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Chapter 1

Introduction

Upon agreement with my graduation committee, we have decided to write this paper for a
conference. The intention is to submit the paper to the IEEE Euro S&P conference. The
exact procedure will be discussed later.

The rest of this document discusses how the requirements of the Examination Board
are met, even though the Master Thesis is written in paper form. The paper aimed to be
handed in for a conference is included in Appendix A.
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Chapter 2

Requirements

All the requirements for a master thesis are listed below, along with explanations of how
each requirement is satisfied.

2.1 Scientific quality

2.1.1 Interpret a possibly general project proposal and translate it to
more concrete research questions

The original project proposal aimed to create a methodology for early detection of malicious
domain names after registration using OpenINTEL for newly registered domain detection.
In the exploration phase, I designed an approach to measuring newly registered domain
names on a regular interval. The data collected helps reach this goal, which is formulated
in the following research questions.

1. To what extent can we distinguish between benign and malicious domains based on
information collected during the early stages of a domain?

2. How does newly registered domain name detection based on certificate transparency
compare to detection based on other sources?

2.1.2 Find and study relevant literature, software and hardware tools,
and critically assess their merits

During the research topics phase, an extensive literature review was conducted to gather
relevant and meritorious literature. The methodology, including the software needed for
the research, was also outlined. Throughout the research process, additional literature was
included, and a refined selection was made to determine which sources were most relevant
to the paper I wrote.

2.1.3 Work in a systematic way and document your findings as you
progress

During the research, a logbook is maintained, and all findings are recorded. The logbook
is used for further investigation of interesting discoveries within the scope of the research.
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2.1.4 Work in correspondence with the level of the elective courses you
have followed

Elective courses relevant to this research include data science and cyber data analytics.
These modules explain how to apply data science principles and how to collect and prepare
data for machine learning. The research combined information learned from many courses
but also required additional learning.

2.1.5 Perform original work that has sufficient depth to be relevant to
the research in the chair

My work is original and provides substantial depth. It is relevant to the research in the
chair, and the aim of presenting it at an external conference demonstrates its relevance.

2.2 Organisation, planning, collaboration

2.2.1 Work independently and goal-oriented under the guidance of a
supervisor

My research has been performed independently. The measurement setup is self-designed
and developed, and all results are processed independently. During the research, the guid-
ance of the supervisors has been used on a weekly basis. For every meeting, preparations
are made on topics to discuss and notes are made during the meetings containing new
insights.

2.2.2 Seek assistance within the research group or elsewhere, if required
and beneficial for the project

Within the DACS research group, assistance is sought to get access to my own measure-
ment server and already existing measurement data. The research group also provides
the computing cluster used for processing my data. Issues regarding these topics are re-
solved within the research group. In addition, contact is sought in the SCS research group
regarding expertise in some machine learning approaches.

2.2.3 Benefit from the guidance of your supervisor by scheduling regular
meetings, provide the supervisor with progress reports and initiate
topics that will be discussed

Throughout the research process, weekly meetings were held. These meetings were pre-
pared with notes for discussion, and detailed notes were taken during each meeting to
ensure a smooth progression of the research and to address any issues that arose along
the way. In addition, more elaborate meetings were held on an irregular basis with the
entire graduation committee, during which presentations were held to showcase the current
progress.

2.2.4 Organize your work by making a project plan, executing it, ad-
justing it when necessary, handling unexpected developments and
finishing within the allotted number of credits

At the beginning of my research, I created a detailed project plan for my research topic,
which included the methodology I intended to use. If adjustments would positively impact
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the research, they were made along the way.

2.3 communication

2.3.1 Write a Master thesis that motivates your work for a general au-
dience, and communicates the work and its results in a clear, well-
structured way to your peers

The final thesis, presented in paper form, explains the value of the research and commu-
nicates my results clearly and logically to my peers.

2.3.2 Give a presentation with similar qualities to fellow students and
members of the chair

My work will be presented to the graduation committee at the university, just like any
other thesis. I will deliver a presentation of similar quality to my fellow students and the
committee members.
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Conference Paper
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Early Warning System for Newly Registered Malicious Domains: A Machine
Learning and Certificate Transparency Approach

1st Luuk Berenschot
University of Twente

Enschede, Netherlands
L.berenschot@student.utwente.nl

Abstract—Cybercrime is a significant and growing threat,
resulting in substantial financial losses annually. The Do-
main Name System (DNS) is often exploited for malicious
activities, such as command and control servers, malware
hosting, and phishing campaigns. This research investigates
the feasibility of using machine learning in conjunction with
Certificate Transparency (CT) logs to detect newly registered
malicious domain names. By actively monitoring newly regis-
tered domains, we label domains as malicious or benign using
blocklists and train a classifier to distinguish between them.
Our classifier detects 44% of newly registered malicious
domains with a false positive rate of 0.47%. Additionally, our
classifier offers customizable precision and recall, allowing
for an increase in the detection rate up to 79% at the cost of
the false positive rate. The classifier can support registries
and registrars in identifying potentially harmful domains.

1. Introduction
The Domain Name System (DNS) is a crucial part

of the Internet that translates IP addresses to human-
readable domain names, making it easier for people to
locate specific servers connected to the Internet. DNS
plays a critical role in the Internet as daily-used services
depend on it. For example, email and content delivery
networks rely on DNS to function [54].

Unfortunately, DNS is also misused for malicious pur-
poses. Therefore, we monitor DNS for attempts of abuse.
Malicious domain names are domains used for criminal
activities. Examples are domains used for scams, malware
hosting, command and control servers, and phishing. Mali-
cious domain names can persist for a long time. However,
in many cases, the malicious domain names are taken
down or included in blocklists shortly after registration.
Previous research has shown that most malicious domains
are misused shortly after registration [18], [22]. Therefore,
the challenge is to build a methodology to detect and
analyze malicious behavior for newly registered domain
names. Current approaches [23], [33], [37], [38] rely on
data obtained from registries, zone files, and passive DNS,
which are not easily accessible to all researchers and do
not always provide real-time data. Our research instead
makes use of Certificate Transparency (CT). CT is a
publicly verifiable append-only log that creates a public
record of issued X.509 certificates. The X.509 certificate
can contain one or more domain names. From these
certificates, newly registered domains are inferred.

Our research aims to find a method to analyze the
behavior of newly registered domain names in the early

stages after registration. We measure the potential and
feasibility of detecting malicious domains using machine
learning. When a newly registered domain is detected, we
start to actively measure this domain for a period of 48
hours. We use blocklists to label the collected data as
malicious or benign. Using the labeled data, we extract
features after which a classifier is trained. The classifier
that results from this is able to classify which newly
registered domains are likely to be malicious.

We successfully designed an approach that can give
an early indication of malicious domain names using a
machine-learning classifier. The classifier can detect close
to half of the newly registered malicious domains with a
precision of 81%.

2. Background

2.1. DNS

The Internet connects servers and clients using unique
identifiers called IP addresses. DNS maps IP addresses to
human-readable texts, such as www.example.com.

DNS is managed by the Internet Corporation for
Assigned Names and Numbers (ICANN) [28]. ICANN
is responsible for overseeing the domain name system,
accrediting registries and registrars and managing the root
zone. DNS can be visualized as a tree structure, with
each tree layer having authority over the connected levels
below it. This structure is illustrated in Figure 1. ICANN
manages the root node and has the power to delegate
generic Top Level Domains (gTLDs), such as the .com
domain, to registries. Registries are responsible for man-
aging authoritative name servers for their Top Level Do-
mains (TLDs). The .com TLD is managed by the registry
Verisign [58]. Registries have the authority to delegate
domain authority of the Second Level Domains (SLDs)
of their TLDs to registrants. In the case of Verisign,
this could be example.com. A registrar plays a role as
a middleman between the registry and the registrant and
registers domains on behalf of registrants. The registrants
themselves can use their domain to create Fully Qualified
Domain Names (FQDNs) shown as the bottom layer in the
figure. An FQDN can be extended going further down the
tree.

2.2. Certificate Transparency

Internet services can make use of X.509 certifi-
cates [6]. These digital certificates can bind the public key
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Figure 1. DNS tree representation of www.example.com.

of an entity (such as a web server) to information about
the entity, such as its domain name. X.509 certificates help
establish trust and security for various internet services,
such as secure channels for web browsing [4].

Certificate Authorities (CAs) issue certificates and al-
low secure connections between clients and entities. CAs
are organized in a tree-like hierarchy, similar to DNS, but
with multiple root CAs, resulting in multiple chains of
trust.

If a malicious actor gains control over a CA, they have
the ability to issue fraudulent certificates for any domain
in the tree below the CA. A well-known case of a hacked
CA is that of DigiNotar [57]. Hackers used DigiNotar to
issue fraudulent certificates for major websites such as
Google and Microsoft, allowing them to perform man-in-
the-middle attacks and steal user information. To prevent
this from happening again, Google researchers proposed
using Certificate Transparency (CT).

CT is a security standard to increase the security of the
Public Key Infrastructure (PKI) used in internet services,
including internet browsing [34]. CT has been standard-
ized by the Internet Engineering Task Force (IETF). The
current CT 2.0 standard is defined in RFC 9162 [35]. CT
helps investigate the issuance of fraudulent certificates by
creating a public append-only log. CT has three compo-
nents [36].

The first component is the certificate log, which is
publicly auditable and contains a record of all issued
certificates. Certificate authorities must be transparent and
submit all issued certificates to these logs. Domain owners
can monitor this log and detect unauthorized certificates
issued for their domain.

The second component is a certificate auditor, who
monitors the certificate logs and checks for suspicious
and fraudulent behavior by certificate authorities. If a
CA behaves suspiciously, certificate auditors can report
it, which can result in action before significant damage is
done.

The final component is the CT log policy, which
contains rules and standards for CAs about how they must
implement CT to participate in the CT program. A policy
can, for example, state to which certificate logs participat-
ing CAs must publish their issued certificates [21].

2.3. Blocklists

A blocklist contains domain names or IP addresses
that are deemed harmful or unwanted and thus should be
blocked. Blocklists can, for example, be used for content
filtering, ad-blocking, and network security.

Blocklists can be designed for specific categories, such
as phishing or malware. Whenever a domain or IP is
added to a blocklist, users can check if the party they
are communicating with is present in the blocklist. If the
party is deemed malicious, the connection is blocked to
prevent damage.

Blocklists are managed by blocklist providers. The
providers can be well-known groups or projects as well
as individuals. Although blocklists are broadly used, these
may not be entirely reliable due to the possibility of con-
taining false positives and false negatives [16]. Blocklists
can be created using different approaches.

The first approach is based on user reporting. When
users discover a domain that is used for malicious activity,
they can report it. If many users report a specific domain
in a short period of time and a certain threshold is reached,
this domain is added to the blocklist.

The second commonly used approach is based on
automated monitoring for malicious behavior. This can
be, for example, a network of honeypots or by using
middleboxes. For such an approach, machine learning
methods are often used to detect malicious traffic. Because
of the methodology used to construct these blocklists,
false positives can be present.

The third approach is based on fingerprints. Finger-
prints are created by collecting identifying characteristics
of, for example, malware, such as binary code or network
packets. These characteristics are hashed and stored as
a reference for future comparison. To detect malware, a
new sample is hashed and compared to the stored hash.
If the hashes match, malware is present and if there is no
match, malware is not present [62]. When a fingerprint is
detected in the network traffic, the connected domain or
IP address can be added to the blocklist. This approach
accurately identifies malicious traffic, but the disadvan-
tage is that the fingerprint must be known beforehand.
Another disadvantage is that if the used fingerprints are
known, attackers can change their attack method to avoid
detection.

3. Related Work

In this section we discuss related work. Our starting
point is the work by Khormali et al., which compares
over 170 peer-reviewed papers across the threat landscape,
research methods, and entities scope [31]. The threat land-
scape section of this research provides valuable insights
into malicious DNS activities.

3.1. Problem Scope

Cybercrime continues to rise yearly. Understanding
how domain names are exploited for malicious purposes
and to what extent is crucial. The study by the Inter-
isle Consulting Group provides insights into the scale
of malicious domain name registrations for phishing [1].
The study identified a total of 1,850,392 phishing attacks



from May 2022 to April 2023. This is compared to
1,122,579 attacks during the same period the previous
year, an increase of about 65%. This demonstrates that
phishing campaigns continue to be a growing concern.
Additionally, the report includes details about registrars
with the highest ratio of domains registered for phishing.
According to the report, the registrars with the highest
phishing ratio are “NICENIC INTERNATIONAL” in first
place, “TLD Registrar Solutions” in second place, and
“REG.RU” in third place. The registrars with the high-
est count of phishing registrations are “NameSilo” in
first place, “PublicDomainRegistry” in second place, and
“NameCheap” in third place. We compare these results to
our own registrar analysis to determine if the results are
comparable. Another research paper written by Hao et al.
examines the registration behavior of spammers [24]. It
analyses the behavior of domain name registrations and
identifies registration spikes and other patterns that can
be associated with spammers. As the phishing landscape
paper, it provides information on the most commonly
used registrars for spam activities. Our research focuses
on identifying patterns linked to malicious behavior. We
leverage previous literature as an entry point. The Euro-
pean Commission has conducted a very extensive study
regarding DNS abuse, showing its magnitude, impact and
good practices to mitigate DNS abuse [10]. The study
by Korczyński et al. performs a statistical analysis of
the new gTLDs [33]. It examines the abuse rate for new
gTLDs and compares it to legacy gTLDs. Information
about the abuse in TLDs can be used to add a trust score to
every TLD. The differences in abuse are likely correlated
with the registration price of a domain. New gTLDs can
also be misused to impersonate companies by buying the
same domain with a different TLD. Another approach to
impersonating companies is done by making use of Inter-
nationalised Domain Names (IDNs). IDNs are designed
to create domain names using characters that are not
included in the American Standard Code for Information
Interchange (ASCII) characters (a-z, A-Z, 0-9, - and .).
This feature is often misused for impersonation of domain
names by using special characters that look very similar
to ASCII characters [37]. In our research, we explore the
possibility of using TLDs and IDNs to give a trust score
to domain names. The research paper by Foremski et al.
investigates the reasons for domain deletions and the speed
at which they occur [18]. According to the findings of this
study, on average 9.3% of newly registered domains are
deleted within the first seven days, with 6.7% being due
to blocklisting. The most common reason for a domain
deletion varies depending on the type of TLD. Deletions of
legacy gTLDs, such as .com and .net, are most commonly
initiated by the domain names registrar. On the other hand,
new gTLDs are more likely to be deleted due to blocklists.

3.2. Newly Registered Domain Detection

This section discusses existing approaches for detect-
ing newly registered domains and their advantages and
disadvantages.

The first detection approach makes use of registration
data directly received from the registry. Using this method
the registration is known as soon as the registry receives
the request. Getting access to data directly from the reg-

istry is hard to achieve for researchers. A registry only has
information about the zones they manage, which makes it
harder for researchers to scale across multiple registries.
To cover a larger part of the DNS researchers have to
cooperate with multiple registries. Hao et al. conducted
two studies that used registry data of the .com and .net
TLD [22], [23]. Spooren et al. also conducted research that
had access to registry data [12]. In this study, registry data
of the .eu TLD is used.

The second detection approach is passive DNS. This
approach makes use of a network of DNS sensors of-
ten connected to a database, as is the case for Farsight
DNSDB [38], [53]. The advantage of this approach is
that it can detect a wider range of domains compared
to registry data. A disadvantage of passive DNS is men-
tioned by Sperotto et al. which is that passive DNS can
only detect malicious activity when the domain name is
already in use [51]. This means that it may have already
been misused before it is detected. The amount of DNS
traffic analyzed, and the speed at which malicious domains
are detected depends on the amount and location of the
DNS sensors [61]. Because the coverage of the sensors
is important for the data collection, researchers often opt
to use a passive DNS tool such as Farsight DNSDB [14]
instead of deploying their own sensors.

The third detection approach makes use of zone
files [17], [33], [37]. When a domain name appears in
a zone file it will be considered as a newly registered
domain. The research by Barron et al. discusses that
domain names in a zone file can disappear for a short
period even though the domains still exists [3]. Zone files
are published and updated by the registries themselves
and at different intervals depending on the registry. To
access the zone files researchers must request access from
each registry. With the introduction of the new gTLDs, the
number of registry operators has increased significantly.
Because of this, ICANN introduced the Centralized Zone
Data System (CZDS) [27]. Researchers can request zone
files from multiple registries in a single portal. The zone
files published in the CZDS portal are updated every 24
hours, meaning that the zone files can be a day old. The
CZDS system is designed to enhance transparency and
simplify access to zone files. However, the research by
Park et al. shows that over 10% of the requests made
through this system do not receive a response within six
months. Moreover, a significant number of requests are
unjustly denied [45]. Although CZDS simplifies access to
zone files, it does not guarantee complete transparency. To
enhance the actuality of the zone files, the DNS Incremen-
tal Zone Transfer Protocol (IXFR) can be used [42]. IXFR
is a protocol for obtaining intermediate zone file updates.
For example, by using IXFR, the registry can update the
zone information every five minutes instead of every 24
hours, resulting in up-to-date zone data.

The final detection approach makes use of OpenIN-
TEL [43]. The detection of OpenINTEL is based on
certificate transparency. The working principles of this de-
tection are described by Sommese et al. [49]. OpenINTEL
is able to detect 50% of the newly registered domains
within a period of 45 minutes and 98% within a day.



3.3. Malicious Domain Detection

In our research, we use OpenINTEL as the detection
method for newly registered domains. Research conducted
by Sperotto et al. provides us with three case studies
using OpenINTEL and identifies its potential to be used
for fast detection of malicious domain names [51]. Other
research often makes use of registration data provided by
registries [12], [33], zone files [24] or passive DNS [5],
[18], [41], [47], [48], [64]. Instead of only using one
data source, researchers can use multiple data sources.
For example, the research by Korczyński et al. uses both
data provided by registries and zone files to enlarge the
dataset [33]. During our research, we investigated where
the approach using OpenINTEL fits in.

To train our classifier we make use of features intro-
duced by previous research [5], [12], [23], [47]. These
features are often based on a single measurement. In our
research we make use of multiple measurements to see
if changes occur and if they are a meaningful addition
to distinguishing between malicious and benign domains.
In addition, we introduce other features, such as features
related to the FQDNs of a domain.

It is not easy to compare our results with the results of
other research. Research that makes use of zone files and
registry data often has access to a limited set of TLDs. As
a result, their classifiers will be optimized for this specific
set. Research that makes use of passive DNS has access
to all TLDs. However, these domains are only observed
when they are in active use and detected by a sensor. This
approach will miss newly registered domains that are not
in active use. The research PREDATOR makes use of zone
files and registry data from Verisign. Verisign manages the
.com and .net TLD [23]. These TLDs make up 59% of
the newly registered domains that we observe. Because
this is a large part of our measurements and the research
also makes use of precision-recall metrics, we compare
our results with this work.

Ideally, we want to prevent damage before it has oc-
curred. By using active measurements with OpenINTEL,
we aim to detect malicious domains before they are active.
A comprehensive study on this topic is conducted by
Zhauniarovich et al. [65]. The study compared various
research papers introducing detection methodologies and
categorized them based on their positive and negative ef-
fects. They categorized the research papers into three main
categories. These categories are machine learning [2], [5],
[23], knowledge-based [9], [20] and hybrid [63]. The
research was conducted in 2018 and provides us with
interesting methodologies we can use.

4. Data Collection

Since our approach uses machine learning, it is impor-
tant to collect data that can be used to engineer features
that help distinguish between malicious and benign do-
mains.

In this section, we describe the measurement setup
for our data collection and the data we collect. A visual
representation of our measurement setup is presented in
Figure 2. The setup supports two different types of mea-
surements. The first type utilizes the OpenINTEL Newly
Registered Domain (NRD) stream, while the second type

uses the newly observed Fully Qualified Domain Name
(FQDN) stream. When a new domain is detected by
OpenINTEL a message is produced in the NRD stream.
This message contains the domain that has been registered
and the corresponding registration time. Similarly, the
FQDN stream produces a message when a new FQDN is
observed together with the observation time. The received
information is used to start our measurements towards the
received target.

The first path is our web crawler path. This path makes
use of the OpenINTEL FQDN or NRD stream and places
each newly received target into a sorted Redis queue.
The targets are sorted based on the time received. For
every target, we perform a total of ten measurements.
We perform multiple measurements because we want to
incorporate changes over time in our features. For every
target received from the stream, ten values are placed in
the queue at 0 seconds, 10 minutes, 30 minutes, 1 hour,
3 hours, 6 hours, 12 hours, 24 hours, 36 hours, and 48
hours after the target has been detected. These intervals
are chosen as we expect the most changes to occur soon
after registration. To prevent overflowing the targets with
requests we set a limit of 10 measurements over the
period of 48 hours. Once the values have been placed in
the queue, a constant worker monitors and compares the
current time against the values in the queue. All values
below the current timestamp are moved to asynchronous
HTTP requests, and the responses are collected. From the
responses, data such as the HTML page and the response
headers are stored. This provides insight into the data
hosted by the web server and the architecture used to host
the webpage such as the server type. The collected data
is temporarily stored in local storage for a period of one
hour. At the end of the hour, the data is transferred from
local storage to permanent object storage.

The second path utilizes the Registration Data Access
Protocol (RDAP) [25], [26]. We request registration data
for each newly registered domain immediately upon re-
ceipt. From this data, we can retrieve information about
the registration date, registrar, registrant, and the use of
DNSSEC. In the case of FQDNs, we add the RDAP data
for the corresponding domain name. This is done because
RDAP is only available for domain names and not for
FQDNs.

The third path involves DNS measurements. We em-
ploy a DNS crawler to gather DNS data for each NRD and
FQDN every ten minutes over a 48-hour period. We col-
lect information such as the IP addresses and nameservers
observed during the 48-hour period. Using the collected
IP addresses, we also utilize the CAIDA Prefix2AS to per-
form the mapping of Autonomous System (AS) numbers
to our dataset [7]. The AS numbers provide information
about the entity or organization that controls the network
of the servers used by the domain or FQDN. The prefix-
to-AS mapping is updated daily to ensure the numbers are
up to date when added to the DNS measurement data.

In addition to adding AS numbers to the dataset, we
include location and ISP data. We enhance our dataset
using the dataset provided by IP2Location [29]. From
the IP addresses we detect with our DNS measurements,
we can map these IP addresses to a location and ISP
information. This data is relevant as it allows us to train
our classifiers to build a trust score for the origin of the
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Figure 2. Visual representation of the active measurement
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IP addresses.

5. Ground Truth

To be able to train a classifier we need to have
a labeled dataset. To label the data we make use of
blocklists as they are considered to be our ground truth.
First, we define the blocklists to be used. During our
research, we crawled multiple blocklists. These block-
lists are SpamHaus DBL [50], PhishTank [46], Open-
Phish [44], Toulouse (DDoS, malware, crypto, and phish-
ing) [8], CyberCrime Tracker [55], DigitalSide [13], URL-
haus [56] and phishing army [15]. We have chosen this
set of blocklists as they represent together a diverse set of
domains that are blocked because of malicious activities
related to DDoS attacks, malware, and phishing. It is also
important to know when to consider a domain to be part
of a blocklist. Blocklists contain different types of entries.
We often see IP addresses, FQDNs and full URL paths.
As a consequence, it is often not possible to map a domain
one-to-one with a blocklist. To tackle this issue we use the
Public Suffix List [19], [32] to extract the TLD and SLD
from the blocklist entries. When both the TLD and SLD
from our domain match with the TLD and SLD from the
extracted entries, we consider our domain to be part of a
blocklist.

The next important step is to determine for how long
we need to look into the blocklist after a malicious domain
has been registered. To determine this we collected newly
registered domains for a period of two weeks and looked
up the registration date using RDAP. This data is then
compared against the appearance in blocklists. We unfor-
tunately do not have a precise timing of when domains
are added to the blocklist as our blocklist crawler runs on
a daily basis. We only have information on which day the
domain has been added to the blocklist. For the blocklist,
we initially start by looking at the same period as the
registrations but add two weeks to ensure that there is
time for domains to appear in the blocklists. To provide
a more precise indication of the number of days that we
need to look ahead, we present Figure 3. In this figure, an
Empirical Cumulative Distribution Function (ECDF) plot
shows how many of the blocklisted domains are present in
the blocklist after a given amount of time after registration.

A sharp increase of domains being detected can be
observed for the first few days. Because of this, we
decided to look for the threshold where the amount of
blocklisted domains surpasses 90% for the first time. We
find that this point occurs at the five-day mark indicated as
a green line in the plot. At five days, 91% of the domains
are blocklisted. Because of this, we use a look ahead of
five days for the blocklist.

In addition to measuring the time it takes for malicious
domains to appear in the blocklist, we also investigate
how long it takes before a newly registered domain is
detected using OpenINTEL. For this, we make use of
the findings by Sommese et al. [49]. In this research the
difference in time between the RDAP registration date
and the appearance in CT logs is investigated. Sommese
et al. find that 50% of the newly registered domains are
detected within the first 45 minutes of their existence
and at the one-day interval, more than 98% of the newly
registered domains have been detected. A small increase
after one day can still be observed. Because we work in
daily intervals we choose to look back for two days in our
research. This means that two days are added before our
measurement on top of the already added five days after
the measurement has taken place. We visually represented
this in Figure 4.

Using blocklists as ground truth has its disadvantages.
The ground truth is not perfect and may contain false pos-
itives and false negatives [16]. This negatively affects the
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TABLE 1. PREFIXED DOMAINS

Blocklist Domains Flagged

SpamHaus DBL 58,354
Phishing Army 1,354

PhishTank 740
OpenPhish 240

Tolouse Malware 173
Tolouse Phishing 173

URLHaus 22
DigitalSide 7

Tolouse Crypto 4
CyberCrime Tracker 2

Tolouse DDoS 0

Total Unique 59,329

training of the classifier. When the ground truth includes
false positives and false negatives, it becomes harder for
the classifier to differentiate the classes based on the
labeled dataset. Despite these drawbacks, we currently
rely on blocklists as we have no better alternative available
to label our newly registered domains.

6. Domain Registration Analysis

It is important to identify the domain registration
behavior of the data we collect. The behavior found in
this section is used as a reference point for what we can
expect in our measurements and helps identify possible
differences between malicious and benign domains.

For our analysis, we used two weeks of measurement
data. Over this period, we detected 1.3 million unique
newly registered domains, resulting in, on average, 1.1
newly registered domains being detected per second. Of
these newly registered domain names, 59,329 appeared in
a blocklist, which corresponds to 4.5%.

To gain a better understanding of the contribution of
individual blocklists to this number we show a breakdown
of the count of domain names present in the blocklists in
Table 1. Multiple blocklists may flag the same domain
as malicious resulting in this domain name being counted
for multiple blocklists. Because of this, we added a count
at the bottom of the table indicating the unique number
of domains blocklisted by the blocklists combined. Upon
reviewing the table, it is evident that SpamHaus DBL
is the blocklist that flags the most domain names and
contributes to 98.4% of flagged domain names.

In Figure 5 the quantity of newly registered domains
over time is presented. In the figure, we separated the
domains that ended up in a blocklist from those that
did not. The counts are normalized between zero and
one using the minimum and maximum of each group.
Normalizing the values allows us to compare the shapes of
the two groups despite the significant difference in counts
between them.
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Figure 5. Hourly Registrations (Time = UTC)

We observe a daily cycle in the number of domains
registered. Another interesting observation is that regis-
trations during the weekend periods are lower compared
to other days (20th, 21st, 27th, and 28th of April). This
is especially notable for non-blocklisted domains. When
looking at the blocklisted domains, we also see a small
decrease, but the difference is less significant.

Because the registration patterns of both blocklisted
and non-blocklisted domains show a similar pattern, we
assume that both malicious and benign domains are regis-
tered with a human in the loop. If the process were fully
automated, the registration pattern would look more like
a flat line and be a constant stream of registrations.

We also observe spikes where the number of regis-
trations is significantly higher than usual. These spikes
may indicate bulk registrations. Research has shown that
the ability to register many domain names in bulk aids
malicious actors in their malicious practices [33].

We examined the high spike of malicious domains
between April 29th and 30th. Upon closer analysis of
the spike, we found that some bulk registrations occurred
between 12:00 and 12:30 on April 29th. By manually ex-
amining the blocklisted domain names within this period,
we identified three types of bulk registration. The first
type uses a prefix followed by a random set of letters and
numbers or numbers only. The second group consists of
domain names with a fixed length of seemingly randomly
generated numbers. The third type is a specifically chosen
domain name often targeting widely used services such as
postal services. Similar-looking domain names are often
registered at different TLDs or with minor name changes.
The groups that we derived from the given time interval
are available in Appendix C. The registrations are often
performed within a second or a few seconds of each other.

In the same time period, we observed that do-
mains with similar patterns are also present in the non-
blocklisted set. Both purely numeric and prefixed domains
are present. We also found targeted domains, such as
“ceskaposta-cze.top”. The occurrence of purely numeric
domains is significantly less compared to the blocklisted
set. Based on these results, we cannot directly conclude
that all numeric domains are malicious, or that bulk regis-
tration is a direct indication of malicious intent. However,
the presence of domains such as “ceskaposta-cze.top” in
the non-blocklisted set suggests that it is likely that the
non-blocklisted domain set still contains domains that
should be in the blocklist. Therefore, blocklists are not



TABLE 2. DOMAIN FEATURES

Feature

TLD
SLD length

SLD digit count
SLD vowel count
SLD dash count

SLD entropy
Uses IDN

perfect for capturing all the malicious domains.

7. Feature extraction

To learn from the data we collect, we need to extract
features that help machine-learning classifiers differentiate
between malicious and benign domains. We categorize the
features into seven different categories. The features used
consist of self-engineered features and features used in
previous research.

7.1. Domain Name Features

The first category is domain name features. This cat-
egory contains features that can be obtained exclusively
from the domain name. Previous research has shown that
lexical features based on the domain name are valu-
able in distinguishing between malicious and benign do-
mains [23]. The domain features that we extract are listed
in Table 2. The first feature, TLD, contains the top-level
domain of the newly registered domain. The SLD features
capture details about the characters present in the SLD and
its length. The digit count records the percentage of digits
in the SLD, the vowel count reflects the percentage of
vowel characters in the SLD, and the dash count contains
the percentage of hyphen characters in the SLD. We also
calculate the entropy of the SLD as a measure of how
random the SLD is.

These SLD features are already used in existing liter-
ature [2], [5], [40], [47]. The features are applied to the
SLD Since this is the part of the domain name that the
registrant can completely choose themselves. Additionally,
we have added a feature to check if the SLD makes use
of an internationalized domain name (IDN). IDNs are do-
main names that use characters other than the Letter-Digit-
Hyphen (LDH) subset (a-z), (0-9) or -. We can detect these
domains by checking if the SLD starts with the ASCII
Compatible Encoding (ACE) prefix xn--. We included
this feature because research has shown that IDNs can
be misused to create domains that look indistinguishable
from already existing domains. These domains are often
referred to as semantic homographs and make use of
special characters that closely match with characters in
the LDH subset [60].

7.2. Response Features

The second category describes response features.
These features are created from the responses collected
by our crawler using asynchronous HTTP requests. This

TABLE 3. RESPONSE FEATURES

Feature

Redirects (min, max, avg, change count)
Final destination (SLD, domain)

Errors (timeout, failures)
Server type

Content type
Content extra

First available offset
Last available offset

category is introduced as we expected to see similar
behavior for multiple domains such as hosting the same
HTML and using similar configurations. The features that
are extracted are presented in Table 3. The first set of
features in this category are redirect features. During our
measurement, we follow all redirects and store the chain
of redirects. We calculate the minimum, maximum and
average amount of redirects for each domain over all mea-
surements. We also count how often the chain of redirects
changes. Other features related to redirects are the final
destination features. We have two of these features the first
feature checks if the SLD is in the final destination when
following the redirects. An example of a “True” value
here would be from “example.nl” redirected to “exam-
ple.com”. The second feature checks if the entire domain
is in the final destination. Thus “example.nl” should be
in the final destination. To identify the architecture of
the server used, we collect the server type and content
type from the response header. We store extra information
about the content type, such as the charset, as a separate
feature. We also store at which measurement the domain
became first available and if it happens when the domain
became unavailable. The last available offset is useful to
detect early deletions of domains. If a domain becomes
unavailable in between the available offsets a classifier can
still learn from this as the measurement failure count is
increased.

7.3. DNS Features

The third category is DNS features. These features
are created from the collected DNS responses. The DNS
response features are listed in Table 4. The first features
are extracted from the A records. The A records contain
the IPv4 addresses of the domain name. We store the
minimum maximum and average amount of IP adresses
in each query. Additionally, we count how often the set of
IPv4 addresses per query changes and we store the time
to live values for the DNS records. Exactly the same is
done for the AAAA records. The AAAA records store the
IPv6 addresses. The NS records contain information about
how often the IPv4 and IPv6 addresses of the nameservers
change. The last DNS feature we check concerns the MX
record. The existence of the MX record indicates that the
domain is set up to use Email.

7.4. RDAP Features

The fourth category contains RDAP features. These
features are extracted from the RDAP responses. We send



TABLE 4. DNS FEATURES

Feature

A (min, max, avg, time to live, change count)
AAAA (min, max, avg, time to live, change count)

NS (ipv4 changes, ipv6 changes)
MX

TABLE 5. RDAP FEATURES

Feature

Registrar
Uses DNSSEC

an RDAP request for each domain directly after it is
detected by OpenINTEL. The RDAP features are listed in
Table 5. There are two features in this category. The first
feature is the registrar. The registrar is the party that aided
the registrant in registering the domain name. The second
feature is “Uses DNSSEC”. This feature indicates if the
domain makes use of the DNSSEC extension. DNSSEC
provides a cryptographic security layer helping DNS to
prevent DNS spoofing. This feature provides information
regarding security measures set up for domains.

7.5. IP Features

In the fifth category, we focus on IP-based features. We
gather additional information based on the IPs obtained
in our DNS measurements. We utilize the IP2Location
DB23 dataset [30] to include location, ISP, and usage
type data. Additionally, we leverage CAIDA Prefix2AS [7]
to map IPs to the corresponding Autonomous System
Numbers (ASNs). The features belonging to this category
are presented in Table 6. Because a domain can have
multiple DNS records storing different IPs, the features
in this category are stored as a set of unique values.
This allows us to detect if a domain is hosted in multiple
countries or makes use of multiple ISPs.

7.6. Registration Time Features

The sixth category focuses on features related to the
time of registration. For these features, we examine the
domain registration activity in a specific time window
before a domain is registered, comparing it to other do-
mains that have already been registered. In Section 9.1
we will determine the optimal window size. The fea-
tures are presented in Table 7. Within the window, we

TABLE 6. IP FEATURES

Feature

Countries
Regions
Cities
ISPs

Usage types
ASN numbers

TABLE 7. REGISTRATION TIME

Feature

Domain count
Matching HTML (percentage)
Matching registrar (percentage)
Matching registrant (percentage)

Matching server (percentage)
Domain distance (min, avg, bins)

TABLE 8. FQDN FEATURES

Feature

FQDN count
FQDN length (min, max, avg)

FQDN vowel count (min, max, avg)
FQDN digit count (min, max, avg)
FQDN dash count (min, max, avg)
FQDN dot count (min, max, avg)

analyze similarities between registrations. We record the
number of domains registered within the window. Us-
ing this count, we calculate the normalized values for
domains using the same registrar, registrant and server
and domains hosting the same HTML. Additionally, we
calculate the normalized Levenshtein distance between the
SLD of the newly registered domain and the domains
registered within the window [52]. From this distance, we
calculate the minimum and average distance. Furthermore,
we categorize all distance results into ten equally sized
bins, indicating the percentage of domains falling within
specific distance ranges. The features in this category are
designed to detect bulk registrations and identify regis-
trations that are similar, potentially indicating they are
initiated by the same entity. Identifying bulk registrations
can be useful as previous research identified that bulk
registration lowers the bar for abuse and can be useful
for malicious actors [33].

7.7. FQDN Features

The last category concerns FQDN features. This is a
novel category for determining malicious domain names
and, as of our knowledge, has not been used in previous
research. The novelty here is that in comparison to other
research, we also have access to information about FQDNs
registered for a domain name. Because we make use of an
approach based on certificate transparency, we do not only
know information about issued certificates for domain
names, but we also see information about fully qualified
domain names. The first feature ”FQDN Count“ stores
the number of FQDNs found for the newly registered
domain name. We also extracted similar features as the
domain features which we now calculate over all FQDNs
belonging to a domain. Because this can result in multiple
values per domain we calculate the minimum maximum
and average for each of these features. In addition, we
added a dot (.) count to calculate how many levels the
FQDNs consist of.



TABLE 9. CLASSIFIER RESULTS

Metric
Classifier Precision Recall PRC ROC

LR 0.76 0.34 0.54 0.89
RF N/A∗ 0.0 0.32 0.82

GBT 0.76 0.35 0.55 0.87
SVM 0.80 0.32 0.51 0.84

∗ N/A indicates that we could not calculate the value. This is because
a division by zero occurs in the formula.

8. Classifier Selection

In this section, we determine the best classifier by
training multiple classifiers and analyzing their perfor-
mance. All classifiers are trained using a two-week train-
ing set and a validation set of the following week.

We test four different classifiers. These classifiers
are Logistic Regression (LR), Random Forest (RF),
Gradient-Boosted Trees (GBT) and Support Vector Ma-
chine (SVM). In this section, we analyze the results of
these classifiers to determine the best classifier to use.
The results of these classifiers are presented in Table 9.

In our research, we make our decisions based on the
area under the Precision-Recall Curve (PRC). We use
this scoring metric because it is less sensitive to class
imbalance. This is because the area under the PRC does
not take into account the number of true negatives in its
calculation (how well the classifier can predict a domain
is benign). As a result, it gives a better representation
of how well the classifier is able to predict if a domain
is malicious. In other research [5], [23], they make use
of the ROC as a scoring metric. In the case of the area
under the ROC, the number of true negatives is also used
in the calculation. Because the majority of the values in
our set are labeled as benign, predicting only the benign
class results in many true negatives resulting in a high
area under the ROC while the PRC would be low. The
research by Cook et al. describes in depth why the area
under the PRC is preferred over the area under the ROC in
case of a class imbalance [11]. To be able to compare with
related research, we also added the area under the ROC
score in our tables and plots. Keeping this into account,
we conclude that the GBT classifier is best suited for our
goal as it has the highest PRC.

In the baseline analysis we have already identified a
class imbalance. A class imbalance can have a negative
impact on the performance of a classifier because when
one class is more present, the classifier is more likely
to predict the majority class. We explore the effects of
two approaches to counter the imbalance. The first ap-
proach makes use of weighted training. In this approach,
we ensure that each class has an equal weight of 50%.
The second approach involves undersampling, where a
random subset of the majority class (benign) is sampled
to match the number of samples of the minority class
(malicious). While undersampling may result in loss of
information during training, it can help prevent overfitting
on the majority class. Given that undersampling results
in some information loss, there is a possibility of varied
performance when different sets are sampled. To account

TABLE 10. BALANCED CLASSIFIER RESULTS
(W = WEIGHTED & U = UNDERSAMPLED)

Metric∗
Classifier Precision Recall PRC ROC

LR (w) 0.25 0.79 0.48 0.89
LR (u) 0.25/0.007 0.78/0.010 0.40/0.02 0.89/0.005
RF (w) 0.19 0.65 0.33 0.84
RF (u) 0.20/0.026 0.62/0.025 0.29/0.05 0.84/0.010

GBT (w) 0.21 0.78 0.45 0.90
GBT (u) 0.21/0.004 0.78/0.002 0.46/0.01 0.90/0.002
SVM (w) 0.26 0.79 0.41 0.89
SVM (u) 0.27/0.002 0.79/0.003 0.40/0.01 0.89/0.002

∗ The results of undersampling are based on five training rounds and
are represented as (average/standard deviation)

for this, we conduct five measurements to obtain the un-
dersampled results and calculate the average and standard
deviation. This approach provides an understanding of the
performance impact when a different set is sampled. The
results of our balancing approaches for each classifier are
presented in Table 10.

Based on the results for countering the imbalanced
dataset, we observed that the PRC decreased for all clas-
sifiers except the RF classifier. Notably, the imbalanced
GBT classifier still has the highest score. However, we
noticed a significant difference in precision and recall. In
the case of the imbalanced dataset, precision was high, but
recall was low, while in the balanced datasets, recall in-
creased significantly, but precision decreased. This trade-
off between precision and recall is known as the precision-
recall trade-off and will be discussed more elaborately in
Section 10.3. For now, we continue with the classifier that
has the highest PRC score, which is the imbalanced GBT
classifier with an area under the PRC of 0.55 as shown in
Table 9.

9. Classifier Tuning

9.1. Correlation Window

For our current scores, a correlation window of five
minutes is used to detect bulk registrations. This five
minutes is taken from the related work PREDATOR [23].
In PREDATOR a window of five minutes is used as
they receive the newly registered domains in batches of
five minutes. We believe that the performance could be
improved by selecting a more appropriate window size
that fits our data. Since the data we collect is continuous,
we calculate a unique correlation window for each domain
registration.

To determine the optimal correlation window size, we
use one week of training data and one week of validation
data. The correlation features are calculated for window
sizes of 1, 2, 5, 10, 20, and 30 seconds and 1, 2, 4, 5, and
6 minutes. We selected these values because we anticipate
that the most effective window size falls within the sec-
onds range. This expectation is based on the observation
that similar domain names are often registered within a
few seconds. The minute measurements are added to make
a comparison with the current five-minute window size.
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Figure 6. Window size performance scores

TABLE 11. TUNED CLASSIFIER RESULTS

Metric
Tuning Precision Recall PRC ROC

maxIter=40
& maxDepth=10
& stepSize=0.05 0.82 0.46 0.66 0.92

For each window size, we trained a classifier and cal-
culated the performance scores of the area under the PRC
and the area under the ROC. The results are presented in
Figure 6. In the figure, we observe a slight increase in
performance for the Area under the PRC and the Area
under the ROC curve at a window size of two seconds,
after which the performance decreases again and shows a
more constant trend for both scores. Since a window size
of 2 seconds gives the best performance, we adapt our
window to this size.

9.2. Hyperparameter Tuning

We expect to improve the performance of the classifier
by tuning its hyperparameters. The available hyperparam-
eters can vary depending on the classifier used. For the
GBT classifier, we use the depth, iterations, and step size.
To find suitable hyperparameter values, we use cross-
validation to validate whether the changes improve the
classifier.

The untuned hyperparameters have a default value of
five for maximum depth, 20 for maximum iterations, and
0.1 for the step size. The classifier is evaluated based on
the area under the PRC. The results of the cross-validation
indicate that the best parameters are a maximum depth of
ten, maximum iterations of 40, and a step size of 0.05.
In Table 11 the results are presented. We observe that the
recall, precision, PRC and ROC scores all have increased
by tuning the hyperparameters. All tuning parameters are
at the maximum or minimum value of the cross-validation
settings leaving room for improvement. Cross-validation
is time-consuming and finding the optimal value can be a
lengthy process. Increasing the depth or maximum num-
ber of iterations significantly increases the training time.
Because of the already long training time, we settled with
the current best-found hyper-parameters. This results in
an increase of 0.11 in the area under the PRC.

TABLE 12. IMPACT OF THE MEASUREMENT COUNT ON THE
CLASSIFIER PERFORMANCE

Metric
Measurements PRC ROC Domains Block

detected -listed

1 measurement (0s) 0.67 0.92 478,540 26,480
5 measurements (3h) 0.66 0.92 547,477 27,949

10 measurements (48h) 0.66 0.92 621,208 31,675

9.3. Measurement Count

Since we are performing ten measurements over a 48-
hour period, we want to understand how the number of
measurements affects the performance of our classifier. To
test this, we configured our classifier according to the best
tuning we previously identified. Since forming the dataset
and training the classifiers takes a significant amount of
time, we use an approach where we try to find an optimum
between the number of measurements and the best per-
formances of the classifier. In this approach, we compare
three measurement groups. The first measurement only,
the first five measurements, and all ten measurements. The
results are depicted in Table 12.

Upon reviewing the scores, we notice that the scores
are very similar for each group of measurements. This
suggests that the number of measurements does not sig-
nificantly affect the results. However, this is not entirely
accurate. In our approach, domains that failed measure-
ment are excluded from the results. Taking this into
consideration, we observe that the number of measurable
domains after ten measurements is greater than at the first
measurement. This is expected, as some domains may be
inaccessible when they are just registered, for example, the
DNS server might not resolve the domain yet. After 48
hours, we observe a total of 621,208 measurable domains.
Right after detection, at the 0-second interval, we observe
478,540 domains, which amounts to 77% of the domains
directly after registration. When considering the block-
listed domains within this subset, we observe 31,675 after
48 hours and 26,480 directly after registration, which is
83.6% of blocklisted domains. From this, we can infer that
even though we are able to identify more domains over
a 48-hour period, we can already observe close to 80%
of the blocklisted domains after the initial measurements
and make predictions about them with a comparable area
under the PRC and area under the ROC curve. Looking
at the number of domains and blocklisted domains at the
three-hour measurement mark, we see that the amount
of domains detected has already significantly increased,
showing that training classifiers at different timesteps
allow for an increase in predictions over time. To take
into account as many domains as possible we make use
of all ten measurements.

9.4. Train Time

Another aspect we explore is the impact of varying
sizes of the training data on performance. We test different
training set sizes to ensure a fair comparison using the
same validation set. We use data from one to 14 days
before the validation set as a train set. The results are
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Figure 7. Scores on validation set based on x days of training
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Figure 8. Scores of the classifiers trained on a subset of the features

outlined in Figure 7. In the figure, we can see that the area
under the PRC increases until five days of training. For
the area under the ROC curve we also observe a slight
increase until five days. After the five days both scores
stay consistent. This indicates that the data added after
these five days is similar to the data already present in
the training set and does not increase the performance of
the classifier when added. Because of this finding, we use
five days of training in the next steps.

9.5. Feature Analysis

Currently, many features are used, some of which may
have no impact on the prediction. The GBT classifier we
use has the ability to provide feature importances.

To determine which features are important we order
the features based on their feature importance and train
several classifiers using subsets of features. We begin with
the top five significant features and then add the next five
important features in each iteration until all features are
included. In Figure 8 the results of the area under the ROC
curve and the area under the PRC using the validation set
are presented. We observe that the score increases up to
the first 25 features. We present the top 25 features in
Table 13

We analyze these top 25 features further. The first two
features, “registrar” and “isps” have significant importance
compared to other features in the list.

The first feature group we examine is the registrar.
This feature consists of 965 unique registrars. The three
registrars with the highest feature importance are pre-

TABLE 13. TOP 25 FEATURES

Feature Importance

registrar 0.165
isps 0.131
tld 0.054

server type 0.052
content type 0.042

country codes 0.037
NS A changes 0.036

avg A TTL 0.036
max A TTL 0.022

NS AAAA changes 0.021
regions 0.020

max normalized fqdn dash count 0.020
sld len 0.017

min fqdn len 0.016
cities 0.016

max normalized fqdn dot count 0.016
A changes 0.015

max normalized fqdn digit count 0.015
html changes 0.014

unreachable offset 0.014
min normalized fqdn digit count 0.013

timeouts 0.013
connection failures 0.012

avg normalized fqdn dot count 0.011
normalized sld digit count 0.009

sented in Table 14. We observe that NICENIC holds the
most significant feature importance, followed by Name-
Silo and PublicDomainRegistry (PDR). It is noteworthy
that these registrars are also found in the PhishingLand-
scape paper [1]. Where NiceNic is presented as the reg-
istrar with the highest ratio of phishing domains, and
NameSilo and PublicDomainRegistry as the first and sec-
ond registrars with the highest number of phishing do-
mains. High feature importance indicates that the feature
contributes significantly to distinguishing malicious and
benign domains. Furthermore, a high feature importance
does not imply that it can single-handedly distinguish the
classes well. However, in combination with other features,
it can play a major role in separating the classes into
subgroups. Table 14 also provides the counts of how often
the registrar occurs as blocklisted and as non-blocklisted
along with the percentage of domains being blocked for
this registrar. Notably, 91.8% of the newly registered
domains of NiceNic are present in a blocklist, confirming
it is a good predictor and showing that the feature is
likely to distinguish between malicious and benign well
on its own with reasonable accuracy. Looking at NameSilo
and PDR, we observe a significantly lower percentage
of blocklisted domains, thus requiring additional features
to correctly classify domains using these registrars. The
results imply that certain registrars are more likely to host
malicious domain names compared to other registrars.
However, even when the likeliness of hosting malicious
domain names is low for a registrar the registrar can still
be a valuable feature to classify a domain as malicious.

The next feature we analyze is the ISP feature which
consists of 3,639 unique ISPs. The top three ISP features
are presented in Table 15. We observe that Unified Layer
(UL) has the highest feature importance, followed by
LIMENET and IP Khnykin Vitaliy Yakovlevich (IPK),
which have very similar feature importance. In the table,



TABLE 14. TOP THREE REGISTRARS

Registrar Importance Blocklisted Not Percentage
blocklisted blocked

NICENIC 0.021 993 89 91.8
NameSilo 0.014 1489 10068 12.9
PDR Ltd 0.013 989 8221 10.7

TABLE 15. TOP THREE ISPS

ISP Importance Blocklisted Not Percentage
blocklisted blocked

UL 0.0113 467 3923 10.6
LIMENET 0.0096 275 17 94.5

IPK 0.0094 70 401 14.9

it is visible that both UL and IPK do not have a high
percentage of being blocklisted, making them features
unable to effectively classify malicious domains based
solely on the ISP. When looking at the LIMENET ISP,
we can see that 94.5% of the domains in the training set
connected to this ISP end up in a blocklist.

It is noteworthy that UL has a higher feature impor-
tance compared to LIMENET. This can be explained by
the fact that UL is a more common ISP and, in combina-
tion with other features, is able to extract more malicious
domains compared to using LIMENET, making the UL
feature more important for decision-making. These results
imply that some ISPs are more likely to host malicious
domain names compared to other ISPs. However, even if
the likeliness of being malicious for an ISP is low it can
still be valuable to aid the classification in predicting a
domain to be malicious.

For both the “registrar” and “isps” feature we have a
more elaborate plot showing the top 20 importances in
Appendix D. From these plots, we derived that we were
most interested in the top 3 for both features.

Analyzing the other features present in the top 25, we
notice that the domain and FQDN features appear multiple
times. These features are based on the lexical aspects
of the domain name or FQDN. The frequent appearance
of these features indicates that the lexical aspects play
a significant role in determining whether a domain is
malicious. These features have in common that they are
known at the time of registration. Although there is no
previous research about the impact of lexical features
of newly observed FQDNs, our observation that lexical
features of domain names impact the decision-making of
the classifier is confirmed by previous research [23].

Other impactful features include the server type and
content type obtained from the response of the target
domain. Moreover, location features such as country codes
and cities collectively have a significant impact. In terms
of DNS features, we observe that the number of name
server changes and the time to live of the A record also
show a significant impact.

Since we found the 25 features presented in Table 13
contribute the most and adding the other features does
not improve the classifier scores, upcoming steps only use

Validation Train (5 days) Validation (7 days)

Test (7 days)Test Train (5 days)
Timeline (days)

0 5 7 12 19

Figure 9. Timeline showing the difference in time between validation
and test

TABLE 16. VALIDATION AND TEST SCORE COMPARISON

Metric
Tuning Precision Recall PRC ROC

Validation 0.78 0.47 0.65 0.92
Test 0.81 0.44 0.63 0.91

these 25 features.

10. Evaluation

10.1. Test Set Performance

Our decisions so far have been based on a validation
set, which raises the concern that the choices made to
tune the classifier might be biased towards this particular
set. To verify the reliability of our classifier, we use a test
set consisting of unseen data. We train the classifier on
the last five days of the validation set and test it on the
following unseen week, as shown in Figure 9. This results
in a train-test split of about 42% train data and 58% test
data. The scores for both the validation and test set are
listed in Table 16. We observe that the performance on the
validation and test set is very similar. This suggests that
the performance of our classifier is robust and can make
predictions with similar accuracy on unseen data. In the
test set, there are a total of 597,061 domains. It takes
69 seconds to make predictions for all these domains.
This means that, on average, our classifier can classify
a domain in less than 0.12 milliseconds.

10.2. False Positives

Our assumption is that blocklists are not complete and
miss malicious domains. This would mean that some of
our false positives might actually be true positives. Since
the number of false positives is not too large (2,702), we
further analyze them. We came up with four approaches
to determine if our false positives are likely to be true
positives.

The first approach involves checking the blocklist for
a longer period. Currently labeling makes use of looking
in the blocklist two days before the measurement to five
days after. While this covers most of the domains in
the blocklist, there is still a percentage that we miss. To
address this, we decided to examine the blocklist data over
the entire period we collected the blocklist data for our
research. This measurement starts three weeks before the
first value in the test set and extends for over a month
after. By using this approach, we found 38 domains that
were blocklisted outside our window.

The second approach involves using the VirusTotal
API [59]. We waited for over a month after measuring the
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domains and then analyzed the false positives. VirusTotal
provides us with information on how frequently domains
are flagged as malicious or suspicious by other threat
intelligence services and blocklists. We use this data to de-
termine if the domains in our false positives are considered
malicious by other parties that we previously did not take
into account and when more time has passed. Through
this approach, we discovered that 366 out of the 2,702
false positives have been identified as malicious, while 53
are listed as suspicious only. In our analysis, we treat both
malicious and suspicious as malicious. Using VirusTotal,
we were able to identify 419 domains in the false positives
that should likely be classified as true positives.

The third approach involves checking the false positive
domains against the set of newly registered domain names
labeled as blocklisted within the same test set. We cross-
joined the false positives with the blocklisted domains and
calculated the normalized Levenshtein distance between
the SLDs of the domain names [52]. For each false pos-
itive, we stored the blocklisted domain with the shortest
distance to the false positive. When the distance is very
small, it is likely that the domain has been missed by
the blocklist. For example, we observed multiple domains
with a distance of zero, indicating that they had exactly the
same SLD as a newly registered domain that is blocklisted.
We also often saw registrations with the same prefix but
a few digits incremented.

To visualize the amount of false positives present be-
low a certain threshold, we created an ECDF plot, shown
in Figure 10. The figure shows small increases in domains
and a significant increase at 0.2. Therefore, we set our
threshold to consider all domains before this significant
increase at 0.2 to be considered malicious, resulting in a
total of 158 domains below this threshold.

Our final approach is a manual search for well-known
companies and flagging domain names that could poten-
tially be used in phishing campaigns. We look for domains
that closely resemble legitimate companies or services,
such as those related to post offices. Our search focused
on common words and known company names such as
“post”, “mail”, and “amazon”. Although these domains
are not guaranteed to be registered for malicious purposes.
For example, they can be registered as preventive mea-
sures by the company itself. The registrations of these
domains do pose a risk to the companies and are likely
undesired. In total, we found 108 of these domains that
could be used for malicious activities such as scams or
phishing.
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Figure 11. Plot showing the precision-recall trade-off

After comparing the results from all four methods,
we found evidence supporting our initial assumption that
malicious domains are likely present in our false positives.
When we combine all four approaches, we identify a total
of 620 domains. It is important to note that this number is
lower than the sum of all four approaches because there is
an overlap in the results. This means that some domains
are flagged as malicious by multiple approaches. Out of
the 2,702 false positives, we have evidence that 620 of
them are likely malicious. This implies that the precision
of our classifier is expected to be higher than the score
we obtained from our previous tests.

10.3. Precision Recall Trade-Off

We have identified that our classifier introduces some
false positives. Therefore, it is recommended to manually
inspect the positive predictions made by the classifier. In
this section, we discuss how the amount of false positives
introduced can be adjusted. This could be helpful for reg-
istries or registrars who wish to use the system and want
to adjust the number of false positives according to their
available analysis capacity in their work processes. For ex-
ample, it could be used to automatically request additional
verification from registrants. Increasing the amount of true
positives predicted (recall) also increases the number of
introduced false positives. As a result, registry or registrar
operators may need to manually verify more domains,
increasing their workload. If the workload becomes too
high, it could become unmanageable.

In this section, we demonstrate how the precision-
recall trade-off can be used to adjust the number of false
positives introduced. We apply a balancing factor to the
GBT classifier, starting with a one-to-one weight, which
is fully imbalanced, and then increasing the weight of
blocklisted domains from one to 24. We chose 24 because
it aligns with 4% of malicious domain names present in
the dataset which is close to the expected 4.6% blocklisted
domains.

In Figure 11 we observe that the area under the PRC
and the area under the ROC remain relatively unchanged.
When the weight of blocklisted values is increased during
training, more true positives are detected, but also more
false positives are introduced. This adjustment can be used
to tailor the number of acceptable false positives. For our
test set, we observe that the precision starts at 81% with
a recall (detection rate) of 44%. By increasing the recall
to 79% the precision decreases to 22%.



11. Limitations and Future Work

In this section, we discuss the limitations of our system
and how it can be improved in the future. Our system
uses OpenINTEL to detect domain names. Research by
Sommese et al. [49] shows that rapid DNS updates can
improve detection speed. OpenINTEL data is publicly
available, we expect that utilizing rapid zone updates
would result in faster detection. However, gaining access
to these files can be time-consuming and difficult. There-
fore, we advocate for an open environment with rapid zone
file updates accessible to the public at a frequent time in-
terval, such as every five or ten minutes. This information
is valuable for early classification of malicious domain
names, preventing harm, and making the Internet a safer
place.

One of the major limitations in our research is the lack
of a reliable ground truth. Using blocklists as a ground
truth is not ideal for multiple reasons. It is often unknown
how the blocklists are created, and the reasons why a
domain shows up in a blocklist are missing. Furthermore,
blocklists, as ground truth, also miss a significant number
of malicious domains that never end up in a blocklist, even
though they are malicious. This has a negative impact
on both the training and evaluation of the classifiers. It
negatively impacts training because malicious domains are
present in the benign class, which affects the distinction
between the two classes. Also, when evaluating the results,
they are not fully reliable. A low precision score might
mean that the classifier is actually performing very well
when the false positives turn out to be true positives. For
future work, it would be a good idea to optimize the
ground truth. Approaches that try to optimize the ground
truth could have a positive impact on this research and
may improve scores. An example of this is removing
parked domain names from the training data, as proposed
by Lloyd et al. [39].

We have not conducted an extensive system compari-
son with existing literature. Two related works, PREDA-
TOR and Premadoma [12], [23], are very similar, but
unfortunately, we do not have access to their source code
or the ability to run our data through their implementa-
tion. Therefore, our comparison is limited to the recall
and false positive rate results presented in their papers.
PREDATOR claims a recall of 70% for the .com TLD
and 61% for the .net TLD with a false positive rate of
0.35%. Premadoma achieves a recall of 66.23% with a
false positive rate of 0.30%. In comparison, our classifier
achieves a recall of 44% with a false positive rate of 0.47%
for all TLDs. There could be several reasons for this
difference in performance. The results of the related works
show that the recall can vary significantly per TLD. Our
research includes all TLDs, unlike the related works that
focus on specific TLDs. This makes our classifier more
versatile, but it may come at the expense of recall. Our
research is conducted years after the work we compare
to. In the meantime, malicious actors may have changed
their approach to avoid detection. Without comparing the
exact same data across these implementations, we cannot
make a proper performance comparison. Further research
is needed to understand how our implementation compares
to other existing works.

In our research, we conducted hyperparameter tuning
using cross-validation. We discovered that these parame-
ters greatly impact the performance by increasing both
precision and recall. Due to the long time it takes to
perform cross-validation, we decided not to add extra
parameters that would increase the training time of the
classifiers even more. However, we have not yet deter-
mined the point at which the results start to decrease, or
the improvements become less significant. We anticipate
that further tuning of the hyperparameters will likely lead
to improvements in the scores.

Our methodology describes a measurement setup that
performs ten measurements for each input value over a
period of 48 hours. In the results, we have seen that the
number of measurements does not really make a differ-
ence in classifier scores. Also, analyzing the features re-
sulted in the most important features not being dependent
on multiple measurements. Additionally, we have seen
that performing measurements at a later time frame does
contain more domains with a successful measurement.
We expect that some domains are not fully active yet
at the first few measurements and become active later in
time. Because of this, we expect an approach where a
measurement is performed once, and if this measurement
fails, a new measurement will be performed at a later time
is better. This methodology of measurement will decrease
the amount of traffic introduced by our crawlers while we
expect the results to stay the same.

In our research, the classifier performance is deter-
mined by predicting a one-week period. In future research,
we aim to examine how the performance of our classifier
is affected when predicting for shorter or longer periods.
This investigation will provide insight into the duration for
which the same classifier can be utilized before requiring
retraining.

12. Conclusion

In this research, we developed a system to detect
malicious domains through active measurement of newly
registered domain names. Our approach demonstrates the
potential for identifying malicious domain names close
to their registration, thereby mitigating risks posed by
malicious domain registrations.

Our findings show that our system is able to classify
domains based on registration data, DNS responses, and
characteristics collected by our web crawler. However,
we also identified areas for improvement. One of these
improvements is our detection timeliness. Although our
system can be quicker compared to passive DNS, the
current reliance on OpenINTEL does show a delay in
domain detection compared to rapid zone updates. We aim
to address this by advocating for more accessible rapid
zone updates.

Furthermore, there is a trade-off between precision and
recall. When striving for high precision, a significant num-
ber of malicious domains may slip through undetected.
On the contrary, prioritizing high recall to catch more
malicious domain names can negatively impact precision,
resulting in more false positives.

In any scenario, false positives can be present, which
makes the system less usable as a fully automated system
for flagging malicious domains. We recommend using the



system as an indicator for malicious domains, for instance,
registrars could use it to request additional verification
of the registrant. In addition, involving a human in the
evaluation process is a good solution. The amount of work
required can vary significantly depending on the registrar.
Therefore, it is beneficial that our classifier is adjustable
to find the right balance between recall and precision that
suits the registrar.
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A. Ethics

Our research makes use of active measurements. This
means that by performing this research, extra internet traf-
fic is created. This may require extra resources from the
servers that are actively measured. During our research we
kept this into account. We limit the amount of requests to
ten measurements per domain or FQDN and only measure
within a period of 48 hours after registration. Depending
on the amount of FQDNs and domains linked to the same
server this can result in our system sending more requests
to the same server. To investigate how the domains and
FQDNs change over time it is required that we perform
these measurements. The measurements consist of a get
request. We do not spider the webpages but only visit
the main page resulting in limited traffic created by our
crawler. The server conducting the measurements hosts a
webpage explaining the purpose of the research and how
to request removal from the measurements if there are
objections. If removal is requested, we will ensure that
these targets are excluded from any future measurements.
The system makes use of machine learning to flag domains
as malicious. We have seen that our system can introduce
false positives. If used in practice, some domains may be
flagged as malicious even though they are not. In case
of implementation, we suggest having an appeal system
where requests can be sent for flagged domains to be
removed if misclassified. Data made public by this re-
search can contain personal information such as names of
registrants. This information is already publicly available.
Thus, our research does not pose an extra risk by making
this information publicly available.

B. Data Availability

The newly registered domain stream used for this
research has already been made publicly available in pre-
vious research [49]. Similarly, the newly observed FQDN
stream is also available from the same source. These
streams are needed to reproduce our research. We will not



TABLE 17. PREFIXED DOMAINS

Measure Date Domain

2024-04-29 12:08:47.011 bxbx9.vip
2024-04-29 12:08:47.023 bxbx1.vip
2024-04-29 12:08:47.027 bxbx10.vip
2024-04-29 12:08:47.042 bxbx5.vip
2024-04-29 12:08:47.050 bxbx4.vip
2024-04-29 12:08:47.091 bxbx7.vip
2024-04-29 12:08:47.091 bxbx8.vip
2024-04-29 12:08:47.121 bxbx3.vip
2024-04-29 12:08:47.307 bxbx6.vip
2024-04-29 12:08:47.426 bxbx2.vip
2024-04-29 12:27:11.802 htmdc.vip
2024-04-29 12:27:11.836 htxfo.vip
2024-04-29 12:27:12.361 ht2o3.vip
2024-04-29 12:27:14.503 hto4v.vip
2024-04-29 12:27:22.880 ht6rg.vip
2024-04-29 12:27:45.272 htg0v.vip
2024-04-29 12:27:45.811 htw4m.vip

make available the code of the crawlers we used as these
are directly built up on our measurement environment,
including spark and S3 storage configurations. We will
make available the final model of our best-performing
setup so our scores can be verified.

C. Identified Bulk Registration Patterns

In this appendix, we display domain names that are
registered in close proximity to each other, indicating bulk
registrations. We have identified three patterns. The first
pattern consists of prefixed domains, which are presented
in Table 17. The second pattern involves fully numeric
domains, as presented in Table 18. It is important to
note that the numeric domains often appear to have high
randomness, but upon examining the registration times,
we often find that they are registered in groups within
a short period, often within seconds. The last group we
identified is targeted domains. These domains target a
specific company or service and often closely resemble
existing company names. The results are presented in
Table 19.

D. Extra Feature Importance Figures

In this appendix, the top 20 most important registrars
and ISPs are listed. The top 20 registrars can be found in
Figure 12, representing 80.6% of the total registrar impor-
tance. Similarly, the top 20 ISPs are shown in Figure 13,
accounting for 64.9% of the total ISP importance.

TABLE 18. NUMERIC DOMAINS

Measure Date Domain

2024-04-29 12:04:39.831 62404.ooo
2024-04-29 12:04:40.614 42530.ooo
2024-04-29 12:04:50.643 49883.ooo
2024-04-29 12:04:51.560 88618.ooo
2024-04-29 12:04:52.623 26833.ooo
2024-04-29 12:05:07.601 74193.link
2024-04-29 12:05:16.930 57041.link
2024-04-29 12:05:17.258 47164.link
2024-04-29 12:05:17.261 48142.link
2024-04-29 12:05:32.817 88862.link
2024-04-29 12:06:37.005 965574.com
2024-04-29 12:06:38.214 845731.com
2024-04-29 12:06:55.895 884020.com
2024-04-29 12:06:55.896 263292.com
2024-04-29 12:07:06.894 509648.com
2024-04-29 12:07:50.896 719228.com
2024-04-29 12:08:01.897 991691.com
2024-04-29 12:18:06.627 131961.net
2024-04-29 12:18:38.061 309497.net
2024-04-29 12:18:50.791 67123.ooo
2024-04-29 12:19:01.170 517813.net
2024-04-29 12:19:11.241 389298.net
2024-04-29 12:19:54.948 555739.net
2024-04-29 12:20:06.086 496621.com
2024-04-29 12:20:16.902 343396.net
2024-04-29 12:20:16.994 857107.net
2024-04-29 12:20:17.041 268146.net
2024-04-29 12:20:27.988 839214.net
2024-04-29 12:20:27.989 541591.net
2024-04-29 12:20:39.004 957774.net
2024-04-29 12:21:01.186 989519.net
2024-04-29 12:21:12.955 376217.net

TABLE 19. TARGETED DOMAINS

Measure Date Domain

2024-04-29 12:13:25.392 uspsooe.top
2024-04-29 12:14:09.779 uspsooe.shop
2024-04-29 12:17:43.026 post-royal.shop
2024-04-29 12:17:43.050 post-royal.site
2024-04-29 12:17:43.058 post-royal.icu
2024-04-29 12:17:43.063 post-royal.cloud
2024-04-29 12:17:43.068 post-royal.store
2024-04-29 12:26:36.899 office-poste.top
2024-04-29 12:26:59.838 uspostoinb.top
2024-04-29 12:27:00.469 uspostoinbq.top
2024-04-29 12:27:22.174 royalmaireceivingmilacountsurl.top
2024-04-29 12:28:05.208 ptt-post.mom
2024-04-29 12:28:39.091 royalmaireceivingmilacountsusps.top
2024-04-29 12:28:50.890 ceskaposta-cze.top
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Figure 12. Top 20 most significant registrars
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Figure 13. Top 20 most significant ISPs
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