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Abstract—In this research project, the vibration mitigation per-
formance of a multiple pendulum tuned mass damper (MTMD)
system is evaluated and compared to the vibration mitigation
performance of a single pendulum tuned mass damper (TMD)
system. Two steel truss models of the Taipei 101 building are
constructed, including the TMD and MTMD systems, using
the finite element method (FEM). The dynamic behaviour of
both systems is compared through numerical analysis based on
suppression ability, robustness, space usage and off-tuning miti-
gation. The systems are assessed for various fundamental natural
frequencies of the building in the models to simulate the short-
and long-term off-tuning of the building frequency. It is found
that the single TMD system which is currently installed in the
Taipei 101 building performs more efficiently than the proposed
MTMD system, based on the mentioned comparison methods.
The difference by which the single TMD system outperforms the
MTMD system is small for both the correctly tuned and the off-
tuned fundamental natural frequencies of the building, although
the suppression ability of both systems equally improves when
the systems are tuned to the correct frequency. However, since
the single TMD system requires less space and less materials,
the single TMD system is more appropriate than the proposed
MTMD system. The results provide insight in the behaviour of
TMD and MTMD systems in general and are relevant for further
comparison studies between these systems, for implementation in
wind-excited structures.
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I. INTRODUCTION

Buildings are becoming increasingly taller all around the
modern world, because of the rise of innovative building
techniques. Tall buildings are inherently more vulnerable to
vibrations or dynamic excitation due to external forces that
result from wind gusts or seismic activity, which could lead
to fatigue or failure in the worse case, but also discomfort for
building residents, caused by motion sickness. Therefore, this
vulnerability of tall buildings to dynamic response should
be mitigated. One method of suppressing the vibrations of
a building induced by external forces is by using a tuned
mass damper (TMD) system. This system consists of a mass
which is attached to a spring and a damper, for which the
system parameters are tuned such that the building vibrations
are opposed by the movement of the TMD system. This
suppresses the vibrations of the building, which keeps the
dynamic response of the building to a minimum.

The use of TMD systems[1][2][3][4][5][6] in buildings
and the optimal design of these systems has been researched
in detail in the past. There exist multiple types of TMD
systems, for example the conventional passive TMD system,
where the oscillation of a big mass (building) is suppressed
by the oscillation of a smaller mass (TMD system mass),
without adding any energy to the system to control it in
any way. This system is self-stabilising, which makes it
a sustainable solution for building stabilisation. The use
of active[7][8] or semi-active[9] TMD systems has been
investigated as well. An active TMD system uses a small
mass that is driven by control inputs to counter vibrations
of a big mass and a semi-active TMD system consist of a
passive TMD system, of which the system parameters can
be altered by for example applying control on the damping
or the stiffness of the system. These systems provide the
opportunity to modify the behaviour of a TMD system based
on the natural frequency[10][11] of the building, which
might change under weather circumstances, due to changing
external forces or due to structural changes over time. This
results in more effective vibration control with respect to the
passive TMD system in most cases. However, the necessity
of energy supply for controlling these systems, makes them
less efficient and less sustainable.

Another method that ensures that a TMD system can
be operational within a frequency bandwidth instead of one
specific tuning frequency, is to use multiple tuned mass
dampers[12][13][14][15][16][17][18][19][20] in one building.
The multiple TMDs will all be tuned to a slightly different
frequency around the natural frequency of the building, which
means that this system provides robustness against temporary
changes in natural frequency of the building, but also against
long term changes due to changes in structure or geography
of and around the building. This prevention of off-tuning can
be essential for the TMD system to stay effective in vibration
suppression over time. Additionally, the advantage of a
multiple tuned mass damper (MTMD) system, is that it can
be implemented using passive TMDs, while still resulting in
a robust system which can operate for a range of frequencies.

More recent research consists of the use of inerters[21][22][23]
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in combination with TMD systems. These inerters provide
improved damping and behave as a ’virtual mass’. This
means that using inerters results in better building vibration
mitigation, especially when the inerter system spans multiple
floors[24][25][26] of the building. This is the case because
the acceleration between the locations where the inerter
is attached becomes larger when the inerter spans more
floors, which causes the inerter to have a larger effect on the
vibration mitigation.

Furthermore, specific research has been done into the
dynamic characteristics and the TMD system of the Taipei
101 building[10][27][28] (see figure 1), located in Taiwan,
which is one of the tallest buildings in the world and
currently uses the heaviest TMD system in the world. Based
on collected data from field measurements[29][30] during
typhoons and earthquakes, such as the Masta (2005) and
Talim (2005) typhoons and the Wenchuan (2008) and Tohoku
(2011) earthquakes, the performance of the TMD system
in the Taipei 101 building was monitored. The measured
acceleration and displacement signals can also be used for
further tuning of the TMD system. It was found that little
research has been done into the possibility of using a MTMD
system for the Taipei 101 building specifically, despite the
fact that such a system might have multiple advantages, such
as more robustness due to the wider frequency operation
bandwidth and the possibility of more efficient, distributed
mass placement.

Fig. 1: Taipei 101 building[31]

This research project proposes the use of a MTMD system in
the Taipei 101 building and evaluates the effectiveness of this
system in comparison to the currently installed TMD system.
The research question is: how can the TMD system in the
Taipei 101 building be improved by using multiple smaller,
distributed TMD systems (MTMD system) instead of one
large TMD system? The method to solve this question will
be numerical analysis. First, a simplified model will be made
of the existing Taipei 101 building, using the finite element
method (FEM), by deriving the equations of motion for the

simplified building (using Euler-Bernoulli beam theory) along
with the TMD system. The vibration suppression abilities
of the design will be studied via simulation in MATLAB.
Subsequently, the model will be modified to a MTMD system
and the suppression abilities of the new design will be studied.
Appropriate wind models (based on measured data) will
be used to simulate the building displacement among other
dynamic properties. The building displacement will be deter-
mined along the height of the building, for the cases without
the TMD system, with the TMD system and with the MTMD
system. For both TMD systems, parameter optimisation will
be performed by applying the most appropriate optimisation
procedure. In the end, a comparison will be performed which
ultimately leads to conclusions about the best possible TMD
system for this building in terms of suppression ability, off-
tuning mitigation, robustness and efficiency in terms of space
usage.

II. THEORETICAL BACKGROUND

In this section, an overview is provided of the theoretical
knowledge which is required to understand the numerical
model of the building. Various theoretical concepts are
addressed in the subsections below.

First, the static building has to be modelled in MATLAB,
by approximating the structure of the building as closely
as possible. This will be done by using the finite element
method, which will be explained in section II-A In order
to make the static building move, forces are applied to the
building which represent the wind force. This wind force
causes the beams of the building to deflect, in the transverse
and axial direction, which is explained in section II-B and
II-C respectively. The pendulum tuned mass damper system
is explained in section II-H and the Newmark-beta method,
which is used to calculate the building motion over time, is
explained in section II-I.

A. Finite element method model

Modelling the dynamic motion of a building in detail can
be a complex task, which requires choices regarding the
complexity of the building model in combination with the
computational cost of a numerical simulation. For the dynamic
model of the Taipei 101 building in this research project, a
2D finite element method (FEM) model is made in MATLAB.
The finite element method is a numerical simulation method
which allows for solving differential equations for complex
structures or systems, by dividing the structure or system
into multiple smaller elements. This allows to simulate the
dynamic behaviour of large and complex structures over time.

In the case of a building, the differential equations that
describe the building motion can be solved by dividing the
building into many different sections, represented by beams in
this research project. Each of the beam elements has two end
points, which are called ’nodes’ of the FEM model. These
nodes are connection points, where multiple beams can be
connected to. All of the forces, accelerations, velocities and
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displacements that are calculated, are calculated for the nodes
of the FEM model, which means that the nodes displace when
a certain force is applied to them. All nodes of the building
have 3 degrees of freedom, which will be discussed in section
II-D. The single TMD building model will consist of 103
nodes, which means that the entire building configuration
in this model will have a total of 309 degrees of freedom.
How much the nodes displace depends on the properties
of the beam elements which connect the nodes of the building.

The chosen beam configuration for the model is an I-
beam, because I-beams are commonly used beams for which
the moment of inertia is known. These I-beams are placed
in the model to represent every wall and floor, such that
every building floor is represented by a rectangular box.
Within these rectangular boxes, two diagonal beam elements
are placed, which ensures that all bending directions are
accounted for. These I-beams are elaborated upon further in
section II-E. The static truss FEM building model, including
a single TMD system is shown in figure 24.

B. Transverse beam motion (Euler-Bernoulli beam theory)

Euler-Bernoulli beam theory is used to determine the
transverse motion of the beam elements in the model. The
book ’Structural Dynamics: An Introduction to Computer
Methods’[32] from Roy R. Craig is used for the complete
derivation of the global stiffness and mass matrices used in
the model, that satisfy the Euler-Bernoulli equations. This
derivation is shown in this and the following sections, namely
sections II-B, II-C and II-D.

1) Assumptions
Euler-Bernoulli beam theory is based on some general assump-
tions, which are listed below.

• The axis that is perpendicular to the length of the beam
does not extend or contract. This axis is called the neutral
axis.

• The cross-sections of the beam which are perpendicular
to the neutral axis always stay perpendicular to the neutral
axis, also when the neutral axis deforms.

• The material behaves linearly and always is in the elastic
range of the material.

• Shear stresses are neglected.
• The principle stresses act in the xy-plane (the xy-plane

is a principal plane.
These assumptions are applied in the derivation of the
Euler-Bernoulli equations and provide insight in how an
Euler-Bernoulli beam behaves.

2) Assumed modes method and beam equations
The shape of a beam can be approximated by the assumed
modes method. The displacement of a SDOF continuous beam
can be approximated by the function

u(x, t) = ψ(x)u(t), (1)

where u(x, t) is the assumed mode of the system, u(t) is
the generalised displacement of the beam and ψ(x) is the

shape function, which is any function that approximates the
displacement of a deformed beam. In order to extend the
assumed modes method to an N -DOF continuous system, N
assumed mode functions are required, which is represented by

v(x, t) =

N∑
i=1

ψi(x)vi(t). (2)

Using Eq. (2), the transverse motion of a beam element of
length L, density ρ, elasticity modulus E, cross-sectional
area A and moment of inertia I can be computed. The
shape functions of the beam should meet certain boundary
conditions, which are

ψ1(0) = 1, ψ′
1(0) = ψ1(L) = ψ′

1(L) = 0,

ψ′
2(0) = 1, ψ2(0) = ψ2(L) = ψ′

2(L) = 0,

ψ3(L) = 1, ψ3(0) = ψ′
3(0) = ψ′

3(L) = 0,

ψ′
4(L) = 1, ψ4(0) = ψ′

4(0) = ψ4(L) = 0.

(3)

Now, the general solution of Eq. (2) is equal to

v(x) = c1 + c2

( x
L

)
+ c3

( x
L

)2

+ c4

( x
L

)3

. (4)

When filling in the boundary conditions shown in Eq. (3) into
Eq. (4), four shape functions are obtained, which are

ψ1 = 1− 3
( x
L

)2

+ 2
( x
L

)3

,

ψ2 = x− 2L
( x
L

)2

+ L
( x
L

)3

,

ψ3 = 3
( x
L

)2

− 2
( x
L

)3

,

ψ4 = −L
( x
L

)2

+ L
( x
L

)3

.

(5)

The stiffness and mass matrices of Euler-Bernoulli beams
satisfy the equations

kij =

ˆ L

0

EIψ′′
i ψ

′′
j dx (6)

and

mij =

ˆ L

0

ρAψiψjdx, (7)

respectively. Filling in the shape functions shown in Eq. (5)
into Eqs. 6 and 7 gives the following stiffness and mass
matrices:

k =

(
EI

L3

)
12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 (8)

m =

(
ρAL

420

)
156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 (9)

These stiffness and mass matrices can be used to calculate the
transverse motion and the slope of the beam at the two nodes
at the end of each beam element.



4

C. Axial beam motion

The axial motion of a beam element of length L, density ρ,
elasticity modulus E and cross-sectional area A can also be
computed using the assumed modes method discussed above.
The formula

u(x, t) = ψ1(x)u1(t) + ψ2(x)u2(t) (10)

can be used for this. The boundary conditions that have to be
satisfied for the axial motion are equal to

ψ1(0) = 1, ψ1(L) = 0,

ψ2(0) = 0, ψ2(L) = 1.
(11)

The general solution of Eq. (10) is equal to

u(x) = c1 + c2

( x
L

)
. (12)

Filling in the boundary conditions shown in Eq. (11) into Eq.
(12) gives the shape functions

ψ1(x) = 1− x

L
, ψ2(x) =

x

L
. (13)

The stiffness and mass matrices for axial motion were found
to satisfy the equations

kij =

ˆ L

0

EAψ′
iψ

′
jdx (14)

and

mij =

ˆ L

0

ρAψiψjdx, (15)

respectively. Filling in the shape functions shown in Eq. (13)
into Eqs. (14) and (15) gives the following stiffness and mass
matrices:

k =

(
AE

L

)[
1 −1
−1 1

]
(16)

m =

(
ρAL

6

)[
2 1
1 2

]
(17)

These stiffness and mass matrices can be used to calculate the
axial motion of the beam element at the two nodes at the end
of each beam element.

D. Global building equations

Each node in the model will have 3 degrees of freedom,
namely motion in the x-direction (transverse displacement),
motion in the y-direction (axial displacement) and a change of
motion in the x-direction (change in transverse displacement).
For each node, a displacement in all of the degrees of freedom
will be calculated, where the degrees of freedom will be
represented as

u =

u1u2
u3

 , (18)

where u1 will be the displacement in x-direction (transverse
displacement), u2 will be the displacement in y-direction
(axial displacement) and u3 will be the change of transverse
displacement, which can also be explained as being the slope

of the beam at the nodes, with respect to the equilibrium
position of the beam. The slope is denoted as

u3 =
du1
dy

, (19)

since the transverse displacement will be in x-direction
because the building height will be parallel to the y-direction.
This coordinate system will be explained in section II-D1.

In order to capture the behaviour of the beams for all
of the degrees of freedom, the stiffness and mass matrices
of the transverse and axial motion, which are found in Eqs.
(8), (9), (16) and (17) should be combined into a single local
stiffness and mass matrix, which can be used for each beam
element. Then, these local stiffness and mass matrices should
be combined to obtain a global stiffness and mass matrix,
which represents the stiffness and mass of the entire building.

1) Global coordinate system
When considering a single beam element, a coordinate
system can be assigned to the beam. E.g. the beam can
be parallel to the x-axis, which makes movement in the
y-direction transverse movement. Alternatively, the beam
can be parallel to the y-axis, which makes movement in
the x-direction transverse movement. When considering a
structure of multiple beams, it is important that the same
global coordinate system is used for all of the beams in the
structure, since only one global stiffness and mass matrix will
be used. For the model in this research project, a coordinate
system is chosen where the ground is parallel to the x-axis
and the building is parallel to the y-axis. This leads to the
requirement that the displacement of all of the beams should
be transformed such that these align with the described global
coordinate system.

The beam elements of the building are not parallel to
the y-axis, except for the wall elements. Since transverse
beam displacement will be in the x-direction and axial
beam displacement will be in the y-direction, these wall
elements are already oriented correctly. This means that the
floor elements and the diagonal elements in both directions
should be transformed to match the global coordinate system.
Combining the transverse and axial motion matrices and
transforming part of the beam elements of the model is
discussed in sections II-D2 and II-D3 respectively.

2) Combining transverse and axial motion
The deflection of a beam is determined by calculating the
displacement of the two nodes which are located at the ends
of a beam element, by using the local stiffness and mass
matrices, in which the behaviour of the beams is captured.
One stiffness and mass matrix contain values for all of the
degrees of freedom of one beam element. Since each beam
has two nodes and each node has 3 degrees of freedom, a
total of 6 degrees of freedom have to be represented by the
stiffness and mass matrix, which means that these matrices will
be 6× 6 matrices, where every row and column represents a
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single degree of freedom. The displacement vector of these
nodes will be represented as

u =


u1
u2
u3
u4
u5
u6

 , (20)

where the values u1, u2 and u3 will represent the
displacements in the directions as explained below Eq.
(18) for node 1 of the beam element and the values u4, u5
and u6 will represent the displacements in the directions as
explained below Eq. (18) for node 2 of the beam element.

Now, Eqs. (8) and (16) can be combined such that these
correspond to the correct displacement values. Also, Eqs. (9)
and (17) can be combined in the same way. This gives:

k =

(
EI

L3

)


12 0 6L −12 0 6L

0 AL2

I 0 0 −AL2

I 0
6L 0 4L2 −6L 0 2L2

−12 0 −6L 12 0 −6L

0 −AL2

I 0 0 AL2

I 0
6L 0 2L2 −6L 0 4L2


(21)

m =

(
ρAL

420

)


156 0 22L 54 0 −13L
0 140 0 0 70 0

22L 0 4L2 13L 0 −3L2

54 0 13L 156 0 −22L
0 70 0 0 140 0

−13L 0 −3L2 −22L 0 4L2


(22)

These matrices are the local stiffness and mass matrices
respectively, which are used in the model to construct the
global stiffness and mass matrix. The construction of the
global stiffness and mass matrix is discussed in section II-D4.

3) Transformation of beam elements
The local stiffness and mass matrices shown in Eqs. (21)
and (22) respectively are valid for beam elements which are
oriented parallel to the y-axis in the global coordinate system.
Therefore, for all of the elements that are not parallel to
the y-axis, i.e. the floor elements and the diagonal elements
in both directions, the stiffness and mass matrices should
be transformed such that the element properties align with
the global coordinate system. This can be done by using
a transformation matrix. Let u be the displacements in the
local coordinate system and let û be the displacements in the
global coordinate system. Then the relations between these
displacements are

u1 = û1 cos (θ) + û2 sin (θ), (23)

u2 = −û1 sin (θ) + û2 cos (θ), (24)

and
u3 = û3, (25)

for the first node of the beam element. For the second node,
the relations are the same, but here u4, u5, u6, û4, û5 and û6
are used instead of u1, u2, u3, û1, û2 and û3 respectively. The
resulting 6 equations can be written in matrix notation, in the
form of

u = Tû, (26)

where

u =


u1
u2
u3
u4
u5
u6

 , û =


û1
û2
û3
û4
û5
û6

 . (27)

This gives the following relation:
u1
u2
u3
u4
u5
u6

 =


cos θ sin θ 0 0 0 0
− sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0
0 0 0 0 0 1




û1
û2
û3
û4
û5
û6


(28)

Which means that the transformation matrix for a beam
element (containing 2 nodes) is found to be equal to:

T =


cos θ sin θ 0 0 0 0
− sin θ cos θ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0
0 0 0 0 0 1

 (29)

where θ is the angle with which the beam element should be
rotated to align with the global coordinate system.

This transformation matrix can now be used to transform the
local stiffness and mass matrices of the floor and diagonal
elements by using the equations

k̂ = TT kT (30)

and
m̂ = TT mT (31)

respectively. For the derivation of Eqs. (30) and (31) see
’Structural Dynamics’[32] (pp. 397-399). Now, the stiffness
and mass matrices of the floor elements and diagonal elements
can be transformed, by filling in Eq. (29) in combination
with the local stiffness matrix k and the local mass matrix m
in Eqs. (30) and (31) respectively.

Forces on the building are applied in the global coordinate
system, which means that the force vector does not have to
be transformed.

4) Global stiffness and mass matrices
Using the transformed local stiffness and mass matrices, global
stiffness and mass matrices can be constructed, which describe
the entire structure. The local stiffness and mass matrices
describe the behaviour of single beams in the structure, with
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which two nodes are connected. Although the same material
properties are used for all of the beams of the structure, not all
of the beams have the same length. Also, the beam elements
have to be transformed using different angles, depending on
where in the structure the beam elements are located. In
order to create global stiffness and mass matrices using the
constructed local stiffness and mass matrices, an n×n matrix
should be constructed, where n is the amount of degrees
of freedom of the structure. Therefore, the row and column
numbers correspond to the separate degrees of freedom. Now,
the local stiffness and mass matrices can be used as sub-
matrices, where connections can be made between degrees
of freedom by filling in the corresponding values from these
local matrices. For example, if the first and second node of the
structure are connected by a beam element, the local stiffness
and mass matrices as shown in Eqs. (21) and (22) can be filled
in to the corresponding locations of the first and second node
in the global stiffness and mass matrices respectively, which
are the locations in the 6× 6 sub-matrix in the top left corner
of both global matrices. When two nodes are connected that
are not adjacent values, the local stiffness and mass matrices
can be divided into four equally sized 3× 3 sub-matrices, as

k̂ =

[
k̂11 k̂12

k̂21 k̂22

]
(32)

and

m̂ =

[
m̂11 m̂12

m̂21 m̂22

]
, (33)

where the general sub-matrix form can be denoted as kij
and mij and the subscript values correspond to the node
that is represented in the row and in the column for i and j
respectively. The values from the stiffness and mass matrices
that correspond to the combination of nodes of the subscript
are represented by that sub-matrix. Now, each sub-matrix can
be inserted into the global matrices, to the location where the
combination of nodes corresponds to the same combination of
nodes in the global matrices. This gives global stiffness and
mass matrices in the following form:

K =



k̂11 k̂12 · · · · · · · · · · · · k̂1n

k̂21 k̂22 · · · · · · · · · · · · k̂2n

...
...

. . .
...

...
... k̂xx k̂xy

...
...

... k̂yx k̂yy

...
...

...
. . .

...
k̂n1 k̂n2 · · · · · · · · · · · · k̂nn


(34)

M =



m̂11 m̂12 · · · · · · · · · · · · m̂1n

m̂21 m̂22 · · · · · · · · · · · · m̂2n

...
...

. . .
...

...
... m̂xx m̂xy

...
...

... m̂yx m̂yy

...
...

...
. . .

...
m̂n1 m̂n2 · · · · · · · · · · · · m̂nn


(35)

These global matrices will be used in the calculation of the
dynamic behaviour of the building in the building model.

E. Beam properties

The dynamic behaviour of the building model is highly
dependent on the properties of the beams with which the
building is constructed. This can also be seen from the local
stiffness and mass matrices in Eqs. (21) and (22), where the
elasticity modulus E, the moment of inertia I , the length L, the
cross-sectional area A and the density ρ of the beam elements
are taken into account. The chosen material for the beams
of the building model is steel, since most of the building
is constructed from steel[33] and concrete. This gives the
required elasticity modulus and density of the material, shown
in Table II. In order to determine the moment of inertia and
the cross sectional area of the beams, a beam shape should
be chosen. An I-beam was chosen, since this is a simple
shape from which the moment of inertia can easily be tuned
to the correct value. This tweaking of the moment of inertia
is necessary in order to make the natural oscillation frequency
and the mass of the building model equal to the natural
oscillation frequency and the mass of the actual building. The
first and fundamental mode is the most important mode that
must be matched accurately, since this mode describes the
main oscillation frequency of the building, which determines
the main dynamic behaviour. Matching the natural oscillation
frequency of the building was done by iteratively changing the
I-beam dimensions and comparing the eigenfrequencies of the
building model and the actual building by doing an eigenvalue
study, which is explained further in section II-F. The correct
mass of the building is determined by taking into account that
the mass of the TMD system in the actual building is equal to
0.24%[33] of the total building mass. The I-beam dimensions
were tweaked until the building mass resulted in the correct
pendulum mass of 660000kg and the frequency was tuned
as close as possible to the natural oscillation frequency of
the actual building. The moment of inertia[34] of an I-beam
around the horizontal axis (the axis parallel to the flanges of
the I-beam, located in the middle between the flanges of the
I-beam) is given by

Ix =
wh3

12
− (w − tw)(h− 2tf )

3

12
(36)

where w is the width of the flange, h is the height of the I-
beam, tf is the thickness of the flange and tw is the thickness
of the web. These variables are clarified in Figure 2. The I-
beam dimensions that where found to most accurately match
the natural oscillation frequency of the building, are shown in
Table I.

w h tf tw
Dimension (m) 3.34 3.34 0.50 0.50

TABLE I: Dimensions of the I-beams of the building model.

All of the beams of the structure are chosen to be almost the
same. However, the length of the different beam elements can
differ based on the part of the building that is represented
by the beam element. The length of the beam elements is
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Fig. 2: I-beam configuration.

determined based on the dimensions of the Taipei 101 building
in combination with the simplification of the model, where a
rectangular structure is used. The properties of the steel beams
of the structure are shown in Table II, where the distinction is
made between floor, diagonal and wall elements. The length
of the different elements is represented visually in the building
model shown in Figure 24.

Floor Diagonal Wall
Elasticity modulus (GPa) 200 200 200

Density (kg/m3) 7850 7850 7850
Moment of inertia (kg ·m2) 7.3382 7.3382 7.3382

Cross-sectional area (m2) 4.510 4.510 4.510
Length (m) 45 45.883 8.960

TABLE II: Properties[33][35][36] of the different beam ele-
ments in the building model.

F. Internal building damping

In order to model the internal damping of the material of
the building, Rayleigh damping will be used. Rayleigh damp-
ing[32] is a form of damping that is often used for modelling
structures. It uses proportional damping, where the damping
matrix is constructed by multiplying the global mass and
stiffness matrix of the system by two constants, in the form
of

C = αM + βK, (37)

where the constants α and β can be chosen based on the
required damping properties of the building. The mass and
stiffness proportional damping contribute to damping the lower
and higher frequencies of the building dynamics respectively.
This means that the values of α and β can be chosen such
that the correct frequencies are damped out in a way that
approximates the dynamic behaviour of the actual building
most appropriately. The damping ratio for the nth vibration
mode is

ζn =
1

2

(
α

ωn
+ βωn

)
, (38)

where ωn is the natural frequency of the nth vibration mode.
For convenience, the angular natural frequency ωn is trans-
formed to the natural frequency fn, using ωn = 2π ·fn, which
gives

ζn =
1

2

(
α

2π · fn
+ β · 2π · fn

)
. (39)

When the damping ratios and natural frequencies of two
modes are known, two equations can be obtained, one for
each mode, which allows to solve for the two remaining
unknowns, α and β. When building a new structure, a damping
ratio can be chosen based on the maximum allowed structural
displacement, such that discomfort for building residents and
damage to the structure is prevented. However, in this case,
the damping ratio of the different modes of the Taipei 101
building should be approximated. The first three modes of the
building are taken into account for this. Based on measurement
results[29] from the ’Masta’, ’Talim’ and ’Krosa’ typhoons
and the ’Wenchuan’ earthquake, the average damping ratios
and natural frequencies for the first three modes of vibration
are shown in Table III.

Mode 1 Mode 2 Mode 3
Damping ratio (%) 1.65 1.21 0.76

Natural frequency (Hz) 0.149 0.429 0.779

TABLE III: Average damping ratios and natural frequencies of
the Taipei 101 building, measured[29] from various typhoons
and an earthquake.

The damping ratios for the different modes of vibration in
the model can be approximated by using the measured values
in Table III. The natural frequencies of the different modes
of vibration in the model should be determined based on
the structure in the model itself. The natural frequencies
of the building model are determined using an eigenvalue
study, where the eigenvectors and eigenfrequencies of the
building are determined based on the global stiffness and
mass matrices of the building.

The obtained eigenvectors represent the mode shapes
(building deflection shapes) of the different modes and the
eigenfrequencies represent the natural frequencies of the
modes. As explained in section II-E, the structure of the
building model was changed such that the most significant
modes, which are the lowest modes, match the measured
natural frequencies shown in Table III as closely as possible.
The final modes of vibration of the building model are equal
to 0.1043Hz, 0.5756Hz and 0.9548Hz, for which the first
mode had the highest priority to be matched as closely
as possible, since this mode represents the main building
oscillation.

Now, the values for α and β can be determined, using
the first and second mode of the building and filling in the
found values in Eq. (39), which gives

0.0165 =
1

2

( α

2π · 0.1043
+ β · 2π · 0.1043

)
(40)

and

0.0121 =
1

2

( α

2π · 0.5756
+ β · 2π · 0.5756

)
, (41)

where solving for α and β gives values of α = 0.01939 and
β = 0.005209. These values can be filled in in Eq. (37), which
gives

C = 0.01939 · M + 0.005209 · K, (42)
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which provides the damping matrix for the building model.
Now, when plotting the damping ratio against the natural
frequencies of the different vibration modes using Eq. (39)
and the values of α = 0.01939 and β = 0.005209, a damping
plot is obtained which is shown in Figure 3.

Fig. 3: Rayleigh damping plot using α = 0.01939 and β =
0.005209.

Although the calculated values of α and β are theoretically
correct, in the model used in this research project, numerical
instability occurs when using these values. It was found that
this numerical instability was caused by the value of β.
Therefore, the numerical instability is most likely caused by
overdamping, due to the high stiffness of the building. Because
of this, a slightly lower value of β = 0.0001 was chosen,
which does not induce numerical instability but does damp
out the higher frequency oscillations of the building, leading
to a smoother simulation. The corresponding value of α was
determined using equation 39, using only the fundamental
frequency of fn = 0.1043Hz and the corresponding damping
ratio of ζ = 0.0165. This leads to new values of α = 0.02120
and β = 0.0001. See section V-D for more explanation about
these values in combination with the simulations. The corre-
sponding Rayleigh damping plot is shown in Figure 4. It can be
seen that the damping on the fundamental eigenfrequency f1 is
barely affected by the change in Rayleigh damping parameters.
The second and third eigenfrequencies are damped less than
in the theoretically correct case of Figure 3.

G. Building equations of motion

The equations of motion of the building can be constructed,
using the found global mass, stiffness and damping matrices.
The equation of motion of the building is

Mü + Cu̇ + Ku = F, (43)

where M is the global mass matrix, C is the global damping
matrix, K is the global stiffness matrix, F is the force vector,
which represents forces to the building nodes and ü, u̇ and

Fig. 4: Rayleigh damping plot using α = 0.02120 and β =
0.0001.

u are the acceleration vector, velocity vector and position
vector of the building nodes respectively. The global mass,
damping and stiffness matrices consist of values that represent
connections between degrees of freedom of the nodes of the
building, as explained in section II-D4. The pendulum TMD
system in the building model consists of a mass which is
attached to the building with a cable. The location where
this cable is attached to the building will be called the
’pendulum connection point’ or ’pendulum attachment point’.
In the building model, this pendulum connection point is
represented by a node, which is part of the building structure.
This node will be called the ’connection node’, while the rest
of the nodes will be called ’free nodes’. All of the building
nodes in the matrices are located in the order of the building
nodes, as depicted by the node numbers shown in Figure 24,
which means that the degrees of freedom corresponding to the
connection node are located somewhere in the middle of the
matrix. In order to simplify the theoretical analysis, the global
mass, damping and stiffness matrices are reordered, such that
the sub-matrix corresponding to the degrees of freedom of
the connection node is located at the bottom right of all of
the global matrices. Also, the acceleration, velocity, position
and force vectors are reordered such that the sub-vector that
corresponds to the degrees of freedom of the connection node
is located at the bottom of all of the vectors. This can be
depicted by

M =

[
Mff Mfc

Mcf Mcc

]
, K =

[
Kff Kfc

Kcf Kcc

]
, C =

[
Cff Cfc

Ccf Ccc

]
(44)

and

ü =

[
üf

üc

]
, u̇ =

[
u̇f

u̇c

]
, u =

[
uf

uc

]
, F =

[
Ff

Fc

]
, (45)

where the subscript f represents the free nodes and the
subscript c represents the connection node. This means that
for the subscript ff , all connections are meant between the
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degrees of freedom of two free nodes. The subscript fc and
cf resemble the connections between the degrees of freedom
of one free node and the connection node and the subscript cc
resembles the connections between the degrees of freedom of
the connection node itself. Filling in the matrices and vectors
of Eqs. (44) and (45) into Eq. (43) gives[

Mff Mfc

Mcf Mcc

] [
üf

üc

]
+

[
Cff Cfc

Ccf Ccc

] [
u̇f

u̇c

]
+[

Kff Kfc

Kcf Kcc

] [
uf

uc

]
=

[
Ff

Fc

]
,

(46)

which are the building equations of motion.

H. Pendulum tuned mass damper system

The Taipei 101 building is equipped with a 660000kg[37]
pendulum tuned mass damper (TMD) system, which is used
to suppress vibrations due to external forces that are applied
to the building due to wind gusts or seismic activity. In
Figure 5, a schematic of this TMD system is shown. The
pendulum is hanging on 92 steel cables, which are all 42m
in length. Furthermore, the pendulum is damped using 8
hydraulic dampers, which are attached to the pendulum mass
itself and are able to rotate along with the pendulum at the
location where these dampers are attached to the building
structure. Also, below the pendulum mass, a ring is attached
which is damped by 8 more hydraulic dampers, which is done
to further reduce the movement of the pendulum TMD to a
maximum of around 1.50m.

Fig. 5: Taipei 101 pendulum TMD system[37].

In this section, a (pendulum) TMD system is explained and
the pendulum equations of motion are derived. Also, the
natural frequency and damping of the pendulum are discussed
and the coupling of the pendulum to the building is described.

1) Tuned mass damper system
Tuned mass dampers systems can been used to suppress the
vibration of structures. Wind gusts or seismic activity can

cause a large structure to vibrate, which can cause damage
to the structure or lead to discomfort for building occupants.
Wind gusts and seismic activity mainly cause problems when
the forces occur in a frequency that is around the natural
oscillation frequency of the fundamental mode of the structure,
because the external forces could cause resonance in the
oscillation of the structure, which can lead to oscillations that
are higher in amplitude. In order to mitigate this resonance,
another external force is added to the main structure, in the
form of a TMD system. Using this system, vibration mitigation
is achieved by tuning the mass damper system such that it
opposes the movement of the main structure to which it is
attached. Tuning of the TMD system is performed by changing
the properties of the spring and damper with which the TMD
system is attached to the main structure, such that the natural
frequency of the TMD system oscillation is the same as the
natural frequency of the fundamental mode of oscillation of
the main structure. This created antiresonance between the
oscillations of the pendulum and the main structure, which
causes the kinetic energy of the oscillation of the structure to
be transferred to the TMD mass and dissipated using dampers.
Although the mass of a TMD system is typically much smaller
than the mass of the main structure (0.24%[33] of the building
mass in the case of the Taipei 101 pendulum TMD), it is still
able to reduce the vibration of the main structure, due to this
antiresonance. A schematic of a simple linear TMD system is
shown in Figure 6a.

(a) Linear TMD system

(b) Pendulum TMD system

Fig. 6: Two types of TMD systems.

The Taipei 101 building does not use a linear TMD system,
but a pendulum TMD system. A pendulum TMD system
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works in the same way as the linear variant, since this system
is also tuned such that the natural oscillation frequency
matches the natural oscillation frequency of the building to
create antiresonance for vibration mitigation. In Figure 6b,
a schematic is shown of a simple pendulum TMD system.
While a linear TMD is connected to the main structure
directly using springs and dampers, a pendulum TMD is
hanging on the structure using cables, while also being
attached to the building using dampers, which are usually
connected to the pendulum mass as shown in Figure 5. Also,
springs can be added to modify the natural frequency of
the pendulum TMD. When the structure starts to displace
due to external forces, the angle of the pendulum cable
with the vertical increases, which causes the pendulum mass
experiences a restoring torque due to gravity, which is pointed
towards the equilibrium point. This causes a force on the
connection point of the pendulum, which is in the opposite
direction and thus, the connection point is ’pulled’ back to
the equilibrium position by the pendulum, which creates the
antiresonance.

2) Pendulum equations of motion
The equations of motion of the pendulum can be constructed,
using the equation of motion of a simple pendulum, where
only the angle θ between the pendulum cable and the vertical
is needed to describe the pendulum motion. However, for the
pendulum TMD in the building model, the connection point
of the pendulum is not fixed, since the connection node is
part of the building structure, which can move due to external
forces. Therefore, the movement of the connection node has
to be taken into account as well when deriving the equations
of motion of the pendulum. First, the sum of moments around
the connection point of the pendulum should be taken as∑

Mz = Iα, (47)

where I is the moment of inertia of the pendulum and α is the
angular acceleration of the pendulum. The moment of inertia
of the pendulum is equal to

I = mL2, (48)

where m is the mass of the pendulum bob and L is the length
from the connection point to the pendulum mass. Also, since
the angle θ will be used to describe the system, the angular
acceleration of the pendulum is equal to the second derivative
of the angle, which gives α = θ̈. Also, the sum of moments
around the connection point of the pendulum is equal to the
pendulum torque, so

∑
Mz = τz . Filling in all of the found

variables in Eq. (47) gives

τz = mL2θ̈. (49)

The torque of the pendulum can be calculated using

τ = r × F, (50)

where τ is the torque vector, F is the force vector and r is
the position vector, which in turn consists of two vectors

r = rpivot + rpend, (51)

where rpivot points from the origin to the pivot point (connec-
tion point) of the pendulum and rpend points from the pivot
point to the mass of the pendulum. When the origin is taken
to move along with the location of the pivot point, rpivot = 0,
so the position vector becomes

r = rpend =

L sin (θ)
L cos (θ)

0

 , (52)

where the displacement in the z-direction is equal to zero in
this 2D scenario. The force vector is

F =

 müx
müy −mg

0

 , (53)

where the acceleration of the connection point in the x- and
y-direction are taken into account, as well as the gravitational
force acting in the y-direction. By substituting the found
position and force vectors into Eq. (50), the torque vector
becomes

τ =

 0
0

L sin (θ) · (müy −mg)− L cos (θ) ·müx

 , (54)

which means that the torque in the z-direction (which also is
the magnitude of the torque in this case) is equal to

τz = L sin (θ) · (müy −mg)− L cos (θ) ·müx, (55)

which can be filled in into Eq. (49), which gives

mL2θ̈ = L sin (θ) · (müy −mg)− L cos (θ) ·müx, (56)

which is the equation of motion of the pendulum system with
moving connection point, without any springs or dampers.

3) Pendulum natural frequency and damping
As discussed in section II-H1, the natural oscillation frequency
of the pendulum should be tuned such that it is equal to the
natural frequency of the fundamental oscillation mode of the
building, such that antiresonance can be achieved to mitigate
the building oscillation. For small angles θ, i.e. θ ≪ 1rad, the
natural oscillation frequency of a simple pendulum is given
by

f =
1

2π

√
g

L
, (57)

where g is the gravitational constant and L is the pendulum
length. In the actual building, the dampers are implemented at
the bottom of the system and attached to the pendulum bob.
However, in order to be able to modify the natural frequency of
the pendulum TMD in the model to approximate the behaviour
of the TMD system in the Taipei 101 building, rotational
springs and dampers will be implemented in the model. The
springs contribute to the natural frequency of the pendulum.
The natural frequency including the effect of the rotational
springs is given by

f =
1

2π

√
k +mgL

I
=

1

2π

√
k +mgL

mL2
, (58)
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where k is the spring constant. The natural frequency of the
fundamental mode of the building model was found to be
0.1043Hz (refer to section II-F). Furthermore, the length of
the pendulum cables in the Taipei 101 building are equal
to 42m[37]. The mass of the pendulum bob in the building
model is set to 0.24% of the mass of the entire building
in the model, as discussed before. In the model, the mass
of the pendulum bob is 660998kg. Filling in these values
for the variables f , L and m respectively in Eq. (58) and
solving for k gives a rotational pendulum spring constant of
k = 228412534Nm/rad.

Now, also the rotational pendulum damping can be determined.
The damping coefficient b can be determined using

b = 2ζp
√
Ik = 2ζp

√
mL2k, (59)

where ζp is the pendulum damping ratio and k is the
rotational pendulum spring constant. In order to determine
the damping coefficient b, the damping ratio ζp should be
determined, which can be done based on the maximum
allowed pendulum deflection during a strong hurricane. The
pendulum system in the Taipei 101 building has a maximum
swing of 1.50m[37] during such high wind forces. This means
that the pendulum bob can swing 1.50m in all directions
away from the equilibrium position. A strong hurricane was
defined as having a wind velocity of 32.78m/s[38] at a height
of 10m. Using the finished model, a value of ζp = 0.30
was found to provide this maximum swing of 1.50m at the
wind velocity of 32.78m/s at a height of 10m. In Figure
13, this maximum swing is shown. Using a damping ratio
of ζp = 0.30 and filling in Eq. (59), the damping coefficient
becomes b = 309642423Nm · s/rad.

In order to implement the found spring constant and
damping coefficient to the pendulum model, the variables
can be added to the equation of motion. The spring constant
is proportional to the pendulum deflection angle θ and the
damping coefficient is proportional to the pendulum angular
velocity θ̇. The rotational spring causes a restoring force,
which causes the torque due to the spring to be in the
negative direction for positive angles of θ and in the positive
direction for negative angles of θ. The rotational damper
causes a damping torque, which works against the direction
of motion such that the torque due to the damper is negative
if the angular velocity θ̇ is positive and positive if the angular
velocity θ̇ is negative. Therefore, the pendulum equation of
motion becomes

mL2θ̈ = (ux+L sin (θ))·(müy−mg)−(uy−L cos (θ))·(müx)−bθ̇−kθ,
(60)

which is the final equation of motion of the pendulum
system with moving connection point, including springs and
dampers. The spring constant and damping coefficient will be
implemented in the final equations of motion of the building,
which will be explained in section II-H4.

4) Pendulum coupling to the building
When the building moves due to wind forces or seismic
activity, it exerts a certain force on the pendulum bob, due
to the displacement of the connection point, as discussed in
section II-H2. In the real pendulum system, the force on the
connection point causes a tension in the pendulum cables,
which acts on the pendulum and thus pulls the pendulum
towards the new location. This force on the connection
point also causes a torque on the pendulum bob, which is
implemented in the pendulum equation of motion (Eq. (60)).
Additionally, the pendulum angle θ changes which gives a
restoring torque due to gravity. In the building model, the
torques on the pendulum, which are described above, are
applied to the pendulum bob, but the tension force from
the pendulum cables, which is caused by the force on the
connection point, is not applied to the pendulum bob. Instead,
the pendulum bob is displaced by the same amount as the
connection point, after which the angle θ of the pendulum
is determined due to the mentioned torques, which correctly
describes the pendulum motion.

However, in order for the TMD system to work appropriately,
the pendulum bob should apply a force to the connection
node as well, which causes the building to be ’pulled’ back
by the pendulum due to antiresonance. By Newton’s third law,
it is known that the force that is exerted on the pendulum,
also exerts an equal and opposite force on the connection
node of the building. This force on the connection node is
applied through the tension in the pendulum cable, in which
the forces from the torque are taken into account, in addition
to the force due to the displacement of the pendulum bob
(which is caused by the displacement of the connection point)
and the force due to gravity on the pendulum bob. In order to
determine the forces in x- and y-direction on the connection
node, due to the pendulum, the force acting on the pendulum
in the x- and y-direction should be determined, which can be
done by starting with the displacement of the pendulum in x-
and y-direction, which is

x = ux + L sin (θ) (61)

and
y = uy + L− L cos (θ). (62)

Now, the derivative and second derivative of these displace-
ments can be taken, which gives

ẋ = u̇x + θ̇L cos (θ), (63)

ẏ = u̇y + θ̇L sin (θ) (64)

and
ẍ = üx + θ̈L cos (θ)− θ̇2L sin (θ), (65)

ÿ = üy + θ̈L sin (θ) + θ̇2L cos (θ). (66)

Now, the force on the pendulum bob in the x- and y-direction
can be determined using Newton’s second law, which gives∑

Fx = λx = mẍ, (67)
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and ∑
Fy = λy −mg = mÿ, (68)

where λx and λy are the forces that are applied on the
pendulum due to forces on the connection point. Now, the
pendulum acceleration in x- and y-direction from Eqs. (65)
and (66) can be filled in in Eqs. (67) and (68) respectively,
which gives

λx = m(üx + θ̈L cos (θ)− θ̇2L sin (θ)) (69)

and

λy = mg +m(üy + θ̈L sin (θ) + θ̇2L cos (θ)). (70)

Now, using these forces on the pendulum, the force on the
connection point can be determined using Newton’s third law,
which is

λx = −fx (71)

and
λy = −fy, (72)

where fx and fy are the forces on the connection node in
the x- and y-direction respectively. Now remember from the
building equation of motion that the forces on the connection
point are denoted in the vector Fc, where

Fc =

[
fx
fy

]
. (73)

So, when filling in Eqs. (69) and (70) into Eqs. (71) and (72)
and then filling in the obtained equations into Eq. (73), the
connection point force vector becomes

Fc = −
[

m(üx + θ̈L cos (θ)− θ̇2L sin (θ))

mg +m(üy + θ̈L sin (θ) + θ̇2L cos (θ))

]
, (74)

which can be divided into multiple separate vectors, which
gives

Fc = −m
([
üx
üy

]
+

[
0
g

]
+

[
θ̈L cos (θ)− θ̇2L sin (θ)

θ̈L sin (θ) + θ̇2L cos (θ)

])
.

(75)
Now, the value of θ̈ can be filled in by substituting the θ̈ from
Eq. (56), which gives

Fc = −m
([
üx
üy

]
+

[
0
g

]
+ B

)
, (76)

where

B =

[
(
L sin (θ)·(müy−mg)

mL2 − L cos (θ)·müx

mL2 )L cos (θ)− θ̇2L sin (θ)

(
L sin (θ)·(müy−mg)

mL2 − L cos (θ)·müx

mL2 )L sin (θ) + θ̇2L cos (θ)

]
.

(77)
Now, Eq. (76) can be rewritten to give

Fc = −mI2 (üc + g + B) , (78)

where I2 is the identity matrix of size 2.

In order to couple these forces on the pendulum connection
node to the building, the force vector has to be filled in in the

equations of motion of the building. First, Eq. (46) should be
expanded, which gives the equations

Mff üf + Mfcüc + Cff u̇f + Cfcu̇c + Kffuf + Kfcuc = Ff

(79)
and

Mcf üf+Mccüc+Ccf u̇f+Cccu̇c+Kcfuf+Kccuc = Fc. (80)

Now, Eq. (78) can be filled in into Eq. (80), which gives

Mcf üf + Mccüc + Ccf u̇f + Cccu̇c + Kcfuf + Kccuc

= −mI2 (üc + g + B) ,
(81)

which becomes

Mcf üf + (Mcc +mI2)üc + Ccf u̇f + Cccu̇c+

Kcfuf + Kccuc +mI2g +mI2B = 0,
(82)

where the Mcc +mI2 term will be denoted as Mcc. Now, the
building equation of motion can be updated, where the new
equation of motion is equal to[

Mff Mfc

Mcf Mcc

] [
üf

üc

]
+

[
Cff Cfc

Ccf Ccc

] [
u̇f

u̇c

]
+[

Kff Kfc

Kcf Kcc

] [
uf

uc

]
+

[
0

mI2g +mI2B

]
=

[
Ff

0

]
,

(83)

where the newly introduced vector will be called N, so

N =

[
0

mI2g +mI2B

]
. (84)

In order to describe the motion of the pendulum using the same
equations of motion, Eq. (60) can be added to the system of
equations, where the θ̈, θ̇, θ and τ terms can be added to the
bottom of the ü, u̇, u and N vectors. Also, the moment of
inertia of the pendulum I = mL2, the spring constant k and
the damping coefficient b should be added to the bottom right
corner of the M, K and C matrices respectively. This gives
the final equation of motion ofMff Mfc 0

Mcf Mcc 0
0 0 mL2

üf

üc

θ̈

+

Cff Cfc 0
Ccf Ccc 0
0 0 b

u̇f

u̇c

θ̇

+

Kff Kfc 0
Kcf Kcc 0
0 0 k

uf

uc

θ

+

 0
mI2g +mI2B

τz

 =

Ff

0
0

 ,
(85)

where τz is given by Eq. (55). This equation of motion is used
to model the dynamic behaviour of the building in combination
with the pendulum TMD system.

I. Newmark-Beta integration method

Using the equations of motion of the building in combination
with the TMD system, the dynamic behaviour of the entire
structure can be modelled over time. This can be done using a
numerical integration method, which is suitable for calculating
structural dynamics. The Newmark-beta method is such a
suitable method, which was originally developed by Nathan
M. Newmark. Newmark suggests that the method is ’capable
of application to structures of any degree of complication,
with any relationship between force and displacement ranging
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from linear elastic behavior through various degrees of
inelastic behavior or plastic response, up to failure. Any type
of dynamic loading such as that due to shock or impact,
vibration, earthquake motion, or blast from a nuclear weapon,
can be considered.’[39] The method is proven to be fast
and stable, provided that the parameters γ and β are chosen
appropriately. Using the Newmark-beta method, the positions
and velocities of the building nodes and the angle and angular
velocity of the pendulum can be determined over time. This
section briefly explains the derivation of the Newmark-beta
method, the choice of the Newmark-beta parameters and the
use of the Newmark-beta method in the building model.

1) Derivation of the Newmark-beta method
The Newmark-beta method can be derived[39] using the
Taylor series, which gives

ut = ut−∆t+∆tu̇t−∆t+
∆t2

2
üt−∆t+

∆t3

6

...u t−∆t+ ..., (86)

and

u̇t = u̇t−∆t +∆tüt−∆t +
∆t2

2

...u t−∆t + ..., (87)

where the subscript t refers to the current simulation time and
the subscript t − ∆t refers to the simulation time one time
step before the current simulation time. Now, the constant in
the last term of both equations can be rewritten using β and
γ, which gives

ut = ut−∆t +∆tu̇t−∆t +
∆t2

2
üt−∆t + β∆t3

...u + ..., (88)

and
u̇t = u̇t−∆t +∆tüt−∆t + γ∆t2

...u + ..., (89)

where the term
...u is defined as

...u =
(üt − üt−∆t)

∆t
. (90)

Filling in Eq. (90) into Eqs. (88) and (89) and rewriting the
result gives

ut = ut−∆t +∆tu̇t−∆t +

(
1

2
− β

)
∆t2üt−∆t + β∆t2üt,

(91)
and

u̇t = u̇t−∆t + (1− γ)∆tüt−∆t + γ∆tüt, (92)

which are the Newmark-beta equations.

2) β and γ parameters
The β and γ parameters in Eqs. (91) and (92) can be chosen
based on the desired behaviour of the integration method,
where a trade off has to be made between performance and
stability. A value of γ = 1

2 [39] has to be chosen to ensure that
no positive or negative damping occurs. If γ = 0, negative
damping is present, while for values of γ > 1

2 , positive
damping is occurs. For a value of β = 1

4 , the method uses a
uniform acceleration during one time step, where the average
between the initial and final acceleration values is taken
for this uniform acceleration. For the combination of values
β = 1

4 and γ = 1
2 , the integration method is unconditionally

stable, which is why these values are chosen for the building
model.

3) Solving the displacement over time
In order to solve the displacement of the building and the
pendulum system over time, Eqs. (91) and (92) have to be
filled in, using the values of β = 1

4 and γ = 1
2 respectively. It

can be seen that when using an initial position, velocity and
acceleration, the next values in time of these variables can be
calculated when the current acceleration is known. The current
acceleration is determined using the equation of motion of Eq.
(85), where the acceleration can be determined using

ü = M−1(F − Cu̇ − Ku − N) (93)

Now, the entire state of the next time step can be determined,
where the state vector is equal to

u =

uf

uc

θ

 , (94)

where θ is the pendulum angle and uc and uf consist of the
pendulum connection nodes of the building and the rest of
the building nodes respectively. The nodes in both uc and
uf are represented by the three degrees of freedom that are
explained in section II-D.

Now, all of the required theory is provided to be able
to solve for the displacement of a structure including a
pendulum TMD system over time.

III. METHOD

In this section, the modelling and analysis part of the research
project is explained into detail. First, the modelling method is
explained in section III-A. Next, the dynamic building model
of the current Taipei 101 building (using a single TMD), which
is constructed based on the theory that is discussed in section
II, is explained in sections III-B and III-C. After this, the
addition of the MTMD system is discussed in section III-D.
Then, the procedure of optimisation of the different models
is discussed in section III-E. Finally, the various analysis and
comparison methods that are used to validate and compare the
models are described in section III-F.

A. Modelling method

For this research project, all of the modelling is done using
MATLAB, which means that all of the theory from section II
has to be implemented into a MATLAB script. This method
of implementing all of the equations from scratch instead of
using existing computer software allows for more freedom
in the design and analysis of the final building model,
although it takes longer to construct the model. When the
equations are implemented, changes to the building or the
pendulum system can be made easily, since the entire model
is available for alteration. This includes general modifications
such as layout of the structure, boundary conditions of the
model, internal damping of the building etc., but also the
fundamental equations that describe the behaviour of the
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system. Using MATLAB, detailed analysis can be performed
where analysis methods can be constructed from scratch by
performing calculations and writing scripts. This also gives
freedom for the analysis and comparison phase of the research
project, since the amount of different possible analysis and
comparison methods is enormous.

The goal is to construct two different models, where
one of the models simulates the dynamic behaviour of the
current Taipei 101 building including the TMD system as
accurately as possible and the other model simulates the
dynamic behaviour of a proposed alternative structure, where
multiple distributed TMD systems are present. In order to
accurately draw a conclusion about the performance of the
two different systems, the best configuration of the MTMD
system is determined by performing parameter optimisation,
which can be done on a large scale due to the freedom
of the MATLAB model, as mentioned before. After this
optimisation phase, the validation, analysis and comparison
of the models leads to a conclusion which points out the
system with the best performance based on various factors,
which are discussed in section III-F.

B. Assumptions and approximations
In a numerical model, assumptions and approximations
have to be made, which allow the simulation to resemble
the real system as closely as possible, while keeping the
computational costs as low as possible. Various assumptions
and approximations of the model are discussed in this section.

1) Building parameters
The Taipei 101 building is resembled by the FEM model
shown in Figure 24. When comparing this model with the
actual building, shown in Figure 1, it can be seen that the
shape of the building model does not exactly match the shape
of the real building. An approximation is made where all of
the main building dimensions are captured in the building
model, i.e. the height of the building, the average height and
width of the floor levels, the amount of floors, the material
properties etc., are taken into account. However, the changing
dimensions per floor are not considered, which means that
the building model represents the average dimensions of the
real building. Also, steel I-beams are taken to construct the
building model, although the actual building consist of a large
amount of different materials and constructions. The most
important part is that these I-beams can represent the dynamic
behaviour of the actual building by matching the natural
frequencies of the real building and the building model, as
explained in section II-E. Matching this dynamic behaviour
and validating the result makes the model sufficient to draw
conclusions about the difference in performance of different
TMD systems.

2) Initial conditions and boundary conditions
Numerical models require initial conditions to start off the
numerical integration calculations over time. As explained in
section II-I3, an initial position u0, velocity u̇0 and acceler-
ation ü0 are needed for all of the degrees of freedom of the

building nodes. For the pendulum, an initial angle θ0, angular
velocity θ̇0 and angular acceleration θ̈0 are needed. Since no
external forces are applied to the pendulum system and the
pendulum is set to be stationary in the equilibrium position at
t = 0, the initial pendulum conditions are equal to zero. In the
initial state of the simulation, the building is stationary in the
equilibrium position as well, meaning no initial displacement
or velocity. The only non-zero initial condition is the wind
force on the building, which will cause the building to start
moving. To determine the acceleration due to this initial wind
force Ff0 , Eq. (79) can be filled in using the initial conditions
for all variables. This gives

Mff üf0+Mfcüc0+Cff u̇f0+Cfcu̇c0+Kffuf0+Kfcuc0 = Ff0 ,
(95)

where u̇f0 = 0, u̇c0 = 0, uf0 = 0, uc0 = 0 and N0 = 0.
Therefore, the equation can be reduced in size because of the
zero-vectors. This gives

Mff üf0 + Mfcüc0 = Ff0 , (96)

which can be rewritten to give[
Mff Mfc

] [üf0

üc0

]
= Ff0 , (97)

where [
üf0

üc0

]
= ü0. (98)

Therefore, the initial acceleration due to the initial wind force
Ff0 can be determined using

ü0 =
[
Mff Mfc

]−1 Ff0 , (99)

which means that the initial conditions of the model are equal
to

ü0 =
[
Mff Mfc

]−1 Ff0 , θ̈0 = 0,

u̇0 = 0, θ̇0 = 0,

u0 = 0, θ0 = 0.

(100)

where Ff0 = f(0), where f(0) is a discrete function that
describes the wind force on all of the building nodes at a
time of t = 0.

3) Wind force model
In order to apply a realistic wind force to the building model,
ideally, the local climate and environment around the building
is taken into account, as well as effects such as vortex
shedding and the increase of wind velocity with height.
However, to determine the difference in dynamic behaviour of
the different TMD systems, a more simple wind force model
is sufficient, since the behaviour of the TMD systems can
be analysed most accurate in free vibration. Therefore, two
different wind models are created. One of the wind models
is a randomly generated, more realistic wind model that can
be used to represent the real environment and circumstances
to which the different building models can be exposed. The
other wind model is a simpler model, where the wind force
will be removed after a certain amount of simulation time,
such that the behaviour of the TMD systems can be analysed
in free vibration.
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First, the more realistic wind model is explained. Around
the Taipei 101 building, typhoons can occur that cause
large wind gusts, where the wind velocity during a strong
typhoons (typhoon Soulik) was measured to be at an average
of 15.24m/s[40], measured over a time period of 21 hours
at a height of h0 = 15m. A random wind force model is
made where the velocity v0 of the wind is constructed from
multiple sinusoids with random frequencies chosen from a
certain frequency range. The wind is chosen to come from
one side of the building, since wind directions usually do not
change suddenly. The magnitude of the wind velocity has a
maximum value of 15.24m/s, where the frequencies of the
wind force are chosen such that this maximum velocity is not
present for more than around 3s, in order to most accurately
represent wind gusts. This constructed wind velocity is
created for a height of 15m above ground level. An example
of such a randomly generated wind velocity function is shown
in Figure 7.

Fig. 7: Randomly generated wind velocity function using
sinusoids.

Wind velocities increase in height according to the Hellmann
exponent law[41], which is given by

v = v0

(
h

h0

)α

, (101)

where v is the wind velocity at height h, v0 is the wind velocity
at height h0 (which is usually a height of 10m) and α is
the Hellmann exponent, which is a coefficient that depends
on the surroundings of the measurement point. A value of
α = 0.14[42] is often used as a standard value for most
situations, where the wind is not affected by any surrounding
structures or the environment. Since the Taipei 101 building is
not located in a mountain environment and rises far above all
of the surrounding buildings, as also shown in Figure 1, the
value of α = 0.14 is considered to be appropriate to use for
the wind model. Now, when filling in the randomly generated
wind velocity function v0, the height h0 = 15m at which this

velocity is present and the coefficient α, the wind velocity
function v can be determined over time for different heights
h. In order to apply a wind force on the nodes of the building,
the wind velocity at the nodes of the building has to be known.
Therefore, the wind velocity function v is calculated for all of
the heights of the building nodes to which a wind force will
be applied. An example of a velocity distribution at t = 15s,
taken from the wind velocity function shown in Figure 7, is
shown in Figure 8.

Fig. 8: Wind velocity distribution at t = 15s, using the
randomly generated wind velocity function at h0 = 15m
shown in figure 7.

Now, these velocity functions have to be transformed into
forces on the corresponding building nodes, which can then
be assigned to the same nodes in the vector Ff to be applied
to the building. The force on one of the nodes of the building
can be calculated using

F =
1

2
ρv2A, (102)

where ρ is the air density, which is taken to be
ρ = 1.225kg/m3 (air density at sea level) and A is
the surface area of the building where the wind is acting on.
This surface area can be determined by taking the area around
one node, where the area of each node will correspond to
half of the area of the wall of the floor above and half of
the area of the wall of the floor below. This means that the
area of each of the building nodes will just be each to the
area of the wall of one floor, which is the height of one floor
multiplied by the width of one floor. A constraint is set to
for a height of h = 0, such that the wind velocity and thus
the wind force is equal to zero for the bottom nodes of the
building. For the top node of the building, there is no floor
above, which means that the area on which the wind velocity
acts for this node is half of the area that is used for the other
nodes. Therefore, the force on this node is divided by 2. The
effect of vortex shedding is neglected since it is considered to
be out of the scope of the research project and not necessary
for performing a comparison of the different TMD systems.
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Secondly, the more simple wind model is explained. For this
model, a constant wind velocity of v0 = 15.24m/s is used,
which is converted to a velocity distribution for different
heights using Eq. (101) in the same way as the more realistic
wind model. Then the found wind velocities at the building
nodes are converted to forces using Eq. (102). The same
constraint is used for a height of h = 0 as in the more
realistic wind model and also, the force on the top node is
divided by 2. This wind model is not random, which makes it
appropriate to use for the analysis part of the research project,
since both TMD systems should be simulated using the same
circumstances and thus the same external wind forces. After
a simulation time of t = 3s, this force is removed, which
ensures that the TMD systems can be compared in free
vibration.

4) Time step
The numerical simulation of the dynamic building motion is a
discrete simulation, which means that it requires a time step,
after which each calculation of the new variables of the system
is performed. The time step ∆t is used in the Newmark-
beta equations shown in section II-I1 and should be chosen
small enough such that the numerical integration error stays
low enough, but the computation time is within an acceptable
margin, such that the simulations can be performed. However,
for the values of β = 1

4 and γ = 1
2 , which are used in

the building model, the integration method is unconditionally
stable. Therefore, the time step of the building model should
be determined based on the natural frequencies of the building,
where the highest natural frequency determines the step size
using

∆t ≤ 1

fmax
, (103)

where fmax is the highest eigenfrequency of the building
structure. Choosing the time step according to Eq. (103)
ensures that the simulation is fast enough to capture all of
the dynamics of the system. Using the eigenvalue study,
the highest eigenfrequencies of the single TMD and MTMD
building models are found to be 144.15Hz and 285.21Hz
respectively, so the time step should be chosen according to

∆t ≤ 1

144.15
= 0.0069372s (104)

and
∆t ≤ 1

285.21
= 0.0035062s, (105)

respectively. The chosen time step is equal to ∆t = 0.001s for
both models to ensure appropriate behaviour and prevent diver-
gence. A small time step convergence study is performed from
which is concluded that the system behaviour is converged for
this time step, which means that the time step is chosen small
enough to accurately represent the dynamic system behaviour.

C. Modelling procedure
The structure of the model is briefly explained in this section.
Each part of the model is only addressed briefly, since most
parts are extensively explained in the theory discussed in the
previous sections.

1) Building initialisation
The first step of the building model is the initialisation of
the nodes of the building, along with the properties of the
building and the TMD system or the MTMD system. The
nodes of the building are initialised in an array, denoting the
initial x- and y-location and the initial change in motion in
the x-direction. These are the degrees of freedom per node,
as explained in section II-D.

2) Element connectivity
Next, a connectivity matrix A is made, which is an n × n
matrix, where n is the amount of nodes of the FEM structure,
such that the row and column numbers correspond to the
separate nodes of the structure. Now, when the combination
of a certain row and column of the matrix represents two
nodes that should be connected with a beam element in the
FEM model, this value in the matrix should be set equal
to Aij = 1, where i and j represent the row and column
of the nodes in question. For a combination of a row and
column of the matrix that represents two nodes that should
not be connected with a beam element in the FEM model,
the corresponding value in the matrix should be set equal to
Aij = 0. This way, a matrix is constructed which contains
the information whether two nodes are connected in the FEM
model or not. Using this matrix, the global stiffness and mass
matrices can be constructed, by adding the local stiffness and
mass matrices only to the locations in the global stiffness
and mass matrices where two nodes should be connected by
a beam element, so where Aij = 1.

3) Stiffness, mass and damping matrices
Next, the local stiffness and mass matrices are constructed,
which results in the matrices shown in Eqs. (21) and (22).
Multiple different matrices are constructed, since the length
of a beam element L is not the same for all beam elements
of the structure. Next, these stiffness and mass matrices are
transformed as explained in section II-D3, where different
angles of θ are used depending on the angle with which
the beam element should be rotated to align with the global
coordinate system. Then, the global stiffness and mass
matrices are constructed as explained in section II-D4, also
using the connectivity matrix A. Using these global stiffness
and mass matrices, the global damping matrix is constructed
using Rayleigh damping, as explained in section II-F. Then,
the TMD mass or multiple TMD masses are added to the
global stiffness, mass and damping matrices, as explained at
the end of section II-H4.

4) Boundary conditions
The following step is adding boundary conditions to the
building model. The boundary conditions implemented in the
building model make sure that the building is fixed to the
ground, where the ground is assumed to be stationary. As can
be seen in Figure 24, the building model is connected to the
ground using two nodes. The boundary conditions are applied
to both of these nodes and are equal to

u1 = u2 = 0, u̇1 = u̇2 = 0 and ü1 = ü2 = 0, (106)
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which are implemented in the model by setting the 6 × 6
sub-matrices that correspond to the 6 degrees of freedom to
the bottom two nodes in the stiffness, mass and damping
matrices equal to a 6×6 identity matrix (I6). Also, no external
forces are applied to these bottom nodes. The combination of
these measures ensures that no acceleration is applied to the
bottom nodes, which means that no displacement or velocity
is induced for these nodes. This means that the boundary
conditions shown in Eq. (106) are realised.

5) Iteration scheme
Finally, the iteration scheme is used to determine the dynamic
behaviour over time. The iteration scheme uses the Newmark-
beta method, as explained in section II-I. First, the iteration
scheme should be initialised. This is done by assigning
the Newmark-beta parameters β and γ and initialising all
of the required vectors used in the iteration loop. This
also includes setting the initial conditions of the model,
shown in Eq. (100). Next, the wind force distribution along
the building height over time is constructed as explained
in section III-B3. Using the initial wind force and the
other initial conditions, the initial acceleration is determined
with which the iteration scheme can be started, using Eq. (93).

In the iteration scheme, the external wind force is updated,
after which the torque of the pendulum is calculated, as
explained in section II-H2. Next, the force from the pendulum
on the connection nodes is determined as explained in
section II-H4, after which these forces and the torque of
the pendulum are applied to the corresponding locations in
the N vector. Then, the Newmark-beta equations are used to
solve for the displacement of the entire model structure, as
explained in section II-I1. In Eqs. (91) and (92) can be seen
that apart from the variables at time t −∆t, the acceleration
from the current time t is required to calculate the current
position ut and velocity u̇t vectors. This can be done by
calculating a prediction for the position and velocity vectors
without including the current acceleration terms. This gives

upred = ut−∆t +∆tu̇t−∆t +

(
1

2
− β

)
∆t2üt−∆t (107)

and
u̇pred = u̇t−∆t + (1− γ)∆tüt−∆t, (108)

after the value for the current acceleration üt can be calculated
using upred and u̇pred, which gives

üt = M−1(F − Cu̇pred − Kupred − N). (109)

Using this current acceleration, the final current position ut

and velocity u̇t vectors can be calculated according to

ut = upred + β∆t2üt (110)

and
u̇t = u̇pred + γ∆tüt, (111)

which include the new positions and velocities of the building
and the new angle θ and angular velocity θ̇ of the pendulum re-
spectively, according to the Newmark-beta equations. Finally,
the new pendulum positions are calculated by filling in the

found pendulum angle θ in Eqs. (61) and (62), which give the
displacement of the pendulum mass in the global coordinate
system in the x- and y-direction respectively.

D. Multiple TMD system

A second model is made, where 3 TMD systems are imple-
mented instead of a single TMD system. In order to add
multiple TMD systems to the model, the same modelling
produce has to be followed as explained in section III-C,
except for the fact that every pendulum variable should be
implemented 3 times to represent the three different systems.
The TMD systems are attached alongside each other at the
same building height at horizontal locations of 1

6Lw, 1
2Lw

and 5
6Lw, where Lw is the width of the building. This is

done to obtain symmetry in the beam elements with which the
attachment points are connected to the building, such that the
same behaviour is obtained when the attachment point moves
to the right as when the attachment point moves to the left.
This symmetry can be seen in Figure 9, where the MTMD
system configuration is shown in detail.

Fig. 9: MTMD system configuration

The rest of the building model is the same as for the single
TMD system, as shown in Figure 24. While the lengths of
the pendulums are kept equal, the spring constants k are
set to different values for each pendulum TMD system. This
makes each of the pendulums oscillate at a slightly different
frequency, which leads to a larger frequency bandwidth for
which the building vibration can be mitigated.

E. Parameter optimisation

Now, both TMD systems should be optimised according to the
most appropriate optimisation strategy. For the single TMD
system, the optimisation consists of tuning the pendulum
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TMD parameters such that the system of the Taipei is
represented as closely as possible. For the MTMD system,
the frequency of the different pendulums should be tuned
such that the optimal frequency operation bandwidth is
obtained, where the robustness of the system is improved
while the oscillation frequencies are also chosen to be close
enough to the fundamental oscillation frequency such that
the suppression performance is not reduced too much. The
derivation and tuning of the building and pendulum TMD
natural frequencies is explained in section II-F and II-H3
respectively.

1) Single TMD system
For the single TMD system model, the length of the pendulum
cable is set equal to the length of the pendulum cable in the
actual Taipei 101 building, which equals 42m[37]. Now, Eq.
(58) can be rewritten to give

k = mL2(2πf)2 −mgL, (112)

such that the torsional pendulum stiffness can be determined.
When filling in the length of L = 42m, the pendulum
mass m = 660998kg, the required fundamental oscillation
frequency f = 0.1043Hz and the gravitational constant g,
the required spring constant to tune the TMD to the correct
natural frequency is found to be k = 228412534Nm/rad.
The correct attachment height of the TMD system is
approximated by the height at which the TMD system is
attached in the actual building, which is at 390.60m[29]. In
the building model, the exact height at which the TMD system
is attached is equal to 389.76m. Using this configuration,
also shown in Figure 24, the analysis of the single TMD
system model is performed. Now, the damping coefficient
can be calculated using Eq. (59), which gives a value of
b = 309642423Nm · s/rad.

2) MTMD system
For the MTMD system model, the lengths of the different
TMD systems are set equal to the length of the single TMD
system and the pendulums are attached at an equal height,
as mentioned in section III-D. Also, the mass of the single
TMD system is distributed among the three MTMD systems.
The mass of the building is tuned such that 0.24% of the
mass of the building gives the mass of the three pendulum
systems combined, which should be approximately equal to
660000kg. In the MTMD system model, the mass of each of
the MTMD pendulum masses is equal to m = 220377kg. The
different eigenfrequencies can be obtained by calculating the
required torsional spring constants of the systems using Eq.
(112). However, after calculating the theoretically required
values for the MTMD system, a study is performed which
determines the most appropriate pendulum TMD parameters.
This can be done using a parameter sweep, where multiple
pendulum parameters will be analysed simultaneously to
find the most appropriate combination for which the MTMD
system performance is most optimal.

The parameters that are optimised in this study are the
spring constant k, the damping coefficient b and the

attachment height h of all of the pendulums, where the
pendulums are all attached to the same height h.

Parameter sweep 1
In a first study, all of the MTMD systems will be set to have
the same spring constant k and damping coefficient b, after
which the bandwidth of the system and thus the different
values for the spring constant k and damping coefficient b
will be analysed in a separate study. In order to perform
an accurate and detailed parameter sweep, reasonable initial
values should be chosen for the parameters, around which
the sweep will be performed. The initial value for the
spring constants can be determined by filling in the mass of
m = 220377kg one of the TMD systems into Eq. (112), while
keeping the rest of the parameters the same as before. This
gives an initial spring constant of k = 76152789Nm/rad for
all of the TMD systems in the first study. This spring constant
corresponds to a natural frequency of f = 0.1043Hz. Now,
the corresponding damping coefficient can be filled in by
filling in the found parameters into Eq. (59), which gives an
initial damping coefficient of b = 103234852Nm · s/rad for
all of the TMD systems. Finally, the initial attachment height
h of all of the pendulums will be the same as in the single
TMD system model, which is at a height of 389.76m.

Also, a range and step size should be assigned to each
of the parameters, which indicates the list of parameters
that should be used as input for the optimisation
study. The chosen ranges for the study are equal to
k = 74237480.99Nm/rad − 78079147.42Nm/rad,
b = 101928362.28Nm · s/rad − 104532410.18Nm · s/rad
and h = 371.84m − 443.52m, where the ranges of k and b
are divided into 5 values and the range of h is divided into 9
values, which are equally distributed along the range, starting
and ending on the mentioned values.

Now, in order to determine the performance of these
combinations of parameters, an objective function should be
constructed, which should become as low as possible. The
maximum displacement of the nodes of the building should
be as low as possible, which means that this variable can be
used. The displacement in the x-direction is dominant in the
FEM model, which is why the objective function is set equal
to

f(ux) =

n∑
i=1

u2
x,i, (113)

where ux,i is the displacement of the ith node of the building
in the FEM structure in the x-direction.

Using the mentioned parameters, a sweep is performed
where the dynamic building motion is simulated over time for
all of the parameter combinations. The maximum deflection
and the corresponding value of the objective function are
stored for each simulation, after which the minimum value
for the objective function can be found. The corresponding
combination of parameters therefore results in a lower
maximal displacement than all of the other combinations.
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This means that the most optimal parameter combination of
the input parameters is found. It was found that the most
optimal attachment height for the MTMD system was as
high as possible in the building model. However, in order
to be able to compare the performance of the TMD and
the MTMD system based on the feature of having multiple
TMD systems and not based on the attachment height, the
value of h is kept the same as for the single TMD system.
Nevertheless, this is result should be noted, since placing the
TMD system even higher in the Taipei 101 building would
increase the suppression abilities of the system, according to
the parameter sweep result. The found optimal values of k
and b and the chosen value of h are shown in Table IV.

k (Nm/rad) b (Nm · s/rad) h (m)
76152789 103234852 389.76

TABLE IV: Results of the first MTMD system parameter
optimisation study.

Now, the result of the sweep is refined, by taking the
values shown in Table (IV) as the new initial values and
setting new parameter ranges of k = 75513125Nm/rad −
76793681Nm/rad, b = 102800365Nm · s/rad −
103668347Nm · s/rad, where the range is divided into 5
values which are equally distributed along the range. This
results in the refined optimal parameters that are shown in
Table V.

k (Nm/rad) b (Nm · s/rad) h (m)
76152789 103234852 389.76

TABLE V: Refined results of the first MTMD system param-
eter optimisation study.

It can be seen that exactly the same values are found as are
used for the single TMD system. This is because the single
TMD system is perfectly tuned to the building oscillation.
Therefore, it is expected that these values are the same for
the MTMD system as well, when no bandwidth is used for
the system. This provides a good model validation. It was
found that when lowering the value of k, the suppression
ability of the pendulum system was better in the first few
oscillations, but became worse over time. Therefore, tuning
the frequency exactly to the building frequency resulted in
slightly less performance in the first oscillations, but better
performance overall.

Parameter sweep 2
A second study can be performed, using the values shown in
Table V. In this study, the MTMD systems are set to different
values for the spring constant k and damping coefficient b, in
order to determine the most optimal frequency bandwidth to
which the TMD systems should be tuned. Two parameters ∆k
and ∆b are used to determine the optimal parameters, where
one of the outer TMD systems will be tuned to a value of
kinitial +∆k and the other outer TMD system will be tuned
to a value of kinitial −∆k, which means that the difference
between the spring constant and damping coefficient between
adjacent TMD systems will be the same, which provides a

symmetrical frequency bandwidth around the fundamental
oscillation frequency.

The initial value for the spring constants can be determined
based on the found spring constant in Table V and will
be equal to k = 76152789Nm/rad for the centre TMD
system. This spring constant corresponds to a natural
frequency of f = 0.1043Hz. The other systems will be
tuned initially to the same frequency of f = 0.1043Hz
and will then be decreased and increased gradually to
the frequencies of f = 0.1023Hz and f = 0.1063Hz
respectively, in order to determine the behaviour of the
system for different bandwidths. These values are chosen
by considering the average change in natural frequency
of the Taipei 101 building in both translational building
directions (East-West and North-South), measured[10] over
a period of one year. The average measured frequency
variations in the directions Earth-West and North-South
are 1.006% and 2.771% respectively. The average of these
values is equal to 1.889%. When taking 1.889% of the
natural frequency of the building model, the average natural
frequency variation becomes 0.00197Hz, which is why this
change in natural frequency is chosen as the maximal change
to both directions for the MTMD systems in the parameter
sweep. Therefore, using Eq. (112) and filling in the same
parameters as before, using the frequencies of f = 0.1023Hz
and f = 0.1063Hz, gives maximal spring constant values
of k1 = 69811300Nm/rad and k3 = 82616955Nm/rad
respectively for the two other TMD systems. Now, using
Eq. (59), the corresponding maximal damping coefficient
values are found to be b1 = 98843157Nm · s/rad and
b3 = 107527123Nm · s/rad.

The initial parameter sweep values of k and b are equal to
the values shown in Table V for all TMD systems. Since the
most appropriate bandwidth is determined in this study, only
the parameters of the outer two TMD systems will be used as
input for the study. The used range of the study parameters
is ∆f = 0Hz − 0.0020Hz. This translates to absolute
ranges of k1 = 76152789Nm/rad − 69811300Nm/rad,
k3 = 76152789Nm/rad − 82616955Nm/rad,
b1 = 103234852Nm · s/rad − 98843157Nm · s/rad
and b3 = 103234852Nm · s/rad − 107527123Nm · s/rad,
where the values for the centre TMD system remain the same.

The performance of the system is monitored using the
same objective function shown in Eq. (113) by simulating the
dynamic building motion over time. However, for this sweep,
the measured[10] average natural frequency variation of the
building is taken into account, as described before, which
means that the building model will be off-tuned to a natural
frequency of 0.1023Hz, to simulate the short term or long
term change in natural frequency (off-tuning) of the building.

The result of this second parameter sweep is that the
MTMD system works best when the TMD systems are all
tuned exactly to the original fundamental frequency of the
building model of 0.1043Hz, even when the building model
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is off-tuned to a natural frequency of 0.1023Hz. Therefore,
according to the parameter sweep, the best parameters for all
of the TMD systems in the MTMD system are found to be
equal to the values shown in Table V. In sections IV and V,
this behaviour will be analysed. Therefore, the parameters
of the MTMD system where chosen based on the average
natural frequency variation of the building, which was found
to be 1.889%, as explained before. The chosen values would
theoretically make sure that the bandwidth of the MTMD
system would be bigger, where the outer masses are tuned to
a frequency that corresponds to the average natural frequency
variation of the building in positive and negative direction.
This bandwidth would in theory suppress the vibration of
an off-tuned building slightly better than the system without
bandwidth. To test this behaviour and potentially disprove
this theory, the MTMD system is tuned to have the bandwidth
0.1023Hz − 0.1063Hz. The corresponding parameters of the
two outer TMD systems are shown in Table VI.

k1(Nm/rad) k3(Nm/rad) b1(Nm·s/rad) b3(Nm·s/rad)
69811300 82616955 98843157 107527123

TABLE VI: Chosen parameters of the two outer TMD systems,
based on the second MTMD system parameter optimisation
study.

Combining the two parameter sweep studies gives the final
MTMD system parameters, which are shown in Table VII.
Note that the TMD systems are numbered from left to right
according to Figure 9.

k1(Nm/rad) k2(Nm/rad) k3(Nm/rad)
69811300 76152789 82616955

b1(Nm·s/rad) b2(Nm·s/rad) b3(Nm·s/rad) h (m)
98843157 103234852 107527123 389.76

TABLE VII: Final results of the two MTMD system parameter
optimisation studies.

F. Method of analysis techniques

In order to determine the performance of the single TMD
and the MTMD systems, analysis techniques should be
determined, which requires two steps. First, both models
should be validated such that it is clear that the models behave
as required, after which both systems should be assessed and
compared based on the suppression ability, robustness, space
usage and off-tuning mitigation.

1) Model validation
The model validation methods that will be used are explained
in this section. First, modal analysis will be performed,
where the mode shapes of the found eigenvectors and the
corresponding eigenfrequencies of the three most significant
modes are compared to experimental values. This is done
using an eigenvalue study, in the same way as explained in
section II-F. Also, the frequency response of the dynamic
building motion will be made. To do this, the fast Fourier
transform (FFT) is taken for the displacement function in

x-direction over time for all of the building nodes. All of
the frequency responses are shown in one plot, which gives
a general overview of the frequencies that are present in the
building structure during dynamic motion. Then, the dominant
frequencies will be compared with the frequencies found in
the modal analysis. Finally, the small angle approximation
used for the pendulum system will be validated.

2) Model comparison
The methods that are used to compare the performance of the
single TMD and the MTMD systems based on suppression
ability, robustness, space usage and off-tuning mitigation are
explained in this section. The main comparison method to
monitor the suppression ability of the systems will consist
of comparing the building deflection after an equal external
wind load is applied for a period of 3s, after which the two
systems are analysed in free vibration. For the suppression
ability comparison, a third model will be added, which
does not include a TMD system. This is done to be able
to see the effect of a mass damper in general and be able
to compare the two different types of mass dampers at the
same time. The average maximum building deflection per
floor will be shown, which is done by taking the maximum
deflection of the building for every half-period over time
and taking the average of all of these maximum deflections.
This will thus not be the absolute maximum deflection of the
building, but this does provide a good comparison method,
because the result of the average maximum deflection for
each of the models is not taken only for a single moment in
time but for the entire oscillation, thus showing the average
behaviour of the model over the entire simulation period.
Also, the motion in x-direction of the attachment point(s) and
the pendulum mass(es) of the models will be shown over time.

In order to test the robustness and off-tuning mitigation
of the systems, the building model is adjusted such that
the natural frequencies of the building are slightly different
to simulate a temporary or permanent change in natural
frequency of the building. The natural frequencies of the first
three oscillation modes of the building that are used in this
comparison method are shown in Table VIII.

Mode 1 Mode 2 Mode 3
Natural frequencies single TMD (Hz) 0.1023 0.5647 0.9367

Natural frequencies MTMD (Hz) 0.1023 0.5650 0.9367

TABLE VIII: Off-tuned natural frequencies of the building
models, used to simulate a temporary or permanent change in
natural frequency of the building.

Using these natural frequencies, the displacement per floor
will be shown for the moment in time where the building
deflection is maximal for both the single TMD system and
the MTMD system.

Finally, a conclusion will be drawn regarding the space
usage of both TMD systems, based on the dimensions used
in both models and the other possible implementations of
both systems in terms of space usage.
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3) Model behaviour using realistic wind model
In order to show a more realistic building model behaviour,
a more realistic wind force should be applied. The more
realistic random wind model, as explained in section III-B3,
is applied to the single TMD system in order to show how
the building would roughly behave in real life. Although the
simpler constant wind force model provides a good method for
model comparison, the more realistic model provides insight
in how the building would behave when exposed to a more
realistic wind force.

IV. RESULTS

In this section, the results of the analysis techniques discussed
in section III-F are shown and briefly explained. The results
are discussed in section V.

A. Model validation results

The results of the different methods to validate the behaviour
of the building models are shown in this section.

1) Modal analysis
Using the eigenvalue study as explained in section II-F, the
eigenvectors for the three most significant oscillation modes of
the building could be plotted. The mode shapes of the single
TMD system and the MTMD system models are shown in a
single plot in Figure 10.

(a) Mode 1 (b) Mode 2 (c) Mode 3

Fig. 10: Eigenvectors (mode shapes) of the single TMD and
MTMD system.

Note that the mode shapes of the TMD system and the MTMD
system are almost the same. This will be discussed in section
V-B1. The corresponding eigenfrequencies of the single TMD
system and the MTMD system models are shown in Table IX.

Mode 1 Mode 2 Mode 3
Eigenfrequencies single TMD (Hz) 0.1043 0.5756 0.9548

Eigenfrequencies MTMD (Hz) 0.1043 0.5759 0.9547

TABLE IX: Eigenfrequencies of the single TMD and MTMD
building models.

2) Frequency response
The frequency response of the x-displacement of all of the
building nodes over time is constructed for both the single
TMD system and MTMD system models. The frequency
responses of all of the different building nodes are plotted
in a single plot, which creates an overview of all of the
frequencies that are present in the entire system. These fre-
quency responses are plotted for the single TMD system and
the MTMD system models in Figures 11 and 12 respectively.

Fig. 11: Frequency response of all building nodes of the single
TMD system.

Fig. 12: Frequency response of all building nodes of the
MTMD system.
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It can be seen that Figures 11 and 12 both show almost
the same frequency response. The frequency peaks for both
responses are located at 0.1040Hz and 0.5753Hz, where the
peak are 0.5753Hz is almost negligible in height compared
to the peak at 0.1040Hz. No peak is visible around the
eigenfrequency of mode 3 for both systems as shown in Table
IX. This peak is present in both plots, but is too small to see.

3) Small angle approximation
The small angle approximation validation is performed by
plotting the angle θ of the pendulum together with the x-
displacement of the pendulum over time, for the situation
where a wind velocity of 32.78m/s[38] is applied at a
building height of 10m. This corresponds to the wind velocity
distribution that was chosen as a maximum wind velocity,
meaning that this wind velocity would be the highest that the
building would ever be exposed to. For this wind velocity, the
pendulum damping was designed to have a maximum swing
of 1.50m, as explained in section II-H3. Figure 13 shows the
pendulum angle θ and the x-displacement of the pendulum
over time for this situation, which thus contains the maximum
values for the pendulum angle θ and the x-displacement of
the pendulum that the system will ever experience.

Fig. 13: Small angle approximation validation for the maxi-
mum excitation of the pendulum TMD system.

The maximum value of the pendulum angle is found to be
θ = 0.0328rad at a time of t = 25.50s.

B. Model comparison results

The results of the different methods to compare the behaviour
of the building models are shown in this section.

1) Suppression ability
The suppression ability of the different building models is
shown in two different ways. For this comparison method,
three different building models are analysed, namely the model
using the single TMD, the model using the MTMD and the
model using no TMD, as explained in section III-F2. First,
the time response of the different models is constructed. This

is done by plotting the x-displacement of the attachment
point(s) and the mass(es) of the system over a time period
of t = 0s − 500s for the TMD and MTMD systems and by
plotting the x-displacement of the attachment point without a
TMD mass attached for the system without a TMD over the
same time period. The results are shown in Figures 14, 15 and
16 for the TMD, MTMD and ’no TMD’ models respectively.

Fig. 14: Time response of the single TMD system.

Fig. 15: Time response of the MTMD system.

Note that for the time response of the MTMD system, shown
in Figure 15, all three attachment points and pendulum masses
are shown. However, since these are close together, this is not
clearly visible. A zoomed in version of this time response is
shown in Figure 18.
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Fig. 16: Time response of the system without TMD.

The second comparison method for the suppression ability
of the models is performed by taking the average maximal
deflection, which is done by taking the maximal deflection
of the building each half-period over the entire simulation
time and taking the average of these maximum deflections, as
explained in section III-F2. The average maximum deflections
of the three different models are shown in Figure 17.

Fig. 17: Average maximum deflection of the different models.

Note that the lines of the TMD system model and the MTMD
system model are close together. This will be explained in
section V-B1. The average maximum deflection of the top floor
of the building models is shown in Table X.

TMD model MTMD model No TMD model
Deflection (m) 0.09644 0.09653 0.1085

TABLE X: Average maximum deflection of the top floor of
the building models.

2) Robustness and off-tuning mitigation
In order to determine the robustness and off-tuning mitigation
abilities of the MTMD system, the building is off-tuned to
the new natural frequencies shown in Table VIII. First, the
effect of this off-tuning of the building will be shown. Figure
18 shows a zoomed in version of Figure 15, which is the
time response of the MTMD system where the centre TMD
system is correctly tuned to the building motion, as can be
seen by the fact that the centre TMD system oscillation has
a phase difference of exactly 90◦ with respect to the building
oscillation.

Fig. 18: Zoomed in time response of the MTMD system
(zoomed in version of Figure 15).

In Figure 19, a zoomed in version is shown of the time
response of the MTMD system where the building is off-tuned
to a fundamental natural frequency of 0.1023Hz, which causes
the centre TMD system to be tuned worse to the building
motion, but causes one of the outer TMD systems (pendulum
mass 1) to be tuned exactly correct to suppress the building
motion. The single TMD system would oscillate at the same
location of the centre TMD system (pendulum mass 2). In
theory, this means that the MTMD system could suppress
the building oscillation more efficiently than the single TMD
system, since one of the pendulum MTMD masses is tuned
exactly to the off-tuned fundamental natural frequency of the
building.
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Fig. 19: Zoomed in time response of the MTMD system for
an off-tuned building frequency of 0.1023Hz.

Now, the average maximum deflection of the models is made,
as explained before, while using the off-tuned building fre-
quency of 0.1023Hz. The result is shown in Figure 20.

Fig. 20: Average maximum deflection of the different models
for an off-tuned building frequency of 0.1023Hz.

The average maximum deflection of the top floor of the
building models is shown in Table XI.

TMD model MTMD model No TMD model
Deflection (m) 0.09851 0.09859 0.1074

TABLE XI: Average maximum deflection of the top floor of
the building models, using an off-tuned building frequency of
0.1023Hz.

3) Space usage
The space usage of the TMD and MTMD systems can be
obtained from the actual Taipei 101 building parameters. The
single TMD mass of the actual building is 660000kg. When

taking the total mass of the MTMD system to be equal
to this mass, the mass of the three different TMD mass
becomes 220000kg. Taking a density of steel of 7850kg/m3,
the volume of this mass becomes

V =
m

ρ
=

220000

7850
= 28.03m3. (114)

Now, the diameter of the mass can be found using

V =
4

3
πr3. (115)

Filling in the found volume of V = 28.03m3 and solving
for the radius gives r = 1.884m, which gives a pendulum
mass diameter of 3.769m. The diameter of the single TMD
mass in the actual Taipei 101 building is equal to 5.5m[37].
The relevant spacial parameters of the TMD and the MTMD
systems are shown in Table XII.

TMD MTMD
Mass diameter (m) 5.5 3.8
Cable length (m) 42 42

Maximum swing (m) 1.50 1.50

TABLE XII: Relevant spacial parameters of the TMD and
MTMD systems.

C. Model behaviour using realistic wind model

The behaviour of the single TMD model is analysed when
exposed to a more realistic wind force. Since this is a random
wind force, the different models are not compared for this
method. However, the simulation of the single TMD system
is shown in order to showcase how the building model would
behave in more realistic circumstances. The time response of
the system is shown in Figure 21.

Fig. 21: Time response of the single TMD system, using the
realistic wind force model.

The random wind velocity at a height of 15m to which the
building is exposed is shown in Figure 22.
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Fig. 22: Wind velocity at a height of 15m of the realistic wind
model, used for the time response of the single TMD system
in Figure 21.

In order to show the influence of the random wind force on
the oscillation frequency of the building, a zoomed in version
of Figure 21 is shown in Figure 23.

Fig. 23: Zoomed in time response of the single TMD system,
using a realistic wind force (zoomed in version of Figure 21).

V. DISCUSSION

In this section, the results of section IV are explained and
discussed into detail. Also, potential improvements to the
systems, models, analysis techniques or the research project
in general are pointed out and discussed.

A. Model validation results

The results of the different methods to validate the behaviour
of the building models are discussed in this section.

1) Modal analysis
The mode shapes of the first three modes of the TMD and
MTMD models are shown in Figure 10. It can be seen that
the modes shapes of both systems are almost identical. This
is expected since both building configurations are tuned to
roughly the same natural frequencies, as can be seen in Table
IX. The biggest difference between the scaled displacement
of the TMD and MTMD systems can be found for mode 3, at
floor 86, where the difference in scaled displacement between
the TMD and MTMD systems is 0.009. When comparing the
mode shapes to experimentally determined mode shapes[29],
it can be concluded that the first mode of the models
accurately represents the first mode of the actual building and
that the second and third mode of the models have slightly
more displaced mode shapes than the actually building,
especially for the lower part of the building. The mode shape
of the first mode is the most important to match to the actual
building, which is also the case for the eigenfrequencies,
which are shown in Table IX. When comparing these
eigenfrequencies to the values that are measured[29] for the
actual building, it can be concluded that the first mode of
the model is slightly too low and that the second and third
modes of the model are slightly too high. This is the case
because the configuration of the building model was tuned
such that all elements were implemented correctly relative
to other building elements, based on the implementation of
the elements in the actual building. The building dimensions
were approximated, after which the mass of the building was
determined by taking the pendulum mass to be 0.24% of the
building mass and be approximately equal to 660000kg at the
same time. After this, the eigenfrequencies were tuned to most
appropriately match the actual eigenfrequencies. However,
the model is constructed based on multiple approximations
and simplifications, where the largest simplification is that
the building model is made from a truss FEM structure
using steel beams. Although such a steel truss structure is
present in the actual building, this structure alone does not
capture all of the dynamic behaviour of the actual building,
where e.g. concrete is used[33] to fill steel columns that are
distributed along the building floor plan and that extend along
great heights of the building, among many other structural
features that are not captured in the simplified truss building
model. Although the eigenfrequencies of the building are
not exactly matched to the actual eigenfrequencies, the
rough building behaviour is represented by the building
model. When using these building models to approximate
the behaviour of the actual building, it is most important
that the different model elements are tuned such that the
relative behaviour corresponds to the relative behaviour
of the elements in the actual building and the different
models are tuned such that a fair comparison can be made.
Therefore, although the mode shapes and eigenfrequencies
do not exactly match the measured values, adequate results
can be obtained about the performance of the different models.

2) Frequency response
The frequency response of all of the nodes of the TMD
and MTMD models are shown in Figures 11 and 12. These
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figures provide an overview of the dynamic behaviour of
the system, which can be compared to the static frequency
behaviour resulting from the modal analysis. The visible
frequency peaks are located at 0.1040Hz and 0.5753Hz for
both models, where the peak at 0.5753Hz is way smaller
than the peak as 0.1040Hz. When comparing the found
locations of the frequency peaks to the eigenfrequencies
shown in Table IX, it can be seen that the eigenfrequencies of
the dynamic system from the frequency response are slightly
lower. This is the case because of the Rayleigh damping
that is applied to the building. The found damped natural
frequencies in the frequency response are thus expected to
be slightly lower than the natural frequencies found in the
modal analysis, which means that the frequency responses of
the models are as expected.

The frequency response shows that the first mode of
the building oscillation is by far the most dominant frequency
in the system. This means that tuning some TMD systems
in the MTMD system to the second mode of vibration does
not have much influence on the suppression of the building
vibration.

3) Small angle approximation
The small angle approximation validation result is shown in
Figure 13. It is assumed that the maximum wind force that the
building will ever be exposed to is equal to 32.78m/s[38]. The
maximum pendulum angle θ that the building will have when
this wind velocity is present, for a pendulum damping of ζp =
0.30, is found to be θ = 0.0328rad, as can be seen in Figure
13 at a time of t = 25.50s. The small angle approximation is
used for the pendulum equations in the model, such that

sin (θ) ≈ θ. (116)

For this approximation to be accurate, the pendulum angle θ
should be small, where the approximation is more accurate for
smaller angles. However, as a rule of thumb, the approximation
is considered to be valid when θ satisfies the relation

θ < 0.1rad, (117)

which is equivalent to

θ < 5.73◦. (118)

Therefore, since the maximum pendulum angle that will ever
occur is equal to θ = 0.0328rad, the small angle approxima-
tion is valid.

B. Model comparison results

The results of the different methods to compare the behaviour
of the building models are discussed in this section.

1) Suppression ability
The suppression abilities of the different models is shown in
two different ways. First a time response of all of the three
models is shown in Figures 14, 15 and 16. It can be seen that
all of the time responses converge to the equilibrium position,
since damping is applied to the building and pendulum.

However, it is clearly visible that the attachment points of the
TMD and MTMD systems and thus the building in general
converges to the equilibrium point faster than the system
without a TMD installed. The difference between the TMD
and MTMD systems is not clearly visible using this analysis
method, which is why a second analysis method is introduced.

For this second analysis method, the average maximum
deflection is plotted, as explained before. This average
maximum deflection is shown in Figure 17. In this figure,
it can also be seen clearly that the ’no TMD’ system has
a higher deflection than the TMD and the MTMD systems.
Also, it can be seen more clearly how close the TMD system
and MTMD system are together. The deflections of the top
floor of the different models are shown in Table X. From these
values can be concluded that the TMD system performes
slightly better than the MTMD system. This is as expected,
since for the TMD system, the entirety of the pendulum
mass is tuned to the frequency of the building, while for the
MTMD system, the outer masses are not exactly tuned to
this frequency, resulting in slightly less anti-resonance and
thus slightly less vibration mitigation for the MTMD system,
which is expected for this situation where the pendulums are
tuned to the building oscillation frequency.

2) Robustness and off-tuning mitigation
The robustness and off-tuning mitigation performance of the
MTMD system is analysed by tuning the building oscillation
frequency to 0.1023Hz instead of 0.1043Hz and keeping the
pendulum systems tuned as before. This means that the single
TMD system is off-tuned slightly, as well as the centre TMD
of the MTMD system. However, for the MTMD system, one
of the outer masses (mass 1) is now tuned correctly to the
building frequency. This difference in tuning of the TMD
systems for the initial building frequency and the off-tuned
building frequency is shown in Figures 18 and 19 respectively.

Now, in order to determine the performance of the MTMD
system with respect to the TMD system for the off-tuned
building frequency, the average maximum deflection is
determined for this situation, which is shown in Figure
20. It is clear that both the TMD and MTMD system still
provide better vibration suppression than the ’no TMD’
system. However, in Table XI can be seen that the MTMD
system does not outperform the single TMD system when it
comes to the average maximum deflection of the top floor
of the building, even though the MTMD model has a mass
that is tuned exactly to the off-tuned building frequency.
This confirms the result that was found in the second
parameter sweep in section III-E2, which is that introducing
a bandwidth to the MTMD system does not improve the
suppression abilities of the system, but instead makes the
suppression abilities slightly worse. Therefore, according
to the results of the model, it is not beneficial to have
an MTMD system which provides a vibration suppression
bandwidth, which has the same total mass of a single TMD
system, whether the pendulums are tuned exactly to the
building frequency or are slightly off-tuned. This conclusion



27

is very reductive and should involve many more insights
and considerations. A more complete conclusion is given in
section VI, where various explanations for the results are
elaborated.

3) Space usage
When comparing the spacial parameters of the TMD and
MTMD systems shown in Table XII, it can be seen that the
cable lengths of the models are chosen to be the same. This
is because the natural frequencies of the TMD masses in the
MTMD system are tuned using the rotational spring constant
k. In the actual system this would mean that the masses would
be tuned by changing the stiffness of springs that would be
attached to the pendulum mass. Another method of changing
the pendulum frequency would be to change the cable length
of the different pendulums, which would make some of the
cable lengths of the masses in the MTMD system larger than
for the single TMD system and some of the cable lengths
smaller. For this analysis, it is assumed that the pendulums of
the MTMD system are tuned using springs. This makes the
lengths of all of the cables both models equal, which means
that the different systems require the same amount of vertical
space.

In the MTMD model, the three pendulums are tuned
such that the maximum swing is 1.50m, which is the same
as is taken for the single TMD mass. This would mean
that the MTMD system needs exactly three times as much
space as the single TMD system, because the space that
the single TMD system requires is used three times. If this
maximum swing would be reduced for the masses of the
MTMD system, proportional to the reduction in diameter
of the masses, then the maximum swing of the masses in
the TMD system would be 1.50/5.5 · 3.8 = 1.04m. The
maximum swing is defined as a radius from the equilibrium
point, which means that the mass can swing as far as the
maximum swing in all horizontal directions. Even with this
proportional reduction in maximum swing, the horizontal
area of this swing would require 1.042 · π = 3.37m2, which
is 10.12m2 for three pendulum masses in the total MTMD
system. For the single TMD system, the required horizontal
area for the swing is 1.502 · π = 7.06m2. This means
that the horizontal space required by the MTMD system
is more than the horizontal space required by the TMD system.

In general it can be concluded that the MTMD pendulum
system requires more space than the TMD pendulum system.
Additionally, the space required would not be concentrated at
a single location, which means that multiple locations in the
building would have to be constructed such that 42m long
cables can be attached, which means that this space would
be occupied in more locations. Although the required space
per mass of the MTMD system would be lower than for the
single TMD system, the total required space would be higher.
Also, multiple systems would have to be constructed, which
includes the construction of more damper systems, more
pendulum cables and more frame work to which the masses
can be attached.

C. Model behaviour using realistic wind model

The behaviour of the single TMD model under the influence
of a more realistic wind model is shown in Figure 21. The
applied wind velocity at a height of 15m is shown in Figure
22. It can be seen that the time response is not symmetric in
the x-axis, which is logical, not only because of the random
wind force, but also because the wind force is only coming
from the left side of the building. This also causes the
displacement of the building to be slightly more towards the
right side (positive y-direction) then to the left side (negative
y-direction).

In Figure 23 can be seen that the oscillation frequency
of the building is slightly affected by the applied random
wind load. This causes the TMD mass to be slightly off-tuned
for some periods of time (around t = 380s in Figure 23)
and to be correctly tuned at other moments (around t = 0s
and t = 430s in Figure 23). Theoretically, this would make
the implementation of an MTMD system better, since the
various MTMD systems could be tuned to cover this range in
which the building frequency can be slightly off-tuned due to
influence of the external wind forces. However, as shown and
discussed in sections IV-B2 and V-B2, the MTMD system
does not provide better suppression abilities than the single
TMD system for this building configuration.

D. Potential improvements

The research project provides clear results about the
performance in simulation of TMD and MTMD systems
in the Taipei 101 building. This will be elaborated upon
in section VI. In this section, potential improvements to
the models and errors in the modelling or analysis will be
mentioned and discussed.

1) Internal building damping
After the analysis of the simulations, it was found that
the internal building damping was not calculated correctly
initially. The mistake was made that the frequency of the
building (in Hz) was filled in in Eq. (38) for the angular
frequency, without converting the frequency to angular
frequency using Eq. (39). This was the only found error in
the model and analysis calculations. However, this resulted
in a smaller required value for α of α = 0.003431, which
means that the buildings in the simulation are damped less
than the actual building. However, although this causes the
displacement of the building to differ from the actual building
displacement, since the same calculation error was made in
the TMD, MTMD and ’no TMD’ models, this error was not
considered to affect the comparison of the performance of
the different models.

2) Model simplifications
As discussed in section III-B, the building model is made
using assumptions and approximations in order to most
accurately represent the Taipei 101 building, while still
being able to compute the dynamical building behaviour
over time in a reasonable amount of time. This results in
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simplifications of the building structure, where a steel truss
structure is used to represent the entire building. Although a
steel truss structure is present in the actual building, all of
the other materials and constructions, such as concrete filled
steel columns as described in section V-A1, contribute to the
dynamic behaviour of the building, making it different than
the dynamic behaviour of the model.

Also, the building shape differs from the actual building
shape, where a rectangular structure is used to represent the
actual building, which mainly consists of multiple units where
the floor area increases with the increase in height. Also, the
bottom part of the building is wider than the main part of the
building, which consists of the units as explained above. This
configuration can be seen in Figure 1. In the building model,
the average dimensions of the main part of the building are
taken as the dimensions of the rectangular structure shown in
Figure 24. This means that the width of the building model is
larger than the width of the actual building at some locations
and smaller at other locations, depending on the building
height. This average was taken to approximate the building
structure. In order to make the dynamic behaviour of the
building models even more accurate, the building structure
could be represented more accurately. Also, the height of
the structure in the building model was taken to be 448m,
since this is the height of the actual building up to the top
floor. For the actual building, a pinnacle is located on top
of the building, which increases the total building height
to 508m[29]. This pinnacle structure, including two extra
relatively small TMD systems, is not included in the building
model.

In Figure 24 can be seen that there are 50 floors taken
into account in the building model instead of 101. Therefore,
it might seem that the building is only half as high as the
Taipei 101 building. However, because the height of the
building is chosen to correspond to the actual building height,
each of the floors in the building model represents 2 floors
in the actual building. This means that the vertical beam
elements in the model have a length of two times the height
of one floor. This means that the beam elements are slightly
longer, which makes the Euler-Bernoulli beam theory more
valid, due to the relatively high cross-sectional area of the
beam elements, as shown in Table II.

3) Energy conservation

The behaviour of the different models was validated and
compared using multiple analysis methods. One additional
validation method could be applied, which is checking the
energy conservation of the system. When no damping is
applied to the system, the total energy of the system should
remain the same over time during the dynamic simulation,
since without damping there is no way for the energy to be
dissipated. The total energy of the system should be equal to
the kinetic energy of the building (T ), summed with the strain
energy of the building (V ), the kinetic energy of the pendulum
(Tp) and the potential energy of the pendulum (Vp), which

gives
Etot = T + V + Tp + Vp, (119)

where Etot is the total energy of the building and the other
terms are equal to[32]

T =
1

2
u̇T Mu̇, (120)

V =
1

2
uT Ku, (121)

Tp =
1

2
mL2θ̇, (122)

Vp = mgL(1− cos θ). (123)

The individual terms of Eq. (119) would differ over time
during the dynamic building simulation, but the total energy
should remain constant. This analysis method could be used
to further validate the models.

4) Attachment point locations and amount of MTMD
masses
Using the results of the first parameter sweep of section
III-E2, it was concluded that the MTMD system performed
best when the three systems were placed as high in the
building as possible. This study was limited to only consider
the situation where the attachment points of the masses of
the three systems were located at an equal building height, at
horizontal locations of 1

6Lw, 1
2Lw and 5

6Lw, where Lw is the
width of the building, because this would provide symmetry
in the building structure. However, a more thorough study can
be performed regarding the location of the attachment points
of the masses of the MTMD system, in order to determine
whether this could influence the performance of the system.
For example, the individual masses in the MTMD system can
be attached at different heights of the building or at different
horizontal locations. Also, more masses could be added to the
MTMD system, which could all be tuned slightly differently,
to obtain a bandwidth of the MTMD system that transitions
more smoothly around the centre frequency.

VI. CONCLUSION

It can be concluded according to the different building models,
that the MTMD system does not provide a better suppression
ability than the single TMD system, when the building is off-
tuned to a slightly different fundamental natural frequency,
due to temporary weather circumstances or permanent changes
to the building structure. The performance of both systems
is almost identical with the used bandwidth of 0.1023Hz −
0.1063Hz for the MTMD system in this study, where the
building is off-tuned from the initial fundamental natural
frequency of 0.1043Hz to a frequency of 0.1023Hz. However,
it was concluded that the TMD system performs slightly better,
also for the situation where the fundamental natural frequency
of the building is not off-tuned and is equal to 0.1043Hz.
Additionally, the space usage of the single TMD system
was found to be more efficient than the space usage of the
MTMD system. Considering all of the obtained results of the
performed analysis methods, it can be concluded that a single
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TMD system is preferred over an MTMD system, in terms
of suppression ability, robustness, off-tuning mitigation and
space usage, when using a building configuration as described
in this study. However, in the MTMD model used in this
study, the frequency bandwidth is equally distributed around
the centre frequency. It was found that both the TMD and
MTMD systems perform better when tuned to the correct
fundamental natural frequency of the building, but that the
difference between these systems is almost negligible when
the centre frequency of the MTMD system is tuned to the
same frequency to which the single TMD system is tuned. If it
could be predicted in which direction the fundamental natural
frequency of the building would change over time, the masses
of the MTMD system could be tuned such that a bandwidth
is obtained that is not centred around the initial fundamental
natural frequency of the building. Although this could provide
better performance of the MTMD system during short- and
long-term changes in fundamental natural frequency of the
building, for long-term (permanent) changes, for which the
frequency of the system does not have to change frequently
but instead slowly over time, the same frequency bandwidth
can be obtained by implementing a single TMD system of
which the length of the pendulum cables can be modified to
a certain extent. It should be noted that the results of this
study are limited to certain approximations and assumptions,
as discussed in sections III-B and V-D. Improvements that
make the model or analysis methods more extensive or ac-
curate could potentially lead to different results. More system
configurations can be examined in order to further validate the
obtained results or to disprove the results of this study.

VII. FURTHER RESEARCH

In this research project, an analysis is conducted on the
performance of a single TMD system and an MTMD
system, which are located in a wind-excited building. When
considering wind forces, the building experiences increasingly
larger forces at higher locations on the building, due to the
increasing wind velocity with height. This means that a large
amount of the force acting on the building is applied on the
higher levels of the building. Apart from strong winds and
typhoons, earthquakes occur frequently around the Taipei
101 building. When earthquakes occur, the resulting force is
distributed in a different way than for wind gusts. Although
earthquakes also induce movement of the building, the forces
are applied at the bottom of the building, since the ground
vibrations cause the building to start moving. This would
give a different building response and potentially lead to
different requirements for TMD systems that are installed
in the building. Determining the suppression abilities of the
TMD and MTMD systems for both wind forces and seismic
activity could lead to improvements that make the system
more suitable to mitigate building vibrations due to both
wind gusts and earthquakes, which makes it worthwhile to
investigate the influence of this type of external force as well.

Additionally, the implementation of multiple linear TMD
systems could be considered, instead of multiple pendulum

TMD systems. It is found that the pendulum MTMD system
occupies more space than the single pendulum TMD system,
even when the total mass of the two systems is the same.
A pendulum TMD system needs a substantial amount of
space due to the pendulum cables with which the mass is
attached. These cables need to be relatively long in order
to be the correct length for the TMD system to be tuned to
the oscillation frequency of the building. Also, the pendulum
mass in the Taipei 101 building has the shape of a sphere,
which is a logical shape for a pendulum mass, but not a
convenient shape in terms of space usage. However, when
considering a linear TMD system, the required space of the
system could potentially be reduced, by placing the masses in
more convenient places, where the masses can also be shaped
more conveniently. For example, linear TMD systems could
be implemented inside of floors and walls, which provides
more practical spacing of the MTMD system. Research could
be performed to examine whether the implementation of
these linear TMD systems in a practical configuration, such
as implementation inside of floors and walls, would improve
the space usage of the MTMD system, while also having the
ability to provide an equal or improved vibration mitigation.
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IX. APPENDIX

Fig. 24: Single TMD system static building model
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