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foundation of condensed matter physics and with practical implications in material science
or magnetism. Furthermore, the Ising model finds application in fields beyond physics like
economics, neuroscience, mathematics and even certain parts of social science. If we have
more understanding of the Ising model with certain constraints this could prove the model
useful for more applications for physics but also beyond.

I would like to thank my supervisors, Harold and Richard, for their guidance and support
during my research. Harold showed great interest in the topic and was always available for
questions or discussions about every part of the research. Even during his vacation period,
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well-defined structure. I also would like to thank the people in the research department
Physics of Interfaces and Nanomaterials (PIN) for their hospitality during my project. For
example: an office space, the reminders to take a break and the many conversations and
fun activities.
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The effect of an external magnetic field on an
antiferromagnetic two-dimensional square Ising model with

anisotropic nearest neighbour interaction

W.F.G. Rorink∗

June 25, 2024

Abstract

An analytic expression for the phase boundary equation of the two-dimensional anti-
ferromagnetic Ising square lattice with anisotropic nearest neighbour (Jx ̸= Jy) inter-
actions under the influence of a constant external magnetic field (h) is derived using
the domain wall method. The system undergoes an order-disorder phase transition at
a critical temperature T = Tc that is given by the condition:
e(−2Jy+2h−4ph)/kbTc(1 − e4Jx/kbTc) = 1 + e4Jx/kbTc + e(2Jx+2h)/kbTc + e(2Jx−2h)/kbTc .
The phase diagram for this condition is also derived. For vanishing magnetic field
Onsager’s famous result, i.e. sinh(2Jx/kbTc) sinh(2Jy/kbTc) = 1 is recaptured. We
also show that the domain wall method is exact and we conjecture that the entire
system can be described by a domain wall of minimal length.

Keywords: Ising model; domain wall free energy; external magnetic field; order-

disorder phase transition; phase diagram

1 Introduction

Phase transitions are omnipresent within nature, familiar examples are the transition from
liquid water to ice or the melting of iron in a foundry. Despite the abundance of phase
transitions in the real world, the mathematical descriptions of these transitions are in many
cases lacking. This is due to the complexity of the phase transitions since particles will
often behave differently in the different phases. Furthermore, the phase transition can de-
pend on many circumstances inside and outside the material. Within the field of statistical
mechanics, a handful of phase transitions have been solved exactly as can be seen in [1],
others are often approximated numerically.

One of the simplest models to describe order-disorder phase transitions is the so-called
Ising model. In 1925 Ernst Ising considered a one-dimensional chain of spins which he
used to describe ferromagnetism, see [2]. In this model, a spin, s, can point either up-
ward, s = +1 or downward, s = −1. These spins are assumed to only interact with their
nearest neighbour by a spin-spin coupling constant J . This coupling constant is an indi-
cation of how neighbouring spins prefer to align. If J > 0 the spins prefer a ferromagnetic
configuration if J < 0 an antiferromagnetic configuration is preferred. Ising found that
the one-dimensional spin chain was only ordered at T = 0K and would be disordered at

∗Email: w.f.g.rorink@student.utwente.nl
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any other temperature. Based on this result Ising hypothesised that this would also be
the case for the two- and three-dimensional case, but in 1936 Peiers showed that the two-
and three-dimensional models have a nonzero phase transition temperature [3]. Below this
critical temperature, Tc, the systems are in an ordered, i.e. (anti)ferromagnetic, state,
whereas above this temperature the systems are in a disordered, i.e. paramagnetic, state.

Eventually, in 1944 Lars Onsager exactly solved the two-dimensional square Ising model
in the absence of a magnetic field [4]. Here he found that this model indeed exhibits an
order-disorder phase transition at a nonzero temperature. Onsager derived a closed and
unique relation for the phase transition temperature which is given by

sinh(2Jx/kbTc) sinh(2Jy/kbTc) = 1 (1)

After this publication of the exact solution of the square two-dimensional Ising model with
nearest neighbour interaction in the absence of a magnetic field, the Ising model became
a popular model for these phase transitions and was extended to also include a triangular
lattice [5] or next-nearest neighbour interactions [6]. The Ising model and its more general
version, the so-called Potts model, can be applied in a variety of other fields [7]. One
example of this can be found within mathematics where several NP-optimisation problems
can be described by an energy minimisation problem of a certain Ising model. The model
has also been applied in the field of econophysics, where the volatility of returns can be
modelled by a specific Ising model.

Despite the vast number of papers that have been published on the two-dimensional Ising
model, many worked in the absence of an external magnetic field. This work aims to de-
rive a closed expression of a square antiferromagnetic two-dimensional Ising model with
anisotropic nearest neighbour interactions under the influence of an external homogeneous
magnetic field. To derive this expression we will follow a method from literature where we
will consider the free energy of the domain wall between two regions of opposite antiferro-
magnetic configuration as can be seen in [6, 8, 9]. At zero temperature the boundary is as
straight as possible but with an increase in temperature more kinks will develop and the
internal energy (U) of the system will increase, but also the entropy (S) of the system will
increase. At a critical point, when the free energy (F = U − TS) of the boundary is zero,
the system will undergo a phase transition from ordered to disordered.

2 Anisotropic Derivation

Consider a two-dimensional square lattice with anisotropic nearest neighbour interaction
i.e. Jx ̸= Jy (A derivation for the isotropic case can be found in appendix A). The spin-spin
interactions are assumed to be antiferromagnetic, i.e. J < 0. We also consider a constant
magnetic field h in the spin-up direction, i.e. h > 0. The Hamiltonian of this system is
then given by:

H = −
∑
(i,j)

Jnsisj − h
∑
i

si (2)

Here the first sum runs over all nearest neighbour spins and Jn can be either Jx or Jy.
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2.1 Boundary formation

Let us now consider a boundary running in the x- or (10)-direction that separates two re-
gions with opposite antiferromagnetic configurations, as shown in figure 1. The formation
of such a boundary segment depends on the spin-spin interaction between the two regions
and the orientation of the magnetic field. Because the formation energy depends on the
magnetic field’s presence, we need to consider the up-up and down-down interactions sep-
arately. This energy is found by determining the energy required to flip a certain spin
configuration. For example, if we want to determine the formation energy for an up-up, or
↑↑ boundary segment we see from the Hamiltonian (equation 2) that this costs an energy
of H↑↑ = −Jy − 2h to make if we want to change this from ↑↓ or ↓↑ this has an energy
of H↑↓ = Jy that needs to be overcome, so the formation energy per unit length is then
EForm,↑↑ = ∆H = −2Jy − 2h. The formation energy per unit length of the boundary seg-
ment is given by equation 3 for the up-up interactions and by equation 4 for the down-down
interactions.

Figure 1: Schematic diagram of a two-dimensional Ising spin lattice with nearest
neighbour interactions Jx and Jy in an antiferromagnetic configuration. The dotted
red line is a domain boundary that separates two opposite spin-oriented regions and
is running in the x- or (10)-direction.

EForm,↑↑ = −2Jy − 2h (3)

EForm,↓↓ = −2Jy + 2h (4)
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For the boundary segment to physically form, this formation energy should be positive,
i.e. EForm > 0. We obtain the following conditions for Jy and h from equations 3 and 4:

i) Jy < h

ii) −Jy > h

Here the first condition is already met since Jy < 0 and h > 0 by assumption of the model.
However, the second condition states that the spin-spin interaction Jy should be stronger
than the magnetic field strength h. This makes physical sense, since for stronger magnetic
fields than interactive forces the spins are forced in alignment with the magnetic field and a
ferromagnetic configuration is formed [10]. When the magnetic field points in the opposite
direction the roles of conditions i and ii would switch.

2.2 Kink formation

At zero temperature the boundary is as straight as possible, but with the increase in
temperature, the boundary wall can form more kinks allowing the wall to meander through
the lattice. This wandering increases the energy of the system but also increases the entropy
of the system. This decreases the free energy of the domain wall since the free energy follows
from F = U −TS. A kink’s formation energy depends on the kink’s length, n, in the y- or
(01)-direction and the magnetic field strength, so we again need to consider the position
of the kink. In figure 2 three kinks are depicted with length n = 1, 2, 3 which form after
a step in the ↓↓-direction, here the formation energy in the (10)- and (01)-directions are
both shown, these are calculated in the same way as before, this can also be done for a
kink after a step in the ↑↑-direction. We observe a regularity in the formation energy per
unit length of the boundary segment. This is given by equation 5 for a kink, after an up-up
boundary segment, in the (01)-direction and by equation 6 for a kink, after a down-down
boundary segment, in the (01)-direction.

EKink,↑↑ = −2nJx − h(1 + (−1)n+1) where n ∈ N (5)

EKink,↓↓ = −2nJx + h(1 + (−1)n+1) where n ∈ N (6)
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Figure 2: Illustration of a boundary segment and three kinks with lengths 1,2
and 3 in the (01)-direction. The green box indicates the spins we consider for the
Hamiltonian.

2.3 Partition function

With these formation energies for the boundary, we can set up the partition function for
the boundary in the (10)-direction going through a ↑↑ or ↓↓ pair. We must consider all
possible routes to make one step in the (10)-direction. This can be straight on or with a
kink of length n in either (01)-direction. This gives the following partition functions:

Z↑↑ = e−(−2Jy−2h)/kbT

(
1 +

1

2
· 2

∞∑
n=1

e−(−2nJx+h(1+(−1)n+1))/kbT +
1

2
· 2

∞∑
n=1

e−(−2nJx−h(1+(−1)n+1))/kbT

)
(7)

and

Z↓↓ = e−(−2Jy+2h)/kbT

(
1 +

1

2
· 2

∞∑
n=1

e−(−2nJx+h(1+(−1)n+1))/kbT +
1

2
· 2

∞∑
n=1

e−(−2nJx−h(1+(−1)n+1))/kbT

)
.

(8)

The factor 2 in the partition function arises because the boundary can kink both upward
and downward [6], as can be seen in figure 1. The factor 1/2 arises because the spin couples
point up or down half of the lattice due to the antiferromagnetic ordering [10]. Equations
7 and 8 describe the different possibilities for the boundary to move through the different
spin directions. Due to the magnetic field, one direction is energetically more favourable
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than the other since the formation energy for the ↑↑ step costs less energy than the ↓↓
step. Therefore the partition function for the boundary in general will be:

Z(10) = Zp
↑↑Z

1−p
↓↓ , (9)

here p is the probability that the boundary moves through a ↑↑ couple. Looking at equa-
tions 7 and 8 we see that

Z↑↑ = e4h/kbT · Z↓↓. (10)

From this it follows that the probability p should be:

p =
Z↑↑

Z↑↑ + Z↓↓
=

e4h/kbT

e4h/kbT + 1
=

1

e−4h/kbT + 1
. (11)

The total partition function of one step in the (10)-direction can then be described by:

Z(10) =

[
e−(−2Jy−2h)/kbT

(
1 +

∞∑
n=1

e−(−2nJx+h(1+(−1)n+1))/kbT +
∞∑
n=1

e−(−2nJx−h(1+(−1)n+1))/kbT

)]p

·

[
e−(−2Jy+2h)/kbT

(
1 +

∞∑
n=1

e−(−2nJx+h(1+(−1)n+1))/kbT +
∞∑
n=1

e−(−2nJx−h(1+(−1)n+1))/kbT

)]1−p

.

(12)

If want to consider the total partition function for a longer piece of boundary steps, say m
steps, then it follows that

Ztotal = Z(10) · Z(10) · ... · Z(10) = Zm
(10). (13)

For the free energy of a boundary segment of this length, we then find Ftotal = −kbT ln(Ztotal) =
−mkbT ln(Z(10)). Whenever Ftotal = 0 we can divide the m out. So for our further deriva-
tion, we only need to consider one step.

2.4 Absolute convergence of the infinite series

Within the partition function of equation 12 we observe two infinite series concerning the
kinks of the boundary. We want to rewrite these series in a closed form, therefore we would
like these series to behave like geometric series. Before we can write down the series as a
closed form we must be able to rewrite the series in the partition function in such a way
that the oscillating term h(1 + (−1)n+1) disappears and we can split each series into two
geometric series. To achieve this, we want to make use of theorem 1 as found in [11].
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Theorem 1 (Rearrangement Theorem for absolutely convergent series).
If the infinite series

∑∞
k=1 ak is absolutely convergent then we can rearrange the terms of

the series in such a way that the original series is equal to the sum of all the even and odd
terms, i.e.

∞∑
k=1

ak =

∞∑
k=1

a2k +

∞∑
k=1

a2k−1

This theorem needs that the series are absolutely convergent such that we can split the
series into its odd and even terms. To show that the series are absolutely convergent we
will prove the following lemma:

Lemma 1 (Absolute convergence of the series).
The series

∑∞
n=1 e

−(−2nJx+h(1+(−1)n+1))/kbT and
∑∞

n=1 e
−(−2nJx−h(1+(−1)n+1))/kbT are ab-

solutely convergent under the conditions that Jx < 0 and Jx < h.

Proof. Consider the series
∑∞

n=1 e
−(−2nJx±h(1+(−1)n+1))/kbT . For these series to be abso-

lutely convergent it must hold that
∑∞

n=1|e−(−2nJx±h(1+(−1)n+1))/kbT | < ∞.

Notice that
∞∑
n=1

|e−(−2nJx±h(1+(−1)n+1))/kbT | =
∞∑
n=1

e−(−2nJx±h(1+(−1)n+1))/kbT ,

since ex > 0 for all x ∈ R.

To show this series is absolutely convergent we will apply the root test as found in [11]
that is described by theorem 6 in appendix B. For our series, this becomes:

r = lim sup
n→∞

|e−(−2nJx±h(1+(−1)n+1))/kbT |1/n = lim sup
n→∞

e−(−2Jx± h
n
(1+(−1)n+1))/kbT .

We see that as n increases that the expressions e−(−2Jx± h
n
(1+(−1)n+1))/kbT are bounded

above, so we can write:

e−(−2Jx+
h
n
(1+(−1)n+1))/kbT ≤ e−(−2Jx)/kbT

and

e−(−2Jx− h
n
(1+(−1)n+1))/kbT ≤ e−(−2Jx−2h)/kbT .

So for our two series, we find:

r = e−(−2Jx)/kbT
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and

r = e−(−2Jx−2h)/kbT .

Because Jx < 0 and Jx < h it follows that r < 1 in both cases, hence both series are
absolutely convergent.

Both of the conditions used in the proof for the absolute convergence already hold by the
assumptions of the model and the conditions for the formation energy, so they are also met
at this point in our derivation. If the magnetic field would point in the opposite direction
the same conditions would still hold due to the symmetry of the two series but each con-
dition would apply to the other series.

Because we have proven that both series are absolutely convergent, we may now apply
theorem 1 and we find the closed expressions:

∞∑
n=1

e−(−2nJx+h(1+(−1)n+1))/kbT =
∞∑
n=1

e−(−4nJx)/kbT +
∞∑
n=1

e−(−4nJx+2Jx+2h))/kbT

=
e4Jx/kbT

1− e4Jx/kbT
+

e(2Jx−2h)/kbT

1− e4Jx/kbT
=

e4Jx/kbT + e(2Jx−2h)/kbT

1− e4Jx/kbT

and
∞∑
n=1

e−(−2nJx−h(1+(−1)n+1))/kbT =
∞∑
n=1

e−(−4nJx)/kbT +
∞∑
n=1

e−(−4nJx+2Jx−2h))/kbT

=
e4Jx/kbT

1− e4Jx/kbT
+

e(2Jx+2h)/kbT

1− e4Jx/kbT
=

e4Jx/kbT + e(2Jx+2h)/kbT

1− e4Jx/kbT
.

2.5 Phase Boundary Equation

With these results, we can rewrite the partition function of equation 12 as follows:

Z(10) =

[
e−(−2Jy−2h)/kbT

(
1 +

2e4Jx/kbT + e(2Jx+2h)/kbT + e(2Jx−2h)/kbT

1− e4Jx/kbT

)]p

·

[
e−(−2Jy+2h)/kbT

(
1 +

2e4Jx/kbT + e(2Jx+2h)/kbT + e(2Jx−2h)/kbT

1− e4Jx/kbT

)]1−p

.

(14)

With this closed form partition function, we are able to prove the following theorem:

Theorem 2 (Phase Boundary Equation).
The phase boundary equation of the antiferromagnetic two-dimensional square Ising model
with anisotropic nearest neighbour interaction is given by:

e(−2Jy+2h−4ph)/kbTc(1− e4Jx/kbTc) = 1 + e4Jx/kbTc + e(2Jx+2h)/kbTc + e(2Jx−2h)/kbTc
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Proof. With the partition function of equation 14 we can calculate the free energy of the
system:

F(10) = −kbT ln(Z(10)) = −2Jy + 2h− 4ph− kbTp ln

(
1 +

2e4Jx/kbT + e(2Jx+2h)/kbT + e(2Jx−2h)/kbT

1− e4Jx/kbT

)

−kbT (1− p) ln

(
1 +

2e4Jx/kbT + e(2Jx+2h)/kbT + e(2Jx−2h)/kbT

1− e4Jx/kbT

)
.

(15)

The critical temperature can be found by setting the domain wall free energy to zero, i.e.
F(10) = 0. This gives the expression:

−2Jy + 2h− 4ph = kbTcp ln

(
1 +

2e4Jx/kbTc + e(2Jx+2h)/kbTc + e(2Jx−2h)/kbTc

1− e4Jx/kbTc

)

+kbTc(1− p) ln

(
1 +

2e4Jx/kbTc + e(2Jx+2h)/kbTc + e(2Jx−2h)/kbTc

1− e4Jx/kbTc

)
.

(16)

Since the right-hand side is of the form p ·A+ (1− p) ·A, we can simplify this to:

−2Jy + 2h− 4ph = kbTc ln

(
1 +

2e4Jx/kbTc + e(2Jx+2h)/kbTc + e(2Jx−2h)/kbTc

1− e4Jx/kbTc

)
. (17)

This gives the following phase boundary equation:

e(−2Jy+2h−4ph)/kbTc(1− e4Jx/kbTc) = 1+ e4Jx/kbTc + e(2Jx+2h)/kbTc + e(2Jx−2h)/kbTc , (18)

where p is still defined as in equation 11.

2.6 Phase diagrams

With the phase boundary equation of equation 18 we can develop the phase diagram of
the system, this can be seen in figure 3. This figure also includes the conditions that the
coupling constants Jx and Jy should be greater than the magnetic field strength h, this is
indicated by the grey planes. In this figure, the magnetic field can point in either the up,
h > 0, or down h < 0 direction, since the same result will be acquired when the direction
of h flips.

Figure 3 shows that for low Jx/kbTc compared to Jy/kbTc or vice versa we see that the
condition that J < h is not met, this can be explained by the fact that in this case
the antiferromagnetic configuration almost decouples into one-dimensional chains which
violates the assumptions of the model. This effect is stronger for Jy compared to Jx since
the magnetic field influences the formation energy of a boundary step more directly than
a boundary kink.

9



Figure 3: Phase diagram of the two-dimensional square Ising model with
anisotropic nearest neighbour interactions |Jx,y|/kbTc and external magnetic field
influence h/kbTc. The grey planes indicate the conditions that |J | < h.

2.6.1 Ferromagnetic alignment condition

If we look at the Hamiltonian in equation 2 we can determine an approximation for when
the system will align ferromagnetically due to the magnetic field even though J < 0. For
an antiferromagnetic configuration in an isotropic case, we find an energy of 2J + h, while
a ferromagnetic configuration gives an energy of −2J − h. So we find that the system is
forced in a ferromagnetic configuration whenever:

−2J − h < 2J + h.

Or more simply:

2|J | < h.

This relation is not exact and will act more as a condition for when the system is forced from
a disordered paramagnetic phase to an ordered ferromagnetic phase due to the magnetic
field.

2.6.2 Isotropic phase diagram

Figure 4 shows the phase diagram for the isotropic case, i.e. Jx = Jy. This diagram is
identical to the phase diagram found in the isotropic derivation in appendix A.
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Figure 4: Cross sections of the phase diagram of figure 3 where Jy = Jx (red
line). The dashed lines indicate whenever Jx = |h|, the black lines indicate the
ferromagnetic alignment condition 2|J | < h as found in section 2.6.1.

In this figure, we see a clear antiferromagnetic (AF) region whenever the spin-spin interac-
tion Jx is strong enough and Jx is stronger than the magnetic field h. In the vicinity of the
Onsager point, i.e. Jx

kbTc
= 1

2 ln
(√

2 + 1
)
≈ 0.4406867... and h = 0, we see that for J < |h|

a paramagnetic (P) region occurs. Here the spin-spin interaction is not strong enough
to form an antiferromagnetic configuration and the magnetic field is not strong enough
to align all the spins into a ferromagnetic (F) configuration. This transition indicates an
order-disorder phase transition. Around the condition that Jx = |h| we see that the system
is already in the paramagnetic phase, this implies that the system will transition to the
disordered state before the magnetic field is as strong as the spin-spin interaction. This
could be attributed to the effect of the degeneracy of the different ground states of the
model, more on that in section 3.1.

2.6.3 Anisotropic phase diagrams

In figure 5 we see the phase diagram for the anisotropic case that Jy = 2Jx. This diagram,
like the isotropic case, shows that the system will go into a paramagnetic phase before
Jx = |h|. In figure 6 the anisotropic case that Jy = 1

2Jx is shown. Here we that the phase
boundary equation will very soon obey the condition that J = |h|, this is the boundary
case before the system exceeds the conditions as shown in the full phase diagram in figure
3.
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Figure 5: Cross sections of the phase diagram of figure 3 where Jy = 2Jx. The
black lines indicate the condition 2Jx = |h| as well as the ferromagnetic alignment
condition 2|J | < h as found in section 2.6.1.

Figure 6: Cross section of the phase diagram of figure 3 where Jy = 1
2Jx. The

dashed lines indicate whenever 1
2Jx = |h|, the black lines indicate the ferromagnetic

alignment condition 2|J | < h as found in section 2.6.1.
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2.7 Vanishing magnetic field

When we consider a vanishing magnetic field in expression 16, i.e. h → 0 we find:

2Jy = −kbTc ln

(
1 +

2e4Jx/kbTc + 2e2Jx/kbTc

1− e4Jx/kbTc

)

Note that

2e2x + 2e4x

1− e4x
=

2e2x(1 + e2x)

(1− e2x)(1 + e2x)
=

2e2x

1− e2x
for x ̸= 0

Since x = Jx/kbTc ̸= 0, we find:

2Jy = −kbTc ln

(
1 +

2e2Jx/kbTc

1− e2Jx/kbTc

)
(19)

This is equivalent to Onsager’s expression for the Ising model without an external magnetic
field with anisotropic nearest neighbour interaction as can be found in [4]. The derivation
from equation 19 to the famous result of Onsager in equation 1 can be proven by the
following lemma:

Lemma 2 (Equivalence to Onsager’s result).
2Jy = −kbTc ln

(
1 + 2e2Jx/kbTc

1−e2Jx/kbTc

)
is equivalent to sinh

(
2Jx
kbTc

)
sinh

(
2Jy
kbTc

)
= 1 under the

conditions that Jx ̸= 0 and Jy ̸= 0

Before we can start the proof, we will need some definitions and identities of hyperbolic
functions:

Necessary hyperbolic relations

1. sinh(x) = ex−e−x

2

2. cosh2(x)− sinh2(x) = 1

3. tanh(x) = sinh(x)
cosh(x) =

e2x+1
e2x−1

4. tanh(x2 ) =
cosh(x)−1
sinh(x)

Proof. We start with equation 19:

2Jy = −kbTc ln

(
1 +

2e2Jx/kbTc

1− e2Jx/kbTc

)
.

For the ferromagnetic case that Onsager considered we need to change Jx and Jy with −Jx
and −Jy, this gives:

2Jy = kbTc ln

(
1 +

2e−2Jx/kbTc

1− e−2Jx/kbTc

)
.
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This can be rewritten into the following form:

e2Jy/kbTc = 1 +
2e−2Jx/kbTc

1− e−2Jx/kbTc
.

For simplicity we introduce: x = Jx/kbTc and y = Jy/kbTc this results in:

e2y = 1 +
2e−2x

1− e−2x
.

When we rewrite the right-hand side as one fraction we see:

e2y =
1− e−2x + 2e−2x

1− e−2x
=

1 + e−2x

1− e−2x
.

Now we introduce the hyperbolic tangent by using relation 3:

e2y =
1

tanh(x)
.

Note that:

e−2y = tanh(x).

Next, we rewrite e2y as a hyperbolic sine following the definition, this yields:

2 sinh(2y) + e−2y =
1

tanh(x)
.

We replace e−2y as follows:

2 sinh(2y) + tanh(x) =
1

tanh(x)
.

This equation can be rewritten using relation 4, which gives the following:

2 sinh(2y) =
sinh(2x)

cosh(2x)− 1
− cosh(2x)− 1

sinh(2x)
.

This can be combined into one fraction:

2 sinh(2y) =
sinh2(2x)− (cosh(2x)− 1)2

sinh(2x) cosh(2x)− sinh(2x)
.

Expanding gives the following:

2 sinh(2y) =
sinh2(2x)− cosh2(2x) + 2 cosh(2x)− 1

sinh(2x) cosh(2x)− sinh(2x)
.

We can now apply relation 2, this yields:

2 sinh(2y) =
2 cosh(2x)− 2

sinh(2x) cosh(2x)− sinh(2x)
.

With some rewriting, we find:

sinh(2y) =
cosh(2x)− 1

sinh(2x)(cosh(2x)− 1)
.
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This can be reduced to:

sinh(2y) =
1

sinh(2x)
since x ̸= 0.

Because x ̸= 0 we can rewrite this expression to a more familiar equation:

sinh

(
2Jx
kbTc

)
sinh

(
2Jy
kbTc

)
= 1.

This is identical to Onsager’s result in equation 1. Because sinh(x) is an odd function,
i.e. sinh(−x) = − sinh(x), it does not matter if we consider the antiferromagnetic or the
ferromagnetic case, since both will yield the same result.

2.8 General Results

The previous section showed that the result for a vanishing magnetic field is equivalent to
Onsager’s result, this means that our result is in this case exact for all temperatures T .
We did, however, ignore the cases where the boundary could form overhangs (i.e. moving
back in the negative x-direction after a step in the y-direction) or inclusions (i.e. a loop of
opposite spin within a region). Overhangs and loops add roughness to the domain wall and
will thus increase the system’s energy, so these are energetically unfavourable. With an
increase in temperature, they could occur. In larger systems, however, their contributions
seem to become irrelevant [12, 13]. This leads us to believe that in large systems the
partition function using Onsager’s method of describing the system is equivalent to the
partition function found by the domain wall method. Since the free energies are equivalent
we can say that the free energy found by the method employed by Onsager equals the free
energy found by the domain wall method, i.e. FOnsager = FDomainWall(h = 0). It follows
then that ZOnsager = ZDomainWall(h = 0). Thus, to prove this equivalence in partition
functions we will prove the following theorem:

Theorem 3 (Equivalence of partition function).
The partition function that describes the entire system using Onsager’s method, i.e. ZOnsager =
e−E1/kbT + e−E2/kbT + ...+ e−En/kbT is equivalent for describing large systems to the par-
tition function that describes the domain wall using our method without a magnetic field,
i.e. ZDomainWall(h = 0) = e−E′

1/kbT + e−E′
2/kbT + ...+ e−E′

m/kbT for all T .

To prove this theorem we first need to state the following helpful theorem, found in [14]:

Theorem 4 (Equality of Power Sums).
Let ai and bj be two finite sequences of non-negative real numbers. If for all x ∈ R, we
have ∑

i

axi =
∑
j

bxj .

Then there exists a permutation σ of the indices such that

ai = bσ(i) for all i.
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Proof. Since ZOnsager = ZDomainWall(h = 0) we find

e−E1/kbT + e−E2/kbT + ...+ e−En/kbT = e−E′
1/kbT + e−E′

2/kbT + ...+ e−E′
m/kbT for all T .

Or more simply:
n∑
i

e−Ei/kbT =
m∑
j

e−E′
j/kbT for all T .

Set x = 1/kbT then:

n∑
i

e−Eix =
m∑
j

e−E′
jx for all x.

This is equivalent to:
n∑
i

(e−Ei)x =
m∑
j

(e−E′
j )x for all x.

With this relation, we conclude that n = m because otherwise, the sums would not be
equal for all x since some ex terms would dominate one side for large x if they are not
compensated on the other side. Then we can apply theorem 4 since we have two finite
non-negative real sequences whose sums are equal. This results in the fact that there exists
a permutation σ of the indices such that:

e−Ei = e
−E′

σ(i) for all i.

From this, it follows that:

Ei = E′
σ(i) for all i.

Hence we can conclude that each energy term in the partition function of Onsager’s method
has a corresponding term in the partition function of the domain wall method. This implies
that the two partition functions are equivalent in describing the system.

Now that we have proven theorem 3 we can conclude that in larger systems the partition
function using Onsager’s method of describing the system is equivalent to the partition
function found by the domain wall method. Since inclusions and overhangs seem to be
irrelevant or perfectly cancel for large systems it looks like any domain wall can be reduced
to the domain wall with minimal length in the direction of the domain wall. We denote
this with the following conjecture:

Conjecture 1 (Minimal length).
For large enough systems, the partition function of the entire system can be described by
the domain wall with minimum length in the direction of the domain wall.

This conjecture implies that we can describe large systems with the derivation used in this
article, therefore it should follow that the entire system can be described with the same
results. The magnetic field introduces an extra energy term. This influence could result
in the fact that overhangs and inclusions become important to include, but for a small
enough magnetic field these boundary shapes should remain negligible. We denote this
with the following conjecture:
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Conjecture 2 (Phase boundary equation).
If conjecture 1 is true, then for a small enough external magnetic field h the phase boundary
given by the equation:

e(−2Jy+2h−4ph)/kbTc(1− e4Jx/kbTc) = 1 + e4Jx/kbTc + e(2Jx+2h)/kbTc + e(2Jx−2h)/kbTc ,

that is found using the domain wall method exactly describes the phase boundary of the
entire system.

3 Discussion and conclusion

In this section, we will look at different factors that could influence our derivation and
found results. We will look at different ground states of the system, the decoupling of
the phase diagram in figure 3 and the correctness of the partition function. We will then
conclude our work and give an outlook on further research using a similar derivation as
used in this article.

3.1 Ground state of the boundary

The domain wall boundary will be as straight as possible in the ground state for a small
magnetic field. However, with an increase in the magnetic field strength, it becomes more
energetically favourable for the boundary to meander through the lattice and go through
the spins that align with the magnetic field [15]. For two examples of this meandering see
figure 7. This can also be seen from the formation of the boundary segments in equations
3 and 4 and the costs for the kinks in equations 5 and 6, where for high enough values of h
it could be energetically more favourable to form a kink through the ↑↑ spin couples than
to go through the ↓↓ pair without a kink. These boundaries are however vastly degenerate
since there are 2N different configurations for a lattice with domain wall length N which
all have the same energy.

(a) (b)

Figure 7: Two of the many possible ground states for higher magnetic field
strengths
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This degeneracy could explain the space between the phase boundary and the energy
formation condition in figure 4, 5 and 6 since this degeneracy increases the entropy of
the system and thus decrease the free energy of the system. It could also be that this
degeneracy would introduce a factor of 2 in front of the partition function in equation 14
and thus a factor of ln(2) in the phase boundary equation of equation 18, this would then
become:

e(−2Jy+2h−4ph)/kbTc(1−e4Jx/kbTc) = ln(2)(1+e4Jx/kbTc+e(2Jx+2h)/kbTc+e(2Jx−2h)/kbTc). (20)

This would result in a slightly different phase diagram which looks like the blue surface in
figure 8.

Figure 8: Phase diagram of the two-dimensional square Ising model with
anisotropic nearest neighbour interactions |Jx,y|/kbTc and external magnetic field
influence h/kbTc. The blue surface is the phase diagram including the ln(2) term
as in equation 20. The red surface is the phase diagram as in figure 3. The grey
planes indicate the conditions that |J | < h.

For the isotropic case the phase diagram will look like figure 9.
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Figure 9: Cross sections of the blue phase diagram of figure 8 where Jy = Jx
(red line). The dashed lines indicate whenever Jx = |h|, the black lines indicate the
ferromagnetic alignment condition 2|J | < h as found in section 2.6.1.

This extra ln(2) term would move the phase boundary closer to the condition for non-
negative formation energy in the isotropic case. In general, this would mean that the
system would decouple faster compared to our earlier found result with the phase boundary
equation in equation 18. This factor would also result in a difference from Onsager’s result
due to the degeneracy of the ground state. Without the magnetic field, the model would
only have one ground state with minimal energy, but since the magnetic field can ’help’
the system find many ground states with lower energies by forming the domain boundary
between the energetically favourable spin couples.

3.2 Decoupling in the phase diagrams

In figure 3 we see that whenever one spin-spin interaction is much larger than the other,
this comes from the fact that for highly anisotropic behaviour the model effectively de-
couples into a series of one-dimensional Ising chains [16]. Since the interactions in one
direction will dominate the coupling in the other direction becomes negligible. This results
in the fact that the system will behave differently under these circumstances and will thus
not be accurately described with the current two-dimensional approach since conditions
like J > |h| are not satisfied. This would lead to the formation energies for the boundaries
and kinks to become negative, something which is not physically possible.

This phenomenon can be seen more clearly in figure 10. Here we see the phase boundary
exceeding the condition that ensures the non-negativity of the domain boundary.
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Figure 10: Cross sections of the phase diagram of figure 3 where Jy = 1
4Jx.

The dashed lines indicate the condition 1
4Jx = |h| and the black lines depict the

ferromagnetic alignment condition 2|J | < h as found in section 2.6.1. We clearly
see the phase boundary exceeding the non-negativity conditions for the formation
energy.

3.3 Correctness of the partition function

With the domain wall method, we can easily reduce the dimension of the system by con-
sidering the domain boundary between two regions of opposite antiferromagnetic configu-
ration. We have proven this method to be exact, but this method has its difficulties. One
of the major difficulties is finding the correct partition function to describe all possible con-
figurations of the domain boundary. Since this method stands or falls with the correctness
of the partition function it is essential to determine the full contribution of each energy
term. In our derivation multiple partition functions have been considered which would all
recapture Onsager’s result for a vanishing magnetic field, but would all give different limi-
tations for describing the entire system. One partition function would not incorporate the
probability of certain kinks being made more often instead of others due to the contribu-
tion of the magnetic field. Another would incorporate extra contributions of the magnetic
field which were invalid. All in all the partition function of equation 12 and thus equation
14 seems to be the most accurate partition function to date. However, it may be possible
that the factor 1

2 in equation 12 should be replaced by a probability q of a certain kink
occurring more often than the other to describe the system more carefully. Furthermore,
it could also be possible that the factor 2 should be replaced by a probability r since the
magnetic field could influence the boundary to prefer one direction of kinks compared to
another.

3.4 Conclusion

We have derived a closed analytic expression for the phase boundary equation for the
two-dimensional antiferromagnetic square Ising model with anisotropic nearest neighbour
interactions by employing the domain wall method which relies on determining the domain
wall free energy between two regions of opposite antiferromagnetic configuration. We have
presented the three-dimensional phase diagram together with some two-dimensional phase
diagrams for the isotropic case and two anisotropic cases. We found the order-disorder
temperature relation. We also proved that the domain wall method exactly describes the
entire system. Furthermore, we conjectured that the entire system can be described by
the domain wall with minimum length in the direction of the boundary and the the phase
boundary can be exactly determined using the domain wall method.
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3.5 Outlook

In this derivation, we only looked at the effect of the external magnetic field on the an-
tiferromagnetic two-dimensional square Ising model with anisotropic nearest neighbour
interactions. This is only one small part of the entire study of phase transitions due to an
external magnetic field. One could extend the same derivation as in this article to find the
phase boundary equation for a hexagonal lattice. Within condensed-matter physics, many
materials are structured in other arrangements than square, so looking into the behaviour
of these phase transitions could provide more insight into our understanding of these phase
transitions.

Moreover, we only estimated the condition for the forced ferromagnetic configuration due
to the external magnetic field, it could be interesting to look at the exact relation for forc-
ing the antiferromagnetic lattice into the ferromagnetic configuration. This would make
the phase diagrams more complete and robust, which gives a better view of the behaviour
of the system due to the external magnetic field.

In our analysis, we looked solely at the nearest-neighbour interaction. Extending the model
with the influence of the next-nearest neighbours could provide more insight into the phase
transition from antiferromagnetic to paramagnetic or ferromagnetic. The Hamiltonian of
such a system looks like:

H = −Jx
∑
i

si,jsi+1,j−Jy
∑
j

si,jsi,j+1−Jd
∑
(i,j)

(si,jsi+1,j+1+si,jsi+1,j−1)−h
∑
i

si. (21)

This analysis will however no longer be exact due to the next-nearest neighbour interaction
since there will be a difference in energy contribution between a kinked and non-kinked
boundary segment [9]. Nevertheless, this approximation could help with the understanding
of the complexity of these phase transitions.
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A Isotropic Derivation

Consider a two-dimensional square lattice with isotropic nearest neighbour interaction i.e.
J = Jx = Jy. The spin-spin interactions are assumed to be antiferromagnetic, i.e. J < 0.
We also consider a constant magnetic field h in the spin-up direction, i.e. h > 0. The
Hamiltonian of this system is then given by

H = −J
∑
(i,j)

sisj − h
∑
i

si (22)

Here the first sum runs over all nearest neighbour spins.

A.1 Boundary and kink formation

Let us now consider a boundary running in the x- or (10)-direction that separates two re-
gions with opposite antiferromagnetic configurations, as shown in figure 1. The formation
of such a boundary segment depends on the spin-spin interaction between the two regions
and the orientation of the magnetic field. Because the formation energy depends on the
magnetic field’s presence, we need to consider the up-up and down-down interactions sep-
arately. This energy is found by determining the energy required to flip a certain spin
configuration. For example, if we want to determine the formation energy for an up-up, or
↑↑ boundary segment we see from the Hamiltonian (equation 22) that this has an energy
of H↑↑ = −J − 2h if we want to change this from ↑↓ or ↓↑ this has energy H↑↓ = J , so
the formation energy per unit length is then Eform,↑↑ = ∆H = −2J − 2h. The formation
energy per unit length of the boundary segment is given by equation 23 for the up-up
interactions and by equation 24 for the down-down interactions.

Eform,↑↑ = −2J − 2h (23)

Eform,↓↓ = −2J + 2h (24)

For the boundary segment to physically form, the formation energy should be positive,
i.e. Eform > 0. We obtain the following conditions for J and h from equations 23 and 24:

i) J < h

ii) −J > h

Here the first condition is already met since J < 0 and h > 0 by assumption of the model.
However, the second condition states that the spin-spin interaction J should be stronger
than the magnetic field strength h. This makes physical sense, since for stronger magnetic
fields than interactive forces the spins are forced in alignment with the magnetic field and a
ferromagnetic configuration is formed [10]. When the magnetic field points in the opposite
direction the roles of conditions i and ii would switch.

At zero temperature the boundary is as straight as possible, but with the increase in tem-
perature, the boundary wall can form more kinks allowing the wall to meander through the
lattice. This wandering increases the energy of the system but also increases the entropy of
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Figure 11: Illustration of a boundary segment and three kinks with lengths 1,2
and 3 in the (01)-direction. The green box indicates the spins we consider for the
Hamiltonian.

the system. This decreases the free energy of the domain wall since the free energy follows
from F = U −TS. The formation energy of a kink is dependent on the length of the kink,
n, in the y- or (01)-direction and the magnetic field, so we again need to consider the po-
sition of the kink. In figure 11 three kinks are depicted with length n = 1, 2, 3 which form
after a ↓↓-pair, here the formation energy in the (10)- and (01)-directions are also shown,
these are calculated in the same way as before, this can also be done for a kink after an
↑↑-pair. We observe a regularity in the formation energy per unit length of the boundary
segment. This is given by equation 25 for a kink after an up-up boundary segment and by
equation 26 for a kink after a down-down boundary segment.

EKink,↑↑ = −2nJ − h(1 + (−1)n+1) where n ∈ N (25)

EKink,↓↓ = −2nJ + h(1 + (−1)n+1) where n ∈ N (26)

A.2 Partition function

With these formation energies for the boundary, we can set up the partition function for
the boundary in the (10)-direction going through a ↑↑ or ↓↓ pair. We must consider all
possible routes to make one step in the (10)-direction. This can be straight on or with a
kink of length n in either (01)-direction. This gives the following partition functions:
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Z↑↑ = e−(−2J−2h)/kbT

(
1 +

1

2
· 2

∞∑
n=1

e−(−2nJ+h(1+(−1)n+1))/kbT +
1

2
· 2

∞∑
n=1

e−(−2nJ−h(1+(−1)n+1))/kbT

)
(27)

and

Z↓↓ = e−(−2J+2h)/kbT

(
1 +

1

2
· 2

∞∑
n=1

e−(−2nJ+h(1+(−1)n+1))/kbT +
1

2
· 2

∞∑
n=1

e−(−2nJ−h(1+(−1)n+1))/kbT

)
.

(28)

The factor 2 in the partition function arises because the boundary can kink both upward
and downward [6], as can be seen in figure 1. The factor 1/2 arises because the spin couples
point up or down half of the lattice due to the antiferromagnetic ordering [10]. Equations
27 and 28 describe the different possibilities for the boundary to move through the different
spin directions. Due to the magnetic field, one direction is energetically more favourable
than the other since the formation energy for the ↑↑ step costs less energy than the ↓↓
step. Therefore the partition function for the boundary in general will be:

Z(10) = Zp
↑↑Z

1−p
↓↓ , (29)

here p is the probability that the boundary moves in the ↑↑ direction. Looking at equations
27 and 28 we see that

Z↑↑ = e4h/kbT · Z↓↓. (30)

From this it follows that the probability p should be:

p =
Z↑↑

Z↑↑ + Z↓↓
=

e4h/kbT

e4h/kbT + 1
=

1

e−4h/kbT + 1
. (31)

The total partition function of one step in the (10)-direction can then be described by:With
these formation energies for the boundary, we can set up the partition function for the
boundary in the (10)-direction:

Z(10) =

[
e−(−2J−2h)/kbT

(
1 +

1

2
· 2

∞∑
n=1

e−(−2nJ+h(1+(−1)n+1))/kbT +
1

2
· 2

∞∑
n=1

e−(−2nJ−h(1+(−1)n+1))/kbT

)]p

·

[
e−(−2J+2h)/kbT

(
1 +

1

2
· 2

∞∑
n=1

e−(−2nJ+h(1+(−1)n+1))/kbT +
1

2
· 2

∞∑
n=1

e−(−2nJ−h(1+(−1)n+1))/kbT

)]1−p

.

(32)

The factor 2 in the partition function arises because the boundary can kink both upward
and downward [6]. The factor 1/2 arises because the spin couples point either up or down
half of the lattice [10].
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A.3 Absolute convergence of the infinite series

Within the partition function of equation 32 we observe two infinite series concerning the
kinks of the boundary. We want to rewrite these series in a closed form, therefore we would
like these series to behave like geometric series. Before we can write down the series as a
closed form we must be able to rewrite the series in the partition function so the oscillating
term h(1+ (−1)n+1) disappears and we can split each series into two geometric series. For
this, we want to be able to apply theorem 1 [11] and so we need the series to be absolutely
convergent.

This theorem needs that the series are absolutely convergent such that we can split the
series into its odd and even terms. To show that the series are absolutely convergent we
will prove the following lemma:

Lemma 3 (Absolute convergence of the series). The series
∑∞

n=1 e
−(−2nJ+h(1+(−1)n+1))/kbT

and
∑∞

n=1 e
−(−2nJ−h(1+(−1)n+1))/kbT are absolutely convergent under the conditions that

J < 0 and J < h.

Proof. Consider the series
∑∞

n=1 e
−(−2nJ±h(1+(−1)n+1))/kbT . For these series to be abso-

lutely convergent it must hold that
∑∞

n=1|e−(−2nJ±h(1+(−1)n+1))/kbT | < ∞.

Notice that
∞∑
n=1

|e−(−2nJ±h(1+(−1)n+1))/kbT | =
∞∑
n=1

e−(−2nJ±h(1+(−1)n+1))/kbT ,

since ex > 0 for all x ∈ R.

To show this series is absolutely convergent we will apply the root test [11] as described
by theorem 6 in appendix B. For our series, this becomes:

r = lim sup
n→∞

|e−(−2nJ±h(1+(−1)n+1))/kbT |1/n = lim sup
n→∞

e−(−2J± h
n
(1+(−1)n+1))/kbT .

We see that as n increases that the expressions e−(−2J± h
n
(1+(−1)n+1))/kbT are bounded

above, so we can write:

e−(−2J+ h
n
(1+(−1)n+1))/kbT ≤ e−(−2J)/kbT

and

e−(−2J− h
n
(1+(−1)n+1))/kbT ≤ e−(−2J−2h)/kbT .

So for the two series, we find:

r = e−(−2J)/kbT
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and

r = e−(−2J−2h)/kbT .

Because J < 0 and J < h it follows that r < 1 in both cases, hence both series are
absolutely convergent.

Both of the conditions used in the proof for the absolute convergence already hold by the
assumptions of the model, so they are met in our derivation. If the magnetic field would
point in the opposite direction the same conditions would still hold due to the symmetry of
the two series but each condition would apply to the other series. Because we have proven
that both series are absolutely convergent, we may now apply theorem 1 and we find:

∞∑
n=1

e−(−2nJ+h(1+(−1)n+1))/kbT =

∞∑
n=1

e−(−4nJ)/kbT +

∞∑
n=1

e−(−4nJ+2J+2h))/kbT

=
e4J/kbT

1− e4J/kbT
+

e(2J−2h)/kbT

1− e4J/kbT
=

e4J/kbT + e(2J−2h)/kbT

1− e4J/kbT

And
∞∑
n=1

e−(−2nJ−h(1+(−1)n+1))/kbT =

∞∑
n=1

e−(−4nJ)/kbT +

∞∑
n=1

e−(−4nJ+2J−2h))/kbT

=
e4J/kbT

1− e4J/kbT
+

e(2J+2h)/kbT

1− e4J/kbT
=

e4J/kbT + e(2J+2h)/kbT

1− e4J/kbT

A.4 Phase Boundary Equation

With these results, we can rewrite the partition function of equation 32 as follows:

Z(10) =

[
e−(−2J−2h)/kbT

(
1 +

2e4J/kbT + e(2J+2h)/kbT + e(2J−2h)/kbT

1− e4J/kbT

)]p

·

[
e−(−2J+2h)/kbT

(
1 +

2e4J/kbT + e(2J+2h)/kbT + e(2J−2h)/kbT

1− e4J/kbT

)]1−p

.

(33)

With this partition function, we are able to prove the following theorem:

Theorem 5 (Phase Boundary Equation).
The phase boundary equation of the antiferromagnetic two-dimensional square Ising model
with isotropic nearest neighbour interaction is given by:

e(−2J+2h−4ph)/kbTc(1− e4J/kbTc) = 1 + e4J/kbTc + e(2J+2h)/kbTc + e(2J−2h)/kbTc

28



Proof. With the partition function of equation 33 we can calculate the free energy of the
system:

F(10) = −kbT ln(Z(10)) = −2J + 2h− 4ph− kbTp ln

(
1 +

2e4J/kbT + e(2J+2h)/kbT + e(2J−2h)/kbT

1− e4J/kbT

)

−kbT (1− p) ln

(
1 +

2e4J/kbT + e(2J+2h)/kbT + e(2J−2h)/kbT

1− e4J/kbT

)
.

(34)

The critical temperature can be found by setting the domain wall free energy to zero, i.e.
F(10) = 0. This gives the expression:

−2J + 2h− 4ph = kbTcp ln

(
1 +

2e4J/kbTc + e(2J+2h)/kbTc + e(2J−2h)/kbTc

1− e4J/kbTc

)

+kbTc(1− p) ln

(
1 +

2e4J/kbTc + e(2J+2h)/kbTc + e(2J−2h)/kbTc

1− e4J/kbTc

)
.

(35)

Since the right-hand side is of the form p ·A+ (1− p) ·A, we can simplify this to:

−2J + 2h− 4ph = kbTc ln

(
1 +

2e4J/kbTc + e(2J+2h)/kbTc + e(2J−2h)/kbTc

1− e4J/kbTc

)
. (36)

This gives the following phase boundary equation:

e(−2J+2h−4ph)/kbTc(1− e4J/kbTc) = 1 + e4J/kbTc + e(2J+2h)/kbTc + e(2J−2h)/kbTc , (37)

where p is still defined as in equation 31.

A.5 Phase diagram

With the phase boundary equation of equation 37 we can develop the phase diagram of
the system, this can be seen in figure 12. This figure also includes the condition that the
coupling constant J should be greater than the magnetic field strength h, this is indicated
by the dashed lines. In this figure, the magnetic field can point in either the up, h > 0, or
down h < 0 direction, since the same result will be acquired when the direction of h flips.
Also, the ferromagnetic alignment condition is included.

In this figure we see a clear antiferromagnetic (AF) region whenever the spin-spin interac-
tion J is strong enough and J is stronger than the magnetic field h. In the vicinity of the
Onsager point, i.e. J

kbTc
= 1

2 ln
(√

2 + 1
)
≈ 0.4406867... and h = 0, we see that for J < |h|

a paramagnetic (P) region occurs. Here the spin-spin interaction is not strong enough
to form an antiferromagnetic configuration and the magnetic field is not strong enough
to align all the spins into a ferromagnetic (F) configuration. This transition indicates an
order-disorder phase transition. Around the condition that J = |h| we see that the system
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Figure 12: Phase diagram of the two-dimensional square Ising model with
isotropic nearest neighbour interaction. The red line indicates the critical tem-
perature Tc and the dashed lines indicate whenever J = h or J = −h. The black
lines indicate the ferromagnetic alignment condition 2|J | < h as found in section
2.6.1.

is already in the paramagnetic phase, this implies that the system will transition to the
disordered state before the magnetic field is as strong as the spin-spin interaction. This
can be attributed to the effect of the temperature since this will also increase the entropy
and thus decrease the free energy.

A.6 Vanishing magnetic field

When we consider a vanishing magnetic field in expression 35, i.e. h → 0 we find:

2J = −kbTc ln

(
1 +

2e4J/kbTc + 2e2J/kbTc

1− e4J/kbTc

)

Note that

2e2x + 2e4x

1− e4x
=

2e2x(1 + e2x)

(1− e2x)(1 + e2x)
=

2e2x

1− e2x
for x ̸= 0.

Since x = J/kbTc ̸= 0, we find:

2J = −kbTc ln

(
1 +

2e2J/kbTc

1− e2J/kbTc

)
(38)

This is equivalent to Onsager’s expression for the Ising model without an external magnetic
field with isotropic nearest neighbour interaction in equation 1. This equivalence is proven
for the anisotropic case with lemma 2.
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B Root test

Theorem 6 (Root test).
Let ak ∈ R and r := lim supk→∞|ak|1/k.

i) If r < 1, then
∑∞

k=1 ak is absolutely convergent.

ii) If r = 1, then the root test is inconclusive.

iii) If r > 1, then
∑∞

k=1 ak diverges.
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