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ABSTRACT 

Assessing nutrient concentrations in crop canopies as it develops is crucial for estimating nutrient 

concentration in the final grain yield. This study investigates the use of ground spectral 

measurements to estimate eight macro- and micro-nutrient concentrations in wheat canopy 

across two growth stages (i.e., vegetative and reproductive) and grains. These nutrients are 

Calcium (Ca), Magnesium (Mg), Iron (Fe), Nitrogen (N), Zinc (Zn), Sulphur (S), Potassium (K), 

and Phosphorus (P). Field data were collected from 10 experimental sampling units in Italy, 

including biophysical and biochemical properties, ground spectral measurements, and laboratory-

measured nutrient concentrations. Partial Least Squares Regression (PLSR) was applied to 

estimate nutrient concentrations in the canopy using ground spectral data. 

 

Important spectral regions were identified using Variable Importance in Projection (VIP) scores 

and PLSR loadings, with Visible and Near Infrared being effective for nutrients associated with 

chlorophyll content and plant growth, such as N and P, while Shortwave Infrared was useful for 

nutrients associated with structural and protein components, such as Ca, Mg and S. The PLSR 

models explained the variances in nutrient concentrations with R² values ranging from 0.2 to 0.67 

for the vegetative stage and 0.2 to 0.87 for the reproductive stage, showing moderate predictive 

capabilities (R² > 0.6) for most nutrients. The PLSR estimated nutrient concentrations in wheat 

canopy were compared with laboratory-measured nutrients concentration, reporting Root Mean 

Square Error (RMSE) values ranging from 0.2 to 1441.41 mg/kg for N and K, respectively. 

Nutrient concentrations in grains were estimated using canopy nutrient estimates from the PLSR 

models, resulting in R² values between 0.2 and 0.81 and Relative RMSE (RRMSE) values from 

0.04% to 0.12% for Ca and Fe, respectively. 

 

These results demonstrate the potential of using ground spectral measurements and PLSR to 

estimate nutrient concentrations in wheat canopy and grains, providing a non-destructive and 

efficient approach for assessing crop nutritional quality. Results on spectral response for various 

nutrients estimations are specifically important for future development or fine-tuning of remote 

sensing tools focused on nutrient estimations, which farmers can then use as decision support 

tools for crop nutritional quality management strategies. While the PLSR model predictions were 

promising, their accuracies can further be improved by validating these findings across different 

crops, environmental conditions and increasing number of samples. Additionally, comparative 

use of other models to enhance prediction accuracy and practical applications of ground spectral 

data for nutrient estimations to support farmers as a decision-making support tool is 

recommended. As demonstrated by the findings, integrating ground spectral measurements in 

estimation of macro- and micro-nutrients concentrations at key growth stages can contribute to 

informed timely decisions on optimizing agricultural practices to enhance the nutritional quality 

of crops and ensure food security in the face of changing environmental conditions. 
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1. INTRODUCTION 

1.1. Background 

The global agricultural sector is facing the problem of decreasing nutrient concentrations in 

crops, a challenge further intensified by climate change implications on food and nutritional 

security (Myers et al., 2017, 2014). This decrease in crop nutrients concentrations could 

potentially amplify the prevalence of micronutrient deficiency, also referred to as “hidden 

hunger”. This form of malnutrition currently affects many people in the world, as highlighted by 

Etienne et al., (2018)  and Gashu et al.,  (2021). The inadequacy of micronutrients can trigger 

severe health complications like stunted growth in children, cognitive disorders, and weakened 

immune systems. Mitigating this issue is vital to attaining the United Nations' Sustainable 

Development Goal of "Zero Hunger" by 2030, aligning specifically with Indicator 2.1.1: 

"Prevalence of undernourishment" which aims to end hunger and ensure access by all people, 

especially the poor and those in vulnerable situations, to safe, nutritious and sufficient food all 

year round, and Indicator 2.2.2: "Prevalence of malnutrition" among children under 5 years of 

age (United Nations, n.d.). 

 

Conventional methods for evaluating nutrient concentrations in crops involve field sample 

collection during the crop harvesting period followed by laboratory analysis (i.e., wet chemical 

analysis) to determine macro- and micro-nutrient compositions, as outlined in Caporaso et al.,  

(2018). This approach, however, is laborious and financially strenuous, particularly for less 

developed nations. The advances in technology and ongoing studies in Earth Observation have 

increased interest in utilizing remote sensing imagery for various applications including using 

spectral vegetation indices to estimate leaf and canopy properties (Benami et al., 2021). Also, 

hyperspectral imagery and near-infrared spectroscopy is becoming increasingly useful to reduce 

the challenges of traditional methods of measuring key crop traits at leaf, canopy and ecosystem 

scales (Meacham-Hensold et al., 2019). Hyperspectral imaging (HSI) that combines imaging and 

spectroscopy, due to its capability to capture a wide spectrum of wavelengths, provides detailed 

data essential for assessing crop nutritional quality (Ma et al., 2022). Similarly, ground spectral 

measurements offers a non-destructive method for assessing plant biophysical and biochemical 

properties, essential in evaluating crop nutritional quality (Pandey et al., 2017). 

 

Remote sensing is a powerful and versatile technology that enables the collection of information 

about Earth’s surface and atmosphere at various scales (Wang et al., 2020). It has been widely 

used in  multiple fields such as agriculture, forestry and environmental studies. Remote sensing 

has proven to be advantageous over traditional ground measurements techniques due to its 

convenience, efficiency, and cost-effectiveness, particularly over large areas and across time (Ni et 

al., 2018). The integration of  remote sensing data with field-based information has been 

recognized as necessary, highlighting the importance of combining these technologies for making 

informed farming decision (Xie et al., 2013). Additionally, remote sensing  has been used in  
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assessing and monitoring nutrient status in crops and their overall health to improve crop 

production by providing valuable information on nutrient stress (Adhikary et al., 2022). For 

example, it has been applied in in-season crop health monitoring like evaluation of soil moisture, 

hence contribute to efficient water use in agriculture (Singh et al., 2023). In general, remote 

sensing technology has and is still being used to effectively provide data at large spatial 

resolutions and high temporal resolutions to facilitate studying and addressing crop production 

related challenges (Adão et al., 2017; Benediktsson and Wu, 2021). 

 

As aforementioned, remote sensing is an essential tool for evaluating  nutritional content in 

crops. By retrieving biophysical crop parameters from remotely-sensed data, researchers can 

integrate remotely sensed data source directly into models used for estimation of nutritional 

quality (Sharifi, 2020). This approach has been recognized for its rapid, convenient, and non-

invasive, providing a quicker and more reliable methods for evaluating the nutrient levels in crops 

than conventional methods (Huang et al., 2015; Sharifi, 2020).  

 

Remote sensing methods are useful for evaluating crop health and productivity based on 

physiological, and biochemical properties like nutrient deficiencies and water access, and thus 

provided an avenue for identifying different and monitoring different types of crops in a spatial 

and temporal manner (Nguyen et al., 2019; Qian et al., 2019). Integration of  proximal crop 

reflectance measurements with remote sensing technologies have been utilized to estimate the 

nitrogen nutrition index in crops highlighting the applicability of remote sensing in crop 

nutritional assessment as shown by Souza et al. (2020).  

1.2. Problem statement 

An accurate estimation and understanding of nutrients concentrations in crops at different crop 

growth stages is essential to ensure nutritious crop yields, Yet there are no extensive studies that 

track the dynamics of nutrients concentrations in crops throughout the development stages. 

Additionally, the relationship between nutrient estimates across various growth stages and their 

final concentrations in grains is not yet fully established. Also, the conventional methods for 

nutrient measurements are invasive, expensive and time-consuming. Although using 

hyperspectral reflectance data, such as ground spectral measurements, provide a promising 

alternative to the conventional method of collecting field samples and subsequently carrying out 

laboratory analysis to estimate the nutrient concentrations in crops, there remains  an important 

research gap. 

 

Specifically, it is unclear which spectral regions are the most important for accurate estimation of 

specific nutrients concentrations in crops at different growth stages. This study is the first of its 

kind to assess canopy nutrient dynamics using ground spectral measurements, providing insights 

into how nutrients are absorbed, utilized, and redistributed within the wheat plant during its 

development. By tracing the fate of nutrients from the canopy to the grains, this research offers a 

novel approach to understanding nutrient translocation and accumulation, which is critical for 

optimizing fertilization strategies and improving crop yield and quality. 
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The ground spectral measurements have inherent uncertainties that requires assessment, 

quantification and reduction to improve their applicability in estimating nutrient concentration in 

crops such that nutrient estimates closely match the actual measurements. Addressing these 

uncertainties is essential for improving the reliability of nutrient predictions based on the spectral 

data and contributing to timely crop management interventions.  

1.3. Study relevance 

The significance of this study lies in improving nutrient estimation in crop canopy by using 

ground spectral measurements, thereby reducing uncertainities in existing data on nutrient 

concentration in crop yields. By doing so, it identifies which nutrients can be estimated, identifies 

the best crop growth stages for those nutrients predictions, and quantifies the contribution of 

each nutrient estimate at specific growth stages to the final nutrient concentration in grains at 

maturity. As such, this study highlights on mechanisms of nutrient transport, using biophysical 

and biochemical properties captured by ground spectroscopy. 

1.4. Objectives and research questions 

1.4.1. Objectives 

The main objective is to assess nutrient concentration in wheat canopy and grains using ground-

spectral measurements  

 

Specific objectives are: 

i. To estimate Calcium (Ca), Iron (Fe), Magnesium (Mg), Potasium (K), Phosphorus (P), 

Suplhur (S), and Zinc (Zn) concentration in the canopy at main wheat growth stages 

(vegetative and reproductive) using ground spectral measurements. 

ii. To estimate the nutrient concentration in wheat grain based on nutrient estimates from 

the main growth stages. 

iii. To compare the estimated nutrient concentration in the canopy and grains with the 

measured nutrients in the laboratory. 

1.4.2. Research questions 

To contribute to filling gaps in the literature, this research addresses these points: 

i. What are most important spectral bands that can be used in estimating nutrient 

concentrations in wheat at main growth stages? 

ii. What crop growth stage is most important in estimating nutrient concentration in grains? 

1.4.3. Hypotheses 

i. We expect the spectral characteristics by red-edge bands during the reproductive growth 

stage to be the best predictors not only of nitrogen but also of overall nutrients 

concentrations in the canopy and subsequent grains. 

ii. We expect reproductive growth stage to show the highest impact on the nutrient 

concentrations in the grain due to the enhanced photosynthesis and grain filling processes 

during this stage, leading to increased nutrient accumulation in the grains. 
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1.5. Structure of thesis 

This thesis is structured as follows. The first chapter introduces the study, outlining the 

background, problem statement, relevance, objectives, research questions, and hypotheses. 

Second chapter provides a literature review on the link between climate change and crop 

nutritional quality, nutrient estimation methods, and the role of remote sensing and machine 

learning techniques. The third chapter describes the methodology, including the sampling design, 

data processing, and nutrient estimation techniques adopted for the study. The forth chapter 

presents the results and discussion, focusing on exploring the observed field data, PLSR model 

performance, and comparisons of estimated and observed nutrient concentrations. Finally, the 

last chapter concludes with key findings and recommendations. 
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2. LITERATURE REVIEW 

2.1. Link between climate change and crop nutritional quality 

 

Climate change has been identified as a crucial factor that affects the nutrition concentration in 

crops (Soares et al., 2019) . For instance, increased levels of carbon dioxide (CO2), resulting from 

climate change, have been found to increase the carbon to nitrogen ratio in crops, which in turn 

reduces the grain protein content (Porter and Semenov, 2005). Similarly, changes in temperature 

and rainfall patterns can cause modifications in crop phenology, nutrient absorption, and 

metabolic activities, ultimately affecting the nutritional composition of crops (Marcos‐barbero et 

al., 2021). For example, higher temperatures can accelerate plant growth and shorten the 

maturation period, leading to lower nutrient accumulation in crops. Moreover, shifts in rainfall 

patterns can affect the availability of water, resulting in decreased nutrient uptake and nutrient 

dilution as shown in Tao et al. (2017). These changes directly impact human needs and food 

security, emphasizing the importance of understanding the effects of climate change on crop 

nutritional quality as shown in studies by Asseng et al.  (2019). As much as relationship between 

climate change factors and their impact on crop yields have been studied, not much attention has 

been on their impact on crop nutritional quality (Ahmed et al., 2019).  

 

Wheat crop is no exception to effects of climate change. Past studies have shown that climate 

change stressors such as increased CO2 levels, heat, drought, and salinity stress can alter wheat 

grain quality e.g., grain weight, nutrient content, fiber, protein composition, starch granules ,and 

free amino acid composition, among others and subsequently affecting  their nutritional value 

(Ali et al., 2017). Genotypic variability in wheat under changing climatic conditions can lead to 

shifts in metabolic proteins, potentially influencing the nutritional value of wheat grains (Dwivedi 

et al., 2017). Chronic exposure to limited water and ozone has also been found to influence the 

nutritional quality of wheat (Soares et al., 2019). These findings highlight the complex interplay 

between climate change and crop nutritional quality, underscoring the need for sustainable 

agricultural practices focused on key crop growth stages to ensure nutritious crops for human 

health. 

2.2. Estimation methods of nutrient concentrations in crops 

The effective estimation of nutrient concentration in crops is essential to ensure optimal crop 

production and achieving food security as described by Lynch (2019). There are couple of 

methods that can be used, each with their inherent characteristics as described in the below 

subsections. 

2.2.1. Field-based measurements 

Field-based measurement is the most commonly used method to estimate nutrient concentration 

in crops. It involves field-based plant sampling and subsequent wet-chemical analysis in the 

laboratory. Some of the studies that have used this method include Cockson et al. (2019), 
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Maillard et al. (2015) and Roth et al. (1989). Roth et al. (1989) conducted plant tissue experiments 

to estimate nitrogen fertilizer requirements of winter wheat, emphasizing the use of specific tests 

to measure stem nitrate concentration, whole-plant Kjeldahl-N concentration, and crop N uptake 

between growth stages. Maillard et al. (2015) focused on leaf mineral nutrient remobilization 

during leaf senescence and modulation by nutrient deficiency. Leaf senescence represents a 

critical stage where nutrients are remobilized from aging leaves to other plant parts, such as 

developing seeds or storage organs, to ensure optimal nutrient utilization and plant growth. 

Nutrient remobilization during senescence is a tightly regulated process involving various 

molecular mechanisms, including autophagy, a cellular process that plays a pivotal role in 

recycling nutrients from senescing tissues to developing organs, such as seeds or storage 

compartments (Guiboileau et al., 2012). Similarly, Cockson et al. (2019) investigated  the impact 

of soil test levels and fertilization with phosphorus and potassium of field crop tissues 

concentration, emphasizing the relevance of leaf tissue nutrient analysis. Moreover, Smith et al. 

(2019)  researched  the impact on field drought conditions on the nutrient concentration of leaf 

and seed tissue in common bean, providing insights into the influence of environmental stress on 

crop nutrient levels. Garcia and Grusak, (2015) focused on mineral accumulation in vegetative 

tissue during seed development and demonstrated the relevance of leaf tissue nutrient analysis in 

understanding nutrient dynamic in crops. These studies highlight that field-based methods are 

commonly used. However, the field-based methods are labour-intensive, crop invasive and thus 

reducing potential crop yield, expensive in terms of expertise and sophisticated equipment 

requirements, and neither suitable for large-scale nor real-time monitoring as described in study 

by Kalaji et al. (2018). 

2.2.2. Remote sensing methodology 

With the advancement in remote sensing technologies over the past decades, there are nowadays 

availability of sensors and imaging systems that provide hyperspectral data at large spatial 

coverages and high temporal resolution. For example, the Italian Space Agency developed and 

still manages a medium-resolution hyperspectral satellite known as PRecursore IperSpettrale della 

Missione Applicativa (PRISMA) that has been in operation since March 2019 to assist assessment 

of spectral signatures of different materials. The hyperspectral data is available at 30m spatial 

resolution and can capture images across 250 Hyperspectral Narrow Bands (HNBs) within a 

spectral range of 400-2500nm (Su et al., 2020). Environmental Mapping and Analysis Program 

(EnMAP) is another hyperspectral satellite mission by German Space Agency that provides over 

240 continuous spectral bands in the wavelength range between 420 and 2450 nm with a ground 

resolution of 30 m×30 m and provides valuable geochemical, biochemical, and biophysical data 

for environmental monitoring and analysis. Another source of hyperspectral data is field 

spectroscopy that provides detailed ground spectral measurements as compared to satellite based 

information.  

 

These hyperspectral data sources are progressively being applied to estimate nutrient 

concentration in various crops (Miphokasap et al., 2012). Visible or Near infrared reflectance 

spectroscopy has been successfully used for predicting nitrogen concentration at the canopy level 

in field crops (Jie et al., 2014). Hyperspectral data has been utilized to distinguish nitrogen, 

phosphorus and potassium deficiencies in crops, showcasing the potential of canopy 
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hyperspectral reflectance data for nutrient stress analysis (Liu et al., 2020). Additionally, studies 

have focused on use of drones-based canopy reflectance data to detect potassium deficiency in 

canola crop (Severtson et al., 2016). Similarly, remote sensing has been applied to obtain 

reflectance which can be used to derive vegetation indices under varying nitrogen concentration 

rates at diverse growth stages of rice (Din et al., 2019). 

 

Studies have attempted to link nutrient concentration in crops during their development to that 

in grains, however the use of remote sensing is limited. For example, Peleg et al. (2009) analysed 

the concentration of various minerals in wheat grains focusing on their genetics and physiological 

characteristics. Similarly, Wang et al. (2021) explored how different manipulations of source 

(production of assimilates through photosynthesis) and sink (storage of assimilates in grains) can 

affect the accumulation of micronutrients and macronutrients in wheat grains. These studies did 

not apply remote sensing. Research, however, indicates that predicting nutrient content in crops 

through spectroscopy is feasible by determining spectral plant status using visible and near-

infrared spectral responses from plant canopies as demonstrated in Bagheri et al. (2012). In the 

study, they employed various vegetative indices e.g., SAVI (Soil-Adjusted Vegetation Index), 

OSAVI (Optimized Soil-Adjusted Vegetation Index), and MSAVI2 (Modified Soil-Adjusted 

Vegetation Index) and identified that wavelengths between 630-860 nm were most suitable for 

diagnosing nitrogen content. Additionally, Zhao et al. (2019) focused on the use of Sentinel-2A 

satellite data to monitor and predict grain protein content in winter wheat thus facilitating 

nutrient management and harvest timing .The study successfully correlated Sentinel-2A 

vegetation indices with wheat nitrogen parameters and grain protein content. The prediction 

models used in the study demonstrated high accuracy, especially for plant nitrogen accumulation. 

Validation using multi-year and regional ground data confirmed reliable prediction and inversion 

results with Sentinel-2A imagery. 

 

Literature shows that use of hyperspectral data for estimating nutrient concentration in crops are 

non-destructive alternative, and can offer timely assessment of nutritional concentration in crops 

as it develops, through analysis of canopy reflectance. However, remote sensing technologies also 

has its limitations in that they have inherent uncertainties  because of random and systematic 

errors may originate from sensor calibration uncertainties, resampling or retrieval errors, 

inaccurate measurements and data collection processes, amongst others, that affect accurate 

estimation of nutrients in crops. Successful use of hyperspectral data also requires careful 

selection and extraction of specific predictive bands to represent accurate crop growth 

information (at a certain growth stage) for nutrient estimation which in most cases is unknown. 

For this purpose, various models including machine learning are often integrated with remote 

sensing data. For example, in the study by Tan et al. (2020), the Partial Least Squares (PLS) 

regression model was employed to predict the grain protein content (GPC) of wheat using 

remote sensing data. 
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2.3. Remote sensing on nutritional quality 

2.3.1. Bio-physical and bio-chemical properties 

Biophysical  properties in crops refers to the physical characteristics and processes of plants 

including traits such as leaf area index (LAI), canopy structures, and spectral reflectance, which 

are essential for understanding the growth, development, and overall health of crops (Danson et 

al., 2003; Vitale et al., 2016; Wali et al., 2020). These properties are essential for estimating crop 

parameters, monitoring growth status, and predicting yield, making them valuable for agricultural 

production (Bahrami et al., 2021; Tomíček et al., 2021). On the other hand, bio-chemical 

properties are the chemical composition and characteristics of plants encompassing aspects such 

as bioactive compounds, enzyme activities and nutrient content, which directly influence the 

nutritional quality, physiological processes of crops(Dong et al., 2021). 

 

The nutritional quality of crops is closely linked to their bio-physical and bio-chemical processes 

and traits as they play critical role in determining their productivity and nutritional value (Cooper 

et al., 2020). Additionally, the bio-chemical composition of crops, including the presence of 

bioactive and antioxidants, directly influence their nutritional quality (Keutgen et al., 2019). Some 

of the factors that have been found to affect the bio-physical and bio-chemical properties of 

crops include the soil properties and other human induced applications like fertilizer applications, 

that ultimately affect the composition of nutrients in crops (Arnó et al., 2012; García-Gaytán et 

al., 2018). Also, the genetic potential of crops and their growing conditions have been found to 

influence their bio-chemical and nutritional composition (Uprety et al., 2010). 

 

Understanding  the closely link between the bio-physical and bio-chemical properties of crops is 

essential for optimizing agricultural practices to enhance the nutritional quality of crops and 

ensure food security in the face of changing environmental conditions (Reyes et al., 

2021;Challinor et al., 2010). For this purpose, the use of remote sensing applications are being 

explored to provide insights into crop nutritional status(Din et al., 2017; Thorp et al., 2012; Yang 

et al., 2011). Also, comparing field-measured spectral data with models liked PROSAIL. 

PROSAIL, a radiative transfer model, can aid in determining biochemical properties like leaf 

chlorophyll content by simulating leaf reflectance spectra based on known biochemical and 

structural leaf parameters as indicated by Berger et al. (2018a) and Zhao et al. (2004).  By utilizing 

PROSAIL, the spectral responses of leaves to different chlorophyll concentrations can be 

analysed, enabling the estimation of chlorophyll content non-destructively and accurately. As 

such, this model facilitates the interpretation of hyperspectral data to derive chlorophyll-related 

vegetation indices, providing valuable insights into plant health and nutrient concentrations. 

Models such as PLSR have also been developed and used to predict photosynthetic and 

biochemical properties in wheat canopies (Robles-Zazueta et al., 2022). Also as shown in Liu et 

al. (2015) crop traits retrieval  can give more detailed information for better understanding of 

wheat biophysical properties. 

 

2.3.2. Spectral bands 

Spectral bands are essential in assessing nutrient concentration in crop canopies. By analyzing the 

reflectance patterns of different spectral bands, specific nutrient deficiencies or imbalances in 

crop canopies can be identified (Hatfield et al., 2008). For example, hyperspectral data has 

enabled the estimation of canopy nitrogen concentration to demonstrate their applicability in 

timely determination of nutrient status in crops as shown in the study by Hatfield et al. (2008).  
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An attempt to demonstrate the potential use of field spectroscopy in estimating nutrient quality 

was made in Adão et al. (2017) where crop chlorophyll content was assessed. In a study by Hou 

et al. (2022), the reflectance spectral features at 550nm and the near-infrared (NIR) band was 

shown to be crucial in determining chlorophyll content and leaf cell structure in crops, 

emphasizing the importance of specific spectral bands in assessing nutrient quality. In a study by 

Liu et al. (2020), hyperspectral data was used to enable them differentiate N, P and K deficiencies 

in winter oilseed, emphasizing the significance of spectral bands in discriminating different 

nutrient stress conditions. Zhou et al. (2016) found airborne hyperspectral reflectance 

measurements to be effective in remotely estimating canopy nitrogen content in winter wheat, 

which highlights the potential of hyperspectral bands in assessing nutrient levels. A study by 

Bagheri et al. (2012) identified that wavelengths between 630-860 nm were most suitable for 

diagnosing nitrogen content. 

 

Literature shows that some studies have identified several important spectral  bands for assessing 

nutrients in crops. For example, in their study, Mejía-Correal et al. (2023) explored a range of 

wavelengths from visible to shortwave infra-red (SWIR) for estimating Total Soluble Solids (TSS) 

in grapes and found the tested range of wavelengths to be effective for TSS estimation. Pereira-

Obaya et al. (2023) identified distinct wavelengths such as 560, 680, 1400, and 1935 nm, as 

effective for assessing plant health in chestnut trees. Similarly, Stagnari et al. (2023) highlighted 

the relevance of the blue-cyan and early NIR spectral regions in determining nitrate content in 

spinach. 

 

Field studies have shown that vegetation indices like Red Edge Position (REP), calculated from 

narrow spectral bands in the red-edge region (around 700 ±40 nm) correlates strongly with 

nitrogen content (González-Piqueras et al., 2017). This is because reflectance in the red-edge 

region is sensitive to crop canopy chlorophyll, which is closely related to nitrogen status (Clevers 

and Gitelson,  2013). Red-edge bands have also shown importance in estimating other elements 

essential like chlorophyll content and photosynthetically active radiation for crop health apart 

from nitrogen as described in Mashiane et al. (2023). In a study by Prananto et al. (2020) it was 

found that NIR spectroscopy can detect macro-nutrients such as N, P, and S directly because 

they are major constituents of NIR-sensitive organic compounds. On the other hand, macro-

nutrients and micro-nutrients that exist mostly in inorganic forms such as Ca, Mg, and K are 

detectable through association with organic compounds and indirect correlations with organic 

compounds. 

 

Weiss et al.(2020) conducted a research exploring assessment of N on wheat leaves using the red-

edge position (700 nm) demonstrating the ability of the technique to estimate nitrogen content 

remotely. A study by Santos et al. (2013) explored the detection of P and K in wheat grains using 

hyperspectral imaging pinpointed certain spectral bands within the visible and near-infrared 

spectrums as particularly responsive to variations in the macro-and micro-nutrients. Prananto et 

al. (2020) explores the potential of NIR bands ((700–2500 nm) to estimate both macro- and 

micronutrient contents in plant leaves, indicating effective prediction of nutrient content, but it 

primarily targeted leaf tissues rather than grains. Their study found that both macro- (N, P, K, S, 

Ca, Mg) and micronutrients (Fe, Zn, Mn, Cu) in plant leaves could be accurately predicted within 

the NIR bands. Macronutrients, which are more reliably detected due to their presence in NIR-

sensitive organic compounds, showed high prediction accuracies. For instance, N had a median 

calibration R2 of 0.98 and validation R2 of 0.94, P had a median calibration R2 of 0.91 and 
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validation R2 of 0.62, and K had a median calibration R2 of 0.94 and validation R2 of 0.64. In 

contrast, micronutrients exhibited lower prediction accuracies, such as Fe with a median 

calibration R2 of 0.81 and validation R2 of 0.72, and Zn with a median calibration R2 of 0.85 and 

validation R2 of 0.62. These results highlight the greater reliability of NIR spectroscopy in 

detecting macronutrients compared to micronutrients. They attributed this to the fact that 

micronutrients and some macronutrients, primarily existing in inorganic forms, are identified 

through their association with organic compounds and indirect correlations. 

 

A couple of indices have been explored for estimating crop. For instance, indices based on red-

edge, like the Normalized Difference Red Edge (NDRE), have been recognized as successful 

methods for assessing nutrients in crops using spectral analysis (Prey et al., 2018). .NIR 

spectroscopy has also been utilized to rapidly and accurately assess various nutritional 

components of wheat, such as grain protein concentration, chlorophyll content (Jiao et al., 2022; 

McGRATH et al., 1997). Schirrmann et al. (2016) developed  multispectral indices to assess N, P, 

and K concentrations in wheat canopies, emphasizing the potential of theses indices for 

integrated nutrient management. These examples illustrate the importance of selecting precise 

spectral bands for accurate nutrient analysis. 

 

2.4. Integration of machine learning in crop nutrient estimation 

The use of machine learning techniques to estimate crop nutrients and their nutritional quality 

has been explored using various methods, including remote sensing and hyperspectral canopy 

sensing (Cummings et al., 2021; de Oliveira et al., 2021; Stanton et al., 2017; Yu et al., 2018). 

Integrating ground spectral measurements with machine learning approaches, like Partial Least 

Squares Regression (PLSR), allows for analysis of spectral data, facilitating accurate and efficient 

assessment of nutritional quality (Furbank et al., 2021). 

 

Application of machine learning techniques and spectral indices from un-manned vehicles (UAV) 

have been explored for estimating chlorophyll content in crops (Narmilan et al., 2022). By 

integrating machine learning and NIR spectroscopy, Sun et al. (2023) was able to retrieve canopy 

chlorophyll content and leaf area index, while Li et al. (2022) was able to estimate  nitrogen 

nutrition index in crops. Some other applications showing integration of machine learning in 

assessing crop nutritional quality include that by Narmilan et al. (2022) in predicting canopy 

chlorophyll content in sugarcane; and crops. Muñoz-Huerta et al. (2014) incorporated  

machine learning algorithms with NIR canopy reflectance to determine crop N requirements. 

The use of machine learning to estimate nutrients concentrations was reported as successful due 

to its ability to provide accurate, efficient, and non-invasive monitoring of crop health and 

nutritional needs. 

 

The application of machine learning has some limitations that should be considered for their 

successful use in estimating crop nutrients. For example, the performance of machine learning 

techniques depends on spectral data used for training, which can affect the accuracy of retrieving 

crop variables from spectral reflectance data (Revill et al., 2020). Additionally, the effectiveness of 

spectral imaging techniques can be influenced by external factors such as lighting conditions and 

the presence of noise, which may impact the accuracy of the results (Li et al., 2020). The 

integration of spectroscopy and machine learning to evaluate nutrient levels requires some level 

of expertise for successful implementation and optimization (Li et al., 2020). Some of the 
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machine learning techniques that can be used for estimating crop nutrient quality include PLSR, 

random forest (RF) and support vector machine (SVM), among others. 

2.5. Partial Least Squares Regression 

2.5.1. Description and its application 

PLSR is a statistical technique extensively applied across multiple disciplines, including 

agriculture, to assess and estimate nutrient content in crops (Peng et al., 2019). This technique is 

useful when dealing with a large number of predictors, in this case independent variables, and 

limited sample size. Unlike conventional regression techniques, PLSR creates  latent variables or 

components. These components are designed to capture the most variance in both the predictors 

and explanatory variables by finding the linear combinations that best describes their relationship. 

 

In literature, PLSR is recognized as a powerful calibration tool in chemometrics projecting data 

into a reduced-dimensional space formed through orthogonal latent components, maximizing the 

covariance between spectral data and chemical concentration matrices, as noted by Vohland and 

Emmerling (2011). It has been utilized in multiple agricultural applications, for instance, 

estimating leaf nutrient contents in crops (De Silva et al., 2023), estimate above ground biomass 

in winter wheat (Yue et al., 2018), or predicting soyabean yields under varied water applications 

(Crusiol et al., 2021). The PLSR technique has also been used to determine leaf nutrient levels in 

Eucalyptus through leaf hyperspectral reflectance as explored by de Oliveira and  Santana (2020), 

and to evaluate soil phosphorous concentrations in rice paddies, as demonstrated by Kawamura 

et al. (2019). PLSR has also been utilized to predict different macro- and micro-nutrients e.g., 

carbon, nitrogen, and phosphorous concentrations in crops across the globe, for example its 

application in China by Xu et al. (2017). 

 

The PLSR technique has been recognised for its potential in estimating bio-physical and bio-

chemical properties in crops. It has shown superior performance over conventional techniques 

like multiple linear regression in estimating a wide range of vegetation bio-physical and bio-

chemical properties (Yue et al., 2018). Studies have documented its successful use to accurately 

estimate leaf area index (LAI), above ground biomass (AGB), nitrogen levels and chlorophyll 

content when integrated with hyperspectral remote sensing data (Berger et al., 2018b; 

Darvishzadeh et al., 2008; Maqbool et al., 2012; Muñoz-Huerta et al., 2013; Robles-Zazueta et al., 

2022; Thorp et al., 2012). 

 

Some additional uses of PLSR is in estimation of various crop leaf water content, by 

incorporating remote sensing properties like backscattering coefficient or brightness temperatures 

as highlighted by Elmetwalli et al.(2021) and Vereecken et al. (2012). For their calibration and 

validation in the context of assessing crop characteristics, samples from cover crops fields are 

usually used (Xia et al., 2021). These studies and examples demonstrate the unique opportunity of 

integrating hyperspectral remote sensing with PLSR that can provide non-invasive and timely 

alternative method for accurate estimation of crop bio-physical and bio-chemical traits towards 

sustainable crop production, also echoed in Naik et al. (2020). 

2.5.2. How PLSR works 

As mentioned above, PLSR is a statistical method used to model complex data structures where 

the predictor variables are many and highly collinear. It addresses issues in multiple linear 
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regression (MLR) see Eqn. (2.1), particularly where the predictor matrix X might be singular due 

to more variables than samples or due to multicollinearity among the variables. 

 

where β is the regression coefficient matrix and 𝜀 is the error. 

 

The PLSR overcomes the singular matrix in MLR (𝑋𝑇) by transforming X into a new space 

following Eqn. (2.2). 

where T are the scores, P the loadings, and 𝜀 the residuals. 

 

Therefore, instead of regressing Y on X, PLSR regresses Y on the scores T, which involves 

calculating the regression coefficients (B) following Eqn. (2.3). 

The PLSR algorithm then iteratively calculates weights for X and Y to maximize the covariance 

between transformed X (scores t) and Y as shown in Eqn. (2.4) and (2.5). 

where w and q are weight vectors for X and Y, respectively. The scores t are often normalized by 

their norm. 

  

After calculating scores and loadings, PLSR deflates the X and Y matrices, removing the 

information explained by the extracted components following Eqn. (2.6) and (2.7). The process is 

repeated until a specified number of components are extracted or until the deflation yields no 

further information. After every iteration , vectors w,t,p and q are saved as columns in matrices 

W,T,P and Q, respectively 

where E and F are initialised as X and Y, respectively. 

 

Using the scores T, the final model coefficients are calculated to map back to the original 

predictor space following Eqn (2.8). R is a transformation matrix linking weights and loadings to 

align with the original variable space as shown in Eqn (2.9). 

 𝑌 = 𝑋𝛽 +  𝜀 
(2.1) 

 𝑋 = 𝑇𝑃 +  𝜀 
(2.2) 

 𝐵 = 𝑃(𝑇𝑇𝑇)−1𝑇𝑇𝑌 
(2.3) 

 
𝑡 = 𝑋𝑤 

 
(2.4) 

 
𝑢 = 𝑌𝑞 

 
(2.5) 

 
𝐸𝑛+1 = 𝐸𝑛 − 𝑡𝑝𝑇 

 
(2.6) 

 
𝐹𝑛+1 = 𝐹𝑛 − 𝑡𝑞𝑇 

 
(2.7) 

 
B = 𝑅(𝑇𝑇𝑇)−1𝑇𝑇𝑌 

 
(2.8) 

 
𝑅 = 𝑊(𝑃𝑇𝑊)−1 

 
(2.9) 
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The PLSR components, loadings, and scores play pivotal roles in capturing and interpreting the 

variance in data. 

 

2.5.3. Number of components and scores 

Components, also known as latent variables, are derived from the data to maximize the 

covariance between predictor variables X and response variables Y as highlighted by Rosipal and 

Krämer (2006). The number of components used is a critical parameter and is typically 

determined via cross-validation to prevent overfitting. Detailed description of PLSR algorithm 

can be found in Mevik and Wehrens (2007). 

 

Scores represent the projection of the original data onto the space defined by the PLSR 

components, showing how much information each component captures from original data 

according to McIntosh and Lobaugh (2004). 

 

2.5.4. Loadings 

Loadings indicate the weights assigned to the original variables in creating the latent variables 

(components) that maximize the covariance between predictor variables X and response variables 

Y. As such, the loading factor indicate how each element in X contributes to explaining Y within 

each component (El-Hendawy et al., 2019). This aids in interpreting the relationships between X 

and Y for nutrient estimation and assessment in crops. They help in understanding which 

variables are most influential in defining the components, thereby shedding light on the 

underlying patterns within the data. 

 

Together, these elements help in reducing dimensionality, managing multicollinearity, and 

enhancing the interpretability of complex datasets, making PLSR particularly valuable in fields 

like chemometrics and spectroscopy. 
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3. METHODOLOGY AND DATA 

3.1. Study area 

3.1.1. Geographical location, topography and climate 

The study was conducted within a region in Italy as shown in Figure 1. It spans the geographical 

range of 44°87’0’’N to 44°89’0’’N and 11°95’0’’E to 11°97’0’’E. The area  lies on the eastern edge 

of the Po River plain, one of the most fertile and agriculturally productive regions in Italy. The 

soils in the area are predominantly alluvial soils formed from sediment deposits of the Po River 

and its tributaries as highlighted by Giuseppe et al. (2014). These soils compositions range from 

sandy loam to silty clay loam, providing optimal drainage and water retention beneficial for wheat 

cultivation and are nutrient-rich due to periodic floodwater enrichment depositing silt and 

organic matter. 

 

The study area is characterized by temperate climate with distinct summer and winter seasons. It 

experiences daily temperatures that range between 3.9 to 23.1°C during the mild winter and 

humid summer, respectively as stated by Poggi et al. (2022). In winter season, the mean daily 

temperature can fall up to -4°C according to Mercuri et al. (2013). The area receives monthly 

rainfall of between 41.1 to 54.6 mm during winter and summer periods, respectively according to 

Belgiu et al. (2023). 
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Figure 1: Study area showing the points (in yellow) where wheat samples were collected i.e., experimental 

sampling units. 

3.1.2. Selected crop of interest 

In this study, wheat (Triticum aestivum L.) was selected as the crop of interest due to its paramount 

importance in global food security as a staple cereal alongside rice and maize as noted by Shrawat 

and Armstrong  (2018). According to Tagliabue et al.  (2022), wheat is one of the main crops 

grown in the area besides barley, corn, sugar beet, alfalfa, soybean, rice, and medicinal plant. 

According to the Food and Agriculture Organization (FAO), wheat is the second most-produced 

cereal worldwide, following maize, with a production of over 731 million tonnes in 2019. As a 

predominant staple crop in temperate zones, it is a primary food source, providing about 20% of 

the daily protein and food energy for 4.5 billion people, underscoring its economic and 

nutritional importance as highlighted in Shiferaw et al. (2013). 

 

Wheat crop is adaptable to extensive cultivation and long-term storage allowing it to be used to 

support approximately 35% of the global population despite challenges from pests and diseases. 

In the present study area, the wheat crop is planted and harvested in March and July, respectively. 

The predominant varieties of wheat cultivated in the area include augusto, bologna, bramante, 

cesare, giorgione, odisseo, orobel, santorin, sypassion, and titolavio (Belgiu et al., 2023). 

 

The selection of macro-nutrients (Ca, Mg, K, S, P, and N) and micro-nutrients (Fe and Zn) is 

crucial due to their essential roles in plant growth and human health. These nutrients play vital 

roles such as bone health (Ca, Mg), oxygen transport (Fe), amino acid synthesis (N), immune 

function (Zn), and energy production (P). Deficiencies in these nutrients can lead to health issues 

like anemia, weakened immunity, bone disorders, and impaired growth. 
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3.2. Sampling design for field measurements collection 

For collection of data, a field campaign was conducted during the summer of 2023. To facilitate 

this, a total of ten experimental sample units (ESU) for each wheat growth stages were designed. 

Two growth stages, consistent with the present study objectives were considered: vegetative, 

reproductive. 

 

The ESUs were of 60 m x 60 m in size. Every ESU consisted of four plots of 15 m x 15 m 

dimension as shown in Figure 2. Within each plot, five locations were selected from where wheat 

canopy spectral measurements together with bio-chemical and bio-physical parameters were 

taken. The bio-physical and bio-chemical parameters collected were leaf area index (LAI), leaf 

water content (LWC), leaf mass per area (LMA), average leaf inclination angle (ALIA), leaf 

chlorophyll content (LCC), canopy chlorophyl content (CCC), leaf nitrogen content (LNC) and 

canopy nitrogen content (CNC). In summary, there were 10 ESUs containing four plots each to 

result in 40 samples being collected for every growth stage. 

 
Figure 2: Schematic representation of the experimental sampling units (ESUs). 

To obtain a single spectral measurement for a plot in each of the growth stages, each of the 

spectral measurements from the five points were averaged. The fresh whole plant samples were 

separated into leaf, stalk and grain compartments. Thereafter, fresh and dry weight of each of the 

compartments were obtained in the field before being taken to the laboratory for nutrient 
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analysis. These spectra and nutrient measurements were provided by the supervision team in 

comma separated values (CSV) format. 

3.3. Data pre-liminary processing 

Although the ground spectra measurements and the actual nutrient measurements were initially 

deemed as “ready for analysis”, further scrutiny to verify their completeness and accuracy were 

incorporated. This involved handling of missing data points within the time series, removing 

duplicates and carrying out cleaning procedures on the datasets to enhance data quality. 

Additionally, checks were implemented to ensure the input files, specifically column names that 

represent nutrients being analysed and formats, were correctly structured to meet the input 

requirements of the PLSR model. This pre-processing was essential to ensure the quality of the 

datasets for analysis and subsequent study findings. 

 

The ground spectral measurements have inherent uncertainties that requires assessment, 

quantification and reduction to improve their applicability in estimating nutrient concentration in 

crops such that nutrient estimates closely match the actual measurements. In this study, the 

ground spectral measurements underwent several preprocessing steps to ensure data quality. 

First, the data were checked  for completeness and duplicates. Thereafter, a logarithmic 

transformation was applied to stabilize variance due to anomalies resulting from spectra peaks, 

followed by smoothing with a spline filter. Atmospheric windows (1338-1449, 1793-1993, and 

2356-2500 nm) were omitted from the analysis to exclude water bands and other interferences 

following Belgiu et al. (2023). 

3.4. Estimation of nutrient concentration in canopy 

Figure 3 illustrates the methodology adopted for addressing the research questions and achieve 

the objectives. To address the first objective and related question, PLSR detailed in section 2.5 

was used to analyse the full spectral response at main wheat growth stages (vegetative and 

reproductive) to the nutrient concentrations in the canopy. The decomposition of a matrix of 

ground-spectral measurements into linear combinations using partial least squares (PLS) was 

utilized to explain variations in nutrient concentrations. 
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Figure 3: Flow chart describing the methodology. The numbers 1, 2, 3 represent where each objective is being 
addressed. 

 

The objective of PLS was to predict response variable or Y based on explanatory variables or X, 

while describing the common structure inherent to both variables. As a regression technique, it 

facilitates the discovery of underlying factors i.e., linear composites of X that optimally model Y 

by following Equation (3.1) as detailed in section  

 

where β is the slope of a standard linear regression model, ε is the error term, 𝑇𝑃𝑇 represents the 

transformation of X into a series of correlation coefficients or scores (T) and their corresponding 

loadings 𝑃𝑇. The first component explains the most variation in Y, followed by second, third etc. 

 

 𝑌 = 𝑋𝛽 + ⋯ … + 𝑇𝑃𝑇 +  𝜀 (3.1) 
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The PLSR analysis focused on the loadings to understand the strength and direction of estimated 

nutrient concentrations among important regions of the spectrum, including visible, NIR, SWIR 

wavelength. The scores were used to estimate nutrient concentration in canopy at a given stage. 

 

The PLSR was applied due to its robustness in handling collinear and high-dimensional spectral 

data (Ryan and Ali, 2016; Wold et al., 2001) . The analysis aimed to develop a predictive model 

that accurately estimates nutrients concentration based on the spectral characteristics of the 

canopy. In this context, spectra measurements constituted the explanatory variables X, while the 

estimated nutrient concentrations acted as the Y variable. The measured nutrients concentration 

in canopy at various growth stages served as the reference. The PLSR algorithm implemented in 

R environment using “caret” package was used for analysis. 

 

To assess the relationship between ground spectral measurements and nutrient content in wheat 

crops, biplots of the first two PLSR components were used. Biplots display both the scores and 

the loadings simultaneously to facilitate interpretation of both the spectral data and nutrient 

concentrations. In the interpretation of the boxplots, the position (in terms of which quadrant) 

and direction of the loadings(in terms of right or left) indicate how each spectral variable 

contributes to the components, while the sample scores reveal the distribution and clustering of 

observations. This method facilitates understanding of the multivariate relationships, identifying 

key spectral bands associated with nutrient concentrations to facilitate assessing the ability of the 

PLSR models to discriminate between different nutrient concentrations in the wheat samples. 

Additionally, the Variable Importance in Projection (VIP) plots that shows a measure of a 

variable’s importance in modelling Y using X were used to identify the most important bands for 

estimating various nutrients. In order to include most important variables in the models, a lower 

VIP threshold of 0.1 was applied as opposed to 1 that is commonly used in most studies 

(Doesburg et al., 2019; Fan et al., 2016). 

3.5. Estimation of nutrient concentration in grains at maturity 

The second objective focused on estimating nutrient concentrations in wheat grain at maturity 

across 40 plots. This required three key inputs for each nutrient: (1) laboratory-measured nutrient 

concentrations in the canopy during vegetative and reproductive stages (2) laboratory-measured 

nutrient concentration in grains at maturity; and (3) nutrient estimates in the canopy for these two 

growth stages, as were estimated using PLSR in the first objective. 

 

To  address this objective, the initial step involved establishing  a statistical relationship between 

the nutrient concentrations measured in the grain at maturity and those measured in the canopy 

at the two growth stages. To test and establish the presence of linear or non-linear relationships 

(see example in equation (3.2) and (3.3)) between nutrients measured in the canopy and grains, 

the “lmtest’ package in R was used. 

 

 𝑌 = 𝑎𝑋1 + 𝑏𝑋2 + 𝐶 (3.2) 

 𝑌 = 𝑎𝑋1
2 + 𝑏√𝑋2 + 𝐶 (3.3) 
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where, Y is the nutrient concentration in the grain; X1, and X are the nutrient concentrations at 

the vegetative and reproductive stages, respectively; C is a constant; and a and b are coefficients. 

 

The coefficients obtained from this statistical relationship (a, and b in the examples) indicated 

how nutrient concentrations at each growth stage contributed to the final nutrient concentration 

in the grain. This analysis aimed to reveal which growth stages have most impact on the nutrient 

concentrations in the grain. 

 

Finally, this established statistical relationship was used to predict nutrient concentrations in the 

grain. Here, the nutrient estimates obtained from the PLSR for the specified growth stages served 

as input variables. 

3.6. Comparison of estimated and laboratory-measured nutrient concentrations 

To compare the estimated and laboratory-measured nutrient concentrations, statistical metrics 

including the Root Mean Square Error (RMSE) and the Coefficient of Determination (R2) were 

used. RMSE provides a measure of the differences between the nutrient concentration values 

estimated by the PLSR (in case of ground-spectral measurements in objective 1) or established 

regression equation (in case of nutrients concentration for two growth stages in objective 2) and 

their corresponding values measured in the laboratory, to quantify the prediction error. Its 

formula is shown in equation (3.4). 

 

where n is the number of observations, 𝑦𝑖 is the actual value of the dependent variable; and 𝑦𝑖̂ is 

the predicted value of the dependent variable. 

 

The RMSE values range from -∞ to ∞. Lower RMSE values would indicate a closer match 

between obtained estimates and laboratory measurements, thus affirming the reliability (or 

predictive power) of using ground spectral measurements for nutrient estimations. 

 

Relative RMSE that is calculated by dividing the RMSE by the mean of the actual values, then 

multiplying by 100 to express it as a percentage, to normalize the error in relation to the 

magnitude of the actual observed data was also used. This is due to high variability in RMSE 

values and also to allow easy comparison across different nutrients. 

 

The R2 value was used to measure the proportion of variance in the laboratory-measured nutrient 

concentrations that is predictable from the estimated nutrient concentrations. It ranges from 0 to 

1 and its equation is shown in equation (3.5). An R2 value closer to 1 suggests a high degree of 

correlation, supporting the study hypothesis of a high relationship between estimated and 

laboratory measured nutrient concentrations. 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖−1

 
(3.4) 

 𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖−1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖−1

 
(3.5) 
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where 𝑦̅ is the mean value of the actual values of the dependent variable. 

 

These analyses were conducted for the different growth stages (when focusing on nutrient 

concentration in canopy) and at maturity when focusing on grains to identify specific patterns 

and variations in nutrient dynamics. 
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4. RESULTS AND DISCUSSION 

4.1. Field data summary 

4.1.1. Nutrient concentration in canopy and grains measured in the laboratory 

The results on the nutrient composition at different growth stages (i.e., vegetative and 

reproductive) and for grains is shown in Figure 4. 
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Figure 4: Box whisker plots representing the nutrient composition of wheat canopy (vegetative and reproductive 
stages) and grains. A single box-whisker represents a series of 10 ESU plots in the study area. The black horizontal 
line inside the box represents the median (50th percentile), the top and bottom boundary of the box represents the 
25th and 75th percentiles, while the whiskers indicate the extreme values (5% and 95%) excluding outliers. The black 
dots show the outliers. 

As shown in terms of median values of the boxplots, a comparative insights indicate that highest 

concentrations of most nutrients (with exception of Mg, Fe and Ca) is shown during the 

vegetative growth stages. This suggest that a potential high nutrient uptake during this stage of 

wheat development. This nutrient concentration decreases at reproductive stages, but still higher 

than that in the grains in some cases. Further, the grains exhibits the lowest nutrient 

concentrations for most nutrients. This suggests that a lower concentration of nutrients is 

translocated into the grains. These patterns highlight how nutrient uptake and accumulation vary 

across different growth stages, with initial stages (i.e., vegetative stage) generally having higher 

nutrient concentrations and a lower concentration of nutrients being mobilized or remobilized 

into the grains. In some instances, P and Zn concentrations in grains were higher than in the 
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canopy during the early growth phase. This may be due to the mobilization of P and Zn from the 

canopy to the grains during the later growth phase. 

 

In general, each stage shows distinct ranges and median values for the different nutrients, 

indicating how nutrient concentrations vary across different growth stages of the wheat crop. 

Outliers suggest variability in nutrient content, which could be due to several factors including 

soil composition, fertilization, environmental conditions and potential measurement errors. 

4.1.2. Correlation between biophysical or biochemical properties with nutrients 

In Figure 5, heatmaps are presented to illustrate the relationships between various biophysical or 

biochemical properties and nutrient concentrations in wheat crop during its development stages. 

The figures show how specific bio-physical and bio-chemical properties correlate with essential 

micro- and macro-nutrients. Positive correlations, denoted in shades of red and orange, suggest 

that as one property increases, the corresponding nutrient concentration also tends to rise. 

Conversely, negative correlations, highlighted in blue and purple, indicate an inverse relationship. 
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Figure 5: Correlation heatmaps illustrating the relationships between various biophysical or biochemical properties 
and nutrient concentrations in wheat crop in the canopy (vegetative stage at the top and reproductive stage at the 
middle) and grains at the bottom. The y-axis represents the nutrients and the x-axis represents the properties leaf 
area index (LAI), leaf water content (LWS), canopy water content (CWC), leaf mass area (LMA), average lea 
inclination angle (ALIA), leaf chlorophyll content (LCC), canopy chlorophyll content (CCC), leaf nitrogen content 
(LNC) and canopy nitrogen content (CNC). Positive correlations are depicted in shades of red and orange, indicating 
a direct relationship, while negative correlations are shown in shades of blue and purple, indicating an inverse 
relationship. The intensity of the colour corresponds to the strength of the correlation. 



ASSESSMENT OF NUTRIENTS IN CROP CANOPY TO ESTIMATE NUTRIENTS IN YIELD USING GROUND SPECTRAL MEASUREMENTS 

26 

Results of the heatmaps reveal a consistent pattern of strong positive correlations between 

properties such as LAI, LWC, and CCC with nutrients like S, N, and K. This highlights their 

potential role in enhancing nutrient uptake and utilization in wheat crops. For example, the 

increased LAI suggests a larger photosynthetic area, which can enhance the plant's capacity to 

absorb and utilize nutrients more effectively, thus improving nutrient uptake and utilization in 

crops. 

 

The negative correlations observed in the heatmaps, particularly between properties like LMA 

and nutrients such as P, Mg, and Fe, suggest potential trade-offs in plant physiology. These trade-

offs may reflect the wheat crop’s adaptive strategies to optimize growth under varying 

environmental conditions. For instance, the strong negative correlation between LMA and Mg in 

the heatmaps implies that plants with higher leaf mass per area might exhibit reduced magnesium 

concentrations, possibly due to altered metabolic demands or nutrient allocation strategies as 

described by Wright et al. (2005). Similarly, the negative correlation between LMA and Fe 

highlights the intricate interactions between different nutrients and the need for a balanced 

approach in nutrient management to avoid deficiencies that could impair plant health and 

productivity. Ensuring optimal amount of one nutrient without negatively impacting others is 

essential for maintaining overall plant growth. 

 

The integration of canopy nutrient data and leaf traits can offer an understanding of nutrient 

dynamics within crop canopies and grains. Various bio-physical and bio-chemical properties that 

affect nutrient uptake and allocation strategies, can potentially impact nutrient concentrations in 

different plant parts also noted by Bertheloot et al. (2008). For instance, higher LAI can enhance 

photosynthesis, thereby increasing the uptake and assimilation of these essential nutrients, which 

can improve plant growth and resilience. Such an understanding can aid in optimizing the use of 

fertilizers and water resources, contributing to improved nutritional quality and yields towards 

meeting the global demand for food more efficiently. 

4.1.3. Results on ground spectral measurements pre-processing 

The preprocessing of the ground spectral measurements effectively stabilized variance and 

reduced noise, as seen in the smoother spectral features in Figure 6. For brevity only a sample at 

one of the sample plots is shown but the pattern is replicated for other spectral measurements. 

Removal of atmospheric windows ensured the exclusion of water bands, resulting in clearer and 

more reliable spectral data for subsequent PLSR analysis. These steps improved the quality of the 

ground spectral measurements for subsequent spectral analysis by mitigating variance instability 

and atmospheric interference. 

 



ASSESSMENT OF NUTRIENTS IN CROP CANOPY TO ESTIMATE NUTRIENTS IN YIELD USING GROUND SPECTRAL MEASUREMENTS 

27 

 
Figure 6: Pre-processed ground spectral measurements showing original (blue solid line) and smoothed spectra (red 
dashed line) after transformation and applying spline filtering and ESU09 and plot 1 for vegetative stage. 

4.2. Estimation of nutrient concentration using Partial Least Squares Regression and crop 

canopy spectra measurements 

In this section, the results of PLSR analysis carried out to estimate nutrient concentrations from 

crop canopy spectra are presented. The results are structured to present various PLSR outputs, its 

performance and key findings as demonstrated in the following sub-sections. 

4.2.1. Performance of the PLSR model 

The performance of the PLSR model for each of the nutrients across the crop canopy are 

summarised in Table 1. Results showed that the PLSR ground spectra models had variable 

performance across different nutrients and growth stages. S and Zn had the highest R² values, 

indicating the model explains 67% of their variances, making them the best-performing models 

among the nutrients  for the vegetative growth stage. In contrast, Fe has the lowest R² value at 

20%, indicating the limited ability of the model to explain its variance. For the other nutrients for 

this vegetative growth stage, the models explained 56, 20, 56, 49 and 54% of the variability in Ca, 

K, Mg, and N. 

 

During the reproductive stage, Mg showed the highest R2 of 0.87, indicating that the model 

explained a large proportion of variance for this nutrient. Ca had the lowest R2 value, suggesting 

that the model may not be as effective in estimating this nutrient as it could only on average 

explain up to 20% variability in Ca concentration. In terms of performance across the growth 

stages, PLSR models generally accounted for most of the variabilities in nutrients during the 

reproductive growth stages. 
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Table 1: Summary of the PLSR decomposition of ground spectra measurements alongside model performance at a 
given wheat growth stage for each nutrient. Ncomp is the number of components for each model (maximum = 5). 
R2 and RMSEP are unitless while the units for RMSE and MAE are same as those for response variable (nutrients 
concentrations i.e. mg kg-1 for all nutrients except N that is in %) 

Stage Nutrient R2 RMSE RMSEP MAE Ncomp 

V
eg

et
at

iv
e 

(C
1
) 

Ca 0,56 382,06 400,08 305,86 5 

Fe 0,20 12,70 13,12 10,0 1 

K 0,56 1300,83 1329,66 1047,3 2 

Mg 0,49 199,00 205,01 156,1 3 

S 0,67 279,63 284,97 235,2 5 

P 0,21 275,55 283,14 226,3 2 

Zn 0,67 3,45 3,53 2,8 4 

N 0,54 0,28 0,29 0,2 3 

R
ep

ro
d
u
ct

iv
e 

(C
2
) 

Ca 0,20 278,17 280,96 231,8 3 

Fe 0,74 8,06 8,54 6,4 5 

K 0,61 1441,41 1484,64 1190,6 5 

Mg 0,87 257,29 262,72 220,0 5 

S 0,71 160,32 164,98 127,9 5 

P 0,62 258,21 261,91 212,6 5 

Zn 0,51 2,97 3,03 2,5 3 

N 0,42 0,25 0,25 0,2 5 

 

 

The results of optimal number of components determined based on cross-validation (see Table 

2) and detailed in Appendix B, showed that nutrients such as Fe and P used fewer number of 

components (1 and 2, respectively) as compared to Ca and S for the vegetative stage to suggest 

that the models were simple. The results show that the model was complex mostly for the 

nutrient concentrations during the reproductive stage (i.e., greatest number of components). 

These findings suggest that to avoid over-fitting while maintaining predictive power of the 

models, a tailored approach for each nutrient is needed during the vegetative stage. 

 

Table 2: Number of component and their percentage explained variances 

Stage Nutrient Ncomp Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

V
eg

et
at

iv
e 

(C
1
) 

Ca 5 61,31 25,83 11,39 0,83 0,33 

Fe 1 56,96     
K 2 59,85 35,25    
Mg 3 61,89 16,68 19,95   
S 5 56,96 37,57 3,98 0,85 0,27 

P 2 31,95 15,75    
Zn 4 58,42 36,59 3,09 1,31  
N 3 47,12 47,68 3,73   

R
ep

ro
d
u
c

ti
v
e 

(C
2
) Ca 3 80,23 11,21 7,05   

Fe 5 68,4 27,05 3,05 0,58 0,48 

K 5 24,82 69,32 4,36 0,74 0,27 
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Mg 5 77,63 17,28 3,6 0,52 0,57 

S 5 78,16 17,61 2,23 0,87 0,37 

P 5 75,89 16,39 6,22 0,34 0,46 

Zn 3 79,73 15,82 2,94   
N 5 80,1 15,56 0,95 2,26 0,75 

 

Table 2 shows the results of variance explained by each of the components. For most nutrients, 

the first few components explained the majority of the variance. For instance in Ca during the 

vegetative growth stage, most variance is captured by the first two components (61.31% and 

25.83%) though up to 5 components were used. Similarly, for Zn during the reproductive growth 

stage, most variance is captured by the first two components (80.1% and 15.56%) as 

demonstrated by scree plots in Figure 7 and Appendix A. This suggests that while more 

components can be added to marginally improve the model, the bulk of the explanatory power is 

concentrated in the first few components. It is noted that more number of components generally 

lead to better performance but can also risk overfitting. 

 

  
Figure 7: Scree plots of percentage variance explained by each component of Ca and Zn for vegetative and 
reproductive growth stages, respectively. 

 

For predictive accuracy, the model errors (RMSE and MAE) were the lowest for N and Zn 

during both the vegetative and reproductive growth stages, indicating better performance of the 

PLSR model for estimating these nutrients. Conversely, the models for K demonstrated lower 

accuracy, indicated by relatively high model errors in both stages. This weaker model 

performance might be attributed to higher variability or measurement scale in K nutrient 

concentration. It is noted that the PLSR models only had access to limited number of samples for 

training and validation. Future studies to improve estimation of K by using ground spectral 

measurements could potentially be explored in the future through increasing number of samples 

and further data processing, outlier removal, or PLSR model simplification by reducing the 

number of components. However, these steps were not undertaken in the present study. 
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Overall, these findings suggest that the PLSR model was more effective in estimating and 

explaining variability in nutrients such as S and Zn during the vegetative stage, and showed better 

performance for magnesium Mg and Fe during the reproductive stage, a finding that is also 

consistent with study by Belgiu et al. (2023) who found models to be effective at early growth 

stages. Conversely, the PLSR model performed poorly in explaining the variances of nutrients 

like Fe and P in the vegetative phase, and exhibited weaker performance for Ca and N in the 

reproductive stage. Additionally, the model errors revealed that K had the highest error in both 

stages, indicating the need for further model refinement. 

4.2.2. Identifying bands significantly correlated with nutrients concentration 

4.2.2.1. Analysis based on correlation of first two components using biplots 

 

The correlation between the first two components for the PLSR models at the vegetative and 

reproductive stages are shown in Figure 8 with further results included in Appendix D. In the 

vegetative stage, the biplots indicate strong correlations between certain ground spectra 

measurements and various nutrients. For N, wavelengths 1919, 1242, and 1464 show strong 

positive correlations with principal component 1, while 350 shows a negative correlation. Vectors 

1019 and 1242 in the upper right quadrant are highly correlated and strongly influence both 

components 1 and 2. In contrast, wavelengths 1464, 796, 1687, and 1090 in the lower right 

quadrant are correlated and highly influence component 1, opposing vector 350 and the samples 

in the upper left quadrant. Vectors pointing outward indicate positive correlations with other 

elements, with clusters along these vectors representing samples with high N values. 

 

Further results for the vegetative stage show that for Ca, wavelengths 2356, 573, 2133, and 1910 

are positively correlated with principal component 1 (PC1), while wavelength 350 is negatively 

correlated. Vectors 2356, 573, and 2133 in the upper right quadrant are highly correlated and 

significantly influence both components 1 and 2, as indicated by their distance from the origin. 

Samples in this quadrant are closely related and show opposite tendencies to those in the lower 

left quadrant on component 2. In contrast,, wavelengths 1910, 1687, 796, 1464, 1242, and 1019 in 

the lower right quadrant are correlated and strongly influence component 1. They oppose the 

vector 350 and the samples in the upper left quadrant. Vectors pointing right indicate positive 

correlations with other elements in that direction, with clusters of points along these vectors 

representing samples with high Ca values. Similarly, for Fe, there is minimal correlation as the 

vectors are close to the origin. K shows a positive correlation with principal component 2 (PC2) 

and a negative one with PC1 for variables 2356, 573, and 2133, while 350 is positively correlated 

with PC1. Mg has wavelengths like 796, 1242, and 573 showing a positive correlation with PC2 

and negative with PC1, with 350 indicating a strong positive correlation with PC1. S exhibits 

positive correlations with PC1 and PC2 for variables 1019, 1242, and 1464, and negative 

correlation for 350. P indicates strong negative correlations with PC1 and PC2 for variables 2356, 

573, and 2133, with positive correlation for 350. Zn presents strong positive correlations with 

PC1 for 1019, 1242, and 1464, and negative for 350. 
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Figure 8: Biplots showing the correlation between the component 1 (PC1) and component 2 (PC2) for the models in 
vegetative and reproductive stages. 

 

In the reproductive stage, Ca shows positive correlations with PC2 and negative with PC1 for 

variables 1019 and 796, with 573 also significantly contributing. For Fe, wavelengths 2133, 2356, 

and 1464 are positively correlated with PC1. K has strong positive correlations with PC1 and 

negative with PC2 for 1019 and 1242, while 2356, 1910, 2133, and 1687 significantly contribute 

to PC1, contrasting with the lesser contribution of 350. Mg in this stage shows positive 

correlations with PC2 and negative with PC1 for 1019, 573, and 1242. 

 

The findings from the correlation between the first PC1 and PC2 highlights the most important 

ground spectra measurements that influence nutrient concentration in wheat crop, with varying 

patterns across vegetative and reproductive stages. Strong positive or negative correlations 

indicate which variables are key contributors, while vectors close to the origin suggest minimal 
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impact. As such an insight is obtained that can aid in identifying crucial spectral features for 

efficient nutrient monitoring and management. 

4.2.2.2. Analysis based on contribution of spectral regions using VIP plots 

Results of revealing the most important spectral bands for estimating various nutrients are 

summarised using VIP plots, for example Figure 9 and further results included in Appendix E, 

which highlight that certain spectral bands are crucial for predicting the concentrations of specific 

nutrients. Analysis during the vegetative stage area that for Mg, the critical bands are 350 - 450 

nm, 450 - 650 nm, and 2100 - 2400 nm. Estimation of K is mainly influenced by bands at 700 - 

1350 nm, 1450 - 1800 nm, 2050 - 2400 nm, and 400 - 600 nm. Most contributions for Ca are 

from bands at 350 - 750 nm, 950 - 2400 nm, and 1150 - 1650 nm. The estimation of S is most 

influenced by bands at 2250 - 2400 nm, 1650 - 2050 nm, 700 - 950 nm, and 350 - 600 nm. N, Zn 

and Fe had lower VIP scores than the applied VIP threshold of 0.1 to indicate that none of the 

bands contributed to explaining the variance in these nutrients concentrations during the 

vegetative stage. This implies that alternative methods or additional data may be required to 

accurately determine the key spectral bands for predicting the content of Fe, N, and Zn. 

 

The contributions of the spectral regions in this vegetative stage indicate that different nutrients 

are best estimated by specific spectral bands, reflecting their unique absorption and reflection 

characteristics. Mg is strongly associated with both ultra-violet rays (UV) – visible (VIS) and 

shortwave infrared 2 (SWIR2) regions, suggesting these wavelengths capture critical information 

about Mg-related processes in vegetation. The most important bands influencing K estimation  

span a broad range from VIS to SWIR2, highlighting its widespread interaction across different 

spectral regions. Most important bands for Ca in VIS and shortwave infrared  (SWIR1) - SWIR2 

suggest these regions are crucial for detecting its presence and concentration. S shows a strong 

influence from SWIR2, SWIR1-SWIR2, Red edge-SWIR1, and UV-VIS regions, indicating these 

bands are vital for capturing S-related spectral signatures. The detection of S is attributable to 

vibrational properties of proteins and amino-acids which are detectable in SWIR due to water 

absorption that is linked to Oxygen-hydrogen bonds. 
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Figure 9: Variable Importance in Projection (VIP) plots for P and S nutrients during the vegetative stage (c1) and Ca 
and Mg during the reproductive stage. 

For the reproductive stage, the analysis of spectral data identified the critical bands for estimating 

various nutrients as follows. For P, the important bands are 1000 - 1150 nm, 350 - 500 nm, 700 - 

850 nm, and 1550 - 2150 nm. This suggest that most of the P’s absorption and reflectance 

activities is across SWIR1, UV - VIS, Red edge, and SWIR2 regions, indicating that these 

wavelengths capture essential aspects of P’s role in reproductive processes. Mg is mostly 

influenced by bands at 350 - 500 nm, 650 - 850 nm, 1000 - 1150 nm, and 1600 - 2150 nm. These 

influential bands for Mg spanning UV - VIS, Red edge - NIR, and SWIR1-SWIR2 highlights its 

extensive interaction across various spectral regions, which may be linked to its role in 

chlorophyll function and energy transfer. For Ca, the key bands are 350 - 500 nm and 750 - 950 

nm which are within the UV - VIS and NIR regions, respectively, to suggest that these 

wavelengths are crucial for detecting its presence and concentration during the reproductive 

stage. 
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In general, during the vegetative stage, bands in the UV - VIS, VIS, NIR, SWIR1, and SWIR2 

regions are crucial for nutrients like Mg, K and S while in the reproductive stage, the critical 

bands for P, Mg, Ca are found in the UV - VIS, Red edge, NIR, SWIR1, and SWIR2 regions. 

During photosynthesis, K is instrumental in regulating crop water potential when carbon is 

exchanged with atmosphere, which explains its detectability at the NIR or SWIR2 regions 

associated with  water absorption features. Fe and Mg that are classified as metallic nutrients 

bond electrostatically to carbon compounds e.g., cellulose and lignin as highlighted in Belgiu et al. 

(2023), which results in absorption at longer wavelengths in the SWIR. Further, these nutrients 

are involved in chlorophyl biosynthesis to cause strong absorption characteristic due to 

Chlorophyll. Accessory pigments like carotenoids and anthocyanins are present in the visible 

spectrum to affect the nutrients detections at the early growth stages. UV is also useful for 

detecting nutrients associated with proteins and aromatic amino acids due to its influence on the 

N-H  bonds. These findings support the hypothesis that red-edge bands during the reproductive 

stage are significant predictors of overall nutrient concentrations, due to their sensitivity to 

chlorophyll. An understanding of these critical bands and their contributions provides better 

insights into crop development and the nutrition quality during key stages and thus improved 

crop monitoring towards curbing nutrients deficiencies and food security. 

4.2.3. Results of PLSR loadings 

Results of the relative contributions of ground spectral features to nutrients estimation for wheat 

at vegetative and reproductive stages are shown in Figure 10 and Figure 11, respectively. In the 

context of this study, the PLSR loadings facilitated showing the strength and direction of the 

response among important regions of the spectrum (VIS – 400 to 680 nm, NIR – 730 to1000 

nm, SWIR1 – 1000 to 1700 nm, and SWIR2 – 1700 to 2500 nm).  

4.2.3.1. Important spectral bands for predicting nutrients 

During the vegetative stage, the analysis of PLSR loadings identified important spectral regions 

for various nutrients in wheat canopy. For Fe, positive loadings spanned 379 nm to 2355 nm, 

with a peak at 2164 nm in the mid-infrared region, indicating a correlation between higher 

reflectance and higher Fe content, possibly due to water absorption features. Ca estimation 

showed positive loadings from 381 nm to 2355 nm, with a notable peak at 1523 nm in the NIR 

region, highlighting the importance of the plant water content and internal leaf structure. The 

broad range that includes VIS, NIR and SWIR regions suggest that Ca is influenced by multiple 

features. The positive loadings across these regions can also be attributed to various plant 

physiological processes. For example, in the visible range, reflectance is influenced by pigments 

like chlorophyll, which can indirectly reflect Ca concentrations. The NIR region is sensitive to the 

internal structure of the leaves and water content, which are crucial for understanding plant 

health and nutrient status. The SWIR region often relates to water absorption and other 

biochemical constituents of the plant (e.g., proteins, amino acids, cellulose lignin) as highlighted 

in Marshall et al. (2022). Negative loadings, indicating higher reflectance (or lower absorption) 

correlating with lower Ca content, were found from 350 nm to 380 nm, with the most 

pronounced negative loading at 350 nm at the UV-visible edge. This may reflect stress conditions 
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or lower pigment concentrations associated with reduced Ca concentration. This could be due to 

various factors affecting the plant’s ability to absorb or utilize Ca effectively within this region. 

 

K estimation identified positive loadings from 350 nm to 391 nm, with a peak at 350 nm at the 

UV-visible edge, suggesting healthier, pigment-rich plants that reflects more light. Mg content 

correlated with positive loadings from 350 nm to 380 nm, with a peak at 350 nm, indicating 

healthier plant tissues, while negative loadings in the NIR region suggested less dense or stressed 

tissues. P estimation showed positive loadings from 350 nm to 2355 nm, with a peak at 839 nm, 

indicating healthy internal canopy structures that reflects more NIR light. Negative loadings were 

identified from 350 nm to 2355 nm, with a peak at 652 nm, suggesting higher reflectance in the 

visible range correlates with lower P content, reflecting potentially less chlorophyl and poor plant 

stress. S content was linked to positive loadings from 381 nm to 2355 nm, with a peak at 1323 

nm in the NIR region while negative loadings from 350 nm to 380 nm were observed for S, with 

a peak at 350 nm, suggest higher reflectance in the UV-visible edge correlates with lower S 

content to indicate stress or lower pigment concentration. N estimation showed positive loadings 

from 381 nm to 2355 nm, with a peak at 971 nm in the NIR region, associated with healthier 

plant tissues. Similarly, negative loadings from 350 nm to 380 nm, with a peak at 650 nm were 

observed for N to indicate higher reflectance in the visible range correlates with lower N content, 

possibly due to reduced chlorophyll concentrations. Zn content was associated with positive 

loadings from 381 nm to 2355 nm, with a peak at 1337 nm in the NIR region, reflecting healthier 

plant tissues. 

 

In the reproductive stage, Zn estimation showed positive loadings from 350 nm to 2355 nm, with 

a peak at 1681 nm in the NIR region, indicating healthier plant tissues that reflects more NIR 

light possibly due to presence of water content in the plant tissues. No significant negative 

loadings were identified to indicate that there are no specific wavelengths where higher 

reflectance is associated with lower Zn content, suggesting a generally positive relationship 

between reflectance and Zn content. P content showed positive loadings across 350 nm to 2355 

nm, with a peak at 2264 nm in the SWIR region, highlighting the importance of P-related 

compound absorption features. S content was linked to positive loadings from 350 nm to 2355 

nm, with a peak at 1535 nm in the NIR region. Mg showed no positive loadings but had negative 

loadings from 350 nm to 2355 nm, with a peak at 1553 nm in the NIR region, indicating less 

dense or stressed tissues. K content showed positive loadings from 350 nm to 2355 nm, with a 

peak at 809 nm in the NIR region, reflecting healthier plant structures, while negative loadings at 

1994 nm in the SWIR region suggested a weak inverse relationship. Fe estimation showed 

positive loadings from 350 nm to 2355 nm, with a peak at 2046 nm in the SWIR region, 

indicating healthier plant tissues. Ca content showed no significant positive loadings but had 

negative loadings from 350 nm to 2355 nm, with a peak at 1648 nm in the NIR region, indicating 

less dense or stressed tissues. N estimation showed positive loadings from 350 nm to 2355 nm, 

with a peak at 1687 nm in the NIR region, reflecting healthier plant structures. 
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Figure 10: Response of spectral regions (as defined by PLSR loadings) to eight macro- and micro-nutrients in wheat 
canopy at vegetative growth stage. 
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Figure 11: Response of spectral regions (as defined by PLSR loadings) to eight macro- and micro-nutrients in wheat 
canopy at reproductive growth stage. 
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4.2.3.2. Differences in spectral response between growth stages 

During the vegetative stage, both positive and negative loadings influenced nutrient estimations 

across a broad range of wavelengths, including UV-visible, NIR, and SWIR regions. Positive 

loadings often indicated healthier, pigment-rich plants with robust internal structures, while 

negative loadings suggested stress conditions and reduced pigment concentrations. For example, 

Mg and K showed positive loadings at the UV-visible edge, indicating healthier plants, while 

negative loadings in the NIR region suggested stress or lower nutrient content. In contrast, the 

reproductive stage was characterized by a dominance of positive loadings, particularly in the NIR 

and SWIR regions, indicating healthier plant structures and a generally positive relationship 

between reflectance and nutrient content. Negative loadings were less pronounced, highlighting 

the stability of nutrient content during this stage. For instance, Fe and Zn showed strong positive 

loadings in the NIR and SWIR regions, reflecting healthier plant tissues with sufficient nutrient 

levels. 

 

The differences in spectral response between growth stages can be attributed to plant physiology 

and nutrient dynamics. During the vegetative stage, plants focus on growth and development, 

involving a complex interplay of pigments, water content, and structural integrity. This results in 

a wider range of significant spectral responses as the plant undergoes active growth processes. 

The presence of both positive and negative loadings reflects the variability in nutrient content due 

to fluctuating environmental conditions and physiological changes. In the reproductive stage, the 

plant’s focus shifts to seed production and maturation, leading to more consistent spectral 

responses dominated by positive loadings. This reflects the plant’s overall health and nutrient 

status with less variability compared to the vegetative stage. The stability in nutrient content 

during this stage is crucial for successful reproduction and seed development, resulting in fewer 

significant negative loadings. 

 

Environmental factors such as changes in water availability, light intensity, and temperature might 

also have influence the spectral responses. During the vegetative stage, the plant’s active growth 

and adaptation to these conditions cause variability in spectral reflectance. In the reproductive 

stage, the plant’s physiological processes stabilize, resulting in more consistent and positive 

spectral responses. 

 

In general, these spectral response analysis provides an understanding of the key wavelengths and 

regions that can help in developing targeted remote sensing tools for various nutrients 

estimations and monitoring. Farmers can use such the developed remote sensing tool tuned to 

these specific wavelengths to detect and manage various nutrients deficiencies more effectively. 

Furthermore, future models for nutrient estimation can be improved by focusing on these 

identified wavelengths to enhance their accuracies and reliability. 

4.2.4. Comparison of estimated and observed nutrients concentration 

 

Results comparing the estimates and observed nutrient concentrations in the canopy are 

summarised in Table 3. The metrics for nutrient estimation models reveal varying levels of 

performance across different nutrients. The R² values indicate that the models for Ca (0.62), K 
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(0.55), S (0.71), Zn (0.71), and N (0.52) have moderate to strong correlations between estimated 

and actual observed nutrient concentration, explaining a substantial portion of the variance 

during the vegetative stage. However, the models for Fe (0.17), Mg (0.48), and P (0.18) exhibit 

weaker correlations, suggesting less reliable predictions for these nutrients. The metrics for 

nutrient estimation models during the reproductive stage reveal notable variations in model 

performance as well. High R² values for Fe (0.81), K (0.73), Mg (0.9), S (0.8), and P (0.7) suggest 

strong correlations between estimated and actual nutrient values, indicating these models 

effectively capture the variance in nutrient content. However, the lower R² values for Ca (0.2), Zn 

(0.53), and N (0.53) suggest weaker models for these nutrients, indicating less reliable predictions. 

 

Evaluating the RMSE values for vegetative stage, it is found that the models for Zn (2.98) and N 

(0.26) exhibited very low error magnitudes, indicating accurate prediction capabilities. In contrast, 

nutrients like K (1265.2) and Ca (314.68) have higher RMSE values, pointing to larger model 

prediction errors. This differences highlights the varying degrees of accuracies across the PLSR 

models, with some nutrients requiring further refinement to improve nutrient estimations based 

on ground spectra measurements. RMSE values during the reproductive stage provide further 

insights into the models prediction accuracy. Nutrients like Fe (6.32), Zn (2.67), and N (0.2) 

exhibit low RMSE values, indicating high precision in predictions. In contrast, higher RMSE 

values for K (1112.97) and Ca (261.44) indicate larger prediction errors, highlighting areas where 

model refinement is needed to improve accuracy. 

 

The table also show RRMSE values that provide a relative measure of prediction accuracy. Lower 

RRMSE values during vegetative stage for Ca (0.05), K (0.03), S (0.07), P (0.08), and N (0.08) 

suggest that these models are relatively accurate compared to the actual values. On the other 

hand, higher RRMSE values for Fe (0.12), Mg (0.13), and Zn (0.1) indicate less accurate 

predictions, emphasizing the need for model improvement. Overall, while the models for certain 

nutrients perform well, others like Fe, Mg, and P need enhancement to achieve better prediction 

reliability and accuracy. Low RRMSE values during reproductive stage for Ca (0.04), Fe (0.04), K 

(0.05), S (0.05), and N (0.09) indicate relatively accurate predictions compared to the actual 

values. However, higher RRMSE values for Mg (0.11), P (0.11), and Zn (0.13) suggest these 

models are less accurate, emphasizing the need for further model improvements. 
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Table 3: Comparison of estimated and observed nutrients concentration for vegetative and reproductive stages in 
terms of R2, RMSE and relative RMSE. R2 is unitless; RMSE units are same as those for response variable (i.e. mg 
kg-1 for all nutrients except N that is in %) and RRMSE is in %. 

Stage Nutrient R2 RMSE RRMSE 

V
eg

et
at

iv
e 

Ca 0,62 314,68 0,05 

Fe 0,17 12,12 0,12 

K 0,55 1265,2 0,03 

Mg 0,48 186,27 0,13 

S 0,71 230,57 0,07 

P 0,18 260,78 0,08 

Zn 0,71 2,98 0,1 

N 0,52 0,26 0,08 

R
ep

ro
d
u
ct

iv
e 

Ca 0,2 261,44 0,04 

Fe 0,81 6,32 0,04 

K 0,73 1112,97 0,05 

Mg 0,9 207,85 0,11 

S 0,8 121,19 0,05 

P 0,7 211,89 0,11 

Zn 0,53 2,67 0,13 

N 0,53 0,2 0,09 

 

During the vegetative stage, nutrients like Ca, K, S, and Zn exhibit moderate to strong R² values, 

indicating reliable models, while Fe, Mg, and P show weaker correlations. In contrast, the 

reproductive stage shows improved model performance for Fe, K, Mg, and S with high R² values, 

suggesting stronger models, while Ca and Zn remain less reliable. RMSE values across both 

stages highlight that nutrients like Zn and N still had low error magnitudes, indicating high 

precision. However, high RMSE values for K and Ca persist in both stages, indicating consistent 

areas for improvement. RRMSE values reinforce these observations, with generally lower values 

during the reproductive stage for key nutrients, indicating relatively more accurate predictions, 

though Mg and Zn still require enhancement. Overall, the reproductive stage models generally 

show improved accuracy and reliability compared to the vegetative stage, especially for Fe, K, 

Mg, and S. Scatterplots of estimated versus observed nutrients concentrations for both stages can 

further illustrate these differences in model performance as shown in Figure 12 and Figure 13 for 

the best performing models. 
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Figure 12: Scatterplots comparing the estimated and observed nutrients in wheat canopy at the vegetative stage. 
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Figure 13: Scatterplots comparing the estimated and laboratory-measured (observed) nutrients in wheat canopy at the 
reproductive stage. 

4.3. Estimation of nutrient concentration in grains using estimated nutrients across the 

canopy 

The assessment of nutrient contributions from the vegetative and reproductive stages as 

presented in Figure 14 shows varied impacts on nutrient concentrations in wheat grains. Notably, 

Fe exhibits a strong positive influence during the reproductive stage (0.34) compared to a 

negative influence during the vegetative growth stage (-0.25), indicating enhanced accumulation 

of Fe due to reproductive growth processes. In contrast, nutrients like Ca, K, and Mg have lower 

or negative contributions during the reproductive stage, suggesting that these nutrients are less 

influenced by the reproductive stage and are instead more impacted during the vegetative stage. 

 

For nutrients such as P, Zn, and N, the vegetative stage shows a higher positive contribution, 

with coefficients of 0.94, 0.92, and 0.31, respectively, compared to negative or minimal 
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contributions during the reproductive stage. This indicates that nutrient accumulation for these 

elements is more critical during the vegetative stage. These results on vegetative stage are 

important from a decision-making perspective, because farm managers have more time to 

intervene during the crop development in terms of improving crop nutritional quality. 

 

Overall, while the hypothesis expect reproductive growth stage to show the highest impact on the 

nutrient concentrations in the grain due to the enhanced photosynthesis and grain filling 

processes during this stage, leading to increased nutrient accumulation in the grains, the results 

suggest that the vegetative growth stage plays a more crucial role in the accumulation of most 

nutrients, with the exception of Fe, where the reproductive stage is crucial. 

 

 
Figure 14: Composition of observed nutrients for vegetative and reproductive stages to that in the final grains.  

 

The comparison of estimated and observed nutrient concentrations in wheat grains is provided in 

Table 4 and visually represented in Figure 15. High R² values for nutrients like K (0.70), Mg 

(0.75), and Fe (0.61) indicate that the non-linear models used to relate nutrients in canopy and 

that in the grains explain most portion of the variance, demonstrating strong predictive 

capabilities. However, the low R² values for P (0.20) and N (0.30) suggest that the non-linear 

models perform poorly, explaining little variance and indicating weak predictive power. 

 

The RMSE values further illustrate the precision of these models in estimating nutrients in grains 

using that from the vegetative an reproductive stages. Nutrients such as Fe (5.57), Zn (3.45), and 

N (0.13) have low RMSE values, indicating high precision in their predictions. However, higher 

RMSE values for K (419.62) and P (255.20) suggest these models struggle with accuracy, resulting 

in larger average estimation errors. The RRMSE values align with these findings, where Mg (3.74) 

and S (4.48) exhibit relatively low RRMSE, indicating accurate estimations relative to actual 
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nutrient measurements, whereas Fe (13.11) and Ca (11.87) show high RRMSE, pointing to a 

higher deviations from actual nutrient concentrations. 

 

Table 4: Comparison of estimated and laboratory-measured nutrients concentration in wheat grains in terms of R-
squared, RMSE and relative RMSE. R2 is dimensionless, The units for RMSE are in mg kg-1 except for Nitrogen that 
are in %, and RRMSE is in %. 

Nutrient R2 RMSE RRMSE 

Ca 0,48 46,21 11,87 

Fe 0,61 5,57 13,11 

K 0,70 419,62 9,98 

Mg 0,75 44,48 3,74 

S 0,55 62,58 4,48 

P 0,20 255,20 7,46 

Zn 0,59 3,45 7,12 

N 0,30 0,13 5,25 

 

 

 
Figure 15: Performance metrics in terms of R2 and relative RMSE for estimated nutrients in grains when compared 
to their laboratory-measured estimates. 

 

In general, the models for K, Mg, and Fe show the best overall performance, with high 

explanatory power and reasonable error margins, making them reliable for estimating these 

nutrients concentration in wheat grains using canopy-based nutrients estimates from PLSR 

models. In contrast, the models for P and N require substantial improvement due to their low 
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predictive power. The models for Ca, S, and Zn demonstrate moderate effectiveness, suggesting 

their potential use but also indicating room for enhancement. Although the model show high 

predictive power for K, it however exhibits high model error that needs further refinement. 

Scatterplots of predicted versus actual nutrient concentrations in Figure 16 further illustrate these 

results, highlighting areas of underestimation or overestimation to support the needs for specific 

model refinement for improved accuracy. 

 

  

 
 

Figure 16: Scatterplots comparing the estimated and laboratory-measured (observed) nutrients in wheat grains for 
best performing models. 
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5. CONCLUSION AND RECOMMENDATION 

5.1. Conclusion 

 

This study assessed the potential of using ground spectral measurements to estimate nutrient 

concentrations in wheat canopies at different growth stages (vegetative and reproductive) and in 

grains at maturity. The macro- and micro-nutrients of  focus were Calcium (Ca), Irom (Fe), 

Magnesium (Mg), Potasium (K), Phosphorus (P), Suplhur (S), and Zinc (Zn). The findings 

indicate that Partial Least Squares Regression (PLSR) models can moderately predict nutrient 

concentrations with varying degrees of accuracy across different nutrients. The key conclusions 

drawn from the study include: 

 

a) Nutrient concentration dynamics – The nutrient concentrations in the canopy were 

generally higher during the vegetative stage compared to the reproductive stage, with the 

lowest concentrations observed in the grains. This finding highlights higher nutrient 

uptake during the early growth stages and subsequent translocation or reduction by the 

time of grain maturity. 

b) PLSR model performance – The PLSR models exhibited varying performance, with R² 

values ranging from 0.2 to 0.67 for the vegetative stage and 0.2 to 0.87 for the 

reproductive stage. Nutrients such as Sulphur (S) and Magnesium (Mg) showed higher 

predictive accuracy, especially during the vegetative and reproductive stages, respectively. 

c) Spectral band importance – Most important spectral bands for nutrient estimation were 

identified in the visible (VIS) and near-infrared (NIR) regions, with common peaks 

around 550 nm (green region) and 700-800 nm (NIR). These bands were crucial for 

predicting nutrient concentrations in wheat canopies. 

d) Nutrient estimation in grains – The nutrient estimates in the grains using canopy 

nutrient concentrations estimated from PLSR models showed moderate predictive 

capabilities, with R² values between 0.2 and 0.9. This indicates a potential for ground 

spectral measurements in predicting final grain nutrient content, but with some 

limitations. 

 

5.2. Recommendation 

Based on the findings, further research on improving the accuracy and applicability of nutrient 

estimation using ground spectral measurements is encouraged. Some of these recommendations 

include: 

a) Further model refinement and increasing number of sizes – While the PLSR model 

predictions were promising, their accuracies can further be improved by increasing the 

number of samples available for model training and validation as opposed to limited 
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samples that were used. Also, additional data preprocessing steps, such as outlier removal 

and noise reduction, to improve model accuracy for nutrients with lower predictive 

performance, such as Potassium (K) is recommended. 

b) Extending the study to other crops, geo-graphical regions and sample variability  

– additional work is needed to validate the findings across different crops and 

environmental conditions to generalize the applicability of ground spectral measurements 

in estimating nutrient concentrations especially within the low income countries affected 

by micro-nutrients deficiencies. As such the robustness and reliability of the models will 

be ensured. Also, focus on key stages particularly the vegetative stage, where nutrient 

uptake is highest to inform targeted fertilization strategies to optimize nutrient quality in 

crop yields. Lastly, although the sample sizes used in the study were from different 

agricultural farms, further studies can explore data with higher variabilities in terms of soil 

properties and different ecosystems. 

c) Exploration of additional models – in the current study, only PLSR was used. A 

further work to compare the models predictive power when using ground spectral 

measurements for nutrients estimations e.g., by using other machine learning models, 

such as Random Forest (RF) and Support Vector Machine (SVM), is recommended to 

potentially improve nutrient estimation accuracy and reduce model errors. 
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APPENDICES 

Appendix A: Percentage of explained variances by each PLSR component for each nutrient at vegetative and 
reproductive stages 

 

(a) Explained variances by each component at vegetative stage 
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(b) Explained variances each component at reproductive stage 
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Appendix B: Cross validation results for determining optimal PLSR number of components for different models at 
vegetative and reproductive stages 

(a) Cross-validation results - vegetative stage 
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(b) Cross-validation results – reproductive stage 
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Appendix C: Scatterplots showing comparison of poorly estimated nutrients in grains compared to observed 

nutrients 
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Appendix D: Biplots of first two PLSR components at the vegetative and reproductive stages for each nutrient 

(a) Biplots of PC1 and PC2 at vegetative stage 

 
 



ASSESSMENT OF NUTRIENTS IN CROP CANOPY TO ESTIMATE NUTRIENTS IN YIELD USING GROUND SPECTRAL MEASUREMENTS 

65 

 

 

(b) Biplots of PC1 and PC2 at reproductive stage 
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Appendix E: VIP plots for vegetative and reproductive stages 

(a) VIP during vegetative stage 
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(b) VIP for reproductive stage 
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Appendix F: Ethical considerations, risks and contingencies 

No ethical issues are present as the data collection was conducted within the EO4Nutri project, 

with the Bonifiche Ferraresi farm, a project partner, providing consent for data collection 

 

 

Appendix G: Data management plan 

Data Collection 

The data used in the study were collected from 40 Experimental 
Sampling Units in Italy, including biophysical and biochemical 
properties, ground spectral measurements, and laboratory-measured 
nutrient concentrations during summer 2023 campaign. 
MSc supervisors provided pre-modified PLSR R script. 

Data Format 
Ground spectra and laboratory nutrient measurements were provided 
in comma-separated values (CSV) format. 

Data Pre-processing 

Data quality checks included completeness verification, duplicate 
removal, and handling missing data. Further processing involved spline 
filter smoothing to prepare ready inputs for Partial Least Squares 
Regression models. Some spectral bands were omitted to exclude 
interferences. 

Data Storage 

A structured collection of data, including research output and R scripts 
are submitted to the University of Twente through the link 
\\ad.utwente.nl\itc\Archive\CourseData\Upload\s3009211 with 
appropriate documentation and metadata sheet to allow anyone else 
capable of repeating my research be able to reproduce and confirm my 
results and draw the same conclusions. 

Data Access and 
Sharing 

- Access to the data will be controlled and granted to relevant 
persons(s) upon approval by the University of Twente. 

- Data will be made available upon request under a data-sharing 
agreement ensuring proper citation and acknowledgment 
(where necessary). 

Data Preservation 

Long-term preservation will be ensured by storing data in recognized 
digital repositories with appropriate metadata to facilitate future use 
and discovery. 

Responsibilities 

Data management responsibilities lie with me as the student and 
supervisory team, ensuring adherence to data management policies and 
procedures. 

 

 

 


