
BSc Thesis Applied Mathematics

Accelerated Spectral Clustering
using Random Forest and the
Locally Linear Landmark
approach

Zoë van Herreveld

Supervisors: Annika Betken and Hongwei Wen

August, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

This report is part of my Bachelor’s assignment, which marks the completion of my Bach-
elor’s degree in Applied Mathematics at the University of Twente. I would like to express
my gratitude to Annika Betken and Hongwei Wen for their supervision and invaluable in-
put throughout my research. I am very grateful that you took the time to join my research
when unforeseen circumstances left me without supervisors, ensuring I could complete
my Bachelor’s assignment without further obstacles. Additionally, I would like to thank
my family, friends, and housemates for their support not only during my research but
throughout the entirety of my Bachelor’s degree.

Accelerated Spectral Clustering using
Random Forest and the Locally

Linear Landmarks approach

Zoë van Herreveld∗

August, 2024

Abstract

In the era of big data, where data streams are constantly expanding in all aspects
of our life, advanced clustering techniques are in big demand. One popular clustering
technique in the field of unsupervised learning is spectral clustering. This is a graph-
based clustering method that, as the name already implies, is able to capture complex
data structures by leveraging the spectral properties of the data. This involves an-
alyzing the eigenvalues and eigenvectors of certain matrices. However, particularly
due to this eigendecomposition, the computational cost of spectral clustering is very
high, especially when dealing with large datasets. This research explores the poten-
tial of enhancing the complexity of spectral clustering by using extremely randomized
trees to construct the similarity matrix and by implementing the Locally Linear Land-
marks (LLL) technique. This is a dimensionality reduction technique, first introduced
by M. Vladymyrov and M. À . Carreira-Perpiñàn in [19] for manifold learning. By
replacing binary trees with extremely randomized trees, significant reductions in run-
time are achieved without losing performance. This is demonstrated with various
datasets. Additionally, our implementation of the LLL method yielded notable im-
provements in runtime, however with a notable trade-off in terms of performance in
some cases. Lastly, this research contributes a successful Python implementation of
the general spectral clustering algorithm. This implementation incorporates a random
forest based similarity measure RatioRF [2] for calculating the similarity matrix and
offers the option to use the Linear Locally Landmarks approach, paving the way for
further research and advancements in the field of spectral clustering.

Keywords: Spectral Clustering, Extremely Randomized Trees, Random Forest, Lo-

cally Linear Landmarks

∗Email: z.vanherreveld@student.utwente.nl

1

Contents

1 Introduction 3

2 Theoretical Background 4
2.1 General spectral clustering problem . 4

2.1.1 Input variables . 4
2.1.2 Unnormalized minimization problem 4
2.1.3 Mathematical foundation of spectral clustering 5
2.1.4 Normalized minimization problem 8
2.1.5 Complexity of spectral clustering . 9

2.2 Random forest-based similarity measure . 9
2.2.1 Similarity measure RatioRF . 9
2.2.2 Type of decision tree used in random forest 10

2.3 Spectral clustering using the Locally Linear Landmark approach 11
2.3.1 Reduced spectral clustering problem 11
2.3.2 Complexity of spectral clustering using LLL 12

2.4 Performance measures . 12
2.4.1 Adjusted Rand Index . 12
2.4.2 Purity measure . 13

3 Methods 14
3.1 Python implementation . 14
3.2 Datasets . 14
3.3 Experimental parameters . 15

3.3.1 Spectral clustering results using binary trees 15
3.3.2 Spectral clustering results using extremely randomized trees 16
3.3.3 Spectral clustering results with the LLL approach 16

4 Results 17
4.1 Averaged results using binary trees . 17
4.2 Averaged results using extremely randomized trees 17
4.3 Averaged results with the Locally Linear Landmarks approach 17

5 Discussion and recommendations 19
5.1 Analysis of our results . 20
5.2 Limitations and recommendations . 21

6 Conclusion 22

7 Bibliography 23

8 Appendices 25
8.1 Mathematics behind general spectral clustering 25
8.2 Derivation of general spectral clustering to LLL problem 26

2

1 Introduction

In the era of big data, where data streams are constantly expanding in all aspects of our
life, advanced data analysis techniques are in big demand. One such techniques that has
been evolving over the past decade is clustering.

Clustering algorithms aim to group data points together that are more similar based on
their characteristics or features. They usually achieve this by focusing on partitioning the
data using geometric measures, like distance or density. However, recently there has been
introduced a new similarity measure, called RatioRF [2], which assesses the similarity
between data points based on their behavior within trained decision trees. Their use of
binary decision trees to generate the RatioRF measure has already yielded promising re-
sults. Binary trees, however, can be computationally expensive due to their search for the
optimal split at every node. A good alternative could be the use of extremely random-
ized trees. This type of decision trees selects features and splitting thresholds randomly,
thereby avoiding the need for an exhaustive search to find the optimal split. This additional
randomness leads to faster training times, while also reducing overfitting and increasing
robustness to noisy data.

One popular clustering technique in the field of unsupervised learning is spectral clus-
tering. While most clustering techniques focus on partitioning the data in the feature
space based directly on the geometric arrangement of the data points, spectral clustering
approaches it as a graph partitioning problem. Data points are represented as nodes in a
graph, and their pairwise similarities are represented as edges with certain weights. This
allows for capturing complex structures and patterns in the data that may not be visible in
the feature space. As the name implies, spectral clustering achieves this by exploiting the
spectral properties of the data. This involves analyzing the eigenvalues and eigenvectors
of matrices derived from the data. One of the biggest bottlenecks of spectral clustering
is its computational cost, particularly due to this eigendecomposition. One way to reduce
this complexity is to perform a dimensionality reduction technique, such as the Locally
Linear Landmarks (LLL) technique. This was first introduced by M. Vladymyrov and M.
À . Carreira-Perpiñàn in [19] for manifold learning. The LLL method reformulates the
spectral clustering problem to a reduced problem, which makes the eigendecomposition in
the process more efficient, since it will be done on smaller matrices. It achieves this by
introducing a number of landmarks, which are randomly selected data points, that will
be used to map the original data to a lower-dimensional space. This greatly reduces the
computational cost of spectral clustering, making it more suitable for larger datasets.

This brings us to the main question we will address in this research:

“To what extent can the computational efficiency of Spectral Clustering be enhanced by
using Extremely Randomized trees to calculate the similarity matrix and by implementing
the Locally Linear Landmarks approach?"

3

2 Theoretical Background

In Section 2.1 we will first get acquainted with the general spectral clustering problem,
which will lay the foundation for the rest of the research. Subsequently, in Section 2.2 we
will explain our used similarity measure RatioRF and the type of decision tree we used to
construct a random forest. Then, in Section 2.3 the Locally Linear Landmark technique
will be explained. Section 2.4 will conclude this chapter with a description of the Adjusted
Rand Index and the purity measure, which are the measures that are used to quantify the
performance of spectral clustering.

2.1 General spectral clustering problem

There are multiple formulations of the spectral clustering problem, which vary in factors
like the type of similarity measure that is used, or the kind of normalization applied to
the graph Laplacian, which we will consider in more detail later. We will first explain the
unnormalized definition of the problem, which we can then later use to build upon.

The goal of spectral clustering is to partition data into clusters, where data points that are
within the same cluster are more similar to each other than to data points in other clusters.
As the name implies, spectral clustering does this by exploiting the spectral properties of
the data. This involves analyzing the eigenvalues and eigenvectors of matrices that are
derived from the data.

2.1.1 Input variables

Given a dataset YN×d = (y1, y2, ..., yN) consisting of N data points, there are two main
parameters that need to be determined before the spectral clustering algorithm can be
applied: the similarity matrix W ∈ RN×N and the number of clusters k.

The similarity matrix W ∈ RN×N is a symmetric matrix that contains all the pairwise
similarities sij ≥ 0 between the data points. The construction of the matrix depends
greatly on the type of similarity measure that is chosen. Similarity measures that are often
used in spectral clustering are the Gaussian Kernel Function, the k-nearest Neighbors or
the Euclidean distance. We chose to use the recently proposed similarity measure RatioRF
[2], which is a random forest-based measure that appears to yield great results. In Section
2.2.1 we will consider this measure in more detail.

The number of clusters, k, that ought to be found in the dataset should also be spec-
ified beforehand. There exist multiple methods to determine this value, like the elbow
method [15] or using the gap statistic [16]. Within this research we assume knowledge
of the number of clusters. In particular we will only use datasets that are available on
the UCI ML Repository [17], which usually states how many clusters the dataset can be
divided in.

2.1.2 Unnormalized minimization problem

As stated before, the goal of spectral clustering is to find the best way to split the data into
clusters such that the similarity between clusters is minimized and the similarity within
clusters is maximized. We can reformulate the spectral clustering problem as a graph par-
titioning problem by stating that we want to find a partition of the similarity graph W
that minimizes the weights of the edges that connect the different clusters and maximizes

4

the weights of the edges within a cluster, where nodes i, j ∈ W are only connected by an
edge if there weights are larger than zero, wi,j > 0. Focusing only on this first part, that
is minimizing the weights of the edges between distinct clusters, we achieve this by using
the unnormalized Laplacian L = D −W , where matrix D ∈ RN×N is the degree matrix,
which is a diagonal matrix with on the diagonal the degrees of each node of a graph. A
graph Laplacian is a matrix that is defined in such a way that it contains properties of a
graph that can be very useful in graph partitioning problems.

This graph partitioning problem is encapsulated in the following optimization problem,
which will be fully derived in Section 2.1.3:

min
X∈RN×k

Tr(XTLX), s.t. XTX = I (1)

Here, the goal is to find an orthogonal matrix X ∈ RN×k that minimizes the trace of the
matrix XTLX, where L = D −W is the unnormalized Laplacian. The trace of a matrix
is the sum of its diagonal elements.

This is a standard form of a trace minimization problem, where we can use the Rayleigh-
Ritz theorem to solve this problem. This theorem states that in the context of spectral
clustering and Laplacian matrices the solution to this problem is given by the k smallest
eigenvalues of L, which contain important information about the connectivity and thus
the clusters of the graph. The solution matrix X is real-valued, however to find a concrete
partition of the dataset we need to convert it to a discrete solution. We can acquire this
by using the k-means algorithm [7] on the rows of X.

The complete mathematical derivation of unnormalized spectral clustering will be done
in the following Section 2.1.3. A reader only interested in the methodology, may skip to
Section 2.1.4, where the basics of normalized spectral clustering are presented.

2.1.3 Mathematical foundation of spectral clustering

Given a dataset YN×k = (y1, ..., yN) and an associated similarity matrix W ∈ RN×N , we
can construct a similarity graph G with vertex set V = (v1, ..., vN), where vertices are only
connected by an edge if it has a nonzero weight wi,j > 0. We want to find a partition of the
graph that minimizes the weight of the edges between different clusters. We will define the
weight between two clusters A,B ⊂ V as W (A,B) =

∑
i∈A,j∈B wi,j and the complement

of a set A ⊂ V as A = {vi ∈ V |vi /∈ A}.

Clustering as a graph partitioning problem

We can define the spectral clustering problem as a graph partitioning problem: for a given
k ∈ Z+, find a partition A1, ..., Ak that minimizes Cut(A1, ..., Ak) = 1

2

∑k
i=1W (Ai, Ai).

This was first introduced by Stoer and Wagner in [14], but it does not always lead to
satisfactory results because there is no constraint on the cluster size. This often results
in one single vertex being separated from the rest. With cluster size, denoted by |A|,
the amount of vertices in a set is meant. To deal with this constriction, we can use the
RatioCut objective function, introduced in [4], which makes sure that the sets A1, ..., Ak

5

are not too small. It is defined in the following way:

RatioCut(A1, ..., Ak)
def
=

1

2

k∑
i=1

W (Ai, Ai)

|Ai|
=

k∑
i=1

Cut(Ai, Ai)

|Ai|

Notice that the RatioCut takes on a smaller value if the clusters Ai are larger. This way
it tries to balance the clusters in terms of number of vertices in each set.

Solution for 2 clusters

To simplify the situation, we will first set k = 2 and solve the associated minimization
problem:

min
A⊂V

RatioCut(A,A) (2)

There is a very useful property of the unnormalized Laplacian L that we can use to refor-
mulate the minimization problem in a more convenient way. The proof of this property
can be found in Appendix 8.1, and the proposition is formulated as follows:

Proposition: For every vector f ∈ RN we have f ′Lf = 1
2

∑n
i,j=1wij(fi − fj)

2.

We now introduce an indicator vector f = (f1, ..., fN)′ ∈ RN with entries

fi =


√

|A|/|A| if vi ∈ A√
|A|/|A| if vi ∈ A.

(3)

Combining the proposition with our newly defined indicator vector f , we arrive at the
following equation. The complete derivation can be found in Appendix 8.1.

f ′Lf = |V | · RatioCut(A,A) (4)

Now we can rewrite our minimization problem of Equation (2) as follows:

min
A⊂V

RatioCut(A,A) = min
A⊂V

f ′Lf

|V |
= min

A⊂V

f ′Lf

N
(5)

Since N is a constant, we can remove it from the problem without changing the nature of
the problem. Now we will look at two properties that vector f has that we can incorporate
in the final version of our minimization problem. First, we see that f is orthogonal to the
constant vector 1N = (1, 1, ..., 1)1×N :

f · 1 =

N∑
i=1

fi =
∑
i∈A

√
|A|
|A|

−
∑
i∈A

√
|A|
|A|

= |A|

√
|A|
|A|

− |A|

√
|A|
|A|

Taking the square of the right-hand side shows that it equals 0. We can thus conclude that
f is orthogonal to the constant one vector.

Lastly, we will look at the squared norm of f and see that it is equal to N :

||f ||2 =
n∑

i=1

f2
i =

∑
i∈A

|A|
|A|

+
∑
i∈A

|A|
|A|

= |A| |A|
|A|

+ |A| |A|
|A|

= |A|+ |A| = |V | = N

6

Combining the properties that hold for our defined f , we can write the minimization
problem that we defined in Equation (5) as:

min
A⊂V

f ′Lf s.t. f ⊥ 1, fi defined as in (3), ||f || =
√
N

We have now formulated it as a discrete optimization problem, since the entries of f
can only be two particular values, Equation (3). We can relax it and transform it to a
continuous problem by allowing fi to take arbitrary values in R. This relaxation is justified,
since it makes the problem computationally more efficient and easier to implement, while
it still remains a good approximation to the original discrete problem. The relaxed and
final optimization problem of unnormalized spectral clustering with k = 2 is given below:

min
f∈RN

f ′Lf s.t. f ⊥ 1, ||f || =
√
N

By applying the Rayleigh-Ritz theorem to this problem, we can find the solution vector f .
This theorem states that in the context of spectral clustering and Laplacian matrices the
solution to this problem is given by the second smallest eigenvalue of L, which contains
important information about the connectivity and thus the clusters of the graph. This
yields a real-valued solution vector f , but we want a discrete partition of a graph which
means we have to transform it back to a discrete indicator vector. In spectral clustering
this is often done by the k-means algorithm [7], where we first consider the coordinates fi
as points in R and cluster them accordingly into two clusters C,C. Then we finalize the
clustering by the following heuristic:{

vi ∈ A if fi ∈ C

vi ∈ A if fi ∈ C

We have now obtained a solution to the unnormalized spectral clustering problem, for
k = 2. We will now generalize this for arbitrary k, while falling back on the calculations
we already made for k = 2.

Solution for arbitrary k

For an arbitrary number of clusters k, the goal of spectral clustering is to find a partition of
the vertex set V into k sets A1, ..., Ak that minimizes the weights between distinct clusters:

min
A1,...,Ak⊂V

RatioCut(A1, ..., Ak) (6)

Now, instead of introducing a single indicator vector f , we will define k indicator vectors
hj = (h1,j , ..., hN,j)

′ by

hi,j =

{
1/
√

|Aj | if vi ∈ Aj

0 otherwise
(i = 1, ..., N ; j = 1, ..., k) (7)

Then, we construct a matrix X ∈ RN×k by setting the k indicator vectors as its columns:
H = (h1, ..., hk). Since each vertex vi can only be in one subset Aj , the dot product of

7

two distinct indicator vectors will always be equal to zero. This means that all the hj are
orthogonal to each other. We also show that the squared norm of each indicator vector
equals one:

||hj ||2 =
∑
j∈Aj

1

|Aj |
= |Aj | ·

1

|Aj |
= 1

Since we proved that all indicator vectors hj are orthogonal to each other and all have
unit length, we can conclude that all hj are orthonormal to each other. This implies that
matrix X is also orthonormal, meaning XTX = I. Similar to the calculations for the case
that k = 2, we can derive that

h′iLhi =
cut(Ai, Ai)

|Ai|
. (8)

Focusing on the left side of Equation (8), using the structure of X we can state that it is
equal to the (i, i)th element of XTLX: h′iLhi = (XTLX)ii. Combining these two findings,
we can reformulate the RatioCut as follows:

RatioCut(A1, ..., Ak)
def
=

k∑
i=1

Cut(Ai, Ai)

|Ai|
=

k∑
i=1

h′iLhi =

k∑
i=1

(XTLX)ii = Tr(XTLX)

The original minimization problem of Equation (6), can be rewritten as a trace minimiza-
tion problem.

min
A1,...,Ak

Tr(XTLX) s.t. XTX = I, X defined as in (7)

Now, similar to the relaxation of the case where k = 2, we transform this discrete mini-
mization problem to a continuous problem by allowing matrix X to take real values. We
now ended up at the standard form of an unnormalized spectral clustering problem for
arbitrary k:

min
X∈RN×d

Tr(XTLX) s.t. XTX = I

To find the solution matrix X, we apply the same approach as for k = 2. The Rayleigh-Ritz
theorem tells us to set the smallest k eigenvectors of L as columns for matrix X. Then we
apply the k-means algorithm to the rows of X and we end up with the discrete partition
of graph G.

This concludes the complete mathematical background of unnormalized spectral clustering.

2.1.4 Normalized minimization problem

Now that we have found matrix X using the unnormalized Laplacian, we already have a fair
approximation to the solution of the spectral clustering problem. However, this solution
only focuses on minimizing the weights between distinct clusters, while concentrating on
maximizing the weights within clusters can be a good addition to the optimization problem.
This can be achieved by using a normalized Laplacian. These are more robust to variations

8

in graph structures and vertex degrees. The two most popular normalized Laplacians are
the symmetric Laplacian Lsym [9] and the random walk Laplacian Lrw [12]. We have
implemented both Laplacians, but we will only state the altered optimization problem
with Lrw here.
The random walk normalized Laplacian is defined in the following way:

Lrw = D−1L

Using this new definition, the optimization problem of Equation (1) can be reformulated
to the following, where L = D −W :

min
X∈RN×d

Tr(XTLX)

s.t. XTDX = I
(9)

The derivation of this can be found in [6].

The strategy to finding the solution matrix X ∈ RN×k is similar to the approach explained
in Section 2.1.2, with as only difference that X should consist of the first k eigenvectors of
Lrw as columns, instead of L.

2.1.5 Complexity of spectral clustering

One of the biggest bottlenecks of spectral clustering is its complexity. While the technique
consists of multiple computational steps, such as constructing the graph Laplacian L and
clustering, the eigendecomposition of the graph Laplacian is the most computationally
intensive step. This involves finding the eigenvalues and corresponding eigenvectors of the
Laplacian. For a dense N ×N matrix, the eigendecomposition typically has a complexity
of O(N3) [3], which dominates the complexity of spectral clustering. When dealing with
large datasets, this can get expensive really fast.

2.2 Random forest-based similarity measure

2.2.1 Similarity measure RatioRF

As similarity measure we chose the relatively newly proposed measure RatioRF [2] for
calculating the similarity matrix. We will explain this measure using an example. Imagine
a decision tree T , where each node represents a binary test θ that either results in a ’yes’
(left) or a ’no’ (right). To obtain a similarity value for data points x and y, we will send
both objects to traverse through the same decision tree, tracking both paths they take. If
x and y (would) have the same result on a certain test in the tree, we color the node green.
Similarly, we color a node red if the data points do not agree on a test. See Figure 1 for
a decision tree where data points x and y have travelled through. Now we will define the
decision tree similarity measure RatioDT as the ratio of the number of tests in the paths
on which they agree to the total number of tests encountered by both data points. The
higher the value of RatioDT (x, y), the higher the similarity between data points x and y.
The mathematical formulation is stated below:

RatioDT (x, y) =
|X∩̇Y |

|X∩̇Y |+ |X−̇Y |+ |Y −̇X|

X and Y represent the feature sets of data points x and y, respectively. These sets consist

9

of the test results obtained along the path from the root of tree T to the leaf node where
the respective data point resides. |X∩̇Y | is the set of test results on which x and y agree,
among the test results in the union of their feature sets. |X−̇Y | is the set of test results
of x that y disagrees with.

Figure 1: Paths of data points x, y
in decision tree T with binary tests θi

Going back to Figure 1, we see that x
and y agree on 5 tests, also counting the
tests that only one of them came across,
so |X∩̇Y | = 5. Data points x and y each
disagree with each other in two tests along
their respective paths, making |X−̇Y | =
|Y −̇X| = 2. Using this information, we can
thus conclude that RatioDT = 5

5+2+2 = 5
9 .

This example showcases the decision tree
similarity measure RatioDT based on a sin-
gle tree T . Now imagine we have a random
forest, consisting of multiple decision trees
T1, ..., Tn. We can easily extend RatioDT
to a random forest-based measure RatioRF
by averaging over the n decision trees:

RatioRF (x, y) =
1

n

n∑
t=1

RatioDTt(x, y)

A more detailed explanation of the similarity measures RatioDT and RatioRF can be
found in [2].

2.2.2 Type of decision tree used in random forest

To calculate the similarity measure RatioRF , we need a trained random forest consist-
ing of trained decision trees. The paper that introduced this similarity measure [2] used
binary trees to make a random forest. While binary trees are a common option for this,
we propose the utilization of extremely randomized trees. We will shortly state the main
difference between the two and highlight the advantages of extremely randomizes trees.
For a more elaborate explanation of random forests and decision trees, we refer to [13].

The main difference between the two types of decision trees lies in the used split cri-
terion. Binary trees try to find the optimal split for every node. It achieves this by
searching through all features and their possible thresholds and selecting the best feature
and threshold, based on a certain metric that quantifies the homogeneity of clusters within
the resulting splits. Commonly used metrics are information gain and the Gini criterion.
While this leads to accurate models, it is also computationally expensive since it does
an intensive search at each node. Extremely randomized trees do not search for the op-
timal split. They introduce additional randomness by selecting features and thresholds
randomly. This reduces overfitting, because in the ensemble of a random forest it implies
more diverse and less correlated trees. Using extremely randomized trees also reduces the
computationally efficiency greatly, which makes it more suitable for dense large datasets.

10

2.3 Spectral clustering using the Locally Linear Landmark approach

As we saw in Section 2.1.5, the computational efficiency of spectral clustering is limited
when dealing with large datasets. One way to reduce this complexity is to convert the orig-
inal optimization problem to a reduced spectral clustering problem, so that we are dealing
with smaller matrices. A technique that achieves this is the Locally Linear Landmarks
(LLL) approach, first introduced by M. Vladymyrov and M. À . Carreira-Perpiñàn in [19]
for manifold learning.

2.3.1 Reduced spectral clustering problem

Before we dive into LLL, we shortly look back at the original spectral clustering problem
with the normalized Laplacian Lrw. The optimization problem we are trying to solve on
dataset YN×d = (y1, ..., yN) was as follows:

min
X∈RN×k

Tr(XTLX)

s.t. XTDX = I

LLL aims to reformulate this problem to a reduced problem, meaning that the eigende-
composition in the process will be done on smaller matrices such that it is computationally
more efficient.

It achieves this by introducing landmarks ỸL×d = (ỹ1, ..., ỹL) ⊂ Y . Landmarks are ran-
domly selected data points that will be used to map the original data to a lower-dimensional
space. Each data point yi will be represented as a linear combination of the KZ nearest
landmarks. To be able to make this projection, we first need to construct the projection
matrix Z ∈ RL×N . This matrix has as its rows the L << N landmarks Ỹ and as its
columns the N data points Y . Its elements are the weights that approximate each data
point as a linear combination of the KZ nearest landmarks. This means that each column
has exactly KZ nonzero elements. This linear mapping can be described by the following
relation:

Y ≈ Ỹ Z (10)

We have chosen to use the Euclidean distance as metric to find the closest landmarks,
since it is computationally efficient. To construct matrix Z, we need to solve the following
minimization problem:

min
Z

||Y − Ỹ Z||2, s.t. 1TZ = 1T

The objection function ||Y − Ỹ Z|| measures the difference between the original data and
the mapped data, which we want to minimize. The constraint ensures that the columns
of the projection matrix Z sum to one, which results in Z becoming translation invari-
ant. This is a standard minimization problem that can be solved using linear least squares.

After constructing projection matrix Z, we can use it to project our data points Y to
a reduced dimensional space Yred, using Yred = Y Z.
The most important assumption of LLL is that the dependence between landmarks and

11

data points in the high-dimensional space, given by Equation (10), is also preserved in the
low-dimensional space:

X ≈ X̃Z (11)

If we substitute this into the original spectral clustering problem we derived in Section
2.1.4, we get the following reduced spectral clustering problem:

2.3.2 Complexity of spectral clustering using LLL

The main goal of applying the Locally Linear Landmark approach is to reduce the com-
plexity of spectral clustering. As we saw in Section 2.1.5, spectral clustering usually has a
complexity of O(N3) when dealing with dense N×N matrices. This was mainly because of
the intensive eigendecomposition of the N ×N Laplacian. The LLL technique reduces this
step to an eigendecomposition of an L× L matrix, where we assume that L << N . This
already reduces the computational cost drastically. However, there are additional com-
putations performed during the LLL approach that do not occur in the original process.
Matrices Z, Ã and B̃ need to be constructed and the final projection done by Equation
(11) also adds to the computational cost. The construction of projection matrix Z is com-
putationally dominated by the construction of the N pointwise Gram matrices G. We will
not go into detail on this matrix, but an explanation can be found in [19]. Because of
the linear relationship between the datapoints and landmarks, G is sparse and it has only
KZ nonzero elements in each row. This leads to a complexity for the construction of the
projection matrix Z of O(NdK2

Z). Each row of matrix G The cost of computing Ã and B̃
is O(KZN

2), since there are (N ×N = N2) elements in the resulting matrix and each ele-
ment required O(KZ) operations. The final projection has a cost of O(N ×L×d), because
it results in a matrix XN×d, where each element required O(L) operations. Combining
these results with the O(L3) complexity due to the eigendecomposition, we end up with
a total complexity of O(KZN

2 +Nd(L+K2
Z) + L3) for spectral clustering with the LLL

approach. This is asymptotically much faster than the single eigendecomposition O(N3)
for general spectral clustering, since we assumed L << N .

2.4 Performance measures

We used two different performance measures to evaluate our clustering results of our spec-
tral clustering implementation, namely the Adjusted Rand Index (ARI) [5] and the purity
measure [8]. We chose these, because they were also used in the RatioRF paper [2] which
makes it suitable to compare results.

2.4.1 Adjusted Rand Index

The Adjusted Rand Index is a measure that quantifies the similarity between two distinct
clusterings. We will use it to evaluate the results between our found clustering and the
true labeling, which we assume to be given. It is a correction of the Rand Index (RI),
which is a basic similarity measure between two clusterings. The difference between them
is that the ARI takes into account that there could also occur some agreement between
two clusterings by chance. So as the name implies, the Adjusted Rand Index adjusts the
Rand Index to also consider this possibility. Its calculation is as follows:

12

Given is a dataset consisting of N data points, and two distinct clusterings C1, C2 of
the dataset, namely the predicted clustering and the true labeling, respectively. We will
first determine the Rand Index by evaluating the clustering of all pairs of data points.
Each pair falls into one of the four following possibilities:

1. True Positive (TP): pairs of data points that are in the same cluster in both the
predicted clustering C1 and the true clustering C2.

2. True Negative (TN): pairs of data points that are in different clusters in both the
predicted clustering C1 and the true clustering C2.

3. False Positive (FP): pairs of data points that are in the same cluster in the predicted
C1, but in different clusters in C2.

4. False Negative (FN): pairs of data points that are in different clusters in C1, while
they are in the same clusters in the true clustering C2..

Then the Rand Index is defined as the ratio of the total number of agreements to the total
number of pairs of datapoints:

RI =
TP + TN

TP + TN + FP + FN

To take the possibility of random agreement into account, we will calculate the expected
value of the Rand Index, E[RI]:

E[RI] =
TP · (TP + FP) + TN · (FN + TN)

(TP + FP + FN + TN)2

Now we have everything we need to calculate the Adjusted Rand Index:

ARI =
RI − E[RI]

1− E[RI]

The ARI value ranges from −1 to 1, where 1 means the two clusterings C1 and C2 com-
pletely agree, 0 means it agrees the same as done by chance, and −1 states that the
clusterings completely disagree, so it is even worse than random.

2.4.2 Purity measure

The purity measure assesses how well data points that truly belong to the same cluster
are actually grouped in the same cluster. We assume we have a found clustering C1 and
a true labeling C2. To calculate the purity measure we look at each found cluster in C1

individually.

Within each cluster we find the true label that is most frequent in that cluster, so this
is the label that most data points in the cluster actually belong to. We assign this label
to the cluster. Then the purity measure is the proportion of data points assigned to the
correct label.

13

A schematic overview of this situation is given in Figure 2. The colours represent the
three distinct clusters that were found in the process of clustering 14 data points. The
objects in the clusters are the data points, where its shape reflects their true label. The
clusters are assigned to the label that is most frequent in the cluster, visualised by the line
going out of the cluster. Now we count all the correctly assigned data points, which for the
red cluster equals 4, for blue 3 and for green also 3. This totals to 10 correctly assigned
data points, which means the purity value of this clustering is equal to 10

14 = 0.71.
The purity value ranges from 0 to 1, with 1 indicating that the clustering has been per-
formed perfectly.

Figure 2: Demonstration of the purity measure

3 Methods

3.1 Python implementation

The paper that introduced the RatioRF similarity measure [2] published the Matlab files
[1] they used for their experiments online. These files include the training of the random
forest to calculate the similarity matrix using RatioRF , the unnormalized and normalized
version of spectral clustering and the Adjusted Rand Index. We downloaded these and
converted all of them to Python, which was an intensive job since all files are integrated
with each other. This choice was made, because Python is open-source and we have
a greater expertise in Python compared to Matlab. We added the purity measure and
implemented the Locally Linear Landmarks approach from scratch. Our Python files can
be found on https://gist.github.com/zoevanh.

3.2 Datasets

To test our implementations we used 9 different datasets, which are all available on the
UCI ML Repository [17]. These datasets are often used to test classification methods.
They differ in number of objects, number of features and number of clusters. An overview
of the datasets is given in Table 1.

The datasets all have different formats and structures, so we had to perform some data
preparation steps for each dataset. This consisted mainly of splitting the data points from
their true labels and deleting data points that contained missing values. Since spectral
clustering and our use of random forest are unsupervised techniques, the column contain-
ing all labels had to be separated. These labels will be used in the end to evaluate our
clustering results.

14

https://gist.github.com/zoevanh

Table 1: Details of the datasets that we used in testing

Name #objects #features #clusters

Iris 150 4 3

Wine 178 13 3

Glass 214 9 4

WBC 683 9 2

BTissue 106 9 6

Heart 297 13 2

Lung 32 54 3

Parkinsons 195 22 2

Pima 768 8 2

3.3 Experimental parameters

In Section 4 we will present our found results. Since we are working with Python files
that were mainly converted from Matlab files associated with [2], we will first attempt
to reproduce their spectral clustering results using binary trees as close as possible. This
will confirm that the code we are using is at least producing similar results, which makes
it more reliable to build upon further. Then we will generate results using extremely
randomized trees in stead of binary trees. Besides the mentioned performance measures,
we will also look at the runtime of the algorithms. This way we can observe whether the
complexity indeed reduced. Lastly, we will present our results with the Locally Linear
Landmarks approach. In the overall process there are numerous parameters that need to
be determined beforehand. We will go through them in the following sections.

3.3.1 Spectral clustering results using binary trees

Our first goal is to reproduce the results presented in [2] as close as possible, since we used
their code as a starting point for our implementation. This implies that we will mimic
their simulation in terms of parameters.

To train their random forest they used binary trees, which are built by randomly selecting
80 percent of the training set data. They experimented with different forest sizes, namely
50, 100 and 200, and the proportion of features to allow during the selection of the optimal
split, 0.5 or 1. This results in 6 different forest parametrizations. For the selection of the
best split the classical Gini criterion was used. They repeated every experiment 30 times
on 12 datasets, using 4 different spectral clustering algorithms. This leads to averaged
results over 720 (6× 30× 4) experiments for each dataset.

Unfortunately we can not perform all these experiments for each dataset, as we have
time restrictions. We decided to settle with 1 forest parametrization, building 50 binary
trees and using half of the features during the optimal split selection. This enhances the
randomization inside each tree. We also built the trees using 80 percent of the training

15

set data and we employed the Gini criterion. We repeated each experiment 30 times, but
only with one spectral clustering method that uses the normalized symmetric Laplacian
[9]. This eventually comes out to 30 (1× 30× 1) experiments for each of our datasets, for
which the results will be aggregated to averaged accuracies.

3.3.2 Spectral clustering results using extremely randomized trees

After using binary trees to build our random forests, we will transfer to the use of extremely
randomized trees. We will again use 1 forest parametrization, building 50 trees and using
half of the features during the random split selection. The trees are built with all the data
points, instead of 80 percent as for the binary trees. We repeat each experiment 30 times
using only the normalized symmetric Laplacian method for spectral clustering. This comes
out to 30 (1 × 30 × 1) experiments for each of our datasets, for which the results will be
aggregated to averaged accuracies.

3.3.3 Spectral clustering results with the LLL approach

To generate our results of spectral clustering with the Linear Landmarks Approach we will
keep the parameters that are needed to train the extremely randomized forest the same as
presented in Section 3.3.2.

The LLL approach does also include some choices in parameters, namely the number
of landmarks L used to map the data to a lower-dimensional space and the number of
landmarks KZ used to build a linear reconstruction of each data point.

The main goal of Locally Linear Landmarks revolves around the choice of the number
of landmarks L. The idea is to make L as small as possible, especially keeping it signifi-
cantly smaller than the total number of datapoints N . Conversely, increasing the number
of landmarks increases the accuracy of the approximation. The choice of L determines
the dimension of our mapped data points, which directly impacts the matrix on which
the eigendecomposition will be performed. Due to time constraints, we did not do an
optimization on the number of landmarks for each dataset. Instead, we settled for a fixed
value of L equal to 50 percent of the number of datapoints, L = 0.5 ·N . In a related study
[18] experiments were repeated 5 times varying the numbre of landmarks, logarithmically
spaced from L = 8 to L = N − 10. Given the considerable range, we deemed our approach
of setting L = 0.3 ·N to be sufficient for our research.

Each data point is expressed as a linear combination of the nearest KZ landmarks. Follow-
ing the approach in [19] we decided to keep KZ consistent for all the data points. Due to
time restrictions, we did not perform an optimization for KZ . However, in the study of [19]
they concluded that in the context of manifold learning the value of KZ should fall within
the range of [d̂+1, d+1], where d̂ is the intrinsic local dimensionality of the manifold and d
is the number of features. Although our task differs from manifold learning, we decided to
go for a value of KZ = 0.8 · d, which aligns with this interval. Since this approach was the
only one found in the literature, we decided it would be sufficient enough for our research.

16

4 Results

4.1 Averaged results using binary trees

The results of spectral clustering where binary trees are used to calculate the similarity
matrix, are presented in Table 2 in terms of the Adjusted Rand Index and the purity mea-
sure. The second and fourth columns contain the results that were presented in the paper
that introduced the similarity measure RatioRF [2]. The third and fifth columns contain
the results of our implementation. This makes it simple to compare results. In Section
3.3.1 the parameters that are used to generate these results can be found. The results are
averaged over 720 experiments for the results of [2] and averaged over 30 experiments for
our results.

Table 2: Spectral clustering results using binary trees, averaged over multiple
experiments

ARI Purity

Name RatioRF
paper [2]

Our re-
search

RatioRF
paper [2]

Our re-
search

Iris 0.707 0.721 0.878 0.889

Wine 0.743 0.806 0.899 0.933

Glass 0.175 0.205 0.558 0.600

WBC 0.883 0.892 0.970 0.973

BTissue 0.379 0.373 0.597 0.597

Heart 0.252 0.274 0.748 0.762

Lung 0.113 0.096 0.530 0.527

Parkinsons 0.154 0.121 0.754 0.754

Pima 0.066 0.057 0.659 0.657

4.2 Averaged results using extremely randomized trees

In Table 3 and Table 4, we present our main spectral clustering results. Table 3 compares
the results between the use of binary trees and extremely randomized trees for calculating
the similarity matrix, in terms of the Adjusted Rand Index and the purity measure. Table 4
presents the comparison of the runtime of the spectral clustering algorithm between the use
of the different decision trees. In both tables the results are averaged over 30 experiments.
The used parameters can be found in Section 3.3.2.

4.3 Averaged results with the Locally Linear Landmarks approach

Table 5 and Table 6 cover the spectral clustering results with the Locally Linear Land-
marks approach implemented. We will compare it with the results of our general spectral
clustering method, which were already presented in the previous section. Table 5 shows the
spectral clustering results in terms of the Adjusted Rand Index and the purity measure.

17

Table 3: Averaged spectral clustering results using binary trees or extremely ran-
domized trees

ARI Purity

Name Binary ExtTrees Binary ExtTrees

Iris 0.721 0.684 0.888 0.871

Wine 0.806 0.844 0.933 0.948

Glass 0.205 0.178 0.600 0.581

WBC 0.892 0.817 0.973 0.952

BTissue 0.373 0.385 0.597 0.620

Heart 0.274 0.405 0.762 0.819

Lung 0.096 0.184 0.527 0.582

Parkinsons 0.121 0.152 0.754 0.754

Pima 0.057 0.054 0.657 0.651

Table 4: Averaged runtime of the spectral clustering algorithm using binary trees
or extremely randomized trees

Time in seconds

Name Binary Ext

Iris 14.46 3.35

Wine 101.72 4.45

Glass 87.87 5.74

WBC 64.32 47.71

BTissue 49.20 2.15

Heart 29.32 10.65

Lung 2.98 0.68

Parkinsons 133.89 5.06

Pima 120.66 101.73

Table 6 gives the comparison of the runtime of the algorithm with or without the LLL
approach implemented. Both tables contain averaged results over 30 experiments. The
parameters that were used to generate these results are presented in Section 3.3.3.

18

Table 5: Averaged spectral clustering results with or without the Locally Linear
Landmarks approach

ARI Purity

Name General SC LLL SC General SC LLL SC

Iris 0.684 0.505 0.871 0.667

Wine 0.844 0.555 0.948 0.775

Glass 0.178 0.0160 0.581 0.381

WBC 0.817 0.239 0.952 0.743

BTissue 0.385 0.157 0.620 0.388

Heart 0.405 0.256 0.819 0.729

Lung 0.184 0.138 0.582 0.556

Parkinsons 0.152 -0.009 0.754 0.752

Pima 0.054 0.004 0.651 0.653

Table 6: Averaged runtime of the spectral clustering algorithm with or without
the Locally Linear Landmarks approach

Time in seconds

Name General SC LLL SC

Iris 3.35 1.22

Wine 4.45 1.58

Glass 5.74 2.10

WBC 47.71 19.57

BTissue 2.15 0.79

Heart 10.65 3.88

Lung 0.68 0.30

Parkinsons 5.06 2.07

Pima 101.73 42.64

5 Discussion and recommendations

In this section we will explain the results that were presented in Section 4. We will also
go into the limitations of our research and propose recommendations for further research.

19

5.1 Analysis of our results

Our first goal was to attempt to reproduce the results of [2], that used binary trees for
calculating the similarity matrix, as close as possible with our Python implementation.
This would indicate whether our implementation is working as expected, setting their re-
sults as a basis, before expanding our research to explore more techniques with spectral
clustering. In Table 2 our results are represented next to their results. It can be easily
observed that our results closely resemble those presented in [2], despite the fact that our
results are averaged over just 30 experiments, compared to their 720 experiments. The
biggest difference in results in terms of the Adjusted Rand Index and the purity measure
is 0.063 and 0.042, respectively, and these are both in favor of our research. From now on
we will thus assume that our implementation of the general spectral clustering algorithm
with RatioRF as similarity measure is performing effectively and is reliable.

Next, we tried to replace binary trees with extremely randomized trees to construct the
similarity matrix. The results can be found in Section 4.2. We expected a significant
reduction in runtime, since it introduces more randomness and it avoids the need for an
exhaustive search to find the optimal split. Since this additional randomness also benefits
overfitting and increases robustness to noisy data, we expected no serious reduction in
performance. Our results confirm our expectations of both the runtime and performance.
Table 4 shows that for all the 9 datasets the computational cost significantly reduced in
terms of runtime when extremely randomized trees were used. In Table 3 it can be seen that
for only 4 datasets there is a slight reduction in performance, with 0.075 and 0.021 being
the largest differences in ARI and purity, respectively. For 5 datasets the runtime reduced
with the use of extremely randomized trees, while its performance increased. And for 3 of
these datasets, the runtime was reduced by a factor of ∼ 23. This brings us to our conclu-
sion that the use of extremely randomized trees is a very good alternative when used for
calculating similarity measures based on decision trees in the context of spectral clustering.

Lastly we implemented the Locally Linear Landmarks [19] approach. Since it is a di-
mensionality reduction technique, it is expected that the runtime of the algorithm would
reduce considerably. As the approach yields an approximate solution to the spectral clus-
tering problem, it should not be unexpected that there will be some trade-off happening
in terms of performance. Our results with the use of the LLL approach are presented in
4.3. Again, our results mostly confirm our expectations. First looking at the runtimes,
which can be found in Table 6, it can be observed that for all the datasets the runtime
significantly decreased with a factor of more than 2. In Table 5 the performance of spectral
clustering with the LLL approach is presented. There is indeed a reduction in performance
visible when the LLL method is employed. Especially the Adjusted Rand Indices expe-
rienced a fair reduction. Dataset WBC, which had an ARI of 0.817 with the general
algorithm, now has an ARI equal to 0.239, which is significantly worse. The Parkinsons
dataset, which although it already had a poor ARI, now has a negative ARI, indicating
that the clustering is even worse than by random chance. The purity measure also reflects
a reduction in performance, but considerably less. Our results for the ARI are not as
expected unfortunately, which indicates potential limitations or inefficiencies in our LLL
implementation. These will be elaborated in the following section.

20

5.2 Limitations and recommendations

There are numerous important factors in the LLL approach that could have a significant
impact on the performance and runtime if not carefully considered. For instance, both the
number of landmarks L and the number of landmarks KZ used to express data points as
a linear combination play crucial roles in the LLL approach. If L and KZ are too small,
there may be situations where there are not enough landmarks close to express a data
point as a local linear combination. However, the computational cost grows as L and KZ

get bigger. This emphasizes the importance of carefully selecting these parameters. We
decided to settle with fixed values, both based on literature sources that did not completely
align in objective. It could be that we settled for too little KZ . Taking these perspectives
into account, the optimization of these variables would definitely be an interesting topic
for further research.

Another aspect of the LLL approach that deserves some more consideration is the is the
selection of landmarks location. We decided to just select L landmarks randomly, which
enhances the randomness in the algorithm and keeps the computational cost low. However,
with this approach situations can arise where the landmarks are non-uniformly distributed,
resulting in a poor representation of the higher-dimensional dataset. In [19] an interesting
alternative method that attempts to make the landmark location as close to uniform as
possible is proposed. This method involves randomly selecting L+M landmarks, finding
M pairs of closest landmarks and subsequently discarding one landmark from each pair.
Another straightforward validation step is to evaluate the location of landmarks after they
are randomly selected. This can be done by numerous techniques, such as visual inspection,
analyzing the standard deviation of the pairwise distances or examining the density of data
points surrounding each landmarks. If these evaluations indicate a poor representation of
the original dataset, one could consider revisiting the landmarks selection step.

In our research we used the euclidean distance as a metric to calculate the KZ nearest
landmarks for each data point. Euclidean distance is effective in capturing linear relations
and its computational cost is low. However, it is sensitive to scale and outliers. Exploring
alternative distance metrics that take the specific characteristics of the data into account
could be an interesting topic for further research.

The fact that there is such a big difference in the ARI and the purity measure for the
LLL approach results, is not that uncommon. The ARI considers all pairs of data points
and their cluster labels, including outliers and noisy data, while the purity measure only
considers the majority class within each cluster. This makes the ARI less robust to outliers,
which can have an impact on the performance. Some of our used datasets, like Parkinsons
and WBC have an imbalanced class distribution, meaning that one class dominates the
others. This will always lead to better purity results. This same theory is valid for the
situation where there are only 2 clusters, which was the case for 4 out of 9 of our datasets.
In these cases the purity measure may not provide a thorough assessment of clustering
quality, as it tends to favor clusters with dominant class labels. Further research may con-
sider exploring more performance measures to evaluate the clustering results. For instance,
the Silhouette Score [11] and the Davies-Bouldin Index [10] would be good alternatives to
explore, because they are both more suited for datasets with a small number of clusters.

A general limitation of our research is the limited number of experiments conducted to
derive our averaged results, due to our time constraint. For each dataset we executed 30

21

experiments, using only a single forest parametrization and 1 spectral clustering method.
To get more accurate and reliable results, exploring more forest parametrizations would be
a good starting point for further research. Finally, our experiments were only conducted
on small to moderate datasets. A valuable addition to extend our research would be to
conduct experiments on significantly larger datasets to evaluate how our implementation
would perform under different scales.

6 Conclusion

To conclude this research, let us briefly come back to our research question:

“To what extent can the computational efficiency of Spectral Clustering be enhanced by
using Extremely Randomized trees to calculate the similarity matrix and by implementing
the Locally Linear Landmarks approach?"

Focusing first on the use of extremely randomized trees instead of binary trees to calculate
the similarity matrix, we have shown that this significantly reduces the computational cost
of spectral clustering in terms of runtime, while still maintaining a good performance. All
datasets that we used in our experiments show a serious reduction in runtime, with only
4 out of 9 datasets showing a slight reduction in performance. For 5 datasets the runtime
reduced, while its performance increased in terms of the Adjusted Rand Index and the
purity. For 3 of these datasets, the runtime was reduced by a factor of ∼ 23. We can thus
conclude that extremely randomized trees are a good alternative when using random forest
to calculate pairwise similarities in the context of spectral clustering.

As for our implementation of the Locally Linear Landmarks approach, we definitely showed
its potential as a dimensionality reduction technique in terms of runtime. While it demon-
strated a reduction in runtime by a minimum of 50% in all datasets, our results also
revealed a notable trade-off in terms of performance. Especially for most of the Adjusted
Rand Indices there was a significant decrease visible. Our purity results were decent, con-
sidering the fact that the solution obtained through the LLL approach is approximate.
We still advocate for the LLL approach as a good alternative for dimensional reduction
techniques, but we recommend further research efforts towards optimizing its parameters.

A result worth mentioning, although not directly tied to our research question, is our
successful Python implementation of the general spectral clustering algorithm. This im-
plementation incorporates a random forest for calculating the similarity matrix and offers
the option to use the Linear Locally Landmarks approach. Since Python is an open-source
platform, our implementation can easily be built upon to explore more of spectral cluster-
ing. This contribution facilitates further research and advancements in the field of spectral
clustering, growing our understanding and potential applications of this algorithm.

22

7 Bibliography

References

[1] Manuele Bicego. Code and Datasets for Manuele Bicego’s Publications. http://
profs.sci.univr.it/~bicego/code.html. Accessed: <insert date accessed>. 2023.

[2] Manuele Bicego, Ferdinando Cicalese, and Antonella Mensi. “RatioRF: a novel mea-
sure for Random Forest clustering based on the Tversky’s Ratio model”. In: IEEE
Transactions on Knowledge and Data Engineering (2021). My implementation of RF,
pp. 1–1. issn: 1041-4347. doi: 10.1109/TKDE.2021.3086147.

[3] Gene H. Golub and Charles F. Van Loan. Matrix Computations. 4th. Johns Hopkins
University Press, 2013. isbn: 978-1421407944.

[4] L. Hagen and A.B. Kahng. “New spectral methods for ratio cut partitioning and
clustering”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 11.9 (1992), pp. 1074–1085. doi: 10.1109/43.159993.

[5] Lawrence Hubert and Phipps Arabie. “Comparing partitions”. In: Journal of Classi-
fication 2 (1 Dec. 1985), pp. 193–218. issn: 0176-4268. doi: 10.1007/BF01908075.

[6] Ulrike von Luxburg. “A Tutorial on Spectral Clustering”. In: (Nov. 2007).

[7] J. MacQueen. “Some methods for classification and analysis of multivariate observa-
tions”. In: 1967. url: https://api.semanticscholar.org/CorpusID:6278891.

[8] C. Manning, P. Raghavan, and H. Schutze. Introduction to Information Retrieval.
2008.

[9] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. “On spectral clustering: analysis
and an algorithm”. In: Proceedings of the 14th International Conference on Neural
Information Processing Systems: Natural and Synthetic. NIPS’01. Vancouver, British
Columbia, Canada: MIT Press, 2001, pp. 849–856. doi: 10.5555/2980539.2980649.

[10] Frédéric Ros, Rabia Riad, and Serge Guillaume. “PDBI: A partitioning Davies-
Bouldin index for clustering evaluation”. In: Neurocomputing 528 (2023), pp. 178–199.
issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2023.01.043. url:
https://www.sciencedirect.com/science/article/pii/S0925231223000528.

[11] Ketan Rajshekhar Shahapure and Charles Nicholas. “Cluster Quality Analysis Using
Silhouette Score”. In: 2020 IEEE 7th International Conference on Data Science and
Advanced Analytics (DSAA). 2020, pp. 747–748. doi: 10.1109/DSAA49011.2020.
00096.

[12] Jianbo Shi and J. Malik. “Normalized cuts and image segmentation”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 22 (8 2000), pp. 888–905. issn:
01628828. doi: 10.1109/34.868688.

[13] YY Song and Y Lu. “Decision tree methods: applications for classification and pre-
diction”. In: Shanghai Archives of Psychiatry 27.2 (2015), pp. 130–135. doi: 10.
11919/j.issn.1002-0829.215044.

[14] Mechthild Stoer and Frank Wagner. “A simple min-cut algorithm”. In: J. ACM 44.4
(July 1997), pp. 585–591. issn: 0004-5411. doi: 10.1145/263867.263872. url:
https://doi.org/10.1145/263867.263872.

[15] Robert L. Thorndike. “Who belongs in the family?” In: Psychometrika 18 (4 Dec.
1953), pp. 267–276. issn: 0033-3123. doi: 10.1007/BF02289263.

23

http://profs.sci.univr.it/~bicego/code.html
http://profs.sci.univr.it/~bicego/code.html
https://doi.org/10.1109/TKDE.2021.3086147
https://doi.org/10.1109/43.159993
https://doi.org/10.1007/BF01908075
https://api.semanticscholar.org/CorpusID:6278891
https://doi.org/10.5555/2980539.2980649
https://doi.org/https://doi.org/10.1016/j.neucom.2023.01.043
https://www.sciencedirect.com/science/article/pii/S0925231223000528
https://doi.org/10.1109/DSAA49011.2020.00096
https://doi.org/10.1109/DSAA49011.2020.00096
https://doi.org/10.1109/34.868688
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.11919/j.issn.1002-0829.215044
https://doi.org/10.1145/263867.263872
https://doi.org/10.1145/263867.263872
https://doi.org/10.1007/BF02289263

[16] Robert Tibshirani, Guenther Walther, and Trevor Hastie. “Estimating the Number
of Clusters in a Data Set Via the Gap Statistic”. In: Journal of the Royal Statistical
Society Series B: Statistical Methodology 63.2 (Jan. 2002), pp. 411–423. issn: 1369-
7412. doi: 10.1111/1467- 9868.00293. eprint: https://academic.oup.com/
jrsssb/article- pdf/63/2/411/49590410/jrsssb_63_2_411.pdf. url:
https://doi.org/10.1111/1467-9868.00293.

[17] UCI Machine Learning Repository. UCI Machine Learning Repository. http : / /
archive.ics.uci.edu/ml. Accessed: <Access Date>.

[18] Max Vladymyrov and Miguel Á. Carreira-Perpiñán. “Fast, accurate spectral cluster-
ing using locally linear landmarks”. In: 2017 International Joint Conference on Neural
Networks (IJCNN). 2017, pp. 3870–3879. doi: 10.1109/IJCNN.2017.7966344.

[19] Max Vladymyrov and Miguel Á. Carreira-Perpiñán. “Locally Linear Landmarks for
Large-Scale Manifold Learning”. In: Machine Learning and Knowledge Discovery in
Databases. Ed. by Hendrik Blockeel et al. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 256–271. isbn: 978-3-642-40994-3. doi: 10.1007/978-3-642-40994-
3_17.

24

https://doi.org/10.1111/1467-9868.00293
https://academic.oup.com/jrsssb/article-pdf/63/2/411/49590410/jrsssb_63_2_411.pdf
https://academic.oup.com/jrsssb/article-pdf/63/2/411/49590410/jrsssb_63_2_411.pdf
https://doi.org/10.1111/1467-9868.00293
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/IJCNN.2017.7966344
https://doi.org/10.1007/978-3-642-40994-3_17
https://doi.org/10.1007/978-3-642-40994-3_17

8 Appendices

8.1 Mathematics behind general spectral clustering

Proof of proposition of L

For every vector f ∈ RN we have f ′Lf = 1
2

∑n
i,j=1wij(fi − fj)

2.

Proof

f ′Lf = f ′Df − f ′Wf =

n∑
i=1

dif
2
i −

n∑
i,j=1

fifjwij

=
1

2

 n∑
i=1

dif
2
i − 2

n∑
i,j=1

fifjwij +

n∑
i=1

dif
2
i


=

1

2

n∑
i,j=1

wij(fi − fj)
2. ■

(12)

Derivation of relation between proposition of L and RatioCut

We will first need to derive the following statements before we can do the whole derivation
of Equation 4:

Cut(A,A)
def
=

1

2

2∑
i=1

W (Ai, Ai)

=
1

2
W (A1, A1) +

1

2
W (A2, A2)

=
1

2
W (A1, A2) +

1

2
W (A2, A1)

= W (A1, A2) = W (A,A)

=
∑

i∈A,j∈A

wi,j

(13)

RatioCut(A,A)
def
=

2∑
i=1

Cut(Ai, Ai)

|Ai|

=
Cut(A1, A1)

|A1|
+

Cut(A2, A2)

|A2|

=
Cut(A,A)

|A|
+

Cut(A,A)
|A|

= Cut(A,A)

(
1

|A|
+

1

|A|

)
(14)

25

Using Equation (13) and Equation (14), we can do the following derivation:

f ′Lf
Eq.12
=

1

2

N∑
i,j=1

wij(fi − fj)
2

=
1

2

∑
i∈A,j∈A

wij

√
|A|
|A|

+

√
|A|
|A|

2

+
1

2

∑
i∈A,j∈A

wij

−

√
|A|
|A|

+

√
|A|
|A|

2

Eq.13
=

1

2
Cut(A,A)

√
|A|
|A|

+

√
|A|
|A|

2

+
1

2
Cut(A,A)

−

√
|A|
|A|

+

√
|A|
|A|

2

=
1

2
Cut(A,A)

(
|A|
|A|

+
|A|
|A|

+ 2

)
+

1

2
Cut(A,A)

(
|A|
|A|

+
|A|
|A|

+ 2

)
= Cut(A,A)

(
|A|
|A|

+
|A|
|A|

+ 2

)
= Cut(A,A)

(
|A|
|A|

+
|A|
|A|

+
|A|
|A|

+
|A|
|A|

)
= Cut(A,A)

(
|A|+ |A|

|A|
+

|A|+ |A|
|A|

)
= Cut(A,A)

(
|V |
|A|

+
|V |
|A|

)
= |V | · Cut(A,A)

(
1

|A|
+

1

|A|

)
Eq.14
= |V | · RatioCut(A,A)

8.2 Derivation of general spectral clustering to LLL problem

min
X∈RN×d

Tr(XLXT), s.t. XDXT = I

↓ X = X̃Z

min
X̃∈RL×d

Tr(X̃ZL(X̃Z)T), s.t. X̃ZD(X̃Z)T = I

↓
min

X̃∈RL×d
Tr(X̃(ZLZT)X̃T), s.t. X̃(ZDZT)X̃T = I

↓
min

X̃∈RL×d
Tr(X̃ÃX̃T), s.t. X̃B̃X̃T = I

with L× L reduced similarity matrices Ã = ZLZT and B̃ = ZDZT .

26

	Introduction
	Theoretical Background
	General spectral clustering problem
	Input variables
	Unnormalized minimization problem
	Mathematical foundation of spectral clustering
	Normalized minimization problem
	Complexity of spectral clustering

	Random forest-based similarity measure
	Similarity measure RatioRF
	Type of decision tree used in random forest

	Spectral clustering using the Locally Linear Landmark approach
	Reduced spectral clustering problem
	Complexity of spectral clustering using LLL

	Performance measures
	Adjusted Rand Index
	Purity measure

	Methods
	Python implementation
	Datasets
	Experimental parameters
	Spectral clustering results using binary trees
	Spectral clustering results using extremely randomized trees
	Spectral clustering results with the LLL approach

	Results
	Averaged results using binary trees
	Averaged results using extremely randomized trees
	Averaged results with the Locally Linear Landmarks approach

	Discussion and recommendations
	Analysis of our results
	Limitations and recommendations

	Conclusion
	Bibliography
	Appendices
	Mathematics behind general spectral clustering
	Derivation of general spectral clustering to LLL problem

