
BSc Thesis Applied Mathematics

Geometric integration of
stochastic Lotka-Volterra
equations

Leon Koers

Supervisor: Tomasz Tyranowski

August 8, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science



Geometric integration of stochastic Lotka-Volterra equations

Leon Koers*

August 8, 2024

Abstract

In this thesis, Stratonovich noise terms are introduced into the Lotka-Volterra equations while
still maintaining the Poisson property of the flow. Three stochastic Poisson models are proposed.
The first stochastic model adds stochasticity to the interaction of the species, the second stochastic
model adds stochasticity to the death and birth rates of the populations and the last proposed stochas-
tic model adds stochasticity to the frequency of the periodic solutions. Additionally a stochastic
Poisson integrator is proposed and its performance is tested against a non-geometric integrator.

Keywords: Lotka-Volterra equations, Stratonovich calculus, stochastic differential equations, ge-

ometric integrators, Hamiltonian systems

1 Introduction

The Lotka-Volterra equations (described in [15]) is a two-dimensional differential equation that captures
the interplay between predators and prey in ecological settings. While this model is very basic and does
not perfectly mirror real-world ecosystem behaviors due to the assumptions made, it remains an impor-
tant instrument for ecologists and mathematicians exploring the interactions among species in nature. A
very important feature of the Lotka-Volterra equations is their non-canonical Hamiltonian structure, or
to be more specific, Poisson structure. In general, the Hamiltonian structure describes the evolution of
the system in terms of a conserved quantity. This structure can be utilized to construct a class of numeri-
cal schemes called geometric integrators. A geometric integrator is a numerical method that is designed
to preserve the underlying geometric properties of Hamiltonian systems, which results in a more stable
result than non-geometric integrators. Symplectic integrators are a subclass of geometric integrators,
specifically designed for canonical Hamiltonian systems. A two-dimensional canonical Hamiltonian
system is a system which takes the form(

ẋ1
ẋ2

)
=

(
0 1
−1 0

)
∇H(x1,x2), (1)

where H(x1,x2) is the Hamiltonian. Symplectic integrators preserve the symplectic structure of the phase
space which results in good long-time behaviour of the numerically integrated canonical Hamiltonian
system. We say that a numerical integrator is a symplectic integrator if the following definition holds.
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Definition 1.1. Let Ω : U →R2d be a map, where U is an open set in R2d and 2d is the dimension
of the system. The timestep is defined by

yn+1 = Ω∆t(yn).

We say that Ω is a symplectic integrator if the condition[
∂Ω(y)

∂y

]
J
[

∂Ω(y)
∂y

]T

= J

holds for all y ∈U, where J is given by

J =

(
0 I
−I 0

)
,

and I is the identity matrix of dimension d.

In reality we know that nature does not only consist of predators and prey. External factors might
influence the populations of certain species. It makes sense to rewrite the Lotka-Volterra equations with
a stochastic term which models uncertainties and external influences. This can be done by extending
the Lotka-Volterra equations to a stochastic differential equation. A stochastic differential equations is a
differiential equation where one or more terms is a stochastic process, which results in a solution which
is also a stochastic process (see [16]). The stochastic extension of the Lotka-Volterra equations has been
explored in several papers, for instance in [13], [10] and [14]. It is important to note that, in these papers
the stochastic noise introduced to the Lotka-Volterra equations follows the principles of Itô calculus.
The goal of this thesis is to add Stratonovich noise to the Lotka-Volterra equations in such a way that the
stochastic flow is Poisson, and then investigate their solutions via numerical simulations using stochastic
geometric integrators

In stochastic calculus,
∫ T

0 h(t)dW (t) and
∫ T

0 h(t) ◦ dW (t) denote the Itô and Stratonovich integral
respectively. In these integrals, we integrate h(t) with respect to a Wiener process W (t). A Wiener
process is given by the following definition according to page 27 of ([4]).

Definition 1.2. A stochastic process W (t) for t ∈ [0,T ] is called a Brownian motion, or a Wiener
process, over [0,T ] if it satisfies the following three conditions.

• W (0) = 0

• For 0 ≤ s < t ≤ T , the random variable given by the increment W (t)−W (s) is N(0, t − s).

• For 0 ≤ s ≤ t ≤ u ≤ v ≤ T the increments W (t)−W (s) and W (v)−W (u) are independent.

A concept that is closely related to a Wiener process is white noise. Consider the following definition.
([4])

Definition 1.3. A zero-mean Gaussian stochastic process Ẇ (t) for t ∈ [0,T ] is called white noise,
if

E[Ẇ (t)Ẇ (s)] = δ0(s− t),

holds for all t,s ∈ [0,T ], where δ0 is the Dirac-delta function.
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In a generalized sense, white noise is the time derivative of a Wiener process, that is

dW (t)
dt

:= Ẇ (t).

Now, let T be the total time up to which the integral is evaluated, L be the number of subintervals, and tn
a discrete time point in the partition of [0,T ]. Then the Itô integral, which is defined as the mean-square
limit of Riemann sum approximated from the left endpoint, is given by∫ T

0
h(t)dW (t) = lim

L→∞

L−1

∑
n=0

h(tn)(W (tn+1)−W (tn)), (2)

and the Stratonovich integral is defined as the MidPoint Riemann sum,∫ T

0
h(t)◦dW (t) = lim

L→∞

L−1

∑
n=0

h(
1
2
(tn+1 + tn))(W (tn+1)−W (tn)). (3)

Interestingly, the left endpoint method (2) and the midpoint method (3) do not converge to the same value
as L → ∞ and max(tn+1 − tn)→ 0 (see [4]). Another difference between Stratonovich integrals and Itô
integrals is that the Itô integral satisfies the martingale property ([4], page 45), but the Stratonovich inte-
gral satisfies the chain-rule used in deterministic calculus ([8], page 76). The different ways of defining
stochastic integrals, choosing between the Itô or Stratonovich integral, highlights the purpose of this
thesis.

In this study we are particularly interested in stochastic Lotka-Volterra equations which can be writ-
ten as stochastic Poisson systems. Stochastic Poisson systems take the form(

dx1
dx2

)
= B(x1,x2)∇H(x1,x2)dt +

M

∑
i=1

B(x1,x2)∇hi(x1,x2)◦dWi(t), (4)

where H(x1,x2) is the drift Hamiltonian, hi(x1,x2) are the diffusion Hamiltonians, Wi(t) are independent
Wiener processes (with i = 1, ...,M), ◦ defines the Stratonovich integral, and B(x1,x2) is the Poisson
structure matrix given by

B(x1,x2) =

(
0 x1x2

−x1x2 0

)
.

When we numerically integrate stochastic Poisson systems we want to maintain the Poisson structure for
the system. In order words, we want to find a geomtetric integrator that satisfies the following definition
(see [3]) .

Definition 1.4. Let φ : U →Rd be a map, where U is an open set in Rd and d is the dimension of
the system. The timestep is defined by

yn+1 = φ∆t(yn).

We say that φ is a Poisson integrator if for a given Poisson structure matrix function B :U →Rd×d ,
the condition[

∂φ(y)
∂y

]
B(y)

[
∂φ(y)

∂y

]T

= B(φ(y))

holds for all y ∈U, where ∂φ(y)
∂y denotes the Jacobian matrix of φ at y.

A stochastic numerical integrator that satisfies definition 1.4 is called a stochastic Poisson integrator.
Hence, in this thesis we are interested in the research questions:
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• "Can Stratonovich noise terms be introduced into the Lotka-Volterra equation in a way that main-
tains the Poisson property of its flow?"

• "Is it possible to construct a suitable stochastic Poisson integrator for this system?"

2 Stochastic Models

In this this work, we consider a simple case of the determinstic Lotka-Volterra equations. The classical
Lotka-Volterra equations are given by

dx1

dt
= x1(a−bx2),

dx2

dt
= x2(cx1 −d).

(5)

Here, x1 and x2 are the prey and predator populations, respectively. The parameters a,b,c and d are con-
stants, and in this work we assume that b = c = τ . The parameter τ represents the interaction between
the two populations, the parameter a represents the birth rate of the prey and the parameter d represents
the death rate of the predators.

This system is a Poisson system, with the Hamiltonian function H(x1,x2) described as

H(x1,x2) = a ln(x2)+d ln(x1)− τ(x1 + x2). (6)

An important property of the determistic Lotka-Volterra equations is that the Hamiltonian function
is preserved. To see this we suppose that (x1(t), x2(t)) is a solution of (5), and then when we differentiate
the Hamiltonian (6) with respect to time, we get

dH(x1,x2)

dt
=

∂H
∂x1

dx1

dt
+

∂H
∂x2

dx2

dt

=
∂H
∂x1

x1x2
∂H
∂x2

+
∂H
∂x2

(−x1x2)
∂H
∂x1

= 0.

Another property of the Lotka-Volterra equations is that the solutions are periodic, as seen in Figure 1
(here a=2, d=1 and τ = 0.05, and the initial conditions are x1(0) = 150 and x2(0) = 50). According to

Section 8.2 in [12], the equilibrium points for (5) are (0,0) and (
d
c
,
a
b
). Since in this case b = c = τ , we

can write this as (
d
τ
,

a
τ
).
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Figure 1: Phase space portrait of the solutions of the Lotka-Volterra equations.

2.1 Stochastic Model 1

Consider a modification of the parameter which represents the interaction of the two species

τ → τ +σ ◦Ẇ (t),

where Ẇ (t) is white noise and σ ≥ 0. This modification of the parameter τ introduces stochasticity into
the interactions between the prey and predator populations. When applying this transformation of τ the
deterministic Lotka-Volterra equations (5) become a stochastic differential equation with Stratonovich
noise:

dx1 = x1(a− τx2)dt −σx1x2 ◦dW (t),

dx2 = x2(τx1 −d)dt +σx1x2 ◦dW (t).

The Itô version of this stochastic differential equation has been studied by Vadillo [14]. The Itô ver-
sion is, however, not Poisson. Furthermore, this system is a stochastic Poisson system with the drift
Hamiltonian (6) and the diffusion Hamiltonian described by

h =−σ(x1 + x2).

2.2 Stochastic Model 2

In the second model distinct perturbations are introduced for both predators and prey. Consider the
following modification of the parameters a and d:

a → a+σ1 ◦Ẇ1(t),

d → d −σ2 ◦Ẇ2(t),

where Ẇ1(t) and Ẇ2(t) are independent white noise processes. These modifications introduce stochas-
ticity to the birthrate for the prey population and deathrate for the predator population. The stochastic
Lotka-Volterra equations are then written as

dx1 = x1(a− τx2)dt +σ1x1 ◦dW1(t),

dx2 = x2(τx1 −d)dt +σ2x2 ◦dW2(t).

The Itô version of this system has been studied in detail in [13], [10] and [14]. The Stratonovich system
is a stochastic Poisson system as described in equation (4) with the drift Hamiltonian (6) and the diffu-
sion Hamiltonians

h1 = σ1 ln(x2),

h2 =−σ2 ln(x1).
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2.3 Stochastic Model 3

The following theorem lays the foundation for the third and final model.

Theorem 2.1. Let x̃1 and x̃2 be solutions to the deterministic Lotka-Volterra (5), with Hamilto-
nian H. If

x1(t) = x̃1(t +αW (t)),

x2(t) = x̃2(t +αW (t)),

then x1(t) and x2(t) satisfy the stochastic Lotka-Volterra equations (4) with the Hamiltonian H
and diffusion Hamiltonian h = αH.

Proof. When we apply formula 2.27 in [9] to the solution (x1,x2) of the stochastic Lotka-Volterra equa-
tions we can transform the system to(

dx1
dx2

)
=

(
˙̃x1(t +αW (t))
˙̃x2(t +αW (t))

)
dt +

(
α ˙̃x1(t +αW (t))
α ˙̃x2(t +αW (t))

)
◦dW (t).

Since x̃1 and x̃2 satisfy the Lotka-Volterra equations, we can write the transformed system as(
dx1
dx2

)
=

(
0 x1x2

−x1x2 0

)
∇H(x1,x2)dt +

(
0 x1x2

−x1x2 0

)
∇h(x1,x2)◦dW (t),

with h(x1,x2) = αH(x1,x2).

In the models described in Section 2.1 and Section 2.2 we introduced stochasticity in the parameters cor-
responding to the interactions between the species and the birth/death rates of the species. It is important
to note that in this section we introduced stochasticity to the frequency of the periodic solution. Adding
stochasticity to the periodic solution of the Lotka-Volterra equations results in the global positivity of
the populations of the predators and prey for positive initial conditions.

Theorem 2.2. The predator and prey populations of the solution of the resulting system of Theo-
rem 2.1 will never go extinct for positive initial conditions.

Proof. Since the species in the deterministic Lotka-Volterra equations (5) do not go extinct, it directly
follows that the species of the resulting system described in Theorem 2.1 also avoid extinction, as it
represents a stochastic time shift of the original system.

Besides the global positivity of the populations of the predators and prey, this system has another
important property.

Theorem 2.3. The drift Hamiltonian of the resulting system of Theorem 2.1 is almost surely
preserved.

Proof. Recall that the diffusion Hamiltonian h(x1,x2) = αH(x1,x2). Then the Poisson bracket {H,h} is
given by

{H,h}=
2

∑
i, j=1

∂H
∂xi

B(x1,x2)i j
∂h
∂x j

=
∂H
∂x1

x1x2
∂h
∂x2

− ∂H
∂x2

x1x2
∂h
∂x1

=
∂H
∂x1

x1x2α
∂H
∂x2

− ∂H
∂x2

x1x2α
∂H
∂x1

= 0
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Since the Poisson bracket equals zero, the drift Hamiltonian is almost surely preserved according to
Section 2.2 in [1].

3 Numerical Methods

In this section, we propose a numerical method to ensure that the numerical solutions of the models
discussed in Section 2 preserve the Poisson structure. In general, finding a stochastic Poisson integrator
is not easy; however, according to Theorem 3.1 in [6], we can do the following.

1. Find a specific transformation z = ϑ(y), with y = (x1,x2), that converts the stochastic Poisson
system (defined as in equation (4)) into stochastic canonical Hamiltonian form. A stochastic two-
dimensional canonical Hamiltonian system is an extension of (1), that is(

dx1
dx2

)
=

(
0 1
−1 0

)
∇H(x1,x2)dt +

M

∑
i=1

(
0 1
−1 0

)
∇hi(x1,x2)◦dWi(t),

where H(x1,x2) is the Hamiltonian, hi(x1,x2) are the diffusion Hamiltonians and Wi(t) are inde-
pendent Wiener processes with i = 1,2, ...,M.

2. Calculate zn = ϑ(yn).

3. Apply a symplectic integrator (ψ∆t) on the transformed system to obtain zn+1 = Ψ∆t(zn).

4. Find yn+1 by yn+1 = ϑ−1(zn+1).

This then results in a stochastic Poisson integrator.The upcoming theorem shows that the systems
described in Section 2, more generally stochastic Poisson systems (4), can be transformed to stochastic
canonical form.

Theorem 3.1. The coordinate transformation ϑ(x1,x2) = (ln(x2), ln(x1)) = (q, p) brings the
stochastic Poisson system (4), with a M-dimensional Wiener process, to canonical Hamiltonian
form, with:

K(q, p) =−H(x1,x2) =−H(ep,eq),

ki(q, p) =−hi(x1,x2) =−hi(ep,eq) ∀i = 1,2,3, ...,M.

Here, K and ki represent the drift Hamiltonian and the diffusion Hamiltonians for the transformed
system, respectively.

Proof. Notice that the model can be written as:

dx1 = x1x2
∂H(x1,x2)

∂x2
dt + x1x2

M

∑
i=1

∂hi(x1,x2)

∂x2
◦dWi(t),

dx2 =−x1x2
∂H(x1,x2)

∂x1
dt − x1x2

M

∑
i=1

∂hi(x1,x2)

∂x1
◦dWi(t).

According to formula 2.27 in [9] we can transform the system to:

dq =− 1
x2

x1x2
∂H(x1,x2)

∂x1
dt − 1

x2
x1x2

M

∑
i=1

∂hi(x1,x2)

∂x1
◦dWi(t),

d p =
1
x1

x1x2
∂H(x1,x2)

∂x2
dt +

1
x1

x1x2

M

∑
i=1

∂hi(x1,x2)

∂x2
◦dWi(t).
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When we simplify this, the system becomes

dq =−x1
∂H(x1,x2)

∂x1
dt − x1

M

∑
i=1

∂hi(x1,x2)

∂x1
◦dWi(t),

d p = x2
∂H(x1,x2)

∂x2
dt + x2

M

∑
i=1

∂hi(x1,x2)

∂x2
◦dWi(t).

Since (x1,x2) = (ep,eq), K(q, p) = −H(x1,x2) = −H(ep,eq) and ki(q, p) = −hi(x1,x2) = −hi(ep,eq)
(for all i = 1,2,3, ...,M ), the system can be written as:

dq =
∂K(q, p)

∂ p
dt +

M

∑
i=1

∂ki(q, p)
∂ p

◦dWi(t),

d p =−∂K(q, p)
∂q

dt −
M

∑
i=1

∂ki(q, p)
∂q

◦dWi(t),

where we use that fact that

∂K(q, p)
∂ p

=
∂

∂ p
(−H(ep,eq)) =−ep ∂H

∂x1
(ep,eq) =−x1

∂H
∂x1

(x1,x2),

the same argument can be used for
∂K(q, p)

∂q
,
∂ki(q, p)

∂q
and

∂ki(q, p)
∂q

for i= 1,2,3, ...,M. The system

can now be written in the stochastic canonical form, that is(
dq
d p

)
=

(
0 1
−1 0

)
∇K(q, p)dt +

M

∑
i=1

(
0 1
−1 0

)
∇ki(q, p)◦dWi(t).

Finding a symplectic integrator is considerably easier, see, for instance [5], [3]. In this work, we
will use the Störmer-Verlet method as our symplectic integrator proposed in ([5], Section 3.4.1). This
method is particularly advantageous because for a separable Hamiltonian it becomes explicit. However,
one could see that the method proposed is only for stochastic processes with one dimensional Wiener
process, hence for a model with an M-dimensional Wiener process (notice that the stochastic model
described in Section 2.2 has a 2-dimensional Wiener process) the stochastic Störmer-Verlet method can
be extended to

P1 = pn −
1
2

∂H
∂q

(qn,P1)∆t −
M

∑
i=1

1
2

∂hi

∂q
(qn,P1)∆W i,

qn+1 = qn +
1
2

∂H
∂ p

(qn,P1)∆t +
1
2

∂H
∂ p

(qn+1,P1)∆t +
M

∑
i=1

(
1
2

∂hi

∂ p
(qn,P1)∆W i +

1
2

∂hi

∂ p
(qn+1,P1)∆W i

)
,

pn+1 = P1 −
1
2

∂H
∂q

(qn+1,P1)∆t −
M

∑
i=1

1
2

∂H
∂q

(qn+1,P1)∆W i.

(7)

Here H is the drift Hamiltonian, hi are the diffusion Hamiltonians, ∆t is the time step size and ∆W i is
an independent increment of a Wiener process given by ∆W i~N(0,∆t). In this thesis we will refer to the
method described at the start of this section, when applied together with the Störmer-Verlet method, as
the Poisson Störmer-Verlet method (PSVM).
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3.1 Order of convergence

Convergence of stochastic schemes has been discussed in [4] (mainly Itô integrals), [8] and [7]. The
mean-square convergence and strong convergence focus on pathwise approximations of the exact solu-
tion. In this paper we will focus on the mean-square convergence, whose definition is as follows ([5]).

Definition 3.2. Let z̄(t) = (q̄(t), p̄(t)) denote the exact solution to a stochastic differential
equation with initial conditions q0 and p0. Let zn = (qn, pn) represent the numerical solution at
time tn, obtained by iteratively applying a suitable numerical integrator n times with a constant
time step ∆t.

The numerical solution is said to converge in the mean-square sense with a global order r if there
exist δ > 0 and a constant C > 0 such that for all ∆t ∈ (0,δ ), we have:√

E(∥zN − z̄(T )∥2)≤C(∆t)r

where T is the total time duration and N is the number of discrete time steps such that ∆t =
T
N

.

Despite the general difficulty of proving mean-square convergence, specific cases have been success-
fully proven, such as the extended Störmer-Verlet method (7). According to Theorem 1.1 of [11] the ex-
tended Störmer-Verlet method has an mean-square order of 1/2 for multidimensional non-commutative
noise, and order 1 for a one-dimensional noise, or a multi dimensional noise that satisfies commuta-
tivity conditions. Let us verify whether the noise for the stochastic model described in Section 2.2 is
commutative.

Lemma 3.3. When the system described in Section 2.2 is transformed to its canonical form using
Theorem 3.1, and the symplectic numerical method (7) is applied, then the noise is commutative
and the symplectic numerical method for the canonical system has mean-square convergence of
order 1.

Proof. Let the vectors Γi j and Λi j for each i,j=1,...,M be defined the same as (3.49) in [5], that is

Γi j =
∂ 2k j

∂ p∂q
∂ki

∂ p
−

∂ 2k j

∂ p2
∂ki

∂q
, λi j =−

∂ 2k j

∂q2
∂ki

∂ p
+

∂ 2k j

∂q∂ p
∂ki

∂q
.

As seen in the proof of Theorem 3.1, k1 =−σ1q and k2 = σ2 p, hence

Λi j = 0 = Λ ji,

Γi j = 0 = Γ ji.

Theorem 1.1 of [11] then implies that the numerical integrator of the transformed canonical system has
mean-square order 1.

By the previous lemma and Theorem 1.1 from [11] we know the mean-square order of the symplectic
integrator (7) applied to the systems which are transformed to canonical Hamiltonian form. However,
now the question arises whether the mean-square order of the stochastic Poisson integrator can be found.
The following theorem assures that the resulting stochastic Poisson integrator has the same mean-square
order as the symplectic integrator applied to the transformed system.

Theorem 3.4. If a symplectic integrator with mean-square convergence order r is applied to
the transformed Poisson systems found by Theorem 3.1, and if 0 < m ≤ x1(t) ≤ M < ∞ and
0 < m ≤ x2(t)≤ M < ∞ almost surely for t ∈ [0,T ] and some m,M ∈R, then the resulting Poisson
integrator will exhibit mean-square convergence of order r.
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Proof. Let z̄(t) = (p̄(t), q̄(t)) be the exact solution of the system in canonical coordinates, T the total
time duration and N the number of discrete time steps. Furhtermore, let zn = (pn,qn) be the numerical
solution at time tn and assume that the mean-square order of convergence of the scheme applied to the
system in canonical coordinates with a symplectic integrator (such as (7)) is r, that is

E(∥zN − z̄(T )∥2)≤C(∆t)2r.

To get the mean-square order of the stochastic Poisson integrator we have to transform the system back
with the transformation of theorem 3.1, hence:

E(∥ϕ
−1(zN)−ϕ

−1(z̄(T ))∥2) = E(∥ϕ
−1(pN ,qN)−ϕ

−1(p̄(T ), q̄(T ))∥2)

= E(∥ϕ
−1(pN ,qN)+ϕ

−1(p̄(T ),qN)−ϕ
−1(p̄(T ),qN)−ϕ

−1(p̄(T ), q̄(T ))∥2)

≤ 2(E(∥ϕ
−1(pN ,qN)−ϕ

−1(p̄(T ),qN)∥2)+E(∥ϕ
−1(p̄(T ),qN)−ϕ

−1(p̄(T ), q̄(T ))∥2))

Since the solutions of the resulting canonical system are almost surely bounded, we know that ϕ−1 is
locally Lipschitz continuous, hence

2
(
E
(
∥ϕ

−1(pN ,qN)−ϕ
−1(p̄(T ),qN)∥2)+E

(
∥ϕ

−1(p̄(T ),qN)−ϕ
−1(p̄(T ), q̄(T ))∥2))

≤ 2B
(
E
(
∥pN − p̄(T )∥2)+E

(
∥qN − q̄(T )∥2))

for a sufficiently large B. By the assumption that the mean-square order of convergence of the method
applied to the system in canonical coordinates with a symplectic integrator is equal to r, we have

2B(E(∥pN − p̄(T )∥2)+E(∥qN − q̄(T )∥2))≤ 2B(C(∆t)2r),

where B and C are sufficiently large and independent of ∆t.
Thus, since we assumed that the solution is almost surely bounded, the resulting stochastic Poisson
integrator exhibits the same order of convergence as the symplectic integrator applied to the transformed
system.

3.2 Heun Method

To evaluate the performance of our stochastic Poisson integrator, we will benchmark it against the Heun
method, which is a non-geometric integrator. Consider the following stochastic differential equation

dX = f (X)dt +g(X)◦dW (t), (8)

here f (X) is an m-vector-valued function, g(X) is an m x d matrix-valued function, ◦ denotes the
Stratonovich integral and W (t)= (W1(t), ...,Wd(t)) is a d-dimensional process having independent scalar
Wiener process components for t ≥ 0. According to Section 3 in [2] the Heun method for a stochastic
differential equation of the form (8) is given by

Y1 = yn +
√

h f (yn)+∆Wng(yn),

yn+1 = yn +
1
2

h( f (yn)+ f (Y1))+
1
2

∆Wn(g(yn)+g(Y1)),
(9)

This method has the same order of as the stochastic Poisson Störmer-Verlet method (see [2]).

4 Numerical Results

In this section we compare the mean extinction times of model 2.1 and 2.2. Specifically, we examine
the extinction times obtained by the Heun method, as described in (9), and the Poisson Störmer-Verlet
method. We define the extinction time to be the smallest positive time such that either x1 ≤ 2.2204 ·10−16

or x2 ≤ 2.2204 · 10−16. The means and confidence intervals presented in both Table 1 and Table 2 are
calculated based on 1000 trials. For each numerical method, running 1000 trials on my laptop with a
13th Gen Intel(R) Core(TM) i7-1355U CPU took approximately 48 hours. Moreover, for the stochastic
model described in Section 2.3 we will compare the behaviour of the (preserved) Hamiltonian when we
numerically integrate the system with the Heun method and the Poisson Störmer-Verlet method.
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4.1 Stochastic Model 1

For this stochastic model the following parameters are used: a = 2,τ = 0.05, d = 1 and σ = 0.01, with
a stepsize of ∆t = 10−5. Furthermore, the initial conditions are: x1(0) = 120 and x2(0) = 50. When we
compare the mean extinction times in Table 1 to the mean extinction times in Table 1 of [14], we see
that the mean-extinction time of the stochastic model with Stratonovich noise is higher than the mean-
extinction time found for the Itô version of this system. A phase plot of a solution obtained via the Heun
method and stochastic Poisson Störmer-Verlet method is given in Figure 2 for a total time of T = 20.

Table 1: Comparing extinction times of stochastic model 2.1

Method Mean 95% Confidence Interval

Poisson Störmer-Verlet method 352.5461 [337.2481; 367.8440]

Heun Method 347.7841 [332.7013; 362.8670]

(a) Phase plane portrait by
Heun method

(b) Phase plane portrait by
Poisson Störmer-Verlet

method

Figure 2: Comparison of the phase portraits with step size ∆t = 10−5
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4.2 Stochastic Model 2

For this stochastic model the following parameters are used: a = 2,τ = 0.05, d = 1, σ1 = 0.5 and σ2 =
0.5, with a stepsize of ∆t = 10−5. Furthermore, the initial conditions are: x1(0) = 150 and x2(0) = 50.
In Table 2 we can see that, surprisingly, the mean-extinction time of the Heun method is higher than the
designed stochastic Poisson integrator. A possible explanation for this is that the Heun method is less
accurate. This can be checked by decreasing the step size and seeing where the mean-extinction time
converges to. Unfortunately due to time constraints of this project we were not able to verify this. A
phase plot of a solution obtained via the Heun method and stochastic Poisson Störmer-Verlet method is
given in Figure 3 for a total time of T = 20.

Table 2: Comparing extinction times of stochastic model 2.2

Method Mean 95% Confidence Interval

Poisson Störmer-Verlet method 116.3741 [111.0347; 121.7136]

Heun Method 119.9850 [114.4001; 125.5700]

(a) Phase plane portrait by
Heun method

(b) Phase plane portrait by
Poisson Störmer-Verlet

method

Figure 3: Comparison of the phase portraits of a solution of stochastic model 1
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4.3 Stochastic Model 3

In Theorem 2.2 we have proven that the drift Hamiltonian is preserved for the stochastic model described
in Section 2.3. Figure 4 shows that the Heun method fails to preserve the Hamiltonian, and additionally,
the phase plane plot using the Heun method appears more unstable than the Poisson Störmer-Verlet
method as seen in figure 5 . In contrast, the solution obtained with the Poisson Störmer-Verlet method
oscillates around one of the equilibtium points, indicating better stability. Figure 6 shows that with the
Poisson Störmer-Verlet method, smaller step sizes result in better preservation of the Hamiltonian. For
the plots we have used the parameters a = 2,τ = 0.05, d = 1, α = 1 and a total time of T = 1000 .

(a) Time interval [0, 100] (b) Time interval [0, 1000]

Figure 4: Comparison of the evolution of the Hamiltonian with ∆t = 10−5

(a) Phase plane portrait by
Heun method

(b) Phase plane portrait by
Poisson Störmer-Verlet

method

Figure 5: Comparison of the phase portraits of a solution of stochastic model 2

Figure 6: Comparison of the drift Hamiltonian using PSVM with different step sizes
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5 Conclusions

In this thesis, Stratonovich noise has been introduced to three distinct models while maintaining the
Poisson property of the flow. Both stochastic models described in 2.1 and 2.2 are inspired by the paper
by Vadillo [14] and the stochastic model described in 2.3 is based on Theorem 2.1. Moreover, we have
designed a stochastic Poisson integrator in Section 3 using Theorem 3.1 in [6] and the Störmer-Verlet
method (7), and we called this the Poisson Störmer-Verlet method.

As seen in Table 1 we can conclude that the mean extinction times of the model with Stratonovich noise
are higher than the mean extinction times of the Itô version of this system described in [14]. Further-
more, in Table 2 we observed that the mean extinction time of the Heun method is greater than the mean
extinction time of the Poisson Störmer-Verlet method. A possible explanation for this is that the Heun
method is less accurate and requires a smaller time step. Finally, we have looked at the behaviour of a
non-geometric integrator in comparison to a stochastic Poisson integrator in context of the preservation
of the Hamiltonian of stochastic model described in Section 2.3. We observe that the preservation is
highly dependent on the type of integrator used, with the found Poisson integrator being superior to the
Heun method.

In future research, we suggest to take a deeper dive in the comparison of different integrators and the
effect of different parameters for the diffusion Hamiltonians. Especially, we suggest to lower the step
size for the Heun method to see where the mean extinction time converges to, as this can further highlight
the power of the stochastic Poisson integrator designed in this thesis. Moreover, one could investigate
the performance of the proposed numerical integrator for different stochastic Poisson systems.
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