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Proof of Concept of Test Setup for Portwings Robird

Summary

In the project Portwings, a robotic bird is studied. To gather data, it has to be tested in a wind
tunnel. The test setup for this does not exist so a proof of concept for a test setup has to be
designed. The proof of concept would need to measure the direction and tension force on a cable
connected to a fixed-wing plane from a fixed point in space. The measured data would be used in
a controller to keep the plane centred in the applied air stream. To realise this, a housing for a
FrSky M7 gimbal was made and calibrated using code on an ESP32Wroom to measure angles in
the two axes of interest. To measure the tension force, a device with a spring and time-of-flight
sensor, VL6180, was constructed with a range of 0 [N] to 3 [N] and an average error of 0.089 [N].
This device was realised after multiple design cycles, which included testing. To make a control
loop, a model of the test setup was created in 20-sim. The model consists of a cable model and a
plane model. It was partly validated by test results, but not fully finished. To finalize the model,
a few more tests have to be conducted. These tests are mostly thought out and only have to be
executed. Due to time constraints, the proof of concept was not fully realised, however, initial work
has been done.
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1 Introduction

In the ERC project Portwings a robotic bird is studied. To gather data on this robotic bird, it has
to be tested in a large wind tunnel. However, this would be hard because of the behaviour of the
bird, which has to be as little constrained as possible to be optimally tested. A possible idea is to
connect a cable to the nose of the bird which comes from the middle of the wind tunnel source.
It should be possible to steer the bird to the centre of the stream by using the angle of the cable
and its tension. To test this idea, a proof of concept has to be set up, which tests this idea on a
small controllable fixed-wing plane. A cable is connected from the nose of the plane to a small
mechanism that can measure the angle that the cable makes. To measure the tension force, an
elastic element could be used while measuring its displacement. This setup is placed in front of a
big fan which generates the air stream. The idea could be scaled up to the actual setup when this
succeeds. This assignment starts by constructing a mechanism which can measure the tension force
and the angle of the cable and do some initial testing.
Research questions for this assignment are defined as follows:
Main research question: How can a setup be designed which is able to measure the angle of the
cable and its tension force while attached to a, to-be-chosen, small controllable fixed-wing plane?
Sub research question 1: What plane has to be chosen for the setup?
Sub research question 2: How to measure tension in a cable?
Sub research question 3: How to measure the angle of a cable from a fixed point in space which
has 2 degrees of freedom?
Sub research question 4: How is a control loop for this system designed?

This report first goes into a bit of theory on modelling a plane, and then the design of the proof of
concept of the setup will be explained. Following is the section about experiments conducted on
the design. And lastly, an evaluation of the design can be found.

1



Proof of Concept of Test Setup for Portwings Robird

2 Theory

In this section, theory is highlighted about the modelling of a plane, which is later used in the
design of the model of the system.

2.1 Flight theory for modelling

2.1.1 Basics of flight

An airfoil generates a lift and a drag force. The lift force is perpendicular and the drag force is
parallel to the air stream. The lift and drag forces depend on multiple factors and among those
are the coefficient of lift and the coefficient of drag. These coefficients depend on the shape of
the airfoil and the angle the airfoil has with the incoming flow or Angle of Attack (AoA). These
forces do not act at the same point when varying the angle of attack but move with the centre of
pressure which is more complicated to model. However, for low-speed airfoil design it is possible to
model the aerodynamic forces in one fixed point, the Aerodynamic Center (AC). This can only be
done when adding a moment on this point which is called the Aerodynamic Moment (AM). This
aerodynamic moment stays approximately constant with changing angle of attack [1], and has been
proven empirically and analytically. The AC is usually located at 1/4 chord length of a low-speed
airfoil [1]. This means that if the AM, drag and lift forces are measured, it is possible to make a
simple model of an airfoil.
The equations for drag and lift can be seen in Equation 1 and 2, respectively. Where Cd = coefficient
of drag, Cl = coefficient of lift, ρ = air density [kg/m3], u = flow velocity [m/s] and A = reference
area [m2].

Fd = 0.5 ∗ Cd ∗ ρ ∗ u2 ∗ A (1)

Fl = 0.5 ∗ Cl ∗ ρ ∗ u2 ∗ A (2)

2.1.2 Control & Stability

An airplane is equipped with control surfaces such as ailerons, flaps, and a rudder. When these
control surfaces are deflected, the lift coefficient (CL) of the corresponding airfoil changes, allowing
the plane to execute various maneuvers [1].

Lateral static stability refers to the stability of an aircraft in roll. This stability becomes significant
when an aircraft acquires a roll angle due to an external disturbance, such as a gust of wind.
When the aircraft is tilted, the lift force no longer acts directly opposite to the gravitational force,
resulting in a sideways and downward force that translates into a velocity, known as sideslip. And
the relative wind stream can be seen in Figure 1 as Vs.

2



Proof of Concept of Test Setup for Portwings Robird

If an aircraft has wings that are parallel to each other, they will generate the same amount of lift
because both wings have the same angle of attack (AoA). In this configuration, the aircraft does
not naturally return to its equilibrium position after a disturbance.

Consider an aircraft with wings mounted at an angle Γ, known as the dihedral angle, as shown
in Figure 2b. In this configuration, the wings produce different amounts of lift when the aircraft
experiences a sideslip, leading to a rolling motion that restores the aircraft to its equilibrium
position. This phenomenon is known as the dihedral effect [1].

Figure 1: Generation of sideslip [1]
Figure 2: Effect of dihedral [1]
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3 Design

The main idea of the design is a cable connected from a measuring device to the nose of a fixed-wing
plane. This measuring device is attached in the middle of the ventilator. The measuring device
consists of two parts; one measuring the angle of the cable, and the other one measuring the tension
force. These measurements can be used for a controller to control the plane’s attitude. A couple of
requirements have to be known to design such a device. These requirements mainly come from
the ventilator, which is not to be designed in this assignment, and the plane. The overall design
could be broken up into six main parts: ventilator, plane, angle sensor, tension sensor, model and
controller. Because of the lack of time, the model was not completed and not fully validated and
the controller could not be designed. That is why the latter is not included in this report. A picture
of the angle and tension sensor attached to the ventilator can be seen in Appendix C Figure 38.

3.1 Ventilator

The ventilator being used could go up to a wind speed of 23 [m/s] by using 19 ventilator modules
consisting of a drone motor, electronics speed controller (ESC), five-bladed propeller and a laminator.
The latter is needed to laminate the distorted airflow coming from the spinning propellers. If this
is not done, the disrupted airflow could cause unintentional behaviour on the test setup. The entire
ventilator was designed for the size of the chosen plane1. A picture of the ventilator is included in
Appendix C Figure 34. However, it was not fully functional during this assignment.

3.2 Plane

3.2.1 Plane selection

For deciding on a plane for the test setup, the following aspects had to be considered: (1) low
enough stall speed to fly using the ventilator, (2) the plane size should be small to keep the test
setup up small while keeping enough space to house all the electronics, (3) amount of control
surfaces has to be at least four to be able to control pitch, roll and yaw and (4) a conventional plane
tail makes modelling of controlling pitch, roll, yaw and position easier. Several ideas for planes
were considered from designing one to buying one, but eventually, a 3D model for a RC plane was
chosen. There are several advantages of choosing a 3D printed plane over the other options such as
(1) 3D printed parts are easily replaceable, (2) it has a hollow fuselage which can be used to house
electronics, (3) easily modifiable and (4) cheap to produce. The chosen design was the "Micro
SportCam" from 3DAeroventures.com [2] and can be seen in Appendix C Figure 35. This design

1Thanks to technicians at the Robotics and Mechatronics department who have designed and built this ventilator
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has four controllable surfaces, a conventional plane tail and a slight dihedral angle which results in
more roll stability as explained in section 2.1.2. The stall speed was not mentioned in the design.
However, it is mentioned that this plane is meant for flying at low speeds and looking at the video
provided it is supposed that it will fly with the ventilator. The plane was printed out of PLA and
assembled as described in the assembly guide of the plane. Because the recommended servo motors
did not arrive in time, different servo motors had to be chosen. The FEETECH Sub-Micro Servo
FS0403 were chosen. These motors had different dimensions which led to some modifications in
the servo brackets. These servo motors have dimensions of 20 x 8.3 x 19.3 [mm] compared to the
recommended servo dimensions of 18.02 x 7.91 x 16.8 [mm] for which the plane was designed. Next
to those changes, the plane did not get landing gear as instructed in the building guide since this
will not be used. Instead, a small attachment point is glued onto the front to attach a cable. Also,
a small hole is drilled in the nose so that the wires for communication and power can come through
as shown in Appendix C Figure 36.

3.2.2 Electronics

In the build guide, some electronics were recommended but only the servos were acquired, this is
because the plane will be connected to the angle sensor by a cable. A few lacquered copper wires
from an ESP32Wroom could be twisted around the cable to be able to communicate with the plane
and provide power to the electronics on board. By doing this, the plane does not need a receiver or
batteries, this saves weight and also eliminates the problem of a battery running low. To make the
controller design easier, a flight controller is used to keep the roll axis of the plane stable. This
flight controller is the Speedybee F405 wing mini, this one was chosen because of its small size and
application for fixed-wing aircraft. As mentioned before, the recommended EMAX ES9251ii (2.5g)
Digital Servo did not arrive and that is why the FEETECH Sub-Micro Servos FS0403 were chosen.
These servos were chosen because of their similar dimensions to the original ones. The four servos
were connected to the flight controller. To communicate with the flight controller, two lacquered
wires were connected to the SBUS port of the flight controller and connected to a UART port of
the ESP32Wroom. An ESP32Wroom was chosen because of its many different types of ports. To
power the flight controller, the other two lacquered wires were connected to the power input. These
are connected to a voltage source of 7.5 [V]. Connectors were made for the SBUS input and the
power input to be able to easily swap the lacquered wires running along the main cable. Because
the lacquered wires do not have an isolation layer it could introduce crosstalk. When the crosstalk
becomes a problem, the lacquered wires could easily be swapped out for isolated wires. However,
this comes with the cost of adding weight to the cable.

5
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3.2.3 SBUS communication and flight controller software

The fast SBUS protocol is used to communicate with the flight controller. To do this with an
ESP32Wroom, the GPIO16 (RX) pin is used to send data, which corresponds to UART2. UART1
is not used because of its direct link with the serial port of the USB output. The ‘bolderflight
SBUS’ library is used [3]. The settings for this are: inverted serial and fast SBUS turned on. Values
sent are in the range of [172 1811] which corresponds to [987 2011] in the INAV flight controller
software, this range is used because it is common. INAV is being used because of its many different
useful settings and familiarity of one of the staff members. To connect the proper SBUS channel
with its corresponding INAV channel, the Table 4 in Appendix B was found and can be used.

In the INAV software, there are options to include stable flight, this can also be done to the roll
axis. The parameters of this controller can be changed to ensure the roll angle stays the same. This
has to be tuned when testing in an air stream.

3.2.4 Parameters

To model the plane, a few parameters have to be known: the location of the Centre of Mass (CoM),
the mass, the lift coefficient and the drag coefficient. The latter two will be found by an experiment
described in section 4.6.1. The mass of the plane including electronics was measured at 185.57 [g].
To find the CoM of the plane, it was balanced along its roll axis, its pitch axis and lastly, the plane
was hung from its attachment point and an imaginary line could be drawn from the attachment
point straight down which coincides with the other balancing points. This point was the CoM and
its location can be seen in Figure 3. The wing area was specified in the build guide as 0.0764 m2.

Figure 3: Location of centre of mass of plane (note: the vertical measurement is taken from the
bottom of the plane)
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3.3 Angle sensor

3.3.1 Joystick selection

A joystick is used to measure the angle of the cable. When choosing a joystick there was little to no
data in the datasheet about the accuracy. Initially, the idea was there to test two joysticks and use
the best one, but because of time shortage, a joystick was chosen. The joysticks considered were
the "PS2 joystick module" and the "FrSky M7 gimbal". The latter made use of hall-effect sensors
and bearings which made the joystick have very low friction. The difference in friction between the
joysticks could easily be felt. That is why, the "FrSky M7 gimbal" was chosen. However, there
were some concerns with the effect of the motors on the hall-effect sensors. To check if the motors
affected the joystick, a small test was set up by keeping the joystick as close as it would eventually
be mounted on the setup and the motor was spun. When moving the joystick around, it gave the
same values as without the motor being turned on. This was only tested with one motor because
of the ventilator setup not being ready at that time.

3.3.2 Housing

A housing was made to mount the joystick onto the ventilator setup. Three inserts were designed
to exactly fit into specific holes on the ventilator. A screw can be used to expand the insert and
secure the housing in place. Hexagonal-shaped holes were added to reduce printing time.

3.3.3 Code

To read out angles, the joystick output values have to be mapped. This is done with the same
ESP32Wroom that controls the plane. A test is conducted to find the values corresponding to the
angles and can be found in section 4.1. This resulted in a mapping of the X-axis from [575 3990] to
[-300 300] which corresponds to [-30.0 to 30.0][◦] and the same goes for Z-axis [485 2910]. In section
3.6 it becomes apparent why these axis labels are chosen.

Figure 4: Joystick with arrows in which direction the movement is defined
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3.4 Cable

For the cable, a 0.8 [mm] steel cable was used. This was chosen because of its availability during
construction. The steel cable itself should also have a low compliance, which is easier to model
because it could be neglected.

3.5 Tension sensor

The main idea of the design of the tension sensor is to measure the displacement of a spring and
then obtain the force with its spring constant, this is because force cannot be directly physically
measured. Two methods of obtaining the displacement were considered; using a potentiometer
or using a Time of Flight (ToF) sensor. There was an idea of testing both the components and
comparing them, but due to a lack of time, the time-of-flight sensor was chosen. This is because
a time-of-flight sensor is small, lightweight, and requires no operating force. It can be mounted
near the attachment point of the cable to the angle sensor, resulting in a shorter leverage arm and,
consequently, less impact on the plane. The VL6180 was chosen because of its accuracy compared
to other time-of-flight sensors available on a break-out board. The latter was preferred because of
the ease of use during prototyping. This sensor has a resolution of approximately 1 [mm] when
used for the range [5 200] [mm]
To choose a spring for the device, the force on the device has to be estimated. When looking through
different airfoils on airfoiltools.com and looking at the airfoil that was most similar to the one in
the plane design, it is possible to have an approximation of the minimal force and the maximal
force. The one which looked the most similar was the NACA 23015. By looking at the coefficient
of drag (Cd) at low Reynolds numbers (50000), it can be seen that the lowest Cd is around 0.25.
Then taking an arbitrary low air speed of 10 m/s, the wing area of the plane of 0.0764 [m2], air
density of 1.204 [kg/m3] (at 20 [◦C]) [4] and using the formula for drag from Equation 1 the force
of 0.114 [N] is calculated. In the same way, the maximum drag force is calculated using a wind
speed of 25 m/s and a Cd = 0.09 which results in 2.587 [N]. To make sure the device will not run
out of range, it will be designed for 3 [N]. A spring with a spring constant of 0.13 [N/mm] was
chosen. This had the lowest spring constant of all available springs in the workshop. A low spring
constant is desirable since this results in bigger displacements for the same amount of force which
results in more accurate readings of the ToF sensor. This means that using this spring and ToF
sensor, the device has a resolution of 0.13 [N].
To measure 3 [N] the device has to let the spring have a displacement of 23 [mm].
In the following section, the different versions of the design of the tension sensor are described.

8
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3.5.1 Version 1

The first version was made of two main parts. One part slid into the other, this made sure that the
axes would stay aligned. The spring was mounted using nylon M3 bolts and nuts as can be seen in
Figure 5. The tension sensor could easily be mounted onto the angle sensor by using an M4 nut to
bolt down onto the angle sensor.
The ToF sensor is mounted on the bottom side with some nylon M3 bolts and nuts and can read
the distance to a plate opposite of it. This plate is designed to slide in and out as part of the overall
assembly. When mounting the spring, nylon M2 bolts and nuts were initially considered. However,
they proved too weak to withstand the spring’s strength, leading to bending. So nylon M3 bolts
and nuts were used
The design also accounted for the spring’s mounting points, ensuring they were 18 mm apart.
This spacing allows the spring to be mounted without any tension. The maximum distance is the
maximum extension + resting distance: 23 [mm] + 18 [mm] = 41 [mm].
To mount the cable that goes to the plane, a small insert is made to route the cable and then clamp
it down with another 3D-printed plate.
When the whole design was printed, it became clear that this design did not work. This was
because it did not have the spring in line with the cable which caused a moment. This created
more friction than desired in the sliding part of the design.

Figure 5: Version 1 ten-
sion sensor

Figure 6: 3D design of version 1 of the tension sensor (left: the main
part where ToF sensor mounts on the bottom side, middle: the second
main part which slides into the other main part and right: part to
clamp cable down)

3.5.2 Version 2

Then a second version was designed with the idea of having little friction and the spring in line
with the angle sensor and the cable. The design consisted of two main parts as can be seen in
Figure 7 and Figure 9. The part fixed to the angle sensor (Figure 7) has two holes at the top where
the ToF sensor could be bolted down. Below those holes, there is a hole where the angle sensor
could be attached using a M4 nut. Then there are two more holes which are opposing each other,
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these are used to fix one end of the spring in place using an M3 bolt and nuts.
The sliding part (Figure 8) has two cylinders with holes, these holes are used to attach the other
part of the spring using an M3 bolt and nuts. Then on the other side of this part, there is a space
for the cable to be attached by putting an M2 bolt through the sliding part and a loop in the cable.
The plate that is sticking out is used to reflect the light coming from the ToF sensor. Later during
testing, it was discovered that the area of this part was too small and gave non-desirable outcomes.
The reflecting plate was changed for a bigger one which can be seen in Figure 9.
The reader can also see that two small pieces are sticking up from each of the cylinders, those are
there to restrict sideways movement. However, when this part was printed it did not turn out well
because of the printer not being able to print such small details.
This version had an average error rate of 0.068 [N] and the test results can be found in Appendix H

Figure 7: 3D design of version 2 of the tension sensor.

Figure 8: 3D design of the sliding part of version
2 of the tension sensor.

Figure 9: 3D design of the second version of
the sliding part of version 2 of the tension
sensor.

3.5.3 Version 3

Because version 2 did not constrain the sliding part enough, it resulted that the sliding part could
rotate. This could lead to inaccuracies when measuring the displacement. In version 3, the design
was altered to constrain this rotational movement. Only the sliding part was adapted and can be

10



Proof of Concept of Test Setup for Portwings Robird

seen in Figure 10. Also, reflective tape was added to help the ToF sensor and the fixed part was
printed in black so that less light would distort the ToF sensor. The result can be seen in Figure 10
and Figure 11. The design had a mass of 10.55 [g]. This version had an average error of 0.89 [N].

Figure 10: 3D design of the sliding part of version
3 of the tension sensor. Figure 11: Realised design of version 3

3.5.4 Code

The code for measuring force is provided in Appendix G. This code includes calibration for the
distance measurements. Initially, it collects 2000 samples and averages to determine the initial
distance measured by the ToF sensor. 2000 samples were chosen because for less than this, the
calibration was not working well enough. This measured distance is then subtracted from the
reference distance used in the mapping formula to ensure accurate mapping. In different light
settings, the initial distance changes, and that is why the calibration is needed. The mapping
formula from section 4.2 was used to obtain the actual distance.
During testing, it was observed that the spring constant was incorrect. The correct spring constant
was determined by measuring the force and displacement of the spring using a force gauge and a
caliper. The recalculated spring constant is 0.171 [N/mm].
The displacement is obtained by subtracting the starting distance, this displacement is multiplied
with the spring constant to obtain the force measured.
The code for the tension and angle sensor is combined into one code and can be seen in Appendix I.
The running average could be removed if needed. The total run time for obtaining the values for
both angles of the angle sensor and force computation is done in 11 [ms].

3.6 Model

3.6.1 Assumptions and approach of modelling

Before making a model, a few assumptions were made about the system:
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1. The cable is always tense.

2. The plane itself is a rigid body, neglecting flexion in the body and wings.

3. The lift force is always perpendicular to the airflow and the drag is anti-parallel to the
airflow.

4. The airflow applied to the system is a constant laminar flow.

5. The roll axis is held stable by the flight controller and can be ignored in the model.

The bodies being modelled are: (1) The cable and (2) the plane. The frames needed on each of the
bodies are as follows:

• Frames for cable: cable-left-end frame, cable-CoM frame and cable-right-end frame.

• Frames for plane: plane-nose frame, plane-CoM frame.

Each of these frames is fixed to the corresponding body and can be seen in Figure 12. These frames
can be translated to the inertial frame. The inertial frame itself is subdivided into two domains: the
rotational domain and the translational domain. In the rotational domain, all rotational velocities
and moments are modelled and in the translational domain, all translational velocities and forces
are modelled.
All of the modelling is down in 20-sim.

Figure 12: Modelling approach and frames on bodies depicted

3.6.2 Rotational Transformer

Throughout the model, the Rotational Transformer (RTF) element is used, this is a modulated
transformer including rotation matrices. Because this model does not consider roll, which is rotation
around the Y-axis in the model, only the rotation matrices for the X and Z axis are considered and
can be seen below. The code for the RTF element can be seen in Appendix D Figure 39.

Rx(θx) =
[
1 0 0
0 cosθx −sinθx
0 sinθx cosθx

]
, Rz(θz) =

[
cosθz −sinθz 0
sinθz cosθz 0

0 0 1

]
[5]
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3.6.3 Cable model

First, a gravity model is added and can be seen in Figure 14 and at the bottom of Figure 13. This
model acts in the inertial frame as an effort source, for the gravitational force, and an I-element,
for the mass of the cable, at the CoM of the cable.
To translate from the translational domain in the inertial frame at the CoM to the cable-CoM
frame, an RTF is used and goes to a 1-junction which is the 1-junction between the left and the
right cable end models, this 1-junction represents the origin of the cable-CoM frame.

Imass_cable =

[
mass of cable 0 0

0 mass of cable 0
0 0 mass of cable

]
, Segravity =

[
0 0 0
0 0 0
0 0 −g∗mass of cable

]
Where ‘mass of cable’ is the mass of the whole cable body including the tension sensor. And where
g=9.81 [m/s2].

Figure 13: Cable model in 20-sim

Figure 14: Cable
gravity model in
20-sim

To model the rotational velocities acting at the CoM of the cable in the inertial frame, the model
in Figure 15 is added and is called ‘Cable_CoM_Rotational’. This model only has the rotational
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velocities around the X-axis and the Z-axis of the inertial frame. The Y-axis is ignored since this is
held stable by the plane’s flight controller when connected to the plane.
This model provides the angle input for the RTFs by integrating the rotational velocities. The
moment of inertia of the whole cable body and the friction of the angle sensor are modelled in this
model. The latter can be added because the friction in the angle sensor only acts on the difference
in rotational velocities of the cable with respect to the inertial frame.
The ‘p2’-port goes out of the cable model to eventually be used in taking the difference between the
plane’s rotational velocity and the cable’s rotational velocity to model the joint friction between
them which will be seen later. The values for Imoment_inertia_cable are found in section 4.4.

Imoment_inertia_cable =
[
moment of inertia X 0

0 moment of inertia Z

]
, Rfriction_fixed_joint =

[
friction X 0

0 friction Z

]

Figure 15: Rotational velocities of cable CoM in inertial frame

In Figure 12 can be seen that the tension sensor is between the cable-left-end frame and the
cable-CoM frame. Meaning that there is a velocity difference between the frames because of the
spring inside the tension sensor.
To model this, the structure in Figure 16 is used. The spring and the friction of the tension sensor
act on this velocity difference and that is why a C-element and a R-element are connected to the
1-junction representing the velocity difference as can be seen in Figure 17.
When subtracting this difference from the velocity at the CoM in the cable-CoM frame, the velocity
in the cable-left-end frame due to translation in the inertial frame is found. The velocities due to
the rotation of the cable in the inertial frame have to be added to complete the velocities at the
origin of the cable-left-end frame. First, the rotational velocities in the CoM in the inertial frame
are transformed into velocities in the cable-left-end frame and then added to the cable-left-end
velocities due to translation in the inertial frame. The "V_left_cable_end" represents the velocities
in the cable-left-end frame at the origin. These velocities have to be set to zero to fix the left end
of the cable as in the actual setup. The transformer that translates the rotational velocities on the
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cable in the inertial frame to velocities at the cable-left-end frame is dependent on the extension of
the spring in the tension sensor, since the length of the body changes.

Figure 16: Structure to take the difference in effort or flow from "Introduction to Physical Systems
Modelling with Bond Graphs"[6]

Figure 17: Cable left end model

Ctension_sensor =

[
Compliance X 0 0

0 Compliance Y 0
0 0 Compliance Z

]
Rfriction_tension_sensor =

[
Friction X 0 0

0 Friction Y 0
0 0 Friction Z

]

The compliance Y of the C-element has to be the compliance of the spring used, and the others
have to be close to 0 (10−11 is used). For the R-element, the tension sensor’s friction has to be
modelled as friction Y and the others have to be set to close to 0. The reason for modelling it in
the Y values is because of how the tension sensor moves with respect to the cable-left-end frame
and the cable-CoM frame. Note that to be able to run the model, 0 cannot be filled in an element.

The same model is used but then for the right end of the cable and can be seen in Figure 18. The only
difference is that there is no friction acting on the velocity difference between the cable-CoM frame
and the cable-right-end frame. The compliance of the cable is modelled, this could be neglected but
is included for when the cable gets changed to a more compliant cable. The "V_right_cable_end"
represents the velocities in origin of the cable-right-end frame. This 1-junction goes to an RTF
which translates the cable-right-end frame velocities to the inertial frame in the translational domain
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at the right end of the cable. These velocities are later used to relate the right end of the cable and
the plane’s nose.
The TF used to translate the rotational velocities on the cable in the inertial frame to velocities at
the cable-right-end frame depends on the extension of the cable. Also note that there is a block
called "Tot Length" in Figure 13 which represents the total length of the cable which is used in the
3D simulation window as a reference.

Figure 18: Cable right end

Ccable =

[
Compliance X 0 0

0 Compliance Y 0
0 0 Compliance Z

]

3.6.4 Plane model

The plane is modelled in a similar way as the cable and can be seen in Figure 19. The gravity
model works exactly as the one in Figure 14, however, ’mass of cable’ is changed to the value
corresponding to the mass of the plane.
A noticeable difference is that there are more forces modelled in the inertial frame of this model.
These are the moments and forces that result from the plane being placed in an airflow. Modulated
effort sources are used which are dependent on the windspeed, elevator input, rudder input, angle
of attack and yaw angle and can be seen in Figure 21 and Figure 22. The moments acting on the
plane are modelled in the rotational domain and the force acting on the plane are modelled in the
translational domain. The formula inside of the modulated effort sources has to be determined
empirically and is described in section 4.6.1. The reason for the empirical modelling approach is
because of the lack of information on the plane. To get data on the forces and moments acting on
the plane, it has to be tested. The inspiration of doing it in this way came from the theory about
the aerodynamic centre in section 2.1.1
The model for the rotational velocities at the CoM of the plane in the inertial frame can be seen in
Figure 20. The ‘p1’ port is there to be able to take the difference between the rotational velocities
of the cable body and the plane body in the inertial frame to model the joint friction between them
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and will be shown later. The ‘moments’ port comes from the ’rotational_plane_forces’ model and
is shown in Figure 21.
The location of the velocities at the CoM of the plane in the inertial frame for the translational
domain can be seen as the highlighted ‘CoM’ 1-junction in Figure 19. This gets translated to the
plane-CoM frame by an RTF. When adding up the velocities due to translation and rotation in
the inertial frame on the plane nose, the velocities at the plane-nose frame are obtained, which
is highlighted as the ‘plane nose’ 1-junction. This 1-junction gets translated to the inertial frame
through an RTF. This will later be used to relate the plane’s nose to the right end of the cable.

Figure 19: Plane model
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Figure 20: Rotational velocities of plane CoM in inertial frame

Imoment_inertia_plane =
[
moment of inertia X 0

0 moment of inertia Z

]

Figure 21: Plane moment model Figure 22: Plane force model

3.6.5 Overall model

In the overall model, the interactions between the cable body and plane body are modelled and
be seen in Figure 23. The difference in rotational velocities in the inertial frame of both bodies is
taken in the top multi-bonds. The joint friction between the plane nose and the right cable end
acts on this difference. This is modelled as an R-element. The single bonds are there to get the
difference between the angles and are used in the 3D simulation window as references.
The bottom multi-bonds represent the velocities of the cable-right-end frame and plane-nose frame
expressed in the inertial frame. In the actual setup, the right cable end and the plane nose are
linked together, this means that there is no translational velocity difference in inertial between
these points. To model this, the difference is taken with the 0-junction and the flow source of 0
velocities is added, which results in the difference in translational velocities in inertial between the
two frames being 0.
Values of the model are mapped by gain blocks to realistic sensor values, which can be seen in the
top left. Later this could be used to create a controller for the system.
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Figure 23: Overall model
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4 Experiment procedures and results

4.1 Angle sensor

To obtain the joystick values which corresponds to a certain amount of degrees in an axis, a test
has to be conducted.

4.1.1 Method

Materials:
• ESP32Wroom
• M4 bolt
• Triangle ruler
• Joystick

• Angle sensor housing
• Tape
• Wires

The materials were set up as shown in Figure 24. One axis is fixed by tape as shown in the figure,
while the other one is tested and vice versa. The axis of rotation of the corresponding axis has
to be placed at 0 on the triangle ruler. Only then it is possible to read out the angle that the
joystick makes from the triangle ruler. The joystick’s base has to be set up 11 [mm] over the ruler
when measuring the X-axis to align the rotation point and the 0 on the ruler. The same goes when
measuring the Z-axis for the value of 9 [mm]. These values were found by measuring the distance
from the surface of the joystick to the rotation axis.
The joystick’s wires are connected to an ESP32Wroom as follows: The power wires (red) to a
3.3 [V] pin, ground wires (black) to GND, green wire to GPIO 34 and yellow wire to GPIO 35.
Then the code in Appendix E is run and values are read out and noted down for the angles
[-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30][◦].

Figure 24: Test setup for testing values and their corresponding angles
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4.1.2 Results

Angle [◦] -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
X-axis Value 687 929 1150 1360 1635 1980 2287 2470 2790 3070 3405 3849 4060
Z-axis Value 443 680 870 1195 1283 1500 1687 1885 2135 2265 2500 2720 2905

Table 1: Results of angle sensor testing

Figure 25: Joystick values for both axes to its corresponding angle and linear trendline

When the data points were plotted, a linear relation could be observed. The formulae for the
trendlines are:

Xvalue = 56.91 ∗ α + 2282.5 (3)

Zvalue = 40.43 ∗ α + 1697.5 (4)

Where α is the angle that the joystick makes for the corresponding axis. These formulae are used
to obtain the mapping for the joystick and can be seen in section 3.3.3.

4.2 Time of Flight sensor testing

Testing has to be done to see if the ToF is giving the correct values in the environment where it is
used in the tension sensor. These tests were done with versions 2 and 3 of the tension sensor. The
test results for version 2 can be seen in Appendix H and the results for version 3 can be seen in the
next section.

4.2.1 Method

Materials:
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• ESP32Wroom
• Caliper
• Tension sensor housing

• Wires
• VL6180 ToF sensor

The ToF sensor is mounted on the tension sensor housing and wired to an ESP32Wroom as follows:
SDA pin to GPIO 21, SCL pin to GPIO 22, Vin to Vin and GND to GND.
The code in Appendix F is used to read out the values. Note that in the code a rolling average of
100 samples is used to obtain better readings for this test. For the tension sensor’s use case, only
the difference in starting distance and end distance matters. Meaning that with this test, only the
linearity of the sensor has to be tested. This is done by measuring the distance from a reference
point to the reflection plate and comparing it with the value that the ToF is giving out. In this
experiment, the reference point from where the caliper measures the distance to the reflecting plate
is the head of the bolt where the ToF is mounted (see Figure 26).

Figure 26: Reference distance d

4.2.2 Results

Distance d [mm] 34 36 38 40 42 44 46 48 50 52
Distance measured ToF [mm] 30,5 32,2 34 35,9 36,9 38,3 40,5 42 43,9 46

Table 2: Results of testing ToF mounted on version 3

Figure 27: ToF measured distance vs distance d
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When trying different trendlines to obtain a trendline which corresponds the most with the data, a
second-order polynomial was chosen:

dactual = −0.0079 ∗ d2ToF + 1.7963 ∗ dToF − 13.622 (5)

This was put into the code to map the values from the ToF sensor to the correct distance.

4.3 Tension sensor force testing

When the calibration code was written and the code for giving the right distance, the tension sensor
had to be tested. It was noticed that the spring constant had to be changed to give the right values
and was changed to 0.171 [N/mm]. This test is conducted on both version 2 and version 3. The
test results for version 2 can be found in Appendix H.

4.3.1 Method

Materials:
• Force gauge of 5[N]
• Tension sensor

• ESP32Wroom
• Wires

A force gauge is attached to the tension sensor. While one part of the tension sensor is held in
place, a force is applied to the other side through the force gauge (see Figure 28). The tension
sensor’s force values are read out using a code that uses a rolling average of 100 samples. This is
then compared to the force gauge for the values of [0 0.5 1 1.5 2 2.5 3] [N]. The code for reading
the values can be found in Appendix G.

Figure 28: Test setup for testing the tension sensor
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4.3.2 Results
Force applied [N] Output of Tensions sensor [N] Average error [N]

Measurement 1 Measurement 2 Measurement 3
0 -0,07 0 -0,05 0,04
0,5 0,3 0,4 0,35 0,15
1 0,95 0,9 0,95 0,067
1,5 1,55 1,5 1,5 0,017
2 2,11 2 2 0,037
2,5 2,78 2,6 2,6 0,16
3 3,3 3 3,15 0,15

Table 3: Force measured from tension sensor compared to force applied

The total average error is 0.089 [N].

4.4 Plane rotational inertia

A test has to be conducted to obtain the moment of inertia of the plane for both pitch and yaw.

4.4.1 Method

Materials:
• Plane with electronics

• cable to be able to let the plane swing
To obtain the moment of inertia a formula is used.

I =
T 2 ∗m ∗ g ∗ d

4π2
[7] (6)

Where I = moment of inertia [kg ∗ m2], T = period in [s], m = mass of the object [kg], g =
9.81 [m/s2] and d is the distance from point of rotation to CoM [m]. This formula only holds for
small angles from the neutral hanging point. To measure the period, the plane was hung from a
cable and swung. The cable itself was fixed as close as possible to the attachment point of the plane
so that is would not influence the measurements. The IMU from the flight controller measures
acceleration data. This can be plotted in Matlab to see the period. The flight controller itself can
only measure every 10 [ms]. The accelerometer data from the Z-axis of the flight controller is used
for the pitch and data from the Y-axis for the yaw. These accelerometers corresponds with these
axis because of the orientation of the flight controller inside the plane.
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4.4.2 Results

Figure 29: Test results for pitch Figure 30: Test results for yaw

When obtaining the period, an average was used over the first 4 periods. Then the rest of the
values where filled in to the formula: mplane=0.18557 [kg], d = 0.208 [m], Tpitch=1.0775[s] and
Tyaw=1.1850[s]. This resulted in Ipitch = 0.0111 [kg ∗m2] and Iyaw = 0.0135 [kg ∗m2].

4.5 Model validation

To test the values obtained from the experiment in section 4.4, the values can be put into the model
and compared to how the model behaves compared to the actual IMU data of the plane.

4.5.1 Method

In the model, the cable is fixed in its original horizontal position and the compliances of the cable
and tension sensor spring are put to values close to 0 (10−11)[m/N]. Another method was also tried
by setting the velocities of the nose of the plane to 0 but this gave errors in the model. Then the
plane was positioned in the model so that it would swing around the correct axis, one simulation
with pitch and another simulation with yaw. The amplitudes of the accelerometer and gyroscope
data will be smaller, this is because in the model the air resistance of the plane is not being
modelled. However, this does not matter because the period is only needed for validation. When
the periods do not match up, the moment of inertia can be adjusted till it matches the actual data

4.5.2 Results

In the initial results, the period of the actual data and the one simulated did not match. The first
few oscillations of the validation data are the most accurate, because other rotational velocities play
a part in the data after this period due to the setup not being able to fully constrain the axis of
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movement. It can be observed that more frequencies are included in Figure 32 for the model. This
is due to the CoM not exactly being aligned with the rotational axis in the model, which caused a
non-zero velocity in the pitch axis. To match the period, the moment of inertia was changed to:

Iplane rotational =
[
0.0026 0

0 0.0029

]
[kg/m2]

Figure 31: Simulation results for swinging about the pitch axis compared to actual IMU data after
adjusting to IX=0.0026 [kg/m2]

Figure 32: Simulation results for swinging about the yaw axis compared to actual IMU data after
adjusting to IZ=0.0029 [kg/m2]
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4.6 Future experiments

4.6.1 Plane parameters

To model the plane, it is necessary to test the force and moments that occur because of an airflow
acting on the plane.
Materials:

• Plane
• ATI 40 mini SI-80-4
• Setup to fix the plane to the F/T sensor

• Ventilator (has to be able to make an air-
flow as big as the plane)

The materials are set up as shown in Figure 33. To ensure most configurations for angle of attack,
yaw angle, flap input, and rudder input are accurately modelled, it is necessary to vary these
parameters during testing and measure their effects. For every configuration of AoA and yaw angle,
the input of flaps and rudder have to be tested. During this test it is assumed that the rudder and
flap input are independent, this is done to perform less measurements. Then looking at the AoA
that is most relevant from the NACA 23015 it comes down to -10◦to 10◦. The yaw angle is tested
up to 8 ◦, this is because when exceeding this, the plane will probably drift too fast out of the air
stream. The values of the input of the elevator and rudder are chosen in such a way that they
resemble full negative to full positive actuation. The following values are tested:

AoA = [−10 − 7 − 3 0 3 7 10][◦] (7)

Yaw angle = [0 2 5 8][◦] (8)

Elevator input = [172 582 992 1401 1811](from ESP32Wroom) (9)

Rudder input = [172 582 992 1401 1811](from ESP32Wroom) (10)

This means that 280 measurements have to be conducted. This could be reduced by making the
amount of measurement less but this does come with the trade of having a less accurate model.
To speed things up, a code is written to control the rudder and elevator. This code can be found in
Appendix J.
The torques and forces in three different axes are measured with the ATI mini40. To obtain the
forces and moments acting on the plane, a transformation matrix is needed. This transformation
has to transform the moments acting in the frame of the sensor to the frame of the plane, the same
goes for the forces. The easiest way to do this is using the concept of wrench. However, due to
time constraints, the concept could not be fully understood to come up with the transformation
matrix needed for transforming the moments and forces from the sensor to the CoM.
When conducting the test, the ATI mini40 has to be set to zero when the holder for the plane and
the plane is placed on top of the sensor. This way the weight of both will not be taken into account
during the measurement.
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Figure 33: Test setup for obtaining plane parameters

4.6.2 Moment of inertia cable

The moment of inertia of the cable can be obtained in the same manner as described in section 4.4
and validated. Instead of using IMU data, the angle sensor can be used. After the cable length is
known for the overall test setup, the mass can be measured and the CoM can be found. Then by
hanging the cable and tension sensor upside down from the angle sensor, it is possible to let the
cable and tension sensor swing.

4.6.3 Validation of flying plane

When the plane is put in a known constant windspeed, the angles and the tension force from the
sensors can be compared to the values that the model gives when the same constant windspeed is
put in the model. This way the model can be tuned to correspond more with the actual setup.

4.6.4 Validation of actuators

A known input signal can be given to the rudder input or elevator input, and then the IMU in the
flight controller can record data of the plane. The same input signal can be put in the model and
the data of the actual setup can be compared. The values could be tuned to make the model more
accurate.
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5 Evaluation

5.1 Discussion

This assignment was the beginning of making a proof of concept of a test setup. This also means
that there were quite a lot of unforeseen events and improvement points.
The angle sensor itself worked quite nicely but is situated in the windstream of the ventilator which
could cause a non-laminar flow. This could cause behaviours that are not modelled in the model.
The tension sensor had some issues with the reflecting plate being able to rotate, even after
the changes made resulting in version 3. This is due to the guiding part not being stiff enough.
Recommendations for the angle sensor and tension sensor can be seen in section 5.3. Next to that,
the wires used to connect the ToF sensor were too stiff to easily move with the changing angle of
the cable when attached to the angle sensor, which will influence the tension measurements. This
can easily be improved by using more flexible wires.
The force gauge used during the experiment with the tension sensor made it hard to accurately read
off values. This could have caused inaccuracies in the data. The tension sensor could be measured
again, but then with a more accurate way of reading off the values. It can also be observed that
version 2 is slightly more accurate than version 3, this could be because of the inaccurate reading
of the force gauge.
The same goes for the angle sensor. The experiment for obtaining the values for the corresponding
angles could be done more accurately since reading the angles from a triangle ruler brings a
significant margin of error. Another way to do this would be by attaching a cable or rod to the
joystick. Then measuring the distance from the cable to a plane that is parallel to the ground and
passes through the middle of the angle sensor, the angles can be determined more accurately using
geometry.
The model itself could not be fully completed and validated due to a lack of time as well as the
ventilator not being ready in time. This does mean that there is some uncertainty in how accurate
the model will be.
At the beginning of the assignment, there was the understanding that the ventilator would be done
earlier to do measurements, which changed the planning during the assignment. This resulted in
some parts of experiments being prepared but not further executed.

5.2 Conclusion

It could be seen that most of the sub research questions in section 1 have been answered, except
for question 4. A 3D printed plane was chosen which has a wing span of 695 [mm] and should be
able to fly in a generated windstream using a F405 wing mini flight controller which is controlled
by an ESP32Wroom. This ESP32Wroom can later be used as the controller of the whole setup.
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The tension force is being measured using a device which measures the displacement in a spring
using a time of flight sensor. This device had an average error of 0.089 [N]. There are improvement
points in the design, but the concept of measuring the tension force on the cable has been proven.
To make the control loop more stable, the sensor’s average error has to be brought down more.
For measuring the angle of the cable, the FrSky M7 gimbal was chosen. A housing has been
designed to mount the joystick onto the setup. After testing, the device has been calibrated and
can read the angle of the cable in two axes.
The design of the control loop was not completed, however a model was made of the test setup.
This model is not fully completed but is partly validated by data obtained during testing but has
to be fully validated and completed in later research.

5.3 Recommendations

5.3.1 Angle sensor

The angle sensor could be placed more to the sides of the ventilator, this will reduce the amount of
disrupted air generated by the sensor being in the middle of the wind stream. The angle sensor
itself could be reduced in size to disrupt less airflow.

5.3.2 Tension sensor

The tension sensor could be improved by using a ToF sensor which has a smaller resolution than
the current 1 [mm]. Another improvement would be by using a different spring which has a lower
spring constant. Both result in a better resolution of the device.
For the mechanism itself, there are also a few improvements to be made. Now the reflecting plate
can make small rotations which will cause inaccurate readings of the ToF sensor. This could
be mitigated by using a stiffer construction, which will not bend when a force is applied to the
reflecting plate. The stiffer construction could exist out of carbon fibre rods, together with a stiff
plate which holds the construction in place. Another way of making the construction more stiff is
by making a plate on the open side of the tension sensor. This plate could restrict flexion in the
guiding part of the design and could solve the problem.
A whole different approach would be by routing the cable through the angle sensor to a mechanism
which works in the same way but does not have to be in the airflow itself. This could reduce the
amount of inaccurate data being read because of the sensor being in a more controlled environment.
However for this idea, a new mechanism has to be made which alters the gimbal used for the angle
sensor directly.

5.3.3 Model and validation

In the section 4.6, future experiments are discussed to be able to validate the model.
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B INAV channel table

SBUS channel Corresponding INAV channel

Ch0 Roll

Ch1 Pitch

Ch2 Throttle

Ch3 Yaw

Ch4 Ch5

... ...

Ch15 Ch14

Table 4: SBUS channels with their corresponding INAV channels.
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C Photos of design

Figure 34: Ventilator used for the test setup

Figure 35: Micro sportcam plane printed in PLA assembled
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Figure 36: Nose attachment for cable and hole in nose for routing wires.
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Figure 37: Electronics being housed inside the plane
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Figure 38: Tension and angle sensor attached to the ventilator
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D Code for RTF

Figure 39: Code that is written in 20-sim for the RTF
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E Code for angle sensor experiment

1 // Define analog pins for joystick

2 const int joyXPin = 34; //(green)

3 const int joyZPin = 35; //(yellow)

4

5 void setup() {

6 // Initialize serial communication at 115200 baud rate

7 Serial.begin (115200);

8

9 // Configure joystick pins as input

10 pinMode(joyXPin , INPUT);

11 pinMode(joyZPin , INPUT);

12 }

13

14 void loop() {

15 // Print the values to the Serial Monitor

16 Serial.print("Joystick X: ");

17 Serial.print(joyXValue);

18 Serial.print("\tJoystick Z: ");

19 Serial.println(joyZValue);

20

21 // Add a small delay to make the Serial Monitor more readible

22 delay (100);

23 }

Listing 1: Arduino Code for Joystick
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F Code for distance ToF sensor experiment

1 #include <Wire.h>

2 #include <Adafruit_VL6180X.h>

3

4 #define NUM_SAMPLES 100

5

6 // Create an instance of the VL6180X sensor

7 Adafruit_VL6180X vl = Adafruit_VL6180X ();

8

9 int range , status;

10

11 int sensorValues[NUM_SAMPLES ];

12 int currentIndex = 0;

13 float rollingAverage =0;

14

15 unsigned long startTime , endTime , elapsedTime;

16

17 void setup() {

18 // Initialize serial communication

19 Serial.begin (115200);

20

21 // Initialize I2C communication

22 Wire.begin (21, 22); // SDA , SCL

23

24 // Initialize the VL6180X sensor

25 if (!vl.begin()) {

26 Serial.println("Failed to find VL6180X chip");

27 while (1);

28 }

29 Serial.println("VL6180X chip found");

30

31 for (int i = 0; i < NUM_SAMPLES; i++) {

32 sensorValues[i] = 0;

33 }

34

35 }

36

37 void loop() {
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38 // Read the range (distance)

39 startTime = millis ();

40 range = vl.readRange ();

41 endTime = millis ();

42 elapsedTime = endTime - startTime;

43 // Read the status of the range reading

44 status = vl.readRangeStatus ();

45

46 sensorValues[currentIndex] = range;

47

48 // Update the rolling average

49 rollingAverage = calculateRollingAverage ();

50

51 // Print the rolling average

52 Serial.print("Rolling Average: ");

53 Serial.println(rollingAverage);

54 Serial.println(elapsedTime);

55

56 // Increment the currentIndex and wrap around if necessary

57 currentIndex = (currentIndex + 1) % NUM_SAMPLES;

58

59 // Print the range and status

60 if (status == VL6180X_ERROR_NONE) {

61

62 } else {

63 Serial.print("Error reading range: ");

64 Serial.println(status);

65 }

66

67 }

68

69 float calculateRollingAverage () {

70 float total = 0;

71

72 // Calculate the sum of all values in the sensorValues array

73 for (int i = 0; i < NUM_SAMPLES; i++) {

74 total += sensorValues[i];

75 }

76
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77 // Calculate the average

78 float average = total / NUM_SAMPLES;

79 return average;

80 }

Listing 2: ESP32Wroom code for tension sensor distance
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G Tension sensor code

1 #include <Wire.h>

2 #include <Adafruit_VL6180X.h>

3

4 // Create an instance of the VL6180X sensor

5 Adafruit_VL6180X vl = Adafruit_VL6180X ();

6

7 // variables for rolling average

8 const int bufferSize = 100; // Number of readings to average

9 float forceBuffer[bufferSize ]; // Circular buffer to store force values

10 int bufferIndex = 0; // Current index in the circular buffer

11 float totalForce = 0; // Sum of the values in the buffer

12 float rollingAverage = 0;

13

14 // variables for range

15 float offset_range ; // offset that the sensor value has with respect to the

values used to obtain the mapping formula

16 float offset_measurement = 34; // 34 mm after the mapping formula corresponds

to the point of 0 [N] and is used to obtain the difference

17 float force;

18

19 int range , status; //range read by sensor and status of sensor

20 float dist; // distance after corrective mapping formula

21

22 const int numSamples_cal =2000; // calibartion samples

23 long sum =0;

24

25 void setup() {

26 // Initialize serial communication

27 Serial.begin (115200);

28

29 // Initialize I2C communication

30 Wire.begin (21, 22); // SDA , SCL

31

32 // Initialize the VL6180 sensor

33 if (!vl.begin()) {

34 Serial.println("Failed to find VL6180 chip");

35 while (1);
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36 }

37 Serial.println("VL6180 chip found");

38

39 // Initialize the force buffer

40 for (int i = 0; i < bufferSize; i++) {

41 forceBuffer[i] = 0;

42 }

43 Serial.println("Calibrating in 3 sec");

44 delay (1000);

45 Serial.println("Calibrating in 2 sec");

46 delay (1000);

47 Serial.println("Calibrating in 1 sec");

48 delay (1000);

49 Serial.println("Calibrating .....");

50 for (int i = 0; i < numSamples_cal; i++) {

51 range = vl.readRange (); // Read the sensor value

52 sum += range; // Add the sensor value to the sum

53 }

54 Serial.println("Calibration done!");

55 offset_range= sum / (float)numSamples_cal; // Calculate the average

56 Serial.println(offset_range);

57 offset_range = 30.5- offset_range; // subtract measured range from starting

point of mapping formula (30.5) to obtain offset needed to have correct

mapping

58 Serial.print("Offset sensor value: ");

59 Serial.println(offset_range); // Print the average value

60

61 }

62

63 void loop() {

64 // Read the range (distance)

65 range = vl.readRange ();

66

67 // Read the status of the range reading

68 status = vl.readRangeStatus ();

69

70 // Print the distance being read by sensor

71 Serial.print("Distance measured: ");

72 Serial.print(range);
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73 Serial.println(" mm");

74

75 // Convert distance read by sensor to actual distance by mapping formula

76 dist = -0.0079 * pow((range+offset_range), 2) + 1.7963 * (range+offset_range)

- 13.622;

77

78 //force calculation

79 force = 0.171 * (dist - offset_measurement);

80

81 // Update the rolling average

82 totalForce -= forceBuffer[bufferIndex ]; // Subtract the oldest value

83 forceBuffer[bufferIndex] = force; // Add the new value to the buffer

84 totalForce += force; // Add the new value to the total

85 bufferIndex = (bufferIndex + 1) % bufferSize; // Move to the next index

86 rollingAverage = totalForce / bufferSize; // Calculate the average

87

88 // Print the force and rolling average

89 // Serial.print(" Force: ");

90 // Serial.println(force);

91 Serial.print("Rolling Average Force: ");

92 Serial.println(rollingAverage);

93 Serial.print("Distance");

94 Serial.println(dist);

95

96 // Print the range and status

97 if (status != VL6180X_ERROR_NONE) {

98 Serial.print("Error reading range: ");

99 Serial.println(status);

100 }

101

102 delay (10); //for readablity

103 }

Listing 3: ESP32Wroom code for rudder and elevator control during parameter testing
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H Test results version 2

Force applied [N] Force measured [N] Average error [N]
Measurement 1 Measurement 2 Measurement 3 Measurement 4 Measurement 5 Measurement 6

0 -0,03 -0,15 -0,12 0 0 -0,12 0.07
0,5 0,4 0,38 0,35 0,25 0,25 0,37 0.17
1 0,9 1 0,85 1 0,8 1,03 0.08
1,5 1,6 1,55 1,62 1,5 1,35 1,42 0.08
2 2,05 2,19 2 2 1,93 1,94 0.06
2,5 2,63 2,75 2,55 2,55 2,43 2,5 0.09
3 3,15 3,2 3,11 3,11 2,93 2,96 0.11

Table 5: Force measured from tension sensor compared to the force applied for version 2

The total average error came down to 0.068 [N]
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I Device code

1 #include <Wire.h>

2 #include <Adafruit_VL6180X.h>

3

4 // Create an instance of the VL6180X sensor

5 Adafruit_VL6180X vl = Adafruit_VL6180X ();

6

7 const int joyXPin = 34; // green wire of joystick

8 const int joyZPin = 35; // yellow wire of joystick

9

10 int angleX = 0 ; //angle after mapping of joystick

11 int angleZ = 0 ;

12

13 const int bufferSize = 100; // Number of readings to average

14 float forceBuffer[bufferSize ]; // Circular buffer to store force values

15 int bufferIndex = 0; // Current index in the circular buffer

16 float totalForce = 0; // Sum of the values in the buffer

17 float rollingAverage = 0;

18

19 float offset_range ; // offset that the sensor value has with respect to the

values used to obtain the mapping formula

20 float offset_measurement = 34; // 34 mm after the mapping formula corresponds

to the point of 0 [N] and is used to obtain the difference

21 float force;

22

23 int range , status; //range read by sensor and status of sensor

24 float dist; // distance after corrective mapping formula

25

26 const int numSamples_cal =2000; // calibartion samples

27 long sum =0;

28

29 unsigned long startMillis , endMillis;

30

31 void setup() {

32 // Initialize serial communication

33 Serial.begin (115200);

34 pinMode(joyXPin , INPUT);

35 pinMode(joyZPin , INPUT);
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36

37 // Initialize I2C communication

38 Wire.begin (21, 22); // SDA , SCL

39

40 // Initialize the VL6180 sensor

41 if (!vl.begin()) {

42 Serial.println("Failed to find VL6180 chip");

43 while (1);

44 }

45 Serial.println("VL6180 chip found");

46

47 // Initialize the force buffer

48 for (int i = 0; i < bufferSize; i++) {

49 forceBuffer[i] = 0;

50 }

51 Serial.println("Calibrating in 3 sec");

52 delay (1000);

53 Serial.println("Calibrating in 2 sec");

54 delay (1000);

55 Serial.println("Calibrating in 1 sec");

56 delay (1000);

57 Serial.println("Calibrating .....");

58 for (int i = 0; i < numSamples_cal; i++) {

59 range = vl.readRange (); // Read the sensor value

60 sum += range; // Add the sensor value to the sum

61 }

62 Serial.println("Calibration done!");

63 offset_range= sum / (float)numSamples_cal; // Calculate the average

64 Serial.println(offset_range);

65 offset_range = 30.5- offset_range; // subtract measured range from starting

point of mapping formula (30.5) to obtain offset needed to have correct

mapping

66 Serial.print("Offset sensor value: ");

67 Serial.println(offset_range); // Print the average value

68

69 }

70

71 void loop() {

72 startMillis = millis ();
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73 // Read the range (distance)

74 range = vl.readRange ();

75

76 // Read angle

77 angleX = map(analogRead(joyXPin) ,575 ,3990 , -300 ,300);

78 angleZ= map(analogRead(joyZPin) ,485 ,2910 , -300 ,300);

79

80

81 // Read the status of the range reading

82 status = vl.readRangeStatus ();

83

84 // Print status

85 if (status != VL6180X_ERROR_NONE) {

86 Serial.print("Error reading range: ");

87 Serial.println(status);

88 }

89

90 // Convert distance read by sensor to actual distance by mapping formula

91 dist = -0.0079 * pow((range+offset_range), 2) + 1.7963 * (range+offset_range)

- 13.622;

92

93 //force calculation

94 force = 0.171 * (dist - offset_measurement);

95 endMillis = millis ();

96

97 // Update the rolling average

98 totalForce -= forceBuffer[bufferIndex ]; // Subtract the oldest value

99 forceBuffer[bufferIndex] = force; // Add the new value to the buffer

100 totalForce += force; // Add the new value to the total

101 bufferIndex = (bufferIndex + 1) % bufferSize; // Move to the next index

102 rollingAverage = totalForce / bufferSize; // Calculate the average

103

104 // Print the rolling average force and angle

105 Serial.print("Rolling Average Force: \t ");

106 Serial.print(rollingAverage);

107 Serial.print("\t Angle X: \t");

108 Serial.print(angleX);

109 Serial.print("\t Angle Z: \t");

110 Serial.println(angleZ);
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111 Serial.println(endMillis - startMillis);

112

113

114

115 delay (10); //for readablity

116 }

Listing 4: ESP32Wroom code for combining tension and angle sensor
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J Code of experiment TF test

1 #include <sbus.h>

2 #include <arduino.h>

3

4 bfs:: SbusTx sbus_tx (&Serial1 , 16, 17, true , true); //rx pin 16, tx pin 17, on

different serial , inv set true , fast_SBUS set true

5 bfs:: SbusData data;

6

7 int pitch = 0;

8 int yaw = 0;

9

10 void setup() {

11 /* Serial to display data */

12 Serial.begin (115200);

13

14 while (! Serial) {}

15 /* Begin the SBUS communication */

16 sbus_tx.Begin ();

17

18 for (int8_t i = 0; i < data.NUM_CH; i++){ // initializes all 16 channels to

900

19 data.ch[i] = 992;

20 }

21 }

22

23 void loop() {

24 if (Serial.available () > 0) {

25 String input = Serial.readStringUntil(’\n’); // Read input from the Serial

Monitor until newline character

26 Serial.println("Received input: " + input);

27

28 if (input.startsWith("p:")) {

29 pitch = input.substring (2).toInt (); // Get the integer value after "p:"

30 Serial.println("Parsed pitch: " + String(pitch));

31 } else if (input.startsWith("y:")) {

32 yaw = input.substring (2).toInt (); // Get the integer value after "y:"

33 Serial.println("Parsed yaw: " + String(yaw));

34 } else {
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35 Serial.println("Invalid input format. Please use ’p:<value >’ or ’y:<value

>’.");

36 }

37 }

38

39

40 Serial.println("pitch: " + String(pitch));

41 Serial.println("yaw: " + String(yaw));

42

43 if (pitch == 0) {

44 data.ch[1] = map(0, 0, 200, 172, 1811); // -100%

45 }

46 else if (pitch == 50) {

47 data.ch[1] = map(50, 0, 200, 172, 1811); // -50%

48 }

49 else if (pitch == 100) {

50 data.ch[1] = map(100, 0, 200, 172, 1811); // 0%

51 }

52 else if (pitch == 150) {

53 data.ch[1] = map(150, 0, 200, 172, 1811); // 50%

54 }

55 else {

56 data.ch[1] = map(200, 0, 200, 172, 1811); // 100%

57 }

58

59 if (yaw == 0) {

60 data.ch[3] = map(0, 0, 200, 172, 1811); // -100%

61 }

62 else if (yaw == 50) {

63 data.ch[3] = map(50, 0, 200, 172, 1811); // -50%

64 }

65 else if (yaw == 100) {

66 data.ch[3] = map(100, 0, 200, 172, 1811); // 0%

67 }

68 else if (yaw == 150) {

69 data.ch[3] = map(150, 0, 200, 172, 1811); // 50%

70 }

71 else {

72 data.ch[3] = map(200, 0, 200, 172, 1811); // 100%
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73 }

74

75 for (int8_t i = 0; i < data.NUM_CH; i++) {

76 Serial.print(data.ch[i]);

77 Serial.print("\t");

78 }

79 Serial.print(data.lost_frame);

80 Serial.print("\t");

81 Serial.println(data.failsafe);

82

83 sbus_tx.data(data);

84 sbus_tx.Write ();

85 delay (100);

86 }

Listing 5: Arduino Code for rudder and elevator control during parameter testing
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K List of Abbreviations

AC Aerodynamic Center. 2

AM Aerodynamic Moment. 2

AoA Angle of Attack. 2

CoM Centre of Mass. 6

RTF Rotational Transformer. 12

ToF Time of Flight. 8
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