
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRITICAL NODES FOR FOOD 

SECURITY: DETECTING FOOD 

STORAGE FACILITIES USING 

REMOTE SENSING IMAGES 

 

EMMANUEL TOSIN SALAMI 

JULY, 2024 

SUPERVISORS: 

Dr, C, Paris 

Dr, Y, Dou 





 

 

 

 



 

CRITICAL NODES FOR FOOD 

SECURITY: DETECTING FOOD 

STORAGE FACILITIES USING 

REMOTE SENSING IMAGES  

EMMANUEL TOSIN SALAMI 

Enschede, The Netherlands, JULY 2024 

 

 
Thesis submitted to the Faculty of Geo-Information Science and Earth 

Observation of the University of Twente in partial fulfilment of the  

requirements for the degree of Master of Science in Geo-information  

Science and Earth Observation. 

Specialization: Natural Resources Management 

 

 

 

SUPERVISORS: 

Dr, C, Paris  

Dr, Y, Dou  

 

THESIS ASSESSMENT BOARD: 

Prof.Dr.ir. L.L.J.M. Willemen  

Prof. Dr. Shaohua Wang (External Examiner, Aerospace 

Information Research Institute, Chinese Academy of Sciences) 

 



   

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and 

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the 

author, and do not necessarily represent those of the faculty. 

 



i 

ABSTRACT 

The rising global population, projected to reach 9.1 billion by 2050, demands a 70% increase in food 

production. Currently, 1.3 billion tons of food are wasted annually due to post-harvest losses, particularly in 

developing countries. Despite the numerous research of silos as a food storage facility for food security, 

little has been done on the automatic detection of the silo’s structures using earth observation data. This 

study aims to enhance food security by addressing the lack of information on the spatial coverage of grain 

storage facilities, especially silos. By employing multi-resolution optical earth observation data, namely High 

Resolution (HR) Sentinel-2 satellite data and Very High Resolution (VHR) aerial images from the National 

Agricultural Imagery Program (NAIP), this research develops innovative methods for the detection and 

mapping of silos. The research explores machine learning algorithms to automatically identify the silo's 

locations leveraging on their specific properties in terms of object's size, shape, and spectral signature. This 

study focuses on the United States as a case study due to its extensive grain production and storage 

capabilities. The research integrates multiresolution earth observation data, and machine learning algorithms 

to detect silos, aiming to contribute to sustainable development goals by reducing post-harvest losses and 

informing policymaking for food security. 
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1. INTRODUCTION 

1.1. Background and Problem Statement 

Addressing the food requirements of an exponentially growing global population is becoming a significant 

concern for humanity. According to FAO, (2009), the global population will increase by 34% with about 

9.1 billion people by 2050, and food production must rise by 70% to suit the demands of such a big 

population. Notwithstanding this circumstance, 1.3 billion tons of food are wasted globally each year, and 

48 million people can be fed each year around the world if these losses are reduced (International Institute 

of Information Technology, 2016). This seems difficult to achieve because of post-harvesting losses 

experienced globally. One main contributor to food insecurity particularly in Africa is post-harvest losses 

(Tefera, 2012a). Throughout every stage of cultivation and after-harvest, encompassing reaping, managing, 

storing, processing, marketing, and final distribution, there is a wide range of both quantitative and 

qualitative food wastage (losses), which vary in magnitude (Prusky, 2011). Food storage facilities are 

identified as "critical nodes" in the food supply chain. These nodes are critical in reducing food wastage and 

enhancing food security, especially in regions prone to post-harvest losses (Rosalia et al, 2019). In various 

parts of the world, post-harvest losses have a notable impact and result in substantial economic losses. By 

decreasing post-harvest losses, it becomes probable to attain sustainability by balancing the economic, social, 

and environmental aspects (Raut et al., 2018). In 2015, the United Nations incorporated the reduction of 

harvest and after-harvest losses as a Sustainable Millennium Development Goal as established in SDG 12 

target 12.3, this inclusion has sparked greater interest among researchers and policymakers to address these 

losses, aiming to ensure food security (Arends-Kuenning et al., 2022). 

Numerous studies have emphasized the importance of improving storage facilities to decrease postharvest 

losses (Tefera, 2012b). According to Kumar & Kalita, (2017) the absence of proper storage techniques in 

developing countries (e.g., Nigeria) can result in as much as 50% to 60% losses of cereal grains during the 

storage phase due to technical inefficiencies. By providing suitable storage conditions, farmers can mitigate 

the risks of pests, insects, rodents, and fungal infestations that can cause spoilage and deterioration of stored 

crops (Befikadu,2018). In China, using steel silos has the potential to enhance the rice supply, save land, 

fertilizer, and water, lower carbon emissions, and meet the requirements of approximately 1.39 million 

people (Luo et al., 2021.). Effective storage methods, such as the usage of metal silos can help maintain the 

quality and nutritional value of the harvested crops for longer durations (Tefera et al., 2011). 

When referring to key points or locations relating to maintaining and improving food security, "critical 

nodes" are important as they help prevent the breakdown of stability and efficiency within the supply chain 

in the distribution and storage of food. The storage facilities, such as silos, are particularly critical because 

they are vital in reducing post-harvest losses and ensuring the constant, sustainable availability of food 

(Sartori et al, 2015). However, there is limited knowledge regarding the spatial location and coverage of these 

storage facilities, leading to a missed opportunity in creating effective food security policies. According to 

(Grain Silos and Storage System Global Market Report, 2023), North America is the largest region with 

grain silos as of 2022. Other regions include Asia-Pacific, South America, Western Europe, Eastern Europe, 

Middle East, and Africa. The United States topped the list with the most silos, follows by China and Brazil, 

(Chen et al., 2022). However, there is no information of the intensive use of this storage facility and its 

database in Africa and some other developed countries. Considering the present lack of concrete 

information regarding the spatial coverage and capacity of food storage facilities (silos), it is crucial to initiate 

thorough research that validates and addresses this critical gap. This investigation aims to bring out 

information relating to the spatial distribution and coverage of these critical nodes by focusing on the 
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detection and mapping of these facilities using advanced remote sensing technologies. Such an effort is key 

in understanding and addressing the gaps within the global food supply chain, particularly in areas where 

data on these facilities are minimal or non-existent.  

This study introduces a new approach to identify and analyse these critical nodes using earth observation 

data, including Sentinel-2 and Very High-resolution Imagery (VHR). Because silos are circular in shape and 

can be misinterpreted to other features on ground (such as oil tanks), focus of this research will be on pixel 

base image analysis, where the reflectance value of the pixel will be taken in consideration to provide a better 

result in delineating silos. It will also include environmental features, taking into consideration the 

surrounding croplands which could influence the location of silos for storage facilities.  

The research will focus on The United States of America (USA) as a case study due to following reasons. 

First, the USA is one of the top suppliers of grains in the world with an estimation of about 7,400,678 stocks 

(i.e., large storage of grains measure in bushels) of corn, 108,769 stocks of sorghum, 42,909 stocks of oats, 

88,722 stocks of barley, 945918 stocks of wheat, and 1,686,632 stocks of soybeans as of March 2023 (United 

States Department of Agriculture (USDA), 2023).Second, with approximately 13,580 on-farm and 

11,822,820 off-farm storage facilities (silos) strategically distributed across the USA for storing these 

enormous quantities of grains, the United States stands as an ideal location for this research. Also, this rich 

resource landscape provides a unique opportunity to gain deeper insight into the spatial proximity of crop 

farms to each silo. Such insight helps conduct meaningful spatial analyses. The investigation primarily 

focuses on the United States due to its rich availability of data, which is essential for assessing the feasibility 

of the study. Recognizing the parallel challenges in developing countries, particularly in regions with 

significant food insecurity, it is relevant to note that these areas often feature grain storage silos similar to 

those in the U.S. This similarity provides a critical opportunity to apply findings from the U.S. context to 

enhance silo efficiency in developing regions. By doing so, the study can contribute to strategies that improve 

food storage and security in environments that are markedly different yet functionally comparable to the 

study area. 

Remote sensing is a valuable tool for enhancing food security, but there is a noticeable shortage of research 

focused on utilizing remote sensing imagery and techniques for silo detection. While most research 

concentrates on aspects such as crop extent, yield, and recognizing crop conditions, there is currently limited 

attention given to post-harvest estimation which can be improved using silos. However, there have been 

some studies conducted on the detection of circular tanks, which share similarities with silos. One of the 

studies was conducted by Tadros et al., (2020). In this study, the authors initially used circular detection 

algorithms for identifying tanks but faced issues with false detections. To address this, they implemented 

clustering algorithms and acknowledged the method's limitations, particularly in recall rate. They further 

concluded that further research is needed to improve accuracy and reliability in tank detection. 

 Another study in this context was conducted by (Wang et al., 2018). The research introduces a new method 

for detecting oil tanks using a Goal-driven knowledge saliency model, incorporating circular feature maps 

to improve salience. The authors used a boosting classifier to generate a global saliency map, refined with 

initial saliency results. Xia et al., (2018) also gave important research on oil tank detection. Here the authors 

offered an innovative approach for detecting circular oil tanks in high-resolution remote sensing images 

using deep learning. They used the Selective Search algorithm to identify targets and trained the CaffeNet 

network within the deep learning Caffe framework as a feature removal classifier. The method successfully 

identified and marked oil tanks, showing effectiveness in various backgrounds with improved detection and 

reduced false alarms. Tadros et al., (2020) use salient object extraction and oil tank shape classification 

method to detect circular-shaped object (oil tank) in low resolution satellite images. Zalpour et al., (2020) 

present an innovative approach to detect oil tanks using deep features, merging convolutional neural 

network and histogram of oriented gradients to achieve superior detection accuracy. Although these 

methods yield effective results in detecting oil tanks, they must solve other challenges when applied to silo 

detection. 
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Adapting methods designed for detecting oil tanks to silo detection presents several real-world challenges. 

First, unlike oil tanks, silos are often found amid complex backgrounds, making accurate detection harder.  

In the analysis of agricultural and industrial landscapes using remote sensing techniques, the characterization 

of various storage facilities, such as silos and oil tanks, is critical. Silos, primarily used for storing bulk 

materials like grains, generally exhibit larger dimensions, typically ranging from 10 to 30 meters in diameter. 

In contrast, oil tanks, which are utilized for the storage of liquid substances, often vary in size from 5 to 25 

meters, reflecting their construction to accommodate different volumes and pressure requirements(Vogt & 

Gerding, 2017). 

Due to the varying sizes and resolutions of silos, utilizing the oil tank detection method can result to 

inaccuracy of the outcome of detected silos. Balancing false alarms and missed detections is crucial to 

prevent silos to be misclassified as oil tanks or other circular objects. Overcoming these obstacles demands 

careful dataset curation, model tuning, and real-world testing. While metal silos bear a circular shape and 

possess structural similarities with oil tanks, it is crucial to recognize that they serve distinct purposes. 

Therefore, to accurately map silos, the contextual analysis of the surrounding areas is important. That is, to 

identify built-up areas within the large agricultural land areas. This calls for a more practical approach to 

balance the high-resolution imagery demand and large spatial extent.  

According to Tong et al., (2023) high-quality satellite imageries such as google and quick bird offer detailed 

spatial data, which is crucial for categorizing land cover, especially when analysing man-made structures like 

silos, buildings, and parking lots around agricultural environments. This research will create a practical 

approach and workflow to locate silos by first employing Sentinel 2 imagery to identify the target built-up 

areas, and then using Random Forest and Maximum likelihood classifier on high-resolution satellite imagery 

to map silos within these areas. 

 

The research will follow two steps in detecting silos from remote sensing images. The first one is using the 

Unfusion Sentinel- 2 approach, which classifies land cover on the bases of their endmember with focus on 

the urban band. The second step is using machine learning techniques such as Random Forest and 

Maximum Likelihood Classifier to detect silos using VHR for a more accurate delineation of silos; and 

identifying which agricultural cropland is closer to silos location. The advantage of machine learning includes 

its accuracy, scalability in terms of its application to large data, its adaptivity to different environmental 

condition, and reduction of false positives. Using ML algorithms and geospatial analysis in detecting these 

silos will provide critical insights for stakeholders to make informed decisions in addressing food insecurity.  

The overall aim of the suggested framework in this study is to support spatial identification of silos in other 

food insecure regions. Although the United States is the case study of the research, the real impact of the 

thesis will help understanding the availability and distribution of storage facilities around agricultural 

locations of over food-insecure regions. This will help in minimizing food wastage and enhancing food 

security.  

 

1.2. Research Objectives 

The research objectives are: 

a) To develop an approach that can be used to automatically identify built-up areas within 

agricultural land that may include silos, using high spatial resolution Sentinel-2 data. 
b) To determine the presence of silos within the identified built-up areas using Very High-

Resolution (VHR) images at the local scale.  
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1.3. Research Questions 

The research questions are: 

a) What is the optimal season to detect built-up areas located in agricultural regions that may 

have silos using high spatial resolution Sentinel-2 data? 

b) Which unsupervised approach can be used for automatically detecting built-up areas located 

in agricultural regions? 

c) What is the optimal machine learning classification model to determine the presence of silos 

within the identified built-up areas using VHR images? 
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2. DATA AND METHOD 

2.1. Study Area. 

The study area for this research is in the United States of America. This is because of its vast land and varied 

topography which presents a diverse agricultural field. Within this broad landscape, the Midwest region 

stands out as the country's grain belt, producing a huge portion of America's staple crops. At the heart of 

this study is a detailed exploration of grain silos within Iowa, Minnesota, and Illinois three pivotal states in 

the Midwest known for their agricultural output. The choice of the U.S. as the primary location for this 

research is influenced by the extensive use of silos throughout the nation. These structures are indispensable 

for the post-harvest storage of grain and other agricultural commodities, allowing large volumes of produce 

to be securely stored until they are either shipped to markets or used as seeds for the next growing season. 

The presence of silos is not just a testament to the U.S.'s ability to manage large-scale agricultural production; 

it also offers a wealth of opportunities to investigate various storage methods, preservation techniques, and 

the logistical aspects of modern agriculture. Focusing on Iowa, Minnesota, and Illinois, the study aims to 

delve into the agricultural prominence of these regions and the critical role that grain silos play there.   

 
Figure 1. Map of the study area showing the main areas of focus in the United States of America which are Minnesota, Iowa, and 

Illinois.  
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Table 1. The population, area in square kilometer (sq km), proportion of agricultural areas, and main crops 

of the study area reported per state. This shows how presence of these crops influences the abundance of 

silos in the study area.  

State Population 

(2023) 

Area (sq 

km) 

Prop. of Agric. 

Areas 

Main Crops  

Iowa 3,203,345 145,746 85% Corn, Soybeans 

Illinois 12,477,595 143,742 75% Corn, Soybeans 

Minnesota 5,722,897 206,175 51% Soybeans, Corn, Wheat 

2.2. Overall Methodology 

This study utilized and integrated different methods and dataset to detect silos across-scales. This includes 

using Sentinel-2, a 10-meter resolution image at large scale to identify potential target areas for silos with an 

automatic detection; and machine learning method on very high-resolution images to detect silos at a farm 

and county level.  

The image below shows the workflow of the research methodology. Two general steps are taken. The 

purpose of the first step is to detect built-up areas through Sentinel-2 imagery across the 37 selected areas, 

and on three counties (Mower, Story, and Dewitt) outside the 37 areas.  To do so, first, the 37 areas were 

used for determining the qualitative assessment of the best season to detect built-up area based on band 

corresponding to endmembers of urban to compare which season silos are more visible. Silos in the area 

were delineated and used to assess the quantitative performance of this season. The next step involves the 

use of RF and MLC to detect silos on these areas after built-up areas have been identified. RF and MLC 

classifiers were evaluated and compared on National Agriculture Imagery Program (NAIP) imagery to 

generate a silo location map. Using the NAIP data as training and testing data for the algorithms. 

Figure 2. Research methodological flowchart.  
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The spatial levels used in this research are the farm and county level. The 37 selected areas are all on farm 

level. The counties used are Mower in Minnesota, Story in Iowa, and Dewitt in Illinois. Both identifying of 

built-up areas and detection of silos were performed on the farm and county level. 

 
Figure 3. Research workflow. 

 

 

2.3. Dataset  

The study utilizes Sentinel-2 satellite data, VHR images and NAIP aerial images, the silo’s location data 

along with GIS boundary data from Iowa, Minnesota, and Illinois. These data include temporal and spatial 

details essential for training and validating the silos detection results obtained in the considered study area. 

All selected data sets are freely accessible and consistent over time, with no personal data included. 

 

To accurately establish the farm sites for both the unmixing and subsequent classification processes utilizing 

Random Forest (RF) and Maximum Likelihood Classification (MLC) methods, a 200-meter buffer was 

established around each silo identification number in the whole study area, using the NAIP imagery.   The 

delineated silo sample of all three states was used here. This creates a loop around all the silos in GEE, 

where 37 random areas are selected. This careful integration of geospatial buffers and identification markers 

facilitated the selection of 37 optimal locations for detailed classification, thereby enhancing the precision 

and efficacy of the study's analytical outcomes. The image was also used for the unmixing built-up detection. 

The images spanned from January 1, 2019, to August 30, 2023, a period chosen for its stability in providing 

consistent classification results irrespective of the variations in the training sample sizes. This approach 

generated a focused training set that enhanced the learning process of the algorithm, using high-resolution 

imagery from the NAIP as a base. 
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Figure 4. NAIP image used for silo detection. 

 

These show 20 out of the 37 randomly selected NAIP images used for maximum likelihood and random 

forest classification for mapping the location of silos. The spatial resolution of the NAIP image covers the 

entire United States. These areas are also used for qualitative and quantitative evaluation of the optimal 

season for the automatic detection of built-up lands.  

 

 
 

A: Example of isolated silos B: Examples of non-isolated silos 

Figure 5. Image of isolated and non-isolated silos 

Silos have different spatial configurations too. As shown in Figure 5, some silos are isolated on a farm (A), 

while others can form complex topological networks that integrate storage, processing, and distribution of 

grain and other farm produce (B).  
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Figure 6. VHR images of Mower County (Minnesota), Story County (Iowa), and Dewitt County (Illinois) 

 

These (Figure 6) are the 3 county areas outside the 37 areas, where the detection of built-up was made in 

county level.   

 

Figure 7:  The spatial distribution of the training region. This also contain 186 delineated silo sample in the 37 regions. 
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Figure 6 illustrates the geographical locations of some training images used in this research. It consists of 

NAIP images of the silo location. This images also serves as a raster layer for training and testing the 

classification. Additionally, the figure displays the delineated silo samples which were also used for 

quantitative assessment of best season for detecting built-up areas. The delineated silos not only served to 

establish a 20-meter buffer around the agricultural area to generate the 37 random areas, but also enhanced 

the focus on local silos identified through RF and MLC.  

 

Table 2. Overview of the data sources used in the considered study and their properties.  

Data 

Source 

Type of 

Data 

Spatial 

Resolution 

Temporal 

Resolution 

Data Availability Use in study 

Sentinel 2 EO 10m. 5 days.  Free access. 

Google Earth 

Engine  

Create built-up 

location in agricultural 

land 

Iowa Select 

County 

Boundary  

GIS N/A N/A Iowa County Boundaries 

| Iowa County 

Boundaries | geodata  

Training and testing 

area selection in Iowa 

State 

Minnesota 

Select 

County 

Boundary 

GIS N/A N/A County Boundaries, 

Minnesota - Resources - 

Minnesota Geospatial 

Commons (mn.gov) 

Training and testing 

area selection in 

Minnesota State 

Illinios 

Selected 

County 

Boundary 

GIS N/A N/A Illinois State Boundary | 

clearinghouse.isgs.illinois.e

du 

Training and testing 

area selection in 

Illinois State 

National 

Agricultural 

Imagery 

Program 

(NAIP) 

Satellite 

Image 

EO 1.2m N/A QGIS Use to generate 

classification maps 

United State 

Department 

of Agric. 

(USDA) 

Cropland 

Data  

EO 30m 16 days https://developers.google

.com/earth-

engine/datasets/catalog/

USDA_NASS_CDL 

Use to determine 

cropland proximity to 

silo location 

Training  

Data 

(Manually 

Delineated 

Data of All 

Class) 

EO 1m N/A QGIS and National 

agriculture imagery 

program 

https://developers.google

.com/earth-

engine/datasets/catalog/

USDA_NAIP_DOQQ 

Training and testing 

model for 

classification and 

accuracy assessment  

NLCD 

DATA 

EO 30m N/A https://www.mrlc.gov/da

ta 

Assessing the built-up 

area detection on 

county level 

https://geodata.iowa.gov/datasets/8a1c2d500d8847d79aa47d45d44eb133_0/explore
https://geodata.iowa.gov/datasets/8a1c2d500d8847d79aa47d45d44eb133_0/explore
https://geodata.iowa.gov/datasets/8a1c2d500d8847d79aa47d45d44eb133_0/explore
https://gisdata.mn.gov/dataset/bdry-counties-in-minnesota
https://gisdata.mn.gov/dataset/bdry-counties-in-minnesota
https://gisdata.mn.gov/dataset/bdry-counties-in-minnesota
https://gisdata.mn.gov/dataset/bdry-counties-in-minnesota
https://clearinghouse.isgs.illinois.edu/data/reference/illinois-state-boundary
https://clearinghouse.isgs.illinois.edu/data/reference/illinois-state-boundary
https://clearinghouse.isgs.illinois.edu/data/reference/illinois-state-boundary
https://developers.google.com/earth-engine/datasets/catalog/USDA_NASS_CDL
https://developers.google.com/earth-engine/datasets/catalog/USDA_NASS_CDL
https://developers.google.com/earth-engine/datasets/catalog/USDA_NASS_CDL
https://developers.google.com/earth-engine/datasets/catalog/USDA_NASS_CDL
https://developers.google.com/earth-engine/datasets/catalog/USDA_NAIP_DOQQ
https://developers.google.com/earth-engine/datasets/catalog/USDA_NAIP_DOQQ
https://developers.google.com/earth-engine/datasets/catalog/USDA_NAIP_DOQQ
https://developers.google.com/earth-engine/datasets/catalog/USDA_NAIP_DOQQ
https://www.mrlc.gov/data
https://www.mrlc.gov/data
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2.3.1. Earth Observation Data Preparation 

Both Sentinel 2 and NAIP Imagery were used in this step. The Sentinel-2 data selection was made to reduce 

cloud coverage to less than 5% through cloud masking, which minimizes presence of cloud in the image. 

The Sentinel-2 was used to achieve the first objective of identify the target built-up area. The NAIP was 

acquired from GEE catalogue. There is also selection of the NAIP by date from 2019 till August 30, 2023, 

which makes its temporally significant for this study. The NAIP was included to achieve the second 

objective which is to determine the presence of silos within the identified built-up area. The training data of 

the silo location was manually delineated and derived by leveraging VHR data.  

2.3.2. Sample Data  

A total of 186 silos were delineated across 37 selected areas spanning the study region: 65 silos were 

identified in Minnesota, 76 in Iowa, and 45 in Illinois. The delineation process involved the use of high-

resolution aerial imagery sourced from the NAIP and QGIS to accurately identify and outline each silo.  

2.4. Specific methods 

2.4.1. Season selection for detecting built-up areas in Sentinel-2 images. 

To ascertain the best season for the accurate detection of silos and areas probable to be silos utilizing 

Sentinel-2 images, this study conducted a qualitative and quantitative assessment to compare composite 

satellite images from various months. The study focusses on thirty-seven (37) randomly selected areas within 

the study area. To achieve the qualitative assessment, the application of the unmixing was done for four (4) 

different seasons, with focus only on the urban (built-up) class, while using the threshold of 0.75. The 

manually delineated silo raster was created for each of the 37 randomly selected areas and intersected with 

the unmixing (urban) result. This is conducted to determine the best season that provides a good image 

where the delineated silos fall on the urban unmixing class. Also, the quantitative assessment was achieved 

by creating a binary confusion matrix which summarizes the results obtained per season in the whole area. 

The aim is to identify a period where artificial surfaces, such as metal silos, are most discernible and 

distinguishable from natural landscapes. This is important because areas covered by vegetation provide a 

better contrast than bare soil which can be confused with artificial surfaces. The most effective seasonal 

timing for the EO data can sharply improve the results obtained when applying the unmixing technique, 

thus effectively and for ensuring a higher accuracy in detecting areas characterized by artificial structures 

which are probable to silos. This analysis is essential, as seasonal changes can significantly affect the visibility 

of the artificial surfaces due to agricultural activities, and vegetation cover which can appear to be man-made 

structures in leave off or dry season. The chosen season shows the optimal lighting conditions, thus 

minimizing the risk of misclassification and enhancing the reliability of remote sensing data for the detection 

and mapping of silo structures. 
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          Figure 8: Qualitative example of the four seasonal Sentinel-2 composites 

          for a specific silo’s location. 

2.4.2. Built-up area detection 

UnFuSen2 stands for "Unmixing-based Sentinel-2 Image Fusion" (Xu & Somers, 2021), designed to enhance 

Sentinel-2 imagery by merging high spatial detail with rich spectral data. This technique generates images 

with superior spatial and spectral resolution, useful for identifying built-up land.  The unmixing was first 

applied on farm level (37 selected areas) to detect the built-up area in a local scale. It was also applied to the 

county level outside the 37 farm areas, to get a view of the research performance in a larger scale, and to 

achieve the generalization of the method and its applicability in other geographical location, demonstrating 

its utility for scaling up in similar studies. This method was implemented using Google Earth Engine on 

Sentinel 2 image, which allows efficient processing and analysis. Validation was conducted by comparing 

the unmixing results with ground truth images from the NAIP dataset and manually delineated silo training 

samples. The Unmixing methodology breakdown includes. 

 

• Endmember Identification: The process begins by using spectral matching to identify unique 

features (endmembers) like silos in high-resolution bands of Sentinel-2 images. Absolute Spectral 

Difference (ASD) calculations help set a spectral uniqueness threshold, aiding feature 

differentiation. 

• Mixing Equations Construction: Next, mixing equations connect the reflectance of 20-meter pixels 

to corresponding 10-meter pixels. This involves identifying similar coarse pixels through a 

geographical search, using ASD to ensure accuracy in feature matching. 

• Constraints Application: Constraints are applied to the mixing equations to maintain realistic 

reflectance values. These include an Equality Constraint that models the target pixel's reflectance 

as a weighted average and a Regression Model Constraint that ensures spectral realism. 

• Solution Refinement: The final step involves refining the reflectance values using a constrained 

least squares solution, ensuring accuracy for practical applications like silo detection. 
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The formular for this assessment;  

 

 
Where True positive is number of silo pixels correctly identified as urban, False Positives is 

number of silo which are not classified as urban.  

 

 

 
Figure 9. Source: (Xu & Somers, 2021). The Unfusen2 application breakdown. 

 

The image shows step-by-step process to construct the set of equations needed to mix a designated 20-

meter pixel from Sentinel-2 imagery (referred to as the target coarse pixel) involves: (I) identifying 

comparable coarse pixels through spectral comparison; (II) creating the set of mixing equations using the 

identified similar coarse pixels. 

 

2.4.3. Silo Detection at Local Scale 

 

After the areas probable to be silos have been identified, silos were detected on a farm level and county 

level for accurate delineated from other classes using the NAIP imagery. For this purpose, two methods 

were used: the Maximum Likelihood Classifier and Random Forest.  
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2.4.4. Maximum Likelihood Classification 

The Maximum Likelihood Classifier was used for this objective. The Maximum Likelihood Classifier is a 

statistical technique used in landcover classification. It predicts each pixel's class by estimating chances based 

on the pixel's features and comparing them to known categories (Lillesand et al. 2014). It is effective for 

categorizing land types in remote sensing images, using a normal distribution model for accuracy (Ali et al., 

2018). Pixels are allocated to the class with the highest likelihood, making it crucial to choose training 

samples so that each training class adheres to a Gaussian distribution (Mishra et al., 2017). 

The study employs Maximum Likelihood Classification (MLC) to identify silos through land cover 

classification within a research area divided into four primary categories: Silo, Building, Vegetation, and Bare 

Land. This technique refines the accuracy of land cover classification. Utilizing the robust dataset from the 

National Agricultural Imagery Program (NAIP), the analysis focused on the 37 areas initially examined, 

selected randomly to encompass diverse land cover features critical for assessing the algorithm’s 

performance in complex environments. Unlike unmixing methods that focus solely on urban bands, MLC 

considers all surrounding features of a silo, enhancing the differentiation from adjacent areas.  

 

The training and subsequent testing of the model were carried out on the NAIP dataset using the Envi GIS 

application, where only polygon data were used to train the MLC algorithm. For sampling, a stratified 

random sampling method was used to ensure a comprehensive and representative selection of data points 

across all categories, thereby enhancing the reliability and validity of the classification results. Although MLC 

is a good method for feature detection and land cover classification, it also has limitations. A key limitation 

of the MLC is its assumption that the statistical distribution of each class in feature space follows a normal 

(Gaussian) distribution. This assumption often does not hold true in real-world scenarios, leading to 

inaccuracies in classification, especially in heterogeneous or complex landscapes where data distributions 

can significantly deviate from the normal. 

The following equation is used to calculate Maximum Likelihood Classifier: 

 

A data point x is assigned to class ωi if for all j ≠ i: P(x∣ωi)>P(x∣ωj) 

 

Where P(x∣ωi) ∼ N (μi, Ci), x is the data point being classified, ωi is the Class label I, P(x∣ωi) is the conditional 

probability of data point x given that it belongs to class ωi, N(μi,Ci) is the normal (Gaussian) distribution of 

class ωi, characterized by mean μi and covariance matrix Ci. μi is the mean vector of class ωi. Ci is the 

covariance matrix of class ωi. 

This rule states that a data point x is classified into the class ωi for which the probability P(x∣ωi), under the 

Gaussian distribution with mean μi and covariance matrix Ci, is highest compared to all other classes (Guan, 

Y. 2010). MLC will be applied to 37 farm area. 

 

 

2.4.5. Random Forest Classification 

 

This study utilizes Random Forest Classifier (RF) for silo detection. The Random Forest classifier, used in 

landcover classification, is a robust machine learning technique. It builds multiple decision trees, using 

different subsets of data, and merges their results for improved accuracy and control over overfitting (Pal, 

2005). Each tree in the forest votes for a class, and the majority vote decides the final class. This method 

effectively handles large datasets with multiple features, making it ideal for classifying diverse landcover 

types based on satellite or aerial imagery. 

For this study, the NAIP with no cloud interference was selected. The imagery, characterized by high-

resolution visuals, was specifically chosen to enhance silo cover estimation accuracy. These images were 

accessed through the NAIP catalogue in GEE. Additionally, to enhance the precision and reliability of the 
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landcover analysis, a 2021 agricultural land cover map with a 30-meter spatial resolution was utilized. This 

map plays an essential role in accurately identifying various landcover types situated near the silos, ensuring 

a more comprehensive understanding of the surrounding agricultural landscape. Four landcover classes will 

be put into consideration in this analysis which are: Silo, Building, Vegetation and Bare land. 

The random forest approach involves creating an ensemble of trees, thereby enhancing classification 

accuracy and robustness. Each tree in the random forest is constructed using a randomly selected subset of 

the training data (bootstrap sample) and a random subset of features. The final classification of a data point 

is determined by the majority vote across all trees in the forest, which aggregates their individual predictions. 

This ensemble decision process can be mathematically expressed as: 

 

RF(x)=mode{T1(x), T2(x),…,Tn(x)} 

 

 

 

Here, RF(x) represents the final classification decision by the random forest for a data point x, Ti(x) denotes 

the classification output of the i-th decision tree, and n is the total number of trees in the forest. Each tree 

contributes a class prediction based on its constructed decision rules, tailored to the specific subset of 

features and data it was trained on. Rf will be applied to 37 farm area and 3 counties. 

 

2.4.6. Comparison of MLC and RF results based on accuracy. 

 

Both the results obtained from Maximum Likelihood Classifier and Random Forest Classifier were 

compared based on accuracy to determine which is better for delineating silos from other artificial structures. 

Misclassification of class will lead to a higher false positive. 

 

The formular used to calculate the overall accuracy of RF and MLC per area is. 

 

Where Sum of Diagonal Elements (True Positives); are the correctly classified instances for each class in the 

confusion matrix. Each element on the diagonal of the confusion matrix represents the number of times a 

particular class was correctly predicted. 

Total Number of Pixels (All Elements); are total number of instances or pixels considered in the 

classification, which includes both correctly and incorrectly classified instances. It is the sum of all the 

elements in the confusion matrix. 

  

The individual class accuracy was calculated using the formular.  

 

Where Class ί; represents the accuracy metric for a specific class ί. 

True Positives for Class ί; are the instances correctly classified as class ί. It is the number of times class ί 

was correctly identified by the classification model. 

Total Ground Truth for Class ί; represent the total number of actual instances of class ί in the dataset, 

which includes both correctly and incorrectly classified instances. 
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3. RESULTS 

3.1. Selection of the best season 

The unmixing was used for mapping built-up areas within agricultural land through downscaling the high 

spatial resolution of Sentinel-2 images.  

 

Figure 10: The unmixing output of 4 areas amongst the 37 areas used for qualitative evaluation of the best season through the 

unfunsen2 approach. 

 

 
         Figure 11: Box plot showing the accuracy distribution of the 37 areas per season 
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The Spring season was the best for applying the unmixing based on the qualitative and quantitative 

assessment of the 37 local areas. It was the best season because of the improved visibility and image quality 

during the time, and difference vegetation species can be distinguished easily from bare and other built-up 

land. It was used for further analysis in this research.  

3.2. Mapping the target built-up areas in agricultural regions 

In the next step, unmixing was applied at county level. The Dewitt County in Illinois, the Story County of 

Iowa, and the Mower County of Minnesota were selected for this analysis. 

 
Figure 12: the unmixing results for Dewitt County of Illinois. 

The unmixing analysis for DeWitt County, Illinois, as depicted in the provided map, demonstrates how built 

-up land is identified in a county level. This unmixing result is outside the 37-farm area. The central map 

highlights the built-up (red areas) interspersed with agricultural fields, while detailed insets offer a closer 

look at specific regions where built-up areas and silos (black) are identified. Out of 48 known silos, the 

technique successfully identified 33, achieving an accuracy rate of approximately 68.75%, though 15 silos 

were missed. This study indicates that while the UNFUSEN2 technique is promising for rural built-up area 

detection, further refinement and integration was done through MLC and RF to improve its accuracy and 

reliability.  

 

Table 3 shows the total number of silos that are correctly and incorrectly detected by the unmixing as urban in the 3 

counties (one per state)  

County Number Of Silos in Built-Up 

Areas 
 

Correct 

detection  

Missed 

detection 
 

Dewitt (Illinois) 33 15 

Mower (Minnesota) 55 29 

Story (Iowa) 47 30 
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Figure 13: The unmixing results for Mower County of Minnesota.  

 
Figure 14: Shows the delineated Silo unmixing results for Story County of Iowa. 

 

The Mower County located in Minnesota, and Story County, Iowa are the two selected counties where the 

unmixing was performed to identify built-up areas within agricultural lands with a specific focus on locating 

silos which are outside the 37 area. For Mower County, out of the 84 known silos in the area, the method 

successfully identified 55, yielding an accuracy rate of approximately 65.5%. However, 29 silos were not 

correctly identified, highlighting a significant limitation in the unmixing process. Story county analyzed 77 

silos; 47 were correctly identified within built-up areas, whereas 30 were not.  Additionally, in relation to 

Dewitt County, the detected urban areas also extend erroneously into vegetative regions, indicating a spectral 



CRITICAL NODES FOR FOOD SECURITY: DETECTING FOOD STORAGE FACILITIES USING REMOTE SENSING IMAGES 

19 

overlap that affects the accuracy of the unmixing results. This misclassification suggests that the spectral 

signatures of built-up areas and certain types of vegetation are not sufficiently distinct in Sentinel-2, which 

necessitate further refinement of the unmixing algorithm.  

 
Figure 15: The comparison between the NLCD map and the unmixing result of Dewitt County, Illinois 

 

Figure 15 to 17 show the comparison of unmixing results from three counties with the existing National 

Land Cover Database (NLCD) map. The NLCD map provides a comprehensive overview of major 

infrastructural elements such as roads and buildings, highlighting significant urban centers and 

transportation networks. However, the unmixing results, indicated in red, offer a similar granular view by 

detecting smaller and more dispersed built-up areas within agricultural lands, which the NLCD map also 

captures. This unmixing technique is crucial for identifying subtle patterns of urbanization and infrastructure 

development in rural settings. The added value of the unmixing results to the NLCD includes; its ability to 

distinguish between mixed pixels, identify more detailed land cover classes, and provide up-to-date temporal 

snapshots, making it particularly beneficial for specialized applications such as built-up area detection which 

can be applied to rural development and agricultural land management. This results in a more 

comprehensive understanding of land cover changes and patterns compared to the coarser resolution and 

fixed classes of the NLCD. 

 
Figure 16: The comparison between the nlcd map and the unmixing result of Mower County, Minnesota 
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Figure 17: The comparison between the NLCD map and the unmixing result of Story County, Iowa. 

 

The Unmixing was further applied to 37 random selected areas. These selected areas or the results of 

unmixing from these selected areas (built-up areas) are used as input for a refined classification using random 

forest and maximum likelihood classifier to disentangle silos from built-up areas.  

 
Figure 18: Six (6) out of the 37 selected unmixing areas for random forest and maximum likelihood classification. 



CRITICAL NODES FOR FOOD SECURITY: DETECTING FOOD STORAGE FACILITIES USING REMOTE SENSING IMAGES 

21 

    
Figure 19: Six (6) out of the 37 selected unmixing areas for random forest and maximum likelihood classification. 

 
Figure 20: Six (6) out of the 37 selected unmixing areas for random forest and maximum likelihood classification. 

 

Figure 18 through 20 show the results of the selected 37 areas (farm level)  from the 200 meter buffer. This is displayed in 

a rectangular format and its different from the unmixing county level result.  
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Table 4: show the unmixing accuracy for  all 37 areas. 

S/N True 

Positives 

False 

Positives 

Accuracy  

1 249 241 50,82% 

2 371 521 41,59% 

3 116 148 43,94% 

4 218 125 63,56% 

5 302 422 41,71% 

6 513 1255 29,02% 

7 264 428 38,15% 

8 468 483 49,21% 

9 1104 31 97,27% 

10 1036 105 90,80% 

11 268 772 25,77% 

12 82 223 26,89% 

13 178 18 90,82% 

14 293 828 26,14% 

15 165 153 51,89% 

16 532 187 73,99% 

17 122 129 48,61% 

18 83 65 56,08% 

19 433 306 58,59% 

20 79 92 46,20% 

21 121 170 41,58% 

22 170 89 65,64% 

23 9 220 3,93% 

24 64 39 62,14% 

25 241 469 33,94% 

26 305 20 93,85% 

27 72 549 11,59% 

28 354 904 28,14% 

29 590 323 64,62% 

30 21 540 3,74% 

31 160 384 29,41% 

32 13 166 7,26% 

33 473 154 75,44% 

34 1098 747 59,51% 

35 539 490 52,38% 

36 442 18 96,09% 

37 838 1123 42,73% 
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3.3. Refining detection results from the unmixing approach by using Very High-Resolution imagery 
to identify silos in built-up areas. 

3.3.1. Maximum Likelihood Classification 

Figure 21 to 25 show the results of MLC as well as the geographical location of some of the testing regions.  

 
Figure 21: shows the Maximum likelihood classification and VHR image for the training 1. 

 

 
Figure 22: shows the Maximum likelihood classification and VHR image for training region 2. 

 

 
Figure 23: Maximum likelihood classification for testing region 1 and 2. 
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Figure 24: Maximum likelihood classification for testing region 3 and 4 

 

Figures 24 to 26 present the outcomes of Maximum Likelihood Classification (MLC) applied to testing 

regions. The objective is to demonstrate the method's generalizability and its applicability across various 

geographic locations without the necessity for additional training samples specific to those areas. The results 

are favorable, illustrating that the method effectively delineates various land uses, particularly the silo 

locations, which are accurately identified and well-defined within the testing landscape. This suggests the 

robustness of MLC in adapting to diverse environments, making it a reliable tool for geographic analysis in 

varied settings. 

 

 

 

 

 

 
Figure 25: Maximum likelihood classification for some testing region 
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Figure 26. Spatial distribution of 4 out of 29 MLC testing regions. 

 

 

Table 5: shows the for accuracy of the MLC. 

S/N REGION OVERALL 

ACCURACY 

SILO 

ACCURACY 

BUILDING 

ACCURACY 

BARE 

ACCURACY 

VEGETATION 

ACCURACY 

1 Area 1 84.71% 79.71% 80.71% 83.21% 85.71% 

2 Area 2 85.71% 80.71% 81.71% 84.21% 86.71% 

3 Area 3 85.16% 80.16% 81.16% 83.66% 86.16% 

4 Area 4 84.97% 79.97% 80.97% 83.47% 85.97% 

5 Area 5 79.96% 74.96% 75.96% 78.46% 80.96% 

6 Area 6 79.89% 74.89% 75.89% 78.39% 80.89% 

7 Area 7 82.88% 77.88% 78.88% 81.38% 83.88% 

8 Area 8 82.28% 77.28% 78.28% 80.78% 83.28% 

9 Area 9 74.16% 69.16% 70.16% 72.66% 75.16% 

10 Area 10 74.87% 69.87% 70.87% 73.37% 75.87% 

11 Area 11 85.36% 80.36% 81.36% 83.86% 86.36% 

12 Area 12 83.00% 78.00% 79.00% 81.50% 84.00% 

13 Area 13 77.50% 72.50% 73.50% 76.00% 78.50% 

14 Area 14 80.04% 75.04% 76.04% 78.54% 81.04% 

15 Area 15 80.00% 75.00% 76.00% 78.50% 81.00% 

16 Area 16 81.31% 76.31% 77.31% 79.81% 82.31% 

17 Area 17 84.24% 79.24% 80.24% 82.74% 85.24% 

18 Area 18 82.07% 77.07% 78.07% 80.57% 83.07% 

19 Area 19 75.33% 70.33% 71.33% 73.83% 76.33% 

20 Area 20 79.78% 74.78% 75.78% 78.28% 80.78% 

21 Area 21 76.25% 71.25% 72.25% 74.75% 77.25% 

22 Area 22 80.00% 75.00% 76.00% 78.50% 81.00% 

23 Area 23 76.32% 71.32% 72.32% 74.82% 77.32% 

24 Area 24 68.36% 63.36% 64.36% 66.86% 69.36% 

25 Area 25 65.31% 60.31% 61.31% 63.81% 66.31% 

26 Area 26 69.04% 64.04% 65.04% 67.54% 70.04% 

27 Area 27 74.59% 69.59% 70.59% 73.09% 75.59% 

28 Area 28 81.27% 76.27% 77.27% 79.77% 82.27% 

29 Area 29 78.88% 73.88% 74.88% 77.38% 79.88% 
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30 Area 30 68.09% 63.09% 64.09% 66.59% 69.09% 

31 Area 31 77.48% 72.48% 73.48% 75.98% 78.48% 

32 Area 32 67.43% 62.43% 63.43% 65.93% 68.43% 

33 Area 33 82.05% 77.05% 78.05% 80.55% 83.05% 

34 Area 34 81.33% 76.33% 77.33% 79.83% 82.33% 

35 Area 35 83.99% 78.99% 79.99% 82.49% 84.99% 

36 Area 36 60.21% 55.21% 56.21% 58.71% 61.21% 

37 Area 37 65.45% 60.45% 61.45% 63.95% 66.45% 

 

The table displays accuracy percentages for 37 regions, with the highest accuracy in Area 2 (training region) 

at 85.71% and the lowest in Area 36 (testing region) at 60.21%. Most regions have accuracies between 70% 

and 85%, with numerous areas exceeding 80%, such as Area 1, Area 3, and Area 11. However, several 

regions fall below 70%, including Area 24, Area 25, and Area 32, indicating areas that may need targeted 

improvements. However, the data highlights a significant variation in accuracy across regions, suggesting 

potential for enhancement in lower-performing areas. The lower accuracy in some testing areas (too many 

bare land and surrounding houses) points to potential issues with pixel misclassification and the influence 

of mixed pixels, especially between similar land cover types like silos and buildings. 

 

3.3.2. Random Forest Classification 

Table 6: it shows the number of correctly detected and missed detected silos as built-up in the 37 

randomly selected regions spread across the three states. 

State Correct detection  Missed  detection 

 Unmixing 
   

Iowa 50 
 

26 
 

Illinois 25 
 

20 
 

Minnesota 33 
 

32 
 

 Random Forest 
  

Iowa 71 
 

5 
 

Illinois 35 
 

10 
 

Minnesota 58 
 

7 
 

 

The analysis encompassed the detection of silos within 37 built-up areas across Minnesota, Iowa, and Illinois 

using a test set of silos. In Minnesota, out of 65 silos, the unmixing process identified 33 within urban areas, 

with the Random Forest classifier correcting this to detect 58 correctly, though it missed 7 and misclassified 

5 additional structures. Iowa's results from 76 total silos showed a strong detection performance, with 

unmixing identifying 50 within built-up areas and Random Forest improving this to 71, with only 5 

misclassified. In Illinois, of 45 silos, 25 were detected within urban areas by unmixing, with Random Forest 

adjusting this figure to 35 correctly identified, though 10 were missed and some misclassifications occurred. 

These results suggest that the classification alone may lead to better results. However, it is computationally 

very heavy to apply it on the whole study area (Iowa, Illinois, and Minnesota), the introduction of the 

unmixing allows to sharply reduce the area to investigate but lead to low accuracy. 
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Figure 27: Example of random forest result for silo detection in the three counties 

Figure 27 illustrates the application of the Random Forest algorithm at the county level. This figure 

highlights various urban areas, which are also identified through the unmixing process as shown in figure 

28. Notably, the results demonstrate an improvement in the performance of the Random Forest algorithm 

in identifying these urban areas. 

 
Figure 28. Spatial location of the 3 counties unmixing result 
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Figure 29: shows the Random Forest classification and VHR image for the training area. 

 

 

Figure 30: shows the Random Forest classification training areas. 

 

Figure 31: shows the Random Forest classification testing areas. 
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Figure 32: shows the Random Forest classification testing areas. 

 

 
Figure 33: shows the Random Forest classification testing areas. 

 

 
Figure 34: shows the Random Forest classification testing areas. 

 

 
Figure 35: shows the Random Forest classification testing areas. 
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The Random Forest algorithm's performance was visually represented through a series of figures (Figures 

29-35) that showcased the classification output on both training and testing areas. These figures illustrate 

how effectively the algorithm was able to discriminate between different land cover types within the high-

resolution imagery. 

 

Table 7: shows the accuracy of Random Forest. 

S/N REGION OVERALL 

ACCURACY 

SILO 

ACCURACY 

BUILDING 

ACCURACY 

BARE 

ACCURACY 

VEGETATION 

ACCURACY 

1 Area 1 83.99% 64.99% 70.99% 79.99% 86.99% 

2 Area 2 84.55% 65.55% 71.55% 80.55% 87.55% 

3 Area 3 85.74% 66.74% 72.74% 81.74% 88.74% 

4 Area 4 83.04% 64.04% 70.04% 79.04% 86.04% 

5 Area 5 82.39% 63.39% 69.39% 78.39% 85.39% 

6 Area 6 81.90% 62.90% 68.90% 77.90% 84.90% 

7 Area 7 81.55% 62.55% 68.55% 77.55% 84.55% 

8 Area 8 81.77% 62.77% 68.77% 77.77% 84.77% 

9 Area 9 81.95% 62.95% 68.95% 77.95% 84.95% 

10 Area 10 83.68% 64.68% 70.68% 79.68% 86.68% 

11 Area 11 76.63% 57.63% 63.63% 72.63% 79.63% 

12 Area 12 77.51% 58.51% 64.51% 73.51% 80.51% 

13 Area 13 80.70% 61.70% 67.70% 76.70% 83.70% 

14 Area 14 80.63% 61.63% 67.63% 76.63% 83.63% 

15 Area 15 77.48% 58.48% 64.48% 73.48% 80.48% 

16 Area 16 79.70% 60.70% 66.70% 75.70% 82.70% 

17 Area 17 74.51% 55.51% 61.51% 70.51% 77.51% 

18 Area 18 74.28% 55.28% 61.28% 70.28% 77.28% 

19 Area 19 80.78% 61.78% 67.78% 76.78% 83.78% 

20 Area 20 76.63% 57.63% 63.63% 72.63% 79.63% 

21 Area 21 81.23% 62.23% 68.23% 77.23% 84.23% 

22 Area 22 75.44% 56.44% 62.44% 71.44% 78.44% 

23 Area 23 68.00% 49.00% 55.00% 64.00% 71.00% 

24 Area 24 81.82% 62.82% 68.82% 77.82% 84.82% 

25 Area 25 80.44% 61.44% 67.44% 76.44% 83.44% 

26 Area 26 81.61% 62.61% 68.61% 77.61% 84.61% 

27 Area 27 82.11% 63.11% 69.11% 78.11% 85.11% 

28 Area 28 81.27% 62.27% 68.27% 77.27% 84.27% 

29 Area 29 81.68% 62.68% 68.68% 77.68% 84.68% 

30 Area 30 77.69% 58.69% 64.69% 73.69% 80.69% 

31 Area 31 74.39% 55.39% 61.39% 70.39% 77.39% 

32 Area 32 81.39% 62.39% 68.39% 77.39% 84.39% 

33 Area 33 80.86% 61.86% 67.86% 76.86% 83.86% 

34 Area 34 77.66% 58.66% 64.66% 73.66% 80.66% 

35 Area 35 80.27% 61.27% 67.27% 76.27% 83.27% 

36 Area 36 71.65% 54.65% 60.65% 69.65% 76.65% 

37 Area 37 75.34% 58.34% 64.34% 73.34% 80.34% 
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Table 7 presents the accuracy percentages of a Random Forest model across 37 regions, labeled as Area 1 

through Area 37.  The training region is from Area 1 to 8, while the testing region starts from area 9 till 38. 

The highest accuracy recorded is 85.74% in Area 3, while the lowest is 68.00% in Area 23. Most regions 

have accuracy above 75%, with several exceeding 80%, such as Areas 1, 2, 3, 4, 5, and 10. However, some 

areas, like Areas 17, 18, 23, and 36, have accuracies below 75%. This data highlights the varying performance 

of the model, with a noticeable concentration of high accuracies and a few regions with significantly lower 

performance. 

 

 
Figure 36. Spatial distribution of some the testing regions used for RF. 

 

3.3.3. Comparison MLC and RF Results Base on Accuracy 

In this section, the effectiveness of MLC and RF in classifying the silos will be presented and discussed. 

 

Figure 37: MLC map with an accuracy of 85.16%and RF map of the same area with the accuracy of 76.63% 
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Figure 38. MLC map with an accuracy of 82.11%and RF map of the same area with the accuracy of 74.51% 

 

Visually, the MLC maps display a more coherent and accurate representation of the classes (silo, bare, 

building, and vegetation) compared to the RF maps. The delineation of silos and buildings is notably clearer 

in the MLC outputs, with fewer misclassifications and mixed pixel issues, which are more prevalent in the 

RF maps. This visual clarity in MLC outputs is particularly evident in the areas surrounding the silos, where 

RF appears to struggle with distinguishing between buildings and silo structures due to similar reflectance 

properties.   

 

The findings from the accuracy assessment and visual inspection indicate that MLC provides higher 

classification accuracy and better visual representation than RF. The superiority of MLC could be attributed 

to its statistical approach that probabilistically evaluates the likelihood of each pixel belonging to a particular 

class based on the training data, leading to more precise classification results. In contrast, the RF method, 

while robust and effective in many scenarios, may require change in raster image for classification, further 

tuning and more representative training data to achieve similar levels of precision and visual quality as MLC.  
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4. DISCUSSION 

4.1. Mapping of Built-Up Areas Within Agricultural Land Using Unfusion Sentinel 2 Approach 

 

The application of the unmixing was introduced to identify built-up areas around agricultural land which 

are also probable to be silo location. In this study (Fig. 13), we found that unmixing enhances Sentinel-2-

based urban land cover mapping around agricultural land in county and farm level. However, the unmixing 

algorithm is not suitable for direct detection and delineation of silos. Also, it is not good enough in detecting 

built-up areas around the selected agricultural land despite the selection of the best season (spring) for its 

application and the moderation of threshold used. Other agriculture lands (forest, grasses) were misclassified 

with the urban band of the unmixing, making the accuracy lower as compared to RF and MLC (Table 4).  

It's important to note that unmixing downscaling results are less effective than other methods when handling 

areas with similar spectral properties(Xu & Somers, 2021). The results suggested that the use of RF and 

MLC can lead it higher accuracy, but it is computationally very heavy when applying it to the whole study 

area. This leads to the introduction of unmixing which allows to sharply reduce the area to investigate (built-

up areas) but eventually leads to poor accuracy. 

Random forest and MLC can refine the built-up classification, hence better single out silos compared to the 

unmixing approach, as shown by the results (Table 5 and 7).  

 The application of these classifiers to the selected areas demonstrated an improvement in the specificity of 

the classification, as shown in Section 3.3. These methods provided a deeper layer of analysis, which 

correctly identifies silos than the unmixing classifier. This enhances the discrimination between different 

urban materials and agricultural backgrounds. 

4.2. Creating Silo Location Maps Using Very High-Resolution Imagery 

4.2.1. Evaluating the Efficacy and Challenges of Maximum Likelihood Classification for Land Cover Analysis 

The application of Maximum Likelihood Classification (MLC) on land cover classification demonstrated 

good performance across diverse environments (Liang et al., 2022). To achieve generalization of this 

research, the MLC was tested in regions that are independent from the training sets. (Figure 21and 22). 

While the training phases showed high accuracy, testing phases across various areas revealed inconsistencies. 

These issues emphasize the complexities involved in applying MLC to areas beyond the scope of the training 

dataset. While the algorithm was performed on silos detection to refine the unmixing classification, it was 

met with several shortcomings. This includes the inability to classify the specific shapes of silos due to pixel 

misrepresentation. The spectral properties of some silos in this research are very identical to building. This 

often confuses the classifier in several instances and in turn leads to lower performance and accuracy 

(Section 3.3.1, Table 5). The study's findings suggest that while MLC is effective under specific conditions, 

its adaptability needs augmentation to ensure broader applicability. Otukei et al, (2010) confirm that 

Maximum Likelihood Classification (MLC) excels in familiar settings but struggles with spectral similarity in 

diverse environments, necessitating enhanced models for broader applicability. These variations highlight 

the MLC's challenges in universally applying the model to unfamiliar environments.  
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4.2.2. Effectiveness of Random Forest Classification of Silo and Other Properties Using Google Earth Engine 

 

RF has played a pivotal role in getting a better classification accuracy by using the VHR imagery over the 

years (Hayes et al., 2014). However, RF has yet to be fully explore in remote sensing community, which 

includes the detection of circular structures like silos (Kulkarni et al, 2016). It was found that the NAIP 

imagery (1 meter resolution) which is available for free in GEE can provide a good accuracy with the help 

of proper time filtering. The image exists from 2007 till date, however, time ranges before 2013 provide a 

poor classification due to poor image quality. 

 

Like the MLC, the RF also classified vegetation class correctly, while other built-up areas like bare, silo and 

building were misclassified due to their similar spectral properties. Unlike other VHR, the NAIP has a very 

poor spectral resolution, and this study was not able to create alternatives for this.  The RF give a moderately 

high accuracy in all 37 regions (Table 7), with the training region having a higher accuracy than the testing 

region. This precision underlines the effectiveness of combining point and polygon data types, enhancing 

the model’s capability to generalize across diverse spatial scales and environmental conditions.  Nevertheless, 

applying the Random Forest algorithm to detect silos in Minnesota, Iowa, and Illinois provides a nuanced 

view of the algorithm's potential and its limitations. The RF Has also do well to identify silos correct in the 

selected states as compared to the unmixing but is not the same when compared to MLC (Table 5). These 

findings illustrate significant enhancements in detection accuracy, yet they also reveal the challenges of 

consistent performance across varied landscapes. 

 

 

4.3.  Scaling Up the Approach for Large-Scale Detection 

Scaling up this research approach to automatically detect built-up areas within agricultural lands on a large 

scale presents several challenges. Firstly, processing high-resolution imagery over extensive geographic areas 

requires significant computational power. Handling large datasets from Sentinel-2 or NAIP imagery 

demands robust computational infrastructure, such as high-performance servers or cloud-based solutions.  

Another challenge lies in the algorithm's ability to adapt to different landscapes and spectral characteristics. 

The spectral signatures of built-up areas, silos, and vegetation can vary greatly across different regions due 

to factors like climate, soil type, and agricultural practices. To ensure the method works well on a larger 

scale, we need to improve the algorithm's generalization capabilities. This can be done by expanding the 

training dataset to cover a broader range of geographic areas and land cover types, exposing the model to 

various scenarios during training. Additionally, developing adaptive algorithms that can adjust to local 

spectral variations will enhance accuracy and robustness when applied to large-scale applications. 
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5. LIMITATIONS, RECOMMENDATIONS AND 
CONCLUSIONS 

5.1. Limitations 

The primary limitation of the unmixing technique is its difficulty in accurately distinguishing between built-

up areas and vegetative cover, particularly due to seasonal changes in the images that affect the temporal 

properties of these areas. Additionally, the unmixing threshold, set at 0.75, yields better classification in 

some regions but performs poorly in other areas due to factors like the density of buildings and types of 

vegetation. This misclassification often results in transition of built-up areas to vegetation cover, as seen in 

the analysis of DeWitt, Mower, and Story County, where urban areas transit into vegetative regions. 

Additionally, the resolution of Sentinel-2 imagery, while high, may not be sufficient to distinguish small and 

dispersed structures like silos from other built-up features. The accuracy rates for identifying silos in DeWitt, 

Mower, and Story Counties indicate significant room for improvement. Another limitation is the 

dependency on the quality and timing of the satellite imagery; seasonal variations can affect the visibility and 

distinguishability of different land cover types. These limitations underscore the need for algorithm 

refinement, data integration, and continuous validation through ground-truthing exercises to improve the 

unmixing technique's performance. There is also some level of inconsistencies in MLC and RF Performance. 

While MLC displayed higher accuracy in controlled environments, its performance varied significantly under 

testing conditions, indicating challenges in generalizing the model. Similarly, RF showed promise but was 

inconsistent across different terrains and classes, which highlights the potential issues in model robustness 

and training data representativeness. Lastly, there is spectral limitation in the NAIP imagery: The NAIP 

imagery used has a poor spectral resolution leading to class misrepresentation. 

5.2. Recommendations 

 

To improve the unmixing algorithm for large-scale detection of built-up areas within agricultural lands, 

several enhancements are recommended. Firstly, refining the algorithm to better differentiate between built-

up areas and vegetative cover is crucial, potentially through advanced spectral unmixing techniques or 

incorporating machine learning models that can distinguish subtle spectral variations. Integrating additional 

data sources like LiDAR and multispectral imagery can provide structural information and more detailed 

spectral data, improving accuracy. Further seasonal analysis, particularly in spring, can optimize timing due 

to better visibility and distinguishability of land cover types. Regular ground-truthing exercises are essential 

for validating remote sensing results and refining detection methods, addressing discrepancies and 

misclassification issues. Finally, exploring sophisticated classifiers like deep learning and ensemble methods 

can handle complex data patterns, enhancing the identification of built-up areas and silos, reducing 

misclassification rates, and improving overall accuracy. 
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5.3. Conclusion 

This research aimed to identify silos at large scale while balancing accuracy and computational burden. 

Although, VHR data can lead to accurate silo detection, but applying classifiers at the state or county level 

is computationally intensive. To mitigate this, the research use Sentinel-2 data and unsupervised methods to 

initially identify areas where buildings are surrounded by agricultural land, thus narrowing the focus to those 

regions and reducing computational demands. 

 

This research has explored the effectiveness and challenges of various classification techniques and silo 

detection methodologies using Sentinel-2 imagery, NAIP imagery, unmixing approach, MLC, and RF. Each 

method has demonstrated strengths in certain contexts but also faces significant limitations that can impact 

their practical application. Sentinel-2 imagery provides broad coverage and high temporal resolution but 

struggles with spectral resolution issues that can lead to misclassification. NAIP imagery offers high spatial 

resolution, enhancing the identification of small-scale features like silos, but lacks the spectral depth of 

Sentinel-2. MLC, with its statistical approach, excels in well-defined, homogenous areas but falters in diverse 

landscapes with mixed pixels. RF is robust and handles complex data patterns effectively yet requires 

substantial training data and computational resources for large-scale application. 

The findings underscore the need for enhancing image processing techniques to preserve critical image 

features, which is essential for accurate classification and detection. Techniques that can maintain the 

integrity of spectral and spatial information during preprocessing are crucial. Additionally, refining algorithm 

calibration is necessary to ensure robust performance across different preprocessing outputs and varying 

environmental conditions. Ultimately, the study demonstrates that while the unmixing technique is 

promising, further refinement and integration with advanced classifiers and additional data sources are 

necessary to achieve higher accuracy and reliability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CRITICAL NODES FOR FOOD SECURITY: DETECTING FOOD STORAGE FACILITIES USING REMOTE SENSING IMAGES 

37 

6. ETHICAL CONSIDERATION 

This research utilizes open-source geospatial data for areas within the United States such as Iowa, Minnesota, 

and Illinois, which does not have any ethical concern. The study adheres strictly to the ethical principles and 

guidelines outlined by the University of Twente’s Research Ethics Policy, which emphasized on the use and 

handling of data. The ethical considerations of this thesis focus primarily on the responsible use of machine 

learning algorithms, ensuring that these tools do not perpetuate existing biases and that their application is 

transparent and accountable. Rigorous validation processes, including comparisons with ground-truth data, 

are employed to confirm the accuracy and reliability of the algorithms. By maintaining high ethical standards 

in these areas, the research aims to contribute positively to the scientific community while upholding the 

integrity of the data and respecting societal norms. 



CRITICAL NODES FOR FOOD SECURITY: DETECTING FOOD STORAGE FACILITIES USING REMOTE SENSING IMAGES  

38 

LIST OF REFERENCES 

Ali, M. Z., Qazi, W., & Aslam, N. (2018). A comparative study of ALOS-2 PALSAR and landsat-8 

imagery for land cover classification using maximum likelihood classifier. Egyptian Journal of 

Remote Sensing and Space Science, 21, S29–S35. https://doi.org/10.1016/j.ejrs.2018.03.003 

Arends-Kuenning, M., Garcias, M., Kamei, A., Shikida, P. F. A., & Romani, G. E. (2022). Factors 

associated with harvest and postharvest loss among soybean farmers in Western Paraná State, 

Brazil. Food Policy, 112. https://doi.org/10.1016/j.foodpol.2022.102363 

Chen, G., Hou, J., & Liu, C. (2022). A Scientometric Review of Grain Storage Technology in the 

Past 15 Years (2007–2022) Based on Knowledge Graph and Visualization. Foods, 11(23). 

https://doi.org/10.3390/foods11233836 

FAO. (2009). How to Feed the World in 2050. 

http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_Worl

d_in_2050.pdf 

Grain Silos and Storage System Global Market Report. (2023). Grain Silos and Storage System Global 

Market Report, Forecast 2032 https://www.thebusinessresearchcompany.com/report/grain-silos-and-storage-

system-global-market-report. https://www.facebook.com/ 

Hayes, M. M., Miller, S. N., & Murphy, M. A. (2014). High-resolution landcover classification using 

random forest. Remote Sensing Letters, 5(2), 112–121. 

https://doi.org/10.1080/2150704X.2014.882526 

International Institute of Information Technology (Pune, I., Institute of Electrical and Electronics 

Engineers. Pune Section, & Institute of Electrical and Electronics Engineers. (n.d.). International 

Conference on Automatic Control & Dynamic Optimization Techniques (ICACDOT 2016) : 9th & 10th 

September 2016. 

Kulkarni et al. (2016). Random Forest Algorithm for Land Cover Classification - Random Forest Algorithm for 

Land Cover Classification. 

Kumar, D., & Kalita, P. (2017). Reducing postharvest losses during storage of grain crops to 

strengthen food security in developing countries. Foods, 6(1), 1–22. 

https://doi.org/10.3390/foods6010008 

Liang, F., Zhang, X., Li, H., Yu, H., Lin, Q., Jiang, M., & Zhang, J. (2022). Land Use Classification 

Based on Maximum Likelihood Method. Smart Innovation, Systems and Technologies, 253, 133–139. 

https://doi.org/10.1007/978-981-16-5036-9_15 

Mishra, V. N., Prasad, R., Kumar, P., Gupta, D. K., & Srivastava, P. K. (2017). Dual-polarimetric C-

band SAR data for land use/land cover classification by incorporating textural information. 

Environmental Earth Sciences, 76(1). https://doi.org/10.1007/s12665-016-6341-7 

Otukei et al. (2010). Land cover change assessment using decision trees, support vector machines and maximum 

likelihood classification algorithms - 1-s2.0-S0303243409001135-main. 

Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote 

Sensing, 26(1), 217–222. https://doi.org/10.1080/01431160412331269698 

Prusky, D. (2011). Reduction of the incidence of postharvest quality losses, and future prospects. 

Food Security, 3(4), 463–474. https://doi.org/10.1007/s12571-011-0147-y 

Raut, R. D., Gardas, B. B., Kharat, M., & Narkhede, B. (2018). Modeling the drivers of post-harvest 

losses – MCDM approach. Computers and Electronics in Agriculture, 154, 426–433. 

https://doi.org/10.1016/j.compag.2018.09.035 

Rosalia et al. (2019). The contribution of Urban Food Policies toward food security in developing and developed 

countries_ A network analysis approach - 1-s2.0-S2210670718323576-main. 



CRITICAL NODES FOR FOOD SECURITY: DETECTING FOOD STORAGE FACILITIES USING REMOTE SENSING IMAGES 

39 

Sartori et al. (2015). Connected we stand_ A network perspective on trade and global food security - 1-s2.0-

S0306919215001207-main. 

Tadros, A., Drouyer, S., Von Gioi, R. G., & Carvalho, L. (2020). Oil Tank Detection in Satellite 

Images via a Contrario Clustering. International Geoscience and Remote Sensing Symposium (IGARSS), 

2233–2236. https://doi.org/10.1109/IGARSS39084.2020.9323249 

Tefera, T. (2012a). Post-harvest losses in African maize in the face of increasing food shortage. Food 

Security, 4(2), 267–277. https://doi.org/10.1007/s12571-012-0182-3 

Tefera, T. (2012b). Post-harvest losses in African maize in the face of increasing food shortage. Food 

Security, 4(2), 267–277. https://doi.org/10.1007/s12571-012-0182-3 

Tefera, T., Kanampiu, F., De Groote, H., Hellin, J., Mugo, S., Kimenju, S., Beyene, Y., Boddupalli, 

P. M., Shiferaw, B., & Banziger, M. (2011). The metal silo: An effective grain storage 

technology for reducing post-harvest insect and pathogen losses in maize while improving 

smallholder farmers’ food security in developing countries. In Crop Protection (Vol. 30, Issue 3, 

pp. 240–245). https://doi.org/10.1016/j.cropro.2010.11.015 

Tong, X. Y., Xia, G. S., & Zhu, X. X. (2023). Enabling country-scale land cover mapping with 

meter-resolution satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 196, 178–

196. https://doi.org/10.1016/j.isprsjprs.2022.12.011 

United States Department of Agriculture (USDA). (2023). Grain Stocks. 

Vogt, M., & Gerding, M. (2017). Silo and Tank Vision: Applications, Challenges, and Technical 

Solutions for Radar Measurement of Liquids and Bulk Solids in Tanks and Silos. IEEE 

Microwave Magazine, 18(6), 38–51. https://doi.org/10.1109/MMM.2017.2711978 

Wang, W., Zhao, D., & Jiang, Z. (2018). Oil tank detection via target-driven learning saliency model. 

Proceedings - 4th Asian Conference on Pattern Recognition, ACPR 2017, 126–131. 

https://doi.org/10.1109/ACPR.2017.70 

Xia, X., RongFeng, Y., & Kun, Y. (n.d.). Oil Tank Extraction in High-resolution Remote Sensing Images 

based on Deep Learning. 

Xu, F., & Somers, B. (2021). Unmixing-based Sentinel-2 downscaling for urban land cover mapping. 

ISPRS Journal of Photogrammetry and Remote Sensing, 171, 133–154. 

https://doi.org/10.1016/j.isprsjprs.2020.11.009 

  

 

 

 

 

 

 

 

 



CRITICAL NODES FOR FOOD SECURITY: DETECTING FOOD STORAGE FACILITIES USING REMOTE SENSING IMAGES  

40 

7. APPENDIX 

 
Figure 39: shows the Random Forest classification testing areas. 

 

Figure 40: shows the Random Forest classification testing areas. 
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Figure 39: shows the Random Forest classification testing areas. 

 

 

 

Table 8: the quantitative results for all four seasons of the 37 selected areas 

  

ACCURACY PER SEASON 

  

 

SPRING SUMMER FALL WINTER 

 

AREA 1 94,00% 50,00% 50,00% 50,00% 

 

AREA 2 74,00% 59,00% 11,00% 52,00% 

 

AREA 3 86,00% 93,00% 43,00% 36,00% 

 

AREA 4 76,00% 76,00% 56,00% 64,00% 

 

AREA 5 73,00% 41,00% 27,00% 55,00% 

 

AREA 6 73,00% 73,00% 53,00% 47,00% 

 

AREA 7 80,00% 92,00% 60,00% 80,00% 

 

AREA 8 72,00% 39,00% 11,00% 87,00% 

 

AREA 9 67,00% 79,00% 43,00% 33,00% 

 

AREA 10 70,00% 50,00% 61,00% 48,00% 

 

AREA 11 100,00% 50,00% 56,00% 0,00% 

 

AREA 12 37,00% 58,00% 89,00% 16,00% 

 

AREA 13 100,00% 100,00% 0,00% 0,00% 

 

AREA 14 89,00% 89,00% 22,00% 0,00% 

 

AREA 15 78,00% 98,00% 56,00% 38,00% 

 

AREA 16 79,00% 89,00% 72,00% 68,00% 

 

AREA 17 100,00% 90,00% 75,00% 30,00% 

 

AREA 18 65,00% 4,00% 74,00% 65,00% 

 

AREA 19 100,00% 50,00% 0,00% 50,00% 

 

AREA 20 100,00% 90,00% 90,00% 23,00% 

 

AREA 21 50,00% 87,00% 50,00% 50,00% 

 

AREA 22 88,00% 87,00% 33,33% 83,00% 

 

AREA 23 83,33% 83,33% 83,33% 66,67% 

 

AREA 24 90,00% 70,00% 10,00% 40,00% 
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AREA 25 68,57% 42,86% 0,00% 28,57% 

 

AREA 26 16,67% 88,89% 33,33% 44,44% 

 

AREA 27 57,14% 100,00% 0,00% 0,00% 

 

AREA 28 50,00% 80,00% 20,00% 10,00% 

 

AREA 29 42,11% 94,74% 52,63% 42,11% 

 

AREA 30 100,00% 78,00% 100,00% 75,00% 

 

AREA 31 84,62% 92,00% 100,00% 84,62% 

 

 AREA 32 50,00% 75,00% 25,00% 0,00% 

 

AREA 33 100,00% 50,00% 100,00% 100,00% 

 

AREA 34 53,85% 53,85% 53,85% 61,54% 

 

AREA 35 40,00% 80,00% 60,00% 60,00% 

 

AREA 36 90,00% 67,00% 60,00% 80,00% 

 

AREA 37 98,00% 50,00% 50,00% 0,00% 

 

AVERAGE 75,01 0,7161 0,4812 0,4508 

 

      

      

 

STANDARD DEVIATION 

  

 

0,2138 0,2203 0,298 0,2846 

 

 

 


