visitations. In the paper
they formulate the problem as an integer linear program and solve it with an exact brand-and-cut
algorithm.

3.3 Solution approaches

In this section different solution approaches are discussed. Konstantakopoulos et al. [21] divided the
solution approaches into three classes namely, exact approaches, heuristics and metaheuristics. We
will discuss those three approaches in this section.

3.3.1 Exact approach

Exact algorithms were first suggested to solve VRPs because of their ability to generate high-quality
solutions. However, for extensive problems involving more than 100 customers, the computational time
required for exact algorithms to find the best solution becomes impractical [21]. Consequently, heuristic
and metaheuristic algorithms were devised, as they provide a more favorable trade-off between solution
quality and computational time [21]. Méndez-Fernández et al. [28] solve their problem by both an exact
approach and a heuristic approach, namely simulated annealing. The heuristic approach was discovered
to effectively solve a greater number of instances compared to the exact approach. Additionally, it
yielded solutions of comparable quality to those generated by the exact approach. The comparison of
an exact approach with a heuristic approach is also done in Guericke [16]. The considered heuristics
are large neighborhood search, adaptive large neighborhood search and reduced variable neighborhood
search. All the heuristics outperformed the exact approach in most cases. In addition, the heuristics
are computationally much faster. Since our problem is rather complex we will not go much in the
details of the exact approaches. However, they are important for us to have a reference to evaluate and
compare the performance of a non-exact method. As a non-exact method does not guarantee to find
the optimal solution, it is significant to determine their effectiveness by benchmarking them against
an exact solution.

3.3.2 Heuristics

Konstantakopoulos et al. [21] further classify the heuristics into several classes. We will discuss in this
section the construction and the 2-phase heuristics.
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Construction heuristics
Construction heuristics are relatively simple heuristics and are often able to quickly generate feasible
solutions. This makes them very suitable for large-scale complex problems. However, some construc-
tion heuristics may perform well for specific problem instances, but poorly for others, limiting their
generalizability. Well-known construction heuristics for VRPs are the nearest neighbor heuristic and
the Clarke and Wright heuristic [10]. The nearest neighbor simply takes a node and then adds the
next node that is the nearest. Additionally, the Clarke and Wright heuristic is based on a cost savings
of 2 routes. At first all nodes are initialized as a single route. Then based on the highest cost saving of
combining 2 routes, these 2 routes are combined. This is done until no costs cannot be saved anymore
or no more routes can be merged. The Clarke and Wright heurisitc has several advantages, such as its
simplicity and its ability to produce quality solutions in a reasonable time [37].

2-phase heuristic
2-phase heuristics are problem-solving approaches that involve two distinct phases to find approximate
solutions efficiently. In the first phase, initial solutions are generated quickly using heuristic methods.
Then, in the second phase, these initial solutions are improved iteratively to enhance their quality.
This iterative improvement can involve various techniques like local search or optimization algorithms.

The cluster-first route-second method is a 2-phase heuristic approach that aims to solve the VRP.
It does this by first clustering the locations into smaller sets and then the vehicle routes are deter-
mined in each set. Clustering is the grouping of similar objects based on similar features. For clustering
in transportation it can help to reduce the travel time and to improve the route efficiency. There are
numerous criteria on which clustering can be done, such as geographic location, similar visitation fre-
quency, traffic patterns, accessibility or time windows. Recently also a study has been done in the
context of HHC. Pahlevani et al. [31] cluster the region of customers into smaller regions. They
do this based on the similarity between clients in location and required skill of the nurse and on the
dissimilarity in time windows. In this way the problem can be solved in a reasonable computation time.

A related concept is territory planning. It is not a heuristic or algorithm, but more a strategic concept.
It is described as the process of dividing an area into smaller regions in order to efficiently allocate
resources to the smaller regions. This is often used in the residential waste collection problem [19]. This
segmentation into smaller areas facilitates solving sub-problems more efficiently. Moreover, if certain
drivers are assigned to each area, it makes sure that the driver knows the route well and also ensures
in the case of HHC better continuity of care. Hurkmans et al. [19] state that there are 3 objectives for
territory planning, namely minimum overlap, minimum travel time and balanced workload. They use
a K-means algorithm to construct an initial solution and perform an Adaptive Large Neighborhood
Search (ALNS) algorithm to improve the solution. Zhen et al. [40] perform the territory planning on
a longer horizon with customer frequency demand. In their work they formulate a partitioning model
and solve the problem with a column generation based algorithm.

3.3.3 Metaheuristics

Metaheuristics conduct a thorough exploration of the solution space, leading to superior solutions
compared to classical approaches [26]. However, this enhanced performance comes at the cost of
computational efficiency and simplicity. There are numerous metaheuristics in the literature. In this
section we will discuss several that have been employed often in the HHCRSP and VRP context.

Greedy Randomized Adaptive Search Procedure (GRASP)
GRASP was first proposed by Feo et al. [13] in 1994. GRASP consists of two phases. First a con-
struction phase and then a local search phase. In the first phase GRASP constructs initial solutions
greedily while incorporating randomness to diversify the search space. This randomness helps prevent
the algorithm from being trapped in local optima. Then in the second phase GRASP applies a local
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search to improve the solution quality further. This phase involves iteratively exploring neighboring
solutions and moving towards better solutions, often guided by a heuristic. This heuristic used could
be for example Simulated Annealing or a Variable Neighborhood Search which will be explained next.

Simulated annealing (SA)
Goodarzian et al. [14] found that SA was one of the three most popular solution approaches used
for the HHCRSP in the period from 2019 to 2023. SA, pioneered by Kirkpatrick et al. in 1983 [20],
is particularly effective for solving combinatorial optimization challenges with a vast array of poten-
tial solutions. It excels at navigating away from local optima, facilitating convergence towards nearly
optimal solutions. SA achieves this by permitting the acceptance of suboptimal solutions, known as
hill-climbing moves. The overarching strategy involves initially accepting all solutions to diversify ex-
ploration, gradually transitioning to solely accepting improvements to intensify the search.

Variable Neighborhood Search (VNS)
VNS was first introduced by Mladenović and Hansen in 1997 [27]. VNS involves systematically chang-
ing the neighborhood structure during the search process, allowing for exploration of different solution
spaces and escape from local optima. VNS iteratively explores solutions by moving between various
neighborhoods, each defining a different notion of proximity to the current solution. A local search is
done to improve the current solution within each neighborhood. Then based on an acceptance criteria,
either the solution is updated or not.

Large Neighborhood Search (LNS)
LNS was initially proposed by Shaw [36] to solve VRPs in 1998. It focuses on exploring large solution
neighborhoods rather than local search methods, which typically explore smaller neighborhoods. LNS
has a destroy phase and a repair phase. In the destroy phase they remove a subset of the solutions
components and in the repair phase the solution is reconstructed again. Then it is evaluated if the
current solution is updated to the new solution. The destroy, repair and evaluation phase are done
iteratively until a stopping criteria is met.

Adaptive Large Neighborhood Search (ALNS)
ALNS was first mentioned in 2006 by Ropke and Pisinger [33] as a solution approach to the pickup
and delivery problem with time windows. ALNS operates by iteratively exploring a solution space and
dynamically adapting its search strategy based on the performance of previously applied operators.
Instead of using a single destroy and a single repair operator as in LNS, ALNS uses a set of destroy and
repair operators. Each operator is assigned a weight, which determines the probability to be selected in
the next iteration. These weights undergo updates after each iteration or set of iterations, prioritizing
the selection of effective operators to enhance solution quality.

3.4 Conclusion

This chapter focuses on addressing the research question: Which solution approach fits best to the con-
text of ExpertCare?. This question has been answered and the final conclusions and a choice of model
are given in this section. In the domain of HHC, while operational planning is broadly analysed, mid-
term planning is also gaining more attention. The frequency of care intervals experienced by the clients
of the ExpertCare’s Injection Team often exceeds those documented in the literature. Literature typ-
ically cites weekly, daily, or multiple daily care intervals, whereas the Injection Team’s clients require
care less frequently, ranging from weekly to semi-annually. Consequently, while literature often advo-
cates for weekly master plans, ExpertCare’s approach should be for longer time horizons. Additionally,
in the literature the days or moments in which the patients require care is often given whereas for the
Injection Team this is more flexible. This flexibility of planning patients can be explored in construct-
ing a master schedule to reduce the travel time. There are a few papers that include this flexibility, but
often only for a time horizon of a week or only explored to mainly maximize client’s preferences. In our
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paper we will apply this over longer time horizon and the main goal will be to minimize the travel time.

Thus, our work will investigate the HHCRSP with a significantly lower visitation frequency of clients,
an aspect not previously addressed in the literature. Moreover, we will consider a longer time horizon,
which has also not been explored in existing research. A two-phase approach is chosen, because Shao
et al. [35] showed its success to a similar problem. Additionally, for the second phase we have selected
an ALNS as this has been seen in Nickel et al. [29] and Guericke and Suhl [17] as a successful method.
In the next chapter the solution design is introduced.
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4 Solution design

This chapter answers the third research question: How should the solution approach be designed?.
Firstly, in Section 4.1 we will give the problem description and in Section 4.2 we will give the underlying
assumptions of the model. Furthermore, in Section 4.3 we will describe the solution approach. Lastly,
in Section 4.4 we will conclude this chapter.

4.1 Problem description

The model has the task to generate a master schedule with a minimized travel time such that all clients
are helped. For this it has to assign a scheme s ∈ Si to each client i ∈ C. The concept of schemes (Si)
is explained below. The schedule is planned over a time horizon of W = {1, 2, ...,W} weeks, where W
is the total number of weeks of the planning horizon. The set T denotes the set of time slots and Tw
denotes the set of time slots for week w. A time slot refers to a time frame in which nurses can arrive
at clients’ homes, so there could be multiple time slots on a day. For every time slot t the routing also
needs to be determined for the clients assigned to this time slot. The variable yt,i,j is equal to 1 if in
time slot t a nurse goes from client i to client j and 0 otherwise. The nurse always starts and ends at the
office (denoted by O). The travel time between location i and location j is denoted as tti,j . The travel
time is symmetric, because it is based on the euclidean distance between two locations with a constant
added to it. This means that the travel time from location i to location j is the same as going from
location j to location i or simply tti,j = ttj,i. The clients are defined as C = {1, 2, ...C}, where C is the
total number of clients. A client i has a visitation frequency fi. The visitation frequency denotes the
number of weeks that must be between subsequent appointments. Additionally, each client has a week
number parameter bi which indicates the week in the time horizon in which their first appointment is.

Generating schemes
Thus, a scheme needs to be assigned to each client. A scheme refers to a pattern which we discussed
in Section 3.1.4. Recall that a client’s pattern describes the days on which they are visited. For the
remainder of this paper, we will refer to patterns as schemes. This description of schemes is inspired by
Bard et al. [1] and Shao et al. [35]. Each client i has a set of schemes Si, which consists of all the pos-
sible schemes client i can have. This set of schemes depends on the frequency fi of the client, the week
number of the first visit in the time horizon bi, the set of time slots in each week Tw and the planning
horizon. When assuming the first appointment must occur in week bi, then the scheme set of each client
consists of |Tw| schemes. For example, we have a planning horizon of 4 weeks and T1 = {Mon1,Tue1},
T2 = {Mon2,Tue2}, T3 = {Mon3,Tue3} and T4 = {Mon4,Tue4}, which means that each week con-
sists of only two time slots. This is also displayed in Figure 13 for clarification. The subscript for
each day indicates the week number. Then if a client has a frequency of 1 visit per 2 weeks and the
week of their first appointment in the planning horizon is 1, then Si = {{Mon1,Mon3}, {Tue1,Tue3}}.
The first scheme in this set, {Mon1,Mon3}, means that the client will be helped in week 1 on Mon-
day and in week 3 on Monday. Additionally, if a client i has a frequency of 1 visit every week then
Si = {{Mon1,Mon2,Mon3,Mon4}, {Tue1,Tue2,Tue3,Tue4}}. Note that when a client has a weekly
visitation frequency, then bi is always 1, which is the first week of the planning horizon. The generation
of schemes can easily be adapted if clients can for example also be helped after their starting week.
This allows for more schemes. In our example, the client with a frequency of 1 visit per 2 weeks, then
Si becomes {{Mon1,Mon3}, {Tue1,Tue3}{Mon2,Mon4}, {Tue2,Tue4}}.

Mon1 Tue1 Mon2 Tue2 Mon3 Tue3

Week 1: Week 2: Week 3:

Mon4 Tue4

Week 4:

Figure 13: Time slots visualization
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The model formulation
In Table 3 the descriptions of all the sets, parameters and variables are shown. Furthermore, the model
formulation is given below. Next, the objective function and constraints are explained.

Table 3: Symbols of sets, parameters and variables and their meaning

Sets
C Set of clients
Si Set of schemes for client i

T Set of time slots
Tw Set of time slots for week w

W Set of weeks
Parameters
tti,j Travel time between location i and location j

at,s
Binary variable that indicates whether time slot t is in
scheme s

bi Week of first visit to client i in the planning horizon
ci Earliest time at which the appointment of client i can start
di Latest time at which the appointment of client i can start
fi Visitation frequency of client i

h Duration of an appointment in minutes
Dt Maximal duration of a time slot t in minutes
M Big number
O Office
Variables

xi,s
Binary variable that indicates whether client i is served
according to scheme s

yt,i,j
Binary variable that indicates whether in slot t a nurse
goes from location i to location j

zt,i
Positive integer that indicates the number of clients visited
after visiting location i in time slot t

z′t,i
Non-negative value that indicates the time at which the
nurse enters location i in time slot t
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min
∑
t∈T

∑
i,j∈C

tti,jyt,i,j (3)

s.t.
∑
s∈Si

xi,s = 1 ∀i ∈ C, (3a)

∑
i∈C∪O

yt,i,j = at,sxj,s ∀j ∈ C, ∀s ∈ Sj , ∀t ∈ T , (3b)

(
∑

i,j∈C∪O
(tti,j + h)yt,i,j)− h ≤ Dt ∀t ∈ T , (3c)

∑
i∈C∪O

yt,i,j =
∑

i∈C∪O
yt,j,i ∀t ∈ T ,∀j ∈ C ∪O, (3d)

zt,O = 0 ∀t ∈ T , (3e)
zt,j ≥ zt,i + 1−M(1− yt,i,j) ∀i ∈ C ∪O,∀j ∈ C, ∀t ∈ T , (3f)

zt,i ≤
∑
i∈C

∑
s∈Si

xi,sat,s ∀i ∈ C,∀t ∈ T , (3g)

xi,s ∈ {0, 1} ∀i ∈ C,∀s ∈ Si, (3h)
yt,i,j ∈ {0, 1} ∀t ∈ T ,∀i, j ∈ C ∪O, (3i)
zt,i ∈ Z+ ∀t ∈ T ,∀i ∈ C ∪O (3j)

The objective in (3) is to minimize the total travel time over the time horizon. The first constraints
(3a) ensure that each client gets assigned one scheme. Constraints (3b) make sure that a client can
only be visited in a time slot if the time slot is in their assigned scheme. Constraints (3c) guarantee
that the maximum duration of a time slot is not violated. The h is subtracted since the office does not
have a service time. Constraints (3d) are the flow conservation constraints. Constraints (3e) assure
that the number of visited clients at the office is 0 for all time slots. Constraints (3f) make certain
that the number of visited clients will be one higher after visiting a client. This is needed to ensure
there are no subtours, meaning that each time slot has one route that starts and ends at the office.
Constraints (3g) enforce an upper bound on the number of clients visited in a time slot to be the total
number of clients scheduled in that time slot. Constraints (3h) and (3i) are the binary constraints and
constraints (3j) ensure that the number of visited clients are positive integers.

Model with time windows
As discussed in Section 2.4 the clients of the Injection Team have certain time windows to be served.
There are two time windows in which an appointment can start, either between 9:00 and 13:00 or
between 12:00 and 16:00. To also take into account the time windows in which they must be served,
the model can be adapted easily, shown below:

min
∑

t∈T
∑

i,j∈C tti,jyt,i,j

s.t. Constraints (3a), (3b), (3c), (3d), (3e), (3h) and (3i)

z′t,j ≥ (z′t,j + tti,j)yt,i,j + z′t,j(1− yt,i,j) ∀i ∈ C ∪O,∀j ∈ C,∀t ∈ T (4)

z′t,iat,s ≥ ciat,sxi,s ∀i ∈ C,∀s ∈ Si, ∀t ∈ T (5)

z′t,iat,s ≤ diat,sxi,s ∀i ∈ C,∀s ∈ Si, ∀t ∈ T (6)

z′t,i ≥ 0 ∀t ∈ T ,∀i ∈ C ∪O (7)

The variable z′t,i is introduced and it represents the time at which the nurse enters location i in time
slot t. This is defined for all locations, but for the office it only represents the time at the beginning
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which is set to 0. Constraints (4) update the time at which the following clients can be entered.
Moreover, constraints (5) and (6) are the time window constraints. Lastly, constraints (7) ensure that
z is a positive continuous variable. Constraints (3f), (3g) and (3j) can be removed from the previous
model, as the constraints (4), (5), (6) and (7) inherently eliminate subtours.

4.2 Assumptions

Several assumptions are made for the model and these are listed in this section.

• It is assumed that a client will be served in the same time slot every week. For example, if a client
is helped on Monday morning, it will be helped in all the other appointments also on Monday
morning. This is done for consistency for the planners and the clients. At the moment this is
also done in practise.

• Another assumption that has been made is that each client has a given week in which their first
appointment in the time horizon takes place. This can be moved forward or backward in time
by a few days depending on their frequency. Then based on their frequency of care, the weeks
in which their following appointments will take place are determined. This assumption is made,
since clients who need an appointment every half year or quarter cannot randomly plan their
appointment in any week.

• In addition, to determine the length of a planning horizon to work on a rolling horizon basis, the
least common multiple of all the frequencies is taken. Since the least common multiple of 1, 2,
3, 4, 6, 8, 12 and 26 is 312, we would ideally need to extend our planning horizon to 312 weeks.
Unfortunately, this extended timeframe is impractical for our model as it would significantly
increase computation time. Therefore, a planning horizon of 26 weeks is taken. However, for this
to work on a rolling horizon basis, some frequencies have to be rounded. This has the implication
on the results that the model may provide solutions that are optimal for the 26-week horizon but
not for the actual longer-term needs, leading to suboptimal performance over the full period.

• Furthermore, it is assumed that each week has the same number of time slots.
• Moreover, the stochasticity in service time is not taken into account. In their current planning

process deterministic values for the service time is also adopted. The appointment service time
is half an hour.

• Additionally, the travel times are taken the same as in their current planning process which is
calculated in Nedap ONS. However, we add 5 minutes to each trip from one customer to another.
This is based on the data demonstrated in Section 2.5.1.

4.3 Solution approach

In Section 3 several works were discussed with similar problems and most of them use a heuristic
approach to solve the problem, due to the complexity of the problem and the computation time needed.
Additionally, the time horizon of our problem is much larger compared to the literature which makes a
heuristic approach suitable. This paper adopts an Adaptive Large Neighborhood Search (ALNS) as a
solution approach which is shown in Figure 14. In the first phase, an initial solution is constructed in
a greedy manner. In the second phase, we implement an ALNS to improve the solution. In our model
we have two possibilities for the time slots, namely a time slot as an entire day and a time slot as half
a day. The latter represents the current morning slot and an afternoon slot as currently employed by
the Injection Team. The latter is more complex than the former, as the time windows of clients are
smaller.
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Figure 14: Solution approach

4.3.1 Phase I - Initial solution

At first an initial solution needs to be constructed such that it is known on which day which clients
will be visited. For this, we need to assign a scheme for each client. We have constructed two greedy
heuristics that generate an initial solution. The greedy heuristic will iteratively assign a feasible scheme
from the set Si to each client i. Only feasible schemes of clients are evaluated, which are the schemes
that satisfy the time windows of customers and the working hours of the nurses. The clients are sorted
based on their frequency. The ones which require the most visits during the time horizon get assigned
a scheme first. This is done because they pose the greatest obstacles for developing feasible solutions
[6]. We have designed two greedy heuristics that assign schemes in the following way:

• Assignment can be based on the number of already scheduled appointments on certain days. If
there are already many appointments assigned to a day, it might be less preferable to assign a
client here. So for each time slot in a scheme it is evaluated how many other clients are already
scheduled. Then a scheme among the least busy schemes is randomly selected and assigned to
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the client. When running this greedy heuristic with the given input of the Injection Team, it is
not able to generate a feasible solution. This can be explained by the possibly inefficient sched-
ules created as it does not take into account the travel time. The pseudocode can be seen in
Algorithm 3a in Appendix E.

• Another way the assignment can be done is based on the distance. For each feasible scheme
of a client, each time slot is evaluated. A flowchart for the decision making is given in Figure
15. Firstly, it is considered whether there are other clients in the time slot, as seen in the first
question in the flowchart in Figure 15. If this is the case then the average distance to the other
clients in that time slot is added to the score. If there is no one in the time slot scheduled yet
then it is considered if there are clients in the time slot on the same day of the same route, as
seen in the second question in the flowchart in Figure 15. If this is the case the minimum distance
to one of the clients in this other time slot is added to the score. However, if this is not the case
we will go to the third question in the flowchart in Figure 15. If the average distance to their
10 or 5 closest neighbors is determined. If this is below 1

3 then a score of 0.2 is added to the
score and otherwise 0.5 is added to the score. The score of each time slot is then summed for
each scheme and normalized by their number of appointments. Then a scheme with the lowest
score is selected. If there are multiple with the lowest score then one is randomly assigned from
those. The pseudocode for this is shown in Algorithm 1a and Algorithm 1b for time slots of days
and time slots of half a days, respectively. When a time slot lasts a whole day, then the second
question in the flowchart of Figure 15 is skipped. This greedy heuristic is able to generate feasible
solutions and will therefore be used for our ALNS. Below Figure 15 we will give an explanation
of the choices made in the flowchart.

Are there other
clients in this

time slot?

Add average distance
to other clients to the

score

Are there other
clients in the time slot
on the same day of

the same route?

Add the minimum
distance to other

clients to the score

Is the average
distance to the 5 or 10
closest neighbors less

than 1/3?

Add 0.2 to the score Add 0.5 the score

Yes

Yes

Yes

No

No

No

Figure 15: Flowchart of the decision making in the greedy heuristic

Firstly, when there are other clients in the time slot, the average distance to these clients is added
to the score. This is done to ensure that the client is assigned to a time slot where it is close to
the other clients. Secondly, the minimum distance to other clients is added to the score when
there are clients in the time slot on the same day of the same route. This other time slot would
then either be the morning or the afternoon route done by the same nurse. In this case, we take
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the minimum distance to the other clients, because the time slot considered should be close to
the other time slot. Lastly, a constant is added to the score. If we do not add a constant to
the score, then at first all the empty time slots will be filled. However, it could be that there
are other time slots that have clients that are close to them. Thus, we add this constant in
order to not assign clients to empty slots when there are time slots with clients close to them.
The constant is either 0.2 or 0.5. This depends on the average distance to their 10 or 5 closest
neighbors. When the time slot lasts a day 10 neighbors are chosen and when a time slot lasts
half a day 5 neighbors are chosen. The values 5 and 10 are chosen, because this is the rounded
average number of clients in a time slot. Over all clients the average distance to their 5 or 10
closest neighbors is equal to 0.33 hours and 0.31 hours, respectively. Therefore, if the average
distance to their closest neighbors is below 1

3 then this client has many close neighbors meaning
that it can be more easily assigned to an empty slot and therefore gets a lower score. When it is
above 1

3 then this client does not have many close neighbors which means that is should not be
more easily assigned to an empty slot. By adding a higher score, the client is more likely to be
assigned to a time slot with a client close to it.

Algorithm 1a Greedy heuristic: minimize distance (1 time slot is a day)
1: Sort clients by frequency
2: for each client i do
3: for each feasible scheme s in Si do
4: Score = 0
5: for each time slot t in s do
6: if no client in t then
7: Score = Score + value based on their closeness to their neighbors
8: else
9: Score = Score + average distance from i to all other client already in t

10: end if
11: end for
12: Normalize Score with number of appointments in s
13: Save Score to scheme s
14: end for
15: Select a scheme with the lowest Score
16: end for
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Algorithm 1b Greedy heuristic: minimize distance (1 time slot is half a day)
1: Sort clients by frequency
2: for each client i do
3: for each feasible scheme s in Si do
4: Score = 0
5: for each time slot t in s do
6: if no client in t and there are clients in the other time slot on the same day then
7: Score = Score + minimal distance from i to client in the other time slot
8: else if no client in t and no clients in the other time slot on the same day then
9: Score = Score + value based on their closeness to their neighbors

10: else
11: Score = Score + average distance from i to all other client already in t
12: end if
13: end for
14: Normalize Score with number of appointments in s
15: Save Score to scheme s
16: end for
17: Select a scheme with the lowest Score
18: end for

4.3.2 Phase II - Adaptive Large Neighborhood Search

Neighborhood
Neighborhood solutions to the current solution in the ALNS are explored by generating destroy and
repair operators. The performance of each operator is tracked and operators are adaptively selected
based on their performance. The destroy operators select a number of clients, based on the degree of
destruction (dod), and removes their assigned scheme. Then the repair operator will go through the
unassigned clients and assign a new scheme to them. In case the repair operator is not able to assign
a scheme to a client, then the neighborhood solution will be set equal to the current solution.

The following destroy operators are used for our ALNS:
1. Random destroy: randomly selects a number of clients whose assigned scheme is removed.
2. Worst destroy: removes the schedule of a number of clients that are the "farthest". For this each

assigned scheme of a client is evaluated. For each time slot the average distance to the other
clients already in that time slot is summed. In case, the time slot is empty and time slots last
half a day, then the other time slot on that day is considered. The minimum distance from the
considered client to any client in the other time slot is taken. Finally, the number of clients with
the highest value are removed, normalized by their number of appointments in their scheme.

3. Frequency destroy: randomly selects a frequency and then randomly removes schemes of clients
with that frequency. When the degree of destruction is higher than the number of clients with
that frequency, then randomly clients are selected to be removed.

4. Every time slot destroy: randomly selects a time slot and then randomly removes one client.
Time slots cannot be selected again unless all time slots have been selected already.

5. One cluster destroy: randomly selects a cluster and then randomly destroys clients within that
cluster. When the degree of destruction is higher than the number of clients in that cluster, then
another cluster will be randomly selected.

6. Worst cluster destroy: randomly selects a cluster and then removes the clients with worst destroy.
This is done up to half of the clients in that cluster (round down). When the degree of destruction
is higher than half of the clients in the cluster, a new cluster is randomly selected.

7. Area destroy: generates a point on the map based on the density of the clients. This means
that a point near a big city is more likely to be generated than in a rural area. Then clients are
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randomly removed if they are within 0.1 hour within this point. If the degree of destruction is
higher than the number of clients within this area, then the radius is increased by 0.01 hour until
enough clients are present in the area.

8. Worst normalized destroy: is similar to worst destroy, but now the values of each client are
normalized by the average of their distances to their 5 or 10 closest neighbors depending on the
length of a time slot. This is done to decrease the preference of removing the clients that have
neighbors living far away from them.

The following repair operators are used for our ALNS:
1. Random repair: loops over the clients based on their frequency and randomly assigns a feasible

scheme to a client that has no scheme.
2. Greedy repair sorted: loops over the clients based on their frequency and assigns a feasible scheme

that is closest to a client. For this each feasible scheme for a client is evaluated. For each time
slot the average distance to another client already in that time slot is summed. In case, the time
slot is empty and time slots last half a day, then the other time slot on that day is considered.
The minimum distance from the considered client to any client in the other time slot is taken,
normalized by their number of appointments in their scheme. The scheme with the lowest value
is assigned.

3. Greedy repair unsorted: does the same as greedy repair sorted, but now it loops over the clients
randomly and not based on their frequency.

Evaluation step
In this step the newly constructed solution from the neighborhood is evaluated, such that we are able
to see if the new solution is an improvement. This evaluation needs to determine the quality over the
whole time horizon of the routing. Often in the literature approach the routing for a day is constructed
based on the time constraints of the clients. These are often smaller than for the Injection Team clients
and therefore determine the broad outline of their routes. In our case we have more flexibility in the
order of the clients and the time horizon is much longer than a week, which means that the routing
needs to be done frequently for one evaluation. Therefore, we can employ a heuristic approach that
is computationally fast, but still gives reasonable solutions. For this the Clarke and Wright algorithm
is a suitable option. This algorithm is also known as the savings algorithm [10]. We have chosen for
the Clarke and Wright heurisitc in our evaluation step due to the several advantages it has, such as
its simplicity and its ability to produce quality solutions in a reasonable time (as mentioned in Section
3.3.2).

Thus, over the whole time horizon the routing is done for each day and the travel time is summed
resulting in the total travel time. Some schemes for clients have less appointments than other schemes,
so the final output could be biased towards schemes with less appointments as this client is less visited,
which makes it likely to have less travel time. Thus, to avoid this bias in the final output, we have
introduced a penalty for having less appointments than the initial solution. For each appointment the
final output has less than the initial number of appointments a value of 1.53 hours is added to the
total travel time. This 1.53 hours is chosen, since it is the maximum distance between any two clients.

Additionally, after every L iterations several parameters need to be updated, where L is the Markov
chain length. The weights (wj) of the operators need to be updated based on the roulette wheel pa-
rameter (RW). This is done according to the following formula: wj = wj(1−RW ) +RW (

πj

usagej
) for j

being all destroy operators and all repair operators, πj is the success of operator j in the previous set
of iterations and usagej is the usage of operator j in the previous set of iterations. In this way each
operator is assigned a weight that depends on its past behavior. Below all the steps of the ALNS are
given for more clarity. Additionally, in Step 1 several parameters need to be initialized and this will be
explained in detail in Section 5.2. For more clarity r represents repair operators, d represents destroy
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operators and j represents repair and destroy operators.

ALNS: steps taken
Step 1: Initialize data
Initialize the current solution x0 and the best solution so far xbest and initialize the starting temper-
ature Tstart, the stopping temperature Tstop, the current temperature T , the decrease factor α, the
Markov chain length L, the degree of destruction dod, the roulette wheel parameter RW, the success
values σ1, σ2, σ3 and σ4 and the counter i. Additionally, set the starting weight wj and the success
rate πj of each operator j to 1 and 0, respectively.

Step 2: Generate a neighbor solution
A neighbor solution is created by performing a destroy and repair operator on the current solution.
Firstly, select a destroy operator d where each destroy operator has the probability of being selected
of wd∑8

d=1 wd
. Additionally, select a repair operator r where each repair operator has the probability of

being selected of wr∑3
r=1 wr

. Perform the destroy and repair operator to find the new solution x.

Step 3: Evaluate the new solution
There are 4 options:

• If f(x) < f(xbest), then update the best solution so far. Then xbest and x0 becomes x. Also, add
σ1 to πj , where j is the used destroy and repair operator.

• If f(x) < f(x0) then accept the new solution. Then x0 becomes x. Also, add σ2 to πj , where j
is the used destroy and repair operator.

When the new solution performs worse than the current solution, we generate a random number
between 0 and 1 (z).

• If f(x) > f(x0) and z ≤ e
x0−x

T (commonly used acceptance criteria [34]), then the new solution
is not better than the current solution, but still accepted by some probability. Then x0 becomes
x. Also, add σ3 to πj , where j is the used destroy and repair operator.

• If f(x) > f(x0) and z ≥ e
x0−x

T , then the new solution is not accepted. Also, add σ4 to πj , where
j is the used destroy and repair operator.

Step 4: Update counter
If i < L, then i = i+ 1 and go to Step 2, otherwise go to Step 5.

Step 5: Update weights and temperature
Update the weights, wj = wj(1 − RW ) + RW (

πj

usagej
) for j being all destroy operators and all repair

operators, where usagej is the usage of operator j and πj is the success of operator j in the previous set
of iterations. If T > Tstop, then T = T · α and go to Step 2. Otherwise, the algorithm is terminated
and we return xbest.
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Pseudocode ALNS
The pseudocode of the ALNS is given below.

Algorithm 2a Adaptive Large Neighborhood Search (ALNS)
Require: Initial solution, StartTemp, StopTemp, α, Mlength
1: Initialize Solution and CurrentBest
2: Initialize parameters and termination criteria
3: while Temp > StopTemp do
4: for i in range(Mlength) do
5: Select destroy operator d based on probabilities and update usage of d
6: Select repair operator r based on probabilities and update usage of r
7: NewSolution := r(d(Solution)
8: if NewSolution < Solution then
9: if NewSolution < CurrentBest then

10: CurrentBest := NewSolution
11: end if
12: Solution := NewSolution
13: end if
14: if AcceptStrategy = TRUE then
15: Solution := NewSolution
16: end if
17: Update weights based on solution quality and operator selection
18: end for
19: Update weights based on usage and success of operators
20: Update probabilities based on weights
21: Decrease Temp
22: end while
23:
24: Return: CurrentBest

4.4 Conclusion

This section concludes the solution design in which we focused on the research question: How should
the solution approach be designed?. First, we discussed the problem description and introduced a model
for this. Then two greedy heuristics are discussed which construct initial solutions. Additionally, the
ALNS framework is introduced which will further improve the initial solutions. In the following chapter
the parameter tuning of our approach will be done as well as the execution of several experiments.
The quality of the solutions will be evaluated in Section 6.1.
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5 Experiments

This chapter discusses the experimental evaluation of our model in order to answer the research ques-
tion: How can we tune the solution approach to ensure high-quality outcomes?. In Section 5.1 the
problem specific data input is discussed. By this we mean data input that are specific to the problem
of ExpertCare. This includes among others the starting weeks of clients. In Section 5.2 several param-
eters required as input for our ALNS are discussed. Then, in Section 5.3 the different scenarios for our
experiments are given. Lastly, Section 5.4 concludes this chapter. All experiments are performed on a
laptop with a central processing unit of AMD Ryzen 5 PRO 7530U with a base speed of 2.0 GHz and
a random-access memory of 32 GB with a transfer rate of 3200 MT/s.

5.1 Data input from the Injection Team

5.1.1 Client data

In the context analysis in Section 2 the clients of the Injection Team were already thoroughly analyzed.
The number of clients in the Injection Team reported are 879. The clients have several parameters,
namely their visitation frequency, their home location and their starting week. Firstly, in Table 2 in
Section 2.3 the frequencies of the clients are shown. Secondly, in Figure 6 a map with the home location
of the clients are shown and their according frequency. Thirdly, the starting weeks are chosen based on
the week in which clients had their last appointment. However, since some frequencies do not divide
26 to an integer, the number of appointments a client has differs per starting week. For example, a
client with an 8 weekly frequency and starting week 1 or 2, will give 4 appointments whereas if the
starting week is higher than 1 or 2, it will result in 3 appointments in the time horizon. Thus, the
starting week of each clients gives 26 scenarios of starting weeks of clients. We have chosen a random
one and kept it the same during all experiments for consistency.

The clients do not actually have to be scheduled necessarily in their starting week, as they can also
be moved to the week before or the week after the starting week depending on their frequency. The
amount of days that a client can move is obtained from a member of the Injection Team. Clients
that require visits every 2 weeks cannot be moved. Additionally, clients with a 3, 4, 6, and 8 weekly
frequency can be moved up to 3 days into the week after their starting week. The clients with a
quarterly and half yearly frequency can be moved up to 5 days into the week after their starting week.
Furthermore, the clients with the half yearly frequency can be moved up to 5 days in the week before
their starting week. The weekly frequency is trivial since, it is already scheduled in each week.

5.1.2 Other input data

In Table 4 an overview is given of the other input data used for our model, including the number of
clients. Our model will utilize a 26-week planning horizon. Typically, two nurses are scheduled daily,
unless specified otherwise. Additionally, two time slots on a day is used, unless indicated otherwise.
Two time slots on a day mean a morning slot and an afternoon slot. The nurse can arrive at the
clients in the morning slot between 9:00 and 13:00 and in the afternoon between 12:00 and 16:00. Note
that the nurse can already leave the office at 8:30 as mentioned in Section 2. Lastly, the total number
of time slots depends on the number of time slots on a day and the number of nurses working. The
number of time slots on a day can for our model either be one or two. Then using the following formula
the number of total time slots can be determined:

Number of total time slots = number of time slots on a day · 5 · 26 · number of nurses working,

where 5 is the number of working days in a week and 26 denotes the number of weeks of the planning
horizon. Thus, this leads for our problem to a total of 520 time slots over the planning horizon.
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Table 4: Overview of input data

Number of clients 879
Planning horizon in weeks 26
Number of daily nurses 2
Number of time slots on a day 2
Total number of time slots 520

5.2 Data input for parameters of adaptive large neighborhood search

This Section considers the data input parameters needed for our ALNS. The parameters that are
needed for the ALNS were mentioned in Step 1 in Section 4.3.2. Firstly, we discuss the initial solution
and the best solution so far in Section 5.2.1. Moreover, we have chosen to tune a number of parameters,
namely Tstart, Tstop, α, L, the degree of destruction (dod) and the roulette wheel parameter (RW).
This is discussed in Section 5.2.2. Properly tuning parameters is important to help the algorithm find
higher-quality solutions and to let it operate more efficiently, balancing exploration and exploitation
to avoid unnecessary computations. However, we have chosen to not tune some parameters, namely
σ1, σ2, σ3 and σ4, because tuning all parameters is resource-intensive and the other parameters are
deemed more influential. In subsection 5.2.3 the parameters we did not tune are discussed.

5.2.1 Initial solution and best solution so far

The initial solution could either be constructed by the greedy heuristic that aims to distribute the
workload or the other greedy heuristic that aims to minimize the overall distance. The first one is
with our given input, not able to generate an initial solution. This can be explained by the fact that
the schedule is rather full and by not taking into account travel time, inefficient schedules are created
which require too much time. However, the second greedy heuristic is able to construct feasible initial
solutions. Thus, the initial solutions generated are constructed by the greedy heuristic that aims
to minimize the overall distance. In the ALNS the current solution and the best solution so far is
initialized to this solution. The best solution so far is set to the current solution since this is the best
solution we have found so far.

5.2.2 Fine tuning of parameters

To determine suitable values for the parameters of the ALNS, we perform several experiments. The
parameters that need to be tuned are Tstart, Tstop, α, L, the degree of destruction (dod) and the roulette
wheel parameter (RW). Table 5 shows the result of the conducted experiments. The first column is
the experiment number and the second column shows the total number of iterations performed during
the experiment, which depends on Tstart, Tstop, α and L. The run time of each experiment is shown in
seconds and the column called outp. stands for the total travel time of the final solution including the
penalty as discussed in Section 4.3.2. The column called Impr. shows the improvement made from the
initial solution by the ALNS. The last column gives the standard deviation of the output in percentages.
Each experiment is done with 3 repetitions, because it was noticed that for this number of repetitions
the standard deviation was quite low already. This is done to ensure reliability of the results. The
seeds are chosen randomly for each repetition and are the same across different experiments. It is
aimed for each experiment to last 15 minutes in order to speed up the fine tuning process and to be
able to perform several different experiments. In order to achieve this run time, the Tstart, Tstop, α
and L are tuned. For clarification, this section is about the experiments for the fine tuning of the
parameters of the ALNS. In Section 6.2 we will perform the experiments that will provide a final
output and we call these the final experiments. When conducting the final experiments, the values
of the Tstart, Tstop, α and L will differ since the runtime can be extended. During fine-tuning, the
goal is to perform numerous experiments quickly to explore various parameters. However, in the final
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experiments, ensuring robustness in the results is prioritized over the speed of the process. Therefore,
these experiments are to get an idea of the proportion between these parameters. It can be seen that
the largest improvement is achieved in experiment number 9. Below we will discuss each parameter of
the ALNS in more detail.

Table 5: Experiments for fine tuning of the parameters of the ALNS

Exp. Iter. Tstart Tstop α L RW Dod Run
time Outp. Impr. St.

dev.
1 5400

10

0.00001

0.05 20

0.1

1 1087.81 594.13 33.15 0.76
2 3060 0.004 5 912.84 581.02 46.26 0.65
3 3600 0.001 10 1209.10 583.24 44.05 0.65
4 1800 0.1 20 841.06 591.26 36.03 1.63
5 1800 0.1 30 1029.69 593.80 33.49 0.67
6 1100 0.6 50 868.14 611.11 16.17 0.84
7 640 2 100 834.21 626.62 0.67 0.39
8 480 3 200 1089.45 626.30 0.98 1.51
9 2280 0.03 30 to 1 936.08 580.67 46.62 1.08
10 1800 0.1 50 to 1 982.68 587.10 40.18 1.07
11 2280 0.03 0.05

30 to 1

951.72 586.13 41.16 1.92
12 2280 0.03 0.15 930.86 591.49 35.79 0.97
13 2280 0.03 0.5-0.05 894.72 598.65 28.63 1.27
14 2280 0.03 0.15-0.05 990.82 595.22 32.06 1.92
15 2280 0.03 0.2-0.05 946.05 582.52 44.76 1.06
16 2280 0.03 0.01-0.2 900.92 590.96 36.32 0.73
17 2280 0.03 0.05-0.15 975.47 587.21 40.08 1.71
18 2280 0.03 0.05-0.2 970.81 580.86 46.43 1.75
19 2280 0.03 0.05-0.3 970.03 594.07 33.22 1.58
20 2280 20 0.06 0.1 938.89 594.99 32.29 2.56
21 2280 10 0.56 0.025 0.1 897.55 600.05 27.24 1.33
22 2280 10 0.55 0.05 40 0.1 947.99 602.66 24.62 0.98
23 2280 10 0.55 0.05 40 0.2 955.71 610.74 16.55 0.54
24 2280 15 0.04 0.1 40 0.1 908.95 585.55 41.73 0.26
25 2280 4 0.95 0.025 40 0.1 1049.91 599.92 27.37 1.80

Degree of destruction, dod
The dod indicates how many clients will be evaluated to be given a new scheme. So the dod can range
from 1 to 879, which would be a completely new solution. A larger dod means a bigger search space
whereas a smaller dod is more locally optimizing. It can be observed in Table 5 that larger dod values,
such as 100 and 200, show only a slight improvement compared to smaller values of the dod. This
could be explained by the complex interaction between the schemes and that by trying to give a large
number of clients a new scheme it is challenging for the repair operators to find feasible solutions. By
destroying only a smaller number of clients, the ALNS is able to find more feasible solutions. Addi-
tionally, a dod that decreases during the execution of the algorithm, is also tested. This is done by
decreasing the dod linearly every time the temperature is updated. Experiment number 9 showed the
largest improvement and therefore a decreasing dod from 30 to 1 is chosen.

Roulette wheel parameter, RW
The destroy and repair operators are chosen based on their weights. Their weights are updated based
on their success in previous iterations. The roulette wheel parameter decides how much weight is given
to the initial weights of operators and the success of operators in previous iterations. A value of 0
would mean all operators will keep the same weight as the initial weight and a value of 1 would mean

34



that the previous set of iterations determines their weights. It is noticed in Table 5 that a lower value
for the RW is preferred. This can be explained by the length of the Markov Chain length and the
number of operators. Since the Markov Chain length is not very high, some operators are not selected
and a high RW would then lead to these operators even having less chance of being selected in the
next set of iterations. Based on the results of the experiments, the RW is set to 0.1.

The other parameters, Tstart, α, L and Tstop

Firstly, a higher starting temperature allows for greater exploration at the beginning of the ALNS.
This is due to the fact that the chances of accepting worse solutions is higher. This greater exploration
could lead to higher quality of solutions. However, the greater exploration also means that it will
take longer for the ALNS to converge and the run time will be higher. Secondly, the decrease factor
determines how fast the temperature goes down. It is important for balancing between solution quality
and the run time of the algorithm. A high decrease factor will mean faster convergence, but possibly
lower quality solutions. In contrast, a low decrease factor would mean slower convergence which allows
the algorithm to search the solution space more thoroughly and could give possibly higher quality
solutions. Furthermore, the Markov Chain length has the same trade off as the starting temperature
and the decrease factor. A longer Markov Chain results in a higher running time but can produce
higher quality solutions, while a shorter Markov Chain reduces running time but may lead to lower
quality solutions. Lastly, when these three parameters are set, then the stopping temperature, can be
calculated, based on the required running time. As can be seen in Table 5 the largest improvement
was achieved for Tstart = 10, Tstop = 0.03, α = 0.05 and L = 20. This gave a run time of 936 sec-
onds. However, for the final experiments, we aim for a run time of 1 hour since this is a medium-term
planning problem, and immediate solutions are not required. Since we want to conduct several final
experiments, 1 hour is a suitable duration that balances thoroughness and efficiency. Thus, we have
adjusted the parameters to Tstart = 20, Tstop = 0.068, α = 0.025, and L = 40. These settings will yield
approximately 9000 iterations and a run time of about an hour.

5.2.3 Other input parameters

There are several parameters that need to be set for the ALNS. We have chosen to tune several of
them which is discussed in Section 5.2.2. The values added to the success score of the destroy and
repair operator still need to be determined. Firstly, σ1 is added when the new found solution is the
best one found so far. Secondly, σ2 is added when the new found solution is an improvement, but
not the best solution found so far. Thirdly, σ3 is added when the new found solution is not better
than the current solution, but it is still accepted. Lastly, when the solution is rejected, σ4 is added.
The values have to be merit-based and they are set as σ1 = 3, σ2 = 2, σ3 = 1 and σ4 = 0. These
values σ1, σ2, σ3 and σ4 remain untuned, as tuning all parameters is resource-intensive and the other
parameters in Section 5.2.2 are deemed more influential. Additionally, the weights of the destroy and
repair operators are all set to 1, since all operators should have the same weight at the beginning. In
addition, the probabilities of the destroy and repair operators are also configured to ensure they are
equally likely to be chosen.

5.3 Different scenarios

In this section, we will examine various instances provided to the ALNS to evaluate the impact of
different scenarios. In Table 6 an overview of the different scenarios are given. The first column gives
the experiment number and the second column gives a description of the experiment. Then in the
in third column the number of daily nurses working are given and in the fourth column the number
of time slots on a day is given. Furthermore, in the fifth column the total number of time slots over
the planning horizon is given and in the sixth column the number of clients is given. Moreover, the
seventh column shows whether clients can be moved from their starting week or not. In the last column
the options for the schemes are given. A dash indicates that all the schemes are possible considering
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whether moving is allowed or not.

Table 6: Overview of the different scenarios

Exp.
num.

Description
of experiment

Num. of
nurses

Num. of
slots/day

Num. of
tot. slots

Num. of
clients

Moving
possible? Schemes

1 Flexible clients 2 2 520 879 Yes -

2 Complete
flexibility 2 2 520 879 Yes All options1

3 Number of
daily routes 3 2 390 879 Yes -

4 Clients choose
one slot 3 2 390 879 Yes Clients choose

one slot

5 Clients choose
two slots 3 2 390 879 Yes Clients choose

two slots

6 No movement
of clients 3 2 390 879 No -

7 More clients 3 2 390 1400 Yes -
1 Infeasible in practise.

5.3.1 Flexible clients

In this scenario, it is as in the Injection Team currently with the freedom of planning clients in time
slots as we would prefer. So we have 2 nurses working on each day and the clients can be moved from
their current starting week as discussed in Section 5.1.1.

5.3.2 Complete flexibility

In this scenario, we do not take into account the starting weeks of clients. This means that we have
complete freedom to plan appointments in any week for all clients. This would show the result of what
could be achieved if an appointment of a client could be freely moved. However, note that this solution
is infeasible in practice. Since not all clients can have their appointment in any week.

5.3.3 Number of daily routes

At the moment, the Injection Team has two nurses working on a day which results into two daily
routes. However, as we have noticed, in weeks when a lot of clients need an injection, the demand
is too high. So in this scenario we will test the influence of having three daily routes. All the other
settings remain the same as the previous scenario.

5.3.4 Clients choose one slot

In this scenario, it will be tested what the influence of the flexibility of clients in their appointment
time is. We will test the scenario in which clients can freely choose one time slot in which they want
their appointment. In this case, three daily routes will be used, as it is not possible to provide this
service with two daily routes and still have feasible solutions. This is because the demand for two
nurses is already high.

5.3.5 Clients choose two slots

This scenario is similar to the previous one, except now clients choose two time slots. Then ExpertCare
decides which one of the two chosen time slots, will be assigned to the client. In this case, again three
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daily routes will be used, as it is not possible to provide this service with two daily routes and still
have feasible solutions.

5.3.6 No movement of clients

In this scenario, we will test the influence of not being able to move clients to other weeks than their
starting week. The number of nurses is in this case increased to 3 nurses, otherwise the model is not
able to plan the clients. This is due to very busy weeks. This is tested to see what the influence is of
using the possibility of moving clients to other weeks. ExpertCare wants to use an extra nurse in the
future next to the 3 current daily routes. This extra nurse will handle all disturbances to the schedule
and handle the first appointment of new clients. The extra nurse can also make sure that a client is
moved to a more preferable week. In this experiment we can see how much that will help the planning.

5.3.7 More clients

In this scenario, we will add clients to the current client pool to see what the influence is on the
solution. Given the steady growth in the number of clients of the Injection Team over the past years,
as shown in Figure 3, it is important for ExpertCare to assess the implications of managing a higher
client load. The decision has been made to increase the number of clients to 1400 in collaboration
with the Injection Team. This is done by artificially creating new clients and assigning them a location
based on the distribution of the locations of the current client pool. Moreover, a frequency is assigned
to the clients based on the occurrence of frequencies observed by the current client pool. Lastly, based
on their frequencies a random starting week is selected for the generated clients.

5.4 Conclusion

This section concludes this chapter where we focused on the research question: How can we tune the
solution approach to ensure high-quality outcomes?. Firstly, we discussed the data specific input of
the Injection Team needed for our model. Secondly, we discussed the input parameters needed for the
ALNS. Lastly, we described the different experiments we will test with the ALNS. The results of this
will be described in the next chapter.
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6 Results

This chapter discusses the results of the experiments conducted. It answers the following research
question: How does the solution approach perform under experimental settings?. In Section 6.1 the
performance of the ALNS is analyzed. Additionally, Section 6.2 shows the obtained results from all
the different experiments conducted which we described in Section 5.3. Lastly, Section 6.3 concludes
this chapter.

6.1 Performance Adaptive Large Neighborhood Search

In this section we will explore the performance of the ALNS. Firstly, in Section 6.1.1 the ALNS is
compared with an exact model. Secondly, in Section 6.1.2 the convergence of the ALNS is analyzed.
Lastly, in Section 6.1.3 the performance of the operators of the ALNS is examined.

6.1.1 Comparison exact model

To see how well the ALNS performs it is compared with the exact model developed in Section 4.1. The
exact model (integer linear programming, ILP) without the time windows is developed using Python
and Gurobi (version 11.0.0). For both models it is possible to move clients to a different week than their
starting week. It is compared with our ALNS, having time slots lasting a whole day. The following
settings are used for the ALNS: Tstart = 10, Tstop = 0.01, α = 0.05, L = 20, RW= 0.1 and the dod=1.
The dod is set lower than before, since we are testing on a smaller client pool. The results are displayed
in the table below. The solutions are given in hours and the run time is given in seconds. The last
column shows the difference between the ILP solution and the ALNS solution, namely ALNS solution
minus ILP solution. We have tested the model for different instances. In the first one all clients that
have a weekly or bi-weekly frequency are tested. That are 4 clients with frequency 1 and 9 clients with
frequency 2. This is done over a planning horizon of 26 weeks. The second one also includes the 8
clients with a frequency of 3. The third one is the same as the previous one, only now the planning
horizon is 4 weeks. In the last one also the clients with a frequency of 4 weeks are included. These
amount to 148 additional clients. It is seen from the results that the ALNS is able to generate solutions
close to the solutions of the ILP. In the more complex instances, it is clear that the run time of the
ILP increases much and in the last instance is not able to produce a solution in an hour and also no
upper bound is found since it is out of memory.

Table 7: Results comparison ALNS with ILP

Description ILP
solution

ILP
run time

ILP
integrality gap

ALNS
solution

ALNS
run time

∆ ALNS
and ILP

Frequency 1 and 2
over 26 weeks 68.46 13.7 0% 68.86 55.88 0.40

Frequency 1, 2
and 3 over 26 weeks 75.27 36001 13.90% 84.44 65.53 9.17

Frequency 1, 2
and 3 over 4 weeks 11.52 36001 6.06% 13.17 22.33 1.65

Frequency 1, 2, 3
and 4 over 26 weeks No solution 36001 - 302.88 228 -

1 The model was terminated after 3600 seconds.

6.1.2 Convergence of Adaptive Large Neighborhood Search

To see the performance of the ALNS the solutions found by the ALNS and the best solution found so
far per iteration is shown in Figure 16. This is for a repetition from experiment 1. The other repetitions
can be seen in Appendix F in Figures 28, 29, 30 and 31. It is seen that these behave similarly. On
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the y-axis the value represents the total travel time in hours over half a year and the x-axis shows
the number of iteration. It is evident that the ALNS algorithm converges to an optimized solution.
Initially, it accepts more worse solutions, while later in the process, it becomes more selective, accepting
fewer worse solutions. This is due to the decrease in the temperature of the ALNS. In Figure 17 the
performance of the ALNS for all repetitions of experiment 1 in one plot is displayed. This shows the
spread of the ALNS. We can see that repetition 2 is a little higher than the others in the last iteration.
The others are relatively close to each other.
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Figure 16: Performance of the ALNS for the first repetition of experiment 1
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Figure 17: Performance of the ALNS for all the repetitions of experiment 1

6.1.3 Operator performance of Adaptive Large Neighborhood Search

In Figure 18 the destroy operator performance of the ALNS for a repetition of experiment 1 is shown.
The other repetitions can be seen in Appendix F in Figures 32, 33, 34 and 35. It shows the success
rate πj of each operator j over the iterations. It can be seen that all operators are increasing and
not converging yet. Meaning that all operators are chosen throughout the execution of the ALNS.
Also, it can be noticed that the worst destroy is increasing more slowly as the number of iterations
increases. This is even more clear in other repetitions of experiment 1. This may be because the clients
located farthest away are already scheduled efficiently. Additionally, in Figure 19 the repair operator
performance of the ALNS for a repetition of experiment 1 is displayed. The other repetitions can be
seen in Appendix F in Figures 36, 37, 38 and 39. It is evident that the random repair operator is
outperformed by the other two operators. The other two operators are similar in their performance.
This can be explained by the similarity of the two operators.

39



0 2000 4000 6000 8000
Iteration

0

200

400

600

800

1000

1200

1400

Sc
or

e

Random destroy
Worst destroy
Frequency destroy
Every time slot destory
One cluster destroy
Worst cluster destroy
Area destroy
Worst normalized destroy

Figure 18: Performance of the destroy operators for the first repetition of experiment 1
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Figure 19: Performance of the repair operator for the first repetition of experiment 1

6.2 Results experiments

The previously discussed experiments have been executed in Python (version 3.11). Each experiment
has been done for 5 repetitions. We have chosen for the final output 5 repetitions instead of 3 rep-
etitions in the fine tuning in Section 5.2.2, because we wanted to speed up the fine tuning process
and we want more robust and reliable output in the final output. Additionally, from the low standard
deviation observed in the fifth column of Table 8 it is clear that our outputs are stable. The average
results over all repetitions is shown in Table 8. The first column shows the number of the experiment
and the second column gives a description of the experiment. The results of the travel time are shown
in Table 8, in the third column. This is given in hours. The fourth column is the standard deviation
of the solution of the ALNS of all the repetitions. The standard deviation is also given in percentage
in the fifth column. Additionally, the run time is given in seconds in the sixth column. Moreover, the
average traveling hours per nurse per day is given in the seventh column. Furthermore, the average
number of appointments per nurse per day is given in the eighth column and the average number of
nursing hours per nurse per day is given in the ninth column. Lastly, the average number of days in
which routings are done is given in the last column. For the first two experiments this can be at most
260, because 2 nurses work 5 times a week for 26 weeks. Additionally, for the other experiments it
can be at most 390, because 3 nurses work 5 times a week for 26 weeks. The second row shows the
values of the Injection Team over 2023 which we obtained in Section 2.5. It is not an experiment, but
it is included in the table for comparative purposes. The results are assessed on the three performance
indicators discussed in Section 2.5, namely the travel time, the continuity of care and the balanced
working days for the nurses. We will first discuss the performance indicators briefly and then we will
discuss the results of each experiment in more detail.

Travel time
Firstly, an important performance indicator is the travel time. In Figure 20 the average number of
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traveling hours per nurse per day is shown for each experiment during the first repetition. The results
of all repetitions of experiment 1 and the other experiments can be found in Appendix G and H, respec-
tively. Recall that in Section 2.5.1 it was determined that on average the travel time per day per nurse
is around 2.63 hours for the Injection Team. Additionally, considering two nurses working each day
and having 130 working days in half a year, this amounts to 684.08 hours of traveling time in half a year.

Continuity of care
Secondly, another performance indicator we discussed is the continuity of care. However, we do not
show the results for the continuity of care of our experiments, because the coc would always be 1 and
the ratio of nurse switches 0. This is due to the x-weekly schedules of clients, combined with nurses
having fixed working days. This means that each client will always be helped by the same nurse and
therefore the coc would be equal to 1 and the ratio of nurse switches 0. Only when adjustments are
made to the medium-term planning the coc would be affected. So for the Injection Team it is easier
to ensure continuity of care compared to the literature. Since in the literature clients often need care
multiple times per week, which makes it is more difficult to ensure it is the same nurse every time.

Balanced working days for the nurses
Thirdly, the balanced working days for the nurses is another performance indicator that we discussed.
In Figure 21 the average number of appointments per nurse per day is shown for each experiment dur-
ing the first replication. Additionally, Figure 22 shows the average number of nursing hours per nurse
per day for each experiment during the first replication. The results of all repetitions of experiment
1 and the other experiments can be found in Appendix G and H, respectively. Recall that in Section
2.5.3 it was determined that the Injection Team had on average 8.02 appointments per nurse per day
and 5.92 hours of nursing time per nurse per day. This would mean an average working day of a nurse
is around 5.92 + 2.63 = 8.55 hours. This is higher than the desired average 8 hours of working for
nurses. In experiment 1 and 2 which also have 2 daily nurses working have a much higher average
number of nursing hours per nurse per day, namely for both 6.94 hours. This increase compared to the
Injection Team in 2023 can be explained by the increase in clients over 2023 which resulted into more
appointments and higher nursing hours. The working hours found in experiment 1 and 2 are 9.15 and
8.98, respectively. This indicates that an extra daily nurse is needed to decrease the workload for the
nurses. The working hours are found by taking the sum of the average traveling hours and the average
nursing hours per nurse per day.

Table 8: Results of all the experiments

Exp.
num.

Description
of experiment

Solution
ALNS

St.
dev.

St.
dev. %

Run
time

Avg.
travel.

Avg.
app.

Avg.
nurs.

Avg.
days

- Injection Team 684.08 - - - 2.63 8.02 5.92 260.00
1 Flexible clients 573.67 8.18 1.43 3824.38 2.21 9.26 6.94 260.00

21 Complete
flexibility 530.14 10.96 2.07 10931.24 2.04 9.25 6.94 260.00

3 Number of
daily routes 610.68 8.37 1.37 4650.58 1.88 7.39 5.54 324.60

4 Clients choose
one slot 785.87 8.78 1.12 2039.16 2.02 6.18 4.64 390.00

5 Clients choose
two slots 727.27 7.37 1.01 2817.76 1.89 6.27 4.70 384.00

6 No movement
of clients 607.88 6.43 1.06 3777.97 1.71 6.86 5.14 356.00

7 More clients 928.36 17.73 1.91 5045.50 2.38 9.74 7.30 389.40
1 Infeasible in practise.
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Figure 20: Average number of traveling hours per nurse per day of all experiments

Figure 21: Average number of appointments per nurse per day of all experiments

Figure 22: Average number of nursing hours per nurse per day of all experiments

6.2.1 Flexible clients

In this scenario, the planners can freely choose the ideal appointment slot for each client, considering
time windows, working hours and the starting weeks of clients. The results can be seen in Table 8 in
experiment number 1. The ALNS provides a total travel time of 573.67 hours over half a year. This
gives a reduction of 16.14% compared to the 684.08 hours of the Injection Team in 2023. Considering
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this reduction in travel time, the productivity of ExpertCare would increase to 60.40%, which is an
improvement of 1.7%. The total number of days nurses worked are 260 and therefore the average travel
time per day per nurse is around 2.21 hours. This gives a reduction of 0.42 hours per nurse per day
compared to the values found of the Injection Team over 2023. Additionally, the average number of
appointments per nurse per day is 9.26 and the average number of nursing hours per nurse per day
is 6.94. These values are both a bit higher than the values found of the Injection Team over 2023.
This can be caused by the steady increase of clients, which we have seen in Figure 3. This means
that the average working hours of nurses per day is around 9.15 hours which is higher than the nurses’
wishes of around 8 hours on a day. This means that an additional nurse is needed to fulfill this wish.
The according clustering is shown in Figure 23. To see the individual clusters more clearly and have
additional data of the clients in the clusters, the reader is referred to Appendix G. It can be noticed that
each cluster contains clients in the same region. In cluster 4 a large amount of clients with frequency
12 is seen, whereas in cluster 3 and 7 a large amount of frequency 26 is seen. Clients with frequency
4 is present in each cluster and is more evenly distributed among the clusters. Moreover, as discussed
in Section 4.3.2 a penalty was introduced to ensure that the model is not biased towards schemes
with fewer appointments. However, there are still approximately 33 appointments less than the initial
input. This can be explained by the fact that the weeks with the most clients cannot be handled and
therefore have to be moved to another week. Thus, the solution remains on average around 2408.20
appointments for it to be feasible and the penalty makes sure it does not decrease more.
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Figure 23: Clustering for a repetition of experiment 1

6.2.2 Complete flexibility

In this scenario the starting weeks of clients is not taken into account. This means that an appointment
of a client can be planned in any week. However, as discussed before this is not feasible in practise.
The results are shown in Table 8 in experiment number 2. It is clear this experiment has the lowest
outcome and the highest running time. This makes sense, because this one has more flexibility and
therefore more options for each client to consider. This increases the run time and decreases the total
travel time. This reduction in the total travel time highlights the importance of having the ability to
move clients away from their starting week. The average number of appointments per nurse per day
is 9.25 and the average number of nursing hours per nurse per day is 6.94. The clustering is shown in
Figure 24. It is again seen that the clients in each cluster are close to each other in the region.
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Figure 24: Clustering for a repetition of experiment 2

6.2.3 Number of daily routes

In this scenario the number of daily routes is increased to three. The results can be seen in Table 8
in experiment number 3. Comparing it to experiment number 1 we see that the total travel time has
increased. This could be caused by the many available slots in the schedule. The repair operators
can assign clients more easily to empty slots, even though assigning it to other slots is more efficient.
This is especially true for the random repair operator. When the clients are more spread out over
all the time slots, the algorithm struggles to move them to fewer time slots, since there is no destroy
operator that destroys an entire time slot. This could explain the increase in the total travel time. To
support our claims we compared the average number of appointments per nurse per day to experiment
1. The average number of appointments per nurse per day is 7.39, whereas in experiment 1 it is equal
to 9.26. This is almost two clients less on each day per nurse compared to experiment 1. Additionally,
the average nursing time per nurse per day is 5.54 hours, which is also lower since there are less
appointments on each day. Additionally, it is seen that the performance of the random repair operator
is very low in Figure 48 in Appendix H. This can be explained by the same argument. The random
repair operator has a larger chance of assigning clients to empty slots which is not always preferred.

6.2.4 Clients choose one slot

In this scenario the clients can freely choose one time slot in which they would like to have their
appointment. This experiment also has three daily routes to provide feasible solutions. The results
are shown in Table 8 in experiment number 4. It is seen that the total travel time is much higher
than in all the other experiments, except the last one. This makes sense since there is no flexibility at
all possible apart from moving clients from their starting weeks. Additionally, the run time is much
lower. This makes sense since the number of options of schemes for each client is greatly reduced. The
average number of appointments per nurse per day is 6.18 and the average number of nursing hours
per nurse per day is 4.64 hours. The number of appointments and nursing hours per nurse per day
have decreased. This is because the travel time has increased since the options for scheduling clients is
less flexible. The clustering is shown in Figure 25. It is clear by comparing it to Figure 23, the clusters
are a lot more spread out. This is indeed expected as the travel time is much higher. The performance
of the destroy operators is also displayed in Appendix H in Figure 49. It can be noticed that the worst
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destroy and worst normalized destroy almost completely converge after half the iterations. However,
this does only happen in half of the repetitions. Apparently, after enough iterations, the "farthest"
clients cannot be assigned a better scheme.
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Figure 25: Clustering for a repetition of experiment 4

6.2.5 Clients choose two slots

This scenario is similar to the previous one, except now a client can choose two slots. The results are
shown in Table 8 in experiment number 5. It is noticed that the travel time has decreased compared
to the previous scenario, which is due to the higher flexibility in planning clients. It gives a reduction
of 58.6 hours over half a year when clients choose two time slots instead of one time slot. The average
number of appointments per nurse per day is 6.27 and the average number of nursing hours per day is
4.70, which is comparable to the previous experiment.

6.2.6 No movement of clients

In this scenario the case of not moving the clients to another week than their starting week is tested.
The results of this can be seen in Table 8 in experiment number 6. Comparing it to experiment number
3 the travel time is only slightly lower and the run time is lower. This can be explained by the fact
that in this experiment, there are fewer schemes for clients since they cannot be moved away from their
starting week. This speeds up the algorithm. We would have expected experiment 6 to have a higher
travel than experiment 3, since experiment 3 has more flexibility. However, the difference is 2.8 hours
over half a year which is not much. Additionally, the average number of appointments per nurse per
day is 6.86 and the average number of nursing hours per nurse per day is 5.14 hours. These are lower
than in experiment 3, but that can be explained by experiment 3 having more days in which there are
no appointments. Again, like in experiment 3 the random repair operator performs poorly, as can be
seen in Figure 50 in Appendix H.

6.2.7 More clients

In this scenario the number of clients have been increased to 1400. The results of this can be seen in
Table 8 in experiment number 7. This solution has the highest travel time among all the experiments,
namely 928.36 hours. This can be explained by the fact that the number of clients has increased by
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more than 50%. This results in more appointments and therefore a higher travel time. The average
number of appointments per nurse per day is 9.74 and the average number of nursing hours per nurse
per day is 7.30 hours. This is much higher than seen in the other scenarios. It gives on average 9.68
working hours for the nurses. This is much higher than 8 hours and therefore an extra nurse would be
needed to decrease the workload.

6.3 Conclusion

This section summarizes the results, concentrating on the research question: How can we improve
the medium-term planning in order to enhance the productivity of the Injection Team of ExpertCare?.
Firstly, we investigated the performance of the ALNS. Secondly, we conducted several experiments
using our proposed ALNS. We tested the option of freely planning the clients which gave a travel time
of 573.67 hours over half a year which amounts to a reduction in the travel time of 16.14% compared
to the Injection Team in 2023. However, this schedule was observed to be very full. Additionally, we
explored a scenario with three nurses working each day and analyzed the influence of clients choosing
one or two time slot(s) they prefer. Furthermore, we examined the impact of not exploring the option
of moving clients from their starting week and the influence of having 1400 clients.
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7 Conclusion and recommendations

This chapter concludes the paper and answers the following research question: What are the conclu-
sions we can draw and the recommendations we can give to ExpertCare based on the results of this
research?. Firstly, in Section 7.1 the final conclusion of the paper is given. Secondly, in Section 7.2
recommendations for ExpertCare are given. Thirdly, Section 7.3 gives possibilities for future research.
Lastly, Section 7.4 discusses the practical and academic contributions of this thesis.

7.1 Conclusions

This research revolves around the core problem ”the manual creation of the blueprint relying solely on
the planners’ knowledge and intuition”. The goal is to increase the productivity of the Injection Team
of ExpertCare. The productivity in 2023 was reported to be 58.7%. The analysis of the Injection
Team’s current situation shows that the average travel time per nurse per day is around 2.63 hours.
The continuity of care was found to be around 0.65-0.67 and the ratio of nurse switches around 0.57-
0.63. Additionally, the average number of appointments per nurse per day is approximately 8.02 and
the average nursing hours per nurse per day is around 5.92 hours. The literature review conducted
gave insights in how to design a medium-term planning of clients in the context of home health care.
It was seen that the visitation frequency of clients of the Injection Team is much lower than seen in
the literature. Moreover, in the literature it was seen that an adaptive large neighborhood search is a
successful method. Therefore, we have developed a two-phase approach. In the first phase a greedy
heuristic constructs an initial solution. Then, in the second phase the ALNS improves the initial
solution. The results has been compared with an exact model to assess how the ALNS performs in
Section 6.1.1. It was found that the ALNS provides solutions close to the exact model and that for
more complex instances the ALNS can still produce solutions within a reasonable time compared to
the exact model.

Allowing clients’ appointments to be freely planned resulted in a total travel time of 573.67 hours
over half a year, averaging 2.21 hours per day. This led to a reduction of 0.42 hours of travel per nurse
per day, equating to a 16.14% decrease in travel time compared to the Injection Team in 2023. Conse-
quently, ExpertCare’s productivity increased by 1.7%, reaching 60.40%. While the productivity target
of 63% was not met, reducing nearly half an hour of travel per nurse each day is a large improvement.
Furthermore, it has been concluded that the x-weekly planning of clients and nurses having a fixed
working day each week, lead the coc to be 1 and the ratio of switches to be 0. Only when changes are
made to the medium-term this is affected. In addition, the average number of appointments and the
average number of nursing hours have increased by 1.24 and 1.02, respectively. This can be explained
by the steady growth in the number of clients over time. At the beginning of 2023, the number of
clients was around 700 and grew to around 900 clients. The average working hours per day per nurse
is 9.15 hours which is more than the desired 8 hours. From this we conclude that an additional nurse
is needed to fulfill this. Also, the results of the clustering of clients have been analyzed to determine
patterns in the clustering of clients. However, we were not able to derive any clear patterns to cluster
clients. Consequently, we cannot provide guidelines for assigning clients to specific clusters based on
their visitation frequency, location, or appointment week. This is due to the complex interactions be-
tween various client parameters, such as visitation frequency, location, and appointment week. Thus,
it is concluded that to improve the medium-term planning to enhance the productivity a more sophis-
ticated planning system is needed. We will elaborate on this more in Section 7.2.

Additionally, several other experiments have been conducted to assess the influence of these instances.
The case of complete flexibility in planning client appointments is analyzed. In this case the the clients
can be planned in any week which is in practise not possible. This resulted in a total travel time of
530.14 which gives a reduction of 153.94 hours compared to the Injection Team in 2023. This reduction
in total travel time highlights the importance of using the possibility of moving clients away from their
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starting weeks. When adding an extra daily route to the planning the total travel time is increased,
since the algorithm spreads the clients too much over all the time slots. Another option that is explored
is clients having the possibility to choose their time slot as they prefer. This gave a total travel time
over half a year of 785.87 hours. This is a large increase compared to freely planning clients. This can
be explained by the fact that the options for scheduling clients is less flexible. Furthermore, the option
of clients choosing two time slots and then ExpertCare deciding which one, resulted in a total travel
time over half a year of 727.27 hours. So the travel time over half a year decreased by 58.6 hours when
clients choose two time slots instead of one. Moreover, the case of not being able to move the client’s
from their starting week results also in an increase of the total travel time compared to freely planning
the clients. This is again due to the algorithm inefficiently spreading clients out over the time slots.
Lastly, we have increased the number of clients to 1400 to see the impact of this. The total travel time
over half a year was found to be 928.36 hours. This gives an increase of 244.28 hours compared to the
Injection Team in 2023. However, the average working hours for a nurse is 9.68 hours and therefore
an additional nurse is needed to decrease the workload in this instance.

7.2 Recommendations

As concluded from our results a reduction of 16.14% in the travel time can be achieved, but there
are no clear patterns found on how to cluster clients. Therefore, it is recommended for ExpertCare
to use a more advanced planning system that takes into account all clients’ parameters to improve
their planning. An option would be to implement a system where each client is scheduled on a specific
day for all their future appointments. This assignment of clients to a moment could be determined
with our model if the moments when clients can be helped are known. This is then the medium-term
planning. When a new client arrives, a model is needed that estimates the best time slots for them
based on the current client pool. This model should account for the number of existing appointments
on each day and prioritize scheduling on days when clients visit nearby locations. This would also
avoid the great deal of time window and working time violations, since the model would be able to
determine that a time slot is already full. Moreover, it is advised to consider avoiding a weekly planning
method since only 4 clients have a weekly frequency, making them the only constant appointments
every week. This means that having 5 time slots for Utrecht, could be too much in one week and
not enough in another week. This makes it also complex to derive recommendations for clustering on
a weekly basis. Instead, a monthly planning method could be considered. However, given the large
number of half-yearly clients, a half-yearly planning system may be even more effective. Moreover, the
average working hours for nurses are approximately 9.15 hours per day in our results. To reduce their
workload, it is recommended that the Injection Team increase the number of daily nurses from two
to three. This recommendation is also based on the consistent growth in the number of clients over time.

Moreover, it is advised for ExpertCare to establish their values and what they want to offer their
clients, whether they would like to give the choice to the clients or they give the clients only a few
options. From our results an indication is given on how this would change the total travel time. When
clients choose one or two time slots the total travel time over half a year is increased by 101.79 and
43.19, respectively compared to the Injection Team in 2023. Thus, it could consider letting the clients
decide their appointment. For example, a client could book a slot online which is available. This
would mean that the planners and nurses do not have to plan a client’s appointment which saves time.
However, it does considerably increase the total travel time. Yet with the growing number of clients
and the addition of more daily routes could make this option more realistic in the future. Another
option is to let clients choose multiple options and then ExpertCare decides from these option. This
is more a trade-off between client values and efficient routing. In this case it needs to be determined
for each client what options they would like for an appointment. Then based on this data an efficient
medium-term planning can be made.
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Additionally, there are several interesting topics for future research. We will discuss these in the
next section, but we will highlight two of them for the Injection Team of ExpertCare. Firstly, an
interesting topic for future research for the Injection Team of ExpertCare is to introduce more time
slots on a day. For example, three or four time slots on a day could be considered to see what exact
implications this would have for the Injection Team. Secondly, exploring the feasibility of employing
a spare nurse to manage disruptions, such as new clients during the week, could be a valuable area
of study. It would be interesting to analyze the cost implications and benefits of having such a nurse
available.

7.3 Possibilities for future research

This research is subject to certain limitations due to the defined scope and the complexity of Expert-
Care’s context. These limitations provide a foundation for future research topics. One area to explore
is a stochastic planning approach for the problem. In this case the robustness of the planning could
be tested by evaluating how flexible the schedule is when a new client arrives. For example, routes
that are more spread out might be more adaptable to new clients, as there is a higher chance that
they are close to the new client. Additionally, some clients prefer to be helped during a working day,
necessitating nurse visits to their workplace. This is not currently considered due to a lack of data
on their workplaces and occurs only occasionally. However, this option could be explored in future
research. Another limitation is that certain medication patients were left out from our client pool.
These are patients who only require care for two weeks or need care every day for a week. Including
these patients could be interesting for future research. Furthermore, at the moment the travel time
is an approximation. In the future, a better approach might consider traffic load and busy hours.
Also, the routing in our ALNS uses the Clarke and Wright heuristic to construct routes. It could
be interesting to explore other methods for routing on a day-to-day basis. Another potential topic is
introducing flexibility in the model so clients do not necessarily have the same appointment day every
week. This should first be considered to see if it is really needed by clients. Investigating the feasibility
of having a spare nurse to handle disturbances, such as new clients during the week, could be another
area of study. It would be interesting to see the cost implications and benefits of such a nurse. Finally,
our model can only handle one or two time slots for appointments on a day. It could be worthwhile to
analyze having three time slots for appointments in a day.

7.4 Practical and academic contributions

This section discusses the practical contributions of this research as well as the academic contributions
of this research.

7.4.1 Practical contributions

This thesis has several practical contributions. Firstly, this thesis performed a thorough context analy-
sis of the Injection Teams’s current situation, providing valuable insights regarding their current client
pool. It is also clear for ExpertCare what data can easily be found and what data is difficult or even
unavailable to obtain. For example, there was no easy method to acquire the frequency data of the
current client pool even though this information is crucial to have a view of how often visitations
are required over time. Additionally, data of preferences of clients is often unavailable to acquire. It
is always discussed at the first appointment when they would like to have their next appointment,
but no where it is kept track of. Additionally, a prototype algorithm is made to efficiently construct
a medium-term planning for the current client pool of ExpertCare. From this it is concluded that
due to the complex interaction of clients’ parameters no clear patterns for clustering clients is found.
Therefore, it is recommended to use a more advanced planning system to enhance their productivity.
This research shows that the proposed method of constructing a medium-term planning reduces the
total travel time and does not violate client’ time windows.
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7.4.2 Academic contributions

The academic contributions of this work are twofold. Firstly, a planning horizon of 26 weeks is used
in our research with much lower visitation frequencies of clients than seen in the literature. In the
literature, the visitation frequency is often weekly, daily or multiple daily whereas in our problem the
visitation frequency ranges from weekly to semi-annually. Therefore, the planning horizon used in
our problem is much longer than seen in the literature. Secondly, the application of an ALNS on a
pattern-based problem using schemes on a medium-term planning problem in the context of home care
is novel and has not been previously documented in the literature. The model can be generalized to
other similar problems, by adapting all the possible schemes a client can have. However, this is only
for problems that have one time slot or two time slots on a day.
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A Research design

Figure 26: Research design
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B Measurements travel time

Figure 27: Travel time measurements graph

Table 9: Travel time measurements

Time in Nedap Measured time Extra time
10 20 10
3 9 6
2 9 7
12 20 8
1 5 4
5 12 7
6 12 6
4 11 7
0 2 2
8 12 4
20 33 13
17 27 10
2 4 2
2 7 5
8 16 8
11 18 7
1 4 3
2 7 5
15 25 10
1 6 5
1 4 3

Continued on next page
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Table 9 – continued from previous page
Time in Nedap Measured time Extra time

1 4 3
2 10 8
2 4 2
15 27 12
4 12 8
0 4 4
10 17 7
1 5 4
8 21 13
2 7 5
1 8 7
3 10 7
6 10 4
12 19 7
1 20 19
4 14 10
5 17 12
8 15 7
3 8 5
9 22 13
4 12 8
0 1 1
4 9 5
7 15 8
4 8 4
1 4 3
5 10 5
5 19 14
6 14 8
3 10 7
15 17 2
7 4 -3
25 25 0
3 6 3
5 13 8
2 5 3
6 9 3
0 3 3
20 32 12
1 5 4
23 24 1
3 7 4
2 7 5
1 7 6
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C Cluster analysis

Table 10: Cluster analysis current schedule of the Injection Team

Cluster Number of
clients

Average number of
visits in half year

Monday Morning 1 54 160.54
Monday Afternoon 1 51 141.77
Monday Morning 2 19 74.69
Monday Afternoon 2 72 154.92
Tuesday Morning 1 30 117.46
Tuesday Afternoon 2 28 84.15
Tuesday Morning 2 55 126.38
Tuesday Afternoon 2 18 81.15
Wednesday Morning 1 47 93.15
Wednesday Afternoon 1 73 176.08
Wednesday Morning 2 19 76.85
Wednesday Afternoon 2 62 166.00
Thursday Morning 1 65 155.46
Thursday Afternoon 1 38 127.31
Thursday Morning 2 50 105.85
Thursday Afternoon 2 19 56.23
Friday Morning 1 65 203.31
Friday Afternoon 1 30 81.54
Friday Morning 2 56 163.69
Friday Afternoon 2 28 120.62
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D Home Health Care Routing and Scheduling literature overview
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E Pseudocode greedy heuristic

Algorithm 3a Greedy heuristic: minimize max workload
1: Sort clients by frequency
2: for each client i do
3: for each feasible scheme s in Si do
4: Score = 0
5: for each time slot t in s do
6: Score = Score + number of appointments already in t
7: end for
8: Normalize Score with number of appointments in s
9: Save Score to scheme s

10: end for
11: Randomly select a scheme among the ones with lowest Score
12: end for
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F Results Adaptive Large Neighborhood Search performance exper-
iment 1
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Figure 28: Performance of the ALNS for
the second repetition of experiment 1
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Figure 29: Performance of the ALNS for
the third repetition of experiment 1

0 2000 4000 6000 8000
Iteration

580

600

620

640

660

680

Va
lu

e

Best so far
Current

Figure 30: Performance of the ALNS for
the fourth repetition of experiment 1
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Figure 31: Performance of the ALNS for
the fifth repetition of experiment 1
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Figure 32: Performance of the destroy op-
erators for the second repetition of experi-
ment 1
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Figure 33: Performance of the destroy op-
erators for the third repetition of experiment
1
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Figure 34: Performance of the destroy op-
erators for the fourth repetition of experi-
ment 1
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Figure 35: Performance of the destroy op-
erators for the fifth repetition of experiment
1

0 2000 4000 6000 8000
Iteration

0

1000

2000

3000

4000

Sc
or

e

Random repair
Greedy repair sorted
Greedy repair unsorted

Figure 36: Performance of the repair oper-
ators for the second repetition of experiment
1
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Figure 37: Performance of the repair oper-
ators for the third repetition of experiment
1
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Figure 38: Performance of the repair oper-
ators for the fourth repetition of experiment
1
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Figure 39: Performance of the repair op-
erators for the fifth repetition of experiment
1
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G Results experiment 1

Figure 40: The average traveling hours per nurse per day for all repetitions of experiment 1

Figure 41: The average number of ap-
pointments per nurse per day for all repe-
titions of experiment 1

Figure 42: The average number of nursing
hours per nurse per day for all repetitions of
experiment 1

64



4.6 4.8 5.0 5.2 5.4 5.6
Longitude

51.8

51.9

52.0

52.1

52.2

52.3

52.4

La
tit

ud
e

Cluster 1 Morning
Cluster 1 Afternoon
Cluster 2 Morning
Cluster 2 Afternoon

Figure 43: 2 clusters for a repetition of experiment 1

Table 12: Number of clients per frequency per cluster

Cluster 1
Morning

Cluster 1
Afternoon

Cluster 2
Morning

Cluster 2
Afternoon

Frequency 1 1 0 0 0
Frequency 2 0 0 0 0
Frequency 3 1 0 0 0
Frequency 4 10 9 6 11
Frequency 6 1 1 0 0
Frequency 8 0 0 0 2
Frequency 12 9 36 33 14
Frequency 26 0 4 15 17
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Figure 44: 2 clusters for a repetition of experiment 1

Table 13: Number of clients per starting week per cluster 3 and 4

Cluster 3
Morning

Cluster 3
Afternoon

Cluster 4
Morning

Cluster 4
Afternoon

Frequency 1 1 0 0 0
Frequency 2 0 0 0 0
Frequency 3 4 0 0 0
Frequency 4 6 10 5 4
Frequency 6 0 0 0 0
Frequency 8 0 0 0 0
Frequency 12 7 4 35 44
Frequency 26 33 34 8 9
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Figure 45: 2 clusters for a repetition of experiment 1

Table 14: Number of clients per starting week per cluster 5 and 6

Cluster 5
Morning

Cluster 5
Afternoon

Cluster 6
Morning

Cluster 6
Afternoon

Frequency 1 0 1 0 0
Frequency 2 1 0 0 1
Frequency 3 1 0 0 0
Frequency 4 4 9 10 7
Frequency 6 0 0 0 0
Frequency 8 2 0 0 0
Frequency 12 20 7 9 9
Frequency 26 21 8 24 22
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Figure 46: 2 clusters for a repetition of experiment 1

Table 15: Number of clients per starting week per cluster 7 and 8

Cluster 7
Morning

Cluster 7
Afternoon

Cluster 8
Morning

Cluster 8
Afternoon

Frequency 1 0 0 1 0
Frequency 2 0 2 2 0
Frequency 3 0 0 0 1
Frequency 4 7 7 9 6
Frequency 6 0 0 0 0
Frequency 8 1 1 1 0
Frequency 12 26 10 7 19
Frequency 26 28 26 15 15
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Figure 47: 2 clusters for a repetition of experiment 1

Table 16: Number of clients per starting week per cluster 9 and 10

Cluster 9
Morning

Cluster 9
Afternoon

Cluster 10
Morning

Cluster 10
Afternoon

Frequency 1 0 0 0 0
Frequency 2 2 0 0 1
Frequency 3 0 0 1 0
Frequency 4 6 13 2 7
Frequency 6 0 0 1 0
Frequency 8 0 0 0 0
Frequency 12 21 15 31 28
Frequency 26 1 9 16 11

69



H Results other experiments
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Figure 48: Performance of the repair operator for the first repetition of experiment 3
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Figure 49: Performance of the destroy operator for the first repetition of experiment 4
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Figure 50: Performance of the repair operator for the first repetition of experiment 6
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Figure 51: The average traveling hours per nurse per day for all repetitions of experiment 2

Figure 52: The average number of ap-
pointments per nurse per day for all repe-
titions of experiment 2

Figure 53: The average number of nursing
hours per nurse per day for all repetitions of
experiment 2

Figure 54: The average traveling hours per nurse per day for all repetitions of experiment 3
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Figure 55: The average number of ap-
pointments per nurse per day for all repe-
titions of experiment 3

Figure 56: The average number of nursing
hours per nurse per day for all repetitions of
experiment 3

Figure 57: The average traveling hours per nurse per day for all repetitions of experiment 4

Figure 58: The average number of ap-
pointments per nurse per day for all repe-
titions of experiment 4

Figure 59: The average number of nursing
hours per nurse per day for all repetitions of
experiment 4
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Figure 60: The average traveling hours per nurse per day for all repetitions of experiment 5

Figure 61: The average number of ap-
pointments per nurse per day for all repe-
titions of experiment 5

Figure 62: The average number of nursing
hours per nurse per day for all repetitions of
experiment 5

Figure 63: The average traveling hours per nurse per day for all repetitions of experiment 6
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Figure 64: The average number of ap-
pointments per nurse per day for all repe-
titions of experiment 6

Figure 65: The average number of nursing
hours per nurse per day for all repetitions of
experiment 6

Figure 66: The average traveling hours per nurse per day for all repetitions of experiment 7

Figure 67: The average number of ap-
pointments per nurse per day for all repe-
titions of experiment 7

Figure 68: The average number of nursing
hours per nurse per day for all repetitions of
experiment 7
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