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ABSTRACT 

Food Composition Tables (FCTs), which are widely used in food security analysis, offer country-level 

snapshots of food nutritional quality. FCTs are highly uncertain because crop nutrient concentrations vary 

over space and time. Little progress has been made to exploit satellite data for assessing the nutritional status 

of crop yield. Sentinel-1 and Sentinel-2 have emerged as invaluable data sources for agricultural monitoring 

from space, because they track crop growth and development at high (10-20m) spatial resolution through 

time. This study integrates Sentinel-1, Sentinel-2, and other geospatial information across Ethiopia in 2018 

into a Random Forest to predict nutrient concentrations in grain yield for important global staple crops. 

The model was trained and evaluated with data from field measurements collected over the same period. 

Results were promising: Cu in Sorghum (R² = 0.73), Mn in Teff (R² = 0.70), Mg in Teff (R² = 0.64), Cu in 

Maize (R² = 0.60), Mg in Wheat (R² = 0.58), Mn in Wheat (R² = 0.58), Mg in Sorghum (R² = 0.57), and Fe 

in Sorghum (R² = 0.54). The findings underscore the effectiveness of Sentinel-2 narrowband vegetation 

indices and soil properties for nutrient analysis. The results obtained in this study have the potential to 

improve the availability of crop nutrient data across large spatial areas. 
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1. INTRODUCTION 

1.1. Background and motivation 

The United Nations Sustainable Development Goal 2 (SDG 2) emphasizes achieving "Zero Hunger" by 

2030. However, ensuring food security is a complex issue with multiple, interrelated dimensions. It goes 

beyond simply ensuring sufficient food production (availability) to encompass accessibility, utilization, and 

stability of the food supply (United Nations, 2015). While noteworthy progress has been made in increasing 

global food production, ensuring everyone has access to a safe, nutritious, and culturally appropriate diet 

remains a challenge (United Nations, 2023). Accessibility is influenced by factors like income levels, food 

distribution networks, and geographic location. Even with sufficient food available, individuals in remote 

areas or those living in poverty may struggle to afford or physically obtain the nutritious food they need. 

Utilization refers to the body's ability to convert food into energy and essential nutrients. This is influenced 

by factors like access to clean water, sanitation, and healthcare. Without these basic necessities, even a 

seemingly adequate diet may not provide the necessary building blocks for optimal health. Additionally, 

knowledge of proper nutrition and food preparation plays a crucial role in utilization. Finally, stability refers 

to the resilience of food systems to disruptions and shocks. Climate change, economic downturns, and 

political instability can all threaten food security. Building resilient food systems that can withstand these 

disruptions is essential for long-term food security (The State of Food Security and Nutrition in the World 

2021, 2021). 

 

Hidden Hunger 

While progress has been made in the areas mentioned above, a significant challenge remains, namely hidden 

hunger caused by micronutrient deficiencies. Individuals may have access to sufficient calories but lack the 

essential vitamins and minerals including zinc, iron, calcium, copper, magnesium, or manganese needed for 

optimal health. Diagnosing hidden hunger is difficult, as deficiencies often manifest only in later stages, 

leading to long-term health consequences. Pregnant women, young children, and individuals living in 

poverty are particularly vulnerable to hidden hunger. 

 

Human health relies on a balanced intake of both macro and micronutrients (Ritchie, 2021). Macronutrients, 

such as nitrogen, phosphorus, and potassium, are crucial for basic bodily functions like energy production, 

cellular structure, and muscle development. Micronutrients, required in smaller quantities, are equally vital. 

Iron is essential for oxygen transport in the blood, zinc for immune function and DNA synthesis, and 

manganese for bone formation and metabolism. Deficiencies in these nutrients can lead to a cascade of 

severe health consequences, including anaemia, weakened immunity, impaired growth and development, 

and even increased risk of chronic diseases (Gombart et al., 2020). 

 

Children experiencing chronic micronutrient deficiencies may suffer from stunting, a condition 

characterized by low height for age. This can lead to cognitive decline, reduced learning capacity, and lower 

future earning potential. Additionally, hidden hunger can increase susceptibility to infections, further 

compromising health and well-being (Ritchie & Roser, 2017). 
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The Challenge of Crop Nutrient Measurement 

Addressing nutrient deficiencies requires effective methods for measurement. However, traditional methods 

used in both public health and agriculture have limitations. Diagnosing hidden hunger through blood draws 

and surveys is expensive, time-consuming, and requires specialized equipment. This limits the frequency 

and comprehensiveness of data collection, making it difficult to identify regions most at risk of 

micronutrient deficiencies. 

 

Traditional methods like wet chemical analysis are labour-intensive and time-consuming, hindering their use 

for macroscale or frequent crop nutrient content measuring and monitoring. Additionally, these methods 

prevent us from generating spatial information needed to capture the variability in soil properties and 

environmental conditions across different agricultural landscapes. This leads to imprecise nutrient 

management strategies that can negatively impact crop productivity and contribute to environmental 

degradation (Gibson, 2005). 

 

Food Composition Tables (FCTs) 

Food Composition Tables (FCTs) are valuable tools for general dietary assessments as they provide averaged 

nutrient values for various foods. These tables are essential for evaluating the nutritional composition of 

diets, recipes, or commercially available food items, offering a comprehensive nutrient breakdown for each 

listed item (Ocké et al., 2021). However, FCTs have significant limitations, especially in the context of 

agricultural management and precision nutrition (Traka et al., 2020). 

 

While FCTs are useful for broad dietary assessments, they do not account for variations in nutrient content 

within regions and countries. This lack of precision limits their effectiveness in informing site-specific 

nutrient management practices crucial for maximizing crop nutrient uptake and enhancing grain nutritional 

quality. For example, differences in soil properties, farming practices, and environmental conditions can 

lead to substantial variability in nutrient content, which FCTs cannot capture (FAO, 2018). 

 

Additionally, the nutrient values in FCTs are often derived from a variety of estimation methods rather than 

direct chemical analysis. Common approaches for estimating nutrient values include utilizing values from 

foods that are similar, and computing values from various forms of the identical food and estimating from 

household recipes or commercial product formulations. Other methods involve converting values from 

nutrient labels of commercial products, calculating from product standards, or assuming zero values where 

data are missing. Quality assurance processes and programs for validating nutrient composition are 

necessary for ensuring the accuracy of these estimated values (Schakel et al., 1997). However, even with 

these measures, the reliance on estimated data introduces potential inaccuracies (FAO, 2018). These 

limitations emphasize the need for more precise and spatially explicit nutrient assessment methods. 

 

Remote Sensing Data and Technologies for Agriculture Applications 

Despite the limitations, recent advancements in remote sensing and machine learning present promising 

avenues for addressing these issues. Remote sensing offers a powerful, non-invasive approach for collecting 

data on crop and soil nutrient content across vast areas, overcoming the limitations of traditional methods. 

It relies on the fundamental principle that different objects on Earth's surface interact with electromagnetic 

radiation in unique ways. Sensors mounted on satellites, airplanes, or drones capture the reflected or 

absorbed radiation across various wavelengths of the electromagnetic spectrum (Jensen, 2009). By analyzing 

this spectral information, scientists and farmers can extract valuable information about crop and soil 

properties. 

 



 

9 

The selection of the appropriate remote sensing sensor for a specific agriculture application depends on the 

desired level of detail along with spatial and temporal coverage. Satellites offer a synoptic view of vast 

regions, making them suitable for monitoring large-scale variations in crop and soil properties (Thenkabail 

et al., 2004). Once data is acquired, advanced machine learning algorithms can be employed to analyze and 

interpret the complex spectral information. These spectra and algorithms can identify patterns and 

relationships between the spectral signatures and biophysical parameters like fraction of photosynthetic 

active radiation, leaf area index, and crop biomass along with biochemical properties like canopy water 

content, leaf nitrogen and chlorophyll content (Kganyago et al., 2024). 

 

By analyzing specific wavelengths sensitive to chlorophyll content, plant nitrogen status, and other nutrient-

related factors, machine learning can estimate the spatial variability of soil and crop nutrients within a field 

(Benos et al., 2021). Spectral signatures can be used to infer soil properties like moisture content, organic 

matter, and potential nutrient availability (Castaldi et al., 2023). This information is crucial for developing 

targeted soil management practices. Remote sensing data can be integrated with weather data from satellites 

or ground stations to create detailed maps of temperature, precipitation, and other climate variables across 

a field. This allows for a holistic understanding of how environmental factors influence crop growth and 

nutrient uptake (Nieto et al., 2021). 

 

Sentinel-1 and Sentinel-2 satellite images 

Incorporating Sentinel-1 and Sentinel-2 alongside other digital environmental data for crop and grain 

mapping and monitoring presents a complementary approach to enhancing agricultural monitoring and 

management. Sentinel-1 provides synthetic aperture radar (SAR) images, which are valuable for monitoring 

the surface of the Earth regardless of cloud cover or daylight conditions, offering insights into soil moisture, 

vegetation biomass, and surface roughness (Torres et al., 2012). On the other hand, Sentinel-2 offers optical 

imagery capable of capturing detailed information about vegetation indices, water content, and mineral 

content, which are crucial for assessing crop health and productivity (Drusch et al., 2012). Sentinel-2 

imagery, although impacted by cloud cover, has the capability to detect photosynthetic pigments and the 

amount of chlorophyll absorbed by the crops (Darvishzadeh et al., 2019). Its red-edge bands are sensitive 

to leaf nitrogen, its near infrared bands are sensitive to leaf and canopy structures as well as leaf and canopy 

water content. The short-wave infra-red bands are sensitive to non-pigment compounds like cellulose, 

lignin, and proteins (Weiss et al., 2020). These bands can be used to derive various vegetation spectral indices 

relevant for the derivation of crop biophysical, biochemical and crop phenology parameters (Kganyago et 

al., 2021). The spatial (10 and 20m) and temporal resolutions (average 5 days) along with their spectral 

capacities make them suitable for small-scale farm research when compared with LANDSAT and Moderate 

Resolution Imaging Spectroradiometer (MODIS) products (Khan et al., 2023). 

 

There is evident significant progress in the use of Sentinel-1 and 2 data for crop yield and nutrient mapping. 

Rao et al., (2021) highlighted the potential of Sentinel-1, and Sentinel-2 to map crop types on non-

commercial small farms. This synergy leverages the strengths of each sensor type, namely Sentinel-1's ability 

to penetrate clouds and observe in all weather conditions and Sentinel-2's high spatial resolution for detailed 

crop discrimination, the frequent revisit times of both sensors for up-to-date information. The combination 

of Sentinel-1 and Sentinel-2 data has also been explored and shown to improve the accuracy of land use and 

land cover mapping (Steinhausen et al., 2018), as well as for tree species classification (Axelsson et al., 2021). 

For crop and soil nutrient studies Zhang et al., (2023) demonstrated that Sentinel-2 data can be used to 

accurately map the total nitrogen composition in soils. Sharifi, (2020) confirmed that the computation of 

vegetation indices from Near Infrared and Red-edge bands of Sentinel-2 leads to better predictions of 

nutrient uptake of the maize crop. Fernandes et al., (2024) and Mendes et al., (2023) also demonstrated the 

ability of Sentinel-2 data to predict and quantify nutrients in different crops and grasslands. These 
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applications demonstrate the versatility of Sentinel data in supporting a wide range of agricultural 

applications. 

 

Geospatial Factors relevant for Crop Nutrient Mapping 

Geospatial factors, including topography, climate, and soil characteristics, are instrumental in shaping 

nutrient distribution and crop performance, thereby influencing agricultural productivity. The integration of 

these factors into nutrient mapping models significantly enhances their predictive power and accuracy 

(Khurana et al., 2022). Topographic features, such as slope and aspect, influence water drainage and soil 

erosion, which in turn affect soil fertility and crop health (Li et al., 2021). Climatic variables, including 

temperature and precipitation, modulate nutrient uptake and crop growth dynamics, further complicating 

nutrient management (Chen et al., 2022). Recognizing the connections between geospatial factors and crop 

nutrients is important for developing agricultural strategies that cater to the unique needs of different farm 

environments. 

 

Recent research also highlighted the significance of integrating geospatial modelling in defining agricultural 

management zones, taking advantage of local topographical features and soil characteristics. Jena et al., 

(2022) demonstrated the use of geospatial modelling in identifying areas with similar soil and terrain 

characteristics to facilitate targeted crop management practices. This approach not only aids in optimizing 

resource allocation but also contributes to sustainable agricultural practices by aligning interventions with 

the inherent capabilities of the land. Moreover, the relationship between topography and soil nutrition 

content, as discussed by Karaca & Gülser, (2018), highlights the critical role of landform in determining soil 

fertility and crop yields. 

 

Machine Learning Techniques in Remote Sensing for Agriculture 

Machine learning techniques, notably Random Forests (RF) developed by Breiman, (2001), have emerged 

as indispensable tools in the field of agriculture, particularly for predicting crop yields and tracking soil 

nutrients (Prasath et al., 2023). These techniques excel in handling large datasets, including remote sensing 

imagery, to show the importance of predictors thereby facilitating optimized agricultural practices and 

enhanced productivity. The robustness of RFs, coupled with their ability to navigate complex, nonlinear 

relationships inherent in agricultural data, positions them as highly effective models for predicting crop 

yields and identifying soil nutrient levels with remarkable accuracy (Hengl et al., 2017). Furthermore, the 

interpretability offered by RFs, despite their complexity, allows for clear insights into feature importance, 

guiding subsequent data collection and analysis efforts. This dual advantage of accuracy and interpretability 

has made RFs a preferred choice for numerous agricultural applications. 

 

Many agricultural studies have harnessed the power of RFs and remote sensing data to tackle the challenges 

of crop yield prediction, crop nutrient estimation and soil nutrient monitoring. For instance, Priya et al., 

(2018) demonstrated the efficacy of Random Forests in accurately predicting crop yields.  Jeong et al., (2016) 

highlighted the superior performance of Random Forests over traditional statistical models in predicting 

yields for wheat, potato, and maize crops. Additionally, the integration of machine learning techniques with 

remote sensing data, such as Sentinel-1 and Sentinel-2, has been explored for various agricultural 

applications, emphasizing the potential of these combined approaches to revolutionize agricultural practices. 

The studies mentioned above collectively highlight the potential of machine learning techniques, particularly 

Random Forests, in advancing agricultural productivity and sustainability through precise forecasting and 

informed decision-making. 
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1.2. Main Research Objectives 

This main aim of this study is to build on the foundational work of Belgiu et al., (2023) which demonstrated 

the potential of PRISMA and Sentinel-2 images for predicting composition of macro and micronutrient in 

grains of cereals in Italy. The study highlighted the effectiveness of multispectral broadband and 

hyperspectral remote sensing in estimating grain nutrient composition, showing promising results for 

various crops such as soybean, wheat, corn, and rice. The study highlighted the feasibility of using remote 

sensing images to provide cost-effective, timely, and spatially explicit representations of crop grain 

nutritional quality. However, several areas require further exploration to enhance the practical application 

and accuracy of these methods. This study aims to capitalize on the initial research by addressing several 

critical aspects that remain unexplored. 

 

First, while Belgiu et al. (2023) focused on a specific set of crops and a single farm in Italy, this study aims 

to broaden the scope by including a variety of crops (barley, teff, sorghum, maize, and wheat) and expanding 

the geographic focus to multiple agroecological zones in Ethiopia. The proposed study area consists of 

many different farms of sizes less than one hectare, with variable growing seasons and farm management 

practices (Headey et al., 2014). This expansion will allow for the assessment of the generalizability of remote 

sensing techniques across different environmental conditions and farming practices, thus providing a more 

comprehensive understanding of their applicability. 

 

Secondly, to improve the accuracy and robustness of grain nutrient concentration predictions, this study 

will explore machine learning algorithms and integrate multi-temporal, multi-spectral, and multi-source 

remote sensing data. Belgiu et al. utilized Partial Least Squares Regression (PLSR) and two-band vegetation 

indices (TBVIs) along with random forests, achieving promising results with 40 observations of data. 

Building on this, this study will investigate the potential of RFs for prediction with variable datasets of more 

than 100 observations.  

 

Third, understanding the interactions between soil properties and crop nutrient content is crucial for 

accurate nutrient mapping. This study will delve into these soil-nutrient dynamics by utilizing coarse-

resolution soil maps and integrating geospatial factors like topography and climate for grain nutrient 

predictions. By incorporating these additional variables, a more holistic view can be provided of the factors 

influencing nutrient uptake and distribution in crops 

 

By addressing these objectives, the study aims to investigate the applicability of remote sensing data for 

estimating crop grain nutrient status using RFs. The crops for study are barley, maize, sorghum, teff and 

wheat. The micronutrients to be analyzed include Calcium (Ca), Copper (Cu), Iron (Fe), Manganese (Mn), 

and Zinc (Zn). The macronutrients to be analyzed include Potassium (K), Magnesium (Mg), Phosphorus 

(P), Sulphur (S).  The integration of various datasets with machine learning will lead to the creation of more 

detailed and location-specific crop nutrient information. This will provide spatially variable data for 

improving dietary assessments and agricultural management practices, supporting global efforts to achieve 

food security and nutritional health. 
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1.2.1. Sub-Objectives 

1. To identify the most important environmental factors including climatic, soil and topographic 

factors using RFs and explain their impacts on crop grain nutrient composition at different stages 

of crop growth using PDPs. 

 

2. To identify the most important Sentinel-1 and Sentinel-2 derived data using RFs and explain their 

impact on estimating crop grain nutrient composition at different stages of crop growth using 

PDPs. 

 

3. To evaluate the potential of remotely sensed derived biophysical properties such as leaf area index 

(LAI) and fraction of photosynthetic active radiation (FPAR) on crop grain nutrient composition 

using RFs at different stages of crop growth. 

1.2.2. Research Questions 

Research Question for Objective 1: 

1a. What are the important environmental factors (climatic, soil and topographic factors) for the estimation 

of nutrient composition of crop grains at different crop growth stages? 

1b. What are the impacts of the important environmental factors on estimation of nutrients at different crop 

growth stages? 

Research Question for Objective 2(a): 

2a i). What are the important Sentinel-1 bands and polarimetric indices for the estimation of nutrient 

composition in crop grains across diverse agroecological zones at different crop growth stages? 

2a ii). What are the impacts of the important Sentinel-1 bands and polarimetric indices on the prediction of 

nutrient composition in crop grains across diverse agroecological zones at different crop growth stages? 

Research Question for Objective 2(b): 

2b i). What are the important Sentinel-2 bands and spectral indices for the estimation of nutrient 

composition in crop grains across diverse agroecological zones at different crop growth stages? 

2b ii). What are the impacts of the important Sentinel-2 bands and spectral indices on the prediction of 

nutrient composition in crop grains across diverse agroecological zones at different crop growth stages? 

Research Question for Objective 3: 

What is the impact of biophysical properties (FPAR AND LAI) on the prediction the nutrient composition 

of crop grains in diverse agroecological zones at different crop growth stages? 
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1.2.3. Expected outcomes. 

1. Variations in rainfall and temperature are expected to significantly influence the nutrient 

composition of crop grains at different stages of crop growth. 

 

2. Soil properties, including composition, structure, and texture, are expected to directly affect the 

nutrient concentration in crop grains and lead to variations in crop nutrition. 

 

3. Topographic factors such as elevation, slope, and the Topographic Wetness Index are expected to 

play an important role in determining the nutrient composition of crop grains. 

 

4. Sentinel-1 derived data, including bands and polarimetric indices, are expected to play a minimal 

role in the prediction of nutrient composition in crop grains. 

 

5. Sentinel-2 data, particularly the red-edge and short-wave infrared (SWIR) bands, as well as 

vegetation indices derived from the combination of both, are expected to impact the prediction of 

nutrient composition in crop grains at different stages of crop growth. 

 

6. FPAR and Leaf Area Index LAI are expected to have a positive impact on the prediction of nutrient 

composition in crop grains. 
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2. STUDY AREA 

Ethiopia is home to a multitude of crops, both staple and cash crops, reflecting the country's agricultural 

diversity. The agricultural landscape of Ethiopia serves as a rich and dynamic study area for agricultural 

research, offering a diverse range of agroecological zones and farming practices. Ethiopia is characterized 

by distinct climatic regions, including highland areas, lowlands, and arid zones, each influencing agricultural 

productivity differently. The varied topography, spanning from high plateaus to low-lying plains, contributes 

to diverse soil types and agricultural conditions. The seasonal rainfall patterns and temperature variations 

further impact crop growth cycles (Haileslassie et al., 2020). 

 

Agricultural activities are intricately tied to the country's two distinct grain growing seasons: belg and meher. 

The belg season, which generally occurs within the between the second and fifth months of the year (from 

February to May), is shorter, while the main meher season extends from May to September. The success of 

cereal grain production, including crops like corn, wheat, sorghum, barley, and teff, hinges significantly on 

the reliability of rainfall patterns during the belg season Ethiopia Climate and Agriculture, 2017)..Variability 

in the onset and completion of these growing seasons in certain years directly impacts both crop production 

and quality as can be seen in Figure 2. Geographically, Ethiopia's landlocked status compounds challenges 

exacerbated by climate change. The nation encompasses two agriculturally significant regions: the lowlands 

and the highlands, each grappling with heightened temperatures, prolonged droughts, precipitation 

fluctuations, soil erosion, and desertification. The lowlands, where a significant portion of Ethiopia's 

livestock grazing land is situated, face distinct climate-related challenges compared to the highlands, which 

predominantly host subsistence farms (Dixon, 2018). The study can be seen in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cereal grains and soil samples were only selected from identified crop areas (in grey shades) in the respective 

regions in Ethiopia. The map inset shows the location of Ethiopia on the African map (in pink) (Kumssa et 

al., 2022). 

Figure 1. Map of cropland areas in Ethiopia (Kumssa et al., 2022) 
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Figure 2. Crop Calendar of Ethiopia source: https://fews.net/east-africa/ethiopia 



 

16 

3. DATASETS AND METHODOLOGY 

 

3.1. Crop Yield Grain Nutrient Composition of Cereals 

The grain nutrient data used in this study is detailed by Kumssa et al., (2015), who described that samples 

were taken from locations where the probability of the crop lands under cultivation was greater than 85 

percent (≥0.85). Another criterion was that the croplands should be within 2.5 km of a road.  

 

The collection of cereal grain samples from farms were completed in November 2017–February 2018 in 

Amhara and in November 2018–February 2019 in Oromiya, Tigray, and Amhara. The data collectors took 

grain samples from the fields only after farmers agreed it was okay to do so. Within a selected farm, samples 

were taken from a 100 m2 plot. Five subsample points were located within the farm, and grain samples were 

collected at each of the five subsample points. These grain subsamples were stored together in a single 

envelope. Kumssa et al., (2015) state that the decision to not discard data from locations with positional 

uncertainties in their study was informed by the use of robust variogram estimators, which are known to be 

resilient to the effects of spatial outliers. The grain samples were then taken to the laboratory and further 

analysis were carried out on over 25 soil and crop nutrients samples. This study focuses only on the nutrients 

mentioned in the main objectives and the data collected in the 2018/2019 crop season 

 

 

Figure 3. Technical workflow proposed in this research to estimate various nutrients in staple crops using machine 
learning and a wide variety of co-variates 
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3.2. Sentinel-1 Image processing 

The Sentinel-1 dual polarisation C-band SAR data was acquired from Google Earth Engine. The image 

collection contains Ground Range Detected (GRD) scenes and has been processed with the Sentinel-1 

Toolbox to create a calibrated ortho-corrected product. Processing involving GRD border noise removal, 

thermal noise removal, application of radiometric calibrated values and terrain correction were already 

completed. The relevant bands for this study are the VV Band (Single co-polarization, vertically transmit, 

vertically receive) and the VH Band (Dual-band cross-polarization, vertically transmit, horizontally receive) 

(Veci et al., 2014). These bands have successfully been used in crop mapping applications. According to the 

Google Earth Engine description, the image collection is updated daily. 

Monthly median composites were generated based on calendar months corresponding to the planting 

schedules of the specified crops. Additionally, composites for the month preceding the planting period were 

included, as soil and environmental conditions prior to planting are crucial for crop development. The field 

data points were overlaid on the monthly composites. As suggested by (Congalton (, 2001), buffer with a 

kernel size three times the highest Sentinel-2 spatial resolution used in this study was applied to extract the 

average band values. The resulting data was then downloaded in tabular format. There were no data gaps. 

See Table 1 for detailed information on Sentinel-1. 

3.3. Sentinel-2 Image Processing 

Mostly cloud-free Sentinel-2 Level 1C images, which are top-of-atmosphere images, were accessed from 

Google Earth Engine. The bands used in this study had spatial resolutions of 10 and 20 meters (see Table 

2 for detailed Sentinel-2 band information). The Sentinel-2 images were processed to Level 2A products 

using the Bayesian atmospheric correction method developed by Yin et al., (2022). Cloud masking was 

performed using the Hollstein cloud mask (Hollstein et al., 2016). Monthly median composites were 

generated using calendar months throughout the crop growing season, including one month prior. The field 

data was overlaid on these composites, and average band values were extracted in tabular format using a 

kernel of the same size as that used for extracting Sentinel-1 data. After performing cloud masking, some 

data gaps remained due to certain months having all cloudy images. To avoid the loss of data, mean values 

were imputed (Rosenthal, 2017). 

3.4. Polarimetric and Sentinel-2 based Vegetation Indices 

Polarimetric indices utilize the polarization properties of electromagnetic waves to offer detailed insights 

into the structural and dielectric characteristics of the Earth's surface, with an emphasis on vegetation. By 

analyzing the way polarized light interacts with vegetation, these indices help distinguish between various 

types of vegetation, assess soil moisture levels, and evaluate surface roughness. Derived from Sentinel-1 

SAR data, polarimetric indices are invaluable for understanding the complex interactions between 

electromagnetic waves and different surface features (Mandal et al., 2019). This capability is particularly 

beneficial for agricultural monitoring and soil moisture assessment, where precise structural information is 

critical as in the case of this study. 

Vegetation indices, on the other hand, are spectral transformations combining two or more spectral bands 

to assess the quantitative or qualitative properties of vegetation. These indices, derived from Sentinel-2 

spectral bands, play a crucial role in monitoring various aspects of vegetation health and dynamics. They 

enable the assessment of biomass, crop water use, crop stress, crop structure, crop health, photosynthetic 

activity, and crop growth dynamics. By analyzing the differences in light absorption and reflection in specific 

spectral bands, vegetation indices provide reliable estimates of vegetation vigour and condition (Bannari et 

al., 1995). Combining polarimetric and vegetation indices creates a comprehensive approach to vegetation 

monitoring. While polarimetric indices provide structural and dielectric information, vegetation indices offer 

insights into the physiological state of the vegetation (Holtgrave et al., 2020). This integration will potentially 
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enhance the accuracy and depth of the analysis. These indices were calculated in earth engine and extracted 

in tabular format using the same method of extraction of Sentinel-1 and -2 data to ensure consistency. See 

Table 3 and Table 4 for sentinel 1 and sentinel 2 derived indices respectively. 

 

 

Table 1. Sentinel-1 Bands and specifications 

Satellite Polarization Frequency 

Range (GHz) 

Centre 

frequency 

(GHz) 

Band width 

(MHz) 

Spatial 

resolution 

(m) 

Sentinel-1 VV 4-8 5.405 0-100 10 
 

VH 4-8 5.405 0-100 10 

 

 

Table 2. Sentinel-2 Bands and specifications 

Satellite Spectral band Spectral 

Range(nm) 

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial 

resolution 

(m) 

Sentinel-2 Band 2 blue 458-523 490 65 10 
 

Band 3 green 543-578 560 35 10 
 

Band 4 red 650-680 665 30 10 
 

Band 5 

vegetation red 

edge 

698-713 705 15 20 

 
Band 6 

vegetation red 

edge 

733-748 740 15 20 

 
Band 7 

vegetation red 

edge 

773-793 783 20 20 

 
Band 8 NIR 785-900 842 115 10 

 
Band 8a narrow 

NIR 

855-875 865 20 20 

 
Band 11 SWIR 1565-1655 1610 90 20 

 
Band 12 SWIR 2100-2280 2190 180 20 

 

 

 

 

Table 3. Sentinel-1 Polarimetric indices 

Abbreviation S1 Polarimetric 

Index 

Expression Application/Characteristics Citation 

DPSVIm Modified Dual 

Polarization SAR 

Vegetation Index 

(VV * VV + VV * VH) / 

1.414213562 

Measures vegetation 

biomass and water content 

using dual polarization SAR 

data. 

(dos Santos et al., 

2021) 
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RVIm Radar Vegetation 

Index modified 

(4 * VH) / (VV + VH) Enhances the detection of 

vegetation cover and health 

by adjusting for terrain 

effects. 

(Nasirzadehdizaji 

et al., 2019) 

Pol Normalized Index (VH - VV) / (VH + VV) Normalizes radar signal 

intensities to account for 

variations in incidence angle 

and surface roughness. 

(Hird et al., 2017) 

CR Cross Ratio VV / VH Compares the vertical and 

horizontal polarizations to 

assess soil moisture levels 

and vegetation structure. 

(Frison et al., 

2018) 

 

Table 4. Sentinel-2 vegetation indices 

Abbreviation S2 Vegetation Index Expression Application/Characteristics Citation 

ARI Anthocyanin 

reflectance Index 

(1 / B3) - (1 / B5) Anthocyanin-physiological 

status of plant which are 

important indicators of different 

types of plant stress. 

(Gitelson et al., 

2003) 

ARVI Atmospherically 

Resistant Vegetation 

Index 

(B8 - B6 - (B2 - B6)) / (B8 

+ B6 - (B2 - B6)) 

corrects for the atmospheric 

scattering effects using blue 

light reflectance 

(Kaufman & 

Tanré, 1992) 

CI_RE Chlorophyll index at 

red edge 

(B8 - B5) - 1 Chlorophyll (Gitelson et al., 

2003) 

DSWI Disease Water Stress 

Index 

(B8 - B3) / (B11 + B4) sensitive to stress due to water 

shortage and plant damage 

(Bochenek et al., 

2018) 

EVI Enhanced Vegetation 

Index 

2.5 * ((B8 - B4) / (B8 + 6 

* B4 - 7.5 * B2 + 1)) 

improved version of NDVI that 

reduces atmospheric influences 

(Matsushita et al., 

2007) 

EVIredEdge Red-Edge Enhanced 

Vegetation Index 

2.5 * ((B8 - B6) / (B8 + 6 

* B6 - 7.5 * B2 + 1)) 

estimate various biophysical 

parameters, such as LAI, 

chlorophyll content, and canopy 

water content, 

 

GCI Green Chlorophyll 

Index 

(B5 / B3) - 1 estimate chlorophyll content in 

vegetation 

(Gitelson et al., 

2003) 

GNDVI Green Normalized 

Difference Vegetation 

Index 

(B8 - B3) / (B8 + B3) more sensitive than NDVI to 

different concentration rates of 

chlorophyll, which is highly 

correlated at nitrogen. 

(A. A. Gitelson 

& Merzlyak, 

1998) 

HMSSI Heavy metal stress 

sensitive index 

((B8 - B5) - 1) / ((B5 - B2) 

/ B3) 

Heavy metal (Z. Zhang et al., 

2018) 

IRECI Inverted Red-Edge 

Chlorophyll Index 

(B7 - B4) / (B5 / B6) canopy chlorophyll content (Jiang et al., 2023) 

MCARI Modified Chlorophyll 

Absorption Ratio Index 

((B5 - B4) - 0.2 * (B5 - B3)) 

* (B5 / B4) 

responsive to leaf chlorophyll 

concentration and ground 

reflectance 

(Wu et al., 2008) 

MSR_RE Modified simple ratio 

at red edge 

((B8 / B4) - 1) / ((B8 / 

B4) + 1) ** 0.5 

Chlorosis, increased sensitivity 

to vegetation biophysical 

parameters. 

(Wu et al., 2008) 

MTCI MERIS Terrestrial 

Chlorophyll Index 

(B6 - B5) / (B5 - B4) chlorophyll content of 

vegetation canopies 
(Dash & 

Curran, 2004) 
NDTI Normalized Difference 

Turbidity Index 

(B11 - B3) / (B11 + B3) assess water turbidity, which 

indicates the presence of 

suspended particles 

(Bid & 

Siddique, 

2019) 

NDVI Normalized difference 

vegetation 

(B8 - B4) / (B8 + B4) Green Biomass, leaf area index 

(LAI) 
(Sims & 

Gamon, 2002) 
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NDVI_RE Normalized difference 

vegetation at the red 

edge 

(B8 - B5) / (B8 + B5), (B8 

- B6) / (B8 + B6), (B8 - 

B7) / (B8 + B7) 

Chlorophyll (A. Gitelson & 

Merzlyak, 

1994) 

NDWI Normalized Difference 

Water Index 

(B8 - B12) / (B8 + B12) measures the presence and 

abundance of water. 

(Gao, 1996) 

NPCI Normalized pigment 

chlorophyll index 

(B4 - B2) / (B4 + B2) Chlorophyll (Huang et al., 2014) 

NRI Nitrogen reflectance 

index 

(B3 - B4) / (B3 + B4) Nitrogen (Huang et al., 2014) 

PhRI Physiological 

reflectance index 

(B3 - B2) / (B3 + B2) Solar utilization efficiency 

during crop development. 

Determines disease and abiotic 

stress 

(Huang et al., 2014) 

PSRI Plant 

senescence/reflectance 

index 

(B5 - B2) / B3 Plant Senescence (Yu et al., 2018; Z. 

Zhang et al., 2018) 

PSSRa Pigment Specific 

Simple Ratio 

Chlorophyll a Index 

B7 / B4 chlorophyll index (Psomiadis et al., 

2017) 

RERVI Red Edge Ratio 

Vegetation Index 

B8 / B6 estimating biomass and 

chlorophyll content 

 

RVI Ratio Vegetation Index B8 / B4 eliminate various effects such as: 

irradiance (topography), 

transmittance (atmospheric 

effects) 

(Y. Tan et al., 2019) 

RVSI Red-Edge Vegetation 

Stress Index 

((B5 + B6) / 2) - B6 assessing vegetative health and 

identifying stressors early 

 

S2REP Sentinel-2 Red-Edge 

Position Index 

705 + 35 * (((B4 + B7) / 2 

- B5) / (B6 - B5)) 

both crop (chlorophyll content) 

N and growth status 

(Eleveld et al., 2018) 

SAVI Soil Adjusted 

Vegetation Index 

((B8 - B4) / (B8 + B4 + 

0.5)) * (1 + 0.5) 

reduces soil brightness effects 

from vegetation indices 

(Huete, 1988) 

SIPI Structure insensitive 

pigment index 

(B8 - B2) / (B8 + B2) Pigment ratio between 

carotenoid and chlorophyll a. 

Canopy stress and LAI 

(Yu et al., 2018) 

TCARI Transformed 

chlorophyll absorption 

and reflectance index 

3 * ((B5 - B4) - 0.2 * (B5 - 

B3) * (B5 / B4)) 

Chlorophyll, LAI (Wu et al., 2008) 

TVI Triangular Vegetation 

Index 

0.5 * (120 * (B6 - B3) - 200 

* (B4 - B3)) 

Estimates green LAI 

Sensitive to increase in 

chlorophyl as canopy density 

increases. 

(Qian et al., 2022) 

WDRVI Wide Dynamic Range 

Vegetation Index 

(0.2 * B8 - B4) / (0.2 * B8 

+ B4) 

Positive relation with vegetation 

fraction 

sensitivity to change in LAI 

(A. A. Gitelson, 

2004) 

3.5. Rainfall 

The Climate Hazard Group Infrared Precipitation with Station Data (Version 2.0 final) was accessed from 

Google Earth Engine. Monthly sum composites were generated for the entire growing season, including 

one month prior. This data has a resolution of approximately 5.6 km. CHIRPS combines satellite-measured 

precipitation with ground station data, resulting in low systematic bias. The decision to use CHIRPS rainfall 

data is supported by previous research demonstrating its effectiveness for hydrological forecasting and trend 

analysis in Ethiopia (Funk et al., 2015). The data was retrieved in tabular format. 
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3.6. ERA5-Land Data and Processing 

The ERA-5 land dataset, produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) and the Copernicus Climate Change Service (C3S), provides a comprehensive climate reanalysis 

dataset. It provides hourly predictions for atmospheric, terrestrial, and marine climate variables, 

encompassing rainfall and temperature measurements, on a global scale. The data covers the Earth on an 

11 km grid, with included information about uncertainties for all variables at reduced spatial and temporal 

resolutions (Muñoz-Sabater et al., 2021). The ERA-5 land dataset is available in google Earth Engine. The 

following datasets were used from ERA5 land: Temperature_2m, soil temperature, volumetric soil water, 

evaporation from bare soil, and total evaporation. 

3.6.1. Temperature_2m 

The 2-meter air temperature parameter represents the measured temperature of the atmosphere at a height 

of 2 meters from the land surface, oceans, or inland water systems. The measurement involves an 

interpolation process between the Earth’s surface and the lowest model level, considering the atmospheric 

conditions through physical parameterization. The unit of measurement for this parameter is Kelvin (K) 

In Google Earth Engine, the data was extracted from the monthly aggregate asset of the hourly data. 

Temperature at 2 m was created by averaging all hourly data in a particular month over the growing season 

and a month prior. The data was extracted in tabular format from the field location points. 

3.6.2. Soil temperature 

This parameter measures the temperature within six layers of soil. The soil surface is defined at 0 cm. The 

soil temperature is measured at the central point of each layer, with calculations of heat transfer occurring 

at the boundaries between layers. In this study, soil temperature data was averaged for the first two layers (0 

- 28 cm). 

3.6.3. Volumetric Soil Water 

The volumetric soil water content for the initial two layers (0 - 28 cm) was averaged in this study. This 

represents the volume of water present in the topsoil, influenced by factors such as texture and depth of 

soil, and the groundwater level. The surface is defined at 0 cm. 

3.6.4. Evaporation from Bare Soil 

This parameter quantifies the amount of water that evaporates from the bare soil surface. It represents the 

water loss occurring at the top of the land surface. Monitoring evaporation from bare soil is essential for 

understanding soil moisture dynamics and managing water resources in agricultural and natural ecosystems. 

3.6.5. Total Evaporation 

Total evaporation refers to the accumulated water that has transitioned into water vapor from Earth's 

surface plus the total transpiration of vegetation. This metric is expressed in meters of water above the 

surface. Downward fluxes are considered positive, so negative values relate to evaporation, while positive 

values represent condensation. Total evaporation is a critical parameter for assessing the water cycle, climate 

interactions, and hydrological processes. 

3.7. Soil Data and processing 

The soil data for this study was obtained from the ISRIC - World Soil Information portal, which provides 

a comprehensive database of global soil information. This platform offers various soil properties at multiple 

spatial resolutions, which are crucial for agricultural and environmental research. 
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The primary source of soil data from ISRIC is the SoilGrids dataset, which provides global predictions for 

standard soil properties at six standard depths (0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-

200 cm). These physical and chemical properties include soil organic carbon content, pH, texture fractions 

(sand, silt, and clay), bulk density, extractable nitrogen, extractable iron, and others. The data is generated 

through machine learning techniques applied to globally harmonized soil profile observations and 

environmental covariates, resulting in spatial predictions at 250-meter resolution (Hengl, De Jesus, et al., 

2017). The soil data was downloaded from the ISRIC portal. For each soil property, values corresponding 

to the average crop root depth were extracted. This was accomplished using ArcGIS Pro, where the data 

was processed to obtain mean values across the root depth for each crop type. This integration of soil data 

provides a more accurate representation of the soil environment encountered by crop roots, which is critical 

for assessing nutrient availability and uptake (Rickson, 2023). The data was extracted using field location 

points. 

3.8. Digital Elevation Model and processing 

The Multi-Error-Removed Improved-Terrain (MERIT) Digital Elevation Model (DEM) is a product of the 

elimination of numerous error components from pre-existing spaceborne DEMs, inclusive of the Shuttle 

Radar Topography Mission 3-arcsecond (SRTM3) v2.1 and the Advanced Land Observing Satellite (ALOS) 

World 3D - 30m (AWD-30m) v1 (Yamazaki et al., 2017). This high-accuracy global DEM eliminates major 

error components from the SRTM3 and AWD-30m datasets, enhancing terrain representation and 

increasing vertical accuracy. 

 

Topographic derivatives from the elevation band of the MERIT DEM include aspect and slope in degrees 

by calculating local gradient using the 4-connected neighbours of each pixel. These are described as primary 

derivatives since they are calculated directly from the digital elevation model. The primary derivatives are 

calculated using the Google Earth Engine “ee.Terrain.products” function. Secondary derivatives depend on 

a combination of primary surface derivatives or developed indices. The topographic wetness index used in 

this study is an example. The Topographic Wetness Index (TWI) quantifies water accumulation in areas 

with varying elevations. It is determined by both the slope of the terrain and the contributing area upstream 

(Schmidt & Persson, 2003). 

 

𝑇𝑊𝐼 =  𝐼𝑛(𝑎/𝑡𝑎𝑛𝑏)            equation (1) 

where: a = upslope contributing area (m2) 

 

B = slope in radians 

 

These derivatives will be used to capture topographic variations and identify potential areas susceptible to 

specific agricultural challenges (Mukul et al., 2017). All products derived from the DEM were calculated in 

Google Earth Engine and extracted in a tabular format using the field location points. 

3.9. Moderate Resolution Imaging Spectroradiometer (MODIS) product 

The MODIS product used in this study provides essential data on the FPAR and LAI, which are both 

important for assessing vegetation health and productivity (Yan et al., 2016). 

FPAR is a dimensionless metric indicating the fraction of incoming solar radiation within the 

photosynthetically active wavelength range (400-700 nanometers) absorbed by plant leaves. It is crucial for 

assessing photosynthetic efficiency and overall plant health by reflecting the canopy's light-capturing 

capability. LAI quantifies the total one-sided leaf area per unit ground area for a plant canopy, providing 
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essential insights into the vegetation's capacity for photosynthesis, water regulation, and interaction with 

atmospheric and soil processes (Benjamin, 2017). This index is vital for understanding canopy density and 

light interception efficiency, which are critical for plant growth and development. The MODIS algorithm 

produces 8-day composite datasets at a 500-meter resolution by selecting the best pixel from multiple Terra 

sensor acquisitions, ensuring data accuracy and reliability. 

To generate monthly composites, the sum of MODIS product was computed for each field location point, 

as the study focuses on quantifying the cumulative amount of FPAR absorbed by the crops within a given 

month. The data was exported in tabular format using field location points. 

3.10. Random Forest Models and Optimization 

3.10.1. Variable Selection using Random Forests 

In this study, managing a dataset with over five hundred potential predictor variables posed a significant 

challenge due to the Hughes phenomenon, also known as the curse of dimensionality (Alonso et al., 2011). 

This phenomenon states that the predictive power of a model decreases as the number of predictor variables 

increases beyond a certain point, especially when the sample size is limited. To address this, Variable 

Selection Using Random Forests (VSURF) developed by Genuer et al., (2010) was implemented as a 

preliminary step. This approach was instrumental in reducing the dimensionality of the dataset by eliminating 

irrelevant features, thereby mitigating the effects of the Hughes phenomenon. Consequently, it simplified 

the model-building process and enhanced the interpretability of subsequent analyses by focusing on the 

most influential variables. This strategic decision was crucial for balancing the depth of analysis with practical 

constraints, including computational resources and the risk of overfitting. 
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Insights of 

VSURF plots 

In Figure 4, the 

top left graph 

illustrates the average variable importance (VI) in a descending sequence, denoted by a black curve in the 

thresholding phase. A red horizontal line demarcates the threshold beyond which variables are considered 

significant. This step eliminates variables of lesser importance, thereby simplifying the dataset. The top right 

graph presents the standard deviation of VI values, arranged according to their mean VI. A green line 

symbolizes the predictions of the Classification and Regression Trees (CART) model, and a dotted red line 

indicates the threshold based on the minimum CART prediction value. This procedure ensures examines 

carefully the variables with high variability in their importance scores. 

The bottom left graph describes the interpretation phase, plotting the average out-of-bag (OOB) error rate 

for nested RF models, ranging from a one variable to all retained variables. A vertical red line pinpoints the 

model with the minimum OOB error, thereby identifying the optimal subset of variables for the model. 

The bottom right graph corresponds to the prediction phase, depicting the average OOB error rate for 

models with variables added in a sequential manner. The final model with the lowest OOB error, ensures 

the selection of the most predictive set of variables (Genuer et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Distribution of field crop nutrient measurements per regions. These measurements have been used to train 

and test the accuracy of the implemented predictive models 

Figure 4. VSURF Result plots. Refer to section “Insights of VSURF plots” for explanation 
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3.10.2. Hyperparameter Tuning and Random Forest Model 

After the variable selection phase, the data was split into training and testing subsets, with 70% of the data 

from each administrative region designated for training the models and the remaining 30% from each 

administrative region reserved for independent validation (see Table 5). This allocation ensured that the 

models developed would demonstrate robustness against unseen data, thereby improving the generalizability 

of the findings. Following this preparation, a systematic approach to hyperparameter tuning was 

incorporated, beginning with Grid Search Cross-Validation (GridSearchCV). GridSearchCV systematically 

explored combinations of hyperparameters across a predefined range, employing cross-validation to 

evaluate each configuration and identify the optimal set (Malakouti et al., 2023). This method facilitated the 

fine-tuning of the RF parameters to better capture the complex patterns in the data. 

 

Upon completion of the hyperparameter tuning processes, which encompassed both Grid Search Cross-

Validation (GridSearchCV) and manual adjustments, the model was developed with the selected potential 

predictors identified during the VSURF phase. This initial model run served as a foundation, providing a 

baseline for assessing the predictive capabilities of the selected features. Following the execution of the 

model, the importance of individual predictors was critically evaluated using ELI5 Permutation Importance. 

This method, as outlined by Korobov & Lopuhin, 2017 in the ELI5 package documentation, measures how 

the model's score decreases when a feature is permuted, offering a quantitative measure of feature 

importance. 

 

The ELI5 Permutation Importance analysis offered a comprehensive view of the contribution of each 

feature towards the model's predictions, enabling the identification and removal of less impactful predictors. 

This step was crucial for refining the model by focusing solely on the most critical features, thereby 

enhancing its predictive accuracy. The subsequent model reiteration, therefore, concentrated on the subset 

of features deemed most important by the ELI5 analysis. This refined approach not only improved the 

model's overall performance but also contributed to a more efficient and interpretable final model, which 

aligns with the goal of developing a robust and understandable predictive model. 

 

Furthermore, the integration of ELI5 Permutation Importance into the model development process 

emphasized the importance of explainability in machine learning. By quantitatively assessing the influence 

of each feature on the model's predictions, this method provided insights into the dataset, aiding in 

debugging, and enhancing the model's accuracy. 

 

 

Region 

 Oromiya Amhara Tigray 

Crop 

Total Train Test Total Train Test Total Train Test Total Train Test 

    
Wheat 210 147 63 152 106 46 37 36 11 21 15 6 

Maize 218 152 66 189 132 57 16 11 5 13 9 4 

Teff 226 159 67 168 118 50 31 22 9 26 18 8 

Sorghum 108 76 32 64 45 19 40 28 12 4 3 1 

Barley 130 91 39 103 72 31 14 10 4 13 9 4 
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The visual representation in the Figure 5 shows a gradient of feature importance, delineated by A spectrum 

of colors ranging from vibrant green to faint green, transitioning into pink, and ultimately to red. This color 

gradient serves as a visual cue, indicating the relative significance of the features within the dataset. Notably, 

features highlighted in vibrant green are to hold the highest importance, gradually diminishing in significance 

towards those highlighted in red, which are deemed less important within the analytical context. 

 

 

 

 

 

 

 

 

Figure 5. ELI5 permutation importance. A: Permutation importance of variables from VSURF used in a model; B: Permutation 
importance of variables after manually discarding variables highlighted in red; C: Variables used in the final model after 
discarding variables in B.  

  

A 

B 

C 



 

27 

3.10.3. Assessing Model Performance 

To assess the performance of the models, three statistical metrics were employed, including the coefficient 

of determination (R²), Root Mean Square Error (RMSE), and normalized Root Mean Square Error 

(nRMSE). These metrics provide a comprehensive evaluation of the model's accuracy and predictive 

capabilities and are widely recognized and used in the field of predictive modelling. The simultaneous use 

of these three metrics ensures a thorough examination of model performance. 

 

The coefficient of determination, denoted as R², quantifies the fraction of the variance in the target variable 

that is explained by the explanatory variables (Draper & Smith, 2014). It is defined as equation 2: 

 

𝑅² =  1 −  [𝛴 (𝑦ᵢ −  ŷᵢ) ² / 𝛴 (𝑦ᵢ −  ȳ) ²]      (equation 2) 

 

where: 

 

• yᵢ represents the observed values, 

• ŷᵢ denotes the predicted values, 

• ȳ represents the mean of the observed values. 

 

R² values range from 0 to 1. An R² value close to one indicates that a large proportion of the variance in the 

response variable is explained by the model, signifying high predictive accuracy. Conversely, an R² value 

closer to zero suggests poor model performance. The coefficient of determination (R²) is a dimensionless 

metric. 

The Root Mean Square Error (RMSE) quantifies the average magnitude of the prediction errors, providing 

an intuitive measure of model accuracy. It is calculated as equation 3: 

 

𝑅𝑀𝑆𝐸 =  √ [𝛴 (𝑦ᵢ −  ŷᵢ) ² / 𝑛]        (equation 3) 

where: 

 

• yᵢ is the observed values, 

• ŷᵢ represents the predicted values, 

• n is the number of observations. 

 

A smaller value of RMSE indicates better model performance, as it signifies less deviations between the 

observed and predicted values. A high RMSE might indicate that the model is making large errors on some 

predictions, suggesting a need for further tuning or additional features.  The RMSE is typically measured in 

the same units as the dependent variable (Hyndman & Koehler, 2006). 

 

The normalized Root Mean Square Error (nRMSE) is an extension of RMSE that accounts for the scale of 

the data, making it useful for comparing models across different datasets or scales (Stephen & Kazemi, 

2014). It is defined as equation 4 

 

𝑛𝑅𝑀𝑆𝐸 =  𝑅𝑀𝑆𝐸 / ȳ                                       (equation 4) 

where ȳ is the mean of the observed data. This dimensionless metric facilitates direct comparisons, and a 

lower nRMSE value reflects higher accuracy and reliability of the model. 

 

By utilizing these statistical metrics, the study ensured a rigorous assessment of model performance. The 

combination of R², RMSE, and nRMSE provided a robust framework for evaluating the predictive power 
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and accuracy of the models, guiding the refinement and optimization process to achieve reliable and 

interpretable results. These measures, being commonly used, allow for the comparison of model 

performance across different studies or research. This comparability is crucial for benchmarking and 

choosing the best model for a given task. 

3.10.4. Model Interpretation 

After the predictive models with the highest possible accuracies have been developed, PDPs which serve as 

a valuable tool interpreting machine learning model will be used to derive insights. PDPs provide a graphical 

representation of how individual features influence a target variable within RF models. By visualizing the 

relationship between predictors and the target nutrients, PDPs offer insights into positive or negative linear 

and nonlinear relations, facilitating a comprehensive evaluation of the model’s relevant predictors 

(Friedman, 2001). A significant limitation of PDPs lies in their assumption that each predictor operates 

independently of others. This means that while analyzing the impact of a single feature on the target nutrient, 

PDPs ignore possible feature interactions. This approach simplifies the analysis but may potentially lead to 

incomplete interpretations of the model's behaviour. 
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4. RESULTS 

4.1. Descriptive statistics of Crop Grain Nutrient composition 

The descriptive statistics of nutrient composition in various crops, measured in mgkg−1, reveal significant 

differences in nutrient densities based on median values (see Figure 6 to Figure 14). Teff consistently exhibits 

the highest median values across multiple nutrients: Ca (1530.95 mgkg−1), Cu (6.88 mgkg−1), Fe (146.31 

mgkg−1), Mg (1961.87 mgkg−1), Mn (79.41 mgkg−1), P (3937.78 mgkg−1), S (2311.17 mgkg−1), and Zn (30.55 

mgkg−1). Barley also shows high median values for several nutrients, including Ca (405.64 mgkg−1), K 

(5172.37 mgkg−1), Mg (1272.09 mgkg−1), P (3602.89 mgkg−1), S (1846.68 mgkg−1), and Zn (29.27 mgkg−1). 

Wheat demonstrates considerable nutrient densities with notable median values for Ca (436.40 mgkg−1), K 

(4680.45 mgkg−1), P (3252.93 mgkg−1), and S (1814.81 mgkg−1). In contrast, Maize has the lowest median 

values for most nutrients: Ca (68.06 mgkg−1), Cu (1.62 mgkg−1), Fe (22.75 mgkg−1), Mg (1023.36 mgkg−1), 

Mn (4.85 mgkg−1−1), P (2684.34 mgkg−1), S (1579.83 mgkg−1), and Zn (19.67 mgkg−1). Sorghum generally 

falls in the mid-range for most nutrients, with notable median values for Ca (183.18 mgkg−1), K (4538.27 

mgkg−1), Mg (1485.87 mgkg−1), and P (3210.56 mgkg−1). These statistics underscore the nutritional 

prominence of Teff, Barley, and Wheat compared to Maize, which shows consistently lower nutrient 

concentrations. 

 

 

 

 

 

Figure 6. Violin plots showing Ca grain nutrient composition Figure 7. Violin plots showing Cu grain nutrient composition 
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Figure 11. Violin plots showing Mg grain nutrient composition 

Figure 13. Violin plots showing P grain nutrient composition 

Figure 12. Violin plots showing Mn grain nutrient composition 

Figure 10. Violin plots showing S grain nutrient composition 

Figure 8. Violin plots showing Fe grain nutrient composition Figure 9. Violin plots showing K grain nutrient composition 
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4.2. Findings 

Due to the large number of investigated nutrients (9) and crops (5) and total of 45 implemented predictive 

models, the study will focus on discussing in detail the results obtained for teff. In Ethiopia Teff is one of 

the most important staples and holds significant cultural and economic importance in the country, being a 

staple crop deeply ingrained in the country's culinary traditions and agricultural practices (Tadele & Hibistu, 

2021). As one of the oldest domesticated grains globally, teff serves as a dietary staple for millions of 

Ethiopians, particularly in the form of Injera, a traditional sourdough flatbread. Moreover, teff plays a crucial 

role in Ethiopia's economy, contributing significantly to agricultural production and livelihoods across the 

country. Its resilience to adverse growing conditions, such as drought and poor soil fertility, makes it 

particularly valuable in regions where agricultural resources are limited. Additionally, teff's nutritional profile, 

rich in essential nutrients like Fe and Ca, further enhances its importance as a key component of the 

Ethiopian diet, particularly in combating malnutrition and addressing food security challenges (Kuyu et al., 

2024). 

 

Findings for the remaining crops will be presented with less detail, maintaining a broader perspective while 

highlighting significant trends and patterns in the discussion section. These statistical accuracies will also be 

presented in a tabular format at the end of this section. This approach ensures that the wealth of results 

generated from this study is shared, while maintaining the readability and coherence of the study. 

 

While the discussion in the text focuses in detail on teff model in this section, it is essential to note that the 

results for all crops are equally significant and have been thoroughly analyzed. The figures of these results 

are in Appendix 2. Results for barley to Appendix 6. Results for wheat and can be referred to for an overview 

of the findings. 

 

The results were interpreted in the context below: 

May is the month before Teff is planted, with planting is occurring in June and July. August and September 

represent the mid-season, and October marks the end of the mid-season. December to February marks the 

end of the harvest season. 

 

Figure 14. Violin plots showing Zn grain nutrient composition 
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After the interpretation of results relating to Teff and each of the nutrients, a graphical representation of 

results will follow. 

4.3. Micronutrient Analysis for Teff 

The micronutrient analysis for Teff includes an examination of Ca, Cu, Fe, Mn, Mg and Zn. These 

micronutrients are crucial for various bodily functions and maintaining overall health. These micronutrient 

deficiencies are widespread in the study area (Belay et al., 2022). 

4.3.1. Interpretation of Results for Teff grain - Ca 

The important features identified through the model include the amount of Ca nutrient in the soil, the 

Structure Insensitive Pigment Index (SIPI) for July, and the bulk density of the soil. The Ca content in Teff 

is significantly influenced by the concentration of Ca in the soil. The predictive model had an R-squared of 

0.12 and RMSE of 741 mgkg−1. 

 

From the relation in the partial dependence plot (see Figure 15C), generally, higher levels of Ca in the soil 

generally lead to higher Ca content in Teff.  This indicates that the amount of soil Ca content is important 

in determining the nutritional composition of Teff. 

 

SIPI serves as an indicator of plant health and stress levels  (Tayade et al., 2022). The Partial dependence 

relation (see Figure 15D) generally shows that a higher SIPI value, indicative of better plant health and less 

stress at the start of the season, correlates with higher Ca content in Teff grains. This highlights the 

importance of environmental factors, particularly those affecting plant health, in influencing the nutritional 

composition of Teff. 

 

Soil bulk density reflects soil compaction and porosity, which in turn affects root growth conditions and 

nutrient uptake (Indoria et al., 2020). Lower bulk density generally indicates better root growth conditions 

and potentially higher nutrient uptake, including Ca. The partial dependence relationship shows this (see 

Appendix 5. Results for teff). However, the impact of bulk density on Ca content in Teff appears to be less 

consistent compared to other factors, suggesting that it may be influenced by other interacting variables. 
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Figure 15.  Graphical representation of results for Teff grain and Ca nutrient composition. Image A represents scatter plots of observed versus 
predicted values, offering a visual comparison between actual measurements and model predictions. Image B is the permutation importance plot, 
illustrating the significance of the predictors used in the final model. Images C and D are the partial dependence plots for the two most influential 
features, highlighting their effect on the grain nutrient composition. 

Training R2 0,55 
Testing R2 0,13 
RMSE 741,68 
nRMSE 0,11 

 

A 
B 

C D 
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4.3.2. Interpretation of Results for Teff grain - Cu 

The predictive model had an R-squared of 0.30 and RMSE of 1 mgkg−1. 

The evaluation of vegetation indices in May, before the planting season, may seem unusual, yet they could 

provide valuable information about pre-existing soil conditions and residual vegetation cover. The FPAR 

during this period can have a lasting impact on the soil and environmental conditions. If there were any 

crops planted in the field (either cover crops or weeds), they could either improve the amount of nutrient 

in the soil or compete with the planted crops for nutrients (Scavo et al., 2022) .  Adequate sunlight exposure 

before planting can enhance soil temperature and moisture retention, creating favourable conditions for 

seed germination and early root development. These pre-planting conditions are crucial as they can influence 

the availability and uptake of Cu once the Teff begins to grow (Doane et al., 2019). Improved early soil 

conditions can lead to better root systems, which in turn can enhance the plant’s ability to absorb Cu from 

the soil (Ngo & Cavagnaro, 2018). From the Partial dependence relationship (see Figure 16C), it is noted 

that there is a mixed impact of pre-season FPAR on Cu nutrient in Teff, which would need extra context 

to be interpreted. 

 

The Anthocyanin Reflectance Index (ARI) in July measures the presence of anthocyanins, which are 

indicators of plant stress responses. During July, Teff plants are typically in a critical growth phase where 

they can experience various environmental stresses, such as high temperatures or drought conditions. 

Higher ARI values suggest that plants may be undergoing stress, which can affect physiological processes, 

including nutrient uptake (A. A. Gitelson et al., 2009). Stress conditions can alter the plant's demand and 

uptake for micronutrients like Cu, influencing its concentration in the plant tissues. From the Partial 

dependence plots (Figure 16D), the high ARI values in the early crop stage growth led to a reduction in Ca 

in the grain at the end of the season. 

 

 

The SIPI in July is an indicator of plant health and photosynthetic activity. While it has a lower influence 

compared to the other features, SIPI provides valuable insights into the overall health of the Teff plants. 

Healthier plants with efficient photosynthetic processes are more likely to absorb and utilize micronutrients 

effectively, including Cu. The partial dependence relation shows that when the plant has high values of SIPI 

(refer to Appendix 5. Results for teff), Ca nutrient is high in the grain. This shows that efficient 

photosynthesis at the growth stage of Teff is important for Ca nutrient uptake. Monitoring SIPI values can 

help in understanding the plant’s nutritional status and potential deficiencies. 
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Figure 16. Graphical representation of results for Teff grain and Cu nutrient composition. Image A represents scatter plots of observed 
versus predicted values, offering a visual comparison between actual measurements and model predictions. Image B is the permutation 
importance plot, illustrating the significance of the predictors used in the final model. Images C and D are the partial dependence plots for 
the two most influential features, highlighting their effect on the grain nutrient composition. 

Training R2 0,73 
Testing R2 0,30 
RMSE 1,07 
nRMSE 0,17 

 

A 

 

B 

C D
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4.3.3. Interpretation of Results for Teff - Fe 

The predictive model had an R-squared of 0.44 and RMSE of 409.5 mgkg−1. 

Low TVI and EVI values in May indicate less vigorous vegetation in the field before teff is planted. This 

could mean that the field is relatively free of other plants that could compete with teff for nutrients, including 

Fe once it is planted. Therefore, when teff is planted a month later, it might have access to a larger pool of 

available nutrients, leading to higher Ca content in the grain. High TVI and EVI values in May could indicate 

vegetation in the field before teff is planted. This could mean that the field is densely populated with other 

plants that could compete with teff for nutrients once it is planted. Therefore, when teff is planted a month 

later, it might face competition for available nutrients, leading to reduced Fe uptake in the grain. The plot 

(See Figure 17C) shows that when EVI increases in the pre-season, Fe in the grain is low 

 

The PSRI reflects the level of plant senescence or aging just before harvest. Higher values indicate canopy 

stress, possibly due to factors like disease or environmental conditions, or senescence in vegetation leading 

to potentially reduced Fe uptake or translocation (Merzlyak et al., 1999). This measurement of PSRI at the 

end of the crop growth cycle, shows that increased crop senescence at the end of the growing season leads 

to a reduction of Fe nutrient concentration in the grain (refer to Figure 17D). 

 

Training R2  0,50 
Testing R2  0,44 
RMSE  409,48 

nRMSE  0,14 

 

A B 
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4.3.4. Interpretation of Results for Teff - Mn 

The features considered include soil pH, evaporation from bare soil, and the normalized difference turbidity 

index (NDTI).  The predictive model had an R-squared of 0.70 and RMSE of 46 mgkg−1. 

 

Soil pH is a key determinant of nutrient availability. High pH levels (alkaline conditions) can reduce Mn 

availability because Mn forms insoluble compounds that plants cannot easily absorb. Conversely, low pH 

levels (acidic conditions) increase Mn availability, as the nutrient remains soluble and more accessible to 

Teff (Berbecea et al., 2011). Therefore, understanding the soil pH before planting and during the growing 

season is crucial for optimizing Mn uptake. This is evident in the PDP plot (see Figure 18D). 

 

Evaporation rates in January, the end of the harvest season, influence soil moisture levels (See Figure 18C). 

High evaporation rates indicate drier soil condition, which can limit nutrient mobility and availability (Halli 

et al., 2016), including Mn. On the other hand, low evaporation rates suggest better soil moisture retention, 

supporting nutrient availability and uptake in the Teff grain. 

 

Towards the end of a crop’s life cycle, nutrients are often translocated from the leaves to the grain (Maillard 

et al., 2015). The NDTI which has been proved by (Bahrawi & Elhag, 2018) to estimate soil water content. 

At low NDTI values, the Mn content in teff grain is relatively low (See Appendix 5. Results for teff). As 

NDTI values increase, the Mn content in teff grain also increases. This could be mean that soil moisture at 

the end of the season is for transfer of Mn. 

 

 

 

 

 

 

 

 

Figure 17. Graphical representation of results for Teff grain and Fe nutrient composition. Image A represents scatter plots of observed 
versus predicted values, offering a visual comparison between actual measurements and model predictions. Image B is the permutation 
importance plot, illustrating the significance of the predictors used in the final model. Images C and D are the partial dependence plots for 
the two most influential features, highlighting their effect on the grain nutrient composition. 
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Training R2 0,90 
Testing R2 0,70 
RMSE 46,20 
nRMSE 0,14 

 

A 

B 

C D

Figure 18. Graphical representation of results for Teff grain and Mn nutrient composition. Image A represents scatter plots of observed versus 
predicted values, offering a visual comparison between actual measurements and model predictions. Image B is the permutation importance plot, 
illustrating the significance of the predictors used in the final model. Images C and D are the partial dependence plots for the two most influential 
features, highlighting their effect on the grain nutrient composition. 
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4.3.5. Interpretation of Results for Teff - Zn 

The predictive model had an R-squared of 0.40 and RMSE of 3.6 mgkg−1. 

The features considered include the FPAR in July, the normalized difference vegetation index (NDVI) in 

July, the Ca nutrient content in the soil, the MODIS Terrestrial Chlorophyll Index (MTCI) in May, and total 

evaporation in September. 

 

High values of July Total FPAR indicate a high fraction of incoming solar radiation being utilized for 

photosynthesis, which is critical during the planting period. This suggests healthy and vigorous plant growth 

at the onset of Teff development, enhancing nutrient uptake, including Zn. Conversely, low values imply 

less efficient photosynthesis, potentially leading to poorer plant growth and reduced Zn absorption. The 

Partial dependence relation does not show a uniformly positive or negative effect (See Appendix 5. Results 

for teff), The impact can vary significantly based on other contextual factors. 

 

The PDP (See Figure 19C) shows that Zn content in Teff grains increases at low NDVIre values. This is 

difficult to interpret since the NDVIre values are negative which mean vegetation is absent and only the soil 

is visible (Sharma et al., 2022) . Further research is needed to understand this relationship. 

 

Ca content in the soil can improve overall soil health and structure, facilitating better root development and 

nutrient uptake (Grzebisz et al., 2022). However, very high levels of Ca in the soil can cause a change in the 

photosynthetic activity of plants and hinder the absorption of nutrients (Weng et al., 2022). This can be seen 

in the PDP (See Appendix 5. Results for teff). 

 

High values of the May MTCI suggest high chlorophyll content and healthy vegetation before the Teff 

planting season in June and July (Dash & Curran, 2007). The health and productivity of the previous crop 

or natural vegetation can serve as an indirect indicator of soil health. Healthy vegetation often suggests good 

soil fertility (Tahat et al., 2020), which influences the nutrient uptake of the subsequent crop. Low MTCI 

values suggest reduced vegetation health and nutrient status, potentially limiting Zn availability during the 

initial stages of Teff growth (See Figure 19D). 

High total evaporation in September, indicates water loss, which can lead to drier soil or vegetation 

conditions. This can limit nutrient mobility and uptake, including Zn. Conversely, low evaporation rates 

suggest better soil and vegetation moisture retention (Hsu & Dirmeyer, 2023), supporting sustained nutrient 

availability and uptake by the crop (Végh, 1991a). The PDP (See Appendix 5. Results for teff) confirms this 

relation, but with slight mixed. 
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Training R2 0,54 
Testing R2 0,40 
RMSE 3,57 
nRMSE 0,12 

 

A B 

C D 

Figure 19. Graphical representation of results for Teff grain and Zn nutrient composition. Image A represents scatter plots of observed versus 
predicted values, offering a visual comparison between actual measurements and model predictions. Image B is the permutation importance 
plot, illustrating the significance of the predictors used in the final model. Images C and D are the partial dependence plots for the two most 
influential features, highlighting their effect on the grain nutrient composition. 
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4.3.6. Interpretation of Results for Teff - Mg 

The important features are soil K content, the enhanced vegetation index in December, the plant 

senescence/reflectance index in May, the red edge position index in June, and the normalized difference 

water index in December.  The predictive model had an R-squared of 0.64 and RMSE of 152 mgkg−1. 

 

From the plots (See Figure 20C), it can be observed that when the K nutrient level in the soil is low, the Mg 

content in Teff grain is relatively high. As the K nutrient level in the soil increases, there’s a sharp decrease 

in the Mg levels in the Teff grain. This suggests a negative correlation between these two variables. The 

observed trend could be due to the competitive uptake of nutrients by the plant. In soils with high K levels, 

the plant might absorb more K at the expense of other nutrients. This phenomenon is known as 

“antagonistic interaction”, where the presence of one nutrient inhibits the uptake or utilization of another 

(Xie et al., 2021). 

 

When EVI values are low, it typically indicates less healthy or sparse vegetation (Z. Li et al., 2010). The 

relationship between EVI values and Mg content in Teff grain (See Figure 20D) shows that low EVI values, 

indicating less healthy or sparse vegetation at maturity, correspond to higher Mg content. Conversely, as 

EVI values rise, suggesting healthier and more abundant vegetation, Mg content begins to decrease. This 

phenomenon can be attributed to "nutrient dilution," where the increase in biomass associated with high 

EVI leads to a dispersion of the same amount of Mg across a larger plant mass, resulting in lower nutrient 

concentration in the grain (Jarrell & Beverly, 1981). 

 

The relationship between NDWI values and Mg concentration in Teff grain (See Appendix 5. Results for 

teff) shows that low NDWI values, indicating diminished water content in vegetation, correspond to lower 

Mg concentration in the Teff grain. This suggests that reduced vegetation moisture at maturity stage of the 

Teff crop is accompanied by a decline in Mg concentration within the grain. Conversely, as NDWI values 

increase, which means increased moisture levels in the Teff crop during December, an increase in Mg 

concentration is observed in the grain. This positive correlation between NDWI and Mg concentration 

shows the pivotal role of vegetation and soil moisture in supporting optimal nutrient uptake (Végh, 1991b). 
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Training R2 0,93 
Testing R2 0,64 
RMSE 152,02 
nRMSE 0,12 

 

A B 

C D 

Figure 20: Graphical representation of results for Teff grain and Mg nutrient composition. Image A represents scatter plots of observed versus 
predicted values, offering a visual comparison between actual measurements and model predictions. Image B is the permutation importance plot, 
illustrating the significance of the predictors used in the final model. Images C and D are the partial dependence plots for the two most 
influential features, highlighting their effect on the grain nutrient composition. 
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4.4. Macronutrient Analysis for Teff 

The macronutrient analysis for Teff in this study includes an examination of potassium (K), phosphorus 

(P), and sulphur (S). These macronutrients are crucial for energy supply, body repair, and growth. 

4.4.1. Interpretation of Results for Teff - K 

The features considered in this analysis include soil clay content, FPAR, soil pH, GCI in May, the TWI, and 

NDWI in June. The predictive model had an R-squared of 0.44 and RMSE of 435.7 mgkg−1. 

 

Soil clay content profoundly impacts nutrient retention and water availability (Dias et al., 2023). High clay 

levels enhance nutrient retention, potentially improving K availability for Teff. However, excessive clay can 

cause waterlogging and poor aeration, hindering root growth and nutrient uptake (Alhaj Hamoud et al., 

2019). Conversely, low clay content leads to rapid nutrient leaching, reducing K availability. 

The relationship between clay content and K levels in Teff grains reveals a distinct pattern (See Figure 21C). 

Low clay content corresponds to low K in the grain. In the mid-range, K levels fluctuate unpredictably, 

indicating the influence of other soil factors. while higher clay content enhances K levels due to improved 

nutrient retention. 

 

High values of August FPAR indicate a substantial fraction of incoming solar radiation utilized for 

photosynthesis during the mid-season, implying robust plant growth and heightened metabolic activity (C. 

Tan et al., 2018). Conversely, low values of FPAR suggest less photosynthetic crop activity due to low energy 

absorption, potentially resulting in K transfer into the grain during the mid-season. The observed trend in 

the plot (See Appendix 5. Results for teff) shows that relationship between FPAR and K content in Teff 

grains is negative. As FPAR increases, K levels tend to decrease. This can be due to dilution effect discussed 

by (Jarrell & Beverly, 1981), where the rapid growth of the crop, in this case caused by increased 

photosynthesis, leads to a decrease in the concentration of K in the grain. 

 

The relationship (See Appendix 5. Results for teff) between soil pH and K levels in Teff grains reveals a 

pattern suggestive of the plant's preference and tolerance in slight acidic to alkaline soils (Berhanu et al., 

2023). At low soil pH values, indicating high acidity, K levels in Teff grains are relatively low. However, as 

the soil pH increases, transitioning towards neutrality and then alkalinity, there is an increase in K content 

in the grains. This suggests a potential preference for slightly alkaline conditions for K uptake. 

 

The PDP plot (See Figure 21D) for May GCI and K content in Teff grains shows the relationship between 

pre-season vegetation health and K availability. Low GCI values signify low chlorophyll levels, indicating 

less vegetation growth pre-season, which potentially allows Teff grains to access higher levels of K at that 

the start of the season. This suggests that less pre-season vegetation leads to reduced competition for soil 

nutrients, facilitating greater K uptake by Teff when it is planted. Conversely, elevated GCI values 

correspond to active and healthier vegetation (Wu et al., 2012), correlates with decreased K content in Teff 

grains. This inverse relationship implies competition for K among plants when Teff is planted, resulting in 

diminished availability of this nutrient for Teff 

 

When TWI is low, indicating soils that are likely to be well-drained and less likely to accumulate water, the 

K content in Teff grain is relatively low. As the TWI increases (See Appendix 5. Results for teff), indicating 

areas that are more likely to accumulate water (Kopecký et al., 2021), the K content in Teff grain increases. 

This could be because in areas where water accumulates, there may be greater nutrient availability (S. Zhang 

et al., 2011a). However, when the TWI is increases further, the K content in Teff grain slightly decreases. 

This could be due to waterlogged conditions in areas with very high TWI values, which can lead to anaerobic 

conditions and potentially limit the availability or uptake of nutrients (Fitter & Hay, 2002). 
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The PDP (See Appendix 5. Results for teff) shows that when NDWI values are high, indicating ample water 

content in vegetation and soil, K levels in Teff grains are stable and moderately high. This suggests that 

adequate water availability during planting supports effective K uptake by the plants at the start of the season 

as was confirmed by (Xue et al., 2017). As NDWI values decrease to moderate levels, there is a slight decline 

in K content At low NDWI values, indicating reduced water content, there is a noticeable drop in K levels, 

highlighting that less water availability limits nutrient absorption by teff crop. Further low NDWI values, 

reflective of dry conditions, correspond to the lowest K content, emphasizing that severe water stress during 

planting severely restricts K uptake by Teff plants. 

 

 

 

Training R2 0,86 
Testing R2 0,44 
RMSE 435,70 
nRMSE 0,15 
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4.4.2. Interpretation of Results for Teff - P 

The features considered include the MTCI in May, S2REP in September, and soil silt content. The predictive 

model had an R-squared of 0.37 and RMSE of 530 mgkg−1. 

 

When MTCl values are low, the P concentration in the grain is also low. Conversely, as MTCl values increase, 

there is a rise in P concentration in the Teff grain, indicating vegetative activity by pre-season crops like 

cover crops (See Figure 22C). Higher chlorophyll content of vegetation is indicative of good soil health 

(Tahat et al., 2020). The vegetation cover could lead to improved soil conditions like regulation of soil 

temperature, structure and moisture which may be suitable for microbial activities, which lead to uptake of 

nutrients during the season (Philippot et al., 2013). 

 

As the S2REP increases, indicating healthier and more vigorous vegetation, the P content in Teff grain 

generally decreases. This inverse relationship suggests that higher S2REP values is linked to reduced P 

uptake or utilization by the Teff crop during the mid-season (See Appendix 5. Results for teff). 

The decline in P content with increasing S2REP values during mid-season could be due to the plants 

prioritizing other metabolic processes or the remobilization of P nutrient in the crop for vegetative growth 

(Bender et al., 2015). 

 

The PDP (See Figure 22D) indicates that P content in Teff grain generally increases with higher silt content 

in the soil, suggesting that soils with high silt content may enhance P uptake. However, the plot also shows 

a non-linear pattern: P content initially increases, then decreases, and subsequently increases again as silt 

content rises. Specific research on silt content in soils and P is limited, but research has shown that on when 

clay content is high in soil, it has a negative relation with the amount of P in soil (Jian et al., 2022). 

C D 

Figure 21: Graphical representation of results for Teff grain and potassium nutrient composition. Image A represents scatter plots of observed 
versus predicted values, offering a visual comparison between actual measurements and model predictions. Image B is the permutation importance 
plot, illustrating the significance of the predictors used in the final model. Images C and D are the partial dependence plots for the two most 
influential features, highlighting their effect on the grain nutrient composition. 
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Training R2 0,72 
Testing R2 0,37 
RMSE 530,67 
nRMSE 0,17 
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Figure 22: Graphical representation of results for Teff grain and P nutrient composition. Image A represents scatter plots of observed versus 
predicted values, offering a visual comparison between actual measurements and model predictions. Image B is the permutation importance 
plot, illustrating the significance of the predictors used in the final model. Images C and D are the partial dependence plots for the two most 
influential features, highlighting their effect on the grain nutrient composition. 
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4.4.3. Interpretation of Results for Teff - S 

The features considered include harvest month rainfall, the NDTI in August, the PSRI index in May, and 

the WDRVI in June. The predictive model had an R-squared of 0.36 and RMSE of 188 mgkg−1. 

 

PSRI signifies canopy stress or the start of crop senescence (Merzlyak et al., 1999). The PDP (See Figure 

23D) implies that while moderate increases in PSRI are beneficial for S accumulation in Teff grain, very 

high PSRI values lead to a decline in S in the grain. Pre-season crops could be undergoing senescence during 

this period, and their decomposition could lead to increased microbial activity add nutrients to the soil 

(Sievers & Cook, 2018). Although the Teff crop was not planted in May, PSRI measurements reflect the 

state of existing vegetation, which can significantly influence soil conditions and nutrient availability. 

 

The relationship between the WDRVI in June and the S concentration in Teff grain (See Figure 23C), shows 

that early in the growing season, low WDRVI values correspond to low S concentrations. As WDRVI values 

increase, indicating improving plant health and Vigor (Gitelson, 2004), S concentration in the grain also 

rises. This phase aligns with the period shortly after planting when Teff plants are starting to uptake 

nutrients, including S, from the soil. However, beyond a certain threshold, as WDRVI continues to increase, 

S concentration in the grain decreases. This inverted U-shape relationship suggests that while moderate 

improvements in plant health support increased S uptake, excessively high WDRVI values may indicate that 

the plants are reallocating resources leading to reduced S accumulation in the grain. 

 

Harvest month rainfall influences soil or vegetation moisture levels. Adequate rainfall supports soil moisture 

retention (Shahadha et al., 2021), facilitating nutrient uptake by Teff. However, excessive rainfall may lead 

to nutrient runoff (Skidmore et al., 2023), potentially reducing S availability. Monitoring rainfall patterns 

helps assess S availability for Teff during the harvest season. The PDP (See Appendix 5. Results for teff) 

shows an increase in S concentrations as rainfall increases in the month of harvest. 
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Training R2 0,75 
Testing R2 0,36 
RMSE 188,21 
nRMSE 0,16 

 

A B 

C D 

Figure 23: Graphical representation of results for Teff grain and S nutrient composition. Image A represents scatter plots of observed versus 
predicted values, offering a visual comparison between actual measurements and model predictions. Image B is the permutation importance plot, 
illustrating the significance of the predictors used in the final model. Images C and D are the partial dependence plots for the two most influential 
features, highlighting their effect on the grain nutrient composition. 
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Figure 24: Tabular representation of statistical accuracy (R2) of models for all crops and all nutrients involved in this study. 
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5. DISCUSSION 

After presenting the results and discussing the impacts of different datasets on predicting nutrient grain 

composition in Teff, focus is shifted to the four other crops: Barley, Maize, Sorghum, and Wheat. This 

section will discuss first, the results for these crops and examine how various important geospatial datasets 

impact the estimation of their grain nutrients. The discussion will be structured around the research 

questions, which will be mentioned first, and followed by insights from the PDPs (See Appendix 2. Results 

for barley to Appendix 6. Results for wheat) and literature. The machine learning algorithm and the 

limitations of the study will follow. 

5.1. Research Question for Objective 1: 

5.1.1. Climatic factors 

This study found varying impacts of rainfall and temperature on the nutrient composition of grains for 

different crops. Generally, early-season rainfall was identified as a key predictor of nutrient composition, 

suggesting that adequate soil moisture at the start of the season positively impacts enhanced nutrient uptake 

during critical growth periods. However, in one scenario, late-season rainfall initially boosts S content in the 

grain but eventually compromises it due to excess moisture. 

Barley exhibited a negative relationship between increasing rainfall and Ca, particularly at the mid-season, 

indicating that higher rainfall levels may lead to increased soil moisture and negatively impact Ca 

accumulation in the grain. This observation is similar to findings of (McKay Fletcher et al., 2022), who found 

that increased precipitation can lead to a reduction of nutrient use efficiency. Wheat benefited from mid-

season rainfall, showing a positive association with both Ca and Cu content. 

Similarly, macro-nutrient composition was influenced by climatic factors, with barley experiencing a negative 

relationship between rainfall and K, P, and Mg content at the early stages of the crop season. High pre-

season temperatures negatively impacted S content in barley, confirming that high temperature negatively 

impacts nutrient absorption at the early stages of crop growth (Giri et al., 2017). Maize demonstrated mixed 

responses to increased rainfall. In sorghum, an increase in air temperature at the start of the season led to 

reduced K and P nutrient content of the grain. Wheat presented a unique scenario, with high pre-season 

rainfall correlating negatively with Mg content but positively influencing P content. During the mid-season 

an increase in rainfall generally led to the increase of P content in the wheat grain. These observations 

highlight the complex interplay between rainfall and macro-nutrient accumulation. 

5.1.2. Soil 

Soil properties, including texture, pH, and organic matter content, play a fundamental role in determining 

the nutrient composition of crop grains. These characteristics influence the availability and uptake of 

nutrients by crops, impacting agricultural productivity across various agroecological zones (Tahat et al., 

2020). The relationship between soil properties and nutrient concentrations in crops, showed the different 

ways through which these soil characteristics influence agricultural productivity. 

Research has shown that fine-textured soils, rich in clay and silt, exhibit a high capacity for holding both 

water and nutrients, thereby supporting enhanced crop growth and nutrient accumulation (Matus, 2021). 

Specifically, a decrease in total evaporation at the start of the season was linked to a higher concentration of 
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Cu in barley grain, confirming the impact of moisture conservation on micronutrient uptake (Cavagnaro, 

2016). Additionally, the interaction between soil pH and texture was highlighted, with slightly acidic soils 

reducing the nutrient uptake of certain nutrients, as was proved by (Zama et al., 2022). Slight alkaline soils 

were shown to increase nutrient solubility, leading to higher nutrient concentrations in certain crops. 

In barley, high Mg content in the soil was associated with low Mn and Zn nutrient concentrations in the 

grain, indicating a direct trade-off between Mg abundance and the availability of these micronutrients. 

Similarly, maize exhibited a stable Fe grain content until a certain threshold of soil Zn composition was 

reached, beyond which Fe content sharply increased, suggesting a threshold effect where Zn influences Fe 

content in the grain. The nutrient composition of sorghum was influenced by bulk density and P content, 

with increases in bulk density leading to increased Cu nutrient. and increases in amount of P in the soil 

leading to reduced Cu and Zn compositions in the grain 

For macro-nutrients, the K, P, and Mg grain nutrient content of barley was influenced by soil Mg content, 

with high evaporation rates and soil Mg levels correlating with increased K and Mg content in grain. This 

indicates a positive relationship between soil moisture and the accumulation of these macro-nutrients in the 

grain. The S content in the maize grain was negatively impacted by increasing Fe and clay content in soil, 

demonstrating the interconnectedness of soil properties and nutrient dynamics, where changes in soil 

composition directly affect S availability. Sorghum's K content in grain was positively correlated with soil 

Ca levels, confirming that soil K management can directly influence the uptake of other essential macro-

nutrients (C. Wang et al., 2024). Wheat grain macronutrient composition in relation to soil properties 

revealed that an increase in soil Zn content was found to lead to an increase and stabilization of K nutrient 

content in wheat grain, despite further increasing Zn content in the soil. This indicates that subsequent 

addition of certain nutrients after the absorption of a required quantity of nutrients needed by plants for 

biochemical processes, will not increase plant nutrient use efficiency (Good & Beatty, 2011). Also, soil P 

content exhibits a direct positive relationship with P content in wheat grain, indicating that soil P availability 

is a key determinant of wheat's P nutrition. 

In barley, a positive mid-season relationship between soil volumetric water content and grain Mn content is 

observed, suggesting that optimal moisture levels are essential for maximizing Mn uptake. Additionally, 

lower total evaporation at the start of the season correlates with higher Zn content in the grain, indicating 

that minimal evaporation supports higher nutrient concentrations. Sorghum presents a unique case where 

an increase in the start-of-season volumetric water content initially shows a low-stabilized relationship with 

grain Mn content. However, surpassing a certain threshold of increase, there is a significant increase in Mn 

content in the grain. 

An increase in soil Mn content leads to an increase in S nutrient content of wheat grain, suggesting Mn 

might influence S metabolism or uptake mechanisms in wheat. Conversely, an increase in soil Mg content 

was associated with a decrease in S nutrient content of wheat grain, indicating that high Mg levels might 

interfere with S uptake or utilization in wheat. 

In barley, high total evaporation towards the end of the season is associated with elevated P content in the 

grain, while mid-season S content remains low and stable until a certain threshold is surpassed, triggering a 

rapid increase. In maize, Mid-season total evaporation also demonstrates a general negative relationship with 

grain K content, highlighting the nuanced effects of evaporation on nutrient composition.  The maize crops 

also showed a pattern where end-of-season volumetric water content initially correlates positively with grain 

K content, and then abruptly reverses after a certain threshold. In wheat the relationship between volumetric 

water content at the start of the season and grain K content shows no clear pattern and is most likely 
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influenced by other factors. Also in wheat, reduced soil evaporation pre-season and higher P content in the 

grain are positively correlated. These variable results demonstrate the varied impact of soil physical and 

chemical properties on micronutrient availability. 

5.1.3. Topographic factors 

Topographic factors, including elevation, slope, and the Topographic Wetness Index (TWI), play a 

significant role in determining the nutrient composition of crop grains across different agroecological zones. 

These factors can influence both positively and negatively the concentration of essential nutrients in cereal 

crops (Zhang et al., 2011). In this study, an increase in elevation was found to correlate negatively with S 

content in maize grain, suggesting that higher altitudes might lead to reduced S availability due to changes 

in soil properties or atmospheric deposition rates. Conversely, as elevation increases, Fe nutrient content in 

wheat grain also increases, indicating a potential positive relationship between altitude and Fe availability in 

wheat. Also, as elevation rises, the S nutrient content in wheat grain decreases, further highlighting the 

complex nature of nutrient distribution influenced by topography. 

The Topographic Wetness Index (TWI) was observed to have a specific effect on the K content in Teff 

grain, with increasing TWI values correlating with increased K content. Areas with higher TWI values, 

indicative of sites prone to waterlogging or saturation, may exhibit altered nutrient cycling processes 

(Kopecký et al., 2021), potentially leading to enhanced availability of certain nutrients like K in crops grown 

in these conditions. 

5.2. Research Question for Objective 2(a): 

What is the impact of Sentinel-1 derived data, including bands, and polarimetric indices, on the prediction 

of nutrient composition in crop grains across diverse agroecological zones at different crop growth stages? 

Utilizing Sentinel-1 data (bands and indices), presents a promising yet challenging approach to predict the 

nutrient composition of crop grains across various agroecological zones during different crop growth stages. 

Sentinel-1, with its C-band radar imaging capabilities, offers advantages in monitoring extensive agricultural 

landscapes regardless of weather conditions (Khabbazan et al., 2019). However, initial findings suggest that 

Sentinel-1 data does not significantly improve the predictions of nutrient compositions in crops such as 

Teff, Barley, Wheat, Sorghum, and Maize. This limited effectiveness needs to be studied to maximize 

Sentinel-1 data's utility in crop nutrient monitoring and management. Despite these limitations, Sentinel-1 

data holds significant potential for agricultural applications. 

Specifically, certain micronutrient relationships with Sentinel-1 derived parameters have been noted. For 

example, in barley, the Radar Vegetation Index (RVI) at the beginning of the season correlated positively 

with Mn grain content. In maize, the start of the season's vertical-vertical (VV) polarization and the mid-

season's vertical-horizontal (VH) polarization had mixed impacts on Ca grain content. In sorghum, the mid-

season RVI showed a negative relationship with Ca content in grain, while the end-of-season cross-ratio 

index indicated that Fe grain content remained low until a subsequent increase in the cross-ratio, after which 

it increased significantly. 
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5.3. Research Question for Objective 2(b): 

The utilization of Sentinel-2 indices, especially those involving red-edge and Short-Wave Infrared (SWIR) 

bands, or green bands, has advanced our ability to predict the nutrient composition of crop grains (Belgiu 

et al., 2023). These bands are uniquely capable of capturing detailed information about soil and vegetation 

health and structural properties, which are closely linked to nutrient status and crop growth stages (Liu et 

al., 2004). The red-edge bands, situated around 700 nm, are particularly sensitive to changes in leaf 

chlorophyll content and green Leaf Area Index (LAI), key indicators of plant health and vigor. These bands 

can detect subtle shifts in vegetation structure and pigment content, often associated with differences in 

nutrient availability and uptake. Similarly, the SWIR bands, operating in the 1600-2400 nm region, are 

effective in assessing soil moisture and organic matter content, which indirectly influence nutrient availability 

to plants (Liu et al., 2004). The combination of these bands enables a comprehensive assessment of both 

plant physiological status and soil conditions, providing a robust foundation for predicting nutrient 

composition in crops. 

However, the timing of these measurements throughout the crop growth cycle is crucial. Indices derived 

from Sentinel-2 data in this study were found to be most informative during the months preceding planting 

and during the early stages of the season. Towards the end of the mid-season, as crops prepare for harvest, 

the relationships between Sentinel-2 indices and nutrient composition become less straightforward. This 

period could be marked by a shift in plant priorities towards reproductive development and senescence, 

which can obscure the direct links between remote sensing data and nutrient status (Colle et al., 2009). 

In barley, the mid-season increase in the SIPI correlates negatively with Ca content, suggesting that increased 

stress levels, possibly due to suboptimal water or nutrient availability, can reduce the plant's capacity to 

absorb Ca efficiently. This finding aligns with the Disease Water Stress Index (DSWI)'s sensitivity to water 

stress, indicating that disease or stress conditions can impair nutrient absorption (Apan et al., 2004). At the 

end-of-mid-season, an increase in NDVIre correlates positively with Cu content, reflecting improved 

vegetation health and chlorophyll content, which enhances photosynthetic activity and nutrient utilization, 

thereby increasing Cu accumulation in grains. Maize shows a pre-season increase in the GCI correlating 

with increased Fe content in grain beyond a certain threshold. Sorghum shows a mid-season increase in 

SIPI correlating with low Ca content in the grains. Additionally. Wheat demonstrates an end-of-season 

increase in DSWI correlating with reduced Ca content, consistent with the index's sensitivity to water stress 

and plant damage and reduced plant functioning. 

In barley, a positive relationship exists between mid-season NRI and S content, indicating that increased 

nitrogen content in crops can influence S uptake and assimilation. The study showed that with increasing 

mid-season NDWI, Mg nutrient in grain remains steadily low, then immediately increases after certain 

threshold. Sorghum exhibits a correlation between mid-season increases in the PSRI and decreased K 

content in grain, meaning that as plants are stressed K nutrient utilization in the crop is low. Wheat presents 

a negative correlation between pre-season high EVI and Mg content, suggesting that active vegetation in 

the pre-season may utilize Mg which may not be available when wheat is planted.  

5.4. Research Question for Objective 3: 

In barley, the analysis shows that high LAI values during the mid-season led to a reduction in Mg grain 

content. In maize, the analysis indicates that an increase in total FPAR at the onset of the season results in 

a decrease in Mg and P grain content. This suggests that the plant’s energy, primarily directed towards 

photosynthesis, could affect the uptake and allocation of these nutrients. 
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The nutrient composition in wheat is affected by both FPAR and LAI at different growth stages. The 

analysis shows that an increase in FPAR towards the end of the season results in higher Fe content in the 

grain, suggesting enhanced photosynthetic activity leads to increased Fe uptake. Higher FPAR at the start 

of the season resulted in increased Mn content in the grain, confirming the relation between Mn and 

photosynthesis and its uptake during this period (Messant et al., 2022). Higher mid-season LAI values were 

linked to lower Ca content in the grain, suggesting competition for Ca among the increased leaf area. Higher 

LAI values at the start of the season are associated with increased Cu content in the grain. 

These findings collectively emphasize the importance of considering crop-specific responses and growth 

stages in optimizing nutrient composition. 

Random Forests 

Random Forests are renowned for their resistance to overfitting, largely attributed to their ensemble nature, 

which combines the predictions of multiple decision trees to produce a final model (Belgiu & Drăgu, 2016). 

However, the study observed overfitting tendencies in most models, potentially influenced by factors such 

as the sample size of certain crops and the quality of the data. The approach to replace missing values with 

the mean of the available data, may not accurately represent the underlying distribution of the missing values, 

leading to inaccuracies in the model's predictions. 

The study utilized a range of 10 to 150 trees for the Random Forest model, diverging from usual usage of 

500 trees. This decision shows the importance of hyperparameter tuning and emphasizes that optimal 

configurations can vary significantly based on the dataset and problem at hand. The process of 

hyperparameter tuning revealed that increasing the number of trees improved model accuracy up to a certain 

number and then further increase in number of trees led to reduced accuracy. This highlights the need for 

careful consideration and validation of model parameters to achieve the best performance 

Additionally, during the implementation of models, the significance of one parameter deemed not very 

important (not used in hyperparameter tuning) was observed. This parameter is 

the “random_state” parameter in Scikit-learn's implementation of Random Forests. This parameter controls 

the seed for the random number generator, influencing the randomness in the model, thereby affecting its 

ability to generalize from the training data to unseen data (Pedregosa et al., 2011). Changing the random 

state parameter as part of the manual hyperparameter tuning steps, led to increase and decrease of model 

accuracy. 

5.4.1. Limitations 

While the study presents promising advancements in the use of remote sensing and machine learning for 

agricultural applications, it is crucial to consider the limitations of the approach used in the study, which 

stem from both methodological constraints and broader challenges in remote sensing and agricultural 

modelling. 

A significant limitation of this study is the omission of crop varietal differences. Crop variations can 

substantially influence nutrient uptake and translocation within plant tissues (Hossein et al., 2010; Lightfoot, 

2018; Mir et al., 2022; Vinod, 2019). By not accounting for varietal differences, the models potentially 

overlook key determinants that affect nutrient composition, thereby reducing the accuracy of the 

predictions. Future research should endeavour to integrate data from crop varieties to enhance model 

precision and applicability across diverse agroecological contexts. 
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The study did not incorporate the heterogeneity of farm management practices, which are pivotal 

determinants of soil health and crop productivity. Variations in practices such as fertilizer application, weed 

management, and the use of cover crops introduce significant heterogeneity in soil conditions and crop 

responses at different stages of crop growth. These practices are known to modulate soil nutrient availability 

and microbial activity, thereby impacting crop nutrient composition (Gupta et al., 2022; Huffman et al., 

2023; Khmelevtsova et al., 2022; L. Wang et al., 2021).The omission of these factors likely leads to an 

oversimplification of the agroecosystems under study, which could result in non-representative model 

outputs. 

 

Another methodological limitation is the temporal limitation of the soil data, which was last updated in 

2017. Soil properties are dynamic and subject to change due to factors such as climatic variations, land use 

changes, and continuous agricultural practices. The reliance on outdated soil data undermines the temporal 

relevance of the model predictions, as current soil conditions may differ significantly from those recorded 

several years ago. This temporal mismatch necessitates the acquisition of up-to-date soil data to improve 

the temporal accuracy of the model. 

 

The spatial resolution of the datasets used also presents a significant challenge. For instance, ERA5-Land 

data, with a spatial resolution of 11 km, does not capture the variability within small-holder farms, which 

typically cover much smaller areas of less than 1 hectare in area. This discrepancy in spatial resolution can 

lead to a loss of critical detail, adversely affecting the model’s ability to accurately predict nutrient 

composition at the farm level. Future studies should seek to utilize higher resolution datasets to better match 

the scale of small-holder farming operations. 

 

The approach of averaging the spatial resolution of satellite images around farm point locations can 

introduce mixed pixel effects. In agricultural landscapes where farms are interspersed with other land uses 

such as residential areas, plantations, or different crop types, averaging can result in pixel values that do not 

accurately represent the specific farm in question. This mixed pixel problem is a well-recognized issue in 

remote sensing and underscores the need for different spatial analysis techniques that can remove these 

mixed signals. 

 

Additionally, persistent cloud cover during the growing season poses a significant obstacle to obtaining clear 

Sentinel-2 imagery. Cloud masking techniques are essential but inevitably lead to data gaps. This issue is 

particularly acute in tropical and subtropical regions where cloud cover can be extensive. The resulting 

incomplete temporal coverage limits the ability to monitor crop development comprehensively throughout 

the season, which is critical for accurate nutrient modelling. 

 

The limited size of the datasets used in this study also raises concerns about the robustness of the RF models. 

Inadequate dataset sizes can lead to overfitting, where the model performs exceptionally well on training 

data but fails to generalize to new, unseen data (Decuyper et al., 2019). This is evidenced by the disparity in 

R² values between the training and test sets. Overfitting is a common problem in machine learning that can 

be mitigated by increasing the dataset size, thereby providing the model with a more representative sample 

of the variability in crop nutrient composition (Shalev-Shwartz & Ben-David, 2014). 

 

The handling of missing data through mean imputation, while necessary given the small sample size, may 

introduce biases. Mean imputation assumes that missing values are random and that the mean is an adequate 

substitute, which is often not the case in complex systems like agriculture. This method can mask the true 

variability and relationships in the data, leading to potential misinterpretations and model inaccuracies. Other 
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machine and deep learning imputation techniques or strategies to mitigate data loss should be considered in 

future research to ensure the integrity of the dataset. 

 

Another limitation of the study is the reliance on monthly composites. This approach presents a challenge 

when applying and comparing the results across different years. The root of this issue lies in the inherent 

variability of crop planting schedules. Crop planting does not consistently occur in the same month each 

year due to factors such as climatic variations and socio-economic influences. Therefore, the use of monthly 

composites could lead to a misrepresentation of the actual growth stage of the crops, resulting in potential 

inaccuracies in the predictions across different years or seasons. This problem will be solved when crop 

seasonal composites are used. 
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6. CONCLUSION AND RECOMMENDATIONS 

6.1. Conclusion 

The study used Random forest machine learning algorithm with satellite and other geospatial data to develop 

predictive models for five crops, barley, maize, sorghum, teff and wheat and 9 nutrients, Ca, Cu, Fe, Mn, 

Mg, Zn, P, K, and S. 

The results showed that Sentinel-2 Vegetation Indices (VIs), a month before, and at the start of the season 

are the most effective in predicting nutrient composition in crop grains. The most important indices 

particularly those involving red-edge and SWIR bands, provide detailed information on vegetation health, 

capture subtle shifts in plant structure and pigment content related to nutrient availability. Soil properties, 

including texture, pH, and organic matter content, also play an important role in nutrient uptake, with clayey 

and silt textured soils and specific pH levels enhancing nutrient solubility and crop grain nutrient 

accumulation. Additionally, climatological factors such as rainfall and temperature are pivotal, with early-

season rainfall and temperature variations significantly influencing grain nutrient concentration. 

 

ERA5 data, providing detailed land surface variables like soil water content and evapotranspiration, 

enhances the reliability of agricultural models. MODIS-derived FPAR and LAI indices offer insights into 

photosynthetic activity and nutrient dynamics, while topographic factors such as elevation and the 

Topographic Wetness Index (TWI) significantly impact nutrient concentrations by affecting microclimates 

and soil properties. Although Sentinel-1's radar imaging has advantages in all-weather monitoring, its 

effectiveness in nutrient prediction in this study is limited, highlighting the need for further research to 

optimize its use in agricultural monitoring. 

The results show that it is necessary to have tailored agricultural practices for optimal crop productivity and 

grain nutrient quality. 

6.2. Recommendations 

The collection of crop species-specific data is indeed crucial to discern which varieties exhibit superior 

nutrient uptake, even under unfavourable environmental conditions is important. This information can 

guide the selection of crop varieties that are not only high yielding but also nutrient-rich, thereby enhancing 

food security and nutritional quality. It is recommended that future research endeavours focus on generating 

comprehensive datasets that capture the variability in nutrient composition across different crop varieties. 

 

Incorporating basic pre-season and on-season farm management practices into future research is also 

essential. These practices, ranging from soil preparation techniques, sowing times, and planting of cover 

crops to irrigation and pest management, significantly influence soil health, crop productivity, and 

consequently, nutrient composition. 

 

Also, to avoid the mixed pixel problem, machine learning and deep learning techniques can be employed to 

detect farm boundaries, thereby ensuring that the data accurately represents the specific farm in question. 

Addressing missing data is another critical aspect that warrants attention. Instead of resorting to mean 

imputation, which can introduce biases, advanced deep learning techniques can be employed for imputation. 

These techniques can model the complex relationships in the data and provide more accurate estimates for 

missing values. 

 

To ensure the interpretability and comparability of results across years, it is advisable to use crop growth 

stage composites instead of monthly composites. Crop growth stages are more meaningful units of time as 
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they directly correspond to the plant’s development and physiological processes. These recommended 

composites can be generated using crop calendars, or phenological parameters derived from Satellite 

imagery. This approach can also help reduce missing data caused by clouds, as it allows for composites of 

periods. 

 

The use of high-resolution datasets for certain predictors, as and when they become available, can 

significantly enhance the precision of future models. These datasets can better match the scale of small 

holder farming operations, capturing the heterogeneity within and between farms. 

 

Lastly, funding organizations such as the Food and Agriculture Organization, the United Nations, and the 

World Health Organization should consider supporting projects that aim to collect more representative data 

across different years. This investment would enable the development of robust models for predicting crop 

grain nutrients, leading to more spatially variable food composition tables. Such initiatives would not only 

advance our understanding of crop nutrient composition but also facilitate the operationalization of research 

findings for the benefit of farmers, policymakers, and other stakeholders in the agricultural sector. 

6.3. Societal impact 

 
The finding of this study can be utilized in public health and agricultural domains. 

 

In the public health domain, the study provides grain nutrient insights which can be used for the creation 

of spatially and temporally variable food compositions databases, as well as nutritional and dietary planning. 

Diet recommendations or other targeted approached can be made specifically for regions in a timely manner 

based on the early detection of potential nutrient deficiencies. These models can help to eliminate many 

diseases caused by lack of nutrients in women and children. The models will also help to eliminate the 

problem of late detection of nutrient deficiencies which happens when individuals are visibly unhealthy. 

Ensuring populations have access to nutrient-dense foods can lead to overall stabilized population health 

 

In the agriculture domain, the predictive models used in this study can be used as a guide for crop and grain 

quality improvement by improving nutrient and resource management. By using the insights of these models 

as a guide, farmers can enhance grain quality and potentially increase market value, providing economic 

benefits for their basic needs. These models can enable precise nutrient application decisions, considering 

climate patterns like high temperatures or excessive rainfall, and allow for strategic use of fertilizers to 

enhance soil health. Additionally, by understanding pre-season conditions, farmers can plant cover crops 

that enrich soil nutrients, leading to more sustainable farming practices and increased yields. In conclusion, 

the predictive models from this study offer a practical guide for farmers seeking to optimize their farm 

management practices for enhancement of yields and increased economic returns. 

 

6.4. Ethical Considerations 

According to Kumssa et al., (2015) before sampling of grain and soil was initiated, both in farmers' fields 

and grain stores, consent was obtained from the participating farmers. The study received formal ethical 

approval from the University of Nottingham's School of Sociology and Social Policy Research Ethics 

Committee (REC), specifically under the identifiers BIO-1718-0004 for the research conducted in Ethiopia.  

These REC approvals were accepted by the Directors of Research at Addis Ababa University in Ethiopia.  
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7. APPENDICES 

Appendix 1. Data management 
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Dataset Name of Data file

Source ( Primary 

or Secondary 

data

Owner, If 

Secondary

Restrictions and 

Licence Data Form Data Format Year of Data

Contains 

Personal Data? 

Yes/No Links

Grain nutrient 

composition ETH_CropSoilChemData Secondary

GeoNutrition 

project Open data policy Tabular csv 2017/2018 No

https://doi.org/10.6084/m9.figshare.159

11973

Sentinel-1 COPERNICUS/S1_GRD Secondary ESA/Copernicus Open data policy Raster Imagery .tiff 2017/2018 No

https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_

S1_GRD

Sentinel-2 COPERNICUS/S2_SR Secondary ESA/Copernicus Open data policy Raster Imagery .tiff 2017/2018 No

https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_

S2_HARMONIZED

Rainfall, 

Temperature,  

Environment 

Variables ECMWF/ERA5/MONTHLY Secondary

ECMWF / 

Copernicus 

Climate Change 

Service Open data policy Raster Imagery .tiff 2017/2018 No

https://developers.google.com/earth-

engine/datasets/catalog/ECMWF_ERA5

_MONTHLY

SOIL Soil_ISRIC Secondary ISRIC Open data policy Raster Imagery .tiff 2016 No

https://data.isric.org/geonetwork/srv/en

g/catalog.search#/home

SOIL Soil_iSDA Secondary Isda Open data policy Raster Imagery .tiff 2017 No

https://developers.google.com/earth-

engine/datasets/tags/isda

Terrain Products MERIT DEM Secondary

University of 

Tokyo Open data policy Raster Imagery .tiff 2017 No

https://developers.google.com/earth-

engine/datasets/catalog/MERIT_DEM_v

1_0_3

MODIS_FPAR MODIS_FPAR Secondary

NASA Land 

Processes 

Distributed 

Active Archive 

Center (LP 

DAAC) Open data policy Raster Imagery .tiff 2017/2018 No

https://developers.google.com/earth-

engine/datasets/catalog/MODIS_061_M

OD15A2H  
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Appendix 2. Results for barley 

a) BARLEY AND CALCIUM NUTRIENT COMPOSITION OF GRAINS.
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b) BARLEY AND COPPER NUTRIENT COMPOSITION OF GRAINS 
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c) BARLEY AND IRON NUTRIENT COMPOSITION OF GRAINS 
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d) BARLEY AND POTASSIUM NUTRIENT COMPOSITION OF GRAINS 
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e) BARLEY AND MAGNESIUM NUTRIENT COMPOSITION OF GRAINS 
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f) BARLEY AND MANGANESE NUTRIENT COMPOSITION OF GRAINS 
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g) BARLEY AND PHOSPHORUS NUTRIENT COMPOSITION OF GRAINS 
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h) BARLEY AND SULPHUR NUTRIENT COMPOSITION OF GRAINS 
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i) BARLEY AND ZINC NUTRIENT COMPOSITION OF GRAINS 
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Appendix 3. Results for maize 

a) MAIZE AND CALCIUM NUTRIENT COMPOSITION OF GRAINS 
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b) MAIZE AND COPPER NUTRIENT COMPOSITION OF GRAINS 
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c) MAIZE AND IRON NUTRIENT COMPOSITION OF GRAINS 
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d) MAIZE AND POTASSIUM NUTRIENT COMPOSITION OF GRAINS 
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e) MAIZE AND MAGNESIUM NUTRIENT COMPOSITION OF GRAINS 
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f) MAIZE AND MANGANESE NUTRIENT COMPOSITION OF GRAINS 
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g) MAIZE AND PHOSPHORUS NUTRIENT COMPOSITION OF GRAINS 
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h) MAIZE AND SULPHUR NUTRIENT COMPOSITION OF GRAINS 
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i) MAIZE AND ZINC NUTRIENT COMPOSITION OF GRAINS 
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Appendix 4. Results for sorghum 

a) SORGHUM AND CALCIUM NUTRIENT COMPOSITION OF GRAINS 
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b) SORGHUM AND COPPER NUTRIENT COMPOSITION OF GRAINS 
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c) SORGHUM AND IRON NUTRIENT COMPOSITION OF GRAINS 
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d) SORGHUM AND POTASSIUM NUTRIENT COMPOSITION OF GRAINS 
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e) SORGHUM AND MAGNESIUM NUTRIENT COMPOSITION OF GRAINS 
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f) SORGHUM AND MANGANESE NUTRIENT COMPOSITION OF GRAINS 
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g) SORGHUM AND PHOSPHORUS NUTRIENT COMPOSITION OF GRAINS 
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h) SORGHUM AND SULPHUR NUTRIENT COMPOSITION OF GRAINS 
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i) SORGHUM AND ZINC NUTRIENT COMPOSITION OF GRAINS 
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Appendix 5. Results for teff 

a) TEFF AND CALCIUM NUTRIENT COMPOSITION OF GRAINS 
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b) TEFF AND COPPER NUTRIENT COMPOSITION OF GRAINS 
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c) TEFF AND IRON NUTRIENT COMPOSITION OF GRAINS 
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d) TEFF AND POTASSIUM NUTRIENT COMPOSITION OF GRAINS 
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e) TEFF AND MAGNESIUM NUTRIENT COMPOSITION OF GRAINS 
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f) TEFF AND MANGANESE NUTRIENT COMPOSITION OF GRAINS 
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g) TEFF AND PHOSPHORUS NUTRIENT COMPOSITION OF GRAINS 
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h) TEFF AND SULPHUR NUTRIENT COMPOSITION OF GRAINS 
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i) TEFF AND ZINC NUTRIENT COMPOSITION OF GRAINS 
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Appendix 6. Results for wheat 

a) WHEAT AND CALCIUM NUTRIENT COMPOSITION OF GRAINS 
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b) WHEAT AND COPPER NUTRIENT COMPOSITION OF GRAINS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

165 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

166 

c) WHEAT AND IRON NUTRIENT COMPOSITION OF GRAINS 
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d) WHEAT AND POTASSIUM NUTRIENT COMPOSITION OF GRAINS 
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e) WHEAT AND MAGNESIUM NUTRIENT COMPOSITION OF GRAINS 
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f) WHEAT AND MANGANESE NUTRIENT COMPOSITION OF GRAINS 
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g) WHEAT AND PHOSPHORUS NUTRIENT COMPOSITION OF GRAINS 
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h) WHEAT AND SULPHUR NUTRIENT COMPOSITION OF GRAINS 
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i) WHEAT AND ZINC NUTRIENT COMPOSITION OF GRAINS 
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