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ABSTRACT 

The causes of flooding in Nairobi are multifaceted, with climate change and rapid urbanization making 

flooding of great concern, particularly in slums as they are the most vulnerable settlements. Climate change 

risks are heterogeneously distributed in cities such as Nairobi, with the urban poor and slum settlements 

experiencing higher flood exposure and aggravated impacts. Despite slums becoming potential locations for 

increased urbanization, their association with being ‘illegal’ have made them receive minimal attention from 

governments, making the problems they face, such as flooding invisible and barely understood since the 

risks they face are not quantified. The influence of slum morphologies on flooding such as density, spatial 

distribution and arrangement has been insufficiently studied, with key focus being placed on their locations 

in flood-prone areas. 

The overall aim of this research was to (i) investigate the influence of urban morphology by quantifying 

flood susceptibility and (ii) explore the distribution of flood susceptibility between slums and formal 

settlements. This aim was achieved following three objectives: identifying morphological flood factors 

alongside hydrological, environmental and geomorphological Flood Influencing Factors (FIFs), 

constructing a flood inventory (flood no flood locations) for Flood Susceptibility Mapping (FSM) using 

Machine Learning (ML) as the last objective, at a grid level of 100 meters by 100 meters. FIFs were derived 

from Remote Sensing (RS) while urban morphological flood factors were quantified into measurable 

characters (morphometrics). The flood inventory was generated by combining results from a flood 

simulation modelled using Fast Flood - a fast browser flood simulation tool, and Citizen Science (CS) flood 

information. Flood susceptibility was modelled using 2 Random Forest (RF) models by predicting the 

probability of susceptibility based on morphometric factors and FIFs (Model 1) and solely on FIFs (Model 

2).   

Susceptibility values ranged from 0-1 with values near 1 indicating very high flood susceptibilities. Results 

from both models exposed disproportional distribution of flood susceptibility between slum and formal 

settlements. Slums are observed to be highly susceptible compared to formal settlements with median 

susceptibility values of 0.65 (in Model 1) and 0.5 (in Model 2) for slums and 0.3 in both models for formal 

settlements. Additionally, the results imply that urban morphology has a significant influence on flood 

susceptibility as the overall accuracy of Model 1 increased to 84.71% from 71.76% in Model 2 with the 

inclusion of morphometric factors. The findings suggested that distance to rivers was the most influential 

susceptibility factor, followed by building adjacency and mean inter-building distance morphometric 

characters respectively. The space and room left for water to flow and infiltrate as a result of the spatial 

arrangement in slums and their occupation in floodplains were discovered as the fundamental reasons as to 

why slums face more flood risks than formal settlements. 

Considering the bias towards focusing on the effects of floods on development (i.e. exposure), building 

development regulatory policies such as impact assessments and building arrangement guidelines ought to 

be formulated to evaluate the influence of development on flooding. Additionally, structural and non-

structural measures were also provided as flood mitigation and adaptation measures. Some 

recommendations for future flood investigations lay stress on the use of CS information and high-resolution 

data for accurate flood mapping and spatial transferability of the model across geographically diverse 

regions. 
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1. INTRODUCTION 

It is without a doubt that 21st-century cities confront tons of urbanization challenges (UN-HABITAT, 

2009) such as climate change, which is identified as a principal challenge in the context of sustainable 

development. The intensification of the hydrological cycle as an effect of human-induced climate change 

(IPCC, 2023) influences erratic and extreme precipitation, significantly increasing urban flood risk (Tabari, 

2020).  Despite the effects of climate change being felt by all, the poorest populations characterized by 

having minimal carbon footprints, constrained adaptive capacities and limited decision-making powers, are 

particularly struck the most by climate change impacts, especially flooding (IPCC, 2022). 

1.1. Background 

Floods have become the most frequent and catastrophic climate change-related risks Bradford et al. (2012); 

Paul (2015), where in the last 20 years, flooding has affected more than 2.3 billion people globally, and in 

2019 alone, it accounted for 43.5% of deaths from natural disasters (Suhr & Steinert, 2022). Considering 

that floods are projected to be heightened by 2050 (Towfiqul Islam et al., 2021), with extreme daily 

precipitation events set to exacerbate by approximately 7% for every 10C of global warming (IPCC, 2021) 

flood events are set to become common disasters. 

World Bank (2006), contend that people in low-income countries are four times more likely to die from 

natural disasters compared to people in high-income countries. With poor communities and populations 

being primary victims of such disasters, the increasing probability and severity of floods ought to be viewed 

as a social and physical construct (Anwana & Owojori, 2023). 

Dumedah et al. (2021) emphasizes that the proliferation of slums is one of the challenges of rapid 

urbanization. However, the effects of floods in cities often vary between formal and slum. While flood risks 

have been reported to be extremely high in slums (WHO & UN-Habitat, 2016), Hamidi et al. (2022) suggest 

that slums are more likely to experience heightened impacts due to higher flood levels and increased 

exposure. 

Approximately a third of the urban population in Low and Middle-Income Countries (LMICs) are hosted 

in slums (UN–Habitat, 2015). Nearly 1.1 billion people globally, were reported to live in slums in 2020, with 

a further 2 billion expected to live in slums in the next 30 years (United Nations, 2023). At a global scale, 

Africa and Asia are anticipated to account for roughly 90% of the future’s urbanization (UN-DESA, 2019).  

A study conducted by Tschakert et al. (2010) highlighted that Africa was the second hardest-hit continent 

by floods after Asia. In addition, according to Jha et al. (2011), by the year 2000, the number of flood 

incidences in Africa was higher compared to the rest of the world. Climate variability, altering patterns of 

flooding and prolonged rains have worsened flooding in many Sub-Saharan African (SSA) cities (Douglas 

et al., 2008), for example:  

i) Residents in Accra, Ghana observed that from 2000, the heavy rains that occurred in June and July 
would start before June or continue beyond July. 

ii) The predictable cycles of flooding in Kampala, Uganda that occurred in the rainy seasons of April-
May and October-November altered, resulting in unpredictable and erratic flooding. 

iii) In Nairobi, Kenya, long-term slum dwellers provided that areas that never used to flood began to 
experience flooding within two decades. 
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iv) In Maputo, Mozambique residents asserted that since 1980, flooding events became worse, claiming 
that a one-day rain event would cause floods that persisted for 3 days. 

Flooding is not exclusively attributable to climate change, but also to anthropogenic factors (Anwana & 

Owojori, 2023) and urbanization dynamics (Ramiaramanana & Teller, 2021). The lack of data to justify 

climate change as a probable cause has resulted in its unfair associations with flooding, placing blame on it 

while overlooking human activities influencing flooding (Dumedah et al., 2021). Human activities, especially 

those resulting from human settlements have modified urban landscapes creating urban morphologies that 

increase the propensity of flooding (Santos & Reis, 2018).  

According to Mensah & Ahadzie (2020) key drivers of increased flood risks in Africa are related to intensive 

development. Notably, slums, characterized by their densities, location in, and obstruction of flood-prone 

areas make slum dwellers frequent and primary victims (Kuffer et al., 2021; United Nations, 2023),  

emphasized by their direct relationship with the intensities of disaster vulnerabilities (Abunyewah et al., 

2022). Excluding climate variability and the existence of slums, poor city planning, improper waste 

management strategies, poor drainage infrastructure, human activities near rivers and uncontrolled growth 

have been considered as driving causes of urban floods in African cities (Abass, 2022; Amoako, 2012; 

Douglas et al., 2008). 

Efforts have been made to understand, quantify, analyse and predict the impacts of flooding worldwide 

(Mudashiru et al., 2021). Despite the complexity surrounding flooding Douglas (2017), Flood Susceptibility 

Mapping (FSM) has been used to understand flood risks by assessing the correlation between floods and 

their influencing factors (Seydi et al., 2022). Quantitative, hydrological-based and statistical models have 

been used and developed for FSM (Mudashiru et al., 2021). However, recently, Machine Learning (ML) 

models such as Artificial Neural Networks (ANN), Random Forest (RF), Extreme Gradient Boosting 

(XGBoost), Multi-Layer Perception (MLP) and Support Vector Machine (SVM), have gained traction in 

FSM due to their capabilities to model complex events such as flooding (Seydi et al., 2022).  

1.2. Research Problem and Gaps 

Over the past three decades, the role of urbanization and climate change in urban flooding has been heavily 

contested, bearing no resolution (Amoako, 2012). As climate change increases flood hazards in Africa 

(Dottori et al., 2018) and with Africa forecasted to face the majority of the future’s urbanization (UN-DESA, 

2019), flooding is becoming an acute problem demanding immediate action (Zhu et al., 2019).  

1.2.1. Relationship Between Slums and Flooding  

Unfortunately, the association of slums as being ‘illegal’ have made them receive minimal attention (Huang, 

2021) and ineffective government responses (UN-Habitat, 2009). Subsequently, they are excluded within 

the formal urban systems, making the problems they face quite difficult to recognise (Huang, 2021), 

especially in relation to climate change adaptation as they are ‘invisible’. For this reason, literature has 

overlooked flood challenges in slum contexts such as the geographical space left for water to flow during 

flooding (Dumedah et al., 2021). 

Challenges such as flooding in slums are not well understood, specifically the differences between slums 

and formal settlements in terms of flood exposure and susceptibility. This is attributable to the lack of 

databases that quantify disaster risks faced by slums compared to better-off settlements, yet, on numerous 

occasions, the urban poor are witnessed to be hit the hardest (Kuffer et al., 2021). 
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1.2.2. Flood Quantification 

Efforts have been made to quantify the risk, damage, vulnerability, and spatial extent of floods by focusing 

on understanding, predicting and estimating flood hazards (Seydi et al., 2022). Flood mapping studies such 

as those by Kia et al. (2012) and Tehrany et al. (2014), highlight that most efforts consider hydrological, 

geomorphological and environmental factors referred to as Flood Influencing Factors (FIFs). However, 

current studies have shown an association between urban floods and anthropogenic factors (Anwana & 

Owojori, 2023; Lee & Brody, 2018; Lin et al., 2021). 

Urbanization has a direct positive relationship with an increase in flood events, even when there is no rainfall 

variability (Walsh et al., 2012). The depiction of urban growth in terms of urban morphology, referring to 

the spatial analysis of urban structures, land use, street patterns, buildings, open spaces, and the nature of 

human settlements, is suggested to add to the understanding of flooding (Dumedah et al., 2021). 

Few flood hazard modelling studies exist for slums in Africa (Tom et al., 2022), which is concerning, 

especially given the (i) increasing exposure of slums and (ii) projection of variable climate in Africa (Amoako, 

2012) which will increase the risk of flooding. The minimal or lack of investigations done for flooding in 

slums provides little evidence to support flood risk management (Tom et al., 2022) and quantify their flood 

risks. Despite having few flood mapping studies, a small proportion have attempted to utilize urban 

morphological elements in FSM, thus indicating the need for research that targets this gap. 

1.2.3. Data Scarcity  

Flood mapping is challenged by data paucity of relevant datasets (Juma et al., 2023), especially in the global 

south (Hawker et al., 2020), as well as in the least developing and developed regions (Omonge et al., 2022). 

However, the availability of open-access global datasets has been instrumental in providing mapping data 

(Ceola et al., 2022), albeit having coarse resolutions and low accuracies (Carr et al., 2024). Despite their 

benefits, the effectiveness of global datasets is uncertain, especially due to downsizing processes that 

approximate local conditions (Sun et al., 2022). 

Al-Aizari et al. (2024) assert that flood inventories (flood and no-flood locations) are important for FSM,  

as historical and previous events can be used to predict the likelihood of future flood events (Towfiqul Islam 

et al., 2021). Data scarcity concerning flood inventories is a common problem in many cities, most especially 

in urban areas, as (pluvial) flooding tends to be dispersed (Al-Aizari et al., 2024). 

Hydrological monitoring stations are few, particularly in Africa and in most cases, do not cover flood 

locations, therefore contributing to low spatial coverage of areas susceptible to flooding (Al-Aizari et al., 

2024). Similarly, Nairobi faces such challenges, where most of the rivers are ungauged (Mulligan et al., 2019) 

leading to the lack of historical discharge datasets – which are most especially useful for fluvial flooding 

(Juma et al., 2023). 

1.3. Significance and Purpose 

This research intends to investigate and quantify the nexus between slums and floods as a result of 

inadequate knowledge and minimal efforts in substantiating flooding challenges and quantifying flood risks 

faced by slums. Effectively understanding this relationship is essential for it to be addressed in line with the 

Sustainable Development Goals (SDGs), Urban Agenda 2030 and the Sendai Framework.  

Since most flood studies exclude anthropogenic flood factors and heavily focus on the location of slums 

and their uncontrolled growth as the main influencing flood factors, this research focuses on understanding 

the role of the spatial urban structures of slums using urban morphology. This research will add knowledge 
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in the fields of informality and flooding, by providing new insights through the creation of empirical 

evidence, in addition to addressing the intricacies of urban landscapes to flooding, especially in slums. 

The integration of urban morphology in flood mapping is relatively new, representing a novel approach to 

understanding flooding. Researchers such as Dumedah et al. (2021); Lin et al. (2021) denote correlations 

between urban morphology elements and flooding. By investigating these correlations, the findings of this 

research will contribute to an enhanced understanding of the relationship between the built environment 

and flood dynamics.  

This research aims to understand the complexity of flooding and its dynamics in slums in SSA, presenting 

Nairobi, Kenya, as a case study, envisioned to investigate the relationship between flood susceptibility and 

the physical form of urban areas using urban morphological elements.   

1.4. Objectives 

The overall goal of the research is to investigate how urban morphology influences flood susceptibility in 

slums and compare how susceptibility varies between slums and formal settlements. On this basis, the 

objectives are: 

1. To identify and derive flood factors using openly available datasets.  

RQ1: What urban morphological elements have the likelihood of influencing flooding? 

RQ2: What Flood Influencing Factors (FIFs) are important for Flood Susceptibility Mapping  

          (FSM) based on existing methodologies and datasets? 

2. To generate a flood inventory in a data-scarce environment. 

RQ1: What tools and datasets can be used to create a flood inventory?  

RQ2: How can qualitative and quantitative datasets be combined for validation? 

3. To develop a city-wide flood susceptibility map For Nairobi. 

RQ1: To what extent are slums more susceptible to flooding than formal settlements? 

RQ2: Which morphological element influences susceptibility the most? 
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2. LITERATURE REVIEW  

2.1. Slums 

The complexity surrounding the definition of slums is a result of (i) differential local context matter, (ii) 

location (iii) official and unofficial description and (iv) differences in issues covered (Bird et al., 2017). 

Subsequently, resulting in no standard definition, adding a level of subjectivity in defining slums (Mahabir 

et al., 2016). The UN defines slum households as households where inhabitants lack one or more of the 

following household deprivations (UN-Habitat, 2008, 2015, 2018). 

1. Lack of access to improved water sources. 
2. Lack of access to improved sanitation. 
3. Lack of sufficient living space. 
4. Lack of housing durability. 
5. Lack of secure tenure. 

UN-Habitat (2008) argued that household-level shelter deprivation fails to fully capture the degree of 

deprivation experienced by slum households, the severity of combined deprivations and the changing 

dynamics of deprivation over time. To address these challenges UN-Habitat, (2008) enhanced the definition 

by grouping slum households into 3 categories: moderately deprived (one-shelter deprivation), severely 

deprived (two-shelter deprivation) and extremely deprived (three-shelter deprivation) 

Despite the improvement, the definition suffers from the lack of a social dimension and has difficulty in 

capturing information relating to tenure security within slums (Mahabir et al., 2016) since it is a non-physical 

expression of slum conditions that deals with legality (UN-Habitat, 2008). Khalifa (2011) argues that despite 

significant strides toward alleviating one or more deprivations, the changes in slum status would not be 

recognized. Khalifa (2011) further provides that shelter deprivations do not consider the risk posed to 

human life and argues that people can live without tenure security but cannot survive when their houses are 

located in hazardous areas such as floodplains or landslide-prone locations.  

Informal settlements and slums are the most commonly interchangeably used terms (Kuffer et al., 2016), 

however, according to (Mahabir et al., 2016; UN-Habitat, 2015), there is a difference between the terms, 

with informal settlements referring to area deprivation while slums are defined as household deprivation. 

This research uses the term slums because informal settlements are perceived to be real estate speculations 

that can be occupied by both affluent and poor urban residents, and specifically focuses on the formal status 

of land tenure and structures (United Nations, 2023). Moreover, given that the term ‘slum’ explicitly refers 

to the physically deprived conditions (Wang et al., 2019), it is well suited for this research since the study 

investigates the influence of the physical form on flooding. 

2.1.1. Slum Characteristics  

Globally and locally, the definition of slums varies, resulting in poor classifications of what slums are or are 

not. Attempts to classify slums based on the UN-Habitat definition by Engstrom et al. (2015), resulted in 

nearly the whole city being classified as a slum. One alternative for the misclassification issues is the 

characterization of slums using morphological components, with Kuffer et al. (2016) outlining components 

such as small roof sizes, high densities, irregular patterns, and locations in hazardous sites. These specific 

morphological characteristics can be grouped into 5 dimensions: building geometry, density, arrangement, 

roofing materials and site characteristics.  
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Additionally, to enhance slum characterization,  Kohli et al. (2012) proposed a morphological classification 

at different spatial levels of: environs, settlements and objects. Slum experts from a survey done by Kohli et 

al. (2012) delineated slums from imageries using characteristics such as irregular roads, small roofs, absence 

of roads, lack of vegetation and open spaces, compact density, irregular settlement shape, and locality.  

The location of slums, according to Ezzati et al. (2018)  is perceived to be a trade-off between poverty and 

risk that contributes to the exposure of slums. Ezeh et al. (2017) argue that the urban poor have increased 

exposure to multiple hazards, because of their decision to live in hazardous locations influenced by poverty 

and proximity to economic opportunities. 

2.2. Urban Morphology   

Moudon (1997) terms urban morphology as the study of the city as a human habitat, defining it as the study 

of the complex structures of human habitats. Gauthier & Gilliland (2006), define urban morphology as the 

study of the urban form of cities. Barau et al. (2015) explain urban morphology as the study of human 

settlements and the process of their transformation, considering urban morphology as the spatial analysis 

of urban physical structures, land use, street patterns, buildings, and open spaces.  

Urban morphology can be studied at different urban scales to identify recurring patterns in the structure 

and configuration of the built environment and to understand how its elements work together (Kropf, 2014). 

The spatial scales of urban morphology, according to Fleischmann et al. (2022) consist of plots, buildings, 

streets, squares, blocks, and neighbourhoods.  

2.2.1. Morphological Comparison between Slums and Formal Settlements 

Differentiating slums from formal settlements using pattern, density, and size morphological features, 

Kuffer et al. (2014) explain slum morphologies as exhibiting organic patterns, which are usually more 

complex, irregular, diverse, and dense than formal areas. Useful comparisons between slums and formal 

settlements are provided in Table 1 (Baud et al., 2010; Kuffer et al., 2016; Kuffer & Barros, 2011; Scott et 

al., 2017). 

Table 1: Morphological Differences between Slum and Formal Settlements 

Morphological features Slum settlements Formal settlements 

Size ✓ Small building sizes ✓ Larger building sizes 

Density ✓ Lack of green spaces 
✓ High density (of at least 80% of 

roof coverage) 
✓ Insufficient distance  between 

buildings 
✓ Narrow access paths 

✓ Planned green spaces 
✓ Low - moderate density 
✓ Larger distances between 

buildings 

Patterns ✓ Organic and irregular structure 
with irregular layout patterns   

✓ Irregular streets or unidentifiable 
streets 

✓ Regular layout patterns 
✓ Regular street patterns 

Site characteristics ✓ In proximity to hazardous 
locations 

✓ Buildings built on suitable 
land 
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2.2.2. Morphometrics 

The physical structure of cities can be characterized by quantifiable elements known as morphological 

features (Abascal et al., 2022), by quantifying the features through meaningful measurements of their 

geometrical forms and spatial relationships (Wang et al., 2023). Quantifying these features relies on 

consistent and reliable data on elements of urban morphology such as buildings, open spaces, plots, and 

streets (Mumford, 1961). Building footprints are globally mapped and easily accessible from various sources 

such as Open Street Map (OSM), Bing Satellite Maps, Google Open Buildings (GOB) and Microsoft 

Buildings. 

Datasets such as OSM are inconsistent as they are manually delineated, with datasets such as GOB and 

Microsoft Buildings being consistent as they are delineated using Artificial Intelligence from Very High 

Resolution (VHR) images. Street data from sources such as Microsoft Roads are not consistently mapped 

and lack connectivity especially in slums where there is minimal coverage (Wang et al., 2023). 

2.2.3. Urban Morphology and Flooding 

Lee & Brody (2018) claim that anthropogenic factors such as unplanned development and alteration of 

natural landscapes with impervious surfaces are highly correlated with flooding. According to Lin et al. 

(2023), artificial impervious surfaces continuously occupy green spaces that consequently increase surface 

run-off and alter hydrological conditions. 

In this context, building metrics such as covered area ratio, building congestion degree and density of 

buildings heavily influence flooding (Lin et al. (2021). Shepherd (2005) claims that high-density 

developments tend to concentrate runoff volume subsequently getting waterlogged, especially in flood 

seasons because of the urban rain island effect. Walsh et al. (2012) further contribute that flooding due to 

increased surface run-off is directly increased by building density as it increases surface sealing and 

impervious areas. 

According to Dumedah et al. (2021): 

1. The disjointed arrangement of buildings in slums rarely leaves open spaces for flood water to flow 

and their limited drainage infrastructure, makes spaces between houses the only space left for 

surface run-off. 

2. Horizontal spaces between buildings play significant roles in flow accumulation during flooding as 

minimal distances between buildings increase the accumulation of surface run-off. 

3. Irregular spatial arrangements, modify and artificially extend the path of surface run-off that 

increases the volume of water as flow accumulation is promoted. 

4. The orientation of buildings in relation to topography controls the level of room left for water to 

flow. Relative to the direction of water flow, buildings aligned perpendicularly can narrow the flow 

path leading to localised flooding, while buildings built in parallel allow for water to freely flow. 

2.3. Flood Susceptibility  

In the context of flooding, susceptibility is considered to be one of the determinants of flood vulnerability, 

alongside exposure and resilience (Salami et al., 2017). In this regard, susceptibility is considered to relate to 

the extent to which elements such as economic assets, buildings, and people in flood-prone and exposed 

areas are likely to be affected by a flood event (Anees et al., 2019). 

Flood susceptibility is explained to be the probability of flood occurrence in a specific area with a certain 

intensity (Anees et al., 2019), due to an area’s landscape and geographical region (Mudashiru et al., 2021). 
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Unlike flood risk, flood susceptibility is not related to life and property loss  (Dottori et al., 2018; Wang et 

al., 2023). 

Borrowing from Miranda et al. (2023), this research ought to focus on flood susceptibility related to the 

physical environment, with ‘propensity to flooding’ being a good synonym to conceptualize flood 

susceptibility. For this research, flood susceptibility is understood to be the likelihood of a flood event to 

occur.  

2.3.1. Flood Susceptibility and Flood Influencing Factors (FIFs) 

Developing flood models such as FSM demands the understanding of FIFs for specific regions (Kia et al., 

2012; Masahiro et al., 2021), which are usually hydrological, geomorphological and environmental factors 

that influence the occurrence of flood events (Tehrany et al., 2017). 

Given the vast array of factors to consider for FSM, the number of factors selected varies and is often 

selected from previous studies. Mahmoud & Gan (2018) used 10 FIFs and following a sensitivity analysis 

they found that flow accumulation, runoff and soil type were the most influential factors for flood 

susceptibility. They concluded that flood susceptibility maps ought to include more than 6 FIFs, however, 

other studies argue that reducing the number of FIFs can result in inaccurate results (Miranda et al., 2023). 

The majority of flood susceptibility studies have used similar FIFs derived from literature and fieldwork. 

Research studies such as ones done by (Kia et al., 2012; Mudashiru.,2021; Tehrany et al., 2014, 2017, 2019) 

considered the following similar FIFs:  

1) Elevation: As a prime factor in controlling flooding (Pradhan, 2009), higher elevation areas are seen to 

be less likely to be affected by flooding compared to low-elevation areas as water continuously flows 

into these areas causing them to quickly flood (Das, 2019). With flood-prone regions characterized by 

low-elevations (Mahmoud & Gan, 2018).  

2) Slope: Flood-prone areas, characterized by having low surface slopes flood more easily and faster 

compared to steep slopes (Mahmoud & Gan, 2018). High slopes tend to increase run-off flow and 

decrease the time for surface infiltration increasing the likelihood of flooding (Mojaddadi et al., 2017), 

unlike low slopes where the run-off speed is decreased (Kabenge et al., 2017), increasing the propensity 

to flooding. 

3) Aspect: As aspect shows the deviation of the slope from the geographic north which varies between 0 

– 360 degrees (Farhadi & Najafzadeh, 2021). It affects factors such as moisture and vegetation cover 

depending on aspect direction affecting the micro-climate of a region (Al-Aizari et al., 2024). 

4) Curvature: According to Tehrany et al. (2017) flooding mostly occurs in areas with flat curvature, as 

the flat terrain in such areas is suitable for flooding due to the role curvature has on the concentration 

of flow through infiltration and run-off processes (Cao et al., 2016). 

5) Flow accumulation: Mahmoud & Gan (2018) explain flow accumulation as the concentration of water 

flowing from surrounding paths into another cell. They further contribute that elements located in high-

flow accumulation are more susceptible to flooding as they act as convergent points for surface runoff. 

6) Stream Power Index (SPI): SPI is an index that represents the erosive capability of water flow that 

contributes to stream channel erosion and transportation of sediments (Barker et al., 2009). The measure 

is based on the local slope gradient, identifying areas likely to flood (Ahmad et al., 2019). Mojaddadi et 

al. (2017) explain that areas with low power streams are highly susceptible to flooding, attributable to 

the location of regions with higher SPI values on steep areas where flooding is less likely to occur. 

7) Topographic Wetness Index (TWI): TWI is an elevation-derived index associated with and used as 

a proxy for soil moisture (Cao et al., 2016), (Kopecký et al., 2021) and soil water storage capacity 
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(Chowdhury, 2023), which shows the amount of flow accumulation in a drainage basin and the capacity 

of water to travel downstream with gravity ( Tehrany et al., 2019).  

8) Distance to rivers: Regions located far from river systems are less likely to suffer from flooding than 

regions in closer proximity as they are situated along the flow path of surface runoff, consequently 

increasing their predisposition to flooding (Mahmoud & Gan, 2018). In addition to being situated along 

the flow path of water, flooding could be a result of overflow and over-capacity resulting in higher flood 

risk for areas closer to the rivers (Kabenge et al., 2017). 

9) Clay soil content: Soils and their associated ecosystems and physical properties provide regulating 

contribution through physical mechanisms such as infiltration, storage and slow run-off release during 

flooding that consequently delay run-off and lower flood volumes (Saco et al., 2021).  Soil clay content 

plays a role in influencing the intensity of flooding, as high clay content reduces infiltration and increases 

surface run-off (Shah & Shah, 2023). 

10) Land Use Land Cover (LULC): Different LULC typologies have different hydrological responses 

(García-Ruiz et al., 2008) and contributions to flooding. Mojaddadi et al. (2017) suggest that urban areas 

are more prone to flooding due to the composition of bare land and impervious surfaces that increase 

storm-water runoff compared to vegetated areas. 

11) Normalized Difference Vegetation Index (NDVI): NDVI is used to calculate the amount of 

vegetation in an area (Farhadi & Najafzadeh, 2021). Areas with high vegetation density decrease the 

runoff speed (Tehrany et al., 2017), deeming such areas as having low susceptibility to flooding in 

comparison to areas with low vegetation densities. 

12) Normalized Difference Built-up Index (NDBI): NDBI analyses built-up areas as they are prone to 

flooding due to their impervious nature decreasing infiltration and increasing run-off (Mojaddadi et al., 

2017). 

13) Normalized Difference Wetness Index (NDWI): NDWI identifies the presence of water bodies and 

permanent water since areas occupied by waterbodies always pose threats to adjacent land by over-

saturating soil leading to inevitable flooding and higher flood risks (Farhadi & Najafzadeh, 2021).  

14) Rainfall: Susceptibility to flooding is known to increase with higher rainfall intensities. Extreme rainfall 

within a short time period can lead to flooding especially when water cannot be quickly absorbed by the 

soil or evaporate, resulting in increased surface flow (Douglas, 2017). Additionally flooding experienced 

in a given area is highly dependent on rainfall regardless of the catchment area or environmental 

condition(Nyarko, 2014; Segond et al., 2007).  

2.3.2. Flood Inventory 

FSM is treated as a binary classification task with the flood inventory being classified into flood points and 

no-flood points with binary labels of 1 and 0, respectively as dependent variables for susceptibility 

predictions (Towfiqul Islam et al., 2021). Which are used to determine the flood classification of an area and 

its probability of belonging to a specific class (Wang et al., 2023). 

ML models heavily depend on sufficient flood inventory data as references for training and validation, 

however, the lack of such data limits the accuracy of FSM, particularly in data-scarce regions (Yu et al., 

2023). Notably, a study conducted by Nsangou et al. (2021) in Cameroon, managed to work with limited 

data by using 50 flood points for a region occupying 95.6 km². Similarly, using an ANN algorithm, Falah et 

al. (2019) conducted FSM in an Iranian city spanning 120 km², based on 58 flood points. 

Scarce data poses a challenge to the generalization ability of a ML model, specifically when using an excessive 

number of flood factors as sparse distances between sample points can result in overfitting (Ying, 2019). 

Moreover, when basic inputs are used in supervised ML models, they face difficulty in capturing complex 
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interactions between flood factors, resulting in model underfitting as sample points with similar attributes 

become undistinguishable (Leandro et al., 2016). 

As a result, alternative data sources such as field observations, historical data records, RS imagery, 

topographic maps, perception of residents, topographic flood information, flood damage reports, and field 

surveys have been widely used to construct flood inventories (Al-Aizari et al., 2024; Farhadi & Najafzadeh, 

2021; Towfiqul Islam et al., 2021; Youssef et al., 2022).  

Recently, studies such as Assumpção et al. (2018) emphasize the role of Citizen Science (CS) in flood 

mapping in collecting flood data for use in flood prediction, calibration and validation. CS has been 

employed in collecting historical flood events given that it is cost-effective (Buytaert et al., 2014), offering 

more spatially distributed and relatively accurate, detailed and reliable data by providing context-specific 

observations. (Helmrich et al., 2021; Zeng et al., 2020). There is high potential for the use of CS in collecting 

flood and no-flood points on the basis that residents report more flood information (de Bruijn et al., 2019), 

since they are knowledgeable of their surroundings, are the witnesses and sometimes victims of flood events 

(Sy et al., 2020). 

2.3.3. State of the Art in FSM 

Over the years hydraulic models such as MIKE-FLOOD (Kadam & Sen, 2012), SWAT (Lee et al., 2017) 

and HEC-RAS (Juma et al., 2023; Lea et al., 2019) have been used for FSM and seen to be efficient, however, 

these models depend on detailed data accumulated over a long time, which causes challenges in areas that 

suffer from insufficient detailed data (Nguyen et al., 2022).  

Researchers such as Ding et al. (2021); Hermas et al. (2021), carried out spatial FSM by integrating RS, and 

Geographic Information Science (GIS) data with statistical models as this integrated technique had the 

capabilities of handling large amounts of spatial data. However, these statistical models suffer from the 

problems of covariance, normal distribution predictions and linear relationships (see Table 2) which reduces 

the accuracy of statistical-based models (Prasad et al., 2021). 

ML algorithms have been increasingly used for FSM, due to their high computation efficacy (Prasad et al., 

2021; Wang et al., 2023) compared to physically based models. Additionally, their advantage in overcoming 

the challenges in statistical-based models, by predicting complex non-linear relationships with high 

accuracies and coping with limited data (Pham et al., 2021) has been preferred. 

According to Bentivoglio et al. (2022), ML is considered to be supreme in susceptibility estimations, where 

after a systematic review of different ML models for binary classifications, most models produced accuracies 

surpassing 80%. The most commonly used ML models are supervised models that adopt instance-to-

instance learning schemes such as neural networks, logistic regression, SVM and RF (Liu et al., 2022), which 

introduce mathematical relationships to learn the relationships between flood factors and their labels (Wang 

et al., 2023). 

As ML models face the issues of overfitting and optimization problems, researchers have proposed the use 

of hybrid ML models as they have shown significantly better performances compared to traditional 

individual models (Nguyen et al., 2022). The superior performance of hybrid ML models has led to their 

advanced use and development, however since there is no guide in selecting the best hybrid model for FSM, 

researchers have to develop and test new hybrid algorithms (Nguyen et al., 2022). 
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Table 2: Overview of Existing Flood Models 

Flood Models Advantages Disadvantages  

Hydraulic  ➢ High dependency on details 
collected over long periods 

➢ Faces efficacy concerns in areas 
that suffer from limited data 
especially since they rely on 
detailed long-term information 

Statistical ➢ Can handle large amounts of 
spatial data 

➢ Has limitations in covariances, 
prediction of normal 
distribution and linear 
relationships 

➢ Lower accuracies due to its 
inherent limitations 

Machine Learning ➢ Overcomes limitations faced 
in statistical models 

➢ Can predict non-linear 
relationships  

➢ Higher accuracies 

➢ Has challenges of model 
overfitting and optimization 

Hybrid Machine 
Learning 

➢ Have higher prediction 
power and performance than 
traditional and single ML 
models 

➢ The combination of models 
depends on the characteristics 
of the area of interest 
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3. STUDY AREA 

3.1. Study Area and Brief History 

Nairobi City County, Kenya’s capital city is located in the Southwest of Kenya and lies at an average elevation 

of 1,798 meters above sea level Government of Kenya, 2018; UN-Habitat, 2020). Given Nairobi’s hilly 

topography, elevation decreases towards the Eastern boundary to the Athi River and is traversed by three 

main rivers, namely: Ngong River, Mathare River and Nairobi River (see Figure 1). 

Nairobi is strategically located between Mombasa and Kisumu, its location was initially an uninhabited 

swamp (Mundia, 2017) up until it was selected to serve as a railway depot during the construction of the 

Mombasa - Uganda Railway (Oyugi, 2018) due to its adequate supply of water, comparatively flat terrain, 

cooler grounds, and availability of land (UN-Habitat, 2020). Nairobi has an area of 703.9 km2, consisting of 

a National Park that covers 117 km2.  

According to the 2019 population census, Nairobi had a total population of 4,397,073 people (KNBS, 2019) 

with approximately more than 2.5 million slum dwellers representing 60% of the population, settling on 6% 

of the urban land (Rajula, 2016). With majority of slums in Kenya located in Nairobi as depicted in Figure 

1. 

The name Nairobi originates from “Enkare Nyirobi’, a Maasai phrase, that translates to “a place of cool 

waters”, the city was dubbed as such due to its expansive blue spaces at the margins of an arid region (UN-

Habitat, 2020). Additionally, known by the presence of green infrastructure the city was coined as the “green 

city under the sun”, however, due to rapid urbanization, Nairobi has been experiencing a reduction in 

environmental quality (Oyugi, 2018).  

3.1.1. Rationale for Study Area Selection 

Nairobi was selected for this research based on its large slum population and the proliferation of complex 

settlement patterns as a result of rapid urbanization (Sverdlik, 2021). According to Mulligan et al. (2017), 

Nairobi faces severe urban climate threats, where flooding is a major threat in Nairobi slums due to their 

positioning on the major river systems (Douglas et al., 2008). Additionally, the lack of global datasets such 

as the Global Flood Awareness System (GloFAS)1 and MODIS Near Real-Time Global Flood Product2 in 

capturing floods in Nairobi motivated this selection. Despite the recently added flood dataset (10/05/2024) 

in UNOSAT3, urban flooding was minimally captured with a focus on fluvial flooding. 

 

 

 

 

1 Global Flood Awareness System – global ensemble streamflow forecasting and flood forecasting (copernicus.eu) 

2 MODIS NRT Global Flood Product | Earthdata (nasa.gov) 

3 UNOSAT 

https://global-flood.emergency.copernicus.eu/
https://www.earthdata.nasa.gov/learn/find-data/near-real-time/modis-nrt-global-flood-product
https://unosat.org/
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Figure 1: Location of Slums in Nairobi 

3.2. Slums in Nairobi 

The origin of slums in Nairobi can be dated back to the colonial period when racial segregation dictated city 

planning and settlement location. Access to designated residential areas by Africans was controlled and 

limited as they were reserved for Europeans and Asians (Mutisya & Yarime, 2011). As a result, natives 

retaliated by creating their settlements outside planned areas and the Central Business District (CBD) giving 

rise to informal settlements, after independence, residential segregation transformed into social status 

segregation (Mutisya & Yarime, 2011). The failure of the new administration (after independence) to settle 

the landless citizens is attributed to catalysing the expansion and growth of new slums (Slum Dwellers 

International, n.d.).  

Slums occupied poor quality and inhabitable land, as it was their only alternative, with dwellers situating 

themselves in steep slopes, riparian reserves, swamps, refilled quarries, dumping sites, utility and 

infrastructural reserve land (Slum Dwellers International, n.d.). The oldest and major slums in Nairobi are 

Kibera, Mathare and Mukuru. Kibera slum emerged in 1912 around an ethnic migrant core, as it was initially 

designated for demobbed Sudanese Nubian soldiers, which was taken to be a military reserve (United 

Nations Human Settlements Programme, 2003). Mathare and Mukuru emerged in 1920, 1958 respectively 

(Mutisya & Yarime, 2011; Wanjiru & Matsubara, 2017). After independence, the continued proliferation of 

slums has been on a steady rise due to inadequate housing and the failure of poorly planned efforts to reduce 

them (Obudho & Aduwo, 1989). 
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3.2.1. Characteristics of Slums in Nairobi 

Focusing on the physical attributes that can be detected using RS, Nairobi slums conform to the typical 

morphological characteristics of slums provided by Kohli et al. (2012) ; Kuffer et al. (2016). As seen in 

Figure 2, slums have low housing characterized by dense metal housing built using iron sheets, with some 

houses built with wood and mud (Scott et al., 2017). From aerial imagery, they appear to have small-sized 

roofs, irregular arrangements of buildings and road layouts, little vegetation cover and located near 

hazardous areas such as rivers. According to Scott et al. (2017) slums have limited access to basic and public 

utilities and services. In Nairobi, the scarcity has led to the commercialization of essential services such as 

water provision, waste collection and sanitation often provided by exploitative and informal enterprises 

(Huchzermeyer, 2008). 

 

Figure 2: Aerial View Showing the Characteristics of Nairobi Slums 

3.2.2. Urban Morphology of Slums and Formal Areas in Nairobi 

UN-Habitat (2008) argues that the most distinguishing morphological element used to differentiate the 

quality of settlements in Nairobi is the presence of vegetation cover, as slums have very little vegetation, 

compared to formal areas. The difference in morphology between slum and formal settlements in Nairobi 

is typical, as explained in Section 2.2.1. The notable distinctive morphological attributes between slum and 

formal settlements after lack of vegetation are high building densities, small building sizes and low building 

heights, as they are the most explicit slum characteristics (Scott et al., 2017; Taubenböck & Kraff, 2014).   

 

 

 

 

Kibera  Mathare  

Jerusalem  Viwandani  

Kangemi  

Kwa Rueben  
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4. METHODOLOGY 

4.1. Methodological Approach 

The overall workflow provided in Figure 3, is structured in 3 stages following the objectives in Section 1.4. 

Stage 1 involved identifying and deriving flooding factors, both morphological and FIFs, as independent 

and explanatory variables for the FSM. Stage 2, focused on creating a flood inventory (flood (1) and no-

flood points (0)), a critical step in FSM (Sarkar & Mondal, 2020), to be used as dependent variables. Lastly, 

flood susceptibility was modelled in stage 3. 

Each stage is related to the next providing this research with a holistic approach, using various 

methodologies and approaches to accomplish the research objectives. Objective 1 employed the use of 

morphometrics (urban morphology metrics) to quantify urban morphological characters related to flooding. 

Objective 2 sought the use of Fast Flood - a browser simulation tool, and Citizen Science (CS) techniques 

to create a flood inventory while Objective 3 employed a RF model for FSM. 

Fast Flood Simulation Rationale 

Challenged by data scarcity in flood information such as historical flood extents and flood depths, this 

research drew upon Fast Flood4 – an open-source browser simulation tool developed in 2022 by Van Den 

Bout et al., (2023), serving as a novel alternative for acquiring flood information. The purpose of this 

approach was to derive substitute flood and no-flood data needed for FSM given the lack of such data, 

especially from historical, government flood records and satellite imagery. Fast Flood simulation results were 

combined with flood validation data based on citizen and expert perceptions (CS data) to create the flood 

inventory. Despite the existence of other flood models, physically based models that represent physical 

processes that govern flooding such as OpenLisem are computationally expensive (Van Den Bout et al., 

2023) compared to Fast Flood, which offers a short computing time as it is 1500 times faster, hence its 

selection for this study. 

Random Forest Model Rationale 

Following the FSM approaches of Lee et al., (2017); Lin et al. (2023); Pourghasemi et al. (2020) RF, a 

supervised ensemble ML model introduced by Breiman (2001), was used to predict the probability of 

flooding. The preference for RF in this research was influenced by its wide use in data-driven modelling in 

the water resources field, its ability to handle imbalanced data, and its low sensitivity to multicollinearity 

(Chen et al., 2020; Safaei-Moghadam et al., 2023). 

Additionally, RF can handle large and high dimensional data, it reduces challenges of overfitting related to 

decision tree models due to its characteristic of conducting majority voting and is capable of interpreting 

complex non-linear relationships between flood explanatory factors (Farhadi & Najafzadeh, 2021; Golkarian 

et al., 2018; Yu et al., 2023). Moreover, given that RF was highly preferred as it efficiently handles diverse 

datasets from various sources, does not make statistical assumptions regarding the distribution of data and 

has a higher predictive performance (Breiman, 2001; Prasad et al., 2006).

 

4 FastFlood | FastFlood website, free super-fast flood mapping tool. 

https://fastflood.org/site/_site/
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Figure 3: Research Methodological Flow Chart
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4.2. Data and Data Sources 

This research utilized both primary and secondary data at various stages and for different objectives. 

Geospatial information and data (secondary data) were obtained from global remote sensing and satellite 

imagery datasets from sources such as Google Earth Engine (GEE) and Open Topography. Primary data 

such as flood hotspot points was gathered from residents and city experts during fieldwork. Table 3 below 

provides an overview of data and data sources with further explanations provided in Sections 4.3 and 4.4 

Table 3: Overview of Data and Data Sources 

Objective Data Required Source 

1 Building 

Footprints 

 Secondary Google Open 

Buildings 

FIFs Digital Elevation Model (DEM) 
and derivatives (slope, curvature, 
aspect, rivers, TWI,SPI, flow 
accumulation 

Open Topography 

LULC GEE 

NDVI 

NDWI 

NDBI 

Rainfall 

Soil ISRIC 

Waste SLUMAP Project 

2 Flood 

inventory 

Flood points Primary Fieldwork  

Non-flood points Flood hazard  

4.2.1. Secondary data 

As FSM necessitates the use of relevant and effective flood factors, an extensive literature review was 

conducted to inform the selection of pertinent flood factors. Associated flood influencing building 

morphology factors  referred to in Section 2.2.3, were quantitatively derived based on building footprints.  

FIFs based on data availability included elevation, slope, aspect, curvature, flow accumulation, Stream Power 

Index (SPI), Topographic Wetness Index (TWI), distance to rivers, clay soil content, Land Use and Land 

Cover (LULC), Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index 

(NDBI),  Normalized Difference Wetness Index (NDWI) and rainfall. 

Factors such as drainage and waste identified to increase flooding were not used in FSM due to the 

unavailability of drainage data and city-wide waste data (waste data was limited to slums). However, these 

anthropogenic factors influence flooding hence their inclusion in the ranking of flood factors during the 

fieldwork workshops (explained in Section 4.2.2). 

Input factors for the Fast Flood Simulation (FFS) such as elevation, land cover, soil infiltration and soil 

moisture were automatically downloaded from their respective global datasets within Fast Flood.  

4.2.2. Primary Data - Fieldwork Data Collection 

4.2.2.1. Participant Selection 

Prior to fieldwork, a flood hazard map (uncalibrated) was simulated using Fast Flood (see Section 4.4.2.1) 

which formed the basis for selecting slum settlements to collect data from. Given the financial and time 

constraints, it was not feasible to conduct fieldwork in all slums, therefore, slum selection was based on: 
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• High severity of flooding identified from the uncalibrated simulation.   

• Slums that are constantly faced with harsh effects of flooding based on news reports. 

• Slums with high SPI values as high values pose a great risk due to the strong erosive capability of 
flowing water. 

Kibera, Mukuru, Mathare and Korogocho were selected as they befitted the criteria. In collaboration with 

Community Mappers, a Community-Based Organization (CBO) affiliated with Slum Dwellers International 

(SDI), community leaders from each settlement selected 10 participants to be involved in the fieldwork 

activities. Emphasis was placed on ensuring participant diversity in terms of age, gender, flood-related 

knowledge and roles in the settlement (e.g. Red Cross disaster risk respondent). Additionally, to ensure 

spatial representation and coverage, especially for validation, the selected participants were from different 

villages within their settlements. 

To address flooding in the formal settlements and at a City level, 23 city experts from Nairobi City County 

Government (NCCG), Non-Governmental Organizations (NGOs) such as the African Population and 

Health Research (APHRC) and SDI and academics, accepted an invite to participate in the fieldwork 

activities. The selection of these institutions and individuals was based on their existing relationships with 

Space4All5 and their expertise in flooding in Nairobi. 

4.2.2.2. Fieldwork Activities  

Following a CS approach, flood validation and flood factor ranking were done using expert and citizen 

knowledge (Molinari et al., 2019) to determine the performance of Fast Flood, the validity of the 

uncalibrated FFS and understand the location-specific importances of the flood factors.  

The participatory activities were conducted in 5 workshops, 1 for each slum settlement and 1 for the city 

experts. Additionally, flood locations were collected in the selected slums using My Maps tool – a Google-

based tool used for spatial data collection and handling, spearheaded by the Space4All project. The purpose 

of using My Maps was to have readily available and easily shareable flood data, especially for the settlements 

with the additional benefit of increasing flood awareness for flood risk measures. 

Flood Validation: Using preliminary Fast Flood results (uncalibrated simulation), flood maps were 

generated for Kibera, Mukuru, Mathare, Korogocho using the city-scale simulation. To validate the maps 

smaller groups were created to enhance active participation from all, participants were divided into 2 groups 

of 5 individuals each. The groups were diverse, considering participant characteristics such as gender, age, 

and the slum village of residence 

Using marker pens, pins and sticky notes, the participants (slum and city experts) sketched False Positive 

(FP) and False Negative (FN) areas,  pinpointed locations where structures typically get destroyed and flood 

hotspots, giving short descriptions of flood characteristics and their impacts (see Appendix 1). Thereafter 

each group presented their results explaining and discussing their validation processes and outcomes to the 

larger group, where they confirmed each other’s results to be accurate.  

Factors Ranking: The flood factors were grouped into 7 broader and general groups to allow for easy 

understanding as shown in  Appendix 2. Pair-wise ranking, a participatory approach, was used to rank the 

grouped factors allowing individual factors to be compared in a pair  (Vallely et al., 2007).  The ranking was 

 

5 Space4all (itc.nl) 

https://www.itc.nl/space4all/
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done collectively which allowed for the group to discuss and debate before voting on the most important 

factor in a given pair. Moreover, it allowed all involved participants to view their opinions providing more 

context. Voting to determine the most important factor between a given pair of factors was done by a show 

of hands, with the factor that received more votes, chosen as the most important. 

A pairwise matrix was used to analyze a specific (constant) factor against other factors, with the final ranking 

based on the number of occurrences of the constant factor in its specific column of comparison (see  

Appendix 3). To determine the overall importance of the factors, the most important factor was determined 

by majority votes and the least important factor by the least votes.  

My Maps flood locations: 2 representatives from each slum were trained to collect data using My Maps 

to prevent inaccuracies as a result of user error. Flood data collected was based on a defined attribute table 

that detailed the type of information such as flood depth, duration etc., to be recorded by the residents 

depicted in Appendix 4. In aims of benefitting from their local knowledge and experiences, they collected 

flood locations that are prone to flooding based on previous and recent flood events (as of April 2024).  

Additionally, during fieldwork 2 transect walks, accompanied by residents, were conducted along the rivers 

traversing Mukuru (Ngong River) and Mathare (Mathare River) to collect flood depth and their locations. 

Flood depth measurements at various accessible points were carried out using Image Meter Pro – a 

measuring application, using existing flood depth markings drawn by the Red Cross after extreme flood 

events and the highest visible watermarks on buildings. 

4.3. Deriving Flood Factors 

4.3.1. Urban Morphometrics 

Meaningful numerical measurements of building morphological characters following the morphometric 

approach adopted by Fleischmann et al. (2022) was conducted using building footprints. Google Open 

Buildings (GOB) dataset – a large-scale open-source building footprint dataset, derived from high-resolution 

imagery (50cm) was used to obtain building footprints using Google Colab6 and were inspected using GEE 
7. The research used GOB version 3 with inference carried out in May 2023 covering 58,000,000 km2 of 

Africa, South and South-East Asia, Latin America. These building footprints were generated using deep 

learning algorithms, resulting in confidence score ranges of (0.65 – 0.70), (0.7 – 0.75) and (> =0.75).  

Momepy - an open-source Python library with a repository of tools for morphometric assessments was used 

to derive building morphometric characters8. A selection of morphometric characters related to flooding 

across 3 urban form categories: (i) shape (ii) spatial distribution, and (iii) intensity recognised by Fleischmann 

et al. (2021) were computed as in Table 4. However, building density was implemented at the grid level (see 

section 4.5). 

 

 

6 Open Buildings - download region polygons or points. - Colaboratory (google.com) 

7 https://code.earthengine.google.co.in/467492e7eb648fbdd6e65540dcbfa0a6  

8  http://docs.momepy.org/ 

https://colab.research.google.com/github/google-research/google-research/blob/master/building_detection/open_buildings_download_region_polygons.ipynb
https://code.earthengine.google.co.in/467492e7eb648fbdd6e65540dcbfa0a6
http://docs.momepy.org/
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Table 4: Computed Morphometrics 

Morphometric 
characters 

Urban form 
categories 

Function/Formula Units Alias 

Orientation  Spatial 
Distribution 

momepy.Orientation Range of 0-1 Orientation 

Alignment momepy.SharedWallsRatio Range of 0-1 Alignment 

Share walls ratio momepy.Alignment Range of 0-1 SWR 

Neighbour 
distance 

momepy.NeighborDistance Meters NDi 

Mean inter-
building distance  

momepy.MeanInterbuildingDistance Meters IBD 

Building 
adjacency  

momepy.BuildingAdjacency Range of 0-1 BuA 

Fractal 

dimension  

Shape momepy.FractalDimension Range of 0-1 FD 

Covered area 
ratio  

Intensity  momepy.AreaRatio Range of 0-1 CAR 

Building density    Number of buildings 
              Area 

Buildings/10,
000m2 

BD 

*Values close to 1 for covered area ratio and shared wall ratio suggest high covered area and shared walls 
*Values close to 1 for fractal dimension indicate simple building shapes. 
*Values close to 0 for building adjacency denote that buildings are close to each other 

Before generating the measurements, multi-polygons were split into individual polygons and the dataset was 

projected into a (local) coordinate system for calculation purposes. Using Voronoi tessellations, 

morphological tessellations were created from the building footprints (Fleischmann et al., 2022), as the 

smallest spatial division, they were used to identify topological relationships between buildings and measure 

spatial distribution characters (Fleischmann et al., 2021). 

4.3.2. Flood Influencing Factors 

4.3.2.1. Elevation Derivatives 

Elevation-based factors such as slope, aspect, curvature, flow accumulation, TWI and SPI provided in Table 

5, were derived from a Copernicus 30m DEM acquired from Open Topography9. Despite the availability 

of higher resolution DEMs such as ALOS Plasar with a resolution of 12.5m, the Copernicus DEM was 

preferred as its processing was done to include the consistent flow of rivers and its higher accuracy detailed 

in Section 4.4.2.1. Using ArcGIS Pro, the DEM was reprojected to WGS 1984 UTM Zone 37S (EPSG 

32737), followed by DEM processing to derive slope, aspect and curvature using the surface spatial analyst tool. 

Using terrain preprocessing techniques, flow accumulation, SPI, TWI, and rivers were derived. 

Following a heuristic approach for stream definition, flow accumulation values for generating rivers were 

conditioned to an optimal threshold of 800 (flow accumulation pixel value) as the threshold captured major 

rivers as well as significant streams, especially in slums. Visual inspection using Google Earth highlighted 

that the generated rivers had an offset from the rivers, a disparity presumed to be caused by the resolution 

of the DEM. The distance to rivers (meters) was calculated using the Euclidean distance tool in ArcGIS Pro as 

informed by (Choubin et al., 2023). 

 

9 OpenTopography - Copernicus GLO-309 Digital Elevation Model 

https://portal.opentopography.org/raster?opentopoID=OTSDEM.032021.4326.3
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The TWI was calculated using the calculate Topographic Wetness Index (TWI) using surface parameters tool, while 

SPI was calculated using the raster calculator tool in ArcGIS Pro, both using the previously derived slope and 

flow accumulation rasters based on the formula adapted from Sevgen et al. (2019) as below: 

TWI = ln(As/tan𝛽) 

SPI = As/tan𝛽 

Where: 

• As = flow accumulation/specific catchment area  

• 𝛽 = slope (radians) = (slope (degrees) * 0.017453) 

4.3.2.2. Sentinel and Landsat Products 

GEE was used to access and derive NDWI and NDVI from the Harmonized Sentinel-2 MSI: MultiSpectral 
Instrument, Level-1C 10 meters resolution10 (see Table 5). A 1-year (2023/01/01 – 2024/01/01) composite 
was generated to get the mean NDVI and NDWI values instead of using values that are only present during 
certain seasons of the year. The imageries used for the composite were based on scenes with less than 10% 
cloud cover to avoid interference from cloud reflection. 

The reflectance in the near-infrared (NIR) band (B8) and the reflectance in the red band (B4) were used to 

calculate NDVI (Choubin et al., 2023; Kuc & Chormański, 2019). Whereas the reflectance in the green band 

(B3) and the reflectance in the near-infrared (NIR) band (B8) were used to calculate NDWI (Du et al., 2016), 

using the following equations: 

NDVI = (B8 – B4) / (B8 + B4) 

NDWI = (B3 – B8) / (B3 + B8)  

Similarly, the mean NDBI values were derived from a 1-year Landsat-8 OLI/TIRS composite (2023/01/01 

– 2024/01/01) with a resolution of 30m, using scenes with less than 10% cloud coverage from GEE11. The 

built-up index was calculated using the reflectance in the middle infrared reflectance (MIR) band (B6) and 

the reflectance in the NIR band (B5) (Kshetri, 2022) as below. 

NDBI = (B6 – B5) / (B6 + B5)  

LULC for the study was derived from Sentinel 2 ESA WorldCover 10m v10012 using GEE at a resolution 

of 10 meters. 

4.3.2.3. CHIRPS Rainfall Intensity Product 

CHIRPS13 a 30+ year quasi-global satellite-based rainfall product with in-situ station data was preferred due 

to its fine spatial resolution of 0.05o which improves the efficacy of CHIRPS in capturing precipitation 

heterogeneity, yielding better performances in hydrological modelling (Dhanesh et al., 2020). Using a 5-year 

 

10 Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-1C  |  Earth Engine Data Catalog  |  Google for 
Developers 

11 USGS Landsat 8 Level 2, Collection 2, Tier 1  |  Earth Engine Data Catalog  |  Google for Developers 

12 ESA WorldCover 10m v100  |  Earth Engine Data Catalog  |  Google for Developers 

13 CHIRPS Daily: Climate Hazards Group InfraRed Precipitation With Station Data (Version 2.0 Final)  |  Earth 
Engine Data Catalog  |  Google for Developers 

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2#description
https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCover_v100#description
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY
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time range (2019/01/01 – 2024/01/01), the highest precipitation (115.194 mm/day) recorded on 

2021/11/28 was used to generate a gridded rainfall intensity raster at a resolution of 5566m from GEE. 

4.3.2.4. Soil Data 

Soil clay content in percentage was derived from the Soil and Terrain Database for Kenya (KENSOTER) 

Version 2 at a scale of 1:1 million, compiled by the Kenya Soil Survey via the International Soil Reference 

and Information Centre (ISRIC) World Soil Information14. With soil properties such as texture and drainage 

typically used for flood mapping, the lack of data on such properties in a somewhat large section of the 

study area was missing, with the only available soil data for the ‘no-data’ section being clay percentage. 

4.3.2.5. Waste Data 

Waste data was acquired in a gridded format of 100m*100m from a land cover classification modelled from 

WorldView-3 2019 VHR imagery using image segmentation an Object-Based Image Analysis (OBIA) 

technique and RF classification by SLUMAP15, a RS project for mapping and characterizing slums in SSA 

cities.  

Table 5: Derived Flood Influencing Factors (FIFs) 

Data Data  Type Dataset  Alias 

1. Elevation Dataset: Global 
Type: Raster 
Resolution: 30m 
Units:  
• Elevation – Meters 
• Slope – Degrees 
• Distance to rivers – 

Meters 
 

Source: GEE 
Dataset: Copernicus GLO-30 
Digital Elevation Model  
 

Elevation 

2. Slope Slope 

3. Aspect Aspect 

4. Curvature Curvature 

5. Flow accumulation Flow_Acc 

6. SPI SPI 

7. TWI TWI 

8. Distance to rivers DistRivers 

9. LULC Dataset: Global 
Type: Raster 
Resolution: 10m 
 

Source: GEE 
Dataset: Sentinel 2 ESA 
WorldCover 10m v100  
Copernicus GLO-30 Digital 
Elevation Model  
 

LULC 

10. NDVI Source: GEE 
Dataset: Harmonized Sentinel-
2 MSI: MultiSpectral 
Instrument, Level-1C  

NDVI 

11. NDWI NDWI 

12. NDBI Dataset: Global 
Type: Raster 
Resolution: 30m 

Source: GEE 
Dataset: USGS Landsat 8 
Level 2, Collection 2, Tier 1 

NDBI 

13. Rainfall  Dataset: Global 
Type: Raster 
Resolution: 5566m 
Unit: Millimetres 

Source: GEE 
Dataset: CHIRPS daily: 
Climate Hazards Group 
InfraRed Precipitation with 
Station Data (Version 2.0)  

Rainfall 

 

14 ISRIC Data Hub 

15 SLUMAP research project - Mapping slums with remote sensing (ulb.be) 

https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/73e27136-9efe-49e4-af35-fd98b841d467
https://slumap.ulb.be/
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14. Soil clay content Dataset: Global 
Type: Vector 
Scale: 1,000,000 
Unit: Percentage 

Source: ISRIC Data Hub 
Dataset: Soil and Terrain 
Database for Kenya 
(KENSOTER), version 2.0 

CLPC 

15. Waste Dataset: Local 
Type: Raster 
Scale: 100m*100m Grid 
level 
Unit: Percentage 

Source: SLUMAP 
Dataset: WorldView-3 Imagery 

 

4.4. Flood Inventory Creation 

The flood inventory procedures were done after fieldwork which entailed flood validation and the collection 

of flood hotspot locations. Given that the unit of analysis for this research was at a built-up grid level of 

100m*100m (explained in Section 4.5), the inventory was created after the flood factors were processed and 

integrated into the grid.  This was undertaken to ensure that (i) the flood inventory points, particularly the 

flood hotspots collected using My Maps intersected with their respective grid cells, and (ii) the corresponding 

flood inventory grid cells had no missing values and belonged to built-up grids. 

4.4.1. Flood Sample Points 

The flood sample points were combined from (i) flood points identified by experts during their workshop, 

providing city-wide level flood locations (both in formal and slum settlements) and (ii) flood points collected 

in the selected slums using My Maps. The identified flood points were based on historical and recent flood 

(April 2024) events and totalled to 134 observed flood points, with 93 points from My Maps and 41 points 

digitized from the expert flood validation workshop using ArcGIS Pro. 

Upon intersection with the grids, 116 points intersected with the grid cells, indicating that 18 flood points 

were observed in non-built-up areas. These 116 flood grids were considered susceptible to flooding 

regardless of flood depth and were labelled as belonging to class 1 to be used for RF model training and 

evaluation. 

4.4.2. No-flood Sample Points 

As standard practice (Al-Aizari et al., 2024; Towfiqul Islam et al., 2021; Youssef et al., 2022), an equal number 

of no-flood samples were generated based on a no-flood extent simulated and calibrated using Fast Flood. 

4.4.2.1. Fast Flood Simulation (FFS) 

Elevation, land cover, soil infiltration and moisture data were automatically downloaded from their 

respective global datasets within Fast Flood, while rainfall data was sourced from a local dataset (see Table 

6) were used to simulate a previous flood event. To account for upstream flooding, the catchment area (Athi 

River Basin), illustrated in Appendix 5 was included in the simulation. This allowed for rainfall-driven 

modelling, which ensured that all the rainfall that contributed to the flood event was considered in the 

simulation.  

Table 6: Fast Flood Input Parameters 

Fast Flood input 

data 

Fast Flood Data source Data Type 

Elevation Copernicus  OpenTopography - 

Copernicus GLO-30 

Digital Elevation Model 

Global 

dataset 

Type: Raster 

Resolution: 40m 

Units: Meters 

 

https://portal.opentopography.org/raster?opentopoID=OTSDEM.032021.4326.3
https://portal.opentopography.org/raster?opentopoID=OTSDEM.032021.4326.3
https://portal.opentopography.org/raster?opentopoID=OTSDEM.032021.4326.3
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LULC & Surface 

Roughness 

(Mannings’ N) 

Copernicus 

World Cover 

10m product  

ESA WorldCover 2020 Global 

dataset 

Type: Raster 

Resolution: 10m 

Rainfall TAHMO About TAHMO - 

TAHMO 

Local 

dataset 

Type: Excel rainfall 

station data 

Units: Millimetres 

 

Soil infiltration SoilGrids  SoilGrids250m 2.0 Global 

dataset 

 

Type: Raster 

Resolution: 250m Soil moisture 

Elevation: The Copernicus DEM was auto-downloaded at a resolution of 40m to reduce the computational 

demand as the catchment area was relatively large. The Shuttle Radar Topography Mission (SRTM) DEM 

was not used due to its high vertical errors (Van Den Bout et al., 2023) which could have significantly 

affected the flow direction, flood extent and inundation depths of the simulation as they are sensitive to 

even minor errors, specifically in low-elevation areas (Horritt & Bates, 2022; Simpson et al., 2015). 

As elevation errors act as artificial sinks or obstacles that either retain or divert simulated flows, resulting in 

misleading flood results (Meadows et al., 2024), the Copernicus DEM was preferred since newer DEMs 

derived from the TanDEM-X Mission such as Copernicus have better accuracies and are highly 

recommended for flood mapping following vertical accuracy assessment studies such as one by Meadows 

et al. (2024). 

Surface Roughness Mannings: The frictional force applied by the terrain on flowing water determined 

by land cover captured using Manning’s value (Van Den Bout et al., 2023) was used in the FFS to account 

for the different surface run-off and discharge responses of various land cover typologies. Manning’s values 

used in the FFS were default values provided by Fast Flood after automatically downloading land cover 

from the European Space Agency (ESA) World Cover 10m land cover dataset.   

As the default Manning’s values were seen to correspond with other globally used Manning’s values such as 

the LULC 2020-ESRI provided by Soliman et al. (2022) presented in Appendix 6, the default values were 

used as provided in the simulation. 

Rainfall: Rainfall parameters such as duration, intensity and rain shape were generated using the rainfall 

analysis tool in Fast Flood based on precipitation data (mm/hr) acquired from the Trans-African Hydro-

Meteorological Observatory (TAHMO)16 over 5 years from January 2019 to January 2024. The precipitation 

measurements for 13th May 2021 were used for the FFS as: 

1. The precipitation resulted in significant flooding explained to be a 1-in-5-year event by Juma et 

al. (2021). 

2. The precipitation event had the highest rainfall peak of 62.017 mm/hr with a total precipitation 

of 100.74 mm. 

3. The precipitation date was used for flood mapping in Kibera by Juma et al. (2023) verifying that 

it was an extreme event.  

 

16 About TAHMO - TAHMO 

https://worldcover2020.esa.int/download
https://tahmo.org/
https://tahmo.org/
https://soilgrids.org/
https://tahmo.org/
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Using (i) a comma-separated value file, with hourly rainfall measurements and (ii) 99% of the total 

precipitation in the rainfall analysis (as it produced a representative rainfall peak intensity of 62.748mm/hr 

similar to that of the precipitation event). The analysis tool provided a rainfall intensity of 10.103 mm/hr, 

duration of 9 hours and rain shape of 3.105 as rainfall parameters for flood simulation (Appendix 7). 

Soil data: Soil infiltration and moisture information auto-downloaded from SoilGrids for the FFS used 

default soil depths of 5-15cm. However, the majority of the built-up area did not have soil information as a 

result of soil sealing and the presence of thin soil as noted by Van Den Bout et al. (2023). The FFS relied 

on the default infiltration and moisture rates provided by Fast Flood. 

Two FFS were modelled, an (uncalibrated) intermediate FFS used for fieldwork flood validation and a 

subsequent (calibrated) FFS after fieldwork. 

FFS Validation  

The validation of the FFS employed a fusion of quantitative and qualitative validation techniques from both 

primary and secondary data sources. Validation was carried out twice, on an uncalibrated simulation and on 

a calibrated simulation. The uncalibrated simulation was validated by (i) using expert and resident knowledge 

and expertise as explained in Section 4.2.2.2 and (ii) comparing the simulation flood extent and depth with 

the location and depths of the observed flood points obtained from My Maps and the transect walks. 

After calibration, the calibrated simulation was validated using a satellite-observed flood extent acquired 

from UNOSAT using PLEIADES imagery (50cm resolution) for a flood event that occurred in May 2024. 

Validation was performed by identifying the True Positive (TP) (common areas between the satellite flood 

extent and the calibrated FFS). Additionally, provided with a hydrodynamic flood model for Kibera, FFS 

validation was also done at a local level using Kibera slum.  

Kounkuey Design Initiative (KDI) - an international NGO working on projects in Kibera, through one of 

their PhD students Juma et al., (2023), provided the Space4All team with a flood model for Kibera. The 

flood model was modelled using a 1D/2 HEC-RAS model using a 5m LiDAR DEM, land use Manning’s 

N, and precipitation measurements for 13th May 2021, making it suitable for benchmarking as both the KDI 

model and calibrated FFS modelled the same event. Similar to the satellite-observed flood extent, the TP 

areas between the hydrodynamic model and FFS were derived. 

FFS Calibration 

The flood hotspot points collected using My Maps (see Section 4.2.2.2), were used as input for calibration 

as they contained flood depth information (see Appendix 8). Flood depth was recorded using different parts 

of the human body, such as the ankle, knee, waist and above-the-head level as it provided residents with 

visual estimations and references for measuring and describing depth levels easily (Sy et al., 2020). Flood 

depths were converted into quantitative flood heights of 0.10, 0.50, 1.2 and above 2 meters respectively 

before calibration, following a similar methodology by Luke et al. (2018). 

Sensitivity analysis, the most important part of calibration was implemented to examine the interaction 

between model parameters and the obtained simulation results (Wałȩga, 2016). Calibration was carried out 

using 5 variations for infiltration and Mannings’ parameters each,  chosen on regular intervals between 50% 

and 150% of their original values (Van Den Bout et al., 2023). 25 simulations for each unique combination 

of the two parameters were done based on the intervals of original values and the number of calibration 

parameters.  
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The optimal parameter settings (multipliers) provided by the calibration process were 1.5 for Mannings’ and 

0.5 for infiltration (see Appendix 8), which were used to calibrate the intermediate simulation to produce a 

calibrated flood simulation. 

4.4.2.2. Classification of flood and no flood extent  

The calibrated FFS was classified into five depth ranges of 0-0.11m, 0.11-0.45m, 0.45-1.0m, 1.0-1.7m and 

above 1.7m borrowing from Sanders et al. (2023). Depths ranges of 0-0.03 and 0.03-0.11 were merged since 

depths below 0.03m are considered nuisance flooding due to their very-low level of inundation (Moftakhari 

et al., 2018). Various studies employed different depth thresholds such as 0.30m by Lin et al. (2023) and 

0.10m by Ward et al. (2013) arguing that the threshold depths have minimal impact on livelihoods.  

As this research used Sanders et al. (2023) flood classification depths, and the 0.10m threshold being widely 

used, 0.11m was used as the flood threshold in this research being the lowest hazard level and close to the 

0.10m threshold. Thus, depths below 0.11m were considered as no-flood depths and labelled as 0 creating 

a binary map extent of 0 and 1, with 1 being the flood extent of depths above 0.11m. 

4.4.2.3. Extracting no-flood grids  

The no-flood extent from the calibrated simulation was intersected with the 100m*100m grids to create no-

flood grids based on the 0.11m threshold. ‘Pure’ no-flood grids for model training, were created by excluding 

the known flood grids from the overall grids, which comprised the 116 flood sample grids and grids 

intersecting with slum polygons known to flood, namely Kibera, Mukuru and Mathare. 

Using a k-means grid-based clustering approach, the resultant grids (after excluding flood grids) were 

clustered using elevation following an approach by Wang et al. (2023) to get no-flood grids. However, given 

that Wang et al. (2023), used high-elevation areas, this study used all the elevation clusters as flooding was 

reported (by the city experts) to occur even in high-elevation areas. Additionally, it was one of the most 

important flood factors in increasing flooding provided by residents and city experts. 

The elevation data was scaled and normalized before clustering (Tardioli et al., 2018) to prevent the influence 

of outliers on the optimal number of clusters created by the algorithm (Joshi et al., 2022). 5 elevation clusters 

were created informed by the elbow method (see Figure 4) and exploration of 3, 4 and 5 k-cluster results. 

Stratified random sampling was then used to select an equal number of no-flood grids per cluster (23) to 

complement the 116 flood grids. 

Figure 4: Elbow Method Determining Optimal K-Clusters 

5 
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4.4.3. Training Sample Grids/ Flood Inventory 

The flood grids and no-flood grids were combined to create training sample grids totalling to 231 grids. The 

flood points obtained from the experts and residents were not based on any spatial selection, but rather on 

areas that flood regardless of flood depth. Consequently, the distribution of the flood points varied across 

the study area resulting in cluster imbalance, with some clusters having more training grids, than others due 

to the flood grid imbalance as depicted in Appendix 16 . 

4.5. Data Preparation and Processing 

The unit of analysis used for this research was at a grid level of 100m*100m, as grid cell delineation is more 

dynamic and adaptive to distinguish different built-up form typologies compared to administrative 

boundaries since it considers the physical layout of cities (Marwal & Silva, 2023). Additionally, in spatial 

analysis, grid cells provide a high degree of spatial granularity that allows for the recognition of subtle spatial 

patterns and relations, with the 100m*100m grid size conforming to most global datasets and protecting 

population privacy (Kuffer et al., 2021). 

The grid was created in ArcGIS Pro using the Grid Index Feature referencing a 100m resolution snap raster, 

to ensure alignment between the grid and the FIFs raster datasets resampled into a 100m resolution using 

the same snap raster. The building morphometrics (vector), and the FIFs (vector and raster) were combined 

at a grid-cell level, assigning flood factor attributes to each grid cell. The morphometric dataset was spatially 

joined to the grid, with each grid cell receiving the mean value of the building footprints’ morphometrics 

present within specific grid cells. 

The FIFs derived in their respective resolutions were first resampled into resolutions of 100m using a snap 

raster before being integrated into the grid. This ensured alignment between the rasters and the grid, which 

would have otherwise resulted in misalignment due to overlapping raster extents. Using the Extract Values 

To Points tool in ArcGIS Pro, the raster values were extracted to the grid centroids and concatenated with 

the other flood factors at each grid cell. Soil vector data was intersected with the grid cells assigning each 

cell with soil data.  

4.5.1. Data Cleaning 

With a focus on urban morphology specifically building morphology, non-built-up grid cells were discarded 

from the grid. Additionally, grid cells with null values and -9999 values (no data) were also removed from 

the grids resulting in a total number of 42,020 grids. 

4.5.2. Data Splitting 

Prior to model training, the 231 training sample grids were split into training and testing sample sets using 

the spatial block technique adopted from Mahoney et al. (2023), which resulted in spatially uncorrelated 

training and testing set. Informed by the distribution of the training sample grids, a grid of six rows and six 

columns was created to form the spatial blocks, blocks that did not intersect with any training sample grids 

were dropped to prevent training and testing blocks from having no data as in Figure 5. 

From the upper-left corner, moving horizontally across each row from left to right starting from the upper 

left block, every 3rd block was selected to be a testing block as seen in yellow in Figure 5. After the iterations, 

146 sample grids (14 spatial blocks) were assigned to the training set while 85 sample points (6 spatial blocks) 

were assigned to the testing set. 
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Figure 5: Training and Testing Data Splitting 

4.6. Random Forest Model Training and Evaluation 

RF classification was conducted using the Scikit-Learn library in the Python environment. Flood 

susceptibility prediction was conducted using 2 models, where Model 1 utilized all the flood factors while 

Model 2 utilized the FIFs. To boost the performance of the models hyperparameters such as the number 

of trees (n_estimators), the maximum number of features for node splitting (max_features), the maximum 

level of each decision tree (max_depth), the minimum sample required to split a node (min_samples_split) 

and the minimum samples required in a leaf node (min_samples_leaf) were optimized (Al-Aizari et al., 2024). 

A grid search cross-validation technique of five folds was applied for hyperparameter optimization on a 

defined grid of candidate values (shown below) to derive the best-performing parameter sets.  

N_estimators : [100, 200, 300, 400, 500] 

Max_features : [sqrt] 

Max_depth : [10, 20, 20, 40, 50] 

Min_samples_split: [2, 5, 10] 

Min_samples_leaf: [1, 2, 4] 

Random_state: [42] 

The best parameter sets were then used to train the models by fitting the algorithms to the 146 binary 

classified training grid samples (0 and 1), while the 85 binary testing samples were used to evaluate the 

performance of the models. The robustness and classification accuracies of the models were evaluated using 

statistical measures such as overall accuracy, recall and precision, which were calculated based on the True 

Negative (TN), False Positive (FP), False Negative (FN) and True Positive (TP) parameters (Chen et al., 

2020; Pourghasemi et al., 2020) using the formulas given below: 

Overall Accuracy = TP + TN/(TP+TN+FP+FN) 

Precision = TP/(TP +FP)  

Recall = TP/(TP + FN)  
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Where: 

➢ TP and TN = correctly classified instances  

➢ FP and FN = incorrectly classified instances 

Feature importance was calculated by the RF models, determining the hierarchical importance of the 

contribution of each flood factor based on the mean decrease in Gini impurity. The flood factors ranking 

results from the workshops which represented local flood dynamics (explained in Section 4.2.2.2 ) were used 

to compare and evaluate the RF feature importance lists. 

4.7. Susceptibility Prediction 

The 42,020 grids generated as explained in Section 4.5.1, were used as a predictor set and were fitted to the 

trained models, which predicted the class labels of the unlabelled grid cells as no-flood or flood. Using the 

predict probability function (predict_proba), the probability scores of each grid belonging to its predicted 

class were calculated based on a threshold of 51% as in Appendix 9, with scores above 51% belonging to 

class 1 and vice versa. 

The susceptibility values were classified using natural breaks and interpreted categorically, ranging from very 

low susceptibility to very high susceptibility which were then used to assess the degree of flood susceptibility 

between slums and formal settlements. The influence of urban morphology on flood susceptibility was 

assessed by comparing the model performances and flood susceptibility maps of both Models 1 and 2.  
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5. RESULTS 

5.1. Flood Factors (Independent Variables) 

5.1.1. Building Morphometrics 

High values of Shared Wall Ratio (SWR), Covered Area Ratio (CAR) and Building Density (BD) and low 

values in Building Adjacency (BuA) are depicted in red as in Appendix 11, are seen to explicitly delineate 

slum settlements. Lower values of BD are dominantly observed to be in East, Southwest and Northwest of 

the city.  

Buildings in the East and Southwest have large distances between each other as illustrated by the Building 

Neighbour Distance (NDi) and Mean Inter-building Distance (IBD) metrics in Appendix 11, with the mean 

distance between buildings being 23.36m and 22.56m respectively (see Appendix 10). It is observed that 

high values of SWR, CAR, BD, and low values of BuA in slums e.g. Kibera are associated with small 

distances between buildings. In comparison, in some formal settlements such as Kilimani and Kileleshwa, 

lower values of  SWR, CAR, BD, and higher values of BuA are also associated with smaller distances 

between buildings as seen in Figure 6. 

 

 

 

 

 

 

 

 

 

 
Figure 6: Relationship between Building Neighbour Distance (NDi) and Building Density (BD) in Kibera 
Slum and Formal Settlements (Kilimani and Kileleshwa). 

With Fractal Dimension (FD) having a mean value of 1.034 and a low standard deviation of 0.042 (see 

Appendix 10). The majority of buildings in Nairobi are assumed to have regular shapes indicated by the 

mean values being near 1, implying that buildings have minimal departure from Euclidean geometry 

(Taubenböck et al., 2019).  

5.1.2. Flood Influencing Factors 

The Elevation values for the study area ranged from 1,462.05 to 1,933.98 meters, with most slums found in 

the Elevation ranges of 1,573.69 and 1,610.89 meters (depicted in green and dark green) as in Appendix 11. 

The mean Slope was 3.031o with the highest slope value of 25.618o found in the North-west. The mean 

Meters Buildings/0.01km2 

Scale: 1:20,000  
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distance to rivers is 303.394 meters (see Appendix 10), with most slums observed to be located along and 

near rivers. 

High values of Flow Accumulation and SPI are observed to be associated with proximity to rivers and vice 

versa, where the shorter the distance to rivers, the higher the values of Flow Accumulation and SPI (see 

Appendix 11). The LULC shows that the majority of the city is built-up, with vegetation/tree cover mostly 

in the West. The mean NDVI value for the study area is 0.0296, with the least NDVI (negative values) 

located in slum settlements.  

Interestingly, a direct relationship is seen between elevation and NDVI and a negative relationship between 

Elevation and TWI. As elevation decreases from West to East, NDVI decreases in the same manner (from 

West to East), whilst TWI values increase, implying that the lower the elevation the higher the TWI values 

as in Appendix 11. 

5.1.3. Correlation Amongst Flood Factors 

The relationships between independent variables were analyzed using the Pearsons’s correlation as shown 

in Appendix 12 to understand the relationship between variables. The morphometric variables showed 

strong positive correlations among NDi, IBD and BuA, with CAR and BD having a strong positive 

relationship of 0.87. 

The strongest negative relationship of -0.96 is observed between NDVI and NDWI, suggesting that higher 

NDVI values are associated with lower NDWI values. Conversely, NDVI and NDBI had the strongest 

positive relationship of 0.75. Curvature, FD and distance to rivers were seen to have weak correlations with 

other variables, as shown by their low correlation values. 

5.1.4.  Covariance and Correlation between Variables and Flood Classes 

To understand how the variables relate to the flood labels, the covariance and correlation were done, 

providing a comprehensive overview of which variables are strongly related to flooding or no flooding. SPI 

and Flow accumulation had the highest positive covariances of 1337.48 and 1238.55 respectively depicted 

in Appendix 13, with distance to rivers having the highest negative covariance of -49.17. 

According to the correlation results, CAR, BD, and SWR are portrayed to have significant magnitude 

towards flooding given their high correlations of 0.51, 0.40 and 0.36, respectively, seen in Figure 7. BuA, 

IBD and distance to rivers showed strong negative relationships with flooding indicated by their correlations 

of -0.55, -0.47 and -0.47 respectively. Building orientation, elevation, curvature and soil clay content had 

values closer to 0, implying either minimal or no linear relationship to flooding based on the data. 
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Figure 7: Correlation of Flood Factors with Flood Labels 

5.2. Flood Inventory 

The Fast Flood uncalibrated simulation shown in Appendix 14 shows extensive flooding in various parts of 

the study areas with a maximum flood depth of 17.51m. The flood depths on the Western side are seen to 

be low compared to the Eastern side which has depths above 1.7m. High flood depth values are seen along 

the major rivers, where most of the slums are located. Hence observing that the slums are more exposed to 

fluvial flooding. 

5.2.1. Fast Flood Calibration 

A new simulation was run using My Maps flood observation points (91 points) resulting in a maximum 

depth of 16.47m, indicating a maximum depth decrease from the uncalibrated simulation. The simulation 

with observation points was then calibrated using multipliers of 0.5 and 1.5 for infiltration and Mannings’, 

respectively, resulting in a calibrated FFS with a maximum depth of 13.82m illustrated Figure 8. 

The calibrated simulation had lower flood depths compared to the uncalibrated simulation with a difference 

of 3.69m between their maximum flood depths. Even after using observed flood points located far from 

rivers to calibrate the simulation, both simulations were seen to dominantly capture fluvial flooding. Despite 

the decrease in depth, the extent of the calibrated simulation significantly reduced in the Eastern region 

compared to the uncalibrated simulation, as seen in Appendix 15. 
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Figure 8: Calibrated Fast Flood Simulation 

5.2.2. Fast Flood Validation 

5.2.2.1. Validation of the Uncalibrated Simulation 

The uncalibrated FFS was qualitatively validated in the field by both experts and slum residents from the 

selected slums. The stakeholders claimed that the simulation did not capture localized flooding with some 

inaccuracies in fluvial flooding extent. In some areas of the slum settlements, the residents claimed that the 

simulated flood extents were over or under-simulated. Additionally, dozens of collected My Maps flood 

points did not overlay with the simulated flood extent, especially in Kibera. However, they confirmed the 

fluvial FFS as a true depiction of river flooding. 

5.2.2.2. Validation of the Calibrated Simulation 

The calibrated simulation was compared with an observed satellite flood extent captured on May 1st, 2024, 
by getting the TP extent areas denoted in green in Figure 9. The Eastern region is seen to experience much 
flooding as observed in both extents. Additionally, apart from capturing some of the urban floods in the 
Eastern region, the satellite imagery was only able to capture minimal fluvial flooding along major rivers. 

The TP extent covered an area of 20 km2, with the UNOSAT extent within Nairobi covering 25 km2 and 

the calibrated FFS occupying an area of 82 km2. Additionally, upon further inspection, the UNOSAT fluvial 

flood extent was minimal compared to the Fast Flood fluvial flood extent. Additionally, when comparing 

using the My Maps flood points in Korogocho and Mukuru (as they were the only selected slums observed 

by the UNOSAT flood imagery), the flood areas missed by the FFS were also missed by the satellite extent. 
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Figure 9: Validation of Calibrated Model with Satellite Observed Flood Extent 

The KDI Kibera urban flood map modelled using a HEC-RAS hydrodynamic model captured finer details 

of urban flooding, such as flood occurrences along roads as illustrated in Figure 10. Additionally, the flood 

extent of the hydrodynamic model was larger compared to the FFS with higher depths, especially along 

rivers. The highest depths of the FFS are observed to be along the lower river entering the Nairobi Dam, 

with the Nairobi Dam also having high depths. 

The golf course bordering Kibera is seen to have high flood depths of above 1.7m according to the HEC-

RAS model. However, in comparison to the FFS, the maximum depth is observed to be 0.45m, resulting in 

a difference of 1.25m. Both simulations did not capture the flood extent of some flood points purported to 

frequently experience flooding as in Figure 10. Additionally, the FFS in the Eastern region of Kibera 

captured more flood areas and had larger extents compared to the HEC-RAS model. 
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Figure 10: Kibera Slum Validation Against Kibera HEC-RAS Flood Model 

5.2.3. Sample Training Grids 

Appendix 16 shows that the no-flood grids were spatially distributed across the study area, with an equal 

number of grids in each elevation cluster. Majority of the flood grids were in the slums where the My Maps 

exercises were conducted, as seen in clusters 0, 2 and 3. The number of flood grids in each cluster varied, 

with cluster 2 having the highest number of grids (42 grids) and cluster 4 having the least number of grids 

(4 grids), as in Appendix 17. The variations in the flood grids resulted in an imbalance in the number of 

sample training grids in each cluster. 

5.3. Flood Susceptibility  

5.3.1. Data splitting 

The splitting technique divided the study area into different spatial non-overlapping regions, resulting in 

spatially uncorrelated training and testing grid sets. The splitting resulted in 146 training grids and 85 testing 

grids, as in Table 7, with each training and testing block capturing the different diversity of features in the 

study area, ensuring that the model did not learn to over-perform in specific spatial regions. As a result of 

the split, the training grids had more flood grids than no-flood grids while testing grids had more no-flood 

grids than flood grids as seen in Table 7. 

Table 7: Distribution Split of Sample Training Grids 

 Flood Grids (class 1) No-flood grids (class 0) Total Number 

Sample Training Grids 116 115 231 

Training Grids 76 70 146 

Testing Grids 40 45 85 
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5.3.2. Model 1 – All independent variables  

As Model 1 used all the variables, the grid search cross-validation fitted a total of 1125 fits for 225 candidates, 

yielding a best cross-validation score of 0.753. The best RF hyperparameter combinations for Model 1 

provided in Table 8 with a random state of 42 for reproducibility, resulted in an overall accuracy of 84.71%, 

a precision score of 0.935 and a recall score of 0.725.  The feature importance for Model 1 presented distance 

to rivers, SPI, BuA, IBD and elevation as the top 5 important features. Flow Accumulation, clay soil content 

(CLPC) and LULC were implied to have minimal influence on flood susceptibility, as in Figure 16. 

Figure 12 depicts that low susceptibility values are mostly seen in the East, South-west and North-west 

regions of Nairobi. However, in these same areas of low susceptibility, high susceptibility values are 

witnessed along the river systems which relates to the high importance of distance to rivers. Observing that 

areas near rivers are very susceptible to flooding, slum settlements are also seen to be highly susceptible to 

flooding, though, just not in slum areas that are close to rivers.  

A comparative analysis between Kangemi and Kawangware slums and Loresho and Masiwa formal 
settlements, exhibit that low BuA and high CAR that characterize slums and high-density settlements have 
moderate to high susceptibilities. Whereas formal areas with high BuA, are depicted in Figure 11 are exposed 

to very low-moderate flood susceptibilities. 

Figure 11: Relationship between Building Adjacency and Flood Susceptibilities between Kangemi and 
Kawangware Slums and Loresho and Masiwa Formal Settlements 

 

 

 

Building Adjacency ranges from 0-1, with 

values close to 0 indicating buildings are close to 

each other 

Susceptibility ranges from 0-1, with values close 

to 1 indicating very high susceptibility  

Scale: 1:20,000  Scale: 1:20,000  
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Figure 12: Model 1 Flood Susceptibility Map 

5.3.3. Model 2 – Using the FIFs variables 

While training the model using the 14 FIFs variables to predict susceptibility, the grid search technique 

similar to the one employed in Model 1 provided a best validation score of 0.760. The best hyperparameter 

combinations for Model 2 provided in Table 8, resulted in an overall accuracy of 71.76%, with a precision 

score of 0.833 and a recall score of 0.5. The top 5 important features were distance to rivers, SPI, elevation, 

NDWI and curvature depicted in Figure 16, with the least important FIFs being the same as in Model 1.   

The predicted susceptibility illustrated in Figure 13, is observed to be strongly influenced by the distance to 

rivers, with areas in proximity to rivers being more susceptible to flooding. Areas near rivers in the Eastern 

region (formal settlement areas) had high to very high susceptibilities.  

In both Model 1 and 2, flood susceptibility values are seen to increase as elevation decreases (from West to 

East) up to a certain location, where, as elevation decreases flood susceptibility decreases as in Appendix 

11, Figure 12 and Figure 13. Moreover, despite higher TWI being associated with increased flooding, the 

Eastern region does not conform to this relationship implying that TWI does not heavily influence flooding 

in the East. 

 



The Influence of Urban Morphology on Flood Susceptibility in Slums in a Data-Scarce Environment Using Machine 

Learning 

38 

Figure 13: Model 2 Flood Susceptibility Map 

Table 8: Random Forest Hyperparameters and Accuracy Metric 

Model Variables 
used 

Hyperparameter 
combinations 

Overall 
Accuracy 

Precision Recall 

1 All n_estimators: 200 
Max_features: 4 
Max_depth: 10 
Min_samples_split: 4 
Min_samples_leaf: 10 
Random_state: 42 

0.8471 0.935 0.725 

2 FIFs n_estimators: 200 
Max_features: 4 
Max_depth: 10 
Min_samples_split: 4 
Min_samples_leaf: 10 
Random_state: 42 

0.7176 0.833 0.5 

5.3.4. Differences in Model Predictions   

Susceptibility values in slums in Model 2 are observed to be lower compared to the susceptibility values in 

Model 1, with similarities in slum areas near rivers being very highly susceptible to flooding (See Figure 14). 

Formal areas such as Langata in the Southwest region in Model 1 predominantly have very low–moderate 

susceptibility with exceptions in areas near rivers, while in Model 2 the susceptibility values range quite 

higher. 
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Figure 14: Comparison Between Model 1 and Model 2 Predictions in both Formal and Slum Settlements 

Based on the 51% threshold probability of an unlabeled grid belonging to a particular flood class label, 

Model 1 had 8,425 flood grids with Model 2 having the highest number of predicted flood grids of 10,852 

(see Table 9). The disparity in predicted flood grids critically infers that the exclusion and or inclusion of 

the morphometric variables affects the prediction outcomes.  However, as much as Model 2 predicted more 

flood grids by relying on FIFs, its overall accuracy (71.76%) is significantly lower than that of Model 1.  

Table 9: Grids per Flood Classification Prediction 

Models Flood Class Prediction  
(based on a 51% probability threshold of belonging to a specific class) 

Number of flood grids (1) Number of no-flood grids (0) 

1 8,425 33,595 

2 10,852 31,168 

Kibera Slum (Model 1) Langata Formal Settlement (Model 1) 

Langata Formal Settlement (Model 2) Kibera Slum (Model 2) 

Susceptibility ranges from 0-1, with values close to 1 indicating very 

high susceptibility  

Scale: 1:20,000  

Scale: 1:20,000  

Scale: 1:50,000  

Scale: 1:50,000  
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5.4. Flood Susceptibility in Formal and Slum Settlements 

With formal areas being grids that do not intersect with the slum extent, the box plots in Figure 15 depict 

high slum flood susceptibilities with median susceptibility values of roughly 0.65 in Model 1 and 0.55 in 

Model 2. In formal settlements, the median susceptibility appears to be consistent in both models with mean 

susceptibility values of approximately 0.3, which is significantly lower than in slum areas. 

Figure 15: Flood Susceptibility Comparison between Formal and Slum Settlements (Model 1 and 2) 

In both models, the Inter-Quartile Range (IQR) is wider for slums, showing more variability indicating 

broader ranges of susceptibility values, suggesting that some slums or some slum areas have lower or higher 

susceptibilities than the median. Formal areas in comparison, have narrower IQR, revealing that 

susceptibility values are close to the median value and closer to each other. 

However, as formal areas are seen to be least susceptible, the outliers suggest that there are some formal 

areas with extremely high susceptibilities, with the majority of outliers seen with the inclusion of 

morphometric variables. The outliers are seen in high-density compact areas, with some areas located near 

rivers. Slum susceptibility in Model 1 is portrayed to be higher given the inclusion of morphometric 

variables, compared to Model 2, informed by: 

• The higher minimum susceptibility value depicted by the lower whisker  

• The IQR (representing 75% of the slum grids) having susceptibility values of approximately 0.45 
to 0.8, compared to values of approximately 0.3 to 0.75 in Model 2.  

5.5. Comparison of RF Feature Importance and CS Feature Ranking 

Using Model 1 as it is the main model, building in low areas and near rivers representing elevation, elevation 

derivatives and distance to rivers were ranked as the most important factors that cause flooding at a city 

scale level (experts voting) and in Kibera with a score of 6 votes as in Figure 17. Coincidentally, distance to 

rivers, SPI and elevation were ranked the 1st, 2nd and 5th most important variables by the RF algorithm. 

Morphometric factors such as the arrangement of buildings, the density of buildings and the area covered 

by buildings were ranked as the 4th, 5th and 6th influential factors with 3, 2 and 1 votes respectively, by the 

experts for both slum and formal areas. Arrangement of buildings encompassing spatial distribution of 
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buildings, building orientation, alignment and fractal dimension had the highest votes in Mukuru and 

Korogocho (4 votes) and 2 votes in Kibera. 

Figure 16: RF Model 1 and 2 Feature Importance Lists 

 

Figure 17: Citizen Science Pairwise Feature Ranking Importances 

0 1 2 3 4 5 6 7

Lack of green spaces

Area covered by buildings

Density of buildings
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Blocked  drainage by waste
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Ranking of  Flood Factors using Citizen Science
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During fieldwork, the most common flood incidences were reported to be along rivers proving that distance 

to rivers significantly contributes to heightened flood risks. Buildings were seen to be built either on the 

same or at elevated levels in floodplains, with some buildings constricting the river paths as seen in Figure 

18. 

Figure 18: Distance to Rivers in Slums 

Building adjacency and mean inter-building distance both relating to the spatial distribution of buildings 

were ranked 2nd and 3rd by the RF algorithm shown in Figure 16 while the arrangement of buildings ranked 

3rd in Mukuru and Korogocho (see Figure 17).   

The area covered by buildings was ranked as the 6th important influential flooding factor in Mathare, 

Korogocho, and Kibera and at a city scale level similar to the ranking of CAR by the  RF algorithm in Figure 

16. Interestingly, Mathare was the only settlement that highly ranked the lack of green spaces, assigning it 

with 4 votes, tying at 3rd place with arrangement and density of buildings, while lack of green spaces was 

ranked as the least important factor by experts. 

To quantitatively analyse the factor blocked drainage by waste, slum waste data was acquired from SLUMAP 

research project17 in 2019 - a project that employed RS for slum mapping and characterization in SSA cities. 

The analysis exposed Mukuru as having high amounts of waste across the settlement, especially along the 

main river system. Furthermore, Mathare and Soweto slums had areas with very high percentages of waste 

ranging from 12.6% - 32.64%, compared to other slums, also found along rivers as in Figure 19.  

Kibera is seen to have lower percentages of waste, with the highest percentage of waste levels being in the 

2.16% - 5.39% category. Comparing the amount of waste in the selected slums, blocked drainage by waste 

ranked 2nd in Kibera and 1st in both Mathare and Mukuru, reflecting the proportion of waste in the slums 

as seen in Figure 19. Moreover, areas with high levels of waste were also seen to have high values of flood 

susceptibility, especially in Mukuru. 

 

17 SLUMAP research project - Mapping slums with remote sensing (ulb.be) 

https://slumap.ulb.be/
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Figure 19: Percentage of Waste Distribution in Nairobi Slums 
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6. DISCUSSION 

6.1. Role of Urban Morphology on Flooding 

The differences in the overall accuracies between Model 1 (85%) and Model 2 (71.76%) suggest that despite 

FIFs being crucial in determining flood susceptibility, flood prediction solely using FIFs has limited ability 

to capture the complexities of urban flooding. The lower predictive performance of Model 2 provides 

evidence that FIFs do not account for micro-topographic features that govern flood flow dynamics (Safaei-

Moghadam et al., 2023). These micro-topographic variations often result from anthropogenic modifications 

to landscapes and landforms (Chirico et al., 2021), which aggravates hydrological dynamics and processes 

(Douglas, 2011). 

The novelty of including building morphometrics in FSM in Model 1 and the improved model accuracy in 

flood susceptibility prediction, suggests that its incorporation accounted for micro-topographic features 

relating to building developments that were overlooked by the FIFs. Successively, urban morphology is seen 

to be vital in capturing the complex intricacies of flooding.  

Postulated that dense urban areas tend to have the most pronounced landscape effects of anthropogenic 

activities (Chirico et al., 2021), the influence of morphometrics was seen in slums where their susceptibilities 

greatly increased in Model 1, indicating a correlation between density and flooding. Inversely, formal areas 

characterized by having lower densities and larger distances between buildings exhibit reduced flood 

susceptibilities in Model 1. Huang (2021) notes that slums are often left out of official and formal plans 

resulting in unregulated development – a situation also observed in Nairobi. Formal settlements, unlike 

slums, adhere to building and zoning ordinances such as minimal plot coverage, plot ratio, maximum 

densities, and plot setbacks (Kuffer et al., 2016) resulting in lower values of SWR, CAR, BD which reduce 

flood susceptibilities. 

This occurrence is illustrated by the narrower IQR of the formal settlements and its highest susceptibility 

value of 0.75 (excluding outliers) in Model 1 compared to Model 2 which had a larger IQR and highest 

susceptibility value of 0.9 (excluding outliers), seen in Figure 15. The urban morphological features seen to 

affect flood susceptibility were building adjacency, mean inter-building distance and covered area ratio, 

which ranked 3rd, 4th and 6th in the top 10 important features. 

6.2. Use of Global Datasets 

The use of global datasets at a city scale resulted in low spatial resolution and accuracy, resulting in datasets 

that inadequately capture fine-scale details required for efficient flood mapping (Carr et al., 2024). However, 

leveraging global datasets provided this research with comprehensive data for FSM, with their use resulting 

in RF model accuracies of above 70% in susceptibility prediction.  

Despite their limitations, the performance of global datasets in both Fast Flood and RF models proved their 

effectiveness in capturing fundamental susceptibility factors, especially as Model 1 yielded an overall 

accuracy of 85%. Given that they are readily and openly available they are useful in data-scarce contexts, 

particularly in SSA cities, as they can facilitate easy scalability and replicability of this approach allowing 

uniform and consistent FSM comparisons. 

6.3. Inclusion of Citizen Science in FSM  

The contribution of CS has been significantly useful in this research with residents and experts providing 

insightful and complementary information, considering that they are knowledgeable about their 
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environment, flood-related issues and witnesses of local flood events as asserted by Sy et al. (2020). CS 

information helped in understanding the settlement-specific underlying flood factors as they provided 

hierarchical importance of both morphometric and FIF factors, making CS a valuable source of primary 

information.  

Additionally, given that the global datasets were not able to capture fine details, by virtue of the residents 

understanding their current issues, they provided flood information related to the interconnectedness of 

various issues to flooding such as poverty, poor governance, failure of urban planning, ignorance and neglect 

by authorities. CS was particularly useful in the acquisition of accurate flood data as slum residents collected 

flood inventory points by identifying flood hotspots also highlighted by Tran et al. (2024) which for this 

study reflected the influence of anthropogenic, hydrological and environmental factors on urban flooding. 

This participatory approach remarkably tackled the limitations of data paucity as the residents (slum 

participants and city experts) were able to provide historical flood data needed for susceptibility prediction. 

6.4. Limitations 

Despite the results of this research, the approach and study had various limitations such as the inherent 

limitations of global datasets such as the downsizing of data to approximate local conditions, which reduced 

details that would have accounted for the intrinsic nature of flooding. The use of local VHR DEMs 

produced by Light Detection and Ranging (LIDAR) and Unarmed Aerial Vehicles (UAV) would improve 

accurate elevation information resulting in accurate flood mapping (McClean et al., 2020). 

6.4.1. Limitations and Uncertainties of Fast Flood 

The simulation result provided by Fast Flood illustrates that the tool predominantly accounts for fluvial 

flooding and hydrological-based flooding. Based on fieldwork, city experts asserted that Nairobi greatly 

suffers from urban flooding referring to it as artificial flooding. These floods are mainly caused by excessive 

water run-off in built-up areas where water has no place to go, exerting an immense amount of pressure on 

drainage systems, intensified by impervious surfaces (Sandink et al., 2016).  

From the simulation result, Fast Flood does not seem to fully capture urban flooding, however, some areas 

are seen to flood despite being positioned far from the rivers, as in Figure 8. Areas notorious for flooding 

were simulated to have minimal or no flooding, which was also highlighted in fieldwork by both slum 

residents for their respective slums and by city experts at a city-scale level. 

Despite Fast Flood offering the option to include urban data from OSM, such as buildings and roads, 

simulations done with and without the urban elements resulted in similar simulation outcomes. This is a 

result of the primary role of OSM data in Fast Flood for exposure analysis. Buildings as obstacles were not 

included because the resolution of the DEM (Copernicus 40m) was coarse, especially for small buildings, as 

they would have been amalgamated to form an elevation obstacle. 

6.4.2. Limitations of Satellite Flood Imagery 

Given that in Nairobi, the April 2024 - May 2024 flood events reported many cases of urban flood events, 

they were not fully captured by the UNOSAT satellite imagery in its specific region of interest (see Figure 

9). The minimal reflection of fluvial flood extent and urban floods critically reveals the difficulty of capturing 

the intricacies of flooding while using satellite imagery. Moreover, this highlights that most flood-detection 

and mapping focus more on fluvial flooding compared to urban flooding, which is easier to detect as urban 

floods are usually shallow and short-lived with their ponding nature creating discontinuous flood extents 

increasing detection difficulty (Tanim et al., 2022). 
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6.4.3. Limitations of CS in Flood Data Collection and Flood Inventory 

Despite the results and usefulness of CS data, challenges such as coverage, reliability and accuracy exist. Low 

participation is often seen to result in low volumes of data affecting the coverage and reliability of the 

collected data (Le Coz et al., 2016). In this research due to the easy manipulation of My Maps data points, 

2 participants were selected per slum to collect flood points, in specific slums like Mathare the points did 

not cover the full extent of the settlement, resulting in poor coverage data. 

As the flood points provided were based on areas that flood with no selection criteria like the no-flood 

point/grids, they resulted in  cluster class imbalance (see Section 5.2.3). The class imbalance in ML models 

can result in models that are not generalizable, affecting the robustness. Given that clusters 1 and 4 had 9 

and 4 flood grids respectively, with 23 no-flood grids each, the model could have possibly learned how to 

predict non-flood grids in clusters 1 and 4 compared to flood grids. This could have led to the misprediction 

of (no)flood grids due to the lack of an equal number of flood grids to train the model with. 

6.4.4. Limitations in Data and Data Processing  

Aggregating data to the 100m*100m downscaled the resolutions of the datasets such as LULC, and NDVI 

from 10m resolution to 100m resolution might have reduced the accuracy of the model as fine details are 

omitted, producing flood susceptibilities that might over or under-estimate the likelihood of flooding. 

Additionally, given that data is lost in aggregation, variations in the grid cells (100m*100m) were not 

captured, ergo creating an ecological fallacy by assuming that for example, all the areas in a grid cell have 

high susceptibilities, however, it could just be one specific area and not the entire grid.  

Also, as the reference slum layer did not capture all the slums present in Nairobi, some slums were 

considered as formal settlements, which affected the susceptibility values of formal settlements represented 

by the outliers in Model 1, which when inspected, were in some areas resembling slums. 
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7. CONCLUSION AND RECOMMENDATIONS 

7.1. Conclusion 

The findings of this research revealed that slum settlements in Nairobi are highly susceptible to flooding, 

with a susceptibility median value of 0.65. The majority of the formal areas have very low to low 

susceptibility, especially in the Eastern and Southwest parts of Nairobi, with a median of 0.3, except along 

rivers that have higher susceptibility values in Model 1. Despite formal areas near rivers having higher 

susceptibilities, susceptibility values in slum areas near rivers are extremely higher, especially in Kibera, 

Mukuru and Mathare. 

The results of the quantification of flood risk using susceptibility conform with the assertions that slums are 

hit hardest during disaster risks as sharp susceptibility differences are observed between slums and formal 

areas. The findings of this research expose distance to rivers, SPI, building adjacency, mean interbuilding 

distance and elevation as the top 5 influential factors.  

As much as hydrological and environmental factors influence the probability of flooding, the top urban 

morphology factors such as building adjacency, mean interbuilding distance and covered area ratio 

significantly influence flooding specifically in slums. The improved accuracy with the inclusion of 

morphometrics in the RF predictive Model 1, particularly highlights that understanding and examining 

flooding solely based on FIFs is not effective and does not lead to a comprehensive understanding of 

flooding in the city. Thus suggesting the importance of incorporating urban morphology in understanding 

the urban-induced complexities of flooding. 

From the findings, it is apparent that the critical morphological element influencing flood susceptibility is 

the availability of space for water. The spatial configuration of settlements influenced by morphological 

elements such as building adjacency and mean interbuilding distance, significantly alter how water moves 

and accumulates during flood events. This natural hydrological response is dictated by the amount of space 

left for water to flow. 

The covered area ratio, identified in the top 10 important features in Model 1, has a vital role in influencing 

surface run-off accumulation by dictating the amount of impervious space, controlling the available space 

left for water infiltration. Increased soil sealing, resulting from highly covered areas reduces soil permeability 

leading to increased inundation, specifically in slums given their dense nature.  

The participatory techniques used to validate and confirm flooding and rank the importance of flood factors 

have been seen to be essential in flood mapping, especially at the local scale, where much flood information 

is unknown while using large-scale data. Citizen-based data in flood modelling ought to be explored as it 

has great potential to improve flooding studies, especially in the global south where flood data is often scarce 

7.2. Recommendations 

With the increase in climate variability intensifying flood events, and the ‘static’ nature of hydrological and 

environmental conditions, urban planners and disaster risk management authorities ought to pay attention 

to ‘changeable’ flood factors such as the nature and typologies of urban devlopment. Which have been 

realised to play a great role in controlling the dynamics of flood waters. 

The duality of urban development and flooding has been biased with a keen focus on the effect of flooding 

on urban elements, discounting the effects that urban elements have on flooding. Scrutinizing the potential 
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impacts urban development, particularly, urban morphologies has on flooding needs to be conducted, most 

especially for slums since they are the most vulnerable and highly susceptible settlements. This necessitates 

the inclusion and or recognition of slums as part of the formal system, to purposefully plan their organization 

and arrangement as their morphologies and locations in flood-prone areas increase their propensity to 

flooding.  

Based on the strong relationship between flooding and urban morphology, morphological responses to 

reduce flood susceptibilities, planning authorities ought to manage urban development to ensure harmony 

between the built and natural environment. Approaches such as controlling development, especially 

densification through zoning and building ordinances can be done to control urban flooding that results 

from development pressure.  

From a bottom-up perspective, community empowerment and participation through workshops, meetings 

and other public engagement forums can be employed to create awareness, encourage community-led 

mitigation measures and ensure public involvement in the planning process, especially in the formulation of 

disaster and settlement plans. 

Hydrological and environmental responses to reducing susceptibilities could be through the provision of: 

1. Non-structural measures, especially nature-based solutions that aim to reduce surface run-off, 
create room for water, and increase infiltration. 

2. Structural measures include canalising major rivers, constructing flood walls, and improving 
drainage infrastructure. 

7.3. Research Recommendations and Areas of Further Research  

This research could be built upon, by collecting both flood and non-flood locations using a CS approach, 

to capture ‘on-ground’ flood depths as it would account for multiple sources of flooding, especially artificial 

flooding. Local and high-resolution datasets ought to be employed in future research for accurate flood 

mapping. 

As this research focuses on one specific geographical region, a similar methodology can be conducted across 

different geographical settings to compare how varying slum morphologies influence flooding. Such a study 

could be done with a key focus on identifying common or distinctive morphological elements that influence 

flood susceptibility given the diversity and heterogeneity of slums. 

As this research focused on building morphology, explicitly 2D building morphologies, research on flood 

susceptibility can be steered towards using a broader set of building morphologies such as 3D building 

morphologies, street and plot morphologies to provide deeper insights into flood dynamics.  
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8. ETHICAL CONSIDERATIONS AND DATA 
MANAGEMENT PLAN 

8.1. Ethical Considerations 

The research fieldwork was conducted ethically as it took informed consent of participants and respected 

their privacy and confidentiality (see Appendix 18). At no point did this research use any individual 

information regarding the participant's identity or detailed specific locations in the selected slums that would 

expose them or put them at risk. Data findings from the field or research findings were not fabricated and 

or altered, thus upholding the integrity of this research. The research properly acknowledged other works 

used by referencing the respective authors and citing the data sources for data used. 

Ethical concerns for the research including fieldwork through requesting an ethical review (request number 

240110), were examined and approved by an ethical committee, receiving positive advice from the reviewer. 

8.2. Data Management Plan (DMP) 

To allow for the reproducibility and replicability of this research, datasets and codes used in this study were 

stored and made available on Google Drive and GitHub Platforms18  respectively, with Appendix 19 

providing the DMP summary. 

 

 

 

 

 

 

 

 

 

 

 

 

18 https://github.com/MarieMuthoni/Jane-marie_Msc.git  
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APPENDICES 

Appendix 1 

Figure 20: Flood Validation Workshop Outputs 
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Appendix 2 

Table 10: Grouping of Flood Factors into 7 Broader Categories 

No Factor Groupings Flood Factors 

1 Area covered by buildings Area covered by buildings 
2 Density of buildings Density of buildings 
3 Arrangement of buildings Fractal dimension 

Neighbour distance 

Shared walls 

Mean interbuilding distance 

Building adjacency 

Orientation 
4 Building in low areas and near rivers Distance to rivers 

Elevation & its derivatives  
5 Lack of green spaces NDVI, NDBI & LULC 
6 Poor soils NDWI 

Soil infiltration 
7 Blocked drainage by waste Waste 

 

Appendix 3 

Table 11: Flood Factors Pairwise Ranking Matrix 

  Covered 
area 
ratio 

Building 
density 

Arrangement 
of buildings 

  

Building 
in low 
areas 
and 
rivers 

Lack 
of 
green  
spaces 

Soil 
porosity 

  

Blocked 
drainage 
by waste 

Votes 

Covered area 
ratio 

                   

Building 
density 

                

Arrangement 
of buildings 

                

Building in 
low areas and 
near rivers 

                

Lack of 
green spaces 

                

Soil porosity                 

Blocked   
drainage by 
waste 
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Figure 21: Factor Ranking Methodology and Output for Mathare 
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Appendix 4 

Figure 22: Screenshot of Flood Information Collected using My Maps 

Appendix 5 

Figure 23: Upper Athi River Catchment Basin 
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Appendix 6 

Table 12: Comparison between Fast Flood and ESRI Mannings' Value 

Default FastFlood Manning’s 

Values 

 LULC 2020 - ESRI 

ESA land cover Value Esri LULC Minimum 

value 

Maximum 

value 

Weighted 

average 

1. Forest 0.12 1. Water 0.025 0.05 0.038 

2. Shrubs 0.1 2. Trees 0.079 0.174 0.126 

3. Grass 0.03 3. Grass 0.025 0.05 0.038 

4. Crops 0.05 4. Flooded vegetation 0.05 0.085 0.061 

5. Building 0.02 5. Crops 0.02 0.05 0.035 

6. Bare 0.01 6. Shrubs 0.07 0.16 0.115 

7. Snow 0.01 7. Built Area 0.064 0.119 0.092 

8. Water 0.01 8. Bare ground 0.23 0.03 0.027 

9. Wetlands 0.09  

10. Mangroves 0.14 

11. Moss 0.07 

 

Appendix 7 

Figure 24: Rainfall Parameters Derived from the Rainfall Analysis 
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Appendix 8 

Figure 25: Calibration Settings and Output 
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Appendix 9 

Figure 26: Flood Class Prediction and Probabilities 

Appendix 10 

Table 13: Descriptive Statistics of Flood Factors 

Flood Factors Mean Standard Deviation Minimum Maximum 

Building Orientation 17.910 10.302 0 45 

Shared Wall Ratio 0.162 0.140 0 1.768 

Building Alignment 6.452 4.070 0 39.097 

Building Neighbour Distance 23.366 22.411 0 198.989 

Mean Inter-building Distance 22.558 14.190 0 198.989 

Building Adjacency 0.716 0.158 0 1 

Fractal Dimension 1.034 0.042 0.210 8.454 

Covered Area Ratio 0.213 0.170 0.0002 1.014 

Building Density 0.002 0.002 0.0001 0.015 

Elevation 1667.138 117.407 1462.05 1933.98 

Slope 3.031 2.876 0 25.618 

Curvature 0.006 0.428 -3.445 3.635 

Aspect 152.031 105.031 -1 359.995 

Distance to Rivers 303.394 221.618 0 1560.29 

Flow Accumulation 9.492e+02 1.492e+02 0 1.65 

LULC 35.856 17.085 10 80 

TWI 8.542 2.273 4.515 23.3 

SPI 923.065 11041.919 0 596846 

NDVI 0.296 0.194 -0.15 0.843 

NDWI -0.368 0.162 -0.79 0.381 

NDBI 0.054 0.128 -0.6 0.533 

Precipitation  113.443 36.238 59.342 182.302 

Clay Content 48.211 26.336 0 71 
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Appendix 11 
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Figure 27: Flood Factors Represented in Grid Level (100m*100m) 
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Appendix 12 

Figure 28: Flood Factors Correlation Matrix 
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Appendix 13 

Table 14: Covariances of Flood Factors 

Variable  Variables Alias  Covariance with classes 

Building Orientation Orientation 0.41 

Shared Wall Ratio SWR 0.03 

Building Alignment Alignment -0.06 

Building Neighbour Distance Ndi -3.45 

Interbuilding Distance IBD -3.15 

Building Adjacency BuA -0.05 

Fractal dimension FD 0.00 

Covered Area Ratio CAR 0.05 

Building Density BD 0.00 

Elevation Elevation -0.83 

Slope Slope 0.12 

Curvature Curvature 0.00 

Aspect Aspect 4.28 

Distance from Rivers DistRivers -49.17 

Flow Accumulation Flow_Acc 1238.55 

Land Use Land Cover LULC 1.43 

Topographic Wetness Index TWI 0.30 

Stream Power Index SPI 1337.48 

Normalized Difference 
Vegetation Index 

NDVI -0.02 

Normalized Difference Built-up 
Index 

NDBI 0.02 

Normalized Difference Wetness 
Index 

NDWI 0.01 

Precipitation Precip 1.89 

Soil Clay Content CLPC -0.34 
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Appendix 14 

Figure 29: Uncalibrated FFS 

Appendix 15 

Figure 30: Difference between the Calibrated and Uncalibrated Simulation 
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Appendix 16 

Figure 31: Distribution of Training Sample Points in No-flood Elevation Clusters 

Appendix 17 

Figure 32: Cluster Imbalance within Elevation Grids 
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Appendix 18 

 

 

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION 

UNIVERSITY OF TWENTE, ENSCHEDE, THE NETHERLANDS 

CONSENT LETTER (Residents) 

Dear respondents,  

I am Jane-marie Munyi, an MSc student in Urban Planning and Management at the Faculty of Geo-

information and Earth Observation (ITC), at the University of Twente set to complete my thesis to 

graduate.  

I am researching on the influence of urban morphology on flooding in deprived areas (slums), and 

I am reaching out for your assistance to help me understand flooding in your settlements and 

Nairobi. I am asking for help to learn about why floods affect slums more than formal settlements. 

Your participation is voluntary and the information you will share is for academic purposes and be 

treated as very confidential. By sharing your knowledge and participating, you will help your 

community know which areas flood more than others and why some areas flood more than others 

which will help raise awareness about flooding. 

Your support will be very helpful in getting this information. If you have any questions about 

participating, please feel free to ask. 

Thank you for considering my request. Your support will be greatly appreciated 

 

1) Do you agree to participate in this survey/interview/ focus group discussion?  

a. No              b. Yes  

(If yes, please put your details in the table below) 

2) Community of engagement _________________________ 

3) Name of community leader __________________      Contact  _______________ 

4) Date ____________________ 

5) Duration of engagement, from ________  to  _________ 

Participant (name optional) Gender Location of residence 

1.    

2.    

3.    

4.    

5.    

6.    

7.    

8.    

9.    

10.    
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Figure 33: Residents and Experts Fieldwork Consent Forms 

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION 

UNIVERSITY OF TWENTE, ENSCHEDE, THE NETHERLANDS 

CONSENT LETTER (City Experts) 

Dear respondent,  

I am Jane-marie Munyi, an MSc student in Urban Planning and Management at the Faculty of Geo-

information and Earth Observation (ITC), at the University of Twente set to complete my thesis to 

graduate.  

I am researching on the influence of urban morphology on flooding in deprived areas (slums) and 

reaching out for your assistance to gain knowledge about flooding in Nairobi, in the context of 

flood characteristics and influencing factors. As a professional, I would like to understand from 

your expertise how urban morphology has shaped flooding in the City and gain insights as to why 

slums or other areas are seen to be hit harder by flood events as compared to formal settlements. 

Your participation would greatly enrich my research and contribute to a more thorough 

understanding of the complex flood dynamics in Nairobi. Your participation is voluntary and the 

information you will share is solely for academic purposes and will be treated as very confidential.  

Your professional expertise and insights would be valuable in contributing to the depth and 

relevance of my study. If you have any questions about participating, please feel free to ask. 

Thank you for considering my request. Your support will be greatly appreciated. 

 

1) Do you agree to participate in this survey/interview/ focus group discussion?  

a. No              b. Yes  

2) Name of official (optional)  __________________________        

Contact  _______________________ 

3) Function/Department/Role ___________________________ 

4) Date ____________________ 

5) Duration of engagement, from ________  to  _________ 
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Appendix 19 

Table 15: DMP Summary 

NAME OF 

DATA FILE 

SOURCE 

(SECONDARY 

DATA) 

IF SECONDARY, WHO 

IS THE OWNER? 

RESTRICTIONS 

AND LICENSE 

DATA 

FORM 

DATA 

FORMAT 

CONTAINS 

PERSONAL 

DATA 

(Yes/No) 

DATASET 

AVAILABILITY  

Copernicus GLO-
30 
Digital Elevation 
Model (DEM) 

Secondary European Space Agency 
(ESA) 

Free but not for 
commercial use. 

Raster GeoTiff No 2019-2026 

Slope Secondary Derived from Copernicus 
GLO-30 DEM 

Free Raster GeoTiff No  

Aspect Secondary Derived from Copernicus 
GLO-30 DEM 

Free Raster GeoTiff No  

Curvature Secondary Derived from Copernicus 
GLO-30 DEM 

Free Raster GeoTiff No  

Stream Power 
Index 

Secondary Derived from Copernicus 
GLO-30 DEM 

Free Raster GeoTiff No  

Topographic 
Wetness Index 

Secondary Derived from Copernicus 
GLO-30 DEM 

Free Raster GeoTiff No  

Flow 
Accumulation 

Secondary Derived from Copernicus 
GLO-30 DEM 

Free Raster GeoTiff No  

Distance to rivers  Secondary Derived from Copernicus 
GLO-30 DEM 

Free Raster GeoTiff No  

NDVI Sentinel- 
2MSI 

Secondary European Space Agency 
(ESA) 

Free but not for 
commercial use. 

Satellite 
Raster 

GeoTiff No 2017 - present 

NDWI Sentinel- 
2MSI 

Secondary European Space Agency 
(ESA) 

Free but not for 
commercial use. 

Satellite 
Raster 

GeoTiff No 2017 - present 

NDBI 
Landsat 8 OLI 

Secondary U.S Geological survey 
(USGS) 

Open data policy Satellite 
Raster 

GeoTiff No 2013 - present 

LULC ESA 
WorldCover 

Secondary ESA/VITO/Brockmann 
Consult/CS/GAMMA 

CC-BY-4.0. Satellite 
Raster 

GeoTiff No 2020 - 2021 

https://esa-worldcover.org/en
https://esa-worldcover.org/en
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Remote 
Sensing/IIASA/WUR 

The policy allows 
free and public 
access to data. 

CHIRPS Rainfall Secondary UCSB/CHG Public access Raster GeoTiff No 1981 - present 

Soil Clay Content Secondary Soul and Terrain database 
for Kenya (KENSOTER) 

CC-BY-3.0. The 
policy allows free 
and public access to 
data. 
 

Vector Shapefile No Made available in 
2004 

Waste Secondary SLUMAP Proprietary public 
access to data 

Vector Shapefile No Made available in 
2021 

Slums Secondary Spatial Collective Proprietary public 
access to data 

Vector Shapefile No Made available in 
2020 

Building 
Footprints 

Secondary Google Open Buildings  CC-BY-4.0 and 
ODbl v1.0. The 
policy allows free 
and public access to 
data 

Excel 
sheet 

csv No 2021 - present 

Flood Hotspot 
Points/Locations 

Primary   Survey 
data 

kml No Collected in 2024  

Kibera Flood Map Secondary Kounkuey Design Initiative 
(KDI)  

Requested access to 
data  

Flood 
map 

Raster No 2023 

Nairobi flood 
extent 

Secondary Airbus Defence and Space  Satellite 
imagery 

Vector No Made available in 
2024 

Soil infiltration 
and moisture 

Secondary SOILGRIDS CC-BY-4.0. 
The policy allows 
free and public 
access to data. 

Raster GeoTiff No Latest release in 
2020 

Rainfall Secondary TAHMO Requested access to 
data 

Excel 
sheet 

csv No 2019-2024 

 

https://esa-worldcover.org/en
https://esa-worldcover.org/en
https://chc.ucsb.edu/data/chirps

