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Management Summary

This thesis explores transitioning from a time-based to a counter-based maintenance
strategy for the packaging filling lines at Heineken’s Zoeterwoude brewery. Time-
based maintenance follows a fixed schedule (e.g. every two weeks), while counter-
based maintenance is planned based on actual usage of equipment. Currently, the
time-based approach for packaging filling lines leads to inconsistent maintenance
intervals, causing over- and under-maintenance due to variable production hours.
With expected decreases in total production, the company demands an adaptive
strategy, which schedules maintenance based on actual machine usage; counter-
based maintenance.

To arrive at a solution to this problem, the main research question is this:

“How can the maintenance planning activities of the packaging filling lines in the brewery
at Zoeterwoude of Heineken be adjusted to change from a time-based plan to a counter-based
plan?”

To address this, the research starts by looking at the current situation, studying what
others have done, creating new solutions, and testing them. An analysis at the pack-
aging filling lines found that production hours between maintenance activities vary
a lot. For example, one year had 2,000 hours between two activities, and another
year had 3,000 hours between the same activities. This shows the company some-
times does too much or too little maintenance.

The literature review highlights the importance of transitioning from time-based to
counter-based maintenance strategies for improved efficiency and cost savings. For
example, Tinga (2013, p. 204) states that, considering the results of a case-study, tran-
sitioning from time- to counter-based systems notably reduces replacements with
about 30%, especially during low operating hours. Although current theories sup-
port the benefits of counter-based maintenance, they lack practical guidelines for
transitioning from time-based systems.

The solution outlines a clear approach of the transition. It introduces methods to
calculate usage counters, incorporating the current time-based intervals. Table 1 re-
veals that the progression of the usage counters are lower or higher than the current
time-based progressions, meaning maintenance should not be planned as early or
late as with the time-based strategy. The percentage represents the amount of time
passed since the last execution divided by the set interval, either in weeks for time-
based or in production hours for counter-based maintenance.

TABLE 1: Five results of applying counter-based maintenance

Code Description Last Time-based Interval Counter Counter-based
execution progress (hours) (hours) progress

PM1 SIXO812.1, 1J 2-11-2023 64% 3,375 1,942 58%
PM1 Losdok81, 6M 26-1-2024 82% 2,447 2,165 88%
PM1 TRANS-VL-DS81, 6M 30-1-2024 80% 1,688 1,266 75%
PM2 DOZO81, 1J 24-8-2023 84% 3,375 2,331 69%
PM4 ETIMA, 3J 31-3-2022 75% 15,098 12,176 81%

Take for example the fourth row in Table 1. Regarding its time-based interval, it will
be scheduled in the near future because it is already at 84%, while the counter-based
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progress is only at 69%. Executing this activity too early is an example of over-
maintenance. These examples in the table indicate that the company could perform
less over- and under-maintenance if they consider the counter-based progressions.

It is difficult to move from a time-based to a counter-based maintenance strategy.
This means predicting future production is necessary if the company wishes to pre-
pare activities. The research tested short-term (13 weeks aggregated data) and long-
term (1 week non aggregated data) prediction models to find the best way. Ag-
gregating data is the process of summing information from multiple data-points to
provide a comprehensive view, reducing noise, but it fails to show the exact infor-
mation of a specific week. The research uses production data (in minutes) from 2016-
2021 to train models like Linear Regression, Decision Tree, Random Forest, Gradient
Boosting Machine, K-Nearest Neighbor, Holt-Winters, and a simple baseline model.
These models predict 2022-2023 values. If the baseline model works best, it means
using simple averages is better than complex models. The values of RMSE, MAD,
sMAPE, and Bias show the success of the models. The first three should be low, and
Bias shows if the model guesses too high or too low. Table 2 shows which model
performed best (see grey cells).

TABLE 2: Average Performance Metrics of Model Types for both Ag-
gregated and Non Aggregated Data

Aggregated Data Non Aggregated Data

Model RMSE MAD sMAPE Bias RMSE MAD sMAPE Bias

Baseline 13908.33 11873.16 19.65% -9351.49 2048.40 1610.90 38.65% -615.61
LR 12011.24 9929.66 16.25% -3829.79 1784.44 1406.62 36.66% -431.28
DT 13500.02 11229.74 18.99% -7084.88 1900.13 1464.80 37.62% -402.50
RF 10875.16 9466.41 15.43% -5224.77 1808.92 1437.25 36.18% -391.02

GBM 11401.90 10029.58 16.40% -6301.94 1825.33 1453.03 36.87% -478.37
KNN 13139.49 10926.30 18.68% -6478.31 1976.68 1539.52 39.44% -430.09
HW 12414.19 9970.86 15.14% 7103.20 2176.81 1693.78 40.71% -276.97

Table 2 indicates that for 13-week aggregated production data, the Random Forest
model outperforms others, while for the non aggregated production data the Linear
Regression model is the best. In both cases they are better than the baseline, because
these models are more sophisticated. Their expertise comes from the fact that they
use the input variables such as the moment in the year or workforce hours from the
tactical planning.

This research also develops a mathematical model to schedule preventive mainte-
nance, reducing over- and under-maintenance using a rolling horizon approach.
This means the model sets a plan for the next year but adjusts it every quarter to
stay flexible with production changes. It was tested how different production levels
impact the model for both time-based and counter-based maintenance. If one main-
tenance activity costs €200 and using real production data from 2023, it is possible
to see how well the model works. The NPM shows the average hours deviating
from the counter-based intervals per activity. A perfect NPM is 0, meaning no over-
or under-maintenance, but some deviation is expected. Table 3 shows the NPM,
maintenance costs (MC), and the split between over-maintenance (OM) and under-
maintenance (UM) for different scenarios with decreasing production.

The first column in Table 3 shows the weekly average production hours randomly
subtracted from the data in year 2023. Comparing counter-based (CBM) to time-
based strategies (TBM) in the year 2023 with no reduced production, the former
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TABLE 3: Sensitivity Analysis of planning model applied to 2023

NPM (hours) MC (e) OM/UM (%)

Avg. reduction
per week TBM CBM TBM CBM TBM CBM

0 hours 295.08 200.60 e71,800.- e74,200.- 22%/78% 25%/75%
5 hours 256.07 208.91 e71,800.- e71,016.- 31%/69% 31%/69%

12.5 hours 218.44 202.11 e71,600.- e63,316.- 50%/50% 29%/71%
25 hours 278.71 178.58 e71,400.- e55,784.- 78%/22% 35%/65%

37.5 hours 390.48 196.82 e71,200.- e46,016.- 90%/10% 49%/51%
50 hours 505.03 188.12 e70,400.- e38,920.- 93%/7% 52%/48%

reduces over- and under-maintenance by about 32%, while it costs e3,400.- more.
These extra costs come from additional activities to reduce under-maintenance. Ta-
ble 3 reveals the counter-based schedules better maintain a low level of total over-
and under-maintenance, while it also better divides the proportions. For example,
if the company expects an average reduction of production of 37.5 hours in the up-
coming years, observing the maintenance costs in this situation, the newly intro-
duced counter-based strategy with the planning model could save about e25,000.-
in a year compared to the time-based strategy, in addition to a reduction of almost
50% of over- and under-maintenance, which are also more evenly distributed. All
these values show the possible benefits of a counter-based maintenance strategy!

The biggest limitation of this research was in the planning model, which assumes a
fixed number of activities at a single moment for maintenance, while in reality, this
depends on many factors like activity duration, skill sets, and availability of spare
parts and workforce. The model needs to account for these constraints for extra
validity.

A specific example of the contribution to theory is the challenge of predicting pro-
duction hours for counter-based maintenance. While time-based systems allow easy
scheduling due to constant intervals, counter-based systems struggle with this. This
research introduces a method to predict production using machine learning.

The practical contribution mainly is cost reduction. Companies with decreasing
production can save costs by using counter-based maintenance (when coming from
time-based systems). Table 3 shows how the model is especially cost-effective when
production decreases, helping the companies maintain competitiveness.

Future research could explore more advanced machine learning techniques, like
neural networks, to improve production prediction accuracy. Incorporating diverse
datasets with additional features could refine these models further.

The most important recommendations are:

1. Implement the Random Forest model to forecast production and plan mainte-
nance 13 weeks in advance, refining the model with more data and features.

2. Extend the mathematical model from this research for scheduling, with further
investigation into a holistic model considering more constraints.

3. Create a data model integrating different data sources, to automatically update
usage counters.
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Chapter 1

Introduction

The production industry is a very large sector with many different companies creat-
ing various types of products. Many of them play a large role in society and some
firms even send their products all over the world. The Heineken Company, specifi-
cally Heineken Netherlands Supply (HNS), is one of these companies and they were
kind enough to introduce a new problem in one of their departments. This thesis
will explore strategical concepts considering the planning of maintenance activities
at the packaging filling lines of the brewery in Zoeterwoude. Section 1.1 introduces
the company, and Section 1.2 gives the problem description. Section 1.3 provides the
methodology of this research to arrive at a useful solution.

1.1 The Company

Established in 1864, Heineken N.V. is a prominent Dutch multinational brewing
company. With a presence in over 70 countries, the company operates more than 168
breweries and boasts a diverse portfolio of more than 350 beers and ciders, including
international, regional, local, and specialty variants. Employing around 90,000 indi-
viduals, Heineken has solidified its position as a major player in the global brewing
industry. (N.V., 2023)

In 2023, Heineken N.V. achieved significant milestones, producing a staggering 24.26
billion liters of beer and generating global revenues to a total of 30.308 billion euros.
This performance secured its standing as the leading brewer in Europe and posi-
tioned it among the world’s largest brewers by volume. (N.V., 2023)

The biggest Heineken Dutch breweries are strategically situated in Zoeterwoude
and ’s-Hertogenbosch. This thesis focuses on Zoeterwoude, considering the activ-
ities of its Maintenance Engineering Team. This team has the mission to improve
the reliability and performance of technical installations by optimizing maintenance
strategies at the lowest possible costs. With their technical expertise the team ad-
vises the production departments and use their specialisms for the correct technical
documentation, policies and plans across the departments. A brewery consists of
many sections, such as spaces for the brewing process, packaging facilities, storage
warehouses, et cetera. Packaging facilities contain the filling lines of many types of
products, such as metal cans, glass bottles, kegs. The packaging filling lines use mul-
tiple machines for each step of the packaging process, and these machines sometimes
fail or need maintenance. Therefore, maintenance planning is an important aspect
of the packaging process, considering when to plan maintenance, how to plan it,
and how maintenance can be integrated in the total brewing process and with all the
other departments/teams.
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1.2 Problem Description

This section delivers a clear description of the problem. Section 1.2.1 gives the per-
spective from the management of the company, and Section 1.2.2 delivers an analysis
of all observed problems. Then Section 1.2.3 provides a statement that describes the
core problem.

1.2.1 Management Problem

When the management of the company considers the planning of maintenance at the
packaging filling lines, many concerns arise. Production is important since down-
time at the filling lines, which is the time where work is being halted for any rea-
son, leads to downtime costs. Downtime costs are the profits that the company
loses when its equipment or network stops functioning, e.g. the filling lines be-
ing stopped. It was found that in 2023, if a packaging filling line’s total amount of
downtime increases with 1%, it would cost the company tens of thousands of euros.
One of the causes of unexpected downtime is an insufficient maintenance strategy.

Currently there is a maintenance strategy in use, meaning they define rules for the
sequence of maintenance activities. The management of the company observes that
many maintenance activities at the packaging filling lines are based on time. Time-
based maintenance is a maintenance plan based on a fixed time interval, e.g. once
every two weeks. A counter-based maintenance plan is of another type used for
planned maintenance or reactive maintenance based on asset counter registrations.
A time-based maintenance plan for the packaging filling lines would be adequate if
the interval of the maintenance activities contains the same amount of production
hours. However, for the packaging filling lines, the production between two consec-
utive maintenance activities currently differs in the thousands of operating hours.

Calendar time-based maintenance follows a set schedule, which may lead to over-
servicing some equipment and under-servicing others, also called over- and under-
maintenance, resulting in inefficiencies and increased risks of breakdowns. Litera-
ture gives the indication that a counter-based maintenance strategy could improve
these inefficiencies. Tinga (2013, p. 204) states that, considering the results of a case-
study, going from a time-based maintenance strategy (CTBM: calendar time-based
method) to a counter-based maintenance strategy (UBM: Usage-based method) re-
duces the number of replacements considerably, especially in the years with low
numbers of operating hours. Cichelli (1977, p. 69) found that going from time-
based maintenance to counter-based maintenance can increase productivity with
0.6%, which could be even more in reality. Christer and Doherty (1970, p. 924) shows
a case where their maintenance activities were recommended to be controlled on a
tonnage throughput basis as opposed to a calendar time basis, because of the cost re-
ductions it would provide. Finally, Liu, Wang, and Tan (2024) discusses that counter-
based preventive maintenance policy has the advantage of lower operational cost
rate, but that time-based maintenance systems can achieve similar results. Further
explanations on the benefits of counter-based maintenance are in Section 3.2.

Based on the arguments from the management of the company and the literature,
it is simply understood that there are inefficiencies in the maintenance strategy, and
there are unnecessary costs due to over- and under-maintenance. Moreover, the
management confirms that the transition from time-based to counter-based main-
tenance is a complex process that needs to consider stakeholders, data analysis,
planning optimization, and integration of departments. Not only is counter-based
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maintenance an intricate strategy on itself, transitioning from a time-based system
for such a large operation as the brewery in Zoeterwoude becomes a very delicate
project. Therefore, the problem perceived by the management of the company is
the lack of knowledge on how to change the maintenance planning process from
time-based strategies to counter-based strategies.

1.2.2 Problem Cluster

Due to the broad scope of the management problem, this section gives a logistical
analysis to identify a suitable core problem. After further analysing the perceived
problems, a cause-and-effect relationship between them is observed, allowing the
possibility to visualise a problem cluster. A problem cluster is a model used to map
different problems and their mutual relationships. A problem cluster serves as a
means of structuring the problem context and is used to identify the core problem
(Heerkens and Winden, 2017, p. 51). An arrow visualises the causes and effects,
where the cause points to the effect. The action problem observed by the company
is visualised with the grey colour. An action problem is a discrepancy between the
norm and reality, as perceived by the problem owner (Heerkens and Winden, 2017,
p. 22). Figure 1.1 presents the problem cluster.

FIGURE 1.1: Problem cluster

Figure 1.1 shows the relationship between causes and effects of observable problems
at the packaging filling lines. The management problems of Section 1.2.1 are shown
in the grey boxes. The company observes high down time costs which are unnec-
essary. This is caused by unexpected failures of the machines during production
hours, and due to the maintenance being done inefficiently and ineffectively. The
unexpected failures of the machines is a result of it being very unpredictable. The
fact that the company does not take any action into observing the failure behavior of
the machines is the main cause of this problem chain.
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Effective maintenance means applying a maintenance strategy that ensures the pre-
vention of failures, while efficient maintenance suggests that it achieves this out-
come with with minimal waste of resources. More information on these terms in
Section 3.1. The maintenance being inefficient and ineffective has multiple causes,
one of them being the increase in volatility of the market demand. Market demand
volatility refers to the degree of fluctuation in the demand for goods or services
within a market over a certain period of time, where high volatility means that de-
mand levels change rapidly and unpredictably, and low volatility indicates more
stable and consistent demand patterns. Market demand volatility can disrupt tradi-
tional maintenance planning, but counter-based maintenance offers a more adaptive
approach by basing maintenance decisions on actual equipment usage. This enables
organizations to better manage maintenance activities in response to fluctuations in
market demand.

Another cause of inefficient and ineffective maintenance is the presence of under-
and over-maintenance. Over-maintenance causes the maintenance activities to be
unnecessary at times, resulting in unneeded high maintenance costs. Additionally,
over-maintenance leads to many days during the year spent on maintenance, mak-
ing the production schedules less flexible, which is another action problem of the
company. All maintenance engineers commonly understand that too much main-
tenance may also lead to extra unplanned stops due to the excessive work on the
machines that are dis- and reassembled frequently. Under- and over-maintenance
are results of the amount of production varying between the maintenance activities.
This is a direct result of the maintenance intervals being based on time (e.g. every
two weeks). Other causes for under-maintenance are resource limitations, meaning
that spare parts sometimes are missing, and the fact that production is considered
as too important to perform maintenance. Finally, whenever the interval of mainte-
nance is chosen with too much caution it can result in over-maintenance.

1.2.3 Core Problem

Core problems are those whose solutions will make a real difference (Heerkens and
Winden, 2017, p. 41). The potential core problems are always at the beginning of
a causation chain in a problem cluster. The choice of the current time-based main-
tenance plan is causing the hypothesis of inefficient maintenance planning because
production activities differ each week and change dynamically during the year. This
problem (shown in red in Figure 1.1) is chosen as the core problem. This is the better
core problem to tackle because its solution is feasible, and the solution of the prob-
lem will have the biggest impact on the management problem. This problem also
gives a clear suggestion on what would be a better method, namely a counter based
maintenance strategy. The selected core problem is defined as:

In the current situation, the maintenance planning activities at the packaging filling lines
in the brewery at Zoeterwoude of Heineken are time-based, while the production activities
differ throughout the year and change dynamically, which indicates that a counter-based
maintenance strategy is more suitable.
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1.3 Problem Solving Approach and Research Design

This section explains the problem-solving approach and reports on the research de-
sign. Section 1.3.1 gives the scope of the research, and Section 1.3.2 delivers the
methodology and the research questions. Finally, Section 1.3.3 follows with the de-
liverables.

1.3.1 Research Scope

Heineken has different breweries across many countries, a few of them present in-
side of the Netherlands. One of them, the brewery at Zoeterwoude has various de-
partments, all of them needing maintenance. The whole production process consists
of brewing, fermentation & lagering, filtration, intermediate storage (tanks), bottling
& packaging, and again storage (pallets) before the product is sent away via multiple
transportation methods. Figure 1.2 visualizes these steps of the production process
in a flow chart.

FIGURE 1.2: Production process flow chart with the identified scope
of the research

For this thesis to solve the core problem for different breweries and at all depart-
ments would be too broad and time extensive. The Maintenance Engineering Team
has observed the presence of the problem at the packaging filling lines. Putting the
focus of the research here will have the biggest impact, because this section of the
process considers the most assets and maintenance tasks. More than 50% of the total
number of maintenance activities are dedicated to the bottling and packaging pro-
cess. There is also the fact that there are five maintenance engineers present in the
team all dedicated to the packaging filling lines, and only two for all the other pro-
cesses, again showing the importance of the packaging filling lines. Therefore, the
scope of the research lies at the brewery in Zoeterwoude and focuses on the pack-
aging filling lines. The gathering of knowledge and information can be done at all
lines, but calculations and tests should be done at only one. Note that different lines
are often used for various product types. This thesis will focus on lines 81 and 82,
which are part of the Bottle One Way (BOW) packaging lines, meaning these prod-
ucts go to external markets outside of the Netherlands. Both lines are exactly the
same, except for the fact that line 81 has an additional set of machines to package
products in boxes. The Maintenance Engineer dedicated to these lines is responsible
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for the entire process from the moment empty bottles arrive, until the moment filled
bottles are put on pallets and continue to the warehouse or transport services. The
research will only consider this part of the process. According to the team manager,
the fluctuations of production amounts are the largest at lines 81 and 82, consider-
ing the whole brewery. Setting the scope of the research to these lines will have the
largest effect and lead to the most interesting findings.

1.3.2 Methodology and Research Questions

The main research question of this thesis is:

“How can the maintenance planning activities of the packaging filling lines in the brewery
at Zoeterwoude of Heineken be adjusted to change from a time-based to a counter-based
strategy?”

The goal of the research is to answer this main research question, solving the selected
core problem. This is done by dividing the research in different steps, each acquiring
more knowledge on how to arrive to an answer. Figure 1.3 shows the structure of
the research and the thesis, where the consecutive stages show the subjects in focus
and in what order the research considers them.

FIGURE 1.3: Research & Thesis Structure

Dividing the main research question into more specific smaller research questions
and connecting them to different chapters, creates a simple pathway to arrive at
the final answer to the problem. Since the first chapter discusses the analysis of
the problem and the creation of the main research question, only the chapters after
the first get their own research questions. The following are the specified smaller
research questions:

1. “How is Heineken currently planning the maintenance activities at the packaging filling
lines based in the brewery in Zoeterwoude?"

The answer of this research question leads to the analysis of the current situation,
the current process, and the context of the problem. Chapter 2 delivers this answer.
The following sub research questions are useful in this section of the research:
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• Who are the stakeholders of the maintenance activities performed at the packaging
filling lines?

• What are the differences between the lines, line parts, machines, and which should be
considered for the counters?

• How does the Maintenance Engineering Team apply maintenance on the packaging
filling lines?

• How are the current time intervals found of the maintenance activities?

• How do the current time intervals perform based on an analysis of a single activity?

• What would be an adequate counter for the packaging filling lines?

• What quantitative evidence is there that production differs between maintenance ac-
tivities?

To answer this research question, and its applicable sub research questions, the re-
search makes use of interviews, organizational documents, and gathered knowledge
by working alongside the maintenance engineers of the packaging filling lines.

2. “What is the theoretical background on counter-based maintenance, (dynamic) mainte-
nance planning activities, and prediction models?"

The answer of this research question in Chapter 3 gives the needed theoretical back-
ground with a literature study. The following sub research questions are useful in
this section of the research:

• When does theory state that a counter-based maintenance strategy is adequate and in
what problem context is it commonly used?

• How is the optimal maintenance interval determined in the literature?

• How is maintenance planning described in literature, and what models are present in
the theory?

• How is preventive maintenance of production lines described in literature?

• How are prediction models described in literature?

To answer this research question, and its applicable sub research questions, the re-
search uses a systematic literature review, relevant articles and theory books, and
other relevant papers/theses with a similar problem context.

3. “How should this research collect, select, and process the data to create the design of the
solutions?”

The answer of this research question in Chapter 4 provides the calculation of the
newly introduced maintenance counters of the relevant machines, in addition to
the design of both the prediction and planning models. The following sub research
questions are useful in this section of the research:

• What is the approach to arrive at a solution of the problem?

• How should the Maintenance Engineering Team calculate the counters, and how often
should they perform the calculations?

• What data should be collected for this thesis, what data is currently available, and how
should the situation of missing data be handled?
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• How should the Maintenance Engineering Team predict the production hours of the
machines on the production filling lines?

• How should the Maintenance Engineering Team model the planning of preventive
maintenance activities?

To answer this research question, and its applicable sub research questions, the re-
search collects, processes and selects relevant data from different outputs. Further-
more, it describes the solution models that uses the data.

4. “What are the results of the solution design and how do they affect the performance of the
maintenance activities?”

The answer of this research question in Chapter 5 discusses the results of the solution
design and how the models have an effect on the performance of the maintenance
activities. It serves as a validation of the model and therefore a validation of this
research. The following sub research questions are useful in this section of the re-
search:

• How do the new usage counters improve the current situation?

• What are the results of the predictive models?

• What are the results of the planning model?

• How do the solutions improve the current situation?

• How sensitive is the model to new situations?

To answer this last research question, and its applicable sub research questions, the
research creates the models and solve them in an adequate software program (Excel
or Python). Furthermore, the research evaluates different performance measures,
compares the new with the current situation, and performs a sensitivity analysis.

1.3.3 Deliverables

The deliverables of this bachelor thesis are the following:

• Literature review that delivers knowledge on a counter-based maintenance strategy

• Analysis on usage counters for maintenance activities

• Prediction model for upcoming production amounts

• Planning tool/model for maintenance activities

• Comparison with current situation plus numerical study as validation

• Step-by-step method document for the transition of a packaging filling line to a
counter-based maintenance strategy
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Chapter 2

Problem Context

This chapter addresses the first research question:

“How is Heineken currently planning the maintenance activities at the packaging filling
lines based in the brewery in Zoeterwoude?"

It frames the current situation in the context of the problem. The research question
unfolds into several sub-questions, namely:

• Who are the stakeholders of the maintenance activities performed at the packaging
filling lines?

• What are the differences between the lines, line parts, machines, and which should be
considered for the counters?

• How does the Maintenance Engineering Team apply maintenance on the packaging
filling lines?

• How are the current time intervals found of the maintenance activities?

• How do the current time intervals perform based on an analysis of a single activity?

• What would be an adequate counter for the packaging filling lines?

• What quantitative evidence is there that production differs between maintenance ac-
tivities?

Section 2.1 discusses the stakeholders, and Section 2.2 introduces the specifications
on the filling lines and its parts/machines. Section 2.3 addresses the maintenance
activities and how the company handles them, while Section 2.4 elaborates on the
decisions on the current time intervals for maintenance activities. Then, Section 2.5
discusses the performance of the current time-based counters. Section 2.6 considers
an adequate counter, and Section 2.7 provides quantitative evidence on the differ-
ence in production between maintenace activities. Section 2.8 concludes the chapter.

2.1 Stakeholders

Many departments come in contact with the maintenance activities of the pack-
aging filling lines. Initially, the Tactical Planning Team creates an annual opera-
tional schedule indicating when lines will be operational and when they will un-
dergo maintenance activities. The team constructs this planning in collaboration
with the maintenance engineers. To execute these activities, spare parts are nec-
essary. The Spare Parts Management Team controls the inventory of spare parts,
making sure the right resources are present whenever maintenance activities should
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be performed. The Spare Parts Warehouse is closely related to the latter, receiving,
collecting, and combining these spare parts accordingly. Line Operators and Me-
chanics are the stakeholders directly involved in carrying out the activities on the
line. Maintenance Coordinators and Planners have the specific task to assign me-
chanics to maintenance tasks and coordinate the activities, while the maintenance
engineers are responsible for the application of the right maintenance strategy. Fig-
ure 2.1 visualises these stakeholders and which are closely correlated via the dotted
circles.

FIGURE 2.1: Stakeholders considering maintenance activities

When this thesis considers decisions on the maintenance activities, it could have
an influence on all of the stakeholders. Each party has value in the collection of
information in the following sections and chapters. This research aims to collect
knowledge, considering all perspectives. Therefore, the previous figure gives the
definition of who the stakeholders are, and how they are related.

2.2 Packaging Filling Line

To find the differences between the lines, line parts, machines, and how this affects
the maintenance activities, it would be useful to find information on the production
system tree of the packaging filling line. Figure 2.2 shows an example, giving the
four typical hierarchical levels. Section 2.2.1 discusses the sections of the line, while
Section 2.2.2 explains on which levels the counters would be adequate. Section 2.2.3
considers how the company measures the performance of a packaging filling line.
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FIGURE 2.2: Example of a production system tree consisting of four
hierarchical levels (Dijkhuizen and Harten, 1997)

2.2.1 Line Sections

In the context of this research, the creation of a production system tree would be too
extensive since there are hundreds of parts to consider. However, there is informa-
tion on the general structure of the packaging filling line, and what parts make up
these sections. The company calls these parts assets. To give some insight into the
relevant systems, the line contains the following sections (in between these sections
the product is moved on conveyor belts, also called Conveying):

• Unpacking

• Bottle washing

• Bottle filling

• Inspection

• Pasteurization

• Labelling

• Packing

These sections all contain assemblies and subsequent assets. The company uses the
software IBM Maximo for the process of monitoring assets. IBM Maximo Appli-
cation Suite is a set of applications for asset monitoring, management, predictive
maintenance and reliability planning. In this software, the Maintenance Engineer-
ing Team can find each item of a specific packaging filling line, accompanied by the
specific maintenance tasks that correlate to these items. Section 2.3 discusses these
tasks further.

2.2.2 Maintenance Structure

A maintenance counter indicates the age of some part of the packaging filling line
that is in need of maintenance. Such a counter is chosen for a specific level in the
system. For example, the counter could be used for a machine entirely, or for the
assets in the machine specifically. To answer which sections and what asset get their
own counter, information on the structure of maintenance is required. Not only
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does the company work with an asset management system, there are more subjects
to consider. Subsequently, Figure 2.3 shows the structure of the maintenance tasks.

FIGURE 2.3: Structure of Maintenance Tasks

Section 2.2.1 has previously discussed the various sections of the packaging filling
line and their respective functions. These sections consist of machinery organized
into assets, as depicted in Figure 2.3. The company employs a specific organizational
framework whereby each asset possesses its own dedicated Preventive Maintenance
(PM) plan. Such a PM-plan contains a detailed outline of job tasks to be executed
collectively when the plan is scheduled. These job tasks encompass information
regarding spare parts, labor hours, costs, and other relevant details. A PM-plan may
encompass one or multiple tasks.

Maintenance engineers utilize these PM-plans to schedule preventive maintenance,
ensuring that the prescribed tasks within a PM-plan are consistently performed to-
gether. Presently, each PM-plan indicates the time interval for its implementation
(refer to Section 2.4). Note that while an asset may have its own PM-plan, it can also
be comprised of subordinate assets. For instance, within the packaging filling line,
the asset "Filler Rinser" has its designated PM-plans, yet it also incorporates smaller
assets like "Fill Valves," each with its own set of PM-plans. These plans may differ in
tasks, intervals, and maintenance strategies.

This research chooses to adopt usage-based counters for the PM-plans instead of as-
sets or job tasks, due to the following reasons. Firstly, assigning a counter at the asset
level would imply uniformity across all PM-plans associated with that asset, despite
potential variations in their purposes. For example, an inspection PM-plan and a re-
placement PM-plan for the same asset should not have similar usage counter-based
intervals. Similarly, assigning counters to specific job tasks would prove compli-
cations, as these tasks are grouped together for efficiency, often performed concur-
rently due to shared preparatory setup activities. Individual counters for each task
would disrupt this synchronized approach, thereby undermining the efficacy of the
current maintenance structure.
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2.2.3 Line Performance

One of the most important ways how the company evaluates the performance of
a packaging filling line is by measuring the amount of downtime. In manufactur-
ing, downtime can be categorized into two types: planned and unplanned down-
time. Planned downtime refers to periods when production is deliberately halted
for reasons such as (routine) maintenance activities, changeovers, setups, employee
breaks, or shift changes. Planned downtime is essential for long-term operational
health. Unplanned downtime is unexpected and can have dangerous consequences
for production schedules. It can occur due to machine failures, material shortages,
or unschedules stops (e.g. human error). At the packaging filling line there are two
types of unplanned downtime: short and long stops. The company wishes to ac-
complish two things: optimizing planned downtime to keep it at a minimum, and
reducing unplanned downtime to keep operationability at a maximum. Currently,
planned downtime takes about 10 to 15 percent of the available production time,
and on general workdays there is about 20 to 30 percent of unplanned downtime.

2.3 Maintenance Activities

The team leader of the Maintenance Engineering Team states they apply two types
of maintenance activities. The first are reactive activities, where the maintenance is a
result of a disruption. This type considers aspects, such as corrective maintenance,
Break Down Analyses, and Root Cause Failure Analyses. The other type consists of
proactive activities, where the team tries to control the situation before disruptions
occur. This considers other aspects of maintenance, such as revisions, preventive
maintenance, condition monitoring. The company also performs some FMECA’s
but this has not been done for the filling lines in the scope of this research. Section
2.3.1 discusses types of maintenance tasks, and Section 2.3.2 explains the whole pro-
cess of performing these maintenance activities. Finally, Section 2.3.3 provides the
scheduling method of maintenance activities.

2.3.1 Maintenance Types

Depending on the asset (see Section 2.2), some preventive maintenance plans should
be performed accordingly. The company uses a code system to distinguish different
preventive maintenance plans. Table 2.1 shows these codes, their general task, and
how forthcoming they were at line 81 in the past years.

TABLE 2.1: Preventive Maintenance Codes

Code Task Division of tasks Average downtime
2021 2022 2023 Duration in hours

PM1 Inspection 30% 30% 33% 2:36
PM2 Lubricating 49% 52% 51% 1:31
PM3 Calibration 1% 1% 1% 2:04
PM4 Replacement 7% 6% 7% 11:48
PM5 Revision 12% 1% 13% 15:11
PM6 Condition Monitoring 1% 1% 1% 2:03
PM7 Cleaning 4% 3% 3% 4:14
PM8 Safety & Compliance 7% 5% 6% 6:09
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Inspection involves visually examining equipment or systems to detect any signs of
wear, damage, or other issues that may require attention. Lubricating means apply-
ing grease, oil, or other lubricants to machinery components to reduce friction and
wear and extend the lifespan of equipment. Calibration involves adjusting equip-
ment to ensure it meets specified performance standards or accuracy requirements,
which is crucial for measuring devices to maintain precision in their readings. Re-
placement implies replacing worn-out or damaged parts with new ones to maintain
the functionality and safety of equipment. Revision entails a more thorough inspec-
tion that takes up more time due to the extensive check on all parts of an assembly.
Condition Monitoring involves using various techniques such as vibration analysis,
or temperature readings to assess the health and performance of equipment. Clean-
ing means removing dirt, debris, or other contaminants from equipment or systems
to prevent interference with their operation. Safety and Compliance involves ensuring
that equipment and maintenance procedures comply with safety regulations and
standards. Safety inspections and compliance checks help prevent accidents and
ensure a safe working environment. All the PM tasks are considered scheduled pre-
ventive maintenance tasks, except for PM6, which is (predictive) condition-based
maintenance.

Next to these PM tasks, there is a revision each two years. These are the maintenance
activities performed during an extensive revision. Such a revision is planned in co-
operation with the Tactical Planning Team, often takes op to 5 to 10 workdays, and
considers the whole packaging filling line. There is an inspection on all assemblies
and their subsequent assets, and whenever necessary, the mechanics replace the as-
set. Line 81 had a revision in 2021 and 2023, and this explains the increase in the
proportion of PM5 tasks in these years (see Table 2.1).

Since the Heineken brewery in ’s-Hertogenbosch already performs a partially cou-
nter-based maintenance strategy, plentiful communication with their maintenance
engineers is appropriate. In one of the interviews, the maintenance engineers advise
to only consider the first five PM tasks (PM1 to PM5), because of the following rea-
sons: (i) Condition Monitoring means that the proactive decision if a task should be
performed, depends on the state of what the sensors measure, not on the counter of
the machine. (ii) The necessity of Cleaning tasks does not depend on the amount of
production time, but depends on the total time that has passed. (iii) Safety and Com-
pliance tasks are necessary whenever the regulations state that they are necessary,
and this should not depend on the amount of production of a line. To conclude,
it would not be beneficial for the company to adjust the maintenance strategy for
the tasks PM6 to PM8 to a counter-based maintenance strategy. Both considering
the previous arguments and the divisions of PM tasks in the previous years, this
research decides to focus on the tasks with the code PM1 to PM5. This still leaves
more than 80% of the PM tasks to consider, creating enough positive impacts for
the company. Note that the PM4 and PM5 tasks also consider the largest amount of
average planned downtime.

2.3.2 Maintenance Process

To understand how the Maintenance Engineering Team applies the maintenance ac-
tivities, a workflow diagram shows the details of the process. It shows actions, ac-
tivities, responsibilities, and relations. Figure 2.4 shows this workflow diagram.
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FIGURE 2.4: Workflow of Maintenance Process

Triggers initiate the activities of the Maintenance Engineering Team. These triggers
may include alterations in quality or internal performance standards, escalations in
costs, or shifts in the technical Operational Performance Indicator (OPI). In response
to these triggers, the maintenance engineer starts monitoring activities, which in-
volve analysing asset performance or initiating a Root Cause Analysis. This moni-
toring includes the assessment of the time-based intervals of the PM-plans. Based
on this assessment, the maintenance engineer determines whether the performance
meets acceptable criteria. If deemed acceptable, they proceed directly to evalua-
tion. If not, the maintenance engineer selects an appropriate improvement method.
Depending on the circumstances, a maintenance strategy is chosen, taking into ac-
count the general prerequisites and criticality of the tasks involved. Subsequently,
the maintenance engineer digitally creates the plan, while the Maintenance Planner
evaluates specific requirements such as spare parts procurement, task assignment
to mechanics, and task scheduling. Ultimately, the evaluation phase starts, during
which the maintenance engineer evaluates the current strategy, proposes alterations,
and updates the Maintenance Plan as necessary. This workflow shows how the PM-
plans are used, and when the maintenance engineer monitors the time-based inter-
val.

2.3.3 Maintenance Planning

The company uses a simple method to schedule the preventive maintenance activi-
ties. Figure 2.4 shows that the Maintenance Planner considers all requirements of the
tasks and then schedules them whenever possible. Currently, three months prior to
the deadline of the time-based interval, the maintenance engineer activates the PM-
plan (if it is not activated automatically), resulting in the Maintenance Coordinator
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and Planner checking the requirements and scheduling the mechanics. These pre-
ventive maintenance activities can only be scheduled during revision or on what the
company calls stop-days. A stop-day is a specific day on which production is (par-
tially) stopped to perform maintenance activities. There are short and long stop-
days, which alternate every week to provide some possibilities for maintenance ac-
tivities. Each packaging filling line has a yearly schedule showing when the line
is in revision, and when the stop-day are planned. The Tactical Planning Team and
Maintenance Engineering Team work together prior to the start of the year to finalise
this schedule. Figure 2.5 shows a fabricated example of such a stop-day planning.
Note that there is no planning model in use for the planning of these preventive
maintenance activities. It is all done by hand by the Maintenance Planners.

FIGURE 2.5: Fabricated example of stop-day planning of packaging
filling lines 81 and 82

As is common in the industry, the company uses three management strategy levels to
address the planning of production; the operational level, the tactical level, and the
strategic level. The operational level deals with day-to-day activities and short-term
decisions, with a time horizon of two weeks. The tactical level involves medium-
term planning to optimize efficiency and resource use, with a time horizon of 12 to
13 weeks. The strategic level focuses on long-term direction and growth opportuni-
ties, looking at multiple years. Regarding the planning of preventive maintenance,
only the operational level is in contact with the Maintenance Planner, weekly send-
ing the operational schedule for the upcoming two weeks every week. This gives
the Maintenance Planner opportunities to reschedule both corrective and preventive
maintenance activities. Rescheduling happens a lot due to clustering opportunities,
or unexpected changes in the availability of mechanics or spare parts. The tactical
production planning is not considered in the planning of preventive maintenance.

2.4 Maintenance Time Intervals

Inside IBM Maximo, the application software for maintenance, each maintenance
activity contains a specified time-based interval. For example, this could be eight
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weeks (code: 8W), three months (code: 3M), or two years (code: 2Y). This time-
based interval indicates how much time is in between the execution of a specific
PM-plan. These intervals are chosen according to the combination of the experience
of the stakeholders, and the advice given by the machine suppliers. For example,
somewhere a few years ago a new machine was added to the packaging filling line,
and the advise given was to replace a certain part every 8 weeks. This was fol-
lowed by the stakeholders and they found out that they performed more corrective
maintenance then they replaced the part proactively. Therefore, they changed the
interval to 6 weeks and they kept this interval ever since. In conclusion, the present
time intervals are determined based on recommendations from machinery suppli-
ers, augmented by the company’s own experiential insights.

The current time-based maintenance intervals for the preventive maintenance tasks
vary from one week to eight years. This simply depends on the type of task of the
preventive maintenance activity. For example, a common activity would be an in-
spection plan (PM1), taking place every one or two weeks. A less common activity
would be the replacement of valves (PM4), taking place only once every two years.
For the Maintenance Engineering Team to monitor the counters of all PM-plans that
are very common would take too much of their time. Moreover, maintenance tasks
are always planned on a stop-day (see Section 2.3.3), meaning the shortest amount
of time between maintenance activities that is possible would be one week for short
tasks and two weeks for longer tasks. Therefore it is not necessary to investigate
if a PM-plan should be planned on a shorter notice than one or two weeks. There-
fore, this research continues to focus on the preventive maintenance tasks with their
current time-based interval larger than two weeks. In other words, the company
should not alter the maintenance strategy of preventive maintenance activities with
a current time-based interval of one or two weeks.

2.5 Performance Time Intervals

The importance of this section transpires from the assumption that the current time-
based intervals are adequate enough to translate them to counter-based intervals,
made by the manager of the Maintenance Engineering Team. To simply take this
statement as true is unscientific. Therefore, a thorough assessment on the current
time-based intervals should take place. To do this for all PM-plans is time extensive
labor and not the focus of this research. Consequently, this research takes one PM-
plan and performs an analysis on its interval to attain a thorough evaluation of the
adequacy of the assumption.

The chosen PM-plan has the following description: PM4 VULM81 Kaarsfilter 4W.
This is a replacement activity of specific filters in the filler/rinser machine. Currently
the time-based maintenance interval is set at four weeks, making this PM-plan a
good candidate for this analysis because it has been executed many times in the past
years. This section collects data from SAP to find the numbers of executions in the
past four years of the PM-plan, the corresponding corrective maintenance actions of
this part specifically, and the total corrective maintenance actions on the entire asset.
Figure 2.6 shows these numbers.

Figure 2.6 displays an increase of executions of the PM-plan over the years while
the amount of corrective activities remains relatively stable. The Maintenance Engi-
neering Team decreased the time-based maintenance interval of this PM-plan which
causes this rise. The argument for this modification of the interval is based on the
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FIGURE 2.6: Corrective and Preventive Maintenance over the years

experience of too much corrective activities. Costs also show that the modifications
were justified. Both the packaging manager and the software systems deliver infor-
mation on corrective and preventive maintenance costs for this PM-plan specifically.
Table 2.2 shows how the maintenance costs and unplanned downtime (UPD) change
over the years.

TABLE 2.2: Corrective and preventive maintenance costs

Year 2020 2021 2022 2023

CM Costs e 3,014.25 e 2,009.50 e 2,009.50 e 1,004.75
PM Costs e 983.40 e 1,573.44 e 1,573.44 e 2,360.16

Total Costs e 3,997.65 e 3,582.94 e 3,582.94 e 3,364.91
UPD 41% 37% 35% 31%

Table 2.2 displays how the Maintenance Engineering Team responds to an excess of
corrective maintenance actions. After 2020 with a high amount of corrective main-
tenance, the team responds with an increase of preventive actions by lowering its
time-based maintenance interval, ultimately lowering the total costs of maintenance
in the year. Although the maintenance engineers did not evaluate the PM-plan with
using a fitted failure distribution and evaluating the corrective/preventive costs,
they change the strategy of a PM-plan according to their experience and the advice
from the OEM of the machine. Note that the unplanned downtime (UPD) of the
whole machine decreases over the years, indicating a positive performance that fur-
ther justifies the adjustment of the time-based interval. This one example establishes
why the knowledge from employees of the company and OEM should not be ig-
nored, and why the current time-based intervals show to be adequate enough to be
translated to usage-based counters.
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2.6 Counter Measure

The company makes use of Total Productive Management (TPM) as their approach,
also known as Total Productive Maintenance. TPM activities focus on eliminating
the following six major losses (Rausand, Barros, and Høyland, 2021, p. 396):

• Equipment failure (breakdown) losses

• Setup and adjustment losses

• Idling and minor stoppages

• Reduced speed losses

• Defects in process and reworking losses

• Yield losses

Figure 2.7 shows how these six major losses affect the time concepts used to evaluate
the performance of a packaging filling line. This extends the concept of downtime
from Section 2.2.3. These time concepts are relevant because the company gathers
this data to evaluate the production hours of the machines on the packaging filling
line. From these time concepts a decision on the measuring unit can be made for the
usage-based counters.

FIGURE 2.7: Time concepts of the six major losses in TPM (Rausand,
Barros, and Høyland, 2021, p. 397)

Some engineers would argument that the Net operating time is an adequate unit to
measure operating hours per machine, but in the context of this research, this does
not consider all states of the machine. Therefore, in addition to these time concepts,
the company gathers information per machine on its state. The following states are
known:

• Emptying idle time

• Filling idle time

• Production time

• Production stops

• Malfunction time
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The Emptying idle time entails the period when the machine is not actively engaged
in production due to the absence of products from preceding stages in the produc-
tion process. This happens, for example, at the end of a shift when the last products
are moving through the line. The Filling idle time is the opposite, being the period
when the machine is actively working but cannot get rid of its discharge due to
malfunction or start ups downstream the production line. The Production time de-
notes the time during which the machine is actively engaged in its primary task,
with no malfunctions. The Production stops are the instances when the machine halts
its production activities temporarily, where it is deliberately stopped by the opera-
tor. The Malfunction time signifies periods when the machine is unable to perform
its intended functions due to technical issues or malfunctions. The difference with
Production stops is the Malfunction time considering unplanned interruptions.

The Manufacturing Execution System collects per day the total time of all machines
in each state. In a thorough investigation by the Maintenance Engineering Team,
a final decision was made on the best representation of real life operating hours,
meaning the machines are actively moving around. This being the Production time,
the Emptying idle time, and the Filling idle time. In these states the machines are
up and running and the assets are in use, meaning they are operating and moving.
The other states represent the time where the machine is standing still. Considering
this decision of the team, the most adequate counter for each machine would be the
sum of the Operating time, the Emptying idle time, and the Filling idle time. This
research defines this sum as Real Operating Time.

2.7 Quantitative Evidence

The company has historical data, giving information on all executed preventive
maintenance activities in the past, their PM-code, a description, and its execution
date. The goal is to combine this knowledge with the historical output on the Real
Operating Time from the Manufacturing Execution System, to finally evaluate the
differences in production times between maintenance activities for every PM-plan.
Section 2.7.1 provides evidence showing that production varies throughout the years,
while Section 2.7.2 gives an analysis on all PM-plans of line 81, indicating the dif-
ferences in production times between maintenance activities. Lastly, Section 2.7.3
analyzes the multipacker machines of both line 81 and 82 to show the historical dif-
ferences between counter-based maintenance and time-based maintenance.

2.7.1 Production Variation

For one machine on line 81, Figure 2.8 shows the production times in minutes per
week of years 2022 and 2023. It perfectly represents how production activities dif-
fer throughout the years and change dynamically. This fact motivates this research
to further investigate how the amount of production between the execution of PM
activities varies.
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FIGURE 2.8: Production per week for one machine on filling line 81

2.7.2 PM-plans Analysis

Subsequently, a box plot visualises the differences in production times between main-
tenance activities, giving an indication on the range of differences in production
hours, and showing outliers when present. To finalise this quantitative evidence,
only the box plots of the PM-plans that are still currently in use are valuable. This
results in a total of 101 box plots. Appendix A shows all box plots, and Figure 2.9
shows the first ten PM-plans found.

FIGURE 2.9: Box plots showing differences in production time be-
tween executions of PM-plans

Figure 2.9 reveals that there is a significant difference in Real Production Time be-
tween the past executions of the maintenance activities. The differences in the time-
based intervals chosen for the PM-plans shows itself by having different ranges
across all box plots. What is consistent for most PM-plans is that there is large
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range, meaning the amount of Real Operating Time between maintenance activities
of these PM-plans has not been constant in the past. The ranges for PM-plan 4 dif-
fers from 125,000 to 200,000 minutes. The difference, 75,000 minutes, means that at
one point, the machine corresponding to this PM-plan had been operating for about
2,000 hours since its last preventive maintenance activity, and at another point, it has
been operating more than 3,000 hours since that same preventive maintenance activ-
ity. The difference is a result of fluctuations in production demands, differences in
operational practices and scheduling, variability in maintenance planning, and po-
tential inaccuracies in the data. It is clear quantitative evidence that the production
on the packaging filling line differs between maintenance activities. With the current
time-based maintenance strategy, the operating hours of the machines diverge with
significant amounts between specific preventive maintenance executions.

2.7.3 Multipackers Analysis

One of the maintenance engineers started a project to apply a counter-based strat-
egy more than eight years ago. This counter-based system was created for only the
multipacker machine of packaging filling line 81. As mentioned earlier, line 81 and
82 are close to identical. This past project creates a unique situation where this re-
search can analyse the differences between the multipacker machines of both lines,
considering their preventive maintenance. The analysis includes four components
of the multipacker, each having their own preventive maintenance inspections. Ta-
ble 2.3 gives some information on the number of executions (in 2019 to 2023) of the
PM activity per component of each line, while also giving the set interval of these
PM-plans.

TABLE 2.3: Multipacker information per line

Line 81 (counter-based) Line 82 (time-based)

Component Executions Interval (hours) Executions Interval (months)

Inserter 8 750 34 2
Cluster entry 4 1500 19 3
Bottle entry 3 2250 10 6

Emitter 4 1500 19 3

Immediately, one can observe that the amount of executed PM activities is larger for
line 82. In 2019 to 2023, the multipacker of line 82 has been operating in total for
about 21.000 hours, while this machine line 81 operated only for about 8500 hours.
Because line 82 was busier, the maintenance engineer took a more safe and conser-
vative approach for line 82 and set the interval lower, which lead to the increase of
PM activities. To further analyze the differences, Figure 2.10 shows the averages,
minima, and maxima of the values indicating the amounts of production between
the executions of PM. The figure shows these values for the four components of the
multipacker machine of both lines.
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FIGURE 2.10: Bar charts showing differences between the multipack-
ers of both lines

Again, the safe and conservative approach of the maintenance engineer is present
in Figure 2.10, because the averages of the line 82 multipacker are lower in com-
parison to line 81. Still, considering that the proportion of corrective maintenance
through these years between both multipackers has been stable, these graphs show
that introducing a counter-based strategy could reduce the total amount of PM ac-
tivities with no impact on corrective activities, thereby reducing the amount of over-
maintenance. Additionally, the spread between the minimum and maximum value
of the amount of production between maintenance activities is lower for the counter-
based strategy, indicating that there is less variety of wear and tear for the compo-
nents when the company applies preventive maintenance. Also the averages of line
81 in Figure 2.10 are close to the set intervals from Table 2.3, indicating that the main-
tenance engineers successfully applied the counter-based strategy.

Still, a link is missing to the amount of unplanned downtime (UPD) between these
two machines. Table 2.4 shows the percentage of UPD of the total available produc-
tion time over the years 2019 to 2023.

TABLE 2.4: Unplanned Downtime over the years

Line 2019 2020 2021 2022 2023

Line 81 (counter-based) 42% 38% 38% 36% 33%
Line 82 (time-based) 38% 41% 34% 33% 34%

The UPD values over the years are very similar for both the multipackers. Consid-
ering that the number of time-based maintenance activities on line 82 were more
prevalent, while the UPD was similar to the line with a counter-based strategy, it
suggests that there is a presence of over-maintenance. The introduction of a counter-
based strategy leads to less preventive maintenance costs, an increase of efficient and
effective maintenance, all while the percentage of unplanned downtime remains at
its current value. To conclude, in spite of the fact that line 82 was to produce more
products during these years, the past project of applying a counter-based strategy
has shown some improvements in reducing over-maintenance and decreasing the
variety in the amount of production between maintenance activities.
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2.8 Conclusion

The examination into Heineken’s current approach to maintenance activities at the
packaging filling lines in Zoeterwoude has revealed a multifaceted landscape in-
volving various stakeholders, maintenance types, time intervals, and performance
evaluation metrics. Through an in-depth exploration of these elements, an answer to
the first research question emerges; Heineken currently plans maintenance activities
through a combination of reactive and proactive measures, guided by preventive
maintenance codes and time-based intervals. Collaboration between stakeholders,
such as the Tactical Planning Team with the Maintenance Engineers and Planners,
ensure the smooth execution of these activities. However, the existing time-based
maintenance strategy, while incorporating insights from machinery suppliers and
historical experience, exhibits significant variability in production hours between
maintenance executions.

Quantitative evidence received from historical data highlights this variability, show-
casing substantial differences in Real Production Time between successive mainte-
nance activities. These discrepancies show the limitations of the current time-based
maintenance approach, indicating a need for a more dynamic and context-aware
strategy. Additionally, a past project of applying a counter-based strategy has shown
some improvements in reducing over-maintenance and decreasing the variety in the
amount of production between maintenance activities, with no negative effect on the
amount of unplanned downtime.

In conclusion, Heineken’s current maintenance planning methodology, while com-
prehensive, lacks the adaptability to account for the nuanced operational dynamics
of the packaging filling lines. Moving forward, there’s a clear imperative for the in-
tegration of usage-based counters, specifically focusing on Real Operating Time, to
optimize maintenance scheduling and enhance operational efficiency. By embracing
a more nuanced approach that considers machine states, production losses, and his-
torical performance data, Heineken can elevate its maintenance planning to better
align with the demands of its production environment.
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Chapter 3

Literature Review

This chapter delves into addressing the second research question:

“What is the theoretical background on counter-based maintenance, (dynamic) maintenance
planning activities, and prediction models?"

It explores current knowledge on failure distributions, maintenance strategies, and
planning models across various timeframes. The research question unfolds into sev-
eral sub-questions, including:

• When does theory state that a counter-based maintenance strategy is adequate and in
what problem context is it commonly used?

• How is the optimal maintenance interval determined in the literature?

• How is maintenance planning described in literature, and what models are present in
the theory?

• How is preventive maintenance of production lines described in literature?

• How are prediction models described in literature?

Section 3.1 introduces counter-based maintenance, and Section 3.2 tackles the subject
of determining the optimal maintenance intervals. Section 3.3 addresses the plan-
ning models present in current theory, and Section 3.4 considers the maintenance
of production lines specifically. Then, Section 3.5 discusses prediction models, and
Section 3.6 concludes the chapter.

3.1 Counter-based Maintenance

Rausand, Barros, and Høyland (2021) outlines different types of preventive mainte-
nance (PM) tasks: age-based, clock-based, condition-based, opportunity-based, and
overhaul tasks. Companies are increasingly adopting degradation-based PM tasks
due to enhanced data collection. Each PM task type is explained with examples such
as age replacement policies, clock-based maintenance, and condition-based main-
tenance. Clock-based tasks occur at set calendar times (time-based maintenance),
while age-based tasks occur at a specific item age (counter-based maintenance). A
counter-based strategy is advisable when failure costs exceed planned replacement
costs and when item failure rates rise. In general, a counter-based strategy is more
complex due to extra data collection and monitoring activities, a necessity for more
intricate prediction methods, and a higher dependence on technology in the context
of its application.
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The article of Tinga (2010) contains some statements on the effectiveness and effi-
ciency of maintenance strategies. Effective maintenance entails the prevention of
system failures or breakdowns. In calendar time-based maintenance, this means
setting adequate intervals to prevent failures, which becomes challenging when sys-
tem usage varies over time. If intervals are not correctly set to address the system’s
needs, maintenance becomes ineffective. Efficient maintenance occurs when desired
outcomes are achieved with minimal waste. Time-based maintenance aims to min-
imize unnecessary actions, but in uncertain usage scenarios, it can lead to ineffi-
cient resource allocation. Usage-based maintenance eliminates uncertainty, allowing
more precise intervals tailored to the system’s needs, reducing both failure risks and
unnecessary actions, subsequently improving the effectiveness and efficiency.

To address the fatigue of items, Tinga (2013) states that the following sources cause
the uncertainty in the state (considering its damage) of a given item at a certain point
in time:

• variations actual usage

• variations in effect of usage on (internal) loads

• variations in the life consumption for a given internal load

By evaluating the actual usage over time with a counter-based strategy, it is possi-
ble to reduce this uncertainty in the amount of damage of a given item. Tinga (2013)
states that going from a calendar time-based system to a usage counter-based system
results in an increase of a component’s service life. It shows that with this new strat-
egy, replaced components are more damaged at replacement, reducing remaining
lifetime spillage (over-maintenance). Incorporating usage data changes replacement
timing from calendar time to equivalent hours, with operating hours often more
relevant than calendar time for industrial machinery.

Furthermore, Tinga (2010) delves into maintenance methods: calendar time-based
(CTBM), usage-based (UBM), usage severity-based (USBM), load-based (LBM), and
condition-based (CBM). CBM is most efficient, but UBM and LBM are useful with-
out sensors or system accessibility. Tinga (2013, p. 204) states that, considering the
results of a case-study, transitioning from CTBM to UBM notably reduces replace-
ments with about 30%, especially during low operating hours, without changing
failure probability. Traditional calendar-based maintenance may not suit systems
with variable usage or failure patterns, favoring UBM and LBM for accuracy and
efficiency. Figure 3.1 shows the results of this case study, indicating the differences
between the maintenance strategies.

Christer and Doherty (1970) suggests shifting from calendar-based to overhauls ba−
sed on the tonnes of steel throughput. The suggested solution, an example of mainte-
nance in the steel production sector, is robust enough to accommodate interruptions
in the overhaul scheduling without losing effectiveness. The study suggests that
the transition leads to cost savings in thousands of pounds per year. Studies like
Cichelli (1977) advocate for usage-based over calendar time-based systems, show-
ing productivity gains via simulation models. Liu, Wang, and Tan (2024) compare
calendar-time-based and age-based maintenance, considering repair times and fac-
tors like replacement cost and repair effectiveness.



Chapter 3. Literature Review 27

FIGURE 3.1: Overview of item replacements for five different main-
tenance strategies (Tinga, 2013, p. 204)

Studies by Kim, Ahn, and Yeo (2016) and Ahmad and Kamaruddin (2012) indirectly
discuss usage counter-based maintenance while focusing on condition-based meth-
ods. By highlighting the condition-based strategy’s advantages in maintaining con-
dition under consistent inspection, it suggests the importance of considering usage
patterns in maintenance strategies.

The study of Deloux, Fouladirad, and Bérenguer (2016) extends the concept of cou−
nter-based maintenance by exploring maintenance policies that consider both de-
terioration level and usage profile, suggesting a nuanced approach to maintenance
decision-making. By incorporating usage data into maintenance policies, it aligns
with the principles of usage counter-based maintenance, which emphasizes the im-
portance of usage patterns in determining maintenance needs.

Wang (2002) categorizes maintenance policies for deteriorating systems, while Tid-
dens, Braaksma, and Tinga (2023) offer a decision framework for predictive mainte-
nance method selection. Practitioners still often follow a costly trial-and-error pro-
cess in selecting the most suitable predictive maintenance method, and the article
delivers a framework to support asset owners in selecting the optimal predictive
maintenance method for their situation.

Overall, the theory suggests that a counter-based maintenance strategy is adequate
when failure costs outweigh planned replacement costs, when traditional time-bas-
ed approaches are ineffective due to variable usage or failure patterns, and when
usage data is critical for accurate maintenance decision-making. It is commonly used
in industries where equipment up-time is critical, and the consequences of failure are
significant, such as manufacturing, transportation, and energy sectors.
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3.2 Optimal Maintenance Interval

The book of Rausand, Barros, and Høyland (2021) gives the method of calculating
the optimal replacement interval for any measuring unit of time. This may be mea-
sured by many different time concepts, such as calendar time, time in operation,
number of work cycles, and so on. The strategies that the book considers are Age
Replacement, Block Replacement, and P–F Intervals. The methods of the book can
only be applied when a failure distribution can be fitted to the failure behaviour of
an item. Determining the maintenance interval requires failure data, and the book
delivers many other sources for this if it is missing.

A maintenance optimization problem that involves only one component with an
increasing failure rate in time has a common formula for the optimal interval of pre-
ventive maintenance activities. Note that this formula finds the optimal interval over
an infinite time horizon using the Weibull distribution and the costs for corrective
and preventive maintenance. Tan and Kramer (1997) delivers this general formula:

C(T∗) =
CcmF(T∗) + Cpm(1 − F(T∗))∫ T∗

0 (1 − F(t)) dt
(3.1)

where, C(.) is the cost rate function, Ccm are the corrective maintenance costs, Cpm
are the preventive maintenance costs, F(T) is the cumulative failure distribution,
and T∗ is the optimal interval.

The book of Tinga (2013) gives further categorization of the several approaches that
can be followed to determine the preventive maintenance intervals. Figure 3.2 shows
this categorization, where the moment in life cycle represents the specific stage of the
component’s life where the maintenance intervals are determined. The condition as-
sessment is the method used to determine the system condition during the service
life. The final criterion considers the prognostic approaches used to predict the fu-
ture behavior or condition of a system or component.

Percy (2008) reviews basic models for complex repairable systems, explaining their
use for determining optimal PM intervals. The book gives a summary of models
with corresponding sources in the literature. These models contain the Renewal pro-
cess, Nohomogeneous Poisson process, Delayed renewal process, and many more.
Again most of these models use the distribution of failures for components.

Holland and McLean (1975), Basker and Husband (1978), Siswanto and Kurniati
(2018), and Sharma and Rai (2021) all perform a case study or practical applica-
tion on determining the optimal preventive replacement policy. All show significant
changes in performances such as improvement in availability, reduction of total cost
per unit time, and annual savings.

To sum up, the theory shows that through data collection, modeling, and optimiza-
tion, there are many methods and examples of arriving at the optimal interval for
preventive maintenance activities. This interval may be measured by different time
concepts, such as calendar time, or time in operation. Literature seems to lack knowl-
edge on the process of transitioning specifically, going from a calendar time-based
to a usage counter-based strategy. Nothing was found on general rules, regulations,
or methods of addressing the calculation of intervals with an absence of failure data.
Jonge et al. (2015) do deliver an analysis on the influence of uncertainty in failure
distribution parameters on the optimal maintenance interval.
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FIGURE 3.2: Classification of preventive maintenance policies (Tinga,
2013, p. 170)

3.3 Maintenance Planning Optimization Models

Many review articles have been written on maintenance optimization models. For
example, Dekker (1996) gives an overview of applications of maintenance optimiza-
tion models, analyzing their role and discussing the factors which may have ham-
pered applications. The review of Ben-Daya and Rahim (2001) contains more speci-
fics on the aspects of production, quality, and maintenance, and which mathematical
models in literature aim to integrate these issues. Finally the thesis of Budai-Balke
(2009) discusses a review of maintenance planning models in different business sec-
tors.

Several studies address optimal maintenance policies and their operational sched-
ules for various systems. Dedopoulos and Shah (1995) analyze preventive main-
tenance parameters for equipment in multipurpose plants, balancing maintenance
benefits with costs. They integrate production and maintenance planning to opti-
mize maintenance policies. Vatn, Hokstad, and Bodsberg (1996) present a flexible
approach for determining maintenance schedules considering safety, cost, and pro-
duction objectives, adaptable to resource availability and management priorities.
Frost and Dechter (1998) frame preventive maintenance scheduling for power gen-
erating units as constraint satisfaction problems, aiming to minimize operating and
maintenance costs over a planning period. Vaurio (1999) develops cost functions for
components subject to random failures, considering periodic inspections and pre-
ventive maintenance to minimize total cost rate, accounting for repair, maintenance,
and production losses. Dijkhuizen (2000) introduces a hierarchical model for cluster-
ing preventive maintenance jobs in multi-component production systems, aiming to
find maintenance frequencies that minimize average cost per unit of time. Haghani
and Shafahi (2002) propose a mathematical programming approach to scheduling



Chapter 3. Literature Review 30

bus maintenance, optimizing daily inspection schedules to minimize interruptions
in bus operations and maximize system reliability. Fokkert et al. (2007) creates with
the help of operations research techniques a Mixed-Integer-Programming Model to
arrive at a maintenance schedule for the rail-track activities of ProRail, showing the
workload distribution across several weeks. Their research includes the considera-
tion of safety factors, and the company has accepted the resulting schedule, which
has been in operation since the year 2000.

Furthermore, some studies present mathematical models focusing on maintenance
schedules with a larger time horizon, representing time tables up to one year in
the future. Alardhi and Labib (2008) presents a method for solving a maintenance
scheduling problem and the method has been illustrated for a co-generation plant
in Kuwait. The basic idea of the method is to model the problem as zero-one integer
problem. Mixed integer programming has been shown to be a useful model, and an
illustrative example shows the applicability, delivering an equipment maintenance
schedule of seven units in two plants across 52 weeks.

Budai-Balke (2009) introduced the Preventive Maintenance Scheduling Problem
(PMSP) in the context of railway infrastructure, aiming to minimize possession and
maintenance costs by clustering maintenance activities. The models of this thesis
relate to the machine scheduling problem as defined by Graham et al. (1979). Two
versions were presented: one with fixed intervals (RPMSP) and one with only a
maximum interval (PMSP). The PMSP has the following mathematical formulation
(Budai-Balke, 2009, p. 71 - 72).

Indices

T Set of discrete time periods (e.g. months, weeks) in which the mainte-
nance activities need to be scheduled, i.e. |T| is the planning horizon.

PA Set of projects
RA Set of routine maintenance works
A PA ∪ RA Set of all activities
C {(m,n)|work m is combinable with n, ∀m, n ∈ A }

Parameters

La Cycle length of the routine work a ∈ RA
Fa Frequency of the routine work a ∈ RA
Ga Number of periods elapsed since routine work a ∈ RA was last carried

out before the planning horizon starts
LCa {t ∈ T | 1 + |T| − La ≤ t ≤ |T|} ⊆ T, set of time periods from the last

planning cycle for routine work a ∈ RA
bat

|T|−t
La

, length of the remaining interval until the end of the planning hori-
zon divided by the length of the planning cycle for routine work a ∈ RA
and for time period t ∈ LCa

Tp ⊆ T set of possible start points of project p ∈ PA
Dp Duration of project p ∈ PA
pct possession cost in period t ∈ T
mca maintenance cost per time period for carrying out work a ∈ A
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Decision variable

xat Binary variable that denotes whether activity a ∈ A is assigned to pe-
riod t ∈ T (xat = 1), or not (xat = 0)

zat Binary variable that denotes whether activity a ∈ RA is carried out for
the last time in the planning horizon at time t ∈ LCa (zat = 1), or not
(zat = 0)

mt Binary variable that denotes whether the track is used for preventive
maintenance work at time t ∈ T (mt = 1), or not (mt = 0)

ypt Binary variable that denotes whether the execution of project p ∈ PA
starts at time t ∈ T (ypt = 1), or not (ypt = 0)

Objective function

Minimize:

∑
t∈T

pctmt + ∑
a∈A

∑
t∈T

mcaxat + ∑
a∈RA

∑
t∈LCa

mcabatzat (3.2)

Constraints

La−Ga

∑
t=1

xat ≥ 1 ∀a ∈ RA (3.3)

La−1

∑
s=0

xa,t+s ≥ 1 ∀a ∈ RA, 1 ≤ t ≤ |T| − La + 1 (3.4)

∑
t∈LCa

zat ≥ 1 ∀a ∈ RA (3.5)

zat ≤ xat ∀a ∈ RA, t ∈ LCa (3.6)

xmt + xnt ≤ 1 ∀t ∈ T, (m, n) /∈ C (3.7)

∑
t∈Tp

ypt = 1 ∀p ∈ PA (3.8)

xps ≥ ypt ∀p ∈ PA, t ∈ Tp, s = t, . . . , t + Dp − 1 (3.9)

mt ≥ xat ∀a ∈ A, t ∈ T (3.10)

xat, zat, ypt, mt ∈ {0, 1} ∀a ∈ A, p ∈ PA, t ∈ T (3.11)

Constraints 3.3 ensure each work is carried out at least once; 3.4 schedule works
no more than La periods apart; 3.5 - 3.6 define the last interval length; 3.7 ensure
only combinable activities are carried out simultaneously; 3.8 guarantee each project
is executed once; 3.9 assign projects to the correct number of periods within the
specified start time range; 3.10 occupy periods for preventive maintenance if work is
planned; and 3.11 ensure decision variables are binary. The PMSP was proven to be
NP-hard. Four heuristics were developed to approximate solutions efficiently, with
PMSP showing lower costs but longer computation times. The thesis also uses Meta-
heuristics for their robust search capabilities, implementing Genetic and memetic
algorithms, along with iterative and opportunity-based heuristics. Computational
results show significant improvements over CPlex solver solutions, particularly for
instances with low possession costs. Memetic algorithms, especially using simulated
annealing, outperformed genetic algorithms in most cases. The solutions devised for
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railway maintenance scheduling can be applied to maintenance scheduling in other
sectors as well.

Henriksson (2019) uses Mixed Integer Linear Programming (MILP) to optimize pre-
ventive maintenance planning and operation for a generic fleet of equipment. The
maintenance requirements are mixed conditions of calendar based and operation
based constraints. Also, maintenance of hierarchy types are handled. The objec-
tive is to minimize the number of maintenance events, considering even operation
and spread in planned maintenance. The results show that it is possible to opti-
mize preventive maintenance and operation scheduling with MILP. There are some
limitations in size depending of included constraints and parameter values. Limi-
tations in size can be handled with step-wise calculations, manual manipulations of
the results, or if satisfying end conditions can be achieved, splitting of the planning
period.

To conclude, many articles and theses in literature explore various maintenance
planning methodologies and models. Many operations research techniques are pres-
ent, such as mathematical programming, Mixed-Integer-Programming Models, and
Meta-heuristics. Examples of industries present in the theory are the railway indus-
try, the power industry, co-generation plants, and the water fleet industry.

3.4 Maintenance of Production Lines

Maintenance of production lines is a crucial aspect of manufacturing operations,
focusing on preventing untimely breakdowns, improving reliability, and ensuring
efficient production. Literature provides a variety of approaches and methodologies
for maintenance management, including the integration of advanced technologies
and strategies.

In the context of production lines, integrating production planning and preven-
tive maintenance is crucial for enhancing operational efficiency and reducing costs.
Aghezzaf and Najid (2008) addresses this by proposing mathematical models to op-
timize production and maintenance scheduling in parallel failure-prone production
lines, employing cyclic and non-cyclical preventive maintenance policies. Cadi et
al. (2015) extends this model to series-parallel production lines, emphasizing cost
minimization and incorporating buffer stocks between subsystems. Purnomo, Wa-
hab, and Singh (2023) focuses on optimizing planned preventive maintenance across
multiple production lines using an optimized Weibull distribution and Bayesian
optimization within a simulation framework, successfully minimizing total main-
tenance costs while ensuring production continuity. These studies underscore the
importance of integrated production-maintenance strategies and ongoing efforts to
refine optimization techniques for improved operational efficiency and system reli-
ability in manufacturing environments.

Furthermore, in the context of preventive maintenance scheduling at production
lines, Ebrahimipour, Najjarbashi, and Sheikhalishahi (2015) addresses a multi-
objective preventive maintenance scheduling problem across multiple production
lines, considering reliability, maintenance costs, and system downtime. Qing et al.
(2010) extends this discussion to imperfect preventive maintenance on parallel pro-
duction lines, proposing integrated models to minimize completion costs. Xu et
al. (2017) explores maintenance planning in an unreliable production line with a
branch buffer, developing an optimization model considering system throughput,
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buffer inventory, and device reliability. Lastly, Wang, Li, and Zhang (2016) focuses
on parallel production lines, introducing a scheduling model with urgency-based
objective functions and constraints on multi-product production and maintenance
windows. These studies collectively highlight the complexity of preventive mainte-
nance scheduling and offer diverse approaches to address it effectively.

Some studies focus on delay-time analyses for maintenance on production lines.
Christer and Waller (1984) explores the use of delay-time analysis and snapshot
modeling to predict downtime consequences and enhance maintenance practices.
The study underscores the iterative nature of maintenance improvements, demon-
strating how insights from modeling facilitated efficient inspection practices and
plant modifications. Meanwhile, Li et al. (2018) presents a preventive maintenance
strategy for automatic production lines based on a delay-time analysis. Through crit-
icality assessment and maintenance modeling, the study establishes tailored main-
tenance plans for different machine groups, aiming to optimize reliability, operating
rates, and maintenance costs.

The use of machine learning is also present in the literature considering mainte-
nance on production lines. Kang, Catal, and Tekinerdogan (2021) presents a novel
machine learning-based approach for predicting the Remaining Useful Life (RUL) of
equipment in production lines, focusing on turbo engines using NASA datasets. The
study demonstrates the efficacy of employing interpolation and multi-layer percep-
tron neural network (MLP) algorithms, alongside pre-processing techniques such
as normalization and principle component analysis, to enhance predictive mainte-
nance in production environments. The results underscore the potential of utilizing
machine learning for RUL prediction and its significance in proactive maintenance
management, while acknowledging challenges such as data variability and the need
for representative training data in real-world production settings.

To conclude, in literature, preventive maintenance of production lines is depicted as
crucial for preventing breakdowns, improving reliability, and ensuring efficient pro-
duction. Studies highlight the integration of production planning and maintenance
scheduling, optimization techniques, delay-time analyses, and the utilization of ma-
chine learning for predictive maintenance as key strategies to enhance operational
efficiency and system reliability.

3.5 Prediction Models

Literature discusses many types of prediction models. Efron (2020) compares mod-
ern prediction algorithms with standard regression models, centered on the differ-
ences between prediction and estimation or prediction and attribution. Shmueli
(2010) aims to clarify the distinction between explanatory and predictive modeling,
and discusses its sources. Hand (2006) argues that simple methods typically yield
performances almost as good as more sophisticated methods. Lastly, Donoho (2017)
discusses the difference between data science and statistics. Section 3.5.1 continues
to discuss the different types of prediction models, and Section 3.5.2 considers the
evaluation metrics. Section 3.5.3 shortly discusses one-hot encoding. Then, Section
3.5.4 tackles the subject of parameter tuning and cross-validation, while Section 3.5.5
delves into the current literature of prediction modelling concerning maintenance or
production.
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3.5.1 Model Types

The book of James et al. (2013) discusses several models, including the following:

• Linear Regression
• Decision Trees
• Random Forest
• Gradient Boosting Machines
• K-Nearest Neighbor

Linear Regression is a statistical method used to model the relationship between a
dependent variable and one or more independent variables by fitting a linear equa-
tion to the observed data. Decision Trees are versatile and easy-to-interpret models
that partition the feature space into segments and make predictions based on the
majority class or the average target value within each segment. Random Forests are
ensemble learning methods that construct multiple decision trees during training
and output the average prediction of the individual trees. Gradient Boosting Ma-
chines are a powerful ensemble technique that builds models sequentially, with each
new model attempting to correct the errors of the previous ones. Lastly, K-Nearest
Neighbor is a non-parametric method used for regression tasks, where the predicted
value is the average of the values of its k nearest neighbors.

Another type is the Holt-Winters model; a forecasting technique used in time series
analysis. The book of Axsäter (2006) discusses it as an extension of exponential
smoothing where it takes into account trends and seasonality in the data. The model
includes three components: level (the average value of the series), trend (the di-
rection of the series), and seasonality (patterns that repeat at regular intervals). By
incorporating these components, the Holt-Winters model can provide more accurate
forecasts for time series data.

3.5.2 Evaluation Metrics

Again, literature discusses many subjects on methods of assessing models. Steyer-
berg et al. (2001) assesses different variants of split-sample, cross-validation, and
bootstrapping methods to validate a logistic regression model. The book of James et
al. (2013) also considers model accuracy assessment methods. This research chooses
to assess the models based on the Root Mean Squared Error (RMSE), the Mean
Absolute Deviation (MAD), and the Symmetric Mean Absolute Percentage Error
(sMAPE). The following equations calculate the RMSE, the MAD, and the sMAPE:

RMSE =

√
1
n

n

∑
i=1

(yi − f̂ (xi))2 (3.12)

where f̂ (xi) is the prediction that f̂ gives for the ith observation, yi is the actual
value, and n is the number of predicted observations. The RMSE will be small if the
predicted responses are very close to the true responses, and will be large if for some
of the observations, the predicted and true responses differ substantially.

MAD =
1
n

n

∑
i=1

|yi − f̂ (xi)| (3.13)
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where f̂ (xi) is the prediction that f̂ gives for the ith observation, yi is the actual value,
and n is the number of predicted observations. The MAD measures the average
absolute difference between the predicted and actual values. Similar to RMSE, a
lower MAD value signifies a better model.

sMAPE = 100% ∗ 1
n

n

∑
i=1

|yi − f̂ (xi)|
(|yi|+ | f̂ (xi)|)/2

(3.14)

where f̂ (xi) is the prediction that f̂ gives for the ith observation, yi is the actual
value, and n is the number of predicted observations. The sMAPE measures the
relative accuracy of predictions. It scales the absolute errors by the average of the
absolute values of the actual and predicted values. sMAPE ranges from 0 to 100%.
Lower values indicate better accuracy.

Bias =
1
n

n

∑
i=1

( f̂ (xi)− yi) (3.15)

where f̂ (xi) is the prediction that f̂ gives for the ith observation, yi is the actual
value, and n is the number of predicted observations. A bias close to zero indicates
that the model’s predictions are, on average, close to the actual values, whereas a
positive bias indicates a tendency to overestimate, and a negative bias indicates a
tendency to underestimate.

3.5.3 One-Hot Encoding

The previously discussed models use input data for the creation of accurate predic-
tions. This data consists of so called features. Sometimes, it is necessary to process
these features to adequately prepare them for the prediction models. One-hot En-
coding is a method in machine learning to represent categorical variables as binary
vectors. It converts each category into a binary feature. In this feature, all the ele-
ments are zero except for the position corresponding to the specific category, which
is set to one.

The book of Bishop (2006) discusses various encoding methods for categorical data,
including one-hot encoding, and their impact on machine learning algorithms. It
shows that if the months or weeks in the year represent categorical data rather than
a sequential trend (e.g. for seasonality), you can use one-hot encoding. This is useful
when you want to treat each month or week as an independent category.

3.5.4 Parameter Tuning and Cross-Validation

The book of James et al. (2013) discusses parameter tuning as the method that adjusts
the parameters of a model to optimize its performance. Parameter tuning involves
experimenting with different values for the model’s parameters to find the combina-
tion that yields the best results in terms of model accuracy, generalization, or other
performance metrics. This iterative process typically involves techniques such as
grid search, random search, or more sophisticated optimization algorithms to find
the optimal parameter values for a given model and dataset.

One method of experimenting with different parameter values is Cross-Validation.
This is a technique used to assess the performance of a machine learning model. It
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involves dividing the dataset into multiple subsets and then performing the training
and validation process multiple times. Different types of data series have unique
characteristics that necessitate specialized splitting techniques for effective model
evaluation. The paper of Schnaubelt et al. (2019) explains these differences. It con-
siders time series data, which are observations collected at successive points in time,
making them inherently dependent on previous values. This dependency requires
preserving the temporal order during model evaluation. To maintain the temporal
structure, ensuring that future values are not used to predict past values, the paper
suggests to split the data into training and testing sets such that the training set al-
ways precedes the testing set chronologically. For example, train on the first few
time points and test on the next few, then move the window forward. Figure 3.3
shows how to split Time Series Data in Cross-Validation methods.

FIGURE 3.3: Illustration of validation data splitting schemes for Time
Series Data (Schnaubelt et al., 2019)

Cross-Validation involves dividing the dataset into multiple subsets/folds and per-
forming the training and validation process multiple times. In each iteration, there
is one validation subset while the remaining subsets are for training. This process
repeats multiple times, with different parameter combinations in each iteration. The
goal is to find the set of parameters that results in the best average performance
across all iterations. By doing so, cross-validation ensures that the selected parame-
ters generalize well to unseen data, helping to avoid over-fitting and improving the
model’s overall performance.

3.5.5 Recent Literature

This section delivers the most recent articles on prediction modelling in the con-
text of maintenance or production. Ayvaz and Alpay (2021) developed a data-
driven predictive maintenance system using IoT sensor data and machine learning
algorithms like RF and XGB to prevent production stops. Hu et al. (2023) intro-
duced Knowledge Enhanced Reinforcement Learning (KERL) to optimize produc-
tion and maintenance scheduling, enhancing performance with prior knowledge.
Kang, Catal, and Tekinerdogan (2021) proposed using multilayer perceptron neu-
ral networks (MPNN) to predict the remaining useful life (RUL) of equipment in
continuous production lines. In mining, Koomson, Temeng, and Ziggah (2024) used
metaheuristic algorithms (PSO, GA, WOA) to predict dump truck tire life, with PSO-
MLPNN as the best model. Koulinas, Paraschos, and Koulouriotis (2024) applied
decision tree algorithms informed by reinforcement learning for optimization in de-
grading manufacturing and remanufacturing systems. Li et al. (2024) combined STL,
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DBN-ELM, and SVR for accurate prediction of rock drilling operation times in un-
derground mining. Tucci, Piazzi, and Thomopulos (2024) predicted electricity pro-
duction from solar photovoltaic installations in Italy using KNN and RF models,
highlighting feature selection and retraining frequency. Pan et al. (2023) developed
a conditional health status prediction structure for EVA copolymer reactors, finding
Extremely randomized trees as optimal for predicting reactor bearing’s RUL. Finally,
Skachkova, Alenin, and Mokshin (2022) used correlation analysis and Bayesian reg-
ularization neural networks (BRANN) for feature selection and optimization in oil
drilling, demonstrating superior prediction accuracy and training efficiency. These
studies highlight the potential of advanced machine learning and optimization tech-
niques in improving maintenance, production, and operational efficiencies across
various industries. Table 3.1 provides the conceptual matrix of these articles, show-
ing the models, metrics and other details.

TABLE 3.1: Conceptual matrix for prediction modelling

Source Models Metric Tuning Predicting

Ayvaz et al. 2021 RF, XGB, GBM, SVR R2, MAE, MAPE, RMSE no Prod. stops
Hu et al. 2023 KERL overall business reward no Prod. workload

Kang et al. 2021 MPNN MSE yes RUL
Koomson et al. 2024 PSO, GA, WOA VAF, NASH, R2, MAPE yes Component life
Koulinas et al. 2024 DT TPR yes Prod. policies

Meulenbroek 2024
LR, DT, RF, RMSE, MAD, sMAPE yes Prod. timeGBM, KNN, HW

Li et al. 2024 STL, DBN-ELM, SVR MAPE no Prod. time

Tucci et al. 2024
KNN, DT, KRR, LR, NRMSE yes Electricity Prod.SVR, RF, GBM

Pan et al. 2023 RF, XGB, SVM, LR RAE yes RUL
Skachkova et al. 2022 BRANN Learning error yes Oil prod.

This comparison highlights the effectiveness of diverse machine learning models
(e.g., RF, GBM, neural networks) across industries, emphasizing the importance of
model tuning and evaluation metrics like the RMSE. Recent literature often focusses
on individual cases where machine learning is applicable. To extend these findings,
this research aims to provide a more holistic analysis inside a relatively large orga-
nization. Whenever there is a need for many separate predictions due to a complex
system of multiple aspects, the current literature fails to address how to assess mul-
tiple prediction methods across different prediction data sets. This research aims to
fill this gap.

3.6 Conclusion

Theoretical background on counter-based maintenance emphasizes scheduling tasks
based on equipment usage rather than fixed calendar intervals, especially when fail-
ure costs outweigh replacement costs and traditional time-based approaches are in-
effective due to variable usage patterns. Case studies have demonstrated the su-
periority of counter-based maintenance over time-based methods, showing that the
number of replacements during a given time period can decrease with about 30%.
Transitioning from a calendar time-based system to a usage counter-based system
leads to an extension of a component’s service life, by reducing the uncertainty of
its state. This transition reveals that under the new strategy, replaced components
exhibit greater damage at the time of replacement, thereby reducing the occurrence
of over-maintenance and minimizing remaining lifetime spillage. Studies show that
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the transition can result in cost savings of thousands of pounds. Nevertheless, theory
lacks to discuss the specific calculations necessary to transition from a time-based to
a counter-based strategy.

One large gap is the absence of theory on the practicalities of transitioning from a
time-based to a counter-based maintenance strategy. There are no written methods
of using the knowledge and data of time-based systems to adjust to usage counters.
Additionally, in the context of such a transition, there are no methods of arriving
at adequate maintenance intervals while failure data is lacking in an organization.
Furthermore, while there is a lot of theory on prediction models, there are no sources
that apply these methods in the context of counter-based maintenance. Having us-
age counters for the application of maintenance results in the problem of having
to predict future usage amounts. There is no theory that applies prediction mod-
els in this context. Finally, there are many examples of planning models in current
literature. However, there are no specific planning models that consider planning
maintenance activities based on their usage counters. This thesis aims to fill these
gaps in the theory.

The purpose of this chapter was to find the present theory on the comparisons/tran-
sitions between time-based maintenance and counter-based maintenance, the de-
termination of the interval between maintenance activities, the mathematical mod-
els for maintenance planning, the maintenance of production lines, and prediction
models. Table 3.2 shows the conceptual matrix of this literature review, stating which
concepts the found sources tackle. This table indicates the gaps in the theory, thereby
showing the contribution of this research by incorporating all concepts.

To conclude, this research chooses to create a method to transition from the time-
based to a counter-based strategy. It finds the best method for the company to pre-
dict the amount of production on the filling lines, by evaluating the DT, RF, GBM,
KNN, and the HW models, with additional tuning and cross-validation methods
to improve parameter settings. Finally, it creates a new planning model similar
to the model from Budai-Balke (2009), while adjusting the goal to comply with a
counter-based maintenance strategy, with a focus on minimizing under- and over-
maintenance.



Chapter 3. Literature Review 39

TABLE 3.2: Conceptual matrix

Comparison Interval Planning Production Prediction
Sources TBM and UBM Determination Models Lines Models

Alardhi et al. 2008 x
Aghezzaf et al. 2008 x x
Ahmad et al. 2012 x

Axsäter 2006 x
Ayvaz et al. 2021 x x
Basker et al. 1978 x x

Ben-Daya et al. 2001 x x
Bishop 2006 x

Budai-Balke 2009 x
Cadi et al. 2015 x x

Christer et al. 1970 x x x
Christer et al. 1978 x

Cichelli 1977 x x
Dekker 1996 x x x

Deloux et al. 2016 x
Dedopoulos et al. 1995 x x

Dijkhuizen 2000 x x x
Dohono 2017 x

Ebrahimipour et al. 2015 x x
Efron 2020 x

Fokkert et al. 2007 x
Frost et al. 1998 x

Graham et al. 1979 x
Haghani et al. 2002 x

Hand 2006 x
Henriksen 2019 x

Holland et al. 1975 x
Hu et al. 2023 x x x

James 2013 x
Jonge et al. 2015 x
Kang et al. 2021 x x
Kim et al. 2016 x

Koomson et al. 2024 x
Koulinas et al. 2024 x x

Li et al. 2018 x
Li et al. 2024 x x

Liu et al. 2024 x
Meulenbroek 2024 x x x x x

Pan et al. 2023 x
Percy 2008 x

Purnomo et al. 2023 x x
Qing et al. 2010 x x

Rausand et al. 2021 x x x
Schnaubelt et al. 2019 x

Sharma et al. 2020 x
Shmueli 2010 x

Skachkova et al. 2022 x x
Steyerberg et al. 2001 x

Tinga 2010 x x
Tinga 2013 x x
Tinga 2023 x

Tucci et al. 2024 x x
Vatn et al. 1996 x x

Vaurio 1998 x x x
Wang 2002 x

Wang et al. 2016 x x
Xu et al. 2017 x x
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Chapter 4

Solution Design

This chapter addresses the third research question:

“How should this research collect, select, and process the data to create the design of the
solutions?”

It explores data collection and analysis methods. The research question unfolds into
several sub-questions, including:

• What is the approach to arrive at a solution of the problem?

• How should the Maintenance Engineering Team calculate the counters, and how often
should they perform the calculations?

• What data should be collected for this thesis, what data is currently available, and how
should the situation of missing data be handled?

• How should the Maintenance Engineering Team predict the production hours of the
machines on the production filling lines?

• How should the Maintenance Engineering Team model the planning of preventive
maintenance activities?

Section 4.1 starts with a short description of the approach to arrive at a solution to the
problem. Then, Section 4.2 discusses the calculations of the counters, and Section 4.3
addresses the prediction models for production in the future. Section 4.4 considers
the planning model, with its corresponding modelling decisions and mathematical
formulation. Then, Section 4.5 concludes the chapter.

4.1 Solution Approach

To arrive at a solution to the core problem, this chapter divides and combines three
separate solutions. Firstly, the company and present theory lack a method of trans-
lating the current time-based approach to a sufficient counter-based maintenance
strategy. The first solution are definitions of formulas to arrive at counter-based in-
tervals between maintenance activities. Secondly, introducing usage counters for the
application of maintenance results in the problem of having to predict future usage
amounts. The second solution entails finding a sufficient prediction method of fu-
ture production amounts on the packaging filling line. Finally, the company requires
a solution to the planning activities of the preventive maintenance actions. The third
solution is the planning model that generates a schedule which minimizes over- and
under-maintenance. Figure 4.1 visualizes this solution approach.
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FIGURE 4.1: Solution Approach

Figure 4.1 displays the chronological order of this chapter, starting with the defi-
nition of the formulas for the counter-based intervals, following with the method
of obtaining the most suitable prediction method, and ending up with a planning
model for the maintenance activities. Note how Figure 4.1 shows that the first two
solutions generate model parameters of the final planning model, meaning that the
thee sections are integrated.

4.2 Determination of Usage Counters

With the knowledge from Chapters 2 and 3, this section discusses the calculations
of the counters for the maintenance of a packaging filling line. Section 3.2 already
states how literature uses failure distributions of parts to find the optimal mainte-
nance interval with the use of equation 3.1. The company however lacks data to
assign failure distributions to its assets, resulting in a demand for a simple transi-
tional formula going from the time-based intervals to the counter-based intervals.
Section 2.5 has shown the performance and value of the current intervals, justifying
the following equations for the calculations of the usage counters.

Consequently, this research defines a usage counter as the total amount of executed
production hours in proportion to the set translated counter interval of a particular
PM-plan. The following equation determines this usage counter:

C =
∑T

t=l Pt

CI
(4.1)

where C is the usage counter, CI is the counter-based interval, Pt is the amount of
production on day t, l is the day on which the activity was last executed, and T is the
present date. The formula sums up the total amount of production hours since its
last execution and divides it by the counter-based interval. The following equation
determines the counter-based interval:

CI =
TI
365

∗ A (4.2)

where CI is the counter-based interval, TI is the time-based interval in days, and
A is the average annual amount of production hours for the past five years. Note
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that this is a simple linear function, making it relatively easy for the company to
perform these calculations. An example would be a specific PM-plan that currently
uses a time-based interval of six months. This PM-plan has an average of 6,000
hours annually. This would result in a translated Counter-Based Interval of about
3,000 hours (182/365 * 6,000). Do note that these Counter-Based Intervals are useful
parameters for the planning model in Section 4.4

The usage counter C from equation 4.1 indicates how close the PM-plan is to its
interval. For example, a value of 0.5 indicates that half of the amount of production
has passed until it reaches the interval. If the value is 1.5, it indicates that there has
been too much production and the execution of the PM-plan should be considered
as too late. Ideally, the value of the usage counter should be as close as possible to
the value 1.0 at the execution of the PM-plan. Knowing when to schedule the PM-
plan based on the value of the usage counter (at C = 0.8 or C = 0.9) depends on
knowing what amount of production the company can expect in the future, and this
is what the next section discusses.

Because the PM-plans are always planned 13 weeks beforehand for preparations,
monthly monitoring of the counters should be adequate, if an automatic check is
impossible. After the calculations a maintenance engineer evaluates the preventive
maintenance plans that will reach the counter interval in the upcoming 13 weeks,
and send these activities to the maintenance planner to start preparing its execution.
Obviously, it is necessary to further investigate how a maintenance engineer can
know that the amount of production in the upcoming 13 weeks exceeds the counter-
based interval. The next section tackles this issue.

4.3 Prediction Models

This section focuses on the prediction models and the different steps to generate use-
ful output. The goal of the prediction models is to predict the amount of production
of the machines from the packaging filling line 81. Section 4.3.1 starts with the objec-
tive of the prediction models. Then, Section 4.3.2 discusses the time horizon, while
Section 4.3.3 considers the collection of raw data. Section 4.3.4 tackles the processing
of this data, and Section 4.3.5 explains the application of One-Hot Encoding. Finally,
Section 4.3.6 elaborates on the training of the model.

4.3.1 Objective

Whenever there is the requirement to plan maintenance activities with a substantial
amount of time before its execution due to preparations, introducing usage counters
results in the problem of having to predict future usage amounts. For example, if
one maintenance activity should be scheduled whenever its corresponding machine
reaches 3,000 hours, and currently the machine has been active for only 2,000 hours.
How would one know when to plan the maintenance activity before it reaches this
interval? Additionally, if one wishes to plan multiple activities across a large plan-
ning horizon, it becomes increasingly difficult to know when production reaches the
counter-based intervals.

These difficulties require the use of two prediction models. The first provides knowl-
edge on when to plan any PM-plan with enough time (13 weeks) for preparations.
The second improves the planning activities of multiple PM-plans in the upcom-
ing period by providing the expected amount of production in between stop-days,
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which are opportunities for preventive maintenance. Note that the latter provides
the information for parameters of the planning model in Section 4.4

4.3.2 Forecasting Aspects

In the context of forecasting, the terms time horizon, time buckets, and aggregation level
are crucial for understanding the different dimensions and granularity of the fore-
casts. The time horizon refers to the length of time into the future for which a forecast
is made. The time horizon for the first prediction model is set at one week because
the goal is to acquire knowledge on when to start planning a given PM-plan. There-
fore it is only necessary to know the predicted value of one week at any given mo-
ment during the year. The time horizon for the second prediction model is set at one
year because the goal is to acquire knowledge before the start of the following year.
These predictions are less accurate but provide useful insights for the maintenance
planner.

Time buckets refer to the intervals that divide the forecast period. For both predic-
tion models the time buckets are set to weeks. Daily predictions are not possible
since the second source of data only provides weekly information, and monthly pre-
dictions lack knowledge on the precise moment when to plan maintenance in a given
week.

The aggregation level refers to the level of detail at which the model forecasts the
data. To aggregate means to group/sum multiple data values to simplify the predic-
tions. For the first prediction model, the goal is to find in what amount of production
will follow in the following 13 weeks. Therefore, the aggregation level is set at 13
weeks. The Maintenance Engineering Team should be able to predict during any
given week in a year. Therefore, each data point now shows the sum of the follow-
ing 13 weeks, for both the input and output variables. The second prediction model
aims to find the details of every week in the following year and has therefore an
aggregation level of one week.

4.3.3 Data Collection

This research collects data from several software systems. The Manufacturing Exe-
cution System (MES) is the software that collects and stores all kinds of data from
each production filling line. MES also stores the production data per filling line,
giving the amount of minutes that each machine is running per day. Section 2.6
discusses the possible states of a machine, and MES collects on each calendar day
and for each machine on the line the amount of minutes that the machine is in each
state. Section 2.6 argues why only three states show the most reliable representation
of real production amounts. Therefore, this research requires data on the states that
are Production time, Emptying idle time, and Filling idle time.

For line 81, MES currently is able to export data of the years 2016 to 2024. In total
it contains data for 31 machines. Together with one of the maintenance engineers a
thorough analysis has been done on the MES output of these 31 machines and five
of them are unusable due to either censored data or unrealistic outcomes. For each
remaining machine the only feature from MES is the calendar day.

The second source of data originates from the Tactical Planning Team. This depart-
ment makes use of a central database with historical figures on working hours and
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breakdown requests. In close collaboration with the Workforce Planner of the pack-
aging filling lines and the Tactical Planning Team, this research gathers data that
states the number of working hours on line 81 per week from years 2013 to 2023.
The years 2013 to 2015 are invaluable because it is dated and misrepresents reality.
Therefore, this research collects data from all sources from years 2016 up until and
including 2023.

4.3.4 Data Processing

Before a model can train with the data, the data requires processing. This section
discusses the feature modifications, outliers, and missing data. The book of Géron
(2019) covers processing techniques extensively, demonstrating their application in
machine learning pipelines. Some of these techniques are applicable to the data
of this research. MES contains data on each calendar day of the year. From the
argumentation of Section 4.3.2, this research processes the daily data from MES such
that it merges into weekly data values, where the calendar day transforms into three
features: the year, the week, and the week number inside this month. The data from
all sources do not contain any outliers and it has no missing data, meaning it does
not require further processing.

One of the techniques from the book of Géron (2019) is handling temporal data. This
suggests that if a feature represents temporal data and trends over time are impor-
tant, it is essential to transform it to new features that capture the passage of time.
For instance, if the year represents the time of an event, you could create a feature
that measures the number of years since a baseline year (e.g. years_since_2000 =
year - 2000) to account for long-term trends. For the data in this section, this re-
search applies this method on the feature that represents the year.

One last modification is aggregating the data for the first model. Therefore, each data
point now shows the sum of the following 13 weeks, for both the working hours and
the production amounts of the machines. Table 4.1 shows the final data for the first
prediction model with the aggregated values, and Table 4.2 shows the final data for
non aggregated values.

TABLE 4.1: Data for the first prediction model (aggregated values)

Input variables (features) Output variables
Year Week Week of Month Tactical Planning Machine 1 ... Machine 26

0 1 1 1,693 81,717.85 ... 63,723.49
0 2 2 1,719 83,733.84 ... 67,513.81
0 3 3 1,735 83,895.49 ... 68,560.35
... ... ... ... ... ... ...
7 40 1 1,588 90,834.31 ... 73,710.34

Table 4.1 contains four input variables, 26 output variables, and a total of 404 data-
points. The first three columns in Table 4.1 define the numerical value of the year,
week, and week number of the month of a data-point, e.g. the first week of Jan-
uary in 2016 (0 meaning 2016, 1 meaning the first month, 1 meaning the first week).
The fourth column contains the aggregated numerical amount of production hours
planned for the workforce in the upcoming 13 weeks. The first data-point shows
that the company planned the workforce to be working a total of 1,693 hours in the
upcoming 13 weeks. There are 26 output variables, all containing information of one
machine on the line. The value represents the aggregated amount of minutes that
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the machine is running in the upcoming 13 weeks. For example, the first data-point
shows that machine 1 was running almost 82,000 minutes in the upcoming 13 weeks.

TABLE 4.2: Data for the second prediction model (non aggregated
values)

Input variables (features) Output variables
Year Week Week of Month Tactical Planning Machine 1 ... Machine 26

0 1 1 126 2,880 ... 0
0 2 2 136 8,032.81 ... 5,196.48
0 3 3 130 6,917.86 ... 6,317.85
... ... ... ... ... ... ...
7 52 4 120 0 ... 0

Table 4.2 is similar to Table 4.1. Again, it has 4 input variables, 26 output variables,
with a slightly higher total of 416 data-points because the values are not aggregated.
Only the fourth feature and all output variables adjust to be non aggregated values.
For example, now the first data-point shows that the company planned the work-
force to be working 126 hours in the that specific week. Also machine 1 shows to
have run 2,880 minutes in that week.

4.3.5 Application of One-Hot Encoding

For completeness, this research aims to find the best possible method of predict-
ing the production. Another method to hypothetically increase the accuracy of the
predictions is to use One-Hot Encoding, as Section 3.5.3 discusses. One-Hot Encod-
ing makes binary features, often used in statistical modeling to represent categorical
data. Each new feature, typically with values 0 or 1, indicate the absence or presence
of a particular category. They allow categorical features to be included in regression
models by converting qualitative data into a quantitative format.

For example, in both the datasets the weeks of the year are typically categorical input
features:

• Week_1: 1 if the data-point is the first week, and 0 if otherwise
• Week_2: 1 if the data-point is the second week, and 0 if otherwise
• Week_3: 1 if the data-point is the third week, and 0 if otherwise

These features in prediction models help analyze the effect of each specific week on
the outcome variables. This research chooses to create One-Hot Encoded features for
the week, and the week of the month. These features might have specific seasonal
effects (e.g., holiday weeks, vacation periods, or monthly targets). One-Hot Encoded
features can help model these distinct effects more precisely. Introducing these One-
Hot Encoded features increases our initial four features to a total of 59 features.

4.3.6 Model Training

Section 3.5.1 identified a number of machine learning models useful for predicting
production amounts. To validate these models it is necessary to split the dataset
into a training set and a testing set. Then the models can train themselves on the
training set, and show their performances based on the testing set. The evaluation
metrics from Section 3.5.2 will provide the performances of the models. Gholamy,
Kreinovich, and Kosheleva (2018) shows why the best results are attained if datasets



Chapter 4. Solution Design 46

allocate 20% to 30% percent of the original data points for testing, and use the re-
maining 70% to 80% for training. The non aggregated dataset has eight full years
of weekly values resulting in 416 data points. The aggregated set only has 404 data
points because the last 12 weeks cannot be aggregated. This research chooses to split
the data into a training set with data from the years 2016 to 2021, and a testing set
with data from the years 2022 and 2023. This sets the division for both prediction
models to about 30% to 70%.

To further improve the prediction models, this research performs parameter tuning
to the applicable models. These are the DT, RF, GBM, and the KNN model. For these
models, the research chooses to perform five folds cross-validation. It uses the Time-
SeriesSplit tool, which correlates to the top part of Figure 3.3 in Section 3.5.4. In this
manner the folds maintain the temporal structure, ensuring that future values are
not used to predict past values. Appendix C shows the parameter distributions for
each model, which all lie around the standard values of the python model functions.

Additionally, to make a valid comparison between the models, this research adds
a baseline prediction to the assessment. The purpose of the baseline model is to
provide a benchmark. If a complex model cannot outperform the baseline model, it
suggests that the complexity is unnecessary, and simpler methods might be prefer-
able. It assumes a constant production rate, making predictions easy to calculate.
This method starts with finding the average amount of production per week/data-
point over the whole training set. Each week/data-point of the test set is given this
average, resulting in a very simple prediction. If the baseline predictions perform
the best, it would mean that this research advises the company to not use one of the
prediction models and simply use an average to predict the future values of expected
production amounts.

To conclude, the research aims to predict the amount of production of the machines
from the packaging filling line 81. With an aggregated and non aggregated dataset,
evaluation metrics of seven prediction models (including the baseline) will show
how to achieve this goal. To further clarify the method of prediction modelling,
Figure 4.2 displays the approach.

Figure 4.2 shows that depending on the type of the model and the possibility of
parameter tuning, the approach starts either with defining the parameters, or just
fitting the model. In the case of tuning it continues to find the optimal set of param-
eters and fitting that model. For all models after fitting, they perform predictions on
the test set and their performances are stored. After this procedure for all machines
is done, the final average performance can be evaluated.

4.4 Planning Model

This section delivers the method of modelling the planning of preventive mainte-
nance activities. Section 3.3 contains a thorough discussion of planning models in
the context of maintenance. The planning model of this section is mostly inspired
by the PMSP and RPMSP of Budai-Balke (2009). Section 4.4.1 gives a description of
the model, and Section 4.4.2 delivers its objective. Then, Section 4.4.3 discusses the
restrictions and assumptions, and Section 4.4.4 provides the mathematical formula-
tion of the model. Finally, Section 4.4.5 delivers a short explanation of the rolling
horizon.



Chapter 4. Solution Design 47

FIGURE 4.2: Approach of prediction modelling

4.4.1 Model Description

The definition of the model is as follows. Given a set of routine activities called
PM-plans, the goal is to schedule them in a way that minimizes the amount of over-
and under-maintenance. The intend is to plan them such that the past production
since the last execution is as close to the counter-based interval as possible. The
model uses a rolling horizon which Section 4.4.5 discusses. The schedule has a fi-
nite planning horizon of 52 weeks, containing several moments for the execution of
these PM-plans, known as stop-days. For each PM-plan, the counter-based interval,
which represents the maximum amount of production between consecutive execu-
tions, is known with the method from Section 4.2. With the non aggregated predicted
amount of production by the model of Section 4.3, it is known how much produc-
tion the company can expect between the stop-days. Additionally, the amount of
production that has passed since the last execution of each PM-plan is provided.

A PM-plan must only be executed within the planning period before the amount of
production exceeds the counter-based interval. For each PM-plan, the first moment,
before the expected production reaches the counter-based interval is known. Addi-
tionally, the last moment before the remaining expected production becomes lower
than the counter-based interval is known. Given the expected production between
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the stop-days, it is also known for each moment, when the amount of production
between the moments that follow exceed the counter-based interval.

The planning model of this thesis appears to be related to the machine scheduling
problem, similar to the models of Budai-Balke (2009). The connection lies in the fact
that jobs, with some specifications and time windows between consecutive execu-
tions, need to be scheduled within a certain time frame. However, the objective of
this thesis’ model differs, focusing on planning the PM-plans as close to their most
optimal moment (considering over- and under-maintenance) as possible, depending
on the restrictions. Moreover, PM-plans are repetitive (mainly the plans with a short
interval), which is not the case for the machine scheduling problem.

4.4.2 Objective

The objective of the planning model is to schedule the PM-plans across the plan-
ning horizon while minimizing over- and under-maintenance. To minimize over-
maintenance, means to keep the amount of scheduled activities of a PM-plan at
a minimum. To minimize under-maintenance, means to schedule the activities as
close to the optimal moment before the amount of production exceeds the counter-
based interval. Due to restrictions it might not be possible to plan all PM-plans on
their most optimal moments in the planning horizon. The distance from these best
options is what the model should reduce as much as possible.

4.4.3 Restrictions and Assumptions

There are several aspects that result in a restriction of the planning model. On any
given stop-day there is a restriction on the amount of work. The company distin-
guishes stop-days into two categories: short and long stop-days. Consequently,
short stop-days can perform less PM-plans in comparison to long stop-days. In dis-
cussion with the Maintenance Planner, restrictions are the following:

• Execution duration per PM-plan
• Skill-set requisites of mechanics per PM-plan
• Availability of mechanics per Stop-day
• Spare-part availability per PM-plan per stop-day

For now, the company fails to extract this information for a planning model. There-
fore, this research makes the assumption that it is sufficient to combine the restric-
tions into one that states an allowed number of PM-plans per moment; a stop-day.

Additionally, the Maintenance Planner provided a set of combinations of PM-plans
that have to be clustered. Clustering is another restriction, and is important for the
set up of maintenance. For example, whenever a mechanic takes apart a section of
a machine, in some specific cases it is best to perform all PM-plans considering that
section.

Further restrictions are the results of the planning model depending on the produc-
tion amounts during the planning horizon as an input. There is definitely no possible
way that the company can know these production amounts exactly. Therefore, this
research assumes that the predictions of the models from Section 4.3 are adequate
enough to use as parameters for the planning model. The main argument originates
from the fact that currently there are no planning models in use, and even a model
with parameters from the output of a prediction model could improve this situation.
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Another problem is the preference of having maintenance too early or too late. The
question is how late a PM-plan can be scheduled, if the company wishes them to
be scheduled late at all. Considering this subject, this research assumes that all PM-
plans are not allowed to be scheduled any later than the moment when the amount
of production has surpassed its counter-based interval. This relates to a safe, risk-
averse and conservative choice, which falls in line with the current decisions of the
Maintenance Engineering Team.

4.4.4 Mathematical Formulation

The aim is to give a schedule for preventive maintenance activities in a finite horizon,
such that the amount of production before the execution of PM-plans is as close to
their counter interval as possible. The mathematical formulation is as follows.

Indices

T Set of moments/stop-days for preventive maintenance
P Set of PM-plans
A {(m, n)| m must be combined with n, ∀m, n ∈ P} Set of grouped PM-plans

In comparison to Budai-Balke (2009), this research does not divide the activities into
multiple sets. There is a single set of activities: the PM-plans. A PM-plan can be
seen as a routine activity of maintenance. If necessary the model will plan multiple
activities of a single PM-plan in the planning horizon. Similar to Budai-Balke (2009),
there is a single set of discrete moments in which the model schedules PM-plans.
Additionally, there is a set of multiple PM-plans that should be clustered due to
requirements by the maintenance coordinator and the mechanics. This could origi-
nate from efficiency purposes during the activity, for example performing two tasks
together because it has a very similar set up.

Parameters

Sp Start state of the counter of PM-plan p ∈ P
Ct Capacity of moment/stop-day t ∈ T
FMp The first moment after the expected production reaches the counter-

based interval of PM-plan p ∈ P
Mtp The moment after the expected production of following moments after

t ∈ T reaches the counter-based interval of PM-plan p ∈ P
LMp The last moment after the remaining expected production becomes

lower than the counter-based interval of PM-plan p ∈ P
mc The maintenance activity costs for each moment and for every PM-plan
pc The penalty costs for scheduling an activity away from their optimal

moment considering over-maintenance

The parameters differ from the model of Budai-Balke (2009). Here the focus lies
on planning the PM-plans as best considering their counter-based intervals. One
similarity is the use maintenance and penalty costs. This helps to generate insights
in finding a schedule that keeps the costs at a minimum. Note that there are only
penalty costs for over-maintenance because under-maintenance is minimized with
the constraints.

Decision variable

xtp binary variable that denotes whether PM-plan p ∈ P is assigned to moment
t ∈ T (=1) or not (=0)
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The binary variable generates the schedule for every PM-plan during the planning
horizon. Budai-Balke (2009) makes use of another binary variable that denotes if
a moment is in use for preventive maintenance such that the model can assess the
"possession costs". In the context of this research this is not necessary due to the
narrow scope. Section 2.3.1 arguments that not all PM-plans need counter-based
maintenance. Therefore, all moments are still needed for other types of preventive
maintenance activities, meaning assessing the possession costs of a stop-day would
not generate valid results.

Objective function

Minimize:

mc ∗
P

∑
p=1

T

∑
t=1

xtp + pc ∗
P

∑
p=1

(
FMp −

FMp

∑
t=1

t ∗ xtp

)
+ pc ∗

P

∑
p=1

T −
T

∑
t=(LMp)

t ∗ xtp

 (4.3)

The first expression is the maintenance costs times the sum of the total number of
executed PM-plans across the moments. A minimum of the total executed PM-plans
across the planning horizon relates to the main goal to minimize over-maintenance
and maintenance costs. The second expression calculates for all PM-plans the dif-
ference between the best possible moment and the planned first moment of the so-
lution, and multiplies this to the penalty costs. Coincidentally, the last expression
calculates for all PM-plans the difference between the last possible moment and the
last planned moment of the solution, and multiplies this to the similar amount of
penalty costs. These expressions guarantee that the first and last planned moment
are as close to the best possible moments as possible, considering the difference be-
tween passed expected production and their corresponding counter-based intervals.

Constraints

FMp

∑
t=1

xtp = 1, ∀p ∈ P (4.4)

Mtp−t

∑
s=1

x(t+s)p ≥ 1, ∀p ∈ P, 1 ≤ t ≤ LMp (4.5)

T

∑
t=LMp

xtp = 1, ∀p ∈ P (4.6)

P

∑
p=1

xtp ≤ Ct, ∀t ∈ T (4.7)

xtm = xtn, ∀(m, n) ∈ A, ∀t ∈ T (4.8)

xtp ∈ {0, 1}, ∀p ∈ P, ∀t ∈ T (4.9)

Constraints 4.4 ensure that the first moment for each PM-plan is scheduled before
the passed expected production reaches their counter-based interval. Constraints
4.5 guarantee that after a PM-plan is scheduled, it is scheduled again before the
passed expected production reaches the counter-based interval, until the end of the
planning horizon. Constraints 4.6 provide that the last moment for each PM-plan
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is scheduled before the expected production of the following moments reaches the
counter-based interval. Constraints 4.7 ensure that the number of scheduled PM-
plans on any moment/stop-day does not exceed its capacity, e.g. no more than 30
PM-plans allowed on a stop-day. Constraints 4.8 provide that PM-plans that must
be clustered will always be grouped in the schedule. Finally, Constraints 4.9 define
the decision variables as binary.

4.4.5 Rolling Horizon

A rolling horizon is common for problems in dynamic and unpredictable environ-
ments. This approach involves making decisions based on available information
about the future over multiple periods. For instance, at the beginning of a project,
plans are made for the upcoming months or years. As time progresses and the
project enters subsequent phases, these plans are revised based on new information.
Figure 4.3 shows how the rolling horizon scheduling strategy operates.

FIGURE 4.3: Rolling horizon scheduling strategy operation (Ott, Al-
muhaini, and Khalid, 2019)

It is an iterative process, where the model finds a solution for the entire scheduling
horizon, which can be adjusted after the control horizon. Each iteration the model
reschedules to account for new information. This provides flexibility and adaptabil-
ity by allowing for continuous adjustments based on the latest information, ensur-
ing plans remain relevant and effective. This is extra beneficial in the context of our
goal, because our parameters are based on the results of a prediction model which
will have some level of errors. The inclusion of a rolling horizon benefits this by
reducing the amount of uncertainty in the scheduling process.

For this planning model, this research sets the planning horizon at 52 weeks, and
the control horizon at 13 weeks. Do note that although the control horizon is sim-
ilar to the aggregation level of the first prediction model in Section 4.3, this plan-
ning model uses the predictions of the non aggregated values. The planning model
should observe the specific values of production between the moments for preven-
tive maintenance, hence the predictions of aggregated values are invaluable for this.
The definitions of the planning and control horizon are sufficient because there is
no need to schedule further than a year into the future because the uncertainties
would increase too much. The control horizon also coincides with the time taken for
preparation of maintenance activities.



Chapter 4. Solution Design 52

4.5 Conclusion

This chapter describes the methods of collecting, selecting, and processing data to
create the design of the solutions. The first solution delivers the method of deter-
mining the usage counters, with the help of equations 4.1 and 4.2. The usage counter
indicates how close the PM-plan is to its interval, making it possible to monitor its
use. The company can obtain counter-based intervals through a simple formula
that translates time-based intervals into production-hour intervals. Given that pre-
ventive maintenance plans are typically scheduled 13 weeks in advance, the team
should perform these calculations on a monthly basis to ensure timely prepara-
tions. Moreover, this research suggests further investigation on automatically track-
ing these counters to further improve the monitoring of maintenance activities.

For the Maintenance Engineering Team to know when the amount of production in
the upcoming 13 weeks exceeds the counter-based interval, they must gather data
from various software systems, particularly the Manufacturing Execution System
(MES) and the Tactical Planning Team’s central database. The MES data provides
daily production states per machine, while the Tactical Planning Team’s records offer
weekly production hours. This chapter suggests several predictive models using
the dataset for line 81 from 2016 to 2024. For production forecasting, this chapter
suggests two prediction model objectives: one that aggregates production data over
13 weeks to provide maintenance engineers with insights on when PM-plans should
be activated, and another that predicts the expected production each week for the
upcoming 52 weeks to aid in planning multiple PM-plans. The first is useful for
the Maintenance Engineering Team at any moment during the year if they wish to
check if any specific PM-plan will exceed its counter-based interval, while the latter
is beneficial for knowledge on weekly production in a planning model of all PM-
plans.

To continue with this planning model, the planning of preventive maintenance activ-
ities should follow a mathematical model that minimizes over- and under-maintenance
by scheduling PM-plans as close to their optimal moments as possible. The math-
ematical model of this thesis takes inspiration from both machine scheduling prob-
lems, as well as the PMSP and RPMSP of Budai-Balke (2009). It uses concepts such
as maintenance costs, and penalty costs for over-maintenance. Constraints on clus-
tering, available capacity per stop-day and the counter-based intervals for each PM-
plan ensure that maintenance is planned as effective as possible, reducing both the
risk of equipment failure and unnecessary maintenance. The model follows a rolling
horizon approach, used in dynamic and unpredictable environments, which is ben-
eficial in reducing the scheduling uncertainty from the prediction model errors. The
resulting planning model provides a robust framework that aligns preventive main-
tenance with predicted production hours, ensuring optimal scheduling.
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Chapter 5

Results

This chapter addresses the fourth research question:

“What are the results of the solution design and how do they affect the performance of the
maintenance activities?”

It explores the performances of the solutions of this research. The research question
unfolds into several sub-questions, including:

• How do the new usage counters improve the current situation?

• What are the results of the predictive models?

• What are the results of the planning model?

• How do the solutions improve the current situation?

• How sensitive is the model to new situations?

Section 5.1 examines the results of the new usage counters, and Section 5.2 addresses
the results of the predictive models. Then, Section 5.3 provides the results of the
planning model, and Section 5.4 discusses how these solutions improve the current
situation. Section 5.5 performs a sensitivity analysis, and Section 5.5 concludes the
chapter.

5.1 Usage Counters Results

This research has the aim to deliver a clear step-by-step methodology for the Main-
tenance Engineering Team to transition to a counter-based strategy. This method
should be applicable for all production filling lines. Appendix B.1 delivers the step-
by-step method to create the spreadsheet that shows the counters of the PM-plans
for any production filling line. Appendix B.2 gives an example screenshot of such a
spreadsheet. This spreadsheet shows both the progression of the time-based strategy
and the counter-based strategy, where the time-based progress entails the proportion
of calendar days passed to the time-based interval in days, and the counter-based
progress is equal to the usage counter from equations 4.1 and 4.2. Note that the
time-based numbers relate to the current maintenance strategy, while the counter-
based numbers are what this research suggests as a solution.
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TABLE 5.1: Five results from counters spreadsheet for line 81 (made
24-6-2024)

Code Description Last Time-based Interval Counter Counter-based
execution progress (hours) (hours) progress

PM1 SIXO812.1, 1J 2-11-2023 64% 3,375 1,942 58%
PM1 Losdok81, 6M 26-1-2024 82% 2,447 2,165 88%
PM1 TRANS-VL-DS81, 6M 30-1-2024 80% 1,688 1,266 75%
PM2 DOZO81, 1J 24-8-2023 84% 3,375 2,331 69%
PM4 ETIMA, 3J 31-3-2022 75% 15,098 12,176 81%

Table 5.1 reveals that the counter-based progressions are lower or higher than the
time-based progressions, meaning that considering the real production times of the
machines, maintenance should not be planned as early or late as with the time-based
strategy. Take for example the fourth PM-plan in the table. Regarding its time-based
interval, it will be scheduled in the near future because it is already at 84%, while
the counter-based progress is only at 69%. Executing this PM-plan too early is an ex-
ample of over-maintenance. These examples in the table indicate that the company
could perform less over- and under-maintenance if they consider the counter-based
percentages from these spreadsheets for the packaging filling lines, instead of their
current time-based systems.

5.2 Prediction Models Results

This section delivers the results of the prediction models. To be clear, there are two
types of predictions, each having their own goal: (i) Provide knowledge on when
to plan any PM-plan with enough time (13 weeks) for preparations. (ii) Improve
the planning activities of multiple PM-plans in the upcoming period by providing
the expected amount of production in between stop-days. The first goal uses the
dataset with the aggregated data, and the second with no aggregation. Section 5.2.1
delivers the results of the aggregated predictions, and Section 5.2.2 provides the re-
sults of non aggregated predictions. Then, Section 5.2.3 continues discussing learn-
ing curves. Section 5.2.4 discusses the importance of the features of the best model
types, and Section 5.2.5 gives some insights on graphs that show the performances
of the best model types. Note that Appendix D includes the remaining performance
metrics per machine.

5.2.1 Prediction Results of the Aggregated Data

To find the best prediction method for the aggregated values, this section evaluates
the performances based on the evaluation metrics. Either the RMSE, MAD, sMAPE,
or the Bias (see Section 3.5.2) give an indication on which prediction model outper-
forms the others, in addition to stating if there are over- or underestimations. These
metrics are based on how the model performed on the test data set. Table 5.2 shows
the RMSE performances of the model types on the test data set. The cells that are
coloured indicate the lowest value out of all the model types.
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TABLE 5.2: RMSE Values per Machine for Aggregated Predictions

Machine Baseline LR DT RF GBM KNN HW

Machine 1 16962.28 15652.42 12562.92 12749.03 13824.30 14092.99 9828.33
Machine 2 12111.09 10104.90 12271.43 9511.08 11640.18 10407.77 9888.67
Machine 3 16748.30 15326.59 16642.06 12170.41 13588.41 17084.87 14927.61
Machine 4 15848.00 14742.76 14468.52 13393.70 12704.25 17009.05 14958.46
Machine 5 15996.98 15370.80 12968.91 12316.56 12943.69 17188.76 15734.29
Machine 6 12252.22 10747.84 12990.92 10566.26 10654.10 11003.18 10122.87
Machine 7 12545.61 10878.37 13545.70 10933.23 11145.53 11383.73 10211.33
Machine 8 12890.92 11078.07 13313.91 10959.58 11125.92 11627.22 10997.85
Machine 9 11319.29 10416.53 11181.43 9576.71 10229.83 11047.92 12043.69

Machine 10 11303.45 9044.17 10926.83 8563.96 9588.10 9992.25 10314.83
Machine 11 18766.12 16740.88 14835.50 13798.97 15045.69 19042.01 19422.50
Machine 12 11005.63 14284.13 10995.94 9423.34 9483.66 9948.40 15866.67
Machine 13 15061.18 13238.92 13763.90 12651.37 12596.22 13343.21 13036.14
Machine 14 11578.96 10956.42 14685.63 11872.06 11511.25 11526.54 10630.38
Machine 15 12129.14 10241.82 12402.09 9659.85 9657.13 9866.88 9270.64
Machine 16 11751.22 9682.54 9825.24 8875.62 9196.19 9561.40 8894.34
Machine 17 12812.09 10365.74 12652.41 9746.79 9251.68 12091.73 9844.29
Machine 18 14077.78 9927.78 10723.97 9912.74 9513.15 11337.03 12281.75
Machine 19 10741.07 9958.27 10272.35 10814.90 12174.48 10539.99 11665.11
Machine 20 11772.32 10188.67 10791.49 10143.33 9714.60 10903.29 11571.03
Machine 21 15962.12 15519.97 17536.11 12501.19 13075.00 17382.65 16183.20
Machine 22 20474.81 12003.11 20726.20 9718.33 11881.64 20202.12 15925.29
Machine 23 21115.02 12354.30 21418.71 10141.56 12190.40 20746.78 15719.86
Machine 24 11745.63 10385.27 10970.52 9952.01 10358.18 10816.97 11660.15
Machine 25 12571.42 11925.60 15176.20 12224.11 12188.88 12184.96 11216.86
Machine 26 12074.02 11156.35 13351.63 10577.59 11166.84 11295.15 10552.90

The values in Table 5.2 indicate the RMSE value of a model type per machine, repre-
senting the closeness of the predicted values to the actual values. For example, the
first machine has a RMSE value of about 15,500 considering the Linear Regression
model, while the Holt-Winters model has a value of about 10,000, which is the low-
est and therefore better value for this machine. Table 5.2 shows that for all machines
the model types that use prediction modelling techniques outperform the baseline,
which assumes constant production.

Another observation is the fact that some machines have significantly worse perfor-
mances in comparison to others. For example, all models have explainable difficulty
in predicting the aggregated values of Machine 3, the Box Packer, since not every
product goes through this machine. The expected production amount of this spe-
cific machine depends on the product type. Therefore, the prediction model would
need extra input to possibly account for these variations. The company lacks data
on these values, which makes it difficult at the present moment to generate accurate
predictions for these machines. The models do however perform well for Machine
20, the Pasteurizing Machine. This machine simply processes all products, which
makes for better predictions.

In the context of the problem, it is not wise to recommend a different prediction
method per machine, since the implementation of such a system is too complex
for the company. Therefore, this section demands an extra evaluation of the av-
erage performances over all machine, which also provides a more comprehensive
overview of all performance metrics. Table 5.3 shows these average performances
on the test data set, including the RMSE, MAD, sMAPE, and the Bias. The cells that
are coloured indicate the best value out of all the model types.
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TABLE 5.3: Average Performance Metrics of Model Types for Aggre-
gated Data

Model RMSE MAD sMAPE Bias

Baseline 13908.33 11873.16 19.65% -9351.49
LR 12011.24 9929.66 16.25% -3829.79
DT 13500.02 11229.74 18.99% -7084.88
RF 10875.16 9466.41 15.43% -5224.77

GBM 11401.90 10029.58 16.40% -6301.94
KNN 13139.49 10926.30 18.68% -6478.31
HW 12414.19 9970.86 15.14% 7103.20

Considering the RMSE and the MAD, the Random Forest model performs the best
out of all the models, while observing the sMAPE, it shows that the Holt-Winters
model performs the best. All models except for Holt-Winters seem to be underesti-
mating, with the lowest deviation from 0 by the Linear Regression model. Compar-
ing the metrics of RF with HW, it shows that the HW model is worse considering the
RMSE and MAD, while the difference of the sMAPE is relatively low. The LR model
also performs worse on most metrics in comparison to the RF model. From these
facts, the research can conclude that the Random Forest model performs the best out
of all the model types, for the aggregated predictions.

5.2.2 Prediction Results of the Non Aggregated Data

Remaining is the evaluation of the performance metrics to find the best model for
predicting the amount of production per week for the upcoming 52 weeks. Table 5.4
shows the RMSE performances of the model types on the test data set. The cells that
are coloured indicate the lowest value out of all the model types.

TABLE 5.4: RMSE Values per Machine for Non Aggregated Predic-
tions

RMSE Baseline LR DT RF GBM KNN HW

Machine 1 2291.99 2139.76 2041.42 2054.18 2141.48 2210.02 2328.47
Machine 2 2004.56 1652.51 2125.72 1725.27 1756.21 1826.33 2175.16
Machine 3 2159.42 2050.17 2067.05 1998.93 2042.99 2274.05 2060.22
Machine 4 2146.53 2026.35 2066.56 2002.95 2036.08 2276.77 2053.13
Machine 5 2208.95 2110.48 2218.05 2041.36 2104.31 2352.77 2146.52
Machine 6 1840.98 1550.50 1809.86 1601.17 1583.21 1671.17 1987.74
Machine 7 1857.20 1566.39 1617.92 1608.13 1597.88 1692.34 1954.11
Machine 8 1982.00 1604.28 1857.57 1696.47 1698.44 1780.31 2069.51
Machine 9 1976.50 1596.96 1607.78 1713.43 1688.04 1780.99 1972.99

Machine 10 1916.84 1528.53 1633.60 1597.83 1594.41 1693.62 1765.38
Machine 11 2520.83 2354.77 2597.84 2325.92 2383.50 2650.89 2959.89
Machine 12 2290.10 2060.21 1937.74 2074.49 2100.07 2116.24 3492.55
Machine 13 1980.15 1686.16 1742.17 1678.74 1688.15 1762.64 2079.82
Machine 14 1575.15 1662.66 1648.45 1566.44 1557.85 1750.91 1806.73
Machine 15 1969.76 1601.94 1678.42 1643.78 1634.75 1693.68 1913.47
Machine 16 1941.36 1545.18 1795.29 1601.03 1582.52 1667.28 1885.31
Machine 17 2053.83 1751.97 2073.64 1832.49 1763.79 2170.56 3369.32
Machine 18 2161.78 1693.60 1977.95 1840.45 1888.01 1954.42 2181.30
Machine 19 1932.13 1610.98 1948.38 1898.62 1864.35 1860.33 2053.51
Machine 20 2000.86 1623.76 1664.88 1718.20 1716.88 1888.19 2106.85
Machine 21 2160.16 2082.65 2185.14 2005.62 2063.88 2305.45 2116.52
Machine 22 2388.07 1977.22 2101.21 1924.81 2021.50 2366.14 2120.57
Machine 23 2445.88 2021.35 2152.24 1968.99 2069.95 2407.69 2186.23
Machine 24 1968.19 1580.75 1607.36 1674.95 1670.20 1764.98 1986.18
Machine 25 1657.87 1742.22 1693.24 1636.47 1631.58 1825.18 1843.36
Machine 26 1827.31 1573.99 1553.94 1601.20 1578.59 1650.83 1982.10
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The values in Table 5.4 indicate the RMSE value of a model type per machine, again
representing the closeness of the predicted values to the actual values. Initially it
shows that these values are much lower in comparison to the aggregated predic-
tions, because these non aggregated values are simply lower. Now mostly the LR,
DT, and RF models perform best across the machines. For similar reasons as in the
previous section, some machines perform better in comparison to others. Another
interesting fact is the worsening of the HW performances. It seems that aggregating
data increases the benefits of a HW model.

Again, an extra evaluation of the average performances per machine provides a
more comprehensive overview over all performance metrics. Table 5.5 shows these
average performances of the test data set, including the RMSE, MAD, sMAPE, and
the Bias. The cells that are coloured indicate the lowest value out of all the model
types.

TABLE 5.5: Average Performance Metrics of Model Types for Non
Aggregated Data

Model RMSE MAD sMAPE Bias

Baseline 2048.40 1610.90 38.65% -615.61
LR 1784.44 1406.62 36.66% -431.28
DT 1900.13 1464.80 37.62% -402.50
RF 1808.92 1437.25 36.18% -391.02

GBM 1825.33 1453.03 36.87% -478.37
KNN 1976.68 1539.52 39.44% -430.09
HW 2176.81 1693.78 40.71% -276.97

The sMAPE values show that these performances are worse comparing to the pre-
dictions of the aggregated data set, showing that increasing the aggregation level
of variable outcomes could improve performances. Considering the RMSE and the
MAD, the Linear Regression model performs the best out of all the models, while
observing the sMAPE, it shows that the Random Forest model performs the best.
All models seem to be underestimating, with the HW model having a Bias value
closest to zero. Although all metrics are very similar, the research can conclude that
the Linear Regression model performs the best out of all the model types, for the
aggregated predictions.

5.2.3 Learning Curves

This subsection discusses the learning curves of some of the outcomes of the predic-
tion models. Brownlee (2019) reviews learning curves in machine learning, which
are graphical representations that show the performance of a model as a function of
the amount of training data. He further states that they help in diagnosing the be-
havior of machine learning models, especially in terms of understanding how well
a model is learning and how it might perform on new data. A typical learning curve
figure shows two curves, one for the training error and another for the test error. All
machines show similar learning curves, some with a little more variation than the
other, meaning that this section selects a single machine that displays the curve in
a clear manner. Figure 5.1 shows the learning curves of the RF model of the aggre-
gated values for Machine 22.
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FIGURE 5.1: Learning Curve of RF Model (aggregated values) for Ma-
chine 22

Figure 5.1 shows how increasing the training set size reduces the RMSE value of
the testing data set. There is little to gap at the end of the curve, indicating that the
model has a suitable fit. Still, the convergence of the curves is very short, meaning
that bringing more data could help in further establishing the performance of the
model. Subsequently, Figure 5.2 shows the learning curves of the LR model of the
non aggregated values for Machine 26.

FIGURE 5.2: Learning Curve of LR Model (non aggregated values)
for Machine 26

In Figure 5.2, the training error starts low and remains relatively flat as the training
set size increases. This indicates that the model has a good fit with the training data.
The occasional spikes in training error suggest there might be specific subsets of data
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that are particularly difficult for the model to fit. There are fluctuations in the testing
error, particularly at smaller training sizes, which stabilize as the training set size
increases. These fluctuations may be due to the variability in the small training sets
or specific challenges within the dataset. Both curves show do not exhibit signs of
over-fitting or under-fitting, since they converge with a small gap.

The two figures of this section indicate that for these specific cases, the predic-
tion modelling techniques show sufficient predictions without an excess of over-
or under-fitting. Both figures show the validation error decreasing, converging, and
approaching the training error as more data is added. This suggests that adding
more data will not significantly improve model performance. This indicates that the
dataset is sufficient for the current model. Note that all machines have somewhat
similar learning curves, but concluding that all are sufficient would be unscientific.
These two examples prove that the prediction method is sufficient for these specific
datasets.

5.2.4 Feature Importance

This section aims to find information on the importance of the features in the dataset.
This helps to better understand how the models use the information of the features
and which attributes have the biggest impact on the performances of the models.
One method of evaluating feature importance is backward loading. James et al. (2013)
calls it backward selection, which in the context of a prediction modelling involves
evaluating the impact of each feature on the target variable by systematically remov-
ing features from the model and observing the changes in model performance. This
method can help identify the most important features.

According to James et al. (2013), backward loading starts by training a prediction
model type with all features and evaluating its performance using a metric, for
which this section chooses the RMSE. For each feature, it temporarily removes the
feature, retrains the model, and evaluates the performance. The feature whose re-
moval results in the smallest increase in the RMSE is permanently removed. This
process repeats iteratively, with the model being retrained and evaluated after each
removal. At each step, the current set of features, the performance metric, and the
removed feature are recorded. This continues until no features remain, resulting in
a detailed list of feature importance based on their impact on model performance.

The results from backward loading will show how the model’s RMSE changes as
features are removed. Features that, when removed, result in a significant increase
in RMSE can be considered important. It turns out that the progression of the RMSE
values as features are removed is somewhat similar for each machine, but the or-
der of features removed are very different. A random selection of four different
machines delivers sufficient insights. Figure 5.3 shows the backward loading pro-
gression of the LR model for the non aggregated values of four randomly selected
machines.
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(A) Machine 1 (B) Machine 7

(C) Machine 16 (D) Machine 26

FIGURE 5.3: Backward Loading progression of the LR Model (non
aggregated values)

Figure 5.3 shows that there is the initial phase of a decreasing RMSE value, leading
up to an optimal point after which it starts increasing. At the beginning the RMSE
is relatively high, indicating the model might be over fitting. As it removes fea-
tures, the RMSE decreases, reaching a minimum point. This indicates the optimal
number of features for the model, where it has the best performance with the lowest
RMSE. Beyond the optimal point, removing more features causes the RMSE to in-
crease again, suggesting that the model is losing important information and starting
to under fit.

Figure 5.3 also demonstrates that backward loading can be an effective method for
feature selection in linear regression models. However, it is crucial to identify the
optimal point of feature removal to ensure the best model performance. The spe-
cific number of features that should be removed to achieve this optimal point varies
between different machines. The selection of features could change as the dataset
grows, making it very complex and time extensive to find the optimal combination
for each machine in the future.

The order of the removed features differs between the machines. For some, the fea-
ture that represents the year is the least important, while for others the different
categorical week features are removed first. For all machines it seems that the tac-
tical planning feature is always kept until the very end, meaning it can be seen as
the most important feature. Unsurprisingly, the tactical planning feature gives the
model a general direction of what amount of production can be expected.

Based on these findings, this research chooses not to remove any features to im-
prove the performances of the model because of the following reason: The company
wishes to find a sufficient, general, and simple manner of predicting production
hours per machine, and finding the optimal set of features is a complex and time
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extensive progress, if this is done for all machines individually. Regarding the final
objective of this solution, the RMSE values of the models with all features are not
significantly higher in comparison to the RMSE values of the models with an opti-
mal set of features. In simpler words: The models that include all features get the job
done. Still, the backwards loading method does deliver insights in the possibility of
further improving the predictions, which the company should not neglect.

5.2.5 Visual Performance

This section discusses the insights to gain from the graphs that represent the per-
formances of the best prediction models. The aim is to create a feeling on what the
prediction methods are trying to achieve and how they are accomplishing this. With
two datasets (aggregated and non aggregated), seven model types, and 26 machines
in total, there are a lot of graphs to analyze. Some machines have better results in
comparison to others, and this section selects a few to discuss.

After the models learn from the training data, they try to predict the values of the
testing data. To remind: the testing data contains the weekly values of the years 2022
and 2023. These values represent the amount of production per machine, measured
in minutes. Graphs that show the actual values next to the predicted values provide
a visual performance of a prediction model. Ideally, a good performance correlates
to a graph where the two lines closely match and stay around the same values. For
some machines these values are highly variable. Therefore, representing cumulative
values increases the clarity of these figures.

Aggregated Data

For the predictions of the aggregated data, this section chooses to evaluate Machine
3 and Machine 20. These two are chosen because Section 5.2.1 already concludes that
Machine 3, the Box Packer, has a bad performance based on the evaluation metrics,
while Machine 20, the Pasteurizing Machine, has a good performance. This differ-
ence originates from the fact that the production of the Box Packer depends on the
type of product through the line, while this is not the case for the Pasteurizing Ma-
chine. Now, this section can confirm these performances with visual graphs. Figure
5.4 shows the graphs of the aggregated actual and predicted values of the RF model
for Machine 3.

FIGURE 5.4: Visual Performance of RF for Machine 3
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Figure 5.4 shows how the cumulative production time per week for machine 20 from
January 2022 to October 2023, with actual times in grey and Random Forest model
predictions in orange. Figure 5.4 reveals that the Random Forest model’s predictions
closely follow the actual trend but makes some underestimations, which results in
the orange being under the grey line. This is also observed in the table that gives
the Bias values in Appendix D, which are negative. The underestimation is more
present when predicting further into the future due to the cumulative aspect. This
would argument to make these predictions on a relatively regular basis to update
the training data of the model. Figure 5.5 shows a better graph of the aggregated
actual and predicted values of the RF model, now for Machine 20.

FIGURE 5.5: Visual Performance of RF for Machine 20

Again, Figure 5.5 demonstrates that the Random Forest model is slightly underesti-
mating the real values of production. It shows that the model does perform better
for this machine, since the lines lie closer together, but after a year from the start
it becomes increasingly difficult to accurately predict, due to the cumulative error.
An updating mechanism in a time series prediction model could be a solution to
this problem. It refers to the process by which the model incorporates new data
to update its parameters and forecasts. This mechanism is crucial for maintaining
the model’s accuracy and relevance over time, especially in dynamic environments
where patterns and trends can change.

Non Aggregated Data

For the predictions of the non aggregated data, this section chooses to evaluate Ma-
chine 14 and Machine 19. These two are chosen because Section 5.2.2 already con-
cludes that Machine 14, the Multi Packer, has a bad performance based on the RMSE,
while Machine 19, the Palletiser Machine, has a good performance. Figure 5.6 shows
the graph of the non aggregated actual and predicted values of the LR model for
Machine 14. Figure 5.6 displays the cumulative production time per week for ma-
chine 14 from January 2022 to January 2024, with the actual production times shown
in grey and the predicted times using a Linear Regression model shown in orange.
Both the actual and predicted values increase, where the predicted values show a
consistent line, while the actual values are more variable.



Chapter 5. Results 63

FIGURE 5.6: Visual Performance of LR for Machine 14

There is a clear discrepancy between the two lines: the Linear Regression model con-
sistently overestimates the production time compared to the actual values, meaning
it should have a positive Bias, which Appendix D confirms. This suggests that the
Linear Regression model may not accurately capture the variability and trends in the
actual production data, leading to an overestimation for machine 14. This indicates
that a linear model may be too simplistic for this machine. To improve the predic-
tion accuracy, and knowing from Section 5.2.2 that more complex model types did
not perform better, incorporating more relevant variables might help in capturing
the patterns better. Nonlinear models, e.g. neural networks, often outperform lin-
ear models due to their ability to capture complex relationships, recognize patterns,
handle variability, and adapt to new data. These models are flexible and can accom-
modate intricate interactions between multiple factors. They could be better suited
for the predictions for machines that have highly variable production.

To continue, Figure 5.7 show a better graph of the aggregated actual and predicted
values of the LR model, now for Machine 19. Figure 5.7 shows for both the actual
and predicted production times a steady line upwards. The Linear Regression model
makes only slight underestimations of the actual production time, as evidenced by
the predicted values being lower than the actual values. This time a simple Linear
Regression model seems to be well suited for the predictions.

FIGURE 5.7: Visual Performance of LR for Machine 19
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Additionally, Appendix E contains the visual performances of this section with non-
cumulative values. They display the values on a weekly basis, highlighting any
discrepancies or patterns in the predictions, whereas the cumulative figures are use-
ful for understanding the long-term/cumulative accuracy of the model. The non-
cumulative figures are intended for the Maintenance Engineering Team of the com-
pany. The figures are more difficult to understand, due to the variability of the pro-
duction, but the team members can recognize aspects such as seasonality or revi-
sions. If the figures of this section fail to help in understanding how they represent
the production time of a machine, take a look at Appendix E.

Overall, evaluating the visual performances of the prediction models, there is one
main observation: There are some machines with a very variable amount of pro-
duction during the years due to a dependence on product types that go through
the packaging filling line, resulting in bad performances, while other machines have
better results. Although this section handles only some model types considering
four machines, it creates a general interpretation of the sufficiency of the prediction
method. With these results, this research concludes that the prediction method is
sufficient enough and can continue with the results of the planning model.

5.3 Planning Model Results

This section provides the results of the planning model from Section 4.4. The objec-
tive of the planning model is to schedule the PM-plans across the planning horizon
while minimizing over- and under-maintenance. For the sake of demonstration, this
section chooses to apply the model on the year 2023 for the packaging filling line
81. The python program Gurobi Optimizer solves the mathematical model, which
is readily available for Heineken, depending on the expertise of the employee. The
model uses input parameters to generate the schedule for the year 2023 as the out-
put. Section 5.3.1 discusses the input parameters, while Section 5.3.2 delivers the
output of the planning model.

5.3.1 Input

The input parameters originate from several sections of this research. Firstly, the
PM-plan parameters (see Section 4.4.4) consist of: the ID, description, correlated
machine, the start state (Sp), the moment for planning the first execution (FMp), and
the moment for planning the last execution (LMp). The different software systems
deliver the given PM-plans and their corresponding parameter values. Correlated
machines per PM-plan are necessary for the calculations that involve production
amounts. The start state is found by adding the amount of production from the last
execution of the PM-plan up until the start of the planning horizon. Table 5.6 shows
some of the in total 169 PM-plans parameters. Note that only PM-plans for which the
counter-based interval was constant in the year 2023 are included because otherwise
the deviation from this interval is justified.

To explain Table 5.6, take for example the first row. This PM-plan has the ID 21060035
with the corresponding description. It is an inspection activity an its time-based
interval is three months. The machine that corresponds to this plan is Machine 13,
the Defoiling Machine. Since the last execution of this PM-plan this machine has
been running about 270 hours as indicated by Sp. With the expected amount of
production from the prediction model (the LR model) of the previous section, in
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TABLE 5.6: The first four PM-plan parameters

ID Description Machine Sp FMp LMp
(hours)

21060035 PM1 Codeer App. Programma keuze list 3M 13 271.76 7 18
21056979 PM1 DEFO81 6M 26 821.40 10 12
21053588 PM1 DEFO81 E & Î 6M 26 1052.68 9 12
21053589 PM1 DEFO810 Wtb 6M 26 2136.34 4 12

...

addition to the calculated counter-based intervals of Section 5.1, it finds that the first
execution of this PM-plan should be scheduled before the seventh moment, while
the last execution should be scheduled after the 18th moment.

Secondly, there are moment parameters to define, which are opportunities for main-
tenance during the year 2023, also known as stop-days. They consist of: the moment
number, week number, and capacity (Ct). The week numbers are necessary for the
rolling horizon. During 2023, there were in total 25 moments/stop-days for main-
tenance. Researching past historical data gave an impression on adequate capacity
values. For now all moments get a capacity of 30 PM-plans at a maximum, except
for the single moment when there was a revision (the fifth moment), which gets a
capacity of 80. Table 5.7 shows some of the moment parameters.

TABLE 5.7: The first four moment parameters

Moment Week Number Ct

1 2 30
2 4 30
3 6 30
4 8 30

...

Another parameter is the moment before the expected production of following mo-
ments after t reaches the counter-based interval (Mtp). These are calculated in the
python script. The packaging manager and the software system gave confidential
information on historical definitions for down-time and maintenance costs. This re-
search will not use the exact values, but defines them close to the historical values.
Therefore, the maintenance costs at e200.-, and the penalty costs at e50.-.

Additionally, in a meeting with the maintenance planner, information was gathered
about which PM-plans were always clustered when scheduling the activities during
the year. Currently, clustering of activities is entirely dependent on the knowledge
and skill of the maintenance planner. He states that for two PM-plans to be clus-
tered, they must satisfy three requirements: (i) both PM-plans are part of the same
machine (except for the filler); (ii) both PM-plans must have the same interval; (iii)
the last execution of both PM-plans must be around a similar point in time. Fol-
lowing these requirements a set of PM-plans that should be clustered were found.
Take for example the second and third row in Table 5.6 and observe how they have
a similar machine, a similar interval, and a start state around the same value. These
two PM-plans are one out of 31 sets of PM-plans that should be clustered.
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Another aspect is the rolling horizon. The scheduling horizon is set at one year
(2023), while the control horizon is set at 13 weeks. This means there are four execu-
tions of the planning model, at the beginning of each quarter of the year. Before the
execution of the planning model all parameters are recalculated given the results of
the previous quarters.

5.3.2 Output

With the given input parameters, finally the planning model can deliver a solution
that delivers the optimal schedule that reduces under- and over-maintenance. This
section discusses the results of the planning model, how to evaluate the performance
of a schedule, and what insights to gather from these outputs.

Solution Schedule

During the year 2023, there were four executions of the planning model. After the
four executions and storing each control horizon, the program stores a single sched-
ule. Table 5.8 shows some values of this schedule. For example, the PM-plan with ID
21060035 (see second column) is scheduled on the 6th, 10th, 15th, and 21st stop-day
during the year 2023.

TABLE 5.8: Planning model solution for the year 2023

PM-plan IDs
Moment 21060035 21056979 21053588 21053589 ... 21059544

1 0 0 0 0 ... 0
2 0 0 0 0 ... 1
3 0 0 0 1 ... 0
4 0 0 0 0 ... 0
5 0 0 0 0 ... 0
6 1 0 0 0 ... 0
7 0 0 0 0 ... 0
8 0 1 1 0 ... 0
9 0 0 0 0 ... 0
10 1 0 0 0 ... 0
11 0 0 0 0 ... 0
12 0 1 1 1 ... 0
13 0 0 0 0 ... 0
14 0 0 0 0 ... 0
15 1 0 0 0 ... 0
16 0 0 0 0 ... 0
17 0 0 0 0 ... 0
18 0 0 0 0 ... 0
19 0 0 0 0 ... 0
20 0 0 0 0 ... 0
21 1 0 0 0 ... 0
22 0 0 0 0 ... 0
23 0 0 0 0 ... 0
24 0 0 0 0 ... 0
25 0 0 0 0 ... 0

Table 5.8 shows how the Planning Model is able to generate a schedule for the main-
tenance activities of the packaging filling line 81. This schedule considers all restric-
tions such as clustering aspects, capacity constraints, maintenance costs, and penalty
costs for over- and under-maintenance. Each moment represents a stop-day during
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the year, and the values (if the value is 1) state if a PM-plan should be executed on
that given moment.

Performance Metrics

The program only delivers a schedule and objective function, which are difficult to
interpret and compare with the current situation. Therefore, this research provides
methods of analyzing the schedule with the real production amounts during the
year. Why analyze the amount of over- and under-maintenance with the objective
function (some amount of costs), when it is possible to calculate the precise amount
of production hours deviating from the counter-based intervals. This section intro-
duces the following equations:

NPM =
∑P

p=1 ∑T
t=1 xtp ∗ |PPtp − CIp|
∑P

p=1 ∑T
t=1 xtp

(5.1)

where, NPM is the Numerical Performance Metric indicating the average amount of
hours deviating from the counter-based interval per scheduled PM-plan. xtp is the
binary decision variable, PPtp is the passed production since the previous execution
of the PM-plan, and CIp is the counter-based interval of PM-plan p. Subtracting
the counter-based interval from the values that represent the amount of production
between executions of the PM-plans gives a representation of accuracy of the sched-
ule. These values should be as close to zero as possible, meaning that the amount of
production between executions is equal to the counter-based interval, which subse-
quently means the amount of over- and under-maintenance is low. Summing these
values, and dividing it by the total number of executed PM-plans, generates one
numerical performance metric for a schedule.

OM =
∑P

p=1 ∑T
t=1 xtp ∗ Max{0, CIp − PPtp}

∑P
p=1 ∑T

t=1 xtp ∗ |PPtp − CIp|
(5.2)

where, OM is the Over-Maintenance indicating the percentage of hours where PM-
plans were scheduled too early. xtp is the binary decision variable, PPtp is the passed
production since the previous execution of the PM-plan, and CIp is the counter-
based interval of PM-plan p. The formula is similar to the NPM, but here it sums up
all the hours that the passed production was lower than the counter-based interval,
and divides it by the total amount of hours deviating to arrive at the percentage of
over-maintenance.

UM =
∑P

p=1 ∑T
t=1 xtp ∗ Max{0, PPtp − CIp}

∑P
p=1 ∑T

t=1 xtp ∗ |PPtp − CIp|
(5.3)

where, UM is the Under-Maintenance indicating the percentage of hours where PM-
plans were scheduled too late. The formula is similar to the OM, but here it sums
the hours that the passed production was higher than the counter-based interval.
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PD =
∑T

t=1 mt

T
(5.4)

where, PD is the Planned Downtime indicating the percentage of moments where
the stop-day was in use for preventive maintenance. The formula simply sums up
the binary decision variable mt that denotes if moments are in use, and divides it by
the total number of moments T.

AvgL =
∑P

p=1 ∑T
t=1 PWtp

∑P
p=1 ∑T

t=1 xtp
(5.5)

where, AvgL is the Average Length indicating the average length in weeks that were
between the executions of PM-plans. xtp is the binary decision variable, PWtp is the
passed number of weeks since the previous execution of the PM-plan. The formula
sums up the length that was between all executions of PM-plans and divides it by
the total number of executed PM-plans in the schedule.

MC = mc ∗
P

∑
p=1

T

∑
t=1

xtp (5.6)

where, MC is the total amount of Maintenance Costs. The formula sums up the
total number of scheduled PM-plans in the planning horizon, and multiplies it with
the cost of one scheduled maintenance activity. This equation makes it possible to
evaluate the costs aspect of different schedules.

Solution Schedule Results

Table 5.9 delivers the results of all performance metrics for both the solution of the
planning model with the use of a rolling horizon, and without.

TABLE 5.9: Results of Planning Model Solution Schedule of 2023

PM Schedule PM Schedule
with RH without RH

NPM 200.60 223.99
OM/UM 25%/75% 37%/63%

PD 92% 96%
AvgL 17.25 16.80
MC e74,200.- e76,600.-

Table 5.9 shows that the use of a Rolling Horizon (RH) is beneficial for the reduc-
tion of over- and under-maintenance because of the lower NPM value. This is the
direct result of consistently predicting the future production in each quarter, instead
of once at the start of the year, reducing the cumulative error during the year. For the
schedule with the use of rolling horizon, the average amount of hours deviating from
the counter-based interval per scheduled PM-plan (NPM), lies at around 200 hours.
The planning model fails to reduce this number to zero because it is only possible to
schedule PM-plans on integer intervals, which will always result in some over-and
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under-maintenance. The deviation is about 25% of over-maintenance (OM), mean-
ing that the PM-plans are mostly scheduled too late. Without the rolling horizon
the deviation is slightly higher, and the division of over- and under-maintenance is
more equal. The moments in use for preventive maintenance (PD), and the average
length between the executions (AvgL) lie around similar values for both schedules.
The total amount of maintenance costs is higher for the schedule without the rolling
horizon due to a larger total of scheduled PM-plans. Overall, the method that uses
the Rolling Horizon performs better considering all performance metrics.

5.4 Improvement over Current Situation

This section explores how the planning model performs compared to the current sit-
uation. With the data of real real executions during the year 2023, it is possible to find
the differences between reality and the planning model solution schedule, based on
the amount of production between executions. Additionally, it is possible to adjust
some parameters to create a solution schedule with a time-based strategy. Section
5.4.1 discusses the results from the historical data, while Section 5.4.2 provides the
results from the time-based solution.

5.4.1 Results from Historical Data

Historical data gives us the real moments when PM-plans were scheduled and what
effect this had on the performance metrics. This makes it possible to compare these
values to the results of both the schedule from the planning model with and without
the rolling horizon. Table 5.10 delivers the results of all performance metrics based
on historical data, in addition to both the solution of the planning model with the
use of a rolling horizon, and without.

TABLE 5.10: Results of Historical Data compared to the Solution
Schedule of 2023

Reality PM Schedule PM Schedule
with RH without RH

NPM 359.62 200.60 223.99
OM/UM 48%/52% 25%/75% 37%/63%

PD 100% 92% 96%
AvgL 15.67 17.25 16.80
MC e74,600.- e74,200.- e76,600.-

What the results show, is that the average amount of hours deviating from the
counter-based interval per scheduled PM-plan (NPM) is significantly higher in com-
parison to the other schedules. This could be due to the extra complexity that arises
in reality, such as irregularities during the year. Mechanics becoming sick, or un-
predictable shortages in spare parts are examples of situations that happen in real
life, while the planning model schedule does not consider these irregularities. Also
the division of over- and under-maintenance is more evenly distributed in reality,
and all moments for preventive maintenance were in use during the entire year. The
total amount of maintenance costs of scheduled PM-plans is similar in reality, indi-
cating that the planning model could reduce over- and under-maintenance without
increasing the costs.
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5.4.2 Results from Time-Based Solution

Another method of evaluating the improvement of the current situation is compar-
ing the current time-based strategy to the newly introduced counter-based strategy.
This will deviate from the performances of reality because the Maintenance Planner
sometimes deviates a little from the schedule due to irregularities such as mechanics
becoming sick, or unpredictable shortages in spare parts. Simply changing a few
input parameters creates a planning model that generates a schedule with a time-
based strategy. For example, define the start state in weeks since its last execution
instead of hours. Use the time-based intervals in weeks instead of the newly calcu-
lated counter-based intervals. Finally, instead of predicting the expected amount of
production in between moments for preventive maintenance, define these values as
the amount of weeks in between these moments. All other parameters will change
according to these new input parameters. This creates the possibility to compare the
performance of the solution schedule for both the time-based as the counter-based
strategy. Table 5.11 delivers the results of all performance metrics of this time-based
solution schedule in addition to both the solution of the planning model with the
use of a rolling horizon, and without.

TABLE 5.11: Results of Time-Based Solution compared to the
Counter-Based Solution Schedule of 2023

Time-Based PM Schedule PM Schedule
Schedule with RH without RH

NPM 295.08 200.60 223.99
OM/UM 22%/78% 25%/75% 37%/63%

PD 92% 92% 96%
AvgL 17.99 17.25 16.80
MC e71,800.- e74,200.- e76,600.-

As expected, it seems that the time-based solution schedule performs worse on most
aspects in comparison to the newly introduced counter-based strategy. The average
deviation from the counter-based intervals is higher, because this model does not
consider any production hours at all. The amount of over- and under-maintenance
is also less evenly distributed. The maintenance costs are lower because the time-
based strategy schedules less executions of PM-plans in total, which is also why the
average length is higher. The company could evaluate if the extra costs are worth
the improvements considering over- and under-maintenance.

The entire planning model’s purpose was to introduce a method of scheduling PM-
plans such that the amount of over- and under-maintenance is minimized. It seems
that for the year 2023, this goal has been achieved. Still, this is only an analysis of
the year 2023, and this was a normal year with the brewery in production for most
of the time. It could be that different years have different performances based on the
amount of production in that year.

5.5 Sensitivity Analysis

A sensitivity analysis is a vital tool for enhancing the reliability and applicability of
models across various fields by systematically exploring the effects of variability in
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input parameters. It helps in understanding the robustness of the model and identi-
fying what the effects are on the final outcome. This section chooses to increase the
variability in real production amounts across the year 2023 to investigate how this
changes the performance outcomes of the planning model. It is expected that a de-
crease in production in the future could be detrimental regarding over-maintenance.
The counter-based planning model could be useful in such a situation. A decrease in
production across the year would increase the benefits of the solution designs. This
section specifically chooses not to increase the amount of production, because the
brewery is expected to lower its production with about 30% in the upcoming years.

To decrease the real production amounts, this section subtracts a random amount
to each weekly data point of the year 2023. The random number originates from
a uniform distribution with a lower and upper bound. The boundaries of this dis-
tribution gives an indication of the extra variability during the year. For example,
if these random numbers are between -10 and 0 hours of production per week, the
amount of production during the year is slightly decreased, while the boundaries of
-100 and 0 hours have a significantly bigger impact. For each week in the year, after
subtracting the random number, the value cannot be lower than 0 because negative
production hours are not possible. Figure 5.8 shows how two different selections of
boundaries of the uniform distribution have different effects on the initial amount
of production in the year 2023.

FIGURE 5.8: Visualisation of the effects of the Uniform Distribution

Figure 5.8 illustrates how different uniform distributions affect weekly production
over a one-year period. The x-axis represents dates from January 2023 to January
2024, while the y-axis measures production per week in hours. There are three lines
representing different uniform distributions. The solid line corresponds to a range of
[0, 0], indicating no added variation or randomness in production. The dashed line
represents a range of [-25, 0], introducing some (but not much) negative variability.
The dotted line shows a range of [-100, 0], introducing significant negative variabil-
ity. The more negative the range, the lower the overall production per week, and
the higher the variability across the year. This type of sensitivity analysis is useful
for understanding the robustness of the solution design under different conditions
of variability.

With the same parameter settings of Section 5.3, the sensitivity analysis evaluates the
performance metrics of the planning model applied to different fabricates years with



Chapter 5. Results 72

increasing variability in production. Due to the random distribution, the average of
50 iterations gives a sufficient representation of the performance metrics over the
randomly generated years. Table 5.12 shows the NPM and the division of OM with
UM, of the different fabricated years with decreasing production.

TABLE 5.12: Results Sensitivity Analysis based on NPM and
OM/UM

NPM (hours) OM/UM (%)

TBM CBM CBM TBM CBM CBM
U. Distr. with RH without RH with RH without RH

[0,0] 295.08 200.60 223.99 22%/78% 25%/75% 37%/63%
[-10,0] 256.07 208.91 210.89 31%/69% 31%/69% 42%/58%
[-25,0] 218.44 202.11 245.93 50%/50% 29%/71% 57%/43%
[-50,0] 278.71 178.58 270.69 78%/22% 35%/65% 70%/30%
[-75,0] 390.48 196.82 336.56 90%/10% 49%/51% 84%/16%

[-100,0] 505.03 188.12 383.99 93%/7% 52%/48% 89%/11%

Table 5.12 provides clear observations of the benefits of the counter-based planning
model. As the variability increases and the overall production in the fabricated years
decreases, only the schedule of the planning model with the use of the rolling hori-
zon achieves relatively good performances. Tale for example the NPM values, in-
dicating the average deviation from the counter-based interval per scheduled PM-
plan. As the boundaries of the Uniform Distribution increases, the NPM value of the
time-based schedule also increase. The planning model schedule without the use of
the rolling horizon also increase but with lesser effect. Table 5.12 also shows how
the schedule of the planning model with the use of a rolling horizon converges to
a division of over- and under-maintenance that is evenly distributed. For the other
schedules, the decreasing demand during the year leads to a large increase in the
percentage of over-maintenance. Table 5.13 continues to show the AvgL and MC
values.

TABLE 5.13: Results Sensitivity Analysis based on AvgL and MC

AvgL (weeks) MC (e)

TBM CBM CBM TBM CBM CBM
U. Distr. with RH without RH with RH without RH

[0,0] 17.99 17.25 16.80 e71,800.- e74,200.- e76,600.-
[-10,0] 17.99 17.97 17.33 e71,800.- e71,016.- e75,200.-
[-25,0] 17.89 18.71 17.50 e71,600.- e63,316.- e72,600.-
[-50,0] 17.80 20.55 18.58 e71,400.- e55,784.- e67,000.-
[-75,0] 17.70 21.09 19.55 e71,200.- e46,016.- e64,800.-

[-100,0] 17.29 23.19 20.31 e70,400.- e38,920.- e59,200.-

Table 5.13 shows similar results. Only the solution schedule of the planning model
that uses a rolling horizon properly reacts to the decrease in production during
the year. Table 5.13 reveals how the average length in between scheduled PM-
plans increases from 17 weeks to 23 weeks, while for the time-based maintenance
schedule it stays at around 17 weeks. Additionally, due to the decrease in produc-
tion, the counter-based maintenance schedules react and reduce the total number of
PM-plans scheduled, subsequently reducing the total amount of maintenance costs.
Take for example the fifth row. The uniform distribution indicates that on average
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each week will have 37.5 hours less production (because the boundaries are [-75,0]),
which is somewhat equivalent to a reduction of 5 shifts, a reduction of about 30%.
Observing the maintenance costs in this situation, the newly introduced counter-
based strategy could save e25,000.- in a year compared to the time-based strategy.

Overall, the sensitivity analysis evaluates the impact of variability in production
amounts on the performance of a planning model. It decreases real production
amounts across 2023 to investigate the effects on the model’s outcomes. The results
demonstrate that the counter-based planning model with a rolling horizon adapts
better to decreased production, maintaining balanced over- and under-maintenance
levels. It also shows reduced costs compared to a time-based maintenance strategy.
This suggests the counter-based model’s effectiveness under varying production
conditions. On the contrary, it is expected that a general large increase of production
from the status quo would increase the total maintenance costs due to the extra ef-
fort needed to keep over- and under-maintenance at a minimum. The counter-based
maintenance strategy adapts to the big changes in production. In other words, if the
company expects that the production will be lower in the upcoming years, the ben-
efits of counter-based maintenance and specifically the use of this planning model
are noticeable.

5.6 Conclusion

This chapter delivers the results of the solution design and shows how it affects
the performance of the maintenance activities. From a step-by-step method, it pro-
vides a spreadsheet where the Maintenance Engineering Team could evaluate the
counter-based progression of each PM-plan. Counter-based progressions are often
times lower or higher than the time-based progressions, meaning that with the real
production times of the machines, maintenance should not be planned as early or
late as with the time-based strategy. This is an indication that the company could
perform less over- and under-maintenance if they monitor the counter-based pro-
gression of the PM-plans on a frequent basis.

Furthermore, results of the prediction models show that when evaluating the aver-
age performance metrics over all machines, both the Random Forest and the Holt-
Winters model show beneficial prediction performances to provide knowledge on
when to plan any PM-plan with enough time (13 weeks) for preparations. Based
on the performance metrics (RMSE, MAD, sMAPE), the Random Forest models out-
perform the Holt-Winters models. Linear Regression delivers the best predictions
to improve the planning activities of multiple PM-plans in the upcoming period by
providing the expected amount of production in between stop-days. In the Linear
Regression model, it was found that the tactical planning feature was the most im-
portant features, having the most impact on the predicted values. Overall, there
are some machines with a very variable amount of production during the years due
to a dependence on product types that go through the packaging filling line, re-
sulting in bad prediction performances, while other machines have better results.
The company could either ignore these bad predictions and continue transitioning
to counter-based maintenance or investigate additional input variables to enhance
predictability for machines with variable production amounts.

Considering the planning model, the mathematical programming environment can
find an optimal solution with the current parameter settings of packaging filling
line 81. In view of many performance metrics, the use of a rolling horizon seems
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to benefit the final solution to the problem, which can be explained by the reduced
cumulative error. The planning model solutions also create schedules that perform
better in comparison to the real values gathered from historical data, but the com-
plexities of reality must also be considered in this comparison. Additionally, param-
eters were adjusted to create a planning model solution schedule that implements
a time-based strategy. The counter-based planning model, with or without the use
of a rolling horizon, perform better than the time-based maintenance solutions. To
further validate the solution design, the sensitivity analysis examines how produc-
tion variability affects the planning model’s performance by reducing production
amounts in 2023 with variable amounts. Results show that the counter-based plan-
ning model with a rolling horizon adapts better to decreased production, maintains
balanced maintenance levels, and reduces costs compared to a time-based strategy.
This highlights the counter-based model’s effectiveness, especially if production is
expected to decrease in the coming years.
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Chapter 6

Conclusion, Discussion, and
Recommendations

This final chapter presents the conclusion, discussion, and recommendations of this
research. Section 6.1 offers the conclusion, followed by the discussion in Section
6.2. Lastly, Section 6.3 outlines the recommendations for the company, based on the
findings of the previous chapters.

6.1 Conclusion

At the present moment, Heineken experiences difficulties with the current mainte-
nance strategy. This strategy being time-based, is a maintenance plan that uses fixed
time intervals, e.g. once every two weeks. A counter-based maintenance plan is of
another type used for planned maintenance based on asset counter registrations. A
time-based maintenance plan for the packaging filling lines would be adequate if
the interval of the maintenance activities contains a constant amount of production
hours. However, for the packaging filling lines in, the production between two con-
secutive maintenance activities currently differs in the thousands of hours. A clear
and concise statement of the core problem is the following:

“In the current situation, the maintenance planning activities at the packaging filling lines
in the brewery at Zoeterwoude of Heineken are time-based, while the production activities
differ throughout the year and change dynamically, which indicates that a counter-based
maintenance strategy is more suitable.”

Chapter 1 structures the research by introducing several research questions with
correlating sub-research questions to provide a clear pathway through this report.
This section discusses the conclusions of the research to deliver a final answer to the
following main research question: “How can the maintenance planning activities of the
packaging filling lines in the brewery at Zoeterwoude of Heineken be adjusted to change from
a time-based to a counter-based strategy?”

The first step was to gather information and gain knowledge on the context of the
problem. Chapter 2 thoroughly explores the many concepts that are involved when
one discusses the maintenance activities of the packaging filling lines in the brew-
ery. The most interesting finding correlates to the quantitative evidence that em-
phasizes the drawback of the current time-based strategy. Additionally, an analysis
of two multipacker machines justifies that a counter-based strategy is superior to a
time-based strategy, due to a decrease of activities and a more constant amount of
production between them.
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Chapter 3 explores the literature regarding time- and counter-based maintenance,
interval determination, planning modelling in maintenance, production lines, and
prediction modelling. A significant gap is the transition from time-based to counter-
based maintenance strategies. There are no methods for using knowledge and data
from time-based systems to adjust to usage counters, nor are there guidelines for de-
termining adequate maintenance intervals in the absence of failure data. While pre-
diction models are extensively theorized, their application in counter-based main-
tenance remains unexplored, particularly in predicting future usage amounts. Ad-
ditionally, current literature lacks specific planning models that account for mainte-
nance activities based on usage counters. The research fills these gaps in the litera-
ture.

Regarding the gaps in the literature, Chapter 4 continues with the design of the solu-
tions to the problems of the company. The first solution involves determining usage
counters with two newly introduced equations. Furthermore, data from multiple
software systems and databases provide a prediction of production for scheduling
maintenance. Two prediction models are suggested: one for aggregated production
data over 13 weeks and another for forecasting weekly production for the upcoming
52 weeks. The goal of the first is to provide knowledge on when to plan any PM-plan
with enough time (13 weeks) for preparations. The second improves the planning
activities of multiple PM-plans in the upcoming period by providing the expected
amount of production in between stop-days, which are moments to perform pre-
ventive maintenance. Additionally, a mathematical model aims to minimize over-
and under-maintenance by optimally scheduling PM-plans, inspired by machine
scheduling problems and incorporating constraints on capacity, counter-based in-
tervals, and clustering. This model follows a rolling horizon approach, improving
scheduling accuracy in dynamic environments.

Chapter 5 presents the results of the solution design and its impact on maintenance
activities. It introduces a method for the Maintenance Engineering Team to evalu-
ate counter-based progressions of PM-plans, which suggest less or more frequent
maintenance than the current time-based strategies, potentially reducing over- and
under-maintenance. Prediction models show that a Random Forest and Linear Re-
gression model are the best methods to provide knowledge for scheduling PM-
plans. The company could either choose to use the current models, or investigate
additional input variables to enhance predictability for machines with very vari-
able production amounts. The planning model, using a mathematical programming
environment, optimizes scheduling to minimize under- and over-maintenance, per-
forming better than the current time-based strategy despite variability. A sensitivity
analysis shows that the counter-based planning model with a rolling horizon adapts
better to decreased production, maintains balanced maintenance levels, and reduces
costs compared to a time-based strategy. This highlights the counter-based model’s
effectiveness, especially if production is expected to decrease in the coming years.

Overall, to adjust the maintenance planning activities of the packaging filling lines in
the brewery at Zoeterwoude of Heineken from a time-based plan to a counter-based
plan, begin by determining the usage counters, based on previously determined
time-based intervals and production amounts. Then, use a Random Forest model to
forecast production for planning any PM-plan 13 week beforehand for preparations.
Additionally, optimize scheduling with a mathematical model that minimizes over-
and under-maintenance by scheduling preventive maintenance plans optimally, in-
corporating constraints on capacity, clustering, and counter-based intervals. If the
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brewery aims to decrease the production in the upcoming years, there is no doubt
that counter-based maintenance will be beneficial for the efficiency and effectiveness
of maintenance, in addition to a large reduction of costs.

6.2 Discussion

This section delves into the limitations of the research, suggesting potential improve-
ments, and proposing directions for future research. The discussion helps to inter-
pret the impact of the research, its contribution to the field, and its practical appli-
cations. Section 6.2.1 discusses the limitations and potential improvements of this
research. Then, Section 6.2.2 and Section 6.2.3 provide the contribution to theory
and practice, respectively. Section 6.2.4 finalizes the discussion with suggestions for
further research

6.2.1 Limitations and Potential Improvements

First, there are some limitations due to some practical difficulties. For example, the
last execution dates are not being registered in the main software management sys-
tem. The counter-based calculations depend on the date of the last execution of an
activity, so it is critical that these dates are logged and extracted in a correct and valid
manner. Currently, the team cannot access the data that contains these dates and for
some PM-plans data is missing. It is urgent that Heineken and IBM Maximo (the
company that oversees the main software management system) sit together to solve
this restriction.

Moreover, the calculation of the counters needs a connection between the data from
multiple software systems. All PM-plans have a certain functional location code
for its asset that indicates its presence in a machine on the filling line. These codes
should make a connection to the machine production data. Currently, this research
has made some assumptions on the connection of certain assets to machines that
simplify the calculations. This demands a thorough validation by a Maintenance
Engineer to further improve the effectiveness of counter-based maintenance.

On top of that, there are possibilities considering the automation of the calculations
and integration of the software systems. Due to start up difficulties with the new
management software system, the program still lacks the possibility to make these
simple calculations accurately and automatically. In many discussions with multiple
stakeholders the conclusion remains that a Maintenance Engineer would be respon-
sible for uploading updated counter values to the software system to update the
calculations. This is definitely not ideal. The Data and Analytics Team is already in-
structed (on the date of publishing this thesis) to investigate how different systems
could automatically update the calculations.

Finally, specifically about the planning model, there is a big assumption on the re-
strictions of scheduling preventive maintenance. The assumption is the following:
Per moment for preventive maintenance, there is a maximum number of activities
allowed, while in reality, this depends on the duration of activities, skill-set requi-
sites, workforce and spare-part availability, and the schedules of activities that were
excluded (PM-plans that keep applying a time-based maintenance strategy). This
assumption makes the implementation of the current planning model difficult. To
further improve the research, the planning model requires more extensive capacity
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constraints, creating a more holistic approach to better the planning and schedul-
ing activities of maintenance. Luckily, the manager of the Maintenance Engineering
Team has hired a new intern that will continue the research on a solution to this
problem.

6.2.2 Contribution to Theory

Regarding the contribution to the scientific body of knowledge, this thesis is an
case study about the transition from a calendar time-based tot a counter-based strat-
egy. Current literature contains a lot of knowledge on the differences between these
strategies, and the benefits and disadvantages of them in specific situations, but it
clearly lacks any method of transitioning from one method to the other. The re-
search delivers a clear method of incorporating useful data and knowledge from a
time-base maintenance system, to arrive at a counter-based system that integrates
useful sources from different stakeholders. No other source discusses using time-
based settings to arrive at a counter-based preventive maintenance plan.

A specific example to explain the relevance of the research considers the problem of
predicting production hours to be able to schedule activities in advance for prepa-
rations. Literature discusses many benefits of counter-based (often called usage-
based) maintenance, but it fails to specify the difficulties that arise with transition-
ing to such a strategy. One advantage of a time-based system is scheduling activities
with little effort, because the time between activities is constant, but in a counter-
based system this instantly becomes problematic. How could a large organization
know their amount of production in the future with great accuracy? This research
delivers the method of finding an adequate prediction method, by assessing multi-
ple machine learning and forecasting methods, subsequently incorporating this in a
planning model to fully embody the benefits of counter-based maintenance.

Additionally, theory lacks a specific mathematical model that schedules activities
based on usage counters to minimize over- and under-maintenance. There are many
existing scheduling models, but none consider the context of counter-based mainte-
nance. Difficulties arise in such models due to the repetitive activities, all depend-
ing on unknown amounts of production. This research delivers a clear modelling
method of incorporating predictions as a parameter, and using a rolling horizon to
account for the error of these predictions. The mathematical model might seem triv-
ial, but there are several complex aspects. It is not trivial due to the combinatorial
nature of the binary decision variables and the elaborate, interdependent constraints
such as clustering and capacity. It also provides a set up for a more complex applica-
tion with more specific capacity constraints such as available workforce, spare parts,
or task duration.

6.2.3 Contribution to Practice

This research provides several practical contributions to Heineken and potentially to
other companies with similar maintenance challenges. Obviously, the main contri-
bution relates to the step-by-step approach, applicable for maintenance teams to sys-
tematically shift their maintenance planning, thereby improving the efficiency and
effectiveness of their operations. By aligning maintenance activities more closely
with actual usage, organizations could excel in resource allocation, reducing down-
time, and streamlining maintenance processes. The development of a mathemat-
ical model that minimizes over- and under-maintenance presents a practical tool



Chapter 6. Conclusion, Discussion, and Recommendations 79

for maintenance planners. This model, which incorporates constraints on capacity,
clustering, and counter-based intervals, can be used to create optimal maintenance
schedules. The rolling horizon approach ensures that the model remains adaptive to
changes in production, further enhancing its utility in dynamic environments.

A specific example to explain the relevance in practice considers the cost reductions.
An organization that applies a time-based maintenance strategy and plans to reduce
the amount of production in future years can reduce a lot of costs by applying a
counter-based planning model. The sensitivity analysis indicates that the counter-
based model is particularly effective in reducing costs when production levels de-
crease. This cost efficiency is crucial for maintaining competitiveness in the brewing
industry. On top of that, the practical contributions extend beyond Heineken to any
organization looking to transition to a counter-based maintenance strategy. The re-
search provides a clear framework and set of guidelines that other companies can
adapt to their specific contexts. This includes the steps to gather necessary data,
the development of prediction models, and the implementation of an optimized
scheduling model.

6.2.4 Suggestions for Further Research

While this research provides a solid foundation for transitioning from a time-based
to a counter-based maintenance strategy, several areas warrant further investigation
to enhance the effectiveness and applicability of the findings. First, while this re-
search identified Random Forest and Linear Regression as effective models for pre-
dicting production, future studies could explore additional machine learning tech-
niques, such as neural networks or ensemble methods, to improve prediction ac-
curacy. Additionally, incorporating more diverse and extensive datasets, including
extra features such as product types, could refine these models.

Secondly, there is a lot of potential in a planning model that is more holistic, includ-
ing preventive maintenance activities that are time-based, counter-based, and possi-
bly even condition-based. The current planning model includes basic capacity con-
straints. Future research could develop more sophisticated models that account for
varying duration’s of maintenance activities, workforce skill sets, spare part avail-
ability, and the interaction with other maintenance activities. These models could
use mixed-integer programming or other advanced optimization techniques to bet-
ter represent the complex nature of maintenance scheduling.

Finally, conducting case studies in different industries and settings would extend the
applicability of the proposed counter-based maintenance strategy. Industries such
as automotive, aerospace, or manufacturing, which have high variability in pro-
duction, could provide valuable insights into the adaptability of the model. These
studies could also assess the long-term impacts of transitioning to a counter-based
maintenance strategy on, for example, equipment lifespan, operational efficiency,
and cost savings. This would provide a deeper understanding of its benefits and
potential drawbacks.

6.3 Recommendations

Based on the findings and conclusions of this research, this section delivers sev-
eral recommendations for Heineken to effectively transition from a time-based to a
counter-based maintenance strategy for the packaging filling lines at the brewery in
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Zoeterwoude. These recommendations aim to improve maintenance effectiveness
and efficiency, reduce over- and under-maintenance, and prevent unnecessary costs
in the future.

• Transition to a counter-based strategy for a selection of the preventive main-
tenance plans.

This research does not recommend to transform all preventive maintenance activi-
ties to a counter-based system. First of all, the company should not alter the main-
tenance strategy of preventive maintenance activities with a current time-based in-
terval of one or two weeks. The current time-based maintenance intervals for the
preventive maintenance tasks vary from one week to eight years. These tasks are al-
ways planned on a stop-day, which occur once every other week, meaning the short-
est amount of time between maintenance activities possible is one week for short
tasks and two weeks for longer tasks. Therefore it is not necessary to investigate if a
PM-plan should be planned on a shorter notice than one or two weeks. Secondly, the
company should not alter the maintenance strategy of preventive maintenance activ-
ities that consider condition monitoring, cleaning, or safety and compliance (Codes
PM6 to PM8). Condition Monitoring means that the proactive decision if a task
should be performed, depends on the state of what the sensors measure, not on the
counter of the machine. The necessity of Cleaning tasks does not depend on the
amount of production time, but depends on the total time that has passed. Safety
and Compliance tasks are necessary whenever the regulations state that they are
necessary, and this should not depend on the amount of production of a line. Over-
all, it would not be beneficial for the company to adjust the maintenance strategy for
these tasks to a counter-based maintenance strategy.

• Continuously monitor and evaluate the usage counters and the counter-based
strategy.

Heineken should continuously monitor the usage counters of the preventive main-
tenance plans. To begin, this research recommends applying the method of creating
a spreadsheet that visualizes the usage counters (see Appendix B). Next to this, a
20 page methodology document has been delivered to the team that explains every
step of the way for any Maintenance Engineer to apply counter-based maintenance
on any of the packaging filling lines. In the upcoming period, the Maintenance Engi-
neering Team should incorporate the usage counters into the main software manage-
ment system. Eventually, the effort of monitoring will decrease as the counter-based
strategy is fully implemented and the software system automatically updates the
counters.

• Utilize predictive models for maintenance planning and scheduling activi-
ties.

Heineken should implement the Random Forest model for forecasting aggregated
production amounts. This model should be used to plan preventive maintenance
activities 13 weeks in advance, allowing sufficient time for preparations. This re-
search has proven that this model type is the best choice for this specific purpose.
Additionally, the company should continuously refine the model by incorporating
more data and exploring other predictive techniques, or introduce new features to
improve forecasting accuracy.
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• Further optimize scheduling with the planning model.

To minimize over- and under-maintenance, Heineken should adopt the mathemati-
cal model developed in this research for scheduling preventive maintenance activi-
ties. The maintenance planner could generate the schedule with this planning model
and integrate the results in his work. This model incorporates constraints on capac-
ity, clustering, and counter-based intervals. It is strongly recommended to further
investigate a more holistic mathematical model. Another intern will continue the
research, incorporating the duration of activities, skill-set requisites, workforce and
spare-part availability, and the schedules of time-based preventive maintenance ac-
tivities. A holistic mathematical model could omit a lot of work for the maintenance
planner, subsequently saving a lot of costs and generating time for this employee to
focus his efforts on other problems.

• Collaborate with the Data & Analytics Team.

This research recommends to create a data model that integrates the different sources
of data. Currently, the maintenance engineers lack the skill to combine data from the
Manufacturing Execution System to link the production hours of machines to the
preventive maintenance plans. Luckily the Data & Analytics Team is able to design
and validate such a model. They could refine the predictive models and explore
additional input variables that could enhance the accuracy. Regular collaboration
between both teams will ensure that the models remain relevant and effective in
predicting production amounts and scheduling maintenance activities.

• Share best practices across the organization.

Finally, Heineken should document and share the best practices and lessons learned
from the implementation of the counter-based maintenance strategy at the Zoeter-
woude brewery with other facilities within the organization. The brewery in Den
Bosch already performs some preventive maintenance actions with usage counters,
but their operations are not perfect. Additionally, during this research there was
contact with breweries in Poland who also made a short start with counter-based
systems, but they ran into similar difficulties that were present in this thesis. Zoeter-
woude has the opportunity to continue the implementation and create efficient and
effective counter-based operations. If they continuously share their practices glob-
ally, this will promote a culture of continuous improvement and operational excel-
lence across the company.
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Appendix A

Box Plots

FIGURE A.1: Box plots showing differences in Production time be-
tween executions of PM-plans

FIGURE A.2: Box plots showing differences in Production time be-
tween executions of PM-plans
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Appendix B

Methodology for Counter-Based
Maintenance

B.1 Step-by-step method

1. Search all PM plans in Maximo

(a) Go to the Maximo Preventive Maintenance Plans list view.

(b) Select all records, and use a where clause like the following:

((status = ’ACTIVE’ and siteid = ’NL01’)) and (((location like ’%NL01-
2-2081%’)) OR (exists (select 1 from maximo.asset where ((location like
’%NL01-2-2081%’)) and (assetnum = pm.assetnum and siteid=pm.siteid)
and (plustisconsist=0))))

(c) Download the list to a excel file.

(d) Copy the data into the counters template excel file (values only).

2. Clean up the data

(a) Select all Description cells and use Control H to replace all commas with
a space.

(b) Check weird intervals (e.g. 6 jr instead of 6J).

(c) Delete the rows of the PM plans that:

i. Are PM6 to PM8

ii. Have interval lower or equal to 2 weeks

iii. Are OFF-LINE

iv. Are already based on counters (DRU)

v. Are not a PM plan (e.g. JWO or Revision)

3. Gather the data on last executions of the PM-plans (either from SAP or Max-
imo) Note: Use SAP or Maximo. For Maximo it is not possible yet for the
Maintenance Engineering Team to extract this information. Discuss this with
Maximo employee how to gather the information.

(a) Make sure to extract the description of executed maintenance plans and
their scheduled dates from 2016 to present. See the columns in the tem-
plate to download the correct format.
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(b) Copy the data into the "SAP" or "Maximo" sheet in the counters excel file.

(c) Replace all commas in the descriptions with spaces.

(d) Check for irregularities in column T.

4. Gather the data on production amounts from MES

(a) Open the downtime data box from MES in excel.

(b) Create the pivot table with in the following form:

FIGURE B.1: Example of pivot table formation for MES data

(c) Expand all rows to see all dates.

(d) Show in tabular form.

(e) Set filter to the necessary line.

(f) Extract the data and sum the volloop, leegloop, productie as this is the
Real production time.

(g) Use the Control H function to change the dates to real dates (e.g. replace
Jan with -1-).

(h) Create an extra column with the average of the Etimas.

5. Insert the correct data connection in the sheet “DATA connection”

(a) Fill all unique SAP location values from Column W in the “Counters”
sheet in the location column in the “DATA connection” sheet.

(b) Fill in the corresponding machine from the MES output in the machine
column in the “DATA connection” sheet.

(c) Fill in the corresponding index for only the Real production time values
from the “MES” sheet.

(d) Calculate the average production hours per year for the corresponding
machines from the MES data and fill it in the Counter column in the
“DATA connection” sheet.
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6. Adjust the formula of counter calculations

(a) In the “Counters” sheet change the formula of column z such that the
correct section of the “MES” sheet is used. Set the rows correct to the
MES data.

(b) Check Data connection formulas if still correct.

B.2 Example spreadsheet

When a maintenance engineer completes the step-by-step method, the spreadsheet
looks like the following:

FIGURE B.2: Example of the spreadsheet
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Appendix C

Distributions for Parameter Tuning

LISTING C.1: Parameter distributions per model
# Paramet e r d i s t r i b u t i o n s f o r t h e D e c i s i o n Tre e model
param_dist_DT = {

’ max_depth ’ : [ 1 0 , 20 , 3 0 ] ,
’ min_samples_spl i t ’ : [ 2 , 5 , 1 0 ] ,
’ min_samples_leaf ’ : [ 1 , 2 , 4 ] ,
’ max_features ’ : [ None , ’ s q r t ’ , ’ log2 ’ ]

}

# Paramet e r d i s t r i b u t i o n s f o r t h e Random F o r e s t model
param_dist_RF = {

’ n_es t imators ’ : [ 1 0 0 , 200 , 300 , 400 , 5 0 0 ] ,
’ max_depth ’ : [ 1 0 , 20 , 3 0 ] ,
’ min_samples_spl i t ’ : [ 2 , 5 , 1 0 ] ,
’ min_samples_leaf ’ : [ 1 , 2 , 4 ] ,
’ max_features ’ : [ None , ’ s q r t ’ , ’ log2 ’ ]

}

# Paramet e r d i s t r i b u t i o n s f o r t h e G r a d i e n t B o o s t i n g Machine model
param_dist_GBM = {

’ n_es t imators ’ : [ 1 0 0 , 200 , 300 , 400 , 5 0 0 ] ,
’ l e a r n i n g _ r a t e ’ : [ 0 . 0 1 , 0 . 0 5 , 0 . 1 , 0 . 2 ] ,
’ max_depth ’ : [ 3 , 4 , 5 , 6 ] ,
’ min_samples_spl i t ’ : [ 2 , 5 , 1 0 ] ,
’ min_samples_leaf ’ : [ 1 , 2 , 4 ] ,
’ subsample ’ : [ 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0 ] ,
’ max_features ’ : [ None , ’ s q r t ’ , ’ log2 ’ ]

}

# Paramet e r d i s t r i b u t i o n s f o r t h e K− N e a r e s t Ne ighbor model
param_dist_KNN = {

’ n_neighbors ’ : [ 3 , 5 , 7 , 9 , 1 1 ] ,
’ weights ’ : [ ’ uniform ’ , ’ d i s t a n c e ’ ] ,
’ a lgorithm ’ : [ ’ auto ’ , ’ b a l l _ t r e e ’ , ’ kd_tree ’ , ’ brute ’ ] ,
’ l e a f _ s i z e ’ : [ 1 0 , 20 , 30 , 40 , 5 0 ] ,
’p ’ : [ 1 , 2 ]

}
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Appendix D

Performance Metrics per Machine

TABLE D.1: MAD Values per Machine for Aggregated Predictions

MAD Baseline LR DT RF GBM KNN HW

Machine 1 14697.69 14016.37 10063.16 11256.67 12404.34 12447.74 6731.69
Machine 2 9141.32 8161.49 9383.63 8244.64 9859.64 8597.42 7541.24
Machine 3 15900.54 13512.06 13973.13 10742.18 12497.94 14478.69 11161.58
Machine 4 14984.70 12443.75 11633.77 12347.91 11343.42 14336.77 11565.42
Machine 5 15185.04 12994.49 11465.35 11092.43 11674.45 14430.01 12326.63
Machine 6 9903.67 8636.87 10871.16 9141.77 9371.44 8940.21 8228.22
Machine 7 10444.33 8650.17 11259.73 9535.53 9868.24 9289.83 8385.01
Machine 8 10254.61 8771.03 11325.76 9727.60 9900.63 9509.37 9012.02
Machine 9 8955.21 8120.54 9428.09 8152.38 8833.55 8826.68 10058.35

Machine 10 8451.64 7395.80 8849.70 7542.94 8482.12 7964.35 8642.82
Machine 11 17532.31 13864.29 12468.64 11876.81 13050.14 16189.34 14917.52
Machine 12 10012.75 11530.35 9404.61 8295.88 8487.98 8974.31 13283.24
Machine 13 12134.04 10987.19 12133.65 11430.34 11484.54 11298.24 10708.18
Machine 14 10691.53 10031.81 10461.36 10181.17 10229.79 10118.11 9318.02
Machine 15 9222.32 7919.57 9902.65 8316.05 8242.19 7826.18 8034.91
Machine 16 8852.10 7662.13 8201.17 7589.21 7812.79 7574.33 7545.77
Machine 17 10967.01 8306.09 10323.61 7916.07 7555.20 9485.42 7758.36
Machine 18 10958.58 8467.68 9005.82 8587.13 8256.41 9501.78 9834.71
Machine 19 8017.01 7933.61 8504.46 9118.21 10094.67 8262.18 9569.11
Machine 20 8949.31 7977.93 9179.50 8822.50 8447.41 8458.81 9565.77
Machine 21 15184.39 13592.79 14828.98 11270.90 11866.15 14627.13 12073.10
Machine 22 18446.94 9488.34 18404.45 7924.88 10320.68 16873.08 12601.66
Machine 23 19093.68 9868.90 19119.40 8451.49 10740.62 17445.73 12170.03
Machine 24 9090.43 8074.00 9233.84 8652.57 9041.96 8552.34 9588.10
Machine 25 11618.95 11012.28 11094.41 10679.88 11032.94 10932.03 9817.51
Machine 26 10011.99 8751.76 11453.23 9229.61 9869.78 9143.67 8803.29
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TABLE D.2: sMAPE Values per Machine for Aggregated Predictions

sMAPE Baseline LR DT RF GBM KNN HW

Machine 1 14.89% 14.55% 10.26% 11.35% 12.51% 12.64% 6.78%
Machine 2 10.60% 9.78% 11.62% 9.93% 12.12% 10.55% 8.41%
Machine 3 29.02% 24.85% 25.71% 19.39% 22.51% 27.34% 18.84%
Machine 4 26.72% 22.41% 20.32% 21.58% 20.01% 26.27% 19.07%
Machine 5 26.50% 23.05% 19.38% 19.07% 20.21% 26.00% 19.75%
Machine 6 12.29% 10.98% 14.05% 11.70% 11.99% 11.54% 9.64%
Machine 7 13.00% 11.02% 14.55% 12.28% 12.68% 12.04% 9.74%
Machine 8 11.62% 10.13% 13.54% 11.39% 11.59% 11.25% 9.66%
Machine 9 9.85% 9.12% 10.87% 9.10% 10.09% 10.14% 10.37%
Machine 10 9.30% 8.34% 10.21% 8.61% 9.74% 9.24% 9.14%
Machine 11 26.97% 21.33% 18.64% 17.99% 19.86% 25.64% 20.85%
Machine 12 8.68% 9.83% 8.20% 7.20% 7.36% 7.79% 11.05%
Machine 13 14.17% 13.21% 14.73% 13.58% 13.69% 13.79% 11.56%
Machine 14 50.14% 47.49% 50.08% 48.85% 48.66% 47.92% 44.06%
Machine 15 10.01% 8.84% 11.15% 9.36% 9.24% 8.82% 8.45%
Machine 16 9.59% 8.54% 9.29% 8.45% 8.72% 8.53% 7.97%
Machine 17 10.65% 7.89% 10.17% 7.68% 7.28% 9.36% 7.38%
Machine 18 11.23% 8.71% 9.54% 8.91% 8.51% 9.99% 9.74%
Machine 19 8.91% 9.11% 9.97% 10.57% 11.82% 9.65% 10.14%
Machine 20 9.49% 8.66% 10.22% 9.79% 9.26% 9.44% 9.68%
Machine 21 26.95% 24.48% 26.74% 19.79% 20.92% 26.96% 19.75%
Machine 22 43.00% 20.14% 42.98% 16.89% 22.14% 39.79% 24.16%
Machine 23 43.53% 20.50% 43.71% 17.66% 22.59% 40.28% 23.08%
Machine 24 9.93% 9.06% 10.54% 9.80% 10.25% 9.79% 9.92%
Machine 25 51.15% 48.93% 52.04% 48.33% 49.51% 48.85% 43.99%
Machine 26 12.81% 11.50% 15.32% 11.98% 13.04% 12.17% 10.49%

TABLE D.3: Bias Values per Machine for Aggregated Predictions

Bias Baseline LR DT RF GBM KNN HW

Machine 1 -14697.69 -14016.37 -9216.51 -11250.06 -12404.34 -12447.74 -2572.93
Machine 2 -8489.53 -3852.24 -7024.76 -5519.92 -4229.17 -5472.56 4785.67
Machine 3 -12225.30 -7308.64 -7048.62 -3977.64 -7565.73 -6760.44 8271.95
Machine 4 -11174.46 -5828.50 2390.98 -2243.33 -6079.02 -5251.03 8202.09
Machine 5 -11001.79 -6336.65 1239.89 -1519.43 -6058.72 -5232.17 8960.28
Machine 6 -9499.89 -6187.10 -9495.16 -7517.88 -7998.49 -7227.90 6597.10
Machine 7 -10183.55 -6605.30 -8613.63 -8111.99 -8649.00 -7824.68 6741.34
Machine 8 -9845.17 -4789.71 -9964.07 -7754.66 -7951.71 -7147.22 7126.53
Machine 9 -8489.88 -3653.90 -7192.44 -6817.24 -6834.72 -5814.64 8694.12

Machine 10 -7727.40 -2450.66 -5362.70 -5639.51 -5609.26 -4776.49 7247.49
Machine 11 -12804.83 -4647.23 2294.49 -1939.50 -6643.36 -6423.10 12174.41
Machine 12 -4603.87 5952.63 -2812.75 -1263.18 -1622.63 -2260.71 10655.80
Machine 13 -12034.39 -8386.73 -10657.01 -10244.98 -10316.79 -8874.39 9376.74
Machine 14 2964.74 1915.13 -9225.36 -2462.76 -426.76 355.17 318.72
Machine 15 -8412.22 -6224.53 -7158.32 -6661.70 -7602.54 -6237.01 6392.93
Machine 16 -7890.47 -5388.54 -5583.06 -6416.93 -6920.85 -5758.42 5832.05
Machine 17 -10323.44 2444.70 -6805.16 -5563.93 -5574.05 -6825.38 2891.45
Machine 18 -9872.68 -1856.69 -6543.20 -6065.57 -6100.02 -7344.94 8459.28
Machine 19 -7263.22 -3261.15 -5744.70 -3901.65 -3258.20 -3883.84 8380.27
Machine 20 -8257.60 -2725.89 -6755.60 -6186.12 -6378.16 -5121.07 8100.67
Machine 21 -10744.44 -6351.61 -3024.76 -1829.38 -5866.93 -5146.74 9279.11
Machine 22 -18053.57 -1154.44 -18003.70 -2965.83 -7072.40 -15198.25 11779.89
Machine 23 -18609.99 -1244.25 -18555.13 -3549.62 -7286.51 -15720.56 11153.69
Machine 24 -8511.44 -4085.76 -6138.60 -6546.36 -7192.30 -5872.16 8260.19
Machine 25 4312.52 3357.36 -8871.82 -1375.80 544.65 1503.91 420.77
Machine 26 -9699.24 -6888.37 -10335.09 -8520.00 -8753.41 -7673.72 7153.63
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TABLE D.4: MAD Values per Machine for Non Aggregated Predic-
tions

MAD Baseline LR DT RF GBM KNN HW

Machine 1 1864.86 1766.46 1846.54 1736.11 1745.63 1802.07 1692.27
Machine 2 1495.18 1270.58 1240.85 1338.32 1321.44 1382.83 1647.68
Machine 3 1807.63 1743.52 1766.03 1693.36 1685.09 1821.51 1681.90
Machine 4 1789.55 1711.65 1731.52 1749.65 1680.06 1813.19 1641.60
Machine 5 1839.58 1799.87 1833.67 1782.33 1751.27 1856.60 1730.11
Machine 6 1407.00 1249.25 1273.33 1263.95 1313.48 1334.30 1619.82
Machine 7 1427.23 1265.56 1263.40 1287.38 1290.98 1359.58 1562.01
Machine 8 1494.48 1262.26 1275.35 1324.86 1393.56 1376.19 1652.96
Machine 9 1440.89 1206.17 1353.92 1311.94 1345.41 1357.41 1459.32
Machine 10 1424.24 1122.75 1358.80 1210.23 1195.22 1246.47 1185.27
Machine 11 2138.93 1937.47 2213.07 2000.54 1937.19 2082.74 2249.00
Machine 12 1544.00 1226.04 1312.02 1278.24 1195.97 1455.32 2622.45
Machine 13 1552.07 1363.91 1674.07 1348.59 1366.21 1394.29 1734.45
Machine 14 1350.77 1365.60 1375.38 1316.52 1309.83 1308.28 1277.53
Machine 15 1481.94 1252.56 1177.24 1261.66 1247.49 1295.31 1479.35
Machine 16 1446.02 1198.99 1389.18 1218.49 1245.22 1269.82 1452.31
Machine 17 1634.68 1186.42 1390.19 1348.47 1358.46 1444.00 2651.48
Machine 18 1651.35 1213.22 1242.03 1397.98 1345.21 1464.88 1612.14
Machine 19 1415.09 1213.35 1410.90 1264.62 1336.34 1349.60 1616.65
Machine 20 1471.80 1199.58 1292.39 1300.51 1360.48 1356.55 1655.96
Machine 21 1796.94 1750.53 1829.27 1742.71 1845.15 1818.91 1702.64
Machine 22 2037.71 1635.49 1548.78 1628.24 1659.18 1835.85 1790.45
Machine 23 2079.31 1669.63 1606.38 1664.05 1683.93 1876.72 1836.24
Machine 24 1437.93 1208.66 1143.35 1298.73 1341.72 1331.63 1503.57
Machine 25 1432.81 1460.56 1549.97 1393.69 1390.65 1386.29 1318.91
Machine 26 1421.34 1292.14 1226.61 1298.56 1295.62 1334.32 1662.26
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TABLE D.5: sMAPE Values per Machine for Non Aggregated Predic-
tions

sMAPE Baseline LR DT RF GBM KNN HW

Machine 1 28.62% 29.75% 26.29% 26.65% 27.76% 28.77% 27.64%
Machine 2 28.13% 27.38% 35.64% 27.55% 28.05% 28.77% 33.60%
Machine 3 49.21% 47.97% 47.64% 46.62% 46.84% 53.12% 45.69%
Machine 4 47.92% 48.51% 46.73% 44.99% 45.40% 52.26% 44.17%
Machine 5 48.25% 50.26% 48.78% 45.12% 46.27% 52.62% 45.40%
Machine 6 27.72% 28.45% 30.05% 27.56% 27.96% 28.59% 33.60%
Machine 7 28.05% 28.70% 28.75% 28.05% 28.50% 29.02% 32.43%
Machine 8 27.09% 25.96% 29.32% 26.50% 27.48% 27.40% 31.69%
Machine 9 25.56% 23.77% 24.05% 24.49% 25.54% 26.31% 27.45%

Machine 10 24.99% 23.33% 23.57% 23.20% 23.63% 24.09% 22.54%
Machine 11 48.73% 45.93% 51.56% 44.28% 45.32% 50.37% 45.09%
Machine 12 21.97% 19.04% 20.07% 20.44% 20.62% 20.85% 30.41%
Machine 13 28.34% 27.29% 26.21% 26.49% 27.32% 28.34% 33.94%
Machine 14 90.13% 90.69% 90.11% 90.03% 90.22% 93.23% 103.94%
Machine 15 25.62% 25.33% 24.90% 23.85% 23.98% 24.65% 27.32%
Machine 16 25.07% 24.47% 25.06% 23.48% 23.49% 24.29% 27.10%
Machine 17 23.92% 18.28% 24.00% 20.62% 20.58% 21.70% 31.29%
Machine 18 26.97% 22.05% 26.51% 24.63% 25.25% 26.14% 27.83%
Machine 19 25.51% 24.29% 27.08% 28.15% 27.76% 27.03% 31.01%
Machine 20 25.20% 22.79% 22.39% 24.46% 24.54% 25.91% 30.02%
Machine 21 47.83% 47.51% 49.53% 44.63% 45.93% 52.30% 45.14%
Machine 22 68.41% 53.54% 54.28% 53.35% 55.92% 65.94% 58.40%
Machine 23 68.23% 53.29% 54.27% 53.25% 55.74% 65.85% 58.61%
Machine 24 25.40% 24.19% 23.80% 24.97% 25.60% 25.83% 28.09%
Machine 25 89.46% 90.49% 88.86% 89.53% 89.49% 92.67% 100.51%
Machine 26 28.61% 29.89% 28.55% 27.72% 29.38% 29.27% 35.46%

TABLE D.6: Bias Values per Machine for Non Aggregated Predictions

Bias Baseline LR DT RF GBM KNN HW

Machine 1 -954.76 -1124.31 -712.24 -857.75 -957.50 -990.31 -583.80
Machine 2 -533.09 -470.41 -536.02 -396.33 -269.61 -398.14 -807.29
Machine 3 -870.30 -751.32 -480.39 -565.50 -650.83 -504.01 -139.44
Machine 4 -791.04 -637.46 -250.52 -382.86 -568.06 -408.78 -37.38
Machine 5 -771.97 -704.65 -281.57 -326.00 -557.10 -403.01 -9.71
Machine 6 -615.04 -628.70 -499.89 -511.17 -590.78 -499.52 -940.79
Machine 7 -665.01 -667.44 -530.35 -557.64 -626.77 -549.78 -861.77
Machine 8 -631.21 -527.75 -530.22 -525.19 -587.84 -490.21 -889.69
Machine 9 -512.04 -422.89 -395.39 -391.44 -443.94 -369.15 -545.59

Machine 10 -467.10 -320.96 -118.83 -368.30 -372.14 -289.08 -5.26
Machine 11 -931.00 -589.27 -840.13 -458.39 -582.43 -504.65 1686.13
Machine 12 -110.77 448.30 -77.31 28.70 8.38 -50.20 2430.14
Machine 13 -804.66 -806.78 -712.68 -687.24 -778.02 -658.66 -1118.31
Machine 14 260.28 187.79 -488.27 128.53 116.15 88.49 -749.93
Machine 15 -506.20 -595.04 -476.89 -411.38 -503.59 -395.24 -654.86
Machine 16 -465.40 -529.88 -414.57 -417.87 -429.36 -348.83 -646.47
Machine 17 -667.89 182.11 -467.64 -335.79 -411.59 -84.56 2531.48
Machine 18 -620.08 -305.01 -547.65 -479.11 -534.17 -529.72 -608.67
Machine 19 -428.36 -426.10 -333.66 -273.23 -345.54 -274.65 -806.31
Machine 20 -521.20 -378.25 -164.49 -425.63 -456.27 -361.93 -834.11
Machine 21 -747.37 -679.70 -196.87 -321.27 -553.98 -404.33 17.21
Machine 22 -1420.51 -302.55 34.44 -431.96 -706.71 -991.92 -629.33
Machine 23 -1458.65 -307.04 20.63 -451.35 -731.87 -1025.95 -701.08
Machine 24 -516.59 -461.66 -406.70 -440.80 -489.95 -381.66 -634.09
Machine 25 371.55 296.68 -425.77 228.88 235.74 174.38 -668.55
Machine 26 -627.35 -691.00 -632.00 -536.34 -649.86 -531.02 -993.78
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Appendix E

Non-cumulative Visual
Performances

FIGURE E.1: Visual Performance of RF for Machine 3 (non-
cumulative)

FIGURE E.2: Visual Performance of RF for Machine 20 (non-
cumulative)
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FIGURE E.3: Visual Performance of LR for Machine 14 (non-
cumulative)

FIGURE E.4: Visual Performance of LR for Machine 19 (non-
cumulative)
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Appendix F

Declaration of Artificial
Intelligence

"During the preparation of this work, I used ChatGPT from OpenAI to assist in writing and
coding activities. After using this tool/service, I thoroughly reviewed and edited the content
as needed, taking full responsibility for the final outcome."

-

Nils Meulenbroek, August 30, 2024
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