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A minimal nanoneuron capable of nonlinear classification

Thai Ha Bui

August, 2024

Abstract

This paper addresses the challenge of optimizing neuromorphic computing hard-
ware by investigating Dopant Network Processing Units (DNPUs). To circumvent the
costs and labor-intensive nature of direct fabrication of these devices, we leverage com-
puter simulations and machine learning techniques. Utilizing results from Theuws, we
train a surrogate model via machine learning to study the behavior of the smallest
theoretically feasible DNPU. Our analysis focuses on the device’s stability, robustness,
and its ability to implement Boolean functions, with an emphasis on the non-linear
XOR gate. The results demonstrate that DNPUs can efficiently perform complex com-
putations with minimal size parameters, promising their potential for energy-efficient
neural network hardware.

Keywords: neuromorphic computing, dopant network, machine learning, nanoelectric
device, ai hardware, kinetic monte carlo, neural network, neural network emulation

1 Introduction

Recent AI advances have raised demands for better hardware that would best accommodate
AI models. We are particularly interested in energy efficiency and computational speed.
There have been numerous attempts in developing hardware specialized for AI. Neuromor-
phic computing (NC) is an approach to designing computer architecture with inspiration
from human brain, which is not only extremely energy efficient, but also incredibly spa-
tially effective. NC was first mentioned in the works of Carver Mead, he asserted in his
paper [10] that biological solutions are many orders of magnitude more effective than those
we have been able to implement using digital methods.

My research focuses on exploring Dopant Network Processing Units (DNPUs), which are
nanoelectrical devices that exhibit unique properties that make them suitable for neural
network applications. Traditional neural networks rely on numerous interconnected nodes,
each performing simple computations and collectively solving complex tasks. The DNPU
unit is particularly fascinating due to its nonlinear behavior, which is a result of the disor-
dered dopant network [18]. Recently, these devices developed capable of classifying linearly
non-separable data [3], signaling their potential as robust AI hardware. Another study has
shown that the key benefit of DNPUs, when applied in hardware, is the substantial re-
duction in the number of parameters and operations needed, which leads to increased
computational efficiency [15].

The conceptualization and creation of such devices requires experimenting with a large
amount of parameters, thus direct physical fabrication is cost-prohibitive and labour-
intensive. Instead, we can leverage computer simulations to circumvent these challenges.
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In this paper, I investigate the effects of size on the performance of the device. I will use
results found by Theuws [19], train a surrogate model from simulated data using machine
learning techniques and study the behaviour of the smallest DNPU theoretically possible.
A throughout analysis of the stability and robustness of the model will be discussed.

1.1 Literature review

Neuromorphic Computing: Neuromorphic computing has emerged as a revolutionary
approach to designing computer architecture by drawing inspiration from the human brain,
which exhibits exceptional energy efficiency and spatial effectiveness. This concept, first
introduced by Carver Mead, asserts that biological solutions far surpass the efficiency of
digital methods in various computational tasks [10].

Hopping-Transport Mechanism and Reconfigurable Logic: The hopping-transport
mechanism in disordered dopant networks has been identified as a key enabler for recon-
figurable logic in DNPUs. Tertilt et al. [18] studies this mechanism through kinetic Monte
Carlo simulations, revealing temperature-dependent current-voltage characteristics and the
successful artificial evolution of basic Boolean logic gates. The hopping-transport mech-
anism allows for subtle control over local electrostatic potentials and current flow within
the dopant network, enabling the reconfiguration of logic gates. The stochasticity of this
hopping-transport mechanism is crucial in the ability of DNPUs to solve nonlinear tasks.

Dopant Network Processing Units (DNPUs): While existing studies have signif-
icantly advanced our understanding of DNPUs and their applications, there are several
limitations and areas that require further exploration. For instance, the study by Chen
et al. [3] and Ruiz-Euler et al. [15] demonstrated the potential of DNPUs in classifying
linearly non-separable data, but they primarily focused on larger scale DNPUs and did not
explore the limits of miniaturization.

The research by Theuws [19] provided insights into the minimal size parameters required
for functional DNPUs, establishing a foundational understanding of their physical prop-
erties. However, it lacked an extensive evaluation of the stability and robustness of these
minimal configurations in practical applications.

This thesis builds upon these studies by specifically targeting the smallest possible DNPU
size and evaluating its performance through kinetic Monte Carlo simulations and machine
learning models. By addressing the size effects on DNPUs when minimized, this research
aims to contribute a comprehensive understanding of the practical viability and efficiency
of minimal DNPUs in neuromorphic computing.

1.2 Overview of paper

The structure of this paper begins with the Preliminaries section 2, which covers foun-
dational concepts, including an overview of Dopant Network Processing Units (DNPUs),
the Kinetic Monte Carlo (KMC) simulation method used to model the behavior of the
minimal DNPU found my [19], deep learning with feedfoward neural network and linear
separability. Next, section 3 delves into the robustness of the KMC simulation and vali-
dates its convergence properties to ensure it accurately reflects physical systems. Section 4
describes the creation and training of a surrogate model using machine learning techniques
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to emulate the DNPU’s functionality, including the network architecture and performance
evaluation. Following this, section 5 explores the potential of our DNPU to implement
basic Boolean functions, focusing on the non-linear XOR gate, and details the network
architecture and cost function used for training. Finally, Section 6 discusses the findings,
including the implications of the DNPU size on performance, evaluate the experimental
feasibility of the surrogate model’s predictions, and offer insights into potential work for
future research and development.

2 Preliminaries

2.1 Dopant Network Processing Units

2.1.1 The device

We consider a device (as depicted in Figure 1A), where a silicon substrate (n−Si) is doped
with p-type material, in our case, with Boron (B-doped). This doping process introduces
‘holes’ in the semiconductor, which are essentially the absence of electrons in the silicon
lattice structure. In semiconductor physics, a hole acts as a positive charge carrier. When
an electron in the valence band gains enough energy, it can jump to the conduction band,
leaving behind a vacancy in the valence band. This vacancy, or ‘hole,’ can move through
the lattice as neighboring electrons move to fill the vacancy, effectively allowing current
to flow. A layer of silicon dioxide (SiO2) serves as an insulating layer to prevent leakage
of charges and to separate the substrate from the processing layers above. And lastly,
Titanium/Palladium (Ti/Pd) contacts which serves as electrodes.

The network that we study in this paper can be imagined as in Figure 1B.

(a) (b)

Figure 1: (A) Schematic of the device. Figure adapted from [6]. (B) Schematic
of the network. Black dots as dopants (10). Red bars represent input electrodes,
blue bar is output electrode and green bars are control electrodes. The numbers
are indices of each electrode.

In this paper, we will be exploring the functionality of a DNPU with 10 dopants, 0 donors
and circle design with radius 16.77nm. These are the theoretical results obtained in the
work of Theuws [19], which are the lowerbound of size parameters, such that the system
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still works within the physical properties we desire.

2.1.2 Hopping mechanism

In doped semiconductors, charge carriers such as electrons move between localized states,
or impurity sites, through a process known as hopping. This movement is essential for
charge transport, especially in disordered systems where traditional band conduction is
inefficient. Hopping occurs when an electron at one impurity site gains sufficient energy to
move to a neighboring site. This process is influenced by the spatial separation between
the sites and the energy difference between the initial and final states.

The rate at which an electron hops from one site to another is described by the transition
rate. This rate is crucial for understanding the electrical properties of doped semicon-
ductors and can be modeled using the Miller-Abrahams formula. This formula takes into
account both the distance between impurity sites and the energy difference between the
states.

Definition 2.1. The transition rate Γij between two impurity sites i and j is defined as:

Γij =

ν0 exp
(
−
(
2rij
aB

+
∆Eij

kBT

))
if ∆Eij > 0

ν0 exp
(
−2rij

aB

)
if ∆Eij ≤ 0

(1)

where:

• ν0 is the attempt frequency, representing the frequency of attempts to hop.

• rij is the distance between impurity sites i and j.

• aB is the Bohr constant.

• ∆Eij = Ej − Ei is the energy difference between sites j and i.

• kB is the Boltzmann constant.

• T is the temperature.

The calculations of the energy difference ∆Eij between pairs of hopping sites are described
in [1].

2.2 Kinetic Monte Carlo simulation

Kinetic Monte Carlo (KMC) simulation is a computational algorithm used to simulate the
time evolution of systems where events occur at rates determined by underlying physical
processes. In the context of charge transport in disordered materials like our system, KMC
simulations are particularly useful for capturing the stochastic nature of electron hopping
between localized states, or impurity sites.

At each time step 1 in the KMC simulation of the DNPU, the following steps are performed:
1The use of the exponential distribution in line 10 is due to the memoryless property of continuous-time

Markov processes. If transitions occur at a total rate λ =
∑

k,l Γkl, the waiting time ∆t until the next
event follows an exponential distribution. For details, see [14].
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Algorithm 1 Monte Carlo Step (MCS)

1: Input: Current state of the system (voltages of 7 input electrodes, current of output
electrode, initial occupation states, geometric parameters, initial energy potentials)

2: Output: Updated state of the system, time increment
3: procedure MonteCarloStep
4: for each possible transition from site i to site j do
5: Calculate transition rate Γij defined in 2.1
6: end for
7: Normalize the transition rates to obtain the probability Pij of each transition:

Pij =
Γij∑
k,l Γkl

8: Select one transition based on the probabilities Pij .
9: Update the system state (electrical field and energy differences) to reflect the chosen

transition.
10: Draw a random number ∆t from an exponential distribution with parameter∑

k,l Γkl:

∆t ∼ Exponential(
∑
k,l

Γkl)

11: Advance the simulation time by ∆t.
12: end procedure

This process is repeated for a large number of iterations to simulate the time evolution of
the system [1]. In our simulations, a sample consists of seven input electrodes and the corre-
sponding output current after running the simulation for a specified number of KMC steps.

A Monte Carlo simulation developed by Wilde [4] and extended by Becker [1] is utilized
to model the stochastic behavior of the DNPU in Figure 1B. The analysis of convergence
of this algorithm is given in section 3.

2.3 Machine Learning

In this subsection, we introduce fundamental concepts in machine learning, particularly
focusing on how these concepts are applied to develop a surrogate model for DNPUs in
Section 4. This explanation aims to provide a clear understanding for readers who may
not be familiar with artificial intelligence (AI) techniques. For a deep understanding of the
topic I recommend Chapter 5 of [5].

Machine learning is a subset of artificial intelligence where algorithms learn from data to
make predictions or decisions without being explicitly programmed for specific tasks [5].
The core components of a machine learning model are described in Table 1 with application
to a surrogate model of DNPU in this paper.
The model mentioned in Table 1 used to map the inputs to output in our case is the a
feedforward neural network, explained in section 2.3.1. The training process is explained
in section 2.3.2.
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Name Description In our study
Data The examples or observations the

model learns from.
Input-output pairs generated from
KMC simulations.

Features The input variables used to make
predictions.

The 7 input electrodes configura-
tions.

Labels The output variables that the model
aims to predict.

The output currents from the DNPU
simulations.

Model The mathematical structure (such
as a neural network) that maps in-
puts to outputs.

A deep feedforward neural network
used as a surrogate model.

Training The process of adjusting the model’s
parameters to minimize the differ-
ence between predicted and actual
outputs.

The optimization process using the
Adam optimizer to minimize the
MSE loss.

Table 1: Core components of a machine learning model and their application in
our study.

2.3.1 Feedforward Neural Networks

A neural network is a type of machine learning model inspired by the human brain. The
basic structure is visualized in Figure 2, it consists of layers of interconnected nodes (neu-
rons) divided into three kinds: input units, hidden units and output units. In the standard
architecture, each layer is fully-connected, i.e. each neuron in each layer is connected to all
neurons in the previous layer. Each connection between neurons has a weight wi, which
determines the strength of the connection, and each neuron has a bias term bi. When data
flows forward through each hidden layer (hence the name feedforward neural network),
each neuron sums over all neurons from previous layer with their respective weight and
bias and then the applies an activation function gactivation to the weighted sum of inputs
plus bias. This activation function 2 introduces non-linearity that enables the network to
model complex relationships between inputs and outputs. The output neuron performs
similar computation as the ones in the hidden layers but the choice of activation function
factivate here is usually different than gactivation, it depends on the type of problem being
solved by the network. For instance, in this paper, no activation function is applied in
the output neuron since the goal of our network is to emulate the behavior of a DNPU,
the output is expected to be raw values that represent the current output given a set of
electrodes.

2The Rectified Linear Unit (ReLU) g(z) = max(0, z) is usually used due to its simplicity and effective-
ness in the vanishing gradient problem [12].
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Figure 2: Visualization of a neural network. The blue neurons is the input layer,
grey neurons form hidden layers and red neuron is the output layer.

For more detailed explanation of Feedforward Neural Networks, refer to Chapter 21.1 of
[17].

2.3.2 Training

Training a neural network involves adjusting the model’s parameters to minimize the error
between the predicted and actual outputs. The goal is to train a network fθ : Rd → R
parameterized by θ, which represents the collective weights W and biases b of the neu-
ral network used in the SM, to approximate the mapping from inputs xi to output yi.
This can be formulated as an optimization problem searching for minθ L(θ;X,Y ), where
L(θ;X,Y ) is a loss function (sometimes refered to as a criterion). The core steps in train-
ing a feedforward neural network, as applied in our study, are outlined below with a high
level visualization in Figure 3.
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Figure 3: High level flowchart of training process of a deep neural network.

Data Preparation: The training process begins with the preparation of data. We gener-
ate a dataset of input-output pairs using Kinetic Monte Carlo (KMC) simulations. These
pairs consist of the configurations of the seven input electrodes and the corresponding out-
put currents. Let X = {xi}Ni=1 represent the set of input configurations, where xi ∈ Rd,
in our case d = 7, and the number of samples N = 100, 000. Similarly, let Y = {yi}Ni=1

represent the output currents, where yi ∈ R. The samples are split into three parts used
for training, validation and testing, all described below.

Model Initialization: We define the architecture of our deep neural network (DNN)
fθ : Rd → R, parameterized by θ, which includes the weights W and biases b of the net-
work. The network comprises several layers, each containing a specific number of neurons,
with activation functions applied to introduce non-linearity.

Forward Pass: During each training iteration, the input data xi is passed through the
network to produce a predicted output yi = fθ(xi).

Loss Calculation: The L(θ;X,Y ) is a performance measure between the predicted out-
puts and the actual outputs. The choice of this function depends on the goal of the network.
Additionally, L(θ;X,Y ) has to be differentiable with respect to θ to allow gradient-based
optimization methods to work.
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Backward Pass: The gradients of the loss function with respect to the network param-
eters θ are calculated using backpropagation. These gradients indicate how θ should be
adjusted to reduce the loss.

Parameter Update: The network parameters θ are updated using the Adam [8] opti-
mizer, which is a variant of gradient descent. This optimizer adjusts the learning rate
adaptively for each parameter, facilitating efficient and effective training:

θ ← θ − η∇θL(θ;X,Y )

where η is the learning rate, which controls the size of the steps the optimizer takes to
adjust the weights and biases of the network. Choosing the right learning rate is crucial:
a rate too high can cause the training process to converge too quickly to a suboptimal
solution, or even diverge, while a rate too low can make the training process excessively
slow. In our study, we use η from [16] and experiment around that value.

Validation: After each training epoch, the performance of the network is evaluated on a
validation set. This helps in monitoring overfitting and underfitting. The model achieving
the lowest Root Mean Squared Error (RMSE) on the validation set is selected as the final
trained model.

Number of Epochs: The training process is typically run for a predefined number of
epochs. An epoch is a complete pass through the entire training dataset. The number of
epochs determines how many times the learning algorithm will work through the entire
training dataset.

Convergence and testing: The training process continues for a predefined number of
epochs or until the loss converges to a satisfactory level. The model performance is tested
on a testing set, which has never been used during the training process. This provides a
measure of how well the model generalizes to new, unseen data, ensuring that the model’s
predictions are accurate and does not overfit to the training data.

2.4 Linear separability

In this subsection, we introduce definitions related to linear separability in the context of
machine learning for binary classification tasks. We also discuss the XOR problem as an
example of a non-linearly separable dataset.

Definition 2.2 (Linear Separability). A dataset D = {(xi, yi)|xi ∈ Rd, yi ∈ {0, 1}} is
said to be linearly separable if there exists a vector w ∈ Rd and a scalar b ∈ R such that:

wTxi + b > 0 if yi = 1

wTxi + b < 0 if yi = 0

for all (xi, yi) ∈ D.

Definition 2.3. A hyperplane in an n-dimensional space is a flat affine subspace of
dimension n− 1. It can be described by the linear equation:

wTx+ b = 0
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where w is a normal vector to the hyperplane and b is a bias term.

From the definitions 2.2 and 2.3, it is easy to see that in an n-dimensional space, a hy-
perplane is an (n − 1)-dimensional subspace that divides the space into two half-spaces.
Linear separability means that we can find such a hyperplane 3 that separates all data
points of one class from all data points of the other class without any overlap. Figure 4
provides visual representations of linear separability in 1D, and 2D, where the hyperplane
is a point and line, respectively.

Figure 4: Linear separability in one-dimensional and two-dimensional spaces,
where red dot and line are hyperplanes of their respective space that linearly divide
the dataset. Datapoints are colored same if they belong to the same class.

The XOR problem (Figure 5) is a classic example of a dataset that is not linearly separable.
In this dataset:

• The points (0,0) and (1,1) belong to one class (0).

• The points (0,1) and (1,0) belong to another class (1).

If we try to separate these points using a line, we find it impossible to do so without
misclassifying at least one point. This is because the classes are interwoven in such a way
that no single straight line can separate them. We will prove this observation formally in
the next theorem.

3These are usually called decision boundary.
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Figure 5: Two-dimensional space plane of points induced by XOR function.

Theorem 2.1. The dataset induced by XOR function is not linearly separable.

Proof. Consider the points (0, 0), (0, 1), (1, 0), and (1, 1). Assume there exists a linear
boundary defined by wT · x + b = 0 that separates these points such that (0,0), (1,1)
belong to the same class and (0,1), (1,0) belong to the same class. In other words, the
following must hold:

wT · (0, 0) + b ≤ 0 and wT · (1, 1) + b ≤ 0 (2)

wT · (0, 1) + b > 0 and wT · (1, 0) + b > 0 (3)

Let w = (w1, w2), we obtain from (2) and (3):

wT · (0, 0) + b = b ≤ 0 (4)

wT · (1, 1) + b = w1 + w2 + b ≤ 0 ⇐⇒ w1 + w2 ≤ −b (5)

wT · (0, 1) + b = w2 + b > 0 (6)

wT · (1, 0) + b = w1 + b > 0 (7)

Adding (6) and (7), we get:

w1 + w2 + 2b > 0 ⇐⇒ w1 + w2 > −2b (8)

From (5) and (8) ⇒ −b > −2b ⇐⇒ b > 0. This is a contradiction with (4).

Therefore, no single vector w and bias b can satisfy these inequalities simultaneously. Thus,
no linear boundary can perfectly separate the XOR data points, proving that XOR is not
linearly separable.

For more information on linear separability, refer to [2].
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3 Simulation Analysis

This section discusses topics regarding the convergence to true device and robustness of
the simulation developed by [1].

We start by stating a theorem for the conditions to converge to an actual physical system
of a KMC simulation and argue that our system indeed fulfills these conditions, therefore
after a sufficient number of steps it will converge to true behaviour of the corresponding
real-world system.

Theorem 3.1 (Convergence of Kinetic Monte Carlo Simulations). Let Xtn be a sequence of
states using transition probabilities P(Xtn+1 | Xtn) computed by the KMC algorithm, which
computes a conditional probability distribution that depends only on the current state of the
system, that is:

P{Xtn+1 = xn+1 | Xtn = xn, . . . , Xt0 = x0} = P{Xtn+1 = xn+1 | Xtn = xn}.

Assume that the Markov chain defined by the KMC algorithm is irreducible, aperiodic,
and positive recurrent. Let Xtrue(t) be the true state of the system. Then, for a suffi-
ciently large number of Monte Carlo steps, Xtn converges in distribution to Xtrue(t).

Proof. By the properties of Markov chains, the ergodic theorem and the law of large num-
bers, we know that if the Markov chain is irreducible, aperiodic, and positive recurrent, for
sufficiently large n, the distribution of Xtn will approximate π, the stationary distribution
[14].

Since Xtrue(t) represents the true state of the system and assuming the physical system’s
dynamics align with the stationary distribution π, we have:

π = P(Xtrue(t) = x).

Therefore, as the number of Monte Carlo steps increases, the distribution of Xtn converges
to the stationary distribution π. This implies:

Xtn
d−→ Xtrue(t).

This completes the proof.

To prove the convergence of our KMC, we need to establish that the Markov chain defined
by the KMC algorithm is irreducible, aperiodic, and positive recurrent. In each Monte
Carlo Step 0, transitions are considered from each site i to every possible site j with tran-
sition rates Γij (Definition 2.1). So every state is reachable from any other state because
every possible transition is considered 4, making the chain irreducible. Transitions are
chosen based on normalized probabilities Pij . The randomness in choosing ∆t from an
exponential distribution with parameter

∑
k,l Γkl adds variability to the time intervals be-

tween transitions, which ensures aperiodicity. Finally, given that transition rates Γij are
positive and finite, the expected return time to any state is finite, thus KMC is positive
recurrent. This is because the system is continuously updated and every state has a non-
zero probability of being revisited within a finite number of steps. Given these conditions,

4Transition rates must be non-zero. This is guaranteed in our system since ν0 is non-zero and rij is
finite, with T greater than zero, so the exponential term in (1) is positive.

12



the KMC simulation converges to the true dynamical behavior of the system under study
based on theorem 3.1. In the next subsection, we provide a simple statistical analysis of
the robustness of the simulation.

3.1 Robustness of the simulation

An important parameter of the KMC simulation is the number of KMC steps (defined in
0) in one simulation. As the more steps we take, the longer time we observe the behavior in
our system and hence the closer we get to its equilibrium state. The probability density plot
in Figure 6 displays the distribution of uncertainties in output currents of 4000 samples
using three different numbers of KMC steps: 103, 104, and 105. The uncertainties are
directly derived using the KMC simulation [1]. The results indicate that as the number of
KMC steps increases, the distributions of uncertainties become more concentrated around
lower values, and the mean uncertainties decrease, demonstrating that simulations with
more steps yield more robust and consistent results with lower variance.

Figure 6: Distribution of uncertainties of simulations with different KMC steps,
the x-axis shows the uncertainty values, the y-axis indicates the probability density.
The inset bar chart compares the mean uncertainties.

While simulation with 105 KMC steps yields the lowest mean uncertainty and most concen-
trated distribution, the improvement over 104 steps is marginal compared to the significant
increase in computational time required. The mean uncertainty for 104 steps is already
substantially lower than for 103 steps, and its distribution shows much reduced variance.
The additional reduction in uncertainty from 104 to 105 steps is relatively small. Thus,
104 KMC steps is used in this paper, providing sufficiently low uncertainty and consistent
results to train the SM while being computationally feasible.

In Table 2, we provide additional output currents statistics of the main dataset of 100,000
samples used to train the SM with 104 steps.
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Statistic Current (nA) Uncertainty (nA)
Mean -0.21 0.06
Median -1.08 0.06
Standard Deviation 4.36 0.01
Variance 19.05 0.00
Min -7.36 0.02
Max 7.36 0.09

Table 2: Uncertainty statistics of output current.

Figure 7: Histogram of Uncertainties

The relatively small values of the uncertainty statistics (Table 2) with higher uncertainty
with significantly lower frequency (Figure 7), particularly the mean and standard devia-
tion of the uncertainty, indicate that the simulation results are consistent and reliable. The
narrow range of uncertainty (0.02 nA to 0.09 nA) further supports the robustness of the
simulation outcomes.

As the number of samples increases, we expect the statistical metrics to converge to their
true values (Theorem 3.1). In other words, the mean and standard deviation should sta-
bilize, indicating that additional samples do not significantly alter the results. The consis-
tency in the simulation output currents provides confidence in the validity of the modeled
behavior of the DNPU device.

4 Surrogate model

The simulation of [1] comes with various algorithms to find boolean functions that yield
accurate results but requires a lot of computations. For example, finding the right control
electrodes for a XOR gate can take up to 90 hours. This is because the algorithm run a
large amount of KMC steps. With a SM that emulates the DNPU well, we can use ma-
chine learning techniques to find the right set of control electrodes for the XOR problem
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in much less time [16].

This section includes the methods used to model the DNPU using artificial intelligence.
We begin with a definition of the SM, explain the design choices behind the network used
to realize this SM in Section 4.1, and discusses the results in Section 4.2. A sensitivity
analysis is provided in Section 4.3 to further investigate the trained SM.

Definition 4.1. A surrogate model (SM) [16] is an artificial neural network (ANN)
trained to emulate the functionality of a complex system or device, such as a nanoelectronic
device.

We will train the SM using a fully-connected feedforward neural network trained using
simulated data from the KMC simulation (training proccess explained as in Section 2.3).
After completing the training, validation, and testing steps, the final output is a SM that
accurately emulates the behavior of the DNPU based on the simulated data. This model is
capable of predicting the output current for given input electrode configurations with high
accuracy, significantly reducing the computation time required compared to direct KMC
simulations.

4.1 Network architecture

Figure 8: Visualization of the network architecture. Blue regions depict 7 input
electrodes and red region is the output electrode in hardware setup (left) and SM
(right).

We define fθ : R7 → R as fully connected deep neural network illustrated in Figure 8.
The network begins with 7 input electrodes, each represented as nodes xi ∈ R7 in the
input layer. The network has a single output electrode, which produces the final output
current yi ∈ R based on the input configurations. The core of the network 5 consists of
five hidden layers, each comprising 90 deeply connected neurons. For each neuron in the
hidden layers, the ReLU function g(z) = max(0, z) is used as activation function and no
activation function is applied on the output neuron.

The loss function, L(θ;X,Y ), used in the training process is the MSE loss, defined as:
5The choices are replicate of the study by Ruiz Euler [16].
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L(θ;X,Y ) =
1

N

N∑
i=1

(fθ(xi)− yi)
2 (9)

, which is clearly differentiable with respect to θ.

To find the parameter set θ that minimizes equation (9), we employ backpropagation to
compute the gradients of the loss function with respect to each parameter in the network.
These gradients are then used to update the parameters iteratively using gradient descent
algorithm Adam [8] for 3,000 epochs with a learning rate of 10−5 and a mini-batch size of
128. Additionally, batch normalization was used to normalize the activations of each layer.
This technique helps in accelerating the training process and improving the performance
and stability of the network [7].

The package developed by BRAINS [16] was used to implement the discussed network.
This package comes with classes built on top of PyTorch [13] that allows for further im-
plementation and extension of the trained SM.

4.2 Results

Figure 9 shows the RMSE in nanoamperes (nA) over 3,000 training epochs. Initially, the
RMSE decreases rapidly for both sets, indicating that the model is effectively capturing
the underlying patterns in the data.

As training progresses, the RMSE for both training and validation sets continues to decline
but at a slower rate, eventually stabilizing, which signifies the convergence of the model.
The stabilization of RMSE values indicates that the model parameters have reached a point
where further training results in minimal improvements in performance. This plateau sug-
gests that the model has learned the optimal parameters to generalize well on unseen data.

The final test loss (in green) ≈ 0.234 nA, further supports the model’s robustness and
accuracy in predicting outputs for new, unseen data. Although the RMSE does not decrease
to zero, this is expected in practical machine learning applications due to inherent noise
in the data and the complexity of the model. A non-zero RMSE indicates that while
the model performs well, it does not overfit to the noise present in the training data,
maintaining a balance between bias and variance. This result reflects a well-trained model
that is capable of generalizing its learned patterns to new, unseen data rather than merely
memorizing the training set.
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Figure 9: RMSE in nanoamperes (nA) across 3000 training epochs for the training,
validation, and test datasets.

Figure 10 presents a scatter plot comparing all true outputs with their corresponding
predicted outputs from the test set. Each point represents a single data sample, with the
x-axis indicating the true output value and the y-axis showing the predicted output value.
The red dashed line represents the ideal scenario where the predicted outputs perfectly
match the true outputs (i.e., a 45-degree line). This plot provides a comprehensive view of
the model’s performance across the entire dataset. The concentration of data points along
the red dashed line indicates a high level of agreement between the true and predicted
outputs. The closer the points are to this line, the more accurate the model’s predictions
are. This plot helps in identifying any systematic biases or trends where the model might
consistently overpredict or underpredict. The dense clustering of points around the line
confirms that the surrogate model is making accurate predictions consistently.
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Figure 10: All data points comparison between true and predicted values.

4.3 Sensitivity Analysis

To further investigate the robustness of the model, we conduct a sensitivity analysis on
multiple surrogate models trained on same, and different data.

Definition 4.2. The sensitivity Sm,j,δp for each model m ∈ {1, 2, . . . ,M}, feature j, and
perturbation δp is calculated as the mean absolute difference between the base prediction ŷi

and the perturbed prediction ŷ
(m,j,δp)
i , i.e.:

Sm,j,δp =
1

N

N∑
i=1

∣∣∣ŷ(m,j,δp)
i − ŷi

∣∣∣ (10)

We systematically perturb each of the 7 input features and observe the output. We per-
form this analysis on 100 random inputs with perturbations magnitudes (-0.2, -0.5, 0.2,
0.5) one at a time to each input feature, i.e. for each input feature, we individually apply
-0.2, -0.5, 0.2, and 0.5, observing the model’s output for each perturbation. This analysis
provides a quantitative measure of how sensitive each model’s output is to changes in each
input feature. Higher sensitivity values indicate that the model’s output is more affected
by variations in the corresponding input feature.

The final output is a three-dimensional array S ∈ RM×d×P containing the sensitivity values
for each model, feature, and perturbation magnitude. We plot sensitivities in Figure 11
for each input and observe a close sensitivity similarities between all models. To clarify,
models 1 and 2 were trained on the same dataset of 100,000 samples while models 3 and
4 were trained on different datasets (also of 100,000 samples).
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Figure 11: The plot displays the sensitivity of each input feature for four different
models under various perturbations. Each line represents the sensitivity of one
model to one perturbation magnitude.

From this analysis, we can not only say that the models have similar sensitivity profiles, it
also reveals that input 1 and 7 have the most significant impact on the surrogate models’
output. This pattern can be interpreted by considering the physical and electrical char-
acteristics of the input and control electrodes in the DNPU. The high sensitivity of input
1 and 7 suggests that it has a strong coupling with the output electrode, likely due to its
proximity or direct influence on the charge distribution within the dopant network (Figure
1B). On the other hands, inputs with the smallest sensitivity are likely farther from the
critical regions of the dopant network that directly affect the output electrode, hence their
perturbations result in minimal changes to the output. In conclusion, the models align
well with the physical expectations of the DNPU, demonstrating that the surrogate model
accurately captures the sensitivity dynamics inherent in the device’s architecture.

5 Finding boolean gates

At the heart of a neural network, we have a computing unit, or a neuron (Figure 12),
which is usually combined with other computing units to create a neural layer, multiple of
these layers create a neural network that performs deep learning and exhibit intelligence
in machines [9].

19



Figure 12: Schematic of a single computing unit in a neural network. xi’s rep-
resent inputs and σ represent the activation function, usually the sigmoid function
σ(x) = 1

1+e−x .

These computing units are not that powerful, as they succeed in linear classifications, but
fail in nonlinear ones, such as the XOR boolean problem 6 (Figure 13). The output of
such unit is a linear combination of their inputs:

y = σ

(
n∑

i=1

wixi + b

)
, (11)

here xi are the input values, wi are the weights, b is the bias, σ is the activation function.
This makes it impossible to separate classes that are not linearly separable, like XOR.

6For proof of dataset induced by XOR function being nonlinearly separable, see Theorem 2.1.
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Figure 13: Linear separability for AND, OR and XOR functions. Blue dots
indicate a point in the input space where the value of the function is 1, and white
dots indicate a point where the value is 0. The red lines in a) and b) represent
possible linear decision boundaries. Figure styled after [17].

While the XOR gate cannot be realized by a single unit, a layered network of these units
can. The non-linear decision boundary of XOR can be realized with a neural network
consisting of 1 hidden layer with 2 neurons [5]. In [16], they successfully demonstrated
the XOR function on a single DNPU with radius of about 150nm. This section aims to
explore the implementation of the XOR gate using a much smaller DNPU with radius
16.77nm (results found in [19]). The goal is to demonstrate, using a SM, that even with a
minimized hardware footprint, the DNPU retains its ability to solve non-linearly separable
problems such as XOR effectively.

5.1 Network architecture

The primary objective of our network is to determine a set of five control voltages applied
to electrodes 1, 2, 4, 6, 7 in Figure 1B that will allow the DNPU to correctly classify
the Boolean inputs 00, 01, 10, and 11. The network architecture utilizes a single-layered
model based on the SM as defined in 4.1. This SM functions as a neuron. During this
process, the hidden layers of the SM are frozen to preserve the learned functionality of the
DNPU. The goal is to train this DNPU-based neuron to classify basic Boolean functions
such as AND, OR, and XOR, with particular emphasis on the XOR function due to its
non-linear separability.

To achieve this, pairs representing Boolean variables (00, 01, 10, 11) are fed into the input
electrodes of the SM, i.e. inputs 3 and 5 in Figure 1B. To facilitate comparison with the
results from [16], we assign a current value of -0.6 nA to class 0 and 1.2 nA to class 1.
The network architecture includes 7 input electrodes and 1 output electrode, as illustrated
in Figure 14. Throughout training, each input pair is frozen while control electrodes are
iteratively adjusted to minimize the error between predicted and target outputs.
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Figure 14: Network architecture for training a boolean functionality of a SM. The
weights of the hidden layers are frozen (in red) to preserve the learned functionality
of the DNPU, as well as the input pair (in black). Only the control electrodes (blue
inputs) are learnable parameters.

The training process for obtaining the boolean gate is depicted in Figure 15. Binary input
pairs (00, 01, 10, 11) are fed to the SM together with an initially random set of five control
voltages. During the forward pass, the SM processes these inputs through multiple layers to
produce output currents. It is helpful to conceptualize the SM as a black box functioning
like a DNPU, but with the advantage that we can perform backpropagation since it is
fundamentally a neural network. The SM generates a dataset of output currents, which
are then divided into classes. For the XOR function, input pairs 00 and 11 are classified as
class 0, while input pairs 01 and 10 are classified as class 1. The loss function is calculated
to maximize the separation between these classes.
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Figure 15: Training process for obtaining the boolean gate. The binary input
pairs (00, 01, 10, 11) and a set of 5 control voltages create a dataset that is fed to
the SM. The optimizer updates the control voltages based on the loss calculation,
which aims to maximize the separation between different output classes.

Gradient descent algorithm Adam [8] is employed with a custom loss function (Section
5.1.1) for 600 epochs and learning rate η = 0.08 (replicate of [16]) to optimize the control
electrodes.

5.1.1 Cost function

The design of the cost function heavily depends on the output type, which in our case
is the truth table for the correct Boolean function. The performance of the DNPU as a
Boolean gate can be quantified by the separation between the outputs classified as 1 and
0. The larger the separation, the more robust gate. In this section, we develop a cost
function that demonstrates better extrinsic evaluation than the one proposed in [16].

Definition 5.1. Let Ii be current class of the logic values i = {0, 1}. The current separa-
tion ysep is the minimum difference between max I0 and min I1, i.e. ysep = max I0−min I1.

We propose the following cost function to train the nanoneuron for Boolean classification:

L(y, z) = LBCE(y, z) + λ · Lsep, (12)

where LBCE is the Binary Cross-Entropy loss, λ is a hyperparameter that controls the
trade-off between classification accuracy and current separation and Lsep is the separation
loss defined as follows:

LBCE(y, z) = −
1

n

n∑
i=1

[zi log(yi) + (1− zi) log(1− yi)] , (13)
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where yi = σ(Ii) is the predicted probability obtained by applying the sigmoid function
σ(x) = 1

1+e−x to the output current Ii, and zi is the target binary label.

The separation loss Lsep is defined as:

Lsep = max(0, β − ysep), (14)

where β is a desired separation threshold.

We proceed to show that L defined in (12) is a valid loss function by showing it is dif-
ferentiable. LBCE is a well-established loss function for binary classification tasks. It is
differentiable and its minimization directly correlates with maximizing the probability of
correct classification [5].

We show that the separation loss component λ · Lsep is differentiable and ensures adequate
separation between the current classes.

Theorem 5.1. Lsep is differentiable with respect to the control parameters of the DNPU.

Proof. The function has piecewise definition:

Lsep =

{
0 if ysep ≥ β

β − ysep if ysep < β

When ysep ≥ β,Lsep = 0. The derivative with respect to any control parameter is zero in
this region. When ysep < β,Lsep = β − ysep. We need to analyze the differentiability of
β − ysep.

The function β− ysep is linear in ysep, and hence, its derivative with respect to any control
parameter x is:

∂Lsep

∂x
= −∂ysep

∂x
= −

(
∂min I1

∂x
− ∂max I0

∂x

)
.

here I1,min and I0,max are differentiable with respect to the control parameters as they are
outputs of the SM, which is a differentiable neural network model.

Theorem 5.2. The cost function L(y, z) is differentiable with respect to the control pa-
rameters of the DNPU.

Proof. The Binary Cross-Entropy loss LBCE is known to be differentiable with respect to its
inputs, as it involves logarithmic and linear operations, which are differentiable functions.
The separation loss Lsep is also differentiable according to Theorem 5.1. Therefore, the
combined cost function L(y, z), being a sum of differentiable functions, is differentiable
with respect to its inputs.

Now that we have established (12) to be a valid loss function, we compare the its perfor-
mance on training the SM for XOR function to the loss function proposed in [16].
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• The Correlation Sigmoid Loss Function proposed in [16] is formulated as follows:

LCorrSig(y, z) = (1− ρ(y, z))/σ

(
(ysep − q)

p

)
, q = 3, p = 5

where ρ(y, z) is the Pearson correlation coefficient, and σ(x) = 1
1+e−x is the sigmoid

function.

• The Piecewise Linear Loss Function defined in (12), the desired separation threshold
β = 2 and λ = 1 were chosen as these values demonstrated the quickest convergence
during the experiments.

The training losses for both loss functions over 600 epochs of same training data and
learning rate are plotted in Figure 16. The Piecewise Linear Loss Function demonstrates
rapid convergence and maintains lower, more stable loss values throughout the training
period. In contrast, the Correlation Sigmoid Loss Function shows significant fluctuations
and ultimately stabilizes at a higher loss value.

Figure 16: Training losses comparison over 600 epochs of learning XOR function.
The Piecewise Linear Loss Function (orange) achieves lower and more stable loss
values compared to the Correlation Sigmoid Loss Function (blue).

Furthermore, the simplicity of the Piecewise Linear Loss Function makes it easier to im-
plement and interpret, which can be beneficial for further developments and optimizations.
Based on these results, we use the Piecewise Linear Loss Function for training the SM for
the XOR function.
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5.2 Results

In this section, we present the results of our experiments to validate the accuracy of the
control voltages determined by the SM for different boolean gates. For each gate, we
generated 1,000 samples using KMC simulation for each input pair and the found control
electrodes. The predicted values from the SM (blue line) were plotted against the actual
simulation values (red dots). Additionally, a separation line was calculated and plotted to
distinguish between the logical outputs. The separation line is determined as the average
of the highest current value in Group 0 (inputs resulting in logical ‘0’) and the lowest
current value in Group 1 (inputs resulting in logical ‘1’) of the simulated currents:

separation_line =
max I0 +min I1

2
.

The results (boolean functions performance comparion between SM and KMC simulation)
of XOR, AND and OR functions are presented in Figures 17, 18a and 18b, respectively.
The found control electrodes corresponding to the results are recorded in Table 3.

The XOR gate
We observe an RMSE of 5.69%, indicating a relatively low prediction error. Notably, the
predicted output current for the input pair 01 ‘overpredicts’ the output current, as the
actual simulated currents lie below the predicted value 7. Despite this overprediction,
all datapoints in class 0 (input pairs 00 and 11) fall below the separation line at -1.46
nA, while datapoints in class 1 (input pairs 01 and 10) lie above it. This clear division
ensures that the separation line effectively distinguishes between the classes (0 and 1) of the
XOR function. Consequently, the set of control voltages determined by the SM accurately
captures the XOR behavior, validating the model’s effectiveness in reproducing the desired
logical function.

7This suggests that the SM does not perfectly match the KMC simulation results, likely due to the
limited amount of simulated data used in our study compared to the 3× 106 samples used in the study by
[16].
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Figure 17: Predicted currents (blue line) against the simulation values (red dots)
for the XOR function. The x-axis represents the input pairs (00, 01, 10, 11), and
the y-axis shows the current in nanoamperes (nA). The dashed line indicates the
separation threshold. The provided RMSE is between the SM’s predictions and the
KMC simulation outputs.

(a) AND function (b) OR function

Figure 18: Comparison of predicted currents and simulation values for the AND
and OR functions.

27



Function Input 1 Input 2 Input 4 Input 6 Input 7

XOR -0.2569 -0.5077 0.3191 -0.0151 0.9795
AND 0.4917 -0.5811 -0.4911 0.1593 -0.4207
OR 0.3944 0.1245 -0.0667 0.3826 -0.2614

Table 3: Voltages of control electrodes for Boolean Functions. Input indices
correspond to Figure 1B.

Overall, the SM exhibits a high level of accuracy in predicting the output currents for dif-
ferent boolean gates, as evidenced by the relatively low RMSE values for all gates tested.
The clear separation lines calculated for each gate confirm that the control voltages de-
termined by the SM effectively differentiate between the logical outputs. Remarkably, the
AND and OR gates show a greater separation (≈ 4nA) between classes compared to the
XOR gate (≈ 1nA). This increased separation is evidence to the simplicity and linearity
of the AND and OR functions, making them easier to model and predict accurately.

6 Conclusion and outlook

This study aimed to investigate whether the minimal size of Dopant Network Processing
Units, as suggested by [19], is experimentally viable as a functional DNPU. Our research
question was: Can the minimal DNPU size achieve efficient nonlinear classification, specif-
ically implementing an XOR gate?

Our results indicate that the smallest DNPU, with a radius of 16.77 nm and configured
with 10 dopants (Figure 1B), can indeed perform complex computations like the XOR
function. This conclusion is supported by the surrogate model [16] developed using a deep
feedforward neural network and trained using samples generated from Kinetic Monte Carlo
simulation [1]. Using a personal computer, our simulations were constrained to 100,000
samples due to computational limitations, resulting in a simulation time of approximately
8 hours. In contrast, larger datasets used in [16] (3× 106) can enhance accuracy and sta-
bility of SMs, emphasizing the benefits of training on extensive datasets.

Future work directions aim to build upon the results of this paper:

1. Neural network of multiple SMs of DNPUs:

• Explore the scalability of these systems: The next step involves connecting
multiple DNPUs to form a network of nanoneurons. This will allow for extensive
experimentation on their collective performance and potential as a full-scale
neural network for real-world applications.

• Optimization Techniques: The paper [11] highlights potential methods for op-
timizing neural networks, such as removing unnecessary connections between
neurons. This could further enhance the efficiency and scalability of DNPU-
based neural networks.

2. Nanoneurons in Hardware Emulation:

• The success of these small-sized, energy-efficient DNPUs as nanoneurons high-
lights their potential in hardware emulation of neural networks. This could
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revolutionize neuromorphic computing by enabling more compact and efficient
hardware implementations of artificial neural networks.

• These nanoneurons could be integrated into edge devices, providing on-device
AI capabilities with minimal power consumption.

In conclusion, our findings affirm the experimental feasibility of the minimal DNPU size for
complex computation tasks. Future research should focus on integrating these nanoneurons
into larger networks and optimizing their configurations to fully leverage their potential in
energy-efficient neuromorphic computing.
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A Code reference

The code used for simulations, surrogate model training and finding boolean functions can
be found at the following link (https://github.com/spbui00/ml_dnpu).
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