BSc Thesis Applied Mathematics and
Technical Computer Science

A Simplified Study on
Accelerated Particle Simulation
Using the Fast Multipole
Method

Mayank Thakur

Supervisor: C.Pérez Arancibia & H. Moritz

August, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

UNIVERSITY OF TWENTE.

Preface

Firstly, I would like to express my heartfelt gratitude to both of my supervisors, Dr. Mor-
ritz and Dr. Pérez Arancibia. Their guidance and support were instrumental in ensuring
the success of my project and keeping me on the right track. They both ensured that the
mathematical and programming aspects were thoroughly integrated, acknowledging my
status as a double degree student. Writing this thesis was a transformative experience,
imparting valuable skills that extend beyond the thesis material and will stay with me
throughout my life.

Additionally, I owe my deepest appreciation to my parents. Without their unwa-
vering support and encouragement, I would not have been able to reach this milestone.
Their belief in me has been a constant source of strength. I am also grateful to my friends,
who stood by me during challenging times and provided the emotional support and
companionship that kept my spirits high. Their presence made the difficult moments
more bearable and their encouragement kept me motivated throughout this journey.

A Simplified Study on Accelerated Particle Simulation
Using the Fast Multipole Method

Mayank Thakur”
August, 2024

Abstract

The Fast Multipole Method (FMM) represents a groundbreaking algorithm in
computational physics, drastically reducing the computational complexity of poten-
tial calculations from O(nm) to O(n + m), for a system with n sources and m target
points. This thesis explores the mathematical foundations and practical implemen-
tation of the FMM for accelerated particle simulations. We begin by formulating the
problem of calculating potentials generated by a set of sources and review the limita-
tions of naive algorithms. Through a detailed examination of the multipole and local
expansions and their associated error bounds and translation operators, we establish
the theoretical underpinnings of the FMM. Our study involves implementing and
testing simplified versions of the FMM, focusing on configurations where sources
and targets are well-separated, thereby avoiding the need for a quadtree data struc-
ture. The results confirm the FMM’s expected linear complexity and its ability to
trade accuracy for speed with high granularity. We also investigate the method’s
performance with randomly distributed particles.

Keywords: Fast Multipole Method, Algorithmic Complexity, Particle Simulation, Com-
putational Physics, Multipole Expansion, Logarithmic Potential

*Email: m.thakur@student.utwente.nl

Contents

1 Introduction 1
1.1 Problem Formulation and Naive Solution 1

1.2 Fast Multipole Method 2

2 Mathematical Background 2
2.1 Multipole Expansion 3
2.2 Moment and Local Expansion of the potential 3
2.3 TranslationOperators. 5

3 Implementation and Complexity Analysis 7
3.1 MomenttoPotential 9
3.1.1 Performance 10

3.2 Moment-to-LocaltoPotential 12
3.2.1 Performance 13

4 Conclusion 16
A Formulas for FMM derivations 19

ii

1 Introduction

1.1 Problem Formulation and Naive Solution

The calculation of the potentials created by a set of sources is a very common problem in
physics and arises in a wide variety of situations. Some of the most notable are within
electromagnetism and celestial mechanics [5, 3]. If there are a large number of objects that
interact with each other by means of a slowly decaying potential, and one would like to
simulate them over time, there is most likely a potential calculation is involved. However,
this problem can be quite difficult to solve using standard algorithms, especially if there
are a large number of objects involved.

In the most general sense, (assuming the potential is well defined and integrable)
the potential is the derivative of the function which describes the net force at a point.
Furthermore, the calculation of the potential can take many forms, but the scope of this
thesis is limited to potentials in two-dimensions that may be calculated using a logarithm.

The following is a formal statement of the kind of problems we consider in this thesis.
Let {g;}7_; C R be a set of sources located at {x;}!_; C C. We consider the numerical
evaluation of the following potential:

n
¢(z) =) gilog(z—xj), z#x,j=1,...,n (1)
j=1

at a set of target point location given by {y,}}"; C C. Such potential calculations arise
in many different fields. In celestial mechanics for instance, the "charge" q; can be inter-
preted as the mass of a planet located at x; = (Rxj, Sx;) € R2. The potential ¢ in (1)
then encodes the gravitational force field produced by a collection of n planets at loca-
tions x; = (Rx;,3x;), j = 1,...,n. Indeed, the gradient V&, where ®(r) = R{¢(z)},
r = (Rz,Sz) € R?, is proportional to gravitational force field at .

Note that, in general, charges and coordinates are expressed using scalars and vectors
in R%2. However, the potential function, which in this case is a logarithm, is harmonic.
Therefore, it can be studied as an analytic function on the complex plane, where the
vectors of R? are represented as complex numbers, and only the real part of the potential
is reported as the potential [7]. In the context of this paper, the actual reported value is
not relevant, which is why we will be working with complex potentials, as is shown in
the Naive algorithm below.

At first glance, even a naive programmer would be able to come up with a simple
algorithm to compute the sum (1). Such an algorithm would look like this:

Algorithm 1 Naive Potential Calculation

Require: {x;} , C C, {g;}I, C R, Sources
Require: {y;}"", C C, Targets

1: potentials < {} > Initialize an empty list for potentials
2: for each target point y; do
3 ¢(y)) <0 > Initialize the potential at y; to 0

4 for each source point x; (x; # y;) do
5 ¢(yj) < ¢(y;) +gilog (y; — xi)
6: end for

7 potentials[j] < ¢(y;)

8: end for

It easy to see that this algorithm has complexity O(nm), as there are n — 1 operations
for each of the m potentials. The rest of the operations in this algorithm are constant, as
they are just storage or initialization steps.

1.2 Fast Multipole Method

The Fast Multipole Method (FMM) was introduced by V. Rokhlin and L.Greengard [4],
and was created to calculate sums like (1), quickly. In fact, they were able to reduce the
from O(nm) to O(n + m). Essentially, the algorithm can take as input a set of n sources
and m target points, and return the potential evaluated at each of the target points, in
one run. In this thesis, we will be exploring the theoretical underpinning of this method,
and verifying the CPU time performance of the algorithms, through Python, in a simple
source-target point configuration.

The main idea behind the FMM is to compress the information of a large number of
particles into a suitable expansion, which can be used to quickly find the potential at the
target points. By information, we mean the pointwise interactions between charges and
potentials at the target points. In this thesis, particle will be synonymous with charge and
location, or the tuple (g;, z;).

Essentially, we take a large number of particles, which can be distributed arbitrarily
over the 2D plane, or the complex plane, and then transform them into a smaller set of
equivalent particles, with different "charges", such that the calculation of the potential is
relatively unchanged (i.e. the calculation is still accurate). In this case, the term "charges"
is used very loosely to refer to the coefficients in a multipole expansion, because it can be
used to find the potential created by a number of sources. For example, the potential at a
point created by 5 sources can be found via naive calculation, or by creating a multipole
expansion and evaluating that at the target point. This idea will be further explored in
Section 3.

Perhaps, one of the reasons that FMM was one of the top 10 algorithms [2] of the 20th
century is that it allows the user to trade accuracy for speed, with high granularity. The
purpose of [4] is to develop a proper mathematical formulation of this idea. The complete
algorithm makes use of a data structure called a quadtree, which provides a method for
sectioning two-dimensional space into smaller spaces such that sources and potentials
can share the same space. Due to complexity in the implementation of such a data struc-
ture, we will be considering particle configurations which don’t need a quadtree.

In this thesis, we will examine the main features of the FMM (by selecting a smaller
subset from all the mathematical components that make up the FMM) and present a
straightforward implementation to demonstrate some of the main algorithm’s capabili-
ties over simple particle configurations. We also adapt the notation and the language of
the algorithm used in the original Greengard-Rokhlin paper [4] to be closer to the modern
equivalent.

2 Mathematical Background

In this section we will derive and cover some basic results which underpin the Fast Multi-
pole Method. We will provide some intuitive explanations for how one might understand
these formulas. Some of these formulas will be used in a later section to develop and test
some simpler versions of the Fast Multipole Method.

2.1 Multipole Expansion

As shown in [4], we can generate a multipole expansion of the potential (1) at a point, z,
using the charges {g;,i =1, - - n}, which are located at the points {x;,i =1, - - n} (With
the property |x;| < r, for all 7, for some r > 0). Such expansion is given by

¢(z) = Mo(0)log(z) +) M;EO) , (Multipole Expansion at 0)
k=1
where
m m _qlxic
MO(O) = qu and Mk(O) = Z k . (2)
i=1 i=1

This expansion is valid only for |z| > r. This will be referred to as the multipole
expansion of the charges about the origin, with respect to the variable z. In this formu-
lation of the [4], each of the logarithmic terms in the potential (1) is expanded in a Taylor
series, and then the terms are regrouped conveniently. For the multipole expansion, we
are also provided with an error estimate of the expansion,

4 p
‘470(2) — Mp(0) log(z) —) | M;EO) ‘ < (C f 1> <i) , (Expansion Error)
k=1
where
L z
A=) |gil, and c¢:= o> 1,
i=1

which is just the truncation error of the sum. The number of terms kept in the truncated
sum, p, is called the order of the multipole expansion. The right hand side of (Expansion
Error) is termed the accuracy of the expansion. Now, if we fix z and r, and let p vary, it
is easy to see that the accuracy, as a function of the order, is decreasing. We can also see
that as long as |z| > r, the accuracy will increase as well.

The multipole expansion, paired with the local expansion, form the core computation
of the FMM. As seen in (Multipole Expansion at 0), the multipole expansion cannot be
used to find potentials within the circle in which the sources are located. This is prob-
lematic becuase it restricts the particle configurations which can be used with FMM. The
local expansion is used to solve that issue, as it can only be used within the boundary
in which it is defined. Both the multipole and local expansions are formed in equivalent
ways, through perturbations, the only difference being the relative location the perturba-
tion is carried out from. Now that we have motivated the need for these formulae and
how they are to be used, we can derive them.

2.2 Moment and Local Expansion of the potential

The core idea in the derivations presented in this section is to expand the logarithm in
terms of its Taylor series. Therefore, we start by taking a logarithm term as it would
appear in (1), and perturb it to obtain a taylor expansion:

log(z — x;) = log(z — z0 + z0 — x;)-

Now, we assume that |zg — x;| < |z — zo|. Then, using the Taylor expansion of the loga-
rithm, as presented in Appendix A (reformulated here for notational convinience),
= (—Aw)*

log(w + Aw) = log(w) — ,
k; kwk

which is valid for as long as |Aw| < |w|, we can choose Aw = zp — xj and w = z — 2o to
obtain the multipole expansion:

)= Lgjlog(z)

oo 70— X k

k=1

T T

—.

[
'M= I

© 1 &g —z0)
log(z — zp) +
j=1 !) i) Z’ (z = zo)t]Z; k
o Mi(z0)
= Moy (z0) log(z — zo) + Z Z—iz())k,
where
1 4qj, k=0,
My (zo) = {? ! q] 0 Lo (Moments)
j=1 k o=

Not only does this explain the notation presented in (Multipole Expansion at 0), it
yields a more general version of it. The expression,

o My (z0)
MQ(ZO) log(z Zo) +I£ (Z—Zo)k/
is termed the the multipole expansion of the chages about the zy. The expansion just
found is centered at some arbitrary point zg instead of the origin. Indeed, if we let zg = 0,
we recover (Multipole Expansion at 0). The coefficients My (zg) are called the Moments
of a set of charges about the point zy. Now, since the choice of w and Aw was arbitrary,
we can pick them in the opposite way, to yield a local expansion. Choosing Aw = z — z
and w = zp — x; we obtain:

z) = Zn: q;log(z — xj)

j=1
q <log(zo —Xj) — i (Z_Zg)lzk>

i1 k(zo—xj)

I
.m:

Il
—

]

(z—z)* Xn: p 4

=1 (xj —zo)k

I
1=

2 1j log(zo — xj) +

]

= Lo(z0) + i Li(zo)(z — zo)*
k=1

= i Li(z0)(z — z0)",
k=0

™

Il
—_

where the local expansion coefficients are given by

(Local Expansion Coefficients)

Ly(zo) = L1 li)g(zo — %) k=0,
Yim k(xj—qéo)k' k=1

The expansion of the potential as,

¢(z) =) Li(z0)(z — z0)", (Local Expansion at z)
k=0

is referred to as the local expansion of the potential about zyp. We do not provide error
bounds for this expansion, as this expansion is not used independently in this thesis. We
only use a local expansion that is formed from a multipole expansion (as will be described
in the following section), which will have an error bound.

2.3 Translation Operators

We know from earlier discussion that the order of the expansion controls the accuracy of
the calculation. However, it is not practical to keep increasing the order of the expansion,
as that leads to increased computational complexity, as well as increased memory use. In
order to make the multipole expansion more useful, [4] developed translation operators.
The purpose of the translation operators is to not only shift the center of the expansions,
but also to change the bounds of its accuracy. i.e. shifting the locations where the expan-
sion is accurate. This is useful because it allows us to create a multipole expansion which
is accurate in one region and then shift it, such that the same property holds elsewhere
in the complex plane. One can imagine that this would be useful in the case that the
sources are clustered and the targets are evenly distributed over a large area. Using the
shifting property, the expansion can be moved to evaluate the potential at all required
points, instead of having to do a new calculation for each target point. Together with
local expansions and multipole expansion, we have all the mathematical machinery that
allows FMM to achieve linear time complexity for arbitrary configurations of particles.

There are 4 kinds of translation operators, Multipole to Multipole (M2M), Multipole
to Local (M2L), Local to Multipole (L2M) and Local to Local (L2L) [1]. M2M and L2L
are used to shift the centers of the expansions arbitrarily. M2L and L2M are used to
exchange between multipole and local expansions. The translation operators are useful
because they allow the expansions to interface with the quadtree, thereby allowing it
to adapt to any particle configuration. In this thesis, we will only be considering the
M2L translation operator. In fact, we will first prove that a multipole expansion from an
arbitary location can be transformed into a local expansion at the origin, and then show
that this transformation need not be restricted to the origin. The goal being, so show that
an arbitrary multipole expansion can be translated to an arbitrary local expansion.

The local expansion can be derived from the multipole expansion by expanding the

logarithm and the inverse terms as Maclaurin series in terms of z, and then rearranging:

[ee]

¢(z) = Mo(20) log(z — z0) + Z

00 4)
- o) 2 22<>) Lt

k=1

Z—Zo

) l
= Mo (z0) log(—z0) — Mo(zo) Z % <Z>

=1 % \%0

cEmen (L) S () ()

k=1 (=0

Z

Molo) 1y M) (R (1), 0> 0,

Zy

(M2L)

Loy — {Mo(zo)log(20) + 2, Mko L~k e=0

We have taken a multipole expansion centered at at zp, in the circle |zp —z| < R,
and expressed it as a local expansion, which is in the form of a power series. Not only
that, but we found a relationship between L;(0)and My (zp). Above is the derivation of
the local expansion that is presented in [4]. However, it is not the most direct way of
doing so, as we saw in the derivation of (Local Expansion Coefficients). The current
method assumes that the coefficients (Moments) have already been calculated, and uses
them to calculate the local coefficients. These methods are equivalent, and yield a local
expansion. However, there is one difference, which is in the region of validity. Due to
the way it is calculated, the transformation presented by [4] only converges converges on
|z] < R. Here, R is found using |z9| < (¢ + 1)R, for some ¢ > 1. The change in the region
of validity is better visualized in Figure 1. On the other hand, the calculation of (Local
Expansion Coefficients) only assumes that |z — z9| < |z, — x;], for each source x;. This
results in the following error bounds:

Alde(p+c)(c+1)+c2) (1)
deen () ©

c
As discussed earlier, one of the main computational difficulties of the FMM lies in
the shifting of the centers of the various mutipole and local expansions, and converting
between them. However, as one might have noticed, all the translations so far seem to go
to the origin. The simple remedy to this is a change of the origin. For example, we have a
multipole expansion about the point zo and we would like to construct a local expansion
about z;. However, the derived formulas only allow us to shift to the origin. We see that

‘4><z>— Zsz<o> | <
-0

FIGURE 1: Update on the bounds of M2L transformation

z—2zp = z—2z1— (20— z1). Now, if we let z — z; = Z/, we are able to apply the M2L
formula as usual to ¢(z’), and obtain a local expansion in terms of z’ = z — z, centered at
the origin. This is in fact just a local expansion about z;. Similar logic applies to the other
formulas as well, and it means that we are able to now apply arbitrary translations over
the complex plane.

Now, we can start to construct some simple particle configurations to test the appli-
cation and implementation of these tools that we have developed. We will also conduct

some complexity analyses to ensure that the implementation is indeed linear, as postu-
lated by [4].

3 Implementation and Complexity Analysis

In this section, we will analyze two simpler versions of the FMM. These versions are
simpler in the sense that they only use the multipole expansion or the local expansion,
and do not use a quadtree structure that the classic FMM uses to handle source and
target points defined within the same region. Recalling the error bounds from (Expansion
Error), and (3), we can see that the the target points being distant from the sources means
that the multipole expansion converges, and therefore provides an accurate estimate of
the potential.

The reason this works is because it represents a well separated set of points, and for
such configurations, no quadtree is needed for the FMM to be used. Two sets of points,
{a;}!,, and {b;}} , are called well separated if there exists some R, such that both sets
are bounded by a circle of radius R, and the circles themselves are separated by a distance

of R. This is best visualized in Figure 2, where the red points are 4;, and the blue points
are b;.

FIGURE 2: Illustration of 2 sets of well-separated points

Before we move on to checking the time efficiency of this algorithm, we will firstly
define a measure of the error. One of the most basic ways of measuring the error of the
potentials is the absolute error as a function of the order, p, which is the number of terms
in the truncated series, and the number of sources, n:

2 M
En(yi) == max (P(yi)—MO(Zo)log(%—zo)—];(yik_(zz?)k .

(Absolute Error For Multipole Expansion)

Here, {y;}!, is the set of target point, p denotes the order of the multipole expansion
that is used, with zg the center, and ¢(y;) is the true value of the potential at that point.

In the error calculations, we compare the actual potential to the potential calculated
by FMM. Therefore, in order to make error calculations, we use the naive algorithm.
However, this measure by itself does not provide too much insight on the convergence of
the method to the correct answer, because the absolute error is not scale invariant. i.e. if
all the charges in the system are large, then the error will be large. Therefore, we use the
relative error

) = max;eoq |¢(yi) — Mo(20) log(yi — z0) — T4 (fk_(j;’}k
= maX;eo, P(Yi) '

(Relative Error For Multipole Expansion)

instead, which normalizes the absolute error. This is more useful for seeing the accuracy
of the FMM. Furthermore, seeing the error bounds defined in (Expansion Error), we pos-
tulate that the relative error should decrease exponentially. Similarly, we define a relative
error function for local expansions as:

maxie(o [#(yi) — Th_y Lk (20) (i — 20)¥|
maX;eo) P(Yi)

Af(yi) =

(Relative Error For Local Expansion)

Particle Configurations Figures 3 and 4 represent the two particle configurations that
were tested for performance and accuracy. The box on the left represents the sources (also
shown in red) and the points on the right are the target points (also show in blue). In
order to generate points as they are shown in Figure 3, we randomly sampled 2 uniform

distributions (ranging from 0 to 1) for the real and imaginary part of the sources, and
the same for the targets, except the real part was offset by 4. For the charges of the
sources, we sampled a standard normal distribution. Furthermore, the configuration
shown in Figure 4 was developed to debug the implementation of the algorithm. In this
configuration, the sources are distributed within the unit box (centered at 0) and evenly
along the line itz = 0.9, and the target points are distributed within the unit box (centered
at 5) and on the line 'z = 4.9. An easier, linear set of points makes debugging simpler,
since the formulas were checked through Google Sheets. Then, the simulation was also
run on this configuration, as ideally there should not be any difference in performance or
convergence between the two.

Here we use boxes instead of circles, as they are more convenient for the implemen-
tation, and more standard within the literature [4, 1].

o

FIGURE 4: Linearly Distributed Sources and Targets for time complexity evalua-
tion

Computation All the algorithms mentioned in this paper were implemented in Python
3.10, and run on the University of Twente computing cloud, called JupyterLab. Since
JupyterLab is a shared resource, there are often spikes in performance, but the graphs
cannot be generated on a local PC as it takes too long. For each configuration of number
of sources, n and the order of the expansion, p, the algorithm potentials were calculated
50 times, in order to ensure a sufficiently large sample size of execution times and relative
errors were collected. This was done to increase not only the significance of the data,
but also to reduce any spiking in performance that would be caused by the usage of
JupyterLab.

3.1 Moment to Potential

Using the principle of well separated points, and a metric for the accuracy of the imple-
mentation, we are able to commence the analysis of a version of the FMM which only
uses the multipole expansion. For this analysis, we implement the computational boxes
as shown in Figure 3 and 4. Using the sources we create a multipole expansion about the
origin (marked with a cross). Then we use the expansion to evaluate the potential at the
target points. Based off of these configurations, we can develop the following algorithm:

Algorithm 2 Multipole Potential Calculation

Require: {x;} , C C, {gi}/", C R, Sources in the unit box
Require: {y;}"" , C C, Targets in the well separated unit box
Require: p, order of the expansion

1 M+ {M(0)}7_, > Initialize a list for coefficients, calculated using (2)
2: ¢p(z) + M[0]log(z) + XF_, MZ—,EH > Initialize a function for potential calculation
3: potentials + {} > Initialize an empty list for potentials
4: for each target point y; do

5. potential[i] < (¢(y;)) > Only report real values as potential
6: end for

The time taken for this algorithm to run based on different inputs was measured. Fur-
thermore, the values of the potentials generated by this algorithm were also compared
with the values obtained by the naive algorithm, and was used in conjunction with (Rel-
ative Error For Multipole Expansion). Then, the time and error values are presented
below.

Complexity Analysis The goal of this algorithm is to gauge the algorithmic complex-
ity of the M2M formula, which should be linear. Therefore, we do not account for the
complexity of generating the random points.

| Step | Justification | Complexity |

1 There are p coefficients that need to be calculated, and each | O(np)
calculation iterates over all the n sources
2 Each function call has to evaluate p terms O(p)

4,5 | pterms need to be calculated for each of the m sources O(mp)

Therefore, the total complexity of this algorithm is O(p(n + m)) which is linear with
respect to the number of points in the system.

3.1.1 Performance

Between both the random and linearly distributed source and target points, the time
complexity as well as the error functions are the same. Based on Algorithm 1 and 2, we
expected to see a quadratic increase in the complexity of the naive method and a linear
increase in the complexity of the Multipole method. Furthermore, we expect the decay
in the error function (in terms of the order) to be exponential.

In the following figures, we do not differentiate between randomly and linearly dis-
tributed, as they both obtained the same time complexity as well as accuracy results.

10

Naive:
Linear:0.923
Quadratic:0.983

4 Naive:

3 Linear:0.980

Quadratic:0.980

o4

Time Taken for L2L Evaluation (seconds)

0 200 400 600 800 1000
Number of Sources and Evaluation Points

FIGURE 5: Time taken for Naive and Algorithm plotted against the number of
sources and target points for Algorithm 2 (made using randomly distributed
sources, targets, and charges)

Naive:
0016 $ Linear:0.980
Quadratic:0.980

0014

0.012

0010

0.008

0.006

Time Taken for L2L Evaluation (seconds)

0.004

0.002

0.000

o 200 400 600 800 1000
Number of Sources and Evaluation Points

FIGURE 6: Time taken for Algorithm 2 plotted against the number of source and
target points (made using randomly distributed sources, targets, and charges)

Here, we observe an (almost) linear trend in the execution times of Algorithm 2 (In

Figures 5 and 6), and a non-linear one for the Naive algorithm (In Figure 5) In order to
quantify the linearity of the plotted functions, we conducted a linear regression, and ob-

11

served the R? value. In order to check if the function is quadratic, we use an automatic
curve fitter and calculate the R?> value manually. The R? values are present in the leg-
ends of both figures. Therefore we are certain that the growth of the Naive Algorithm is
quadratic and the growth of Algorithm 2 is linear.

That being said, there is a very large amount of noise towards the end of the plot.
This is likely caused by JupyterLab, as it was not present in any of the other (shorter)
runs. Furthermore, we see that the R? values of both linear and quadratic tests for both
curves achieved a very high value. This is likely because of the scale of the plot. The
x values range from 1 to 1000, and the y values from 0 to 1.4, for the naive calculation,
and 0 to 0.012 for Algorithm 2. At this scale, both linear and quadratic models would
function relatively well, hence the high R? value. However, the statistical tests were
merely conducted to confirm the theory, so we can still be certain that the naive algorithm
is significantly slower than Algorithm 2, while being quadratic in time complexity, while
Algorithm 2 is linear in time complexity.

Log Relative Error

s
Order

FIGURE 7: Logarithmic Relative error for Algorithm 2 plotted against the order
of the expansion used (made using randomly distributed sources, targets, and
charges)

It does not take many terms for the relative error to decay down to below machine
precision, which is around the order of -16. This is exactly what we expected, knowing
that there is an exponential decay in the error function would signify a negatively sloped
line in the logarithmic-linear plot as we have in Figure 7.

3.2 Moment - to - Local to Potential

Now we analyze the creation and evaluation of the local expansion from a multipole
expansion. Similar to the last algorithm, this is also a simplified version of the FMM, and
the same point configurations were used (as shown in Figures 3 and 4). Based on these
configurations and the formulas derived earlier, we derive the following algorithm.

12

Algorithm 3 Local Expansion Potential Calculation

Require: {x;} , C C, {gi}/", C R, Sources in the unit box
Require: {y;}", C C, Targets in the well separated unit box, centered at zg
Require: p, order of the expansion

1 M+ {M(0)}7_, > Initialize a list for coefficients, calculated using (2)
2: ¢p(z) + M[0]log(z) + XF_, MZ—,EH > Initialize a function for potential calculation
3: ¢(z) + 2o Le(4)Z, > Formed using M2L
4: potentials < {} > Initialize an empty list for potentials
5: for each target point y; do

6. potential[i] + (¢(vi)) > Only report real values as potential
7: end for

The time taken for this algorithm to run based on different inputs was measured. Fur-
thermore, the values of the potentials generated by this algorithm were also compared
with the values obtained by the naive algorithm, and was used in conjunction with (Rel-
ative Error For Local Expansion). Then, the time and error values are presented below.

Complexity Analysis The goal of this algorithm is to gauge the algorithmic complexity
of the Multipole creation and M2L formula, which should be linear. Therefore, we do not
account for the complexity of generating the random points.

] Step \ Justification \ Complexity ‘
1 There are p coefficients that need to be calculated, and each | O(np)
calculation iterates over all the n sources
2 Each function call has to evaluate p terms O(p)
3 Applying the M2L identity involves iterating over all the ex- | O(p?

isting coefficients, {a k};f:o' and this calculation is carried out p
times.
5,6 | pterms need to be calculated for each of the m sources O(mp)

Therefore, the total complexity of this algorithm is O(p(n + m) + p?). However, the
order of the expansions is usually taken to be much smaller than the number of particles
in the system, therefore, in this case, the complexity reduces to O(p(n + m)) again, which
is linear with respect to the number of points in the system.

3.2.1 Performance

Similar to the last case, we expected an exponential decay for the error, and a quadratic
and linear trend for the time complexities of the Naive algorithm and Algorithm 3 re-
spectively.

Linearly Distributed Sources and Targets The results for this configuration are identi-
cal to results that have already been discussed, so we will omit this discussion.

Randomly Distributed Sources and Targets The simulation for the randomly gener-
ated sources and targets produced some unexpected results.

13

Naive:

10 T 4 Linear.0.924
Quadratic:0.981
Naive:

§ Linear:0.975
Quadratic:0.976

Time Taken for L2L Evaluation (seconds)

0 100 200

3%0 %0 550
Number of Sources and Evaluation Points

FIGURE 8: Time taken for Naive and Algorithm 3 plotted against the number of
sources and target points (made using randomly distributed sources, targets, and
charges)

Naive:
3 Linear:0.975
Quadratic:0.976
00030

0.0025

0.0020

0.0015

0.0010

0.0005

Time Taken for L2L Evaluation (seconds)

0.0000

s %0 200 3%0 00 E
Number of Sources and Evaluation Points

FIGURE 9: Time taken for Algorithm 3 plotted against the number of source and
target points (made using randomly distributed sources, targets, and charges)

Apart from a dip in performance towards the end of the calculation, there were no
other issues in the generation of this data. Based on the R? values reported in the legend
8, the created plots can be seen as both linear and quadratic. However, by the same

14

reasoning as presented in the earlier section, we will conclude that Algorithm 3 scales
linearly with the number of sources and targets, and the time complexity of the naive
algorithm is quadratic.

Relative Error

——

Order

FIGURE 10: Relative error for Algorithm 3 plotted against the order of the expan-
sion used (made using randomly distributed sources, targets, and charges)

Log Relative Error
5

0
Order

FIGURE 11: Logarithmic Relative error for Algorithm 3 plotted against the order
of the expansion used (made using randomly distributed sources, targets, and
charges)

15

Log Relative Error

FIGURE 12: Logarithmic Relative error for Algorithm 3 plotted against the order of
the expansion used (made using linearly distributed sources, targets, and charges)

However, in Figures 10 and 11 we see the major differences. The first one is that the
relative error is massive. On the top left side, we can see that the scale of the graph is
103¢. Not only that, but the error seems to increase towards the end, as the order keeps
increasing. That is why, the logarithmic plot is also increasing. It seems to suggest that
the error is exponential.

That being said, the same does not apply for linearly spaced points (As seen in Figure
12). In that case, we see that the error actually still exponentially decays. Plotting the data
on a logarithmic scale, we see the decreasing linear trend we saw in Figure 7. Therefore,
we see a difference in the convergence of the method with respect to the configuration of
the particles. This is not only unexpected, it indicates that the implementation might not
complete.

Overall, the results obtained by the simulation make sense, because the algorithms
that we tested do not take into account the distribution of the data at all, only the values
of the data. Therefore it is sensible that the time complexity would be only dependent on
the number of points and nothing else.

4 Conclusion

In this thesis, we explored the Fast Multipole Method (FMM) and its implementation for
efficient particle simulation. Starting with the formulation of the potential calculation
problem and the limitations of the naive O(nm) approach, we introduced the FMM as a
powerful alternative capable of reducing computational complexity to O(n + m).

We delved into the mathematical foundation of the FMM, the multipole expansion,
local expansion, translation formuals, and their associated error bounds. By implement-
ing and analyzing two simplified versions of the FMM (namely Source to Multipole and
Multipole to Local), we demonstrated the method’s efficacy in both theoretical and prac-

16

tical terms.

Our results confirmed the expected linear complexity of the FMM compared to the
quadratic complexity of the naive approach. Additionally, the exponential decay in the
relative error highlighted the accuracy of the method, particularly for well-separated par-
ticle configurations.

However, unexpected behavior was observed in scenarios with randomly distributed
particles, indicating a technical bug, as the theoretical results did not align. Despite this,
the FMM'’s capability to trade accuracy for speed and its significant computational effi-
ciency make it a critical tool in large-scale particle simulations.

17

References

[1] Rick Beatson and Leslie Greengard. A short course on fast multipole methods. https:
//math.nyu.edu/"greengar/shortcourse_fmm.pdf, 2001. Department of Mathemat-
ics and Statistics, University of Canterbury and Courant Institute of Mathematical
Sciences, New York University.

[2] Barry A. Cipra. The best of the 20th century: Editors name top 10 algorithms. SIAM
News, 33(4), 2000. Published by the Society for Industrial and Applied Mathematics.

[3] R. Fitzpatrick. An Introduction to Celestial Mechanics. Cambridge University Press,
2012.

[4] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of
Computational Physics, 73:325-348, 1987.

[5] John David Jackson. Classical electrodynamics. John Wiley & Sons, 2021.

[6] Robert Morris. Combinatorics: Enumeration - Generating Functions, Extended Binomial
Theorem. LibreTexts, 2024. Accessed: 2024-06-30.

[7] E.B. Saff and A.D. Snider. Fundamentals of Complex Analysis with Applications to En-
gineering, Science, and Mathematics: Pearson New International Edition. Pearson Educa-
tion, 2013.

18

https://math.nyu.edu/~greengar/shortcourse_fmm.pdf
https://math.nyu.edu/~greengar/shortcourse_fmm.pdf

A Formulas for FMM derivations

Derivation of log(z — zg)

This derivation follows from the Taylor series of the logarithm.

(1—x)"
f(0) = log(1—0) =log(1) =0
F(0) = g =1
/! _ 1 —
(0) (1-0)2 1
f7(0) =2(1-0)3 =2
F(0) = (=1)" ! (n - 1)!
o £(n)
log(1—x) =) f nl(o)x”
n=0 .
_ fl(_”";f”‘”'x"
o (_1\n—1
= 21(173 x",

which converges for |x| < 1. Using this,

log(z — z9) = log (—zo (1 - ;))
= log(—z0) + log (1 - ZZO>
log <1 — ZZO> = —(:ij (;)g
log(z — z9) = log(—z0) — ;%2 <Zzo>€/

Which converges for |z| < |zo|.

19

Derivation of (z — zg) %

This derivation follows from the extended binomial theorem [6].

(-3) -E(TEN(E)
o= (G BV (E)

20

	Introduction
	Problem Formulation and Naive Solution
	Fast Multipole Method

	Mathematical Background
	Multipole Expansion
	Moment and Local Expansion of the potential
	Translation Operators

	Implementation and Complexity Analysis
	Moment to Potential
	Performance

	Moment - to - Local to Potential
	Performance

	Conclusion
	Formulas for FMM derivations

