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Abstract—This study proposes an enhanced impedance control
scheme for a 2-DOF compliant manipulator, building on an
existing scheme by introducing an accelerometer and a linear
Kalman filter for improved state estimation. The manipulator
features flexure hinges, reducing friction and providing high
predictability of the system. System identification is achieved
by analysing the position response to a Pseudo Random Binary
Sequence (PRBS) force input, which provided the mass, damping
and stiffness matrices of the system. These are used according to
the equation of motion, together with the Kalman filter position
and velocity estimates and the direct acceleration measurements,
to cancel the admittance of the system. Virtual mass, damping
and stiffness matrices are used according to the equation
of motion, using the same feedback parameters to follow a
reference while mimicking a desired impedance behaviour.
Several simulation studies are done, where the working of the
Kalman filter and the controller as a whole are tested. Validation
of the controller was conducted in a simulation environment,
where the natural frequency and damping ratio are obtained for
several virtual systems and their corresponding desired systems.
This is done by conducting three tests, where the virtual mass,
stiffness and damping ratio parameters are varied, respectively.
The results are beneath expectations, mainly due to deviation
and uncertainty in the position response of the system, caused
by inaccurate velocity estimation.

Keywords: impedance control, compliant manipulator,
2-DOF motion, accelerometer, encoder, sensor fusion, linear
Kalman filter, state estimation

INTRODUCTION

Interaction of robots with their surroundings is becoming
an increasingly more important subject in robotics with
the current advancements in this field[1]. Besides operation
of robots in structured environments, like in a factory, an
increasing number of projects arise that bring robots in a
more unstructured environment, such as everyday life. With
robots being implemented in our daily lives rather than in a
controlled environment, the ability to move safely through
a certain space has a more significant role in the design
choices made. This is due to interaction of robots with not
only surrounding objects, but also with humans.

Impedance control is a useful concept which helps in
making robots safe and functional in such environments. With
impedance control, the mechanical impedance of the robot,
that is, the mapping of velocities to forces, is altered[2].

For this, the impedance of the system is described as a
mass-spring-damper system. Applying impedance control
makes a robot mimic a certain desired virtual impedance,
described by virtual mass, damping and stiffness matrices.
This way, the behaviour can be adjusted, which is highly
important in interaction with humans or objects. For example,
the mass, damping and stiffness parameters can be set such
that hard collisions can be avoided and such that the robotic
mechanism will comply more, showing ’softer’ behaviour.
This can avoid harm, where using only position control might
result in hard collisions and unwanted behaviour of the robot,
in the case of a change in the environment.

Impedance control uses position, velocity and acceleration
feedback from the plant to compute a suiting actuator force
to mimic a desired impedance behaviour[2][3]. In this paper,
a method for impedance control is proposed to improve upon
an already existing impedance control scheme for a 2-DOF
complaint manipulator[3], which uses two position encoders
for the position, velocity and acceleration determination. A
schematic illustration of the corresponding setup is shown in
Figure 1. In this study, research is conducted to the addition
of an accelerometer to the setup, to fuse the corresponding
acceleration signals with the encoder position signals using
a Kalman filter. This achieves an improved state estimation
(position and velocity) and a direct acceleration measurement.
The velocity estimation is especially important, as the velocity
is not directly measured but has a significant influence on the
performance of the impedance controller.

By introducing an accelerometer to the setup, multiple
changes can be made to the controller to include the
accelerometer influence in the actuator force determination
process. The implementation, optimization and challenges that
arise with this are discussed. Simulation studies are employed
to validate the controller performance, also by comparing to
the previous real-time implementation. The corresponding
research question is: How can an accelerometer and a
Kalman filter be used to achieve more accurate impedance
control?
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Fig. 1: 2-DOF compliant manipulator setup[4]

I. PREVIOUS RESEARCH

The 2-DOF compliant manipulator[4] used in this study has
been utilized before in research, mainly to force estimation
and force and impedance control. Lübbermann proposed
a control scheme[3] for impedance control on the system,
which showed promising results. The control scheme was
tested using free motion to mimic the impedance of a
virtual system as closely as possible, for a certain range
of virtual parameters. Uitbeijerse continued the research to
impedance control on the same setup[5], by using the same
control scheme. The accuracy of the system identification
was improved and the impedance control was tested for
two degrees of freedom. Also, the range over which the
virtual parameters could be changed was improved in this
study. The same impedance controller used in these two
previous studies will be used and improved upon in this study.

Also, the manipulator setup has been used in research to force
control. Here, the idea of implementing an accelerometer,
for a direct acceleration measurement and feedback signal,
was already introduced by Hakvoort[6] and Kluin[7]. This
resulted in reasonably well force tracking, however, only for
low frequencies. For frequencies above 1.5 Hz, the velocities
and accelerations are too high for the controller to keep up
with the reference. In this study, the same accelerometer will
be used, and a linear Kalman filter will be applied to fuse
the sensor data of the two encoders and the accelerometer
that are used on the setup, in order to improve the impedance
control.

II. IMPEDANCE CONTROL

The impedance control implementation can be explained by
considering the underlying theory and the corresponding con-
trol scheme illustrations. The controller could be showcased,
including details about the implementation of the equations
from the theory.

A. Control scheme

1) Theory: The impedance control scheme that was
proposed by Lübbermann[3] is built up from three main
components, which are the plant, the inverse plant and the
control impedance parts. In both the inverse plant and the
control impedance parts, force computation is conducted
through two similar equations, based on the equation of
motion. These forces are summed to get the desired input
force, which is fed to the actuators in the plant.

The ’system force’ F⃗s is computed in the inverse plant
according to the equation of motion of the system, described
as

F⃗s = M⃗̈x+D⃗̇x+Kx⃗ (1)

Here, the identified mass, damping and stiffness matrices
of the system (M , D and K, respectively) are used
in combination with the measured position and the
corresponding derivatives. The resulting force is used to
cancel the admittance of the system.

The ’virtual force’ F⃗v is computed in the control impedance
part according to

F⃗v = Mv e⃗a +Dv e⃗v +Kv e⃗p (2)

Here, the virtual mass, damping and stiffness matrices (Mv ,
Dv and Kv , respectively) are used in combination with the
error between the reference and the measured position, and
the derivatives of this error. This force is used to obtain
the desired impedance behaviour while following a certain
reference.

The M , D and K system matrices are obtained through
system identification, while the Mv , Dv and Kv virtual
system matrices are achieved according to

Mv = I ·mv (3)

Dv = I · 2ζv
√
mvkv (4)

Kv = I · kv (5)

Here, mv and kv are the virtual mass and stiffness parameters,
ζv is the virtual damping ratio and I represents the 2×2 iden-
tity matrix. The virtual damping matrix is determined using
the virtual damping coefficient cv for a harmonic oscillator,
defined as

cv = 2ζv
√
mvkv (6)

In the final controller, these virtual mass, damping and
stiffness parameters can be altered to obtain different desired
impedance behaviours through Eqs. (3) - (5).
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2) Current implementation: This study uses the three main
components in the control scheme, according to the equations
from the theory. However, the implementation of the scheme
will be improved using an accelerometer and a Kalman filter.
This provides the system with a Kalman filter state estimate,
which contains position and velocity, and a direct acceleration
signal. These enhanced position, velocity and acceleration
signals can be used in the inverse plant and control impedance
parts, according to Eqs. (1) and (2). For the inverse plant, the
enhanced signals are directly used in the force computation.
For the control impedance, the enhanced signals are used
in combination with the first and second derivatives of the
reference to compute the direct errors. The corresponding
improved scheme is illustrated in Figure 2.

Fig. 2: Impedance control scheme

B. Controller

The impedance controller is based on the control scheme in
Figure 2. A simplified version of the controller is shown in
Figure 3, in which the most important parts are illustrated.
The compensator part contains the force computation based
on the system and virtual system, which is illustrated in
Figure 4. Shown is how the position, velocity and acceleration
error could be computed directly using the reference, the
estimated position and velocity from the Kalman filter and the
acceleration measurement. This ensures that the accelerometer
and Kalman filter influences are not only taken into account
in the system part of the compensator, but also in the virtual
part. The accelerometer signal can not be fed directly into the
compensator, because of the sensor noise. Therefore, a low-
pass filter is designed carefully to remove the most significant
part of this noise.

C. Kinematics

One of the outputs of the plant block in Figure 3 is the
end-effector position. The setup uses two position encoders
to measure the position of the X and Y upper arms. These
encoders are placed against the actuators as shown in Figure

1. To achieve the end-effector position from the encoder
measurements, a forward kinematics model was used, based
on the position and orientation of the hinges and trigonometry.
This model is used within the plant block in the controller.

Fig. 3: Improved impedance controller

Fig. 4: Compensator, impedance force computation

III. SETUP

The 2-DOF compliant manipulator setup[4] used in this study
was designed and built by K.G.P. Folkersma for studying the
implementation of a high precision mechanism in a vacuum. A
schematic representation of the setup is shown in Figure 1. The
flexure-based design of the system ensures high predictability
with little uncertainties. Also, this prevents contamination of
the vacuum due to the increased wear and evaporation of
lubricants that might occur when using regular joints. With
a maximum deflection of the flexure hinges of 20◦ and a
workspace of 100×100 mm for the end-effector, the footprint
of the system is minimized. The maximum dimensions of the
system as a whole are 540×585×87 mm. The setup consists
of two encoder position sensors near the actuators and an
accelerometer at the end-effector.

A. Encoders

The setup has only one type of sensor installed by default,
namely the position encoders on both the X and Y arms. These
encoders are used as main source for feedback from the system
and are the main method to allow closed loop control. The
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encoders are located on the upper arm parts of one of the X
arms and the Y arm, against the actuators, as shown in figure
1. The setup uses Heidenhain LIDA 479 encoders of the quad
A/B type, which are selected by Folkersma[4]. The encoders
have a resolution of 0.05 µm, which makes for an accurate
position reading.

B. Accelerometer

For this study the dual-axis ADXL203EB accelerometer
is mounted on the end-effector. This same accelerometer
has been used in previous work on the manipulator, where
Hakvoort[6] has conducted research to the implementation
of an accelerometer in a force control scheme to obtain
improved force control. In this paper, the accelerometer
is used to obtain a better real-time estimate of the state,
consisting of position and velocity, through a Kalman filter in
the controller. Also, the direct acceleration measurement can
be used in the impedance controller instead of differentiating
the encoder position twice. These enhanced position, velocity
and acceleration data are used in the compensator part of the
controller as shown in Figure 4.

The used accelerometer has a range of approximately
±1.7g and has an adjustable bandwidth according to

f−3dB =
5µF

C(X,Y )
(7)

By changing the value of C(X,Y ), which corresponds to
the combined capacitance of the capacitors C1 and C2,
bandwidths can be achieved in the range of 0.5 Hz to 2.5
kHz. The capacitors were changed by Hakvoort to obtain
CX,Y = 5 nF, which achieves a bandwidth of 1 kHz, which
was found to be sufficiently large for the application. The x
and y output signals of the accelerometer are connected to
two analog input ports on a National Instruments BNC-2110
board, of which the corresponding block can be found in
the Simulink library to fetch the data and use it in the
controller. An external 5 V power supply is used to power
the accelerometer.

An important part of this study is the calibration of the
accelerometer, as this has a large influence on the success
of the state estimation and the controller as a whole. The
developers of the device recommend linear calibration, which
could be done using the known gravitational acceleration g.
The calibration was based on the sensitivity and the zero-g
bias of the accelerometer, according to

a =
V − Vzero,g

S
· 9.81 + abias (8)

where V is the measured voltage, Vzero,g is the zero-g bias
voltage, S is the sensitivity of the accelerometer and abias is
used to correct for any acceleration offset in the calibration.
The zero-g bias voltage and sensitivity could be found in the
data sheet of the accelerometer and were slightly adjusted dur-
ing the calibration process. The latter was done by implement-
ing Eq. (8) in a Simulink model, and holding the accelerometer

upright in all four directions and in a level, stationary position.
The voltage and acceleration measurements could be used to
make adjustments to the parameters for both axes. The abias
parameter was used to make sure that the acceleration signal
was zero when in a stationary position. This was important
regarding the controller, where an offset in acceleration causes
an offset in the force input of the system. Therefore, this
was considered a priority during the calibration. Due to slight
nonlinearities in the behaviour of the accelerometer, this has
resulted in a slight offset at accelerations around −g and g,
which does not have too much influence on the behaviour of
the Kalman filter and the controller as a whole. The Curve
Fitting Toolbox in Matlab was used to create residual plots
of both the x- and y-direction, which are shown in Figure
15a and 15b, respectively, in Appendix A. Here, the slight
nonlinearities are shown to be small enough to use this linear
calibration method.

IV. SYSTEM IDENTIFICATION

A. Identification procedure

In order to implement impedance control in real-time and in
simulation, system identification had to be performed. This
provided insight in the system parameters related to mass,
damping and stiffness. The choice for linear and nonlinear
identification had to be made carefully, since the system is
nonlinear in nature. Also, the choice for SIMO or MIMO
identification is relevant for the resulting system matrices.

1) Stiffness matrix: For the stiffness matrix determination,
a basic position controller was used in Simulink to
move the end-effector of the manipulator to different
predetermined locations. The corresponding end-effector
position measurement and actuator force input are retrieved
from the setup. This data was used to create a force lookup
table corresponding to different x and y position values,
which is used in the impedance controller to directly fetch
the stiffness force contribution, based on the current position
of the end-effector. This was done in order to capture the
nonlinearities in the stiffness behaviour that occur when the
end-effector moves away from the equilibrium position for
such an amount that it might not be accurate to consider the
system as linear anymore.

2) Mass and damping matrices: For the mass and damping
matrix determination, linear identification has been performed,
because the deviations from the equilibrium position during
this study are expected to be low enough to consider linear
identification to be accurate enough. The system was excited
using a PRBS force signal, such that the end-effector devi-
ated around the equilibrium position. The resulting position
response and corresponding actuator force input were retrieved
from the setup. This excitation technique is a suiting method
for the identification of such a 2-DOF manipulator, as it
provides insight in the mass and damping behaviour of the
system over a large range of frequencies. Having the actuators
apply this force to the system in multiple ways resulted in
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various identification possibilities regarding the inputs and
outputs of the system. Both MIMO and SIMO identification
were performed for identification of the system, of which the
results were compared in simulation. MIMO identification was
regarded as most accurate, because this captures all dynamics
of the system as accurately as possible. However, for the mass
matrix determination, SIMO identification provided the best
results. For the damping matrix determination, MIMO iden-
tification provided the best results. The System Identification
Toolbox in Matlab could be used for the analysis of the data
and the creation of the state space models, described as

ẋ = Ax+Bu

y = Cx+Du
(9)

Here, the state x is defined to contain the position and velocity,
the output y is defined to contain the position and the input u
is defined to contain the force as in

x =

(
x⃗
⃗̇x

)
=


px
py
vx
vy

 (10)

y = x⃗ =

(
px
py

)
, u = F⃗ =

(
Fx

Fy

)
(11)

Note that this respresentation is for the MIMO system and
that the SIMO identification uses two systems with u = Fx

and u = Fy , respectively. The state space matrices take form
according to a fourth order system implementation and the
corresponding MIMO or SIMO method, where D is a zero
matrix. The corresponding dimensions are shown in Table I.

Matrix MIMO SIMO
A 4× 4 4× 4
B 4× 2 4× 1
C 2× 4 2× 4
D 2× 2 2× 1

TABLE I: Dimensions system matrices MIMO and SIMO
identification

For the experimental setup, a basic open-loop Simulink con-
troller was used, which applied a PRBS force signal with
an amplitude of ±2 N to both actuators simultaneously or
separately. A sample time of 0.0001 s and a clock time of 20
were used as options within the block. This resulted in the
PRBS signal changing every 0.0020 s, providing excitation of
the system up to 500 Hz.

B. Data processing
1) Stiffness matrix: The input force and resulting dis-

placement data could be plotted for the whole end-effector
workspace, which is shown in Figure 5. The stiffness matrix
can be determined by fitting the force and displacement data
using Matlab, according to

K =

 δFx

δx
δFx

δy

δFy

δx
δFy

δy

 =

[
121.8 55.1
42.4 95.9

]
N

m
(12)

For the implementation in the impedance controller, the whole
stiffness lookup table was used.

Fig. 5: Force-displacement plots of both actuators, used for
the determination of the stiffness matrix

2) Mass matrix: The input forces and measured position
response from the PRBS excitation can be used in the System
Identification Toolbox to perform MIMO identification. The
mean of the position signals was removed and the resulting
data was used to create a fourth order state space model, which
was provided as the most suiting fit based on the number
of singular values. The frequency responses of the different
I/O combinations were used in the determination of the mass
matrix. The corresponding bode plots are shown together in
Figure 6.

Fig. 6: Bode plots of all I/O combinations; MIMO identifica-
tion

The corresponding MIMO equation that describes the transfer

5



functions in Figure 6 can be defined in the frequency domain
as

x⃗ = [−ω2M + iωD +K]−1F⃗ (13)

where ω is the frequency in rad/s. The mass dominant be-
haviour occurs at relatively high frequencies, which means
frequencies higher than the natural frequency. In the frequency
range where the magnitude bode plots are approximately
parallel to one another, referred to as the ’mass line’, the
masses for the different transfer functions could be determined.
For this, Eq. (13) can be rewritten to

x⃗ = [−ω2M ]−1F⃗ (14)

where only the mass behaviour is relevant. Determining the
mass matrix M , was done by considering the SISO equation
to determine the mass m of a single transfer function, as in

m =
1

ω2 · 10(G/20)
(15)

where G = x
F is the gain in dB. Using this equation, the

mass m for all transfer functions could be determined. In
the frequency range of 70 - 1000 rad/s, where the transfer
functions are approximately parallel, the mass behaviour can
be fetched from the plot data of Figure 6. The slopes of
the transfer functions are shown to not be constant when
the frequency increases. Also, although the transfer function
graphs are approximately parallel when regarded at small
intervals, their respective distances change slightly with the
frequency. These things can be caused by the fourth order
model characteristics, where the influence of poles and zeros,
and the difference in resonant peak frequencies can cause
variations in the slope of the bode plots. This made it hard
to determine a specific frequency that is best for the mass
matrix determination. Therefore, a sweep was done over the
frequencies in this domain, using Eq. (15), with which a set
of masses for all individual transfer functions was determined
for several frequencies. Since the masses within a set only
slightly varied, the mean could be taken of every set of masses
to achieve the masses as in

m̄ =

[
m̄xx m̄yx

m̄xy m̄yy

]
=

[
2.54 −3.34
−8.48 1.50

]
kg (16)

Since a 180◦ phase difference is expected between the
diagonal and off-diagonal elements, like in the study of
Lübbermann[3], the off-diagonal entries in (16) are assumed
negative. Although this behaviour is only partially shown in
Figure 6, this assumption was made, such that the mass matrix
M itself will contain positive values, which is desired. The
mass matrix, which represents the MIMO system as a whole,
could be achieved by using all determined masses for the
respective transfer functions as in

M =

[
1

m̄xx

1
m̄yx

1
m̄xy

1
m̄yy

]−1

=

[
2.93 1.32
0.519 1.73

]
kg (17)

Also, SIMO identification was performed using the same
method as for MIMO identification. The corresponding bode
plots are shown in Figure 7.

Fig. 7: Bode plots of all I/O combinations; SIMO identification

Again, a sweep was done over the frequencies in the ’mass
line’ domain, and the mean of every set of masses was taken
to achieve the masses shown in

m̄ =

[
m̄xx m̄yx

m̄xy m̄yy

]
=

[
1.93 −6.19
−3.56 1.51

]
kg (18)

where the off-diagonal elements are again negative, because
of the same reason as described for the MIMO identification.
The mass matrix M , which represents the SIMO system as a
whole, could be achieved as in

M =

[
1

m̄xx

1
m̄yx

1
m̄xy

1
m̄yy

]−1

=

[
2.22 0.542
0.942 1.74

]
kg (19)

Both the MIMO and SIMO determined mass matrices were
tested in simulation. Since the SIMO mass identification gave
the most promising results, this mass matrix was implemented
in the impedance controller.

3) Damping matrix: The damping matrix D can be deter-
mined using the same MIMO and SIMO identification data as
for the mass matrix determination. The damping coefficients
could be calculated for every transfer function from the
respective state space model, using the −3 dB method. The
so-called quality factor Qf could be achieved for all transfer
functions, by regarding the width of the peak at −3 dB from
the top, according to

Qf =
f0

f2 − f1
(20)

where f0 is the frequency of the resonant peak and f1 and
f2 are the frequencies at a magnitude of −3 dB on the lower
and higher frequency sides of the peak, respectively. From
the quality factor, the damping ratio ζ could be determined,
according to

ζ =
1

2Qf
(21)
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where ζ is the damping ratio. The obtained damping ratios for
MIMO identification are as in

ζ =

[
ζxx ζyx
ζxy ζyy

]
=

[
0.477 0.276
0.217 0.411

]
(22)

The damping coefficient c for all transfer functions was
achieved by combining the corresponding damping ratio ζ and
critical damping coefficient cc, according to

c = ζ · cc = ζ · 2
√
mk (23)

where m and k are the mass and stiffness of the corresponding
transfer function. This resulted in the damping coefficients as
in

c =

[
cxx cyx
cxy cyy

]
=

[
18.0 4.70
2.04 10.6

]
Ns

m
(24)

The achieved damping coefficients can then be used in the
damping matrix as in

D =

 1
cxx

1
cyx

1
cxy

1
cyy

−1

=

[
−0.949 2.14
4.94 −0.558

]
Ns

m
(25)

for which the same method is used as for the mass matrix
determination. The diagonal entries of this damping matrix
contain negative values. Physically, this would mean that the
damping forces amplify the motion instead of reducing it.
This behaviour might arise due to modelling errors, although
this is not comprehended fully. However, since similar results
have proven to be successful in the study of Lübbermann[3],
this result is accepted for now. Also, the off-diagonal damping
elements are found to be relatively high, compared to the
diagonal elements, which means there is relatively much
cross-axis damping compared to direct damping.

To obtain a possibly better result, SIMO identification
was performed as well, using the same data as for the SIMO
mass identification, according to Figure 7. The same method
was used as for the MIMO damping identification, which
resulted in the damping ratios as in

ζ =

[
ζxx ζyx
ζxy ζyy

]
=

[
0.161 0.155
0.207 0.291

]
(26)

The damping coefficient c for all transfer functions was
achieved in the same way as before, according to Eq. (23).
This resulted in the damping coefficients as in

c =

[
cxx cyx
cxy cyy

]
=

[
5.30 1.70
2.62 7.52

]
Ns

m
(27)

The achieved damping coefficients can then be used in the
damping matrix as in

D =

 1
cxx

1
cyx

1
cxy

1
cyy

−1

=

[
−0.665 2.95
1.91 −0.943

]
Ns

m
(28)

which uses the same method as before. As in the MIMO
case, the diagonal entries are found to be negative. However,
the off-diagonal damping is not as high as before, due to

the significantly lower value of the element corresponding to
dxy . Because the manipulator setup is expected to have little
damping, the SIMO identified damping matrix was thought to
be the best implementation in the controller. However, testing
showed more promising results using the MIMO damping
identification, which is why the corresponding matrix was used
in the controller.

V. KALMAN FILTER

Sensor fusion is a key part of this research, as both an
encoder and an accelerometer are used as sensors on the
setup. The accelerometer is introduced to avoid differentiating
the position signal twice, which causes noise and error. In
the setup for this study, position and acceleration are already
known, since these variables are fetched directly from the
system. The velocity remains unknown from only the direct
measurements and needs to be constructed from the available
data in order to implement impedance control. Through sensor
fusion techniques, the encoder and accelerometer data can
be used to estimate this velocity. The sensor fusion method
chosen for this study is a linear Kalman filter[8], which
will be used in the controller to make an estimate of the
state of the system (position and velocity), using the encoder
and accelerometer measurements as input. The noise in the
measurements, especially in the accelerometer data, is taken
into account in the Kalman filter through the process noise
covariance matrix Q and measurement noise covariance matrix
R, which are provided to the Kalman filter as well. Since the
Kalman filter will be implemented in a discrete environment,
the choice was made to design a discrete Kalman filter, using
the Kalman filter block from the ’Control System Toolbox’ in
Simulink.

A. Theoretical Kalman filter

In order to design a discrete linear Kalman filter, a state-space
format can be used for the state transition and measurement
equations. The transition of the state xk−1 to xk is given by

xk = Fxk−1 +Buk (29)

where F is the state transition matrix, B is the control
matrix and uk is the control input, which corresponds to
the acceleration in this study. The state vector x is defined
as x = [px py vx vy]

T , where p and v correspond to the
end-effector position and velocity, respectively. To compute
the current state xk from the previous state xk−1, equations
are used for the discrete position and velocity determination,
which are

pk = pk−1 + Ts · vk−1 +
Ts2

2
· ak (30)

vk = vk−1 + Ts · ak (31)

where Ts is the time step used in the controller and Kalman
filter. In these equations, the previous position and velocity
are used together with the current acceleration to compute the
current position and velocity, which is the current state of the
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system. This is done by integrating the velocity and acceler-
ation using the time step Ts. Given that the control input uk

is the acceleration measurement ak, the state transition matrix
F and control matrix B can be defined, based on Eqs. (30)
and (31), as in

F =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

 (32)

B =


Ts2

2 0

0 Ts2

2
Ts 0
0 Ts

 (33)

The state transition equation can be extended using the process
noise to give

xk = Fxk−1 +Buk + wk (34)

where wk is the process noise, which will be taken into
account using the process noise covariance matrix Q of the
Kalman filter, which will be elaborated upon.

The measurement equation is given by

yk = Hxk (35)

where H is the measurement matrix. Because the measurement
vector y corresponds to the encoder position measurements, it
is defined as y = [px py]

T . The measurement matrix H can
therefore be defined as in

H =

[
1 0 0 0
0 1 0 0

]
(36)

The measurement equation can be extended using the mea-
surement noise to give

yk = Hxk + vk (37)

where vk is the measurement noise, which will be taken into
account using the measurement noise covariance matrix R of
the Kalman filter, which will be elaborated upon.

1) Prediction and update stages: The Kalman filter is
divided into two main parts, which are the prediction stage
and the update stage. In these stages the state estimate at
time k is computed using the control input vector u and the
measurement vector y, which correspond to the acceleration
and position data, respectively.

The first stage is the prediction stage, in which a prediction
x̂−
k is made for the state based on the previous state x̂+

k−1 and
the acceleration data uk. Also, a prediction P−

k of the error
covariance matrix is computed, which is a measure of the
uncertainty in the state estimate, computed using the F and
Q matrices and the previous error covariance matrix P+

k−1.
The corresponding equations are given by Eqs. (38) and (39).

The second stage is the update stage, in which the Kalman
gain K is computed based on the error covariance matrix
P . With that, the Kalman gain is basically determined
through the state transition and measurement matrices F and
H and on the process and measurement noise covariance
matrices Q and R. The computation of the Kalman gain
is shown in Eq. (40). In Eqs. (41) and (42), it is shown
how the state x and the error covariance matrix P are
updated using the Kalman gain. The initial values used for
these parameters are a zero vector and the identity matrix,
respectively, as shown in Table II. With this choice for
the error covariance matrix, a relatively high uncertainty
for the initial state is assumed. This is done because
there is little information about what the initial state actually
is. The matrix can be adjusted later, during simulation studies.

Prediction stage:

x̂−
k = Fx̂+

k−1 +Buk (38)

P−
k = FP+

k−1F
T +Q (39)

Update stage:

Kk = P−
k HT [HP−

k HT +R]−1 (40)

x̂+
k = x̂−

k +Kk[yk −Hx̂−
k ] (41)

P+
k = [I −KkH]P−

k (42)

As shown in these equations, a time-invariant Kalman filter
approach is used, as the F , B and H matrices do not change
with time. Also, the Q and R matrices do not change with
time.

2) Kalman gain: The Kalman gain K, which is determined
in the update stage of the Kalman filter, is the key part of the
Kalman filter, since this serves the purpose of weighting the
measurements. This determines how much the measurements
are used in updating the state and therefore also how much
the predicted state can be trusted. Since the implementation
of the Kalman filter is time-invariant, the error covariance
matrix P and with that the Kalman gain K will converge
over time. Important components that determine the Kalman
gain matrix are the noise covariance matrices Q and R.

3) Noise covariance matrices: The process and measure-
ment noise covariance matrices Q and R[9] are of high
importance for the behaviour of the Kalman filter, because
these matrices influence the Kalman gain K, as shown in the
previously provided prediction and update equations, specif-
ically in Eqs. (39), (40) and (42). The Q matrix represents
the uncertainty in the transition of the previous to the current
state. This includes uncertainty in the system, for example
in the parameters, but more dominant is the uncertainty in
the accelerometer measurements. The R matrix represents the
uncertainty in updating the state using the measurements. This
means uncertainty in the encoder measurements. Therefore,
the contents of the Q and R matrices (mainly) depend upon
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the variance in the measurements of the accelerometer and
encoder, respectively. For the implementation of both matri-
ces, the covariances of the noise (off-diagonal elements) are
assumed to be zero, which gives two diagonal matrices with
the variances on the diagonal. For the initial computation of
the Q matrix, it was chosen to make the matrix contain the
variances of the accelerometer data in x and y direction. This
gives the Q matrix in

Q =


σ2
a,x 0 0 0
0 σ2

a,y 0 0
0 0 σ2

a,x 0
0 0 0 σ2

a,y

 (43)

where σa,x and σa,y are the standard deviations in a ’noise
measurement’ of the accelerometer in x- and y-direction,
respectively. This noise measurement was conducted using
an activated position controller to keep the system in place,
to get the variance in a slightly more realistic process
environment. Although this measure has been taken to
include more of the process noise in these variances,
the real process noise will probably be slightly higher,
due to the unmeasured uncertainties, for example in the
parameters of the system. Therefore, the Q matrix might
need some adjusting through trial-and-error in simulation
and experiments to get optimal behaviour of the Kalman filter.

For the computation of the R matrix, the encoder
specifications[4] are used in combination with sensor
data. The uncertainty in the measurements can be caused
by multiple sources, of which quantization error and sensor
measurement error are the most dominant. The quantization
noise power[10] can be computed according to

σ2
q =

∆

12
(44)

where ∆ is the resolution of the encoder, equal to ∆ =
5 · 10−8 m. The total measurement error could be determined
by combining the quantization noise power with the sensor
measurement error, described by the variances of the encoder
data in x and y direction. The same noise measurement
was conducted as for the accelerometer, using the activated
controller to have a more realistic measurement environment.
This gives the R matrix in

R =

[
Re,x 0
0 Re,y

]
(45)

where Re,x = σ2
q+σ2

p,x and Re,y = σ2
q+σ2

p,y , where σp,x and
σp,y are the standard deviations from the noise measurement
of the encoder in x- and y-direction, respectively. The real
measurement noise might slightly differ from the computed
value. Therefore, the R matrix might need some adjusting
through trial-and-error in simulation and experiments to get
optimal behaviour of the Kalman filter.

The corresponding numerical values for the parameters
mentioned in this section are given in Table II.

Variable Value Unit
σ2
a,x 6.74× 10−2 (m/s2)2

σ2
a,y 1.015× 10−1 (m/s2)2

σ2
p,x 1.5827× 10−12 m2

σ2
p,y 4.395× 10−13 m2

σ2
q 4.167× 10−9 m2

x0 [0 0 0 0]T m−m/s
P0 I4 m2−(m/s)2

TABLE II: Numerical values of mentioned parameters

VI. SIMULATION KALMAN FILTER

A. Simulation procedure

Before trying to implement the Kalman filter in the controller
in simulation and real-time, simulation studies had to be
conducted to test the behaviour of the Kalman filter and to
make adjustments and optimizations where necessary. Two
methods are proposed for which different inputs are used,
namely generated sinusoidal signals and real data from the
setup. Several tests were done for both methods, where
variations in the frequency of the input signal, the entries of
Q and R and the noise characteristics were tested to see the
effect on the behaviour of the Kalman filter. The results are
discussed, and for the optimal configuration the working of
the Kalman filter is presented.

1) Generated sinusoidal signals: Generated sinusoidal
signals were used to obtain the position and corresponding
acceleration inputs, to which noise was added according to the
respective, real world noise power of the represented sensors.
Also, the position and the corresponding velocity (without
noise addition) could be used together as ’true’ state, which is
the desired position and velocity that the Kalman filter should
obtain. Testing was done by comparing the estimated state to
this ’true’ state. Several tests are conducted, where various
sinusoidal waveforms are added to the signals together with
noise, in order to obtain multiple realistic conditions for the
filter to test its behaviour. A representative example of these
used multi-sine inputs is shown in Figures 16 and 17 in
Appendix B.

2) Real data input: As a final test, real position and
acceleration data from the setup are collected and used to see
the influence of the optimized Kalman filter on representative
data, as in real-time implementation. The downside of using
real data is the absence of a desired or ’true’ state to compare
the state estimation to. However, the state resulting from the
measurements of the system is compared to the estimated
state from the Kalman filter. This has provided understanding
about the influence of different configurations regarding the
Kalman filter settings and the simulation model parameters on
the estimate of the state. Especially important is the velocity
estimation, as the velocity is not measured directly using
sensors. Additional adjustments were made to the Kalman
filter and the model to enhance the state estimation further.
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B. Results - generated sinusoidal signals

For the sinusoidal input method, the true and estimated
position signals showed no significant difference, indicating
a good position estimate. Especially important is the effect
of several tests on the observed error between the true and
estimated velocities, which is explained below. The optimized
velocity error is shown in Figure 8. In Figures 18 and 19 in
Appendix B, the corresponding true and estimated velocity
plots are shown for a multi-sine and a single sine input. Both
cases result in the same velocity error plot.

1) Q and R matrices: It was observed that changing the Q
and R matrices did not make a visible difference, unless the
Q matrix was chosen significantly lower than the R matrix,
starting at an order of 102 lower. This made the position
and velocity estimates significantly worse, because the noisy
accelerometer measurements were taken into account too
much in the estimation process. Changing the R matrix
slightly also did not yield better results, and because R was
determined quite accurately, it was kept constant for the rest
of the study.

Even when the Q and R matrices do not seem to make a
difference, it was observed that the Kalman gain K and the
error covariance matrix P do indeed converge to different
values depending on Q and R, like expected from the
theory. In Figures 21 - 23 in Appendix B, the Kalman gain
matrix convergence over time is showcased for different
combinations of Q and R matrices. This showcases the
expected behaviour of the Kalman gain quite well. However,
in this study, the Q matrix is way higher than the R matrix
(with a factor of about 107), which means a slight change in
the respective difference does not yield a significant change
in the Kalman gain.

2) Input frequency: Changing the input frequency does
not have effect on the velocity estimation. The velocity error
is consistent, even for larger frequencies up to and including
100 Hz, which is considered to be very high for a position
signal in this study. Note that this does not mean that the
Kalman filter passes through noise up to this frequency; the
Kalman filter removes white noise while at the same time
being able to handle high frequent sinusoidal signals.

3) Low-pass filter: To reduce the noise and deviation in
the resulting velocity error further, a second order low-pass
filter was added to the Kalman filter acceleration input.
However, the filter does not yield better results when using
sinusoidal input signals, as the acceleration signal itself gets
slightly attenuated as well, which results in a larger velocity
error. Also, since the Kalman filter is known to handle white
noise very well, the filter should not benefit the result and is
not an improvement when using generated sinusoidal input
signals with added noise.

4) White noise: When the generated noise in the acceler-
ation signal is increased, the velocity error increases as well,
although the shape of the graph does not change. However,
within the expected error margin of the accelerometer, the
velocity error does not significantly change. To illustrate,
increasing the accelerometer noise power with a factor of
10 results in an increase in the velocity error with a factor
of 3. However, the accelerometer noise is determined quite
accurately and is dominant in the process noise. Therefore, the
possibly unmodeled uncertainty, which will not cause such an
increase in process noise, is not considered to cause a problem
for the implementation of the Kalman filter.

C. Results - real data input

When having real data as input, the downside is that there
is no true state to compare to. However, the derivative of
the encoder position was used to compare with. This is not
ideal for validation, as the Kalman filter velocity estimation
is desired to improve upon the position derivative in order to
come closer to the true state. However, for this simulation
test, it is found to be a decent alternative to the true state. The
benefit of having real data as input, is that the Kalman filter
is subjected to representative data; measurements that it needs
to handle in the real-time controller as well. The measured
position and estimated position signals show no significant
difference, namely an error in the order of about 10−3. The
observed error between the position derivative and estimated
velocities was quite substantial, which was not expected. In
Figure 9, this velocity error is shown. To obtain this readable
plot, the velocity estimation was filtered to some degree to
remove most of the noise, as the raw velocity data from the
Kalman filter contained a substantial amount of noise. An
illustration of this noise is shown in Figure 20 in Appendix
B.

So, this error had to be reduced, which was done by
adding a second-order low-pass filter to the Kalman filter
acceleration input. This is done because too much noise in
the acceleration signal is found to cause bad results for the
Kalman filter, even though it is known for being able to
handle white noise. The latter was also found when using
generated sinusoidal input signals. Where a low-pass filter
did not show promising results when using these generated
input signals, it does with real data as input. Using a cut-off
frequency of 6 Hz, the noise in the acceleration was reduced
significantly, which made it possible to decrease the entries
in the Q matrix by a factor of about 10−4. Based on the
measured variances in this accelerometer signal, this exact
resulting Qfilt matrix was constructed and is shown in

Qfilt = 10−4 ·


0.357 0 0 0
0 0.0596 0 0
0 0 0.357 0
0 0 0 0.0596

 (46)

The low-pass filter together with the updated Q matrix resulted
in an improved velocity estimation. In Figure 10, this opti-
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Fig. 8: Velocity error, using input multi-sine/sine inc. noise

Fig. 9: Initial velocity error using real data, without low-pass
filter

mized velocity error is shown. The low-pass filter is therefore
shown to not only improve the velocity estimation by reducing
the deviation from the equilibrium point, but also by reducing
the noise level, since no additional filtering of the velocity
estimation was needed this time. It should be noted that the
accelerometer signal might be attenuated slightly using the
mentioned cut-off frequency. However, even with this, the
Kalman filter is shown to benefit from the achieved noise
reduction.

VII. SIMULATION CONTROLLER

A. Simulation procedure

Before trying to implement the controller in real-time,
simulation studies had to be conducted to test the controller
behaviour using the Kalman filter and to make adjustments

Fig. 10: Optimized velocity error using real data, with low-
pass filter

and optimizations where necessary. The closed-loop control
scheme of Figure 2 was implemented in a simulation
model in Simulink, where the plant could be represented
by the fourth order MIMO state space model obtained
for system identification, using the System Identification
Toolbox. The encoder and accelerometer measurements were
constructed as close to reality as possible, by using the
noise power that was obtained from noise measurements for
both sensors, like in Section VI Simulation Kalman Filter.
The virtual and system impedances are represented by the
compensator part as in Figure 4, according to Eqs. (1) and (2).

Important to note is that the main focus for this part of
the simulation study is on the controller behaviour as a
whole, which is mainly focused on the (virtual) impedance
behaviour. To simulate this, the plant in the closed-loop
model was fed with a force step input from 10 N to 0 N on
the x-actuator, in order to simulate the position response and
make improvements and changes to the model accordingly.
The natural frequency and damping ratio of the position
response were studied to get an idea of the ability of the
controller to mimic a certain impedance and of the general
working of the controller. Standard values for the virtual
impedance matrices were chosen as: mv = 3 kg, ζv = 0.2 and
kv = 150 N/m. These respective virtual mass, virtual damping
ratio and virtual stiffness parameters are used according to
Eqs. (3) - (5) to create the virtual impedance matrices.

B. Results - step input

When applying a force step input to the plant, it was observed
that the natural frequency resembled the desired natural
frequency quite well. However, the damping was found to be
too high. While the virtual damping ratio was set to ζv = 0.2,
the observed damping ratio was around ζ = 0.75. Several
changes to the model were considered and tried, which is
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elaborated upon.

1) Low-pass filter: One of the reasons for the high
damping ratio was found to be the low-pass filter in front
of the acceleration input of the Kalman filter. The usage of
this low-pass filter showed promising results for the Kalman
filter simulation. However, while it still improves the velocity
estimation itself, the low-pass filter does not yield better
results in closed-loop implementation, regarding the overall
behaviour of the controller. This is because the low-pass filter
removes higher frequency components, corresponding to fast
changes in the system response, which can effectively yield
higher damping in the system. Removing the low-pass filter
slightly improves the damping ratio, to around ζ = 0.68.
Although the damping ratio is still too high, the behaviour
of the controller was visually improved, which is shown in
the comparison in Figure 11. The plot is zoomed in, which
clarifies the illustration of the difference in overshoot of the
peaks. The initial value of these step responses is p = 0.0355
m.

2) Plant model: Through a debugging process, the remain-
ing gap between the expected and simulated damping ratio
was thought to be caused by the used plant model, which
is the state space model from the identification. This fourth
order, continuous, MIMO state space model was replaced
with multiple other models to find a more representative plant
model to eliminate the source of the faulty damping behaviour.
The below options were implemented and tested.

• Second, third and fifth order models
• Discrete fourth order model
• SISO fourth order model
• Changed preprocessing of the identification data
• Replaced identification data
• Usage of additional accelerometer identification data

All of the above alternatives were found to be either unstable,
not providing a good enough fit or not improving the damping
behaviour. Therefore, the original state space model was used.

3) System matrices: The mass, damping and stiffness ma-
trices used in the compensator were adjusted and replaced
to test their effect on the damping behaviour. Changing the
SIMO mass matrix and MIMO damping matrix to their MIMO
and SIMO alternatives or tweaking the matrices slightly did
not result in significant change in the damping behaviour.
Therefore, it was chosen to keep the SIMO mass and MIMO
damping matrices implemented in the simulation, which pro-
vided the best natural frequency and damping behaviour. For
the stiffness matrix implementation, the used lookup table was
also found to be optimal, compared to using the 2×2 stiffness
matrix from (12).

Fig. 11: Step response position comparison, showcasing the
influence of the low-pass filter on the damping

The resulting controller simulation still did not show the
correct damping, however, the behaviour of the damping did
agree with the expectations. The latter is shown in Section
VIII Validation.

VIII. VALIDATION

A. Validation procedure

For validation of the controller, the natural frequency and
damping ratio of the system, set to mimic a certain virtual
system, were achieved by analysing the step response. A
reference system representing the desired virtual impedance
is used as comparison for the controller. Plotting the expected
and obtained natural frequency and damping ratio for varying
values of the virtual mass, damping and stiffness in three
respective tests, gave insight in the ability of the controller to
mimic a certain impedance. The step response was achieved
by using an initial force on the x-actuator, which changes
from 10 N to 0 N at a specified time. Ideally, the initial
force value would be around 2 N, but because this gives
uncertain results, the initial force was chosen higher. Using
forces above around 5 N gave more readable results, so a
force of 10 N was chosen for the validation measurements
to ensure readable results over the whole virtual mass,
damping and stiffness intervals. Also, it was chosen to do
the validation of the controller in a simulation environment,
instead of in real-time, because of the difficulty with reading
the measurements, as described above. More about these
considerations can be found in Section IX Discussion.

The natural frequency ωn and the damping ratio ζ can
be expressed in terms of the mass, damping and stiffness
parameters. This makes analysing the natural frequency
and damping ratio a good validation method for impedance
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control. The natural frequency and damping ratio are
described as

ωn =

√
k

m
(47)

ζ =
c

cc
=

c

2
√
mk

(48)

where c is the damping coefficient and cc is the critical
damping coefficient. The implementation of the virtual
damping as shown in Eqs. (4) and (6), corresponds to
Eq. (48) above. Important to note is that this method of
implementing the virtual damping does not only rely on the
virtual damping ratio ζv , but also on the virtual mass mv and
virtual stiffness kv . So, although a specific ζv is desired and
used in computing the corresponding damping, this damping
implementation will not achieve the exact desired damping
ratio for all values of the mass and stiffness, which is also
shown in the validation plots.

To achieve the resulting natural frequency ωn and damping
ratio ζ parameters from the simulation, the step response data
of the system was analysed. The natural frequency could be
determined from the time difference between the first two
peaks, according to

ωn =
2π

T
(49)

where T is the period, measured between the two peaks.
The damping ratio could be determined from the percentage
overshoot (PO) of the response of the system, according to

ζ =
| ln( PO

100% )|√
π2 + ln2( PO

100% )
(50)

where the percentage overshoot PO was determined for the
step response, according to

PO =
psteady − ppeak
pinit − psteady

· 100% (51)

where psteady is the steady state position after converging,
ppeak is the position of the first peak and pinit is the initial
position. Note that the step response from 10 N to 0 N results
in a descending position response, such that the signs in the
equation had to be inverted. Since the damping ratio remains
between 0 and 1, meaning the system remains underdamped,
the above method of calculating the damping ratio remained
valid throughout the entire virtual mass, stiffness and damping
ratio intervals.

For all validation tests it holds that the achieved damping ratio
is higher than expected. However, the damping behaviour
itself can be said to be according to expectations, which is
explained in the corresponding sections that follow.

B. Results - virtual mass validation

The virtual mass validation is considered to be the most
important method to validate the acceleration influence, since
the mass of a system is directly linked to its acceleration
through Newton’s second law. The corresponding results are
shown in Figure 12.

Shown is that the simulated natural frequency is quite
close to the expected natural frequency, except for very low
masses. Shown is that for a virtual mass of mv = 2 kg,
a good result is achieved, and that for mv = 1.5 kg, the
resulting frequency is slightly off compared to the expected
value. For even lower virtual masses, the system becomes
unstable, which is already indicated by Eq. (47) and the
mass validation plot. Also, a slight deviation from the
expectation can be seen at the mv = 10 kg and mv = 15
kg. Because the other parts of the graph fit quite well, the
slightly higher results at these two masses are expected to
be due to interaction with the parameters of the system.
Another explanation could be errors in the simulation process.

The achieved damping ratio is shown to have an additional
offset of around ζ = 0.3, as was discussed in Section VII
Simulation Controller. However, with increasing virtual mass,
the desired constant damping ratio behaviour is slightly visible
in the convergence of the achieved damping ratio to around
ζ = 0.5. When disregarding the offset, the behaviour can still
be examined. For lower virtual mass, a deviation from the
desired damping ratio is observed, which is caused by the
implementation of the damping discussed in Section VIII-A
Validation procedure. The mass is related to the damping
ratio, according to Eq. (48). Also, the mass of the system and
virtual system being similar might cause resonance, because
the natural frequency will be similar according to Eq. (47).
This resonance requires larger damping, resulting in a peak
in the damping ratio. For higher virtual mass, the damping
ratio converges, so it can be compared better with the desired
damping ratio.

So, the system accurately mimics the desired natural
frequency over almost the whole virtual mass interval, in
the studied region of mv ≥ 2 kg. The damping is mimicked
best for virtual masses in the studied region of mv > 10 kg,
disregarding the offset.

C. Results - virtual stiffness validation

The virtual stiffness validation is considered to be the most
important method to validate the position influence, since the
stiffness of a system is directly linked to its position through
the equation of motion. The corresponding results are shown
in Figure 13.

Shown is that the simulated natural frequency behaves
according to a partially different relationship than the
expected square root relationship. For lower virtual stiffness,
the frequency does not start as low as expected, namely at
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Fig. 12: Validation virtual mass; natural frequency and damp-
ing ratio against changing virtual mass matrix

ωn = 1 Hz instead of at ωn = 0 Hz. Also, where the slope is
expected to start steep and decrease with increasing stiffness,
the slope is less steep and approximately constant, increasing
a bit. For stiffness values above kv = 200 N/m, where the
simulation results cross the expected results, the slope is still
approximately constant, decreasing a bit. Over the whole
stiffness interval, the magnitude of the slope is less than
the reference slope. From Eq. (47) can be concluded that
this could be caused by the mass value, which determines
the slope. Alternatively, the difference might arise from the
dynamic effects in the controller that are not captured in the
reference model.

The achieved damping ratio is shown to have an additional
offset of around ζ = 0.4. However, with increasing virtual
stiffness, the desired constant damping ratio behaviour is
visible in the convergence of the achieved damping ratio to
around ζ = 0.6. When disregarding the offset, the behaviour
can still be examined. Again, as for the mass validation, the
observed deviation from the desired damping ratio, shown for
lower stiffness values, is caused by the implementation of the
damping discussed in Section VIII-A Validation procedure.
The stiffness is related to the damping ratio, according to
Eq. (48). Also, the stiffness of the system and virtual system
being similar might cause resonance, because the natural
frequency will be similar according to Eq. (47). This requires
larger damping, resulting in a larger damping ratio. For higher
virtual stiffness, the damping ratio converges, so it can be
compared better with the desired damping ratio.

So, the system mimics the desired natural frequency
best in the region of 100 N/m ≤ kv ≤ 300 N/m. The damping
is mimicked best for virtual stiffness in the studied region of
kv > 300 N/m, disregarding the offset.

Fig. 13: Validation virtual stiffness; natural frequency and
damping ratio against changing virtual stiffness matrix

D. Results - virtual damping validation

The virtual damping validation is considered to be the most
important method to validate the velocity influence, since the
damping of a system is directly linked to its velocity through
the equation of motion. The corresponding results are shown
in Figure 14. Note that for the damping validation, only the
damping ratio is considered.

The achieved damping ratio is shown to have an additional
offset of around ζ = 0.45. However, with an increasing virtual
damping ratio, the desired linear damping ratio behaviour
for 0 ≤ ζv < 1 is visible when comparing with the shifted
expectation. Since the mass and stiffness are both constant in
this test, linear behaviour without deviations can be expected,
according to Eq. (48). This is indeed observed, disregarding
the small errors, which are caused by the data fetching
process. However, the magnitude of the slope is slightly
smaller than expected. From Eq. (48) can be concluded that
this could be caused by the mass and stiffness values, which
determine the slope. Also, the damping ratio is expected
to saturate at ζ = 1, as shown in the reference plot. This
saturation happens already at around ζ = 0.91, which can
be caused by various things, such as dynamic effects in the
controller that are not captured in the reference model.

So, the system mimics the desired damping best in the
linear region of 0.1 ≤ ζv ≤ 0.5, disregarding the offset.

IX. DISCUSSION

The validation of the controller was conducted using a force
step with an initial force of 10 N, where an initial force of 2 N
keeps the end-effector within the desired space, corresponding
to the desired precision of the end-effector movement. This
is done because the velocity estimation deviates too much
for accurate measurements using a force of 2 N. Because the
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Fig. 14: Validation virtual damping; damping ratio against
changing virtual damping matrix

natural frequency and damping ratio should not change with
such an increase in initial step force, it could be said that the
same natural frequency and damping ratio that are achieved
in validation would have been achieved when using a force
of 2 N. However, even if the natural frequency and damping
ratio would be the same, this can not be validated, because of
the uncertain and fluctuating position response. Regardless,
the position fluctuation caused by the fluctuation in the
velocity estimation is too large for the impedance control to
be effective for high-precision movement. Where using 10 N
is a perfectly available option to perform validation on a scale
where the effect of the uncertainty is reduced, this can only
be partially used to comment on the results for the desired
precision, as explained above. The controller in real-time did
show partially working impedance tracking behaviour, but
because of these difficulties and debatable simulation results,
the controller could not be used for validation measurements
in real-time.

In the validation plots, the simulated damping ratio is shown
to have an offset compared to the expected result, although
the damping behaviour corresponds to the expectations quite
well. The reason behind this offset is investigated, of which
the most important considerations and results are discussed
in Section VII Simulation Controller. This problem was not
solved in this study. In further research, this problem has to be
either solved or avoided at all through other implementation
methods.

The validation is only conducted for the x-actuator. This
choice was made because the x-direction proved to give
the most consistent movement from previous research[5]
and in conducted real-time measurements. The latter is

relevant, as the state space model, which is obtained
from measurements on the setup, is used in simulation.
Additionally, since Lübbermann also performed validation for
the x-direction[3], this made it possible to compare the results.

When comparing to the results of the study of Lübbermann[3],
where the position derivative is used for velocity computation,
similar behaviour is shown for the obtained natural frequency.
However, it is found that the method of Lübbermann results
in slightly better natural frequency behaviour than the method
of the current study, especially for lower virtual mass and
stiffness values. Also, their results show a better damping
ratio behaviour, because there is no offset in the result and the
obtained values are closer to the desired values, regarding the
mass and stiffness validation tests. In the damping validation
test, the current study shows a better matching slope for lower
virtual damping ratio values. However, the overall results of
the implementation method of Lübbermann are found to be
more desirable compared to the results of the current study.

X. CONCLUSION

This study investigated the application of a linear Kalman
filter as sensor fusion and state estimation method for im-
proved impedance control on a 2-DOF compliant manipulator
setup, using two motor encoders and an accelerometer. While
validation of the influence of the virtual system parameters
to the resulting behaviour of the system did partially result
in expected behaviour, the results are not considered good
enough to state that the accelerometer implementation is an
improvement on the previous control scheme introduced by
Lübbermann[3]. This conclusion is also based on the fact
that the validation could not be performed for the desired
precision in terms of end-effector movement, as discussed
in Section IX Discussion. The inability to provide accurate
results with deviations of the end-effector being within a limit
of 0.015 m from the equilibrium position, rejects the current
impedance control implementation proposal. The substantial
noise in the accelerometer measurements in combination with
the current implementation of the Kalman filter provides a
velocity estimation that deviates too much from the true
velocity. Therefore, for the desired precision movement the
controller should provide, it is better to use the velocity
obtained from the encoder position derivative, like in the
implementation of Lübbermann. This does not mean that
the accelerometer and Kalman filter can not be used for
the implementation in the impedance control scheme, but
rather that the current implementation is not an improvement.
In Section XI Recommendations, suggestions can be found
for possible improvements and alternatives to continue this
research.

XI. RECOMMENDATIONS

For further research into the application of an accelerometer
and Kalman filter in the impedance control scheme, there
are some important thoughts and opportunities to consider.
Firstly, the Kalman filter implementation can be redesigned
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by replacing the linear Kalman filter with an extended Kalman
filter (EKF), which is an alternative to the linear Kalman filter
that handles nonlinear systems better. Since the manipulator
setup is a nonlinear system, an EKF can provide a more
optimal state estimation, especially for small nonlinearities.
Furthermore, alternative sensor fusion methods could be in-
vestigated, such as a H-infinity filter, which minimizes the
worst-case estimation error. This filter might provide better
results, because of its ability to handle uncertainties in the
system or measurements. Also, an alternative sensor can be
used for a better state estimation, such as a gyroscope or
a less noisy accelerometer. The advantage of the gyroscope
is the direct (angular) velocity measurement, which could be
a good alternative for the accelerometer. The encoders and
accelerometer could even be used together with a gyroscope
for direct measurements of position, velocity and acceleration,
which could improve the feedback loop and impedance mim-
icking ability.
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APPENDIX A
ACCELEROMETER CALIBRATION

When accelerometer calibration was conducted, residual plots
could be used in order to test the validity of the accelerometer
measurements. This was achieved by measuring the gravita-
tional acceleration in positive and negative direction and for a
stationary position, for both axes. The Curve Fitting Toolbox
in Matlab was used to obtain the corresponding residual plots,
shown in Figure 15.

(a) Residual plot x-axis

(b) Residual plot y-axis

Fig. 15: Residual plots of linear regression for x and y,
respectively; accelerometer calibration

APPENDIX B
SIMULATION KALMAN FILTER

A. Generated sinusoidal signals

1) Inputs: To illustrate the simulation environment of the
Kalman filter simulation, additional plots are provided regard-
ing the input and output of the Kalman filter when using gen-
erated sinusoidal signals. The given input position, including
multi-sinusoidal behaviour and suiting noise according to the
encoder noise power, is shown in Figure 16. The matching
input acceleration signal, including multi-sinusoidal behaviour
and suiting noise according to the accelerometer noise power,
is shown in Figure 17.

(a) Plot

(b) Zoom

Fig. 16: Kalman filter position input signal, multi-sine inc.
noise

Fig. 17: Kalman filter acceleration input signal, multi-sine inc.
noise
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2) Outputs: The resulting true state and estimated velocities
for a multi-sine input are shown in Figure 18. The correspond-
ing velocity error is shown in Figure 8.

(a) Kalman filter velocity estimation

(b) True state velocity

Fig. 18: Velocity true state and corresponding Kalman filter
estimation, using input multi-sine inc. noise

The resulting true state and estimated velocities for a single
sine input are shown in Figure 19. The corresponding velocity
error is shown in Figure 8.

(a) Kalman filter velocity estimation

(b) True state velocity

Fig. 19: Velocity true state and corresponding Kalman filter
estimation, using input sine inc. noise

B. Real data input

Using real data as input to the Kalman filter, without a low-
pass filter for the acceleration data, the velocity estimation
contained a substantial amount of noise. The readable plot
in Figure 9 was obtained by slightly filtering the signal to
reduce this noise level. However, to give an illustration of the
real (raw) output velocity data of the Kalman filter in this
situation and the corresponding noise level, the raw velocity
estimation signal is shown in Figure 20. This indicates the true
difference between using and not using an additional low-pass
filter.
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Fig. 20: Initial velocity error using real data, without low-pass
filter, unfiltered Kalman filter output

C. Kalman gain

The convergence behaviour of the Kalman gain is illustrated
for several relative choices for the Q and R matrices. The
corresponding plots are shown in Figures 21 - 23. Shown is
that that the overall behaviour is different for different noise
covariance matrices. The most important difference is in the
convergence to different values. For a relatively high Q matrix,
the Kalman gain matrix elements are shown to converge to the
expected limit of 1 (−/s−1).

Fig. 21: Kalman gain matrix K entries convergence over time
for relatively low Q matrix entries (difference with R of about
102)

Fig. 22: Kalman gain matrix K entries convergence over time
for similar Q matrix entries compared to R

Fig. 23: Kalman gain matrix K entries convergence over time
for relatively high Q matrix entries (difference with R of about
102)
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