
Reverse engineering UML class diagrams from Java code
SOPHIE VAN DER DONG, University of Twente, The Netherlands

During software development, mistakes occur which causes code to become
inefficient or contain bugs. The more of these mistakes that occur within a
project, themore technical debt it is said to accrue. To improve the occurrence
of this, in this paper higher-level technical debt such as design-level debt is
improved upon by reverse engineering unified modeling language (UML)
class diagrams from Java code within a project. By visualizing the project’s
development and generating a class diagram from each occurring commit
within a project, software developers can understand the state of their project
more easily in this higher abstract view. Allowing for a better understanding
of how progress was made during the project’s life cycle and improving
on the shortcomings made throughout it. This resulted in a mapping of
Java to XMI representing these class diagrams as a step to allow other
software developers and researchers to further improve upon detecting and
documenting such debt to improve the quality of developed software and
reduce long-term maintenance costs.

Additional Key Words and Phrases: XMI, UML, XML, Class Diagrams, Tech-
nical Debt, Java

1 INTRODUCTION
Software companies have always wanted to decrease their costs and
improve their product quality. While research has been made, all
possibilities to enact these changes are still not fully explored. Tech-
nical debt is one of these aspects. It is related to the cost of needing
to rework code, may it be monetary, time-based, or something else.
Technical debt can be considered the gap that arises between the
hypothesized state of the project cost, time, and quality compared
to the actual state it achieves [11]. The term itself can be consid-
ered an all-encompassing term for the debts it represents. Among
these, higher-level debts such as design, architecture, or domain
debt, have been under-researched. Higher-level debts (e.g. design-
ing phase) refer to the debts that can occur in the early stages of a
project when planning and design occur. Comparatively, to lower-
level debt (e.g.implementation debt) where it is easier to quantify
and create programs that check mistakes in static or dynamic code.
Higher-level debt is more difficult to identify and quantify as it has
an overarching effect on the whole project’s development.

If repaid in a timely manner, accruing debt can help to temporarily
boost performance. When prolonged, debt can stagnate projects
by destroying progress and productivity. Hence, it is important to
develop methods that enable researchers and developers alike, to
detect and quantify technical debt, especially the higher-level debt.
However, despite this importance, research has shown that higher-
level technical debt is often neglected with 78% of the academia
covered being of implementation-level debt [10].

A widely applied method to improve both efficiency and quality
in software engineering involves the designing of diagrams as it

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

allows developers to have a more abstract overview of the structure
of their project. Using this approach generally improves people’s
understanding and comprehension of the overall systems they have
to implement and would decrease future costs that can emerge
from having to restructure or redo certain developed systems. This
means it would allow reducing the accumulation of technical debt
throughout the project, as addressing poor design decisions early
on can prevent higher-level technical debt from accruing [9].
A unified modeling language (UML) class diagram is a tool that

allows easier visualization. The creation of one class diagram for
each commit a project has made, could aid in showcasing a lack
of proper design or planning. This could be noted by the extent to
which the class diagrams change throughout the project or certain
changes that occur. Although a class diagram is not the only UML
diagram that could have been chosen, it is a well-known and used
diagram by software developers [4, 12]. Therefore, believing that
UML class diagram visualization could aid in showcasing a lack
of proper design or planning to improve a project’s development,
this paper aims to answer the following research question: How to
reverse engineer UML class diagrams from Java code?.

To answer this question, we developed a script to reverse-engineered
UML class diagrams from Java code within a project to show the
project structure throughout its development to potentially identify
instances where poor diagram design, inadequate documentation,
or a lack of context may have started to influence the project’s
design and structure, thereby contributing to technical debt. This
script can help to improve software documentation and commu-
nication, which, in turn, can help clarify one’s understanding, rec-
tify misunderstandings, and enhance the overall development pro-
cess, ultimately reducing technical debt and improving project out-
comes. Moreover, the approach proposed can aid software develop-
ers and researchers in prioritizing the detection and documentation
of higher-level technical debt to mitigate long-term maintenance
costs. It can also contribute to advancing research about higher-level
technical debt.
The rest of the paper unfolds as follows. Section 2 provides the

relevant background knowledge related to UML and XML Meta-
data Interchange (XMI). Section 3 explores how the selection of
repositories was made, which choices were applied to extract the
necessary information from the Java files, and how applications in-
cluding Javaparser aided in reverse engineering the Java code to the
class diagrams. Section 4 explores the conversions that was applied
to map the source code to the relevant UML elements. Section 5
denotes some related work that conducted similar studies to reverse
engineering UML class diagrams. Finally, section 6 makes some final
considerations and discusses the direction of future work.

2 BACKGROUND KNOWLEDGE
In this section, the aim is to give a better understanding of the
matters discussed within this paper.

1

TScIT 41, July 5, 2024, Enschede, The Netherlands Sophie van der Dong

2.1 Unified Modeling Language (UML)
UML is a standardizedmodeling language developed to aid in Object-
Oriented [OO] software development. Its current development and
specifications are handled by theObjectManagement Group [OMG].1
The UML consists of various diagrams as seen in Figure 1 that allow
multiple stakeholders, including software developers to specify and
visualize their software systems. It is a collection of practices proven
to be beneficial in the development and maintenance of software
systems [2, 5].

Fig. 1. UML Diagrams

As the purview of this study relates to the structure that the Java
code creates, a structured diagram was selected. Comparatively, to
behavior diagrams whose focus remains on the dynamic behavior
occurring during the runtime of a program, structure diagrams focus
on representing the static state of the systems with the classes, fields,
methods, and their connections represented as objects, attributes,
operations, and relationships. Class diagrams as one of the struc-
tured diagrams are considered one of the most important building
blocks for modeling and designing object-oriented software systems
[1]. It can provide a higher-level overview of the software system’s
design which aids in documenting its structure throughout multiple
phases of the project life cycle. It consists of containers/classes that
contain attributes and operations which for OO languages can be
represented as fields and methods. These classes can be related to
other classes through differing associations. However, as certain
associations are logic-based, not all can be easily inferred from OO
languages.
By using these features that class diagrams have, software de-

velopers can reduce their cost of production by determining their
software systems structure and deciding where and which function-
alities to implement, as it’s easier and quicker to solve the earlier
it occurs in a project’s life cycle. On another note in regards to the
paper, the chosen OO language from which the class diagrams are
generated is Java, as it’s a simple language that offers many libraries
to peruse and most importantly is a strongly typed language. De-
termining the relationships between the classes is easier when the
types are statically defined than during runtime.

2.2 XML Metadata Interchange (XMI)
Modeling software can be done with different levels of abstrac-
tion. Where UML is an abstract modeling language, the Extensible
1https://www.omg.org/

Markup Language [XML] is a language that aids software develop-
ers by creating rules that define the data and being a widely used
standard for storing and transporting this data. Extending this, XML
Metadata Interchange [XMI] is a markup language that can be uti-
lized to exchange UML models across different tools and software
programs. It has been developed to interchange objects and models
by exchanging metadata information. To facilitate this exchange of
information, XMI implements Extensible Markup Language [XML]
which provides a set of rules for defining data and allows a spec-
ification standard for storing and transporting this data. XMI can
be used for any meta-model that is expressed by the Meta-Object
Facility [MOF] but is primarily utilized for exchanging UML models
across different tools and software. This can therefore be considered
a format that joins XML, UML, andMOF to support the development
of OO systems [8]. Therefore, while supportive of the variety of
diagrams UML consists of, the structured models that resemble OO
systems tend to be better represented than the behavior models [7].

As XMI is an extension of XML, Document Type Definition [DTD]
and XML Schemas can be used to validate its generated XML doc-
uments. While an XML document can be well-formed it can still
contain errors such as its content. Both DTD and XML Schemas
solve this by describing the XML document’s structure, content,
and constraints. When choosing this method of validation using
an XML Schema is preferable as it’s written in the same language,
disallowing the need for learning another syntax, being extensible,
and can depend on the context in which the element is used [3].
This definition of documents is of use due to the multiple structures
and constraints that are possible for the same language version of
XMI and UML.

3 METHODOLOGY

3.1 General Overview
Before attempting to resolve the research question, the reasoning
and choices that were determined for it are expressed.

As previously stated Java is a language containing useful features
and similar to class diagrams is OO, which caused it to be selected for
being reverse engineered and to not add any additional languages
was also used for writing the parser that allowed the Java code to be
converted to class diagrams in XMI. For this, IntelliJ was chosen as
the environment wherein a Maven Project, a build automation tool
that does dependency management, plugins and other functions
was created.

For finding relevant Java projects to convert, several Java reposito-
ries were explored by using the search tool SEART 2 from GitHub to
realize which requirements the repositories should have. Afterward,
rather than making a list of the repositories that fulfilled certain
conditions an already existing list was chosen. This list consisted
of repositories under a size limit of 100mb and ample commits, this
would ensure that the repositories aren’t too large while still retain-
ing enough Java code that has underwent changes as represented by
the commits. These requirements were sufficient to do most of the
initial conversion testing on several repositories from this file. Later,
a repository was created to more specifically test how certain prop-
erties and types of classes translated to XMI, in addition to the class’s
2https://seart-ghs.si.usi.ch/

2

Reverse engineering UML class diagrams from Java code TScIT 41, July 5, 2024, Enschede, The Netherlands

relationships, without having to search for their occurrence within
other repositories. Classes, fields, and methods with varying modi-
fiers were included with the main focus of testing the relationships
to verify: No duplication, fields made from multiple classes have
their types properly extracted(e.g. ArrayList<HashMap<OtherClass,
HashSet<ExampleClass>>> someField;) and that the relationship
would be found and correctly parsed, as the relevant class could
be within the same package, another package or be treated as an
external class. This was done in parallel with the BigUML extension
within Visual Studio Code. The resulting XML files generated by the
parser script would be compared to the XML files generated from
the class diagrams, which contained the same objects and informa-
tion as in the created repository. The specifications of the generated
files are version 2.5.1 for the XMI and version 5.0.0 for UML. For
the comparisons an xsd file (XML Schema) from the BigUML to
validate the generated XML by parser would have been preferable
to more easily and certainly determine the correctness, however,
this was not retrievable from BigUML, necessitating an xsd file to be
written if wanting to achieve better verification and easy validation.
In Figure 2 the general process of what happens with the chosen
repositories is shown, where the commits are obtained of the repos-
itories found by jGit and converted to AST trees with Javaparser
before converted to an XML file with the determined mappings
found through the help of BigUML and specification files. A more
detailed explanation is given below.

Fig. 2. Overview

3.2 Process
For obtaining and analyzing the repositories from GitHub, the jGit 3
library was used in addition to the text file that contained the unique
repository path reference. When jGit retrieves the repositories, they
are stored in a state that allows the important information regarding
their structure, file content and commits to remain. When traversing
through the commits tree like structure, only the java files are con-
verted into an Abstract Syntax Tree [AST]. This was achieved using
the Javaparser4 library. This allows nearly no needed information to
disappear of the Java objects themselves. Thus, the patterns found
by using Javaparser would allow the AST to be converted to XMI.
However, finding where the types within a class are referencing is
not easy and occasionally unachievable.

To properly convert the Java objects into XMI, two aspects needed
to be determined first before the parsing occurs. This causes each
3https://mvnrepository.com/artifact/org.eclipse.jgit/org.eclipse.jgit/6.9.0.202403050737-
r
4https://mvnrepository.com/artifact/com.github.javaparser/javaparser-core/3.26.0

commit to be traversed three times. In the first traversal, the indexing
is done. Each UML object has a unique ID, including relationships,
which also tend to contain the ID of the related objects. Therefore to
be able to establish any connections between the objects, IDs have to
be determined first (Table 1). The container objects (class, interface,
and enumeration) are the objects whose IDs are established first
and their IDs and absolute paths are stored within a HashMap.
The creation of the IDs prevents mistakes from occurring for the
packages or files containing the same name. These IDs have some
differences that depend on which UML object they represent and
from which class they are created as would be the case for the
association XMI shown in Table 1. Additionally, during the second
traversal when a relationship with an imported class is made, a
new unique ID is established for that class and will be parsed as a
class when all the classes within the project have their generated
XMI code. The notable difference to this is that as an external class,
its name will retain the full classpath. On the occasion that the
external class was not found its name is noted as type+“_External”.
This occurs when the class originates from an import that imports
multiple classes.

Java object XMI ID
Subtree

(folder/package)
"_XMI-P-Dir-"

Class / Interface /
Enumeration

"_XMI-J-DF-" (classId)

Field classId+"-A-"
Method classId+"-M-"

Class implements /
extends

classId+"-Gen-"

Class having or
using another non
primitive class

classId+"-C-"

External Class "_XMI-Ext-"
leftover values of

multiplicity
"_XMI-AsAt-

attribute of
association

classId+"-AA-"

association classId+"-C-A-"
dependency classId+"-C-D-"

Table 1. XMI ID’s for Java objects

In the second traversal of the commit the relationships between
the classes are determined. When any link between classes is found
this information is stored within a map along with the necessary
IDs and names. The first connections determined are the class inher-
itances, this is represented as generalization objects within the class
with “general=” referring to the inherited class as showcased in
Figure 3. When an interface is inherited the inheritance that occurs
is stored as a UML realization object, that is added to the list of
external classes and relationships instead of being nested within the
class.

3

TScIT 41, July 5, 2024, Enschede, The Netherlands Sophie van der Dong

Fig. 3. class Child’s generalization to Parent

For associations, when a class variable contains another class
that isn’t primitive, String, List, ArrayList, or HashMap it is repre-
sented as an association. The relevant classes receive an attribute
association object in addition to a separate association object being
generated. Compared to all other generated attributes, attributes
generated from association contain the “LiteralString” UML type.
Whilst different from the BigUML extension, this choice was con-
sciously made to allow the use of the “*” to indicate many instances
of the related object. This multiplicity of the attributes is determined
by the variable being instantiated and whether it is within a list,
which is determined by the existence of “<” and “>”. When the vari-
able is initially unsubstantiated the multiplicity refers to “0”. Also,
a constructor instantiating the variable upon construction is not
considered for these associations, meaning the multiplicity would
remain “0”. The multiplicity is added to the generated attribute as-
sociation for the current class, leaving the other unfinished to allow
the other related class to generate the multiplicity if it contains a
variable that relates to the current class. These associations are kept
in separate HashMaps. When associations remain unfinished upon
the full iteration of the project, the default attribute value “1” is
added. When a class method uses another class in its parameters or
return type, it is represented as a Dependency object. Dependencies
are added to the list of external classes and relationships.
If the XMI was generated in the same traversal as the detection

of the object relationships, it would be possible for an XMI of a
class to be already generated while missing certain associations.
Additionally, if the connections occur from an external import where
the class is not part of the project, a new class will be made to
represent this in the XMI with the full classpath. It is also possible
for an external class to remain undetected if the import, imported
multiple classes, indicative by “*”.
In the third traversal, the XML files containing XMI and UML

are generated. Whilst traversing the commits tree structure, the
package structure is generated for the classes with the XMI of the
classes nested within but as this script only considers Java files,
package structures can contain no objects within them. When the
class XMI is generated the modifiers (e.g. visibility, abstract, etc.) for
the class, fields, and methods are considered and added as properties
within the object-defining element tag. Then, the inheritance XMI
is generated first within the object followed by all the attributes
and methods. After, the relationships are added. When all classes of
the project are generated the external classes and relationships are
added, before being closed with the UML element tag.

4 TRANSFORMATION RESULTS
This section explains the resulting transformations from the map-
pings that were applied to the Java objects with the script to obtain
the UML objects. These objects that make up a class diagram can be
broken down into three parts: the containers, their features, and the

Java object XMI
1 public class

E1{}
<packagedElement xmi:type="uml:Class"

xmi:id="_XMI-J-DF-1" name="E1"/>
2 public

abstract
class E2{}

<packagedElement xmi:type="uml:Class"
xmi:id="_XMI-J-DF-2" name="E2"

visibility="public" isAbstract="true"/>
3 public

interface
E3{}

<packagedElement xmi:type="uml:Interface"
xmi:id="_XMI-J-DF-3" name="E3"

visibility="public"/>
4 public

enum E4{}
<packagedElement xmi:type="uml:Enumeration"

xmi:id="_XMI-J-DF-4" name="E4"
visibility="public"/>

5 package <packagedElement xmi:type="uml:Package"
xmi:id="_XMI-P-Dir-3" name="alsoPaper"/>

Table 2. Container Elements

relationships between them. A comprehensive overview is given
for each of them below.

4.1 Containers
The containers that can be identified are class, abstract class, in-
terface, and enumeration. Packages are also considered containers
within UML, however, they cannot be compared to any Java objects
as it’s equivalent to folders containing Java files. Their representa-
tion of the UML elements is shown in Figure 4 and representations
of these elements within Java and their conversion to XMI are rep-
resented within Table 2.

Fig. 4. UML container elements

As noted in # 2, the abstract class that exists within Java is not a
UML element inherently and therefore contains a modifier “isAb-
stract” to denote this.

4

Reverse engineering UML class diagrams from Java code TScIT 41, July 5, 2024, Enschede, The Netherlands

Fig. 5. feature elements

Java object XMI
1 String

attribute1;
<ownedAttribute xmi:id="_XMI-J-DF-1-A-0"

name="attribute1" type="String"> ...
</ownedAttribute>

2 int attribute2
= 3;

<ownedAttribute xmi:id="_XMI-J-DF-1-A-3"
name="attribute2 " type="int"> ...

</ownedAttribute>
3 String

method1(int
input){return

"";}

<ownedOperation xmi:id="_XMI-J-DF-1-M-0"
name="method1" type="String"> ...

</ownedOperation>

4 LOW <ownedLiteral xmi:id="_XMI-J-DF-31-0"
name="LOW"/>

Table 3. Feature Elements

4.2 Features
Container UML elements can have multiple types of features; how-
ever, the enumeration container can only have literals. This is shown
in Figure 5 and is represented by #4 in Table 3.

For an easier overview, the “lowerValue” and “upperValue” have
been removed from the XMI column for #1 and #2 and the “owned-
Parameter” for #3. However, a part of an XMI-generated file can be
viewed in Appendix B to view how the generated XMI is represented
overall.

4.3 Relationships
Depending on the values and classes these features use, relation-
ships are formed between the UML containers. Within Java files,
this is represented by one file containing variables or methods of
another file. In Table 4 the Java objects that indicate a relationship
between classes is represented, with the additional relationship ele-
ments relevant to these objects being shown in Table 5. However,
inner classes are not detected, meaning composition is not a defined
relationship. Additionally, for converting Java to UML, aggregation
is an association based on logical reasoning allowing its interpre-
tation to vary. Due to this, the weaker relationship association is
established when an attribute has another class. As noted by #6, if
a method uses another object there is an even lesser relationship
between classes and therefore only allows a dependency. Though, if
an association already exists no dependency is added. Furthermore,
for the relationships # 1 and # 6 exist as package elements outside of
their related class. Including with this, for the association relation-
ship, besides an attribute being nested within the two related classes,
a separate package element is created that contains the association

id and an attribute “memberEnd” which consists of the two attribute
ids combined. For #3 this element would be represented as: <pack-
agedElement xmi:type=“uml:Association” xmi:id=“_XMI-J-DF-20-
C-A-0” memberEnd=“_XMI-J-DF-20-AA-0__XMI-J-DF-20-AA-3”/>

Java object XMI
1 public

abstract
class E2 im-
plements

E3{}

<packagedElement xmi:type="uml:Realization"
xmi:id="_XMI-J-DF-17-Imp-0"

client="_XMI-J-DF-17" supplier="_XMI-J-DF-18"/>

2 public class
E1 extends

E2{}

<packagedElement xmi:type="uml:Class"
xmi:id="_XMI-J-DF-16" name="E1">

<generalization xmi:id="_XMI-J-DF-16-Gen-0"
general="_XMI-J-DF-17"/> </packagedElement>

3 E1
variable1;

<ownedAttribute xmi:id="_XMI-J-DF-20-A-0"
name="variable1" type="E1"> ... </ownedAttribute>

4 E1
variable2 =
new E1();

<ownedAttribute xmi:id="_XMI-J-DF-20-A-3"
name="variable2 " type="E1"> ...

</ownedAttribute>
5 ArrayList<E1>

variable3 =
new Ar-

rayList<>();

<ownedAttribute xmi:id="_XMI-J-DF-20-A-6"
name="variable3 " type="ArrayList<E1>"> ...

</ownedAttribute>

6 private
Some m5(){
return new
Some(); }

<ownedOperation xmi:id="_XMI-J-DF-5-M-7"
name="m5" type="Some"/>

Table 4. Relationship Causing Elements

XMI
3 <ownedAttribute xmi:id="_XMI-J-DF-20-AA-0" name="E1"

type="_XMI-J-DF-16" association="_XMI-J-DF-20-C-A-0">
<lowerValue xmi:type="uml:LiteralString"

xmi:id="_XMI-J-DF-20-AA-1" value="0"/> <upperValue
xmi:type="uml:LiteralString" xmi:id="_XMI-J-DF-20-AA-2"

value="1"/> </ownedAttribute>
4 <ownedAttribute . . . > <lowerValue . . . value="1"/> <upperValue

. . . value="1"/> </ownedAttribute>
5 <ownedAttribute . . . > <lowerValue . . . value="1"/> <upperValue

. . . value="*"/> </ownedAttribute>
6 <packagedElement xmi:type="uml:Dependency"

xmi:id="_XMI-J-DF-5-C-D-0" client="_XMI-J-DF-5"
supplier="_XMI-J-DF-8"/>

Table 5. Relationship Elements

5 VALIDATION
This paper did not manage to implement a strong form of validation,
however, if a form of validation were to be implemented, it would
be through the usage of an XML schema. This is also referred to
as XML Schema Definition (XSD) with a .xsd file name extension.

5

TScIT 41, July 5, 2024, Enschede, The Netherlands Sophie van der Dong

The creation of the XML schema would use UML and XMI names-
paces represented by the xlmns attribute within its root element
<schema>. By declaring these namespaces, conflicts can be avoided
where element names are the same and indicate where the elements
and data types come from. From there, a schema would be made
to represent the XMI structure that is contained within the XML
files. For actually validating the XML files a validator would be
programmed with an error handler to validate the schema. By using
an error handler with the validation process, the error can be visu-
alized in an easier to overview format and can contain necessary
information such as the location of the error in a more readable
format.

6 RELATED WORK
Xin Wang et al. [13] use an AST based approach with the visitor
pattern to build UML model elements where they found that the
AST visitor can query any properties needed to build a design model,
resulting in the AST based approach being more precise than other
conventional existing approaches. Similarly, this paper also used
an AST based approach for the precision, yet some dissimilarities
between these studies are their use of an eclipse based plugin to
allow a more efficient binding between classes for generalization
and no mapping for defining associations between classes.

Fauzi et al. [6] use an AST based approach to assist in their reverse
engineering to sequence diagrams. They found that by revealing the
sequence of statements within the source code, AST works well for
converting it to the sequence diagram. As they indicated this to be a
functional process to generate a behavior type of UML diagram, they
suggested to make the process of reverse engineering more portable
by modifying the generated AST into intermediate formats such as
XML, which this paper by using XMI manages to accomplish.

7 CONCLUSION AND FINAL REMARKS
This paper presents a script that generates XMI-formatted XML
files from Java through the process of AST trees. By generating the
UML class diagrams with XMI, it is represented at a higher level
of abstraction that is easier to visualize while also supporting the
exchange of design documents for UML diagram design tools. The
mapping itself contained the main UML class diagram elements rep-
resented from any given Java code, which includes: (i) the mapping
to the UML classes from Java classes (Class, Interface, Enumeration)
except annotation and inner classes; (ii) the defining of associations
and dependencies between classes from their first occurrence within
a class; and (iii) the modifiers that are applied to Java objects repre-
sented as attributes within the UML elements. This all allows for
a project’s state to be better visualized at an abstract level, aiding
developers’ understanding of their projects and improving their
future choices to reduce potential technical debt, determined from
the changes they can note in the multiple generated XML files.

Future works could improve on extending the quality of the map-
ping regarding the constructors and multiple occurrences of a class
within another class represented as a factor that influences multi-
plicity. Additional improvements could be made by allowing the
validation of the XMI through the usage of an XML Schema. Finally,
by analyzing changes that occur throughout the project with the

visualization of the class diagrams, notes could be taken on the
changes and patterns that would have or had a negative impact on
the progress of the project.

REFERENCES
[1] Fahad Alhumaidan. [n. d.]. A Critical Analysis and Treatment of Important UML

Diagrams Enhancing Modeling Power. 04, 5 ([n. d.]), 231. https://doi.org/10.4236/
iim.2012.45034 Number: 05 Publisher: Scientific Research Publishing.

[2] Maria Teresa Baldassarre, Danilo Caivano, Simone Romano, and Giuseppe Scan-
niello. [n. d.]. Software Models for Source Code Maintainability: A Systematic
Literature Review. In 2019 45th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA) (2019-08). 252–259. https://doi.org/10.1109/SEAA.
2019.00047

[3] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. [n. d.]. Inferring XML
Schema Definitions from XML Data. ([n. d.]).

[4] Brian Dobing and Jeffrey Parsons. 2006. How UML is used. Commun. ACM 49, 5
(2006), 109–113.

[5] Wojciech J. Dzidek, Erik Arisholm, and Lionel C. Briand. [n. d.]. A Realistic
Empirical Evaluation of the Costs and Benefits of UML in Software Maintenance.
34, 3 ([n. d.]), 407–432. https://doi.org/10.1109/TSE.2008.15 Conference Name:
IEEE Transactions on Software Engineering.

[6] Esa Fauzi, Bayu Hendradjaya, and Wikan Danar Sunindyo. [n. d.]. Reverse engi-
neering of source code to sequence diagram using abstract syntax tree. In 2016
International Conference on Data and Software Engineering (ICoDSE) (2016-10).
1–6. https://doi.org/10.1109/ICODSE.2016.7936137

[7] Holly A. H. Handley, Wael Khallouli, Jingwei Huang, William Edmonson, and
Nadew Kibret. [n. d.]. Maintaining the Consistency of SysML Model Exports to
XML Metadata Interchange (XMI). In 2021 IEEE International Systems Conference
(SysCon) (2021-04). 1–8. https://doi.org/10.1109/SysCon48628.2021.9447105 ISSN:
2472-9647.

[8] F. Ruiz, A. Vizcaino, F. Garcia, and M. Piattini. [n. d.]. Using XMI and MOF for
representation and interchange of software process. In 14th InternationalWorkshop
on Database and Expert Systems Applications, 2003. Proceedings. (2003-09). 739–744.
https://doi.org/10.1109/DEXA.2003.1232109 ISSN: 1529-4188.

[9] Mohamed Soliman, Paris Avgeriou, and Yikun Li. [n. d.]. Architectural design
decisions that incur technical debt — An industrial case study. 139 ([n. d.]), 106669.
https://doi.org/10.1016/j.infsof.2021.106669

[10] Harald Störrle and Marcus Ciolkowski. [n. d.]. Stepping Away From the Lamppost:
Domain-Level Technical Debt. https://doi.org/10.1109/SEAA.2019.00056

[11] Edith Tom, Aybuke Aurum, and Richard Vidgen. [n. d.]. A CONSOLIDATED
UNDERSTANDING OF TECHNICAL DEBT. ([n. d.]).

[12] Edith Tom, Aybüke Aurum, and Richard Vidgen. 2013. An exploration of technical
debt. Journal of Systems and Software 86, 6 (2013), 1498–1516.

[13] Xin Wang and Xiaojie Yuan. [n. d.]. Towards an AST-Based Approach to Reverse
Engineering. In 2006 Canadian Conference on Electrical and Computer Engineering
(2006-05). 422–425. https://doi.org/10.1109/CCECE.2006.277552 ISSN: 0840-7789.

8 APPENDIX

8.1 Appendix A Acknowledgments
To improve the readability, this work used the help of Grammarly
as a technical assistant for spellchecking. By using this tool, the
author takes full responsibility for the content of the work. Secondly,
I would like to acknowledge the technical assistance from Tiago
Prince Sales.

6

https://doi.org/10.4236/iim.2012.45034
https://doi.org/10.4236/iim.2012.45034
https://doi.org/10.1109/SEAA.2019.00047
https://doi.org/10.1109/SEAA.2019.00047
https://doi.org/10.1109/TSE.2008.15
https://doi.org/10.1109/ICODSE.2016.7936137
https://doi.org/10.1109/SysCon48628.2021.9447105
https://doi.org/10.1109/DEXA.2003.1232109
https://doi.org/10.1016/j.infsof.2021.106669
https://doi.org/10.1109/SEAA.2019.00056
https://doi.org/10.1109/CCECE.2006.277552

Reverse engineering UML class diagrams from Java code TScIT 41, July 5, 2024, Enschede, The Netherlands

8.2 Appendix B Relationship example

Fig. 6. Relationship Example

7

	Abstract
	1 Introduction
	2 Background Knowledge
	2.1 Unified Modeling Language (UML)
	2.2 XML Metadata Interchange (XMI)

	3 Methodology
	3.1 General Overview
	3.2 Process

	4 Transformation Results
	4.1 Containers
	4.2 Features
	4.3 Relationships

	5 Validation
	6 Related Work
	7 Conclusion and final remarks
	References
	8 Appendix
	8.1 Appendix A Acknowledgments
	8.2 Appendix B Relationship example

