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ABSTRACT 
 
This master thesis tries to determinate whether the increase in the consumption and production of 
renewable electricity can mitigate energy poverty (EP) in the European Union (EU) between 2013 
and 2022. Employing a quantitative method the research seeks for determinate the statistical 
relationship between EP indicators and the consumption and production of renewable electricity in 
three geographic units: the EU, Denmark and Greece. To achieve the objectives of the research an 
empirical energy poverty model was built based on the literature review. In general, to estimate the 
correlation between the independent and dependent variables I used Generalized Linear Models 
(GLM).  
 
EP was measured using three single indicators, and a combination of them following Rodriguez-
Alvarez et al. (2021). They were also used to examine the context of energy poverty in the EU. Thus, 
it was concluded that EP represents a complex socio-economic phenomenon that cannot be measured 
using a single indicator. Likewise, the large gaps between indicators at supranational and national 
levels show that this challenge must be addressed from a local perspective to avoid erroneous 
generalizations. 
 
The independent variables are composed by three mechanisms through energy transition can alleviate 
EP, the rate of consumption and production of renewable electricity, and one control variable. To 
analyze the statistical relevance of them I run 12 GLM. The models’ results elucidate that the 
reduction of EP is more linked to socio-economic factors than to the consumption and production of 
renewable electricity. Thus, controlling electricity costs, reducing income inequalities and mitigating 
monetary poverty show greater influence on EP levels. Furthermore, the results can be framed in two 
different approaches to tackling EP in the EU. The first one implemented in countries like Denmark 
where the use of energy subsidies has kept EP levels low. And the second applied in countries such 
as Greece where policies have been developed to attack the causes of this challenge such as high 
electricity prices or low levels of energy security. In summary, the results suggest the need to 
approach EP from a local rather than a supranational perspective. They also emphasize high electricity 
prices and socio-economic conditions as the factors that have had the greatest impact on energy 
poverty levels in the EU.   
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1. INTRODUCTION 
 
The invasion of Ukraine by Russia set off the alarms of the energy vulnerability in Europe. The 
European Union's dependence on Russian gas created the perfect environment to make visible a social 
problem whose definition was introduced into academic debates after the 1973 oil crisis, energy 
poverty. According to the Commission Recommendation (EU) 2023/2407 on energy poverty in 2022 
around 40 million Europeans lived under energy poverty threshold. The efforts of the EU to address 
this challenge started in 2009 when the European Commission (EC) introduced its first definition. 
Also, by using EC recommendations and creating institutions such as The Energy Poverty Advisory 
Hub (EPAH) EU Member States have implemented tools to measure and mitigate its effects.  
 
The definition of energy poverty is on a continue debate between scholars, according to Castaño-
Rosa et al. (2019) this term is used to identify the vulnerability and lack of access to energy in a 
domestic scale. Moreover, the scholars highlights that the use of the term energy poverty depends on 
geographic location. Therefore, EP is more related to the Global North because even when there is 
fully access to energy services, some socio-economic aspects can limit the capacity of households to 
meet their energy needs. Whereas in the Global South the term energy vulnerability fits better due to 
the lack of access to energy infrastructure. In the academic literature is possible to find energy access 
as one of the most studied reasons of energy poverty. However, Thomson et al. (2017) present energy 
poverty as multidimensional challenge that depends on socio-economic aspects like genre and income 
inequality among other socio-economic gaps. Based on this and the focus of this research on the EU, 
socioeconomic challenges such as energy affordability, security and income inequality were 
addressed as EP drivers.  
 
The repercussions of this challenge are not only limited to economic aspects, but also to health. On 
one hand, Pye et al. (2015) claim that energy poverty represents a threat to EU Member States 
highlighting its serious economic impacts on the welfare of the most disadvantaged households. 
While Churchill & Russell (2021) concluded that EP have a deep negative effect on adult people’s 
health. All this presents EP as a significant challenge to be faced by the EU Member States in the 
context of an energy crisis and Climate Change. Thus, the EU has been promoting different strategies 
to deal with it, one of them being the energy transition. As it is a broad process that includes power 
generation, electrification, among others, the focus of this research is on the consumption and 
production of renewable electricity. The effectiveness of this measure has been analyzed in several 
academic studies with positive and negative results. On the one hand, Süsser & Kannen (2017) and 
Li (2005) highlight the benefits of renewable energies in the reduction of energy prices, income 
inequalities and energy insecurity. On the other hand, Primc & Slabe-Erker (2020) concludes that the 
introduction of renewable sources has increased the economic burden on households generating 
increases in EP. On this basis, in this master's thesis I will analyze whether renewable electricity can 
contribute to mitigate the causes of EP and thus contribute to its reduction. 
 
According to data from the Statistical Office of the European Union (EUROSTAT), energy poverty 
levels in the EU show a geographical trend. While northern countries have the lowest rates, southern 
countries have the highest. In addition, with different growth rates the consumption and production 
of renewable electricity has increased across the EU. Based on these trends, three geographic units 
were selected to run the research which are: the EU as a supranational entity, and Denmark, and 
Greece. Thus, this research has one main objective: analyze how renewable energies can alleviate 
energy poverty in the European Union. Also, it has four subobjectives:  
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a) Examine a definition of energy poverty in the European Union  

 
b) Reflect and examine how energy poverty can be measured 

 
c) Analyze by which mechanism the energy transition can alleviate energy poverty 

 
d) Compare the effects of renewable electricity on energy poverty levels at the 

supranational and Member State levels 
   

To meet the goals, I am going to address the following research question: What are the impacts of 
more consumption and production of renewable electricity on the reduction of energy poverty? 
and two sub-research question:  

 
a) How different were the effects of increasing renewable electricity between the EU and 

its Member States on reducing energy poverty? 
 

b) How different were the effects of renewable electricity between countries with high and 
low levels of energy poverty on reducing energy poverty? 

 
To achieve the research’s objective and the research questions, I am going to use a quantitative, 
deductive, and explanatory method. Using descriptive statistics, I am going to analyze the current 
situation of energy poverty in the EU. Likewise, by means of an empirical energy poverty model I 
will determinate the statistical correlation between EP as a dependent variable, and a set of 
explanatory variables (consumption and production of renewable electricity, electricity prices, 
income inequalities, among others). Generalized Lineal Models will be used for this purpose, which 
will be run in Eviews 12. All this with the aim of analyzing and reflecting on the impacts of more 
renewable electricity consumption and production on the reduction of energy poverty.  
 
The present thesis is broken down into six parts. In the literature review I am going to examine the 
definition and causes of energy poverty in the EU. In the same chapter the ways to measure energy 
poverty and the mechanism through the energy transition can mitigate it will be analyzed. In addition, 
the chapter 3 explains the methodology followed in the research Moreover, the models’ results will 
be presented in the chapter 4, and their discussion in the chapter 5. Finally, the conclusions, and the 
recommendations for further research will be introduced in the chapter 6.  
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2. LITERATURE REVIEW 
 
2.1.Energy poverty definition in the EU  
 
Energy poverty conceptualization started to being developed in 1973 in the context of the oil embargo 
with the name of fuel poverty. However, it was not until 1991 when Dr. Brenda Boardman set its first 
definition as the impossibility of households to warm their homes as result of an inadequate services. 
The scholar set a maximum value of 10% of the cost of the energy services over the household income 
as indicator to measure EP. Which became the most widely used measurement benchmark until the 
concept of energy poverty was developed with new research and the incorporation of new indicators. 
The first attempt to introduce a definition for EP in the EU can be found in the Directive 2009/72/EC 
on concerning common rules for the internal market in electricity as “Member State shall define the 
concept of vulnerable customers which may refer to energy poverty and, inter alia, to the prohibition 
of disconnection of electricity to such customers in critical times” (Directive 2009/72). This statement 
frames EP in relation to energy security, concept that has been updated with the inclusion of more 
social aspects.  
 
In addition, in 2019 through Directive (EU) 2019/944 on common rules for the internal market for 
electricity the EU introduced the requirement for its Member States to make public the criteria chosen 
to measure EP.  In 2020 The EC under the Commission Recommendation (EU) 2020/1563 on energy 
poverty set a pool of indicators through the European Energy Poverty Observatory to assess energy 
poverty. Also, this institution was transformed into The Energy Poverty Advisory Hub (EPAH) in 
2021. This became a platform which purpose is share information and knowledge between experts, 
authorities and stakeholders committed to eradicating energy poverty in the EU.  
 
Thus, the current definition of EP was developed in 2023. It is derived from the point 1 Article 2 of 
the Regulation (EU) 2023/955 establishing a Social Climate Fund and amending Regulation (EU) 
2021/1060 as “household’s lack of access to essential energy services that underpin a decent 
standard of living and health, including adequate warmth, cooling, lighting, and energy to power 
appliances, in the relevant national context, existing social policy and other relevant policies” 
(Regulation 2023/955). Likewise, the causes of energy poverty are set out in Article 2, point 48 of 
the Directive (EU) 2023/1791 on energy efficiency and amending Regulation (EU) 2023/955 (recast) 
as “caused by a combination of factors, including but not limited to non-affordability, insufficient 
disposable income, high energy expenditure and poor energy efficiency of homes” (Directive 
2023/1791).  
 
Furthermore, the EC through the Commission Recommendation (EU 2023/2407) on energy poverty 
presents the energy transition as one of the most effective tools to eradicate EP. Also, this institution 
incorporates other social aspects such as gender or health conditions as possible causes of EP. This 
shows EP as a socio-economic challenge of great relevance for the EU. Moreover, this 
recommendation lists four mechanisms that must be improved to combat EP: energy affordability, 
energy security, energy efficiency, and sufficient incomes disposal.  
 
2.2.Energy poverty measurement  
 
Thomson et al. (2017) developed three general approaches: expenditure, consensual and direct 
measurement to categorize all EP’s indicators. Moreover, following this the indicators recommended 
by Commission Recommendation (EU) 2020/1563 on energy poverty and the EPAH were 
categorized. Finally, the objective of this part is to identify the indicators that will be used to estimate 
the levels of energy poverty in the EU. 
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2.2.1. General indicators taxonomy  
 

2.2.1.1.Expenditure approach 
 
It analyzes the portion of households budget allocated on energy bills. The most used indicator in this 
approach establishes a threshold limit of 10% for the ratio of energy expenditure to households’ 
incomes. In other words, households that allocate more 10% of their incomes on energy bills are 
considered energy poor. Moreover, two new developments were introduced with the passage of time. 
The first claims, if a household’s share of energy bills over its income is more than twice the national 
median is energy poor. The second claims, if a household’s absolute energy expenditure is less than 
the half of the national median expenditure can be considered as energy poor.  
 
Thomson et al. (2017) make a critical observation about the upsides and disadvantages of this 
approach. For instance, the 10% threshold developed in 1991 has not followed the trend of the current 
energy prices. Therefore, after the energy crisis of 2022, this indicator could show that a significant 
part of Europeans would live under EP. Also, the use of rents in new developments may distort the 
result, as rents could include social subsidies. Thus, low-income households would be mostly 
dependent on them to pay their energy bills. Moreover, the energy expenditure depends on the 
consumption, which in turn depends on many factors such as the size of the house or energy 
efficiency. Therefore, even when people can cover their energy needs can be considered as energy 
poor just because their consumption is low. However, when it comes to showing an advantage of this 
approach is easy to conclude that these indicators are objective and can be quantified effortless.  
 
2.2.1.2.Consensual approach 
 
This approach employs a set of self-reporting tools to inform the capacity to heat or cool households’ 
dwelling, to pay the energy utilities on time, and houses’ physical conditions. Thomson et al. (2017) 
highlight that one of the most significant contributions of this approach is the possibility to collect 
data directly from households. Moreover, with this approach data can be standardized to assess the 
level of EP at supranational levels such as the EU.  
 
Among its disadvantages Thomson et. al (2017) and Castaño-Rosa et al. (2019) highlight the 
subjectivity of the households to identify themselves as energy poor. For instance, households could 
try to hide they do not have the capacity to heat their houses properly during the winter. Thus, 
identifying whether a house is adequately heated can be influenced by cultural, socioeconomic and 
geographic characteristics. For example, the tolerance to low temperatures would be higher for 
Scandinavians than for Mediterranean. Thus, the lack of standards leaves it to the subjectivity of 
households to agree or disagree with the use of heating or air conditioning in some specific situations. 
This could lead to some of them being classified as energy poor even if they can cover their energy 
needs. 
 
2.2.1.3.Direct measurement approach  
 
This approach has the aim to measure if households can access to adequate levels of energy services 
such as lightening or cooling, for which some determined standard has been developed. As a first 
glance the most difficult part is how to implement a procedure to measure the access to energy 
services directly. Also, the standards can be different depending on different factors such as the 
geographic location, cultural, economic, and technical aspects. Therefore, Castaño-Rosa et al. (2019) 
argues that given the impossibility of obtaining standardized data at the European level, this approach 
would not be appropriate for measuring EP in the EU.   
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2.2.2. Energy poverty indicators in the EU 
 
2.2.2.1.Expenditure approach 
 
These indicators are focused on determinate EP level by collecting information about the households’ 
consumption patterns. This gives tools to measure estimate the expenditures on energy bills. This data 
is collected from the European Union Household Budget Survey.  
 
2.2.2.2.Consensual approach   
 
These indicators have been developed on based of the access to energy service households’ self-
reporting. This data is collected from the European Union Survey on Income and Living Conditions 
(EU-SILC).  
 
The Table 1 shows a short list of the most used indicators, identifying their units, timeline data 
available and their approaches classification.  
 

Table 1 Energy poverty indicators (source: own elaboration) 

Indicator name Approach Timeline 
data 

Geopolitical 
entity 

Unit Time 
frequency 

Arrears on utility bill  Expenditure  2004-2022 EU and Member 
States 

Households (%) Annual 

Low absolute energy 
expenditure  

Expenditure  2011-2015 EU and Member 
States 

Household (%) Annual 

High share of energy 
expenditure incomes   

Expenditure 2010-2015 EU and Member 
States 

Household (%) Annual 

Inability to keep home 
adequately warm  

Consensual  2004-2022 EU and Member 
States 

Households (%) Annual 

Household electricity 
prices  

Consensual  2007-2022 EU and Member 
States 

€/kWh Annual 

Household natural 
gas prices 

Consensual  2007-2022 EU and Member 
States 

€/kWh Annual 

At risk of poverty or 
social exclusion  

Consensual  2004-2022 EU and Member 
States 

Population (%) Annual 

Pop. Liv. Dwelling 
with presence of leak, 
damp and rot 
windows.  

Consensual  2003-2020 EU and Member 
States 

Households (%) Annual 

 
Thomson & Snell (2013) after to analyze a wide range of EP indicators recommend using three of 
them belonging to the consensual approach. Those indicators are inability to keep home adequately 
warm (IKW), arrears on utility bill (AUB), and population living in dwelling with presence of leak, 
damp and rot windows. The latter was named as housing conditions (HC) for practical reasons. The 
research is going to follow this recommendation to estimate EP.   
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2.3.The energy transition and energy poverty   
 
Starting from the causes of EP identified by the European Commission, this part will develop the 
mechanisms through which the energy transition can address them and thus reduce the effects of EP. 
 
2.3.1. Affordable energy prices  
 
Bonatz et al. (2019) define energy affordability as one of dimensions of EP highlighting that 
household can live under its effects if they are not able to afford energy bills. According to IRENA 
(2022) the electricity levelized cost from utility-scale plants of solar PV and wind energy dropped on 
average 14% from 2020 to 2021 reaching fossil fuel’s levelized cost range. Also, since 2010 until 
2021 solar PV levelized cost fell by 89%, and onshore wind levelized cost decreased by 68% in the 
same period. In addition, comparing the average levelized cost of electricity at utility scales between 
solar PV and natural gas in Europe, the former is getting cheaper than the latter since 2020. By 2021 
electricity levelized cost from natural gas was 6 times more expensive than solar PV. This argument 
shows the positive effect of renewable energies on the reduction of electricity prices improving its 
affordability which can be translated into lower energy poverty levels. Furthermore, IRENA (2022) 
shows that the significant reduction in the renewable’s electricity levelized cost came from 
installation and commissioning costs, which accounted for more than 50% of the reductions. Other 
factors that are catalyzing the renewable electricity’ competitiveness is the higher prices of fossil 
fuels. As well as the revenue recovered by capital invested. Thus, solar photovoltaic and wind energy 
recorded capital recoveries 7 times higher than those of fossil fuels in Germany and the United 
Kingdom in 2021. 
 
However, the energy transition faces a crucial challenge, the capacity to store energy using batteries. 
This requires the consumption of scare minerals such as lithium or rare earths undermining renewable 
energies’ competitiveness. However, according to IRENA (2017) since 1991 until 2005 the lithium-
ion cells cost has dropped more than 500 in $/Wh due to the technological development. Also, the 
institution estimates that by 2030 the use of batteries for power storage will increase substantially 
reducing more their prices. Is certain is that the batteries technology represents the biggest obstacle 
for the diffusion of the renewable energies. As well as its future prices performance depends on many 
aspects like minerals availability, more efficient supply chains, market demand, and synergies with 
other relevant fields such as the e-vehicles. Moreover, the role of governments is vital to enhance 
renewables energies’ competitiveness is vital and ensure a just transition. This requires the 
development of effective policies to provide financing to households and to projects where public and 
private equities do not see business opportunities.  
 
Without prejudice to the latter, the improvement in renewable electricity prices at utilities level in the 
EU illustrate that renewable energies are getting competitive to replace traditional energies carriers. 
This can improve the affordability of energy prices, preventing households from ending up living 
below the EP threshold.  
 
2.3.2. Energy Security  
 
Energy security can be defined as “the uninterrupted availability of energy sources at an affordable 
price” (IEA 2014). On this basis, energy security was approached from two perspectives. The first 
was security from external resources, and the second was energy availability. 
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2.3.2.1.Security from external resources  
 

This challenge has gained importance across all European countries. A case in point is Germany, 
where its citizens’ energy security and wellbeing was in risk for many months because of less natural 
gas supply from Russia. The dependency on imported fossil fuels in the EU has been stressed since 
many years ago. Umbach (2010) warned about the fragile energy security in Europe after the conflict 
between Russia and Ukraine in 2006. The scholar claimed almost two decades ago that the Kremlin 
was developing a geopolitical weapon by monopolizing the European gas market, a weapon that used 
in 2022 generating a new energy crisis.  
 
Many scholars have made clear the urgent need to diversify the European energy system, one of these 
is Awerbuch (2006) who highlight the key role of renewables energies for this purpose. The scholar 
ran different scenarios with different energy mixes. He found that a system with a substantial 
participation of renewable energies improve energy security providing affordable energy services to 
European households. Moreover, Heshmati & Abolhosseini (2017) state that the successive energy 
crisis in the EU since the oil embargo in 1973 are the results of its dependency on fossil fuels produced 
out of its borders. To address this, renewable energies are presented as reliable sources because they 
do not require the consumption of foreign natural resources. 
 
Li (2005) stresses the power sources diversification as a tool to guarantee energy supply at affordable 
prices, and to enhance energy systems reliability through the development of decentralized solutions. 
A successful example are district heating systems, decentralized solutions that cover heating needs in 
a flexible way. This technology has seen a significant progress in Denmark, where collective heating 
system supply enough heating during the winter. Moreover, those solutions require the consumption 
of local resources such as ground water. Other example of this is the Dutch case. The Dutch 
government is promoting the use of water as a heat source to replace existing gas heating systems to 
achieve energy security. Connolly et al. (2016) highlight the environmental benefits of district heating 
in terms of less greenhouse gas emissions, and its capacity to reduce dependency on imported natural 
gas. Moreover, these systems can be operated by using renewable electricity generated from local 
resources, which in turn eliminate the risk of fossil fuel market volatility.  
 
In a context of high energy dependence in Europe, energy transition plays a vital role in developing 
an energy system that is autonomous from the external geopolitical game and relies on local resources. 
Thus, as Dong et al. (2021) state, mitigating this challenge can lead to a more independent and 
competitive energy system. This can provide lower energy prices to households and, in turn, reduce 
energy poverty. 
 
2.3.2.2.Energy availability  
 
Global Warming is putting at risk the security of the electrical power system in Europe. For instance, 
water scarcity is reducing the capacity of hydropower plants. Also, the water temperature increase 
can affect the operation of thermoelectric plants due to less available cooling water to cool nuclear 
and fossil fuel power plants. Is important to stress that solar and wind can also be affected for the 
changes in the climate patterns. However, Tobin et al. (2018) conclude that those energy sources 
would be more resilient to extreme weather changes. Moreover, the increased electricity consumption 
in the coming decades will test the capacity of the current system. This dilemma raises the need to 
renovate the European electrical system, which must cover more demand and be flexible to demand 
patterns. Thus, the energy transition represents a tool to modernize old carbon and nuclear power 
systems, improving energy availability and keeping the prices affordable.  
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In this way, Connolly et al. (2016), Child et al. (2019), and Papaefthymiou & Dragoon (2016) 
analyzed a few scenarios to determinate how possible is to achieve 100% renewable energy system 
in Europe. All then concluded in different ways that the objective is possible to achieve by 2050, 
ensuring energy availability to cover future loads requirements. The scholars highlight the capacity 
of renewable electricity to replace existing fossil fuels and nuclear systems by local renewable 
resources improving energy security. A transition with these characteristics promotes an integration 
and synergies between modern energy services and carriers. For instance, mobility can be fully green 
in the way the electricity require will come from renewables. Furthermore, district heating and cooling 
could be fostered by using electric heat pumps meeting households’ comfort needs. In addition, the 
studies show that the development of technology in generation, system integration and energy storage 
could make energies prices more affordable. Also, the revamping of the electrical system will require 
a significant allocation of capitals. This can generate an increase on employment rates during the 
installation and commissioning stages, reducing income inequality. And finally, renewable energies 
have the capacity to develop decentralized systems improving reliability in comparison with 
centralized power systems. All these advantages would ensure sustainable access to energy in the EU, 
which in turn is a key to mitigating EP. 
 
However, to develop a system like that the EU faces significant challenges. Spiecker & Weber (2014), 
Zappa et al. (2019), Connolly et al. (2016), and Child et al. (2019) identify two types of challenges, 
technical and institutional. The point is more renewable energy sharing more regional energy system 
integration is needed. In other words, EU member states must make the transition to an 
intercontinental energy system in which different renewable technologies operate. This requires 
increased energy storage and more flexible generation systems that integrate these technologies and 
couple them to complement each other. Therefore, the variability of solar and wind can be managed 
by hydropower, and big batteries bank. In addition, grid integration across the countries is more than 
needed to balance the system and meet consumption peak flexibly.  Regarding the institutional 
challenges, is possible to identify policy alignment between countries. Whereas France relies on 
nuclear, Sweden embraces renewables, and Poland does not have plans to phase out carbon plants. 
Thus, many actors with different visions about energy security and availability make the integration 
process difficult.  
 
In conclusion renewable energies systems can contribute to modernize energy systems and enhance 
flexible energy networks across the European countries. On this basis, while energy transition 
represents an opportunity at the national level, it also represents an opportunity for integration among 
EU Member States. This feature can ensure the availability of energy in the future by consuming local 
resources, improving system resilience and reducing prices. This ensures access to energy in the 
future, reducing current levels of energy poverty and preventing its possible increase.   
 
2.3.3. Reduction of income inequalities  

 
Streimikiene et al. (2020) claim that one of the main energy poverty drivers are low incomes, 
highlighting that even in high income countries low-income households can face energy deprivation. 
This argument becomes significant in the EU in a context of higher energy prices due to low-income 
households allocate more money on energy bills. To address this challenge is necessary mitigate 
income inequality. Which can be achieved by increasing incomes, employability, and revitalizing 
local economies.  
 
The renewable energy communities are successful examples of increasing local household incomes. 
Those initiatives provide to locals the opportunity to receive direct economic benefits from energy 
trading as Reis et al. (2021) conclude after to study renewable energy communities across Europe. 
Thus, Gorroño-Albizu et al. (2019) and Süsser & Kannen (2017) show how citizen ownership 
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enhances the participation of communities in the allocation of capital in wind and solar farm projects 
by becoming investors in them. As a result, most of the local investors have increased their income 
compared to those who are not part of any energy community. This has led to an improvement in 
their quality of life, which translates into a significant reduction in the probability of living below the 
EP threshold. 
 
Furthermore, Ingelsi-Lotz (2016) present low-carbon technologies as an effective measure to increase 
employment rates, and purchasing capacity measured in more internal consumption. In this line, Llera 
Sastresa et al. (2010) analyzed the case of Aragon in Spain, concluding that renewable energies create 
more direct jobs per installed capacity than traditional fossil fuels. Furthermore, Okkonen & Lethonen 
(2016) found that energy communities in Scotland have generated a positive impact on indirect 
employment. This has been achieved by the regeneration of local business enhancing internal 
consumption, and by the diffusion of new technical skills. This last aspect is vital to reduce income 
inequalities, as renewable energies are developing new commercial activities in addition to energy 
trading. For example, households can provide technical services to maintain and operate facilities in 
other communities. With the improvement of job opportunities locally communities can avoid 
depopulation, but mainly improving locals’ access to the economic resources requires to reduce 
income inequalities avoiding energy deprivation.   
 
The subchapter 2.2. presents the indicators that will be used to measure EP in this research. 
Additionally, since energy transition is one of the measures suggested in the Commission 
Recommendation (EU 2023/2407) on energy poverty to eradicate EP, it is possible to put forward 
two hypotheses: 
 

§ H1: Higher rates of renewable electricity consumption can reduce energy poverty 
§ H2: Higher rates of renewable electricity production can reduce fuel poverty 
 

Moreover, the mechanisms presented in the subchapter 2.3 suggest that the energy transition presents 
itself as a tool to confront EP’s causes. On this basis is possible to raise three additional hypotheses:   
 

§ H3: The lower the electricity prices, the lower the levels of energy poverty in the EU 
§ H4: The greater the energy security, the lower the levels of energy poverty in the EU 
§ H5: Reducing income inequality in the EU reduces levels of energy poverty 
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3. METHODOLOGY 
 
3.1. Case selection  
 
To select the EU Member states to run the study I followed the following criteria:  
 

a) Clustering by level of EP 
 
The Figure 1 shows a ranking of the four EP indicators for the EU in 2020. EU Member States 
performed differently, although there are two groups of EP levels: while Northern European countries 
had on average lower EP levels than the EU average, Southern European countries had higher levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Energy poverty 2020 indicators ranking (source: own elaboration / data source: EUROSTAT) 
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b) Consumption of renewable electricity  
 

The Figure 2 shows the evolution of renewable electricity production in the EU since 2013 until 2022. 
Over the time the share of renewable electricity increased in all the EU Member States with different 
rates. The lines in red represents the increase of renewable electricity production in two countries, 
Denmark and Greece, which following the Figure 1 had one of the lowest and highest levels of EP in 
2020 respectively.  
 
Applying both criteria I selected Denmark and Greece to run the research. In addition, the in both 
figures in blue I presented the indicators of the EU, since one of the subobjective of this research is 
to evaluate the difference between supranational and national level, the research will include an 
analysis at EU level.  
 

 
 
3.2. Energy poverty empirical model  

 
To address the research and sub-research questions I used:  
 

a) Descriptive statistic to analyze the situation of EP in the EU, Denmark and Greece  
 

b) An empirical energy poverty model (EPEC) was used to test the hypotheses presented in the 
Chapter 2  

Figure 2 Share of renewable sources over the total electricity consumption in the EU (source: own elaboration/ 
data from EUROSTAT) 
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I designed the EPEC based on Nguyen & Nasir (2021), Zhao et al. (2021) and Kocack et al. (2023), 
and the literature review. Furthermore, the data source for the variables was EUROSTAT, and its 
time frame is between 2013 and 2022 with annual data due to its availability.  
 
The Figure 3 shows the EPEC scheme, where energy poverty is a function of four independent 
variables. 
 
 

 
Where:  
 

a) Consumption of renewable electricity refers to the share of renewable electricity over the 
total electricity consumption, 
 

b) Production of renewable electricity refers to the share of renewable electricity over the total 
electricity production, 

 
c) The impacts of the renewable energies on energy poverty refers to the three mechanisms 

through which renewable energies reduce energy poverty,  
 

d) Control variables refer to variables that are not of interest but help to avoid alternative 
explanations to the statistic relationship.  
 

To operationalize the variables, I selected some indicators. Not all of them are available as single 
variables in EUROSTAT, therefore they were calculated by using indicators available on it. In 
addition, some variables depend on the energy consumption level such as the electricity prices. In this 
case the band of prices were chosen calculating a consumption per capita.  
 
To determinate the statistical relationship between the variables I decided to use Generalized Linear 
Models (GLM). GML provides the facility to test different link functions to identify which is the best 
link between the dependent and independent variables when this is unknown. For this thesis four link 
functions: identity, log, logit and inverse were used. In addition, GLM can be used for multiple errors 
distribution, for this thesis I assumed a normal distribution of errors. This will be validated by a 
normality-test for which p-values of the null hypothesis >0.1 will be considered as acceptable. For 
more details about GLM read Nelder & Wedderburn (1972), Myers & Montgomery (1997) and 
Venables & Dichmont (2004). The Appendix 1 shows more information about GLM link function.  
 

Figure 3 Empirical energy poverty model structure (source: own elaboration) 
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3.3.Dependent variables operationalization 
 
I operationalize energy poverty by: 
 

a) using the indicators: inability to keep home adequately warm (IKW), arrears on utility bill 
(AUB), and housing conditions (HC) separately, the codes of the indicators in EUROSTAT 
are: ilc_meds01, ilc_mdes07, and ilc_mdho01 respectively and their units are households 
(%),  
 

b) combining those indicators into an energy poverty combined index (EPCI) created by 
Rodriguez-Alvarez et al. (2021) presented in the Eq. 1.  

 
𝐸𝑛𝑒𝑟𝑔𝑦	𝑝𝑜𝑣𝑒𝑟𝑡𝑦	𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑖𝑛𝑑𝑒𝑥	 = 0.5 ∗ 𝐼𝐾𝑊 + 0.25 ∗ 𝐴𝑈𝐵 + 0.25 ∗ 𝐻𝐶	(𝐸𝑞. 1. ) 

 
The weighting of the variables used in the Eq.1. were found by the scholars after to test different 
weighting distributions, for more information read Rodriguez-Alvarez et al. (2021). On this basis I 
used four ways to operationalize EP within the EPEC, those will be used in the subsequent analysis. 
 
3.4. Depended variable data overview  
 
I miss data for the EP indicator HC in 2021 and 2022. Since those years are particularly significant 
for the research, I decided to estimate them using IKW and AUB. For this purpose, I employed a 
GLM since this tool provide four link functions to estimate the best function to fit the data. In this 
case, HC was the dependent variable, and IKW and AUB were the independent variables as the Eq. 
7 shows.  

𝑔((𝐻𝐶)!") = 𝛽# + 𝛽$𝐼𝐾𝑊! + 𝛽%𝐴𝑈𝐵!" +	𝜀!"	(𝐸𝑞. 7)  
 
The details of these regressions are in the Appendix 2. Regressions with p-values <0.1 were accepted, 
in the case of the EU and Greece HC is a function of IKW and AUB. Whereas in the case of Denmark, 
after to run a first GLM, a second one was run only considering HC and IKW getting acceptable 
results. Additionally, the residuals’ normality test validated their normal distribution, and the 
deviances show values closer to 0. The Table 2 shows these regressions summary. 
 

Table 2 HC indicators GLM regressions details (source: own elaboration) 
 

EU_27  Denmark Greece 
Link function  Identity Identity  Inverse 
Independent variables IKW / AUB IKW IKW / AUB 
Deviance 1.74E-05 8.60E-05 1.02E-04 
Prob(LR statistic) 0.002421* 0.087407*** 0.000001* 

p*<0.01;p**<0.05;p***<0.1 
 
The Appendix 3 has the dependent variables detail. Moreover, the Table 3 shows the p-values to test 
a null a hypothesis that assumes normal a distribution of the independent variables. Since the p-values 
are > 1% I cannot reject the null hypothesis which means the variables have normal distributions. I 
used this result to supports the assumption that the errors also have normal distribution to run the 
GLM’s regressions.  
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Table 3 Dependent variables probabilities (source: own elaboration / data source: EUROSTAT) 

Dependent variables Probability  
(p-values)(b)  

EU - 27 IKW(a)  0.6700 
EU - 27 AUB (a) 0.5309 
EU - 27 – HC (a) 0.6164 
EU - 27 EPCI(a) 0.6508 
Denmark IKW(a) 0.0515 
Denmark AUB 0.7760 
Denmark HC 0.7262 
Denmark EPCI  0.2631 
Greece IKW 0.5942 
Greece AUB 0.8120 
Greece HC 0.7478 
Greece EPCI  0.5826 

 
3.5.Independent variables operationalization 
 
3.5.1. Renewable electricity consumption by households  
 
To operationalize this variable within the EPEC I considered two variables. The first is renewable 
electricity consumption (RREC) obtained from the indicator Share of renewable energy in gross 
final energy consumption by sector (EUROSTAT code: sdg_07_40/ nrg_ind_ren). It represents the 
share of the renewable electricity over the total electricity consumption.  
 
The second variable is households’ electricity consumption (HEC) which unit is percentage. HEC 
was obtained from the indicator Supply, transformation, and consumption of electricity indicates total 
power consumption by sectors (EUROSTAT code: nrg_cb_e). This indicator shows in detail the 
electricity consumption by free clients, transportation and households. Thus, HEC was obtained 
dividing households’ electricity consumption over the total national consumption as the Eq.2 shows.  
 

𝐻𝐸𝐶	(%) = 	!"#$%&'"($
!%(%)*+,),*-	)"/$#01*,"/	(34&)

6"*7(	%(%)*+,),*-	)"/$#01*,"/	(34&)
(𝐸𝑞. 2)  

 
 
3.5.2. Renewable electricity production  
 
To operationalize this variable, I used the variable renewable electricity production (RREP). The 
indicator Production of electricity and derived heat by type of fuel (EUROSTAT code: nrg_bal_peh) 
shows how much electricity was produced by different type of sources such as oil, nuclear, wind, 
among others. Thus, RREP was calculated from this indicator dividing the amount of renewable 
electricity over the total electricity production per country, see the Eq. 3. To identify what are 
renewable sources I followed the Directive (EU) 2018/2001 on the promotion of the use of energy 
from renewable sources (recast) to classify the sources as renewables.  

(b) null hypothesis: normal distribution of variables -> p-values>1% -> null hypothesis cannot be rejected. 
(a) (*) IKW: Inability to keep home adequately warm / AUB:  Arrears on utility bill / HC: Housing conditions 
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𝑅𝑅𝐸𝑃	(%) = 	8%/%97:(%	%(%)*+,),*-	1+"'#)*,"/	(34&)

6"*7(	%(%)*+,),*-	1+"'#)*,"/	(34&)
(𝐸𝑞. 3)  

 
3.5.3. Affordable energy prices  

 
To operationalize this, I used the prices of electricity. To identify clearly how the prices impact I 
decided to use two variables. The first was electricity prices (ELP) related to power chain excluding 
taxes and levies. The second was electricity taxes and levies (TLE) not considering recoverable 
taxes.  
 
The indicator Electricity prices - bi-annual data (EUROSTAT code: nrg_pc_204) shows the semestral 
prices of electricity. For EPEC the annual data was calculated as semester prices average. Electricity 
prices vary according to consumption in killowatts per hour. In the EU, prices are set in five bands 
from 0 kW.h to more than 15 kW.h. Depending on the band, prices vary downwards, so that 
households have on average higher tariffs than large consumer. To identify the price band, I used an 
electricity consumption per capita which was obtained dividing households’ electricity consumption 
over the total population, see Eq.4. For households’ electricity consumption I used the indicator 
Supply, transformation, and consumption of electricity (EUROSTAT code: nrg_bal_peh). While for 
the total population I used the indicator Population on 1 January (EUROSTAT code tps00001).  
 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑦	𝑏𝑎𝑛𝑑 = 	!"#$%&'"($
!%(%)*+,),*-	)"/$#01*,"/	(;4&)
6"*7(	1"1,(7*,"/	

	(𝐸𝑞. 4)  
 
3.5.4. Energy security 
 
This variable was operationalized through the indicator Energy import dependency by products 
(EID) (EUROSTAT code: sdg_07_50). EID provides how much energy requirements a country 
imports to meet its energy needs. In detail for values closer to 1 the country has a high energy import 
dependency, whereas values closer to 0 has a higher energy import independency.  
 
3.5.5. Reduction of income inequality  
 
To operationalize this variable the indicator Gini coefficient of equivalized disposable income (GC) 
(EUROSTAT code: ilc_di12) was used. This indicator considers disposable income including social 
transfers and pensions, values close to 0 indicate a lower income inequality.  
 
3.5.6. Control variable  
 
Monetary poverty vulnerability was considered as a control variable. Thus, I used the variable At-
risk-of-poverty rate (ARP). ARP was obtained from the indicator At-risk-of-poverty rate by poverty 
threshold and household type (EUROSTAT code: ilc_li03). ARP shows the proportion of the 
population with low incomes, which may influence their levels of energy poverty. 
 
In the Appendix 3 there are tables with the details and the summary of the independent variables . On 
this basis, the EPEC can be presented in the Eq. 5. 
 

𝐸𝑃 = 𝑓(𝑅𝑅𝐸𝐶,𝐻𝐸𝐶, 𝑅𝑅𝐸𝑃, 𝐸𝐿𝑃, 𝑇𝐿𝐸, 𝐸𝐼𝐷, 𝐺𝐶, 𝐴𝑅𝑃)	(𝐸𝑞. 5)	 
 
To estimate the relationship between the variables I employed a Generalized Linear Models. The Eq. 
5 can be transformed into the Eq.6 where g() is the link function, u  the dependent variables, β (0) is 
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a constant, and β (1-6) are coefficients. Additionally, t refers the period, i the geographic unit, and ε 
the error. The statist tool used to run the GLMs was Eviews 12.  
 
𝑔((𝑢)!") = 𝛽# + 𝛽$𝑅𝑅𝐸𝐻! + 𝛽%𝐸𝐿𝑃!" 	+ 𝛽&𝑇𝐿𝐸!" +	𝛽'𝐸𝐼𝐷!" + 𝛽(𝐶𝐺!" + 𝛽)𝐴𝑅𝑃!" 	+ 	𝜀!"	(𝐸𝑞. 6)  

 
The Appendix 4 shows the descriptive statistics of each independent variable per each geographic 
entity. As is shown in this, there is not data missing for the period of evaluation.   
 
3.6. Energy poverty generalized linear models  
 
3.6.1. Models’ selection criteria  
 
As I explained before the link function between the dependent and independent variables is unknown. 
To determinate the best link function I tested 4 link functions: linear, log, logic and inverse, per each 
dependent variable at each geographic entity. In total 48 regressions were tested, the Figure 4 shows 
how this amount was obtained.  
 

Figure 4 Energy poverty GLMs (source: own elaboration) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In addition, I selected the best regression per each dependent variable at each geographic unit. Thus 
12 GLM were selected according to the following criteria: 
 

a) Deviance: values closer to 0 means better fit data, 
 

b) Prob. (LR statistic): 3 different p-values p*<0.01, p**<0.05, p***<0.1 were considered as 
acceptable,  
 

c) Pearson statistic: values different from 0 mean independent and dependent variables 
correlation, 

 
d) Akaike info criterion: the lower value of this indicates a better fit of the link function to the 

dependent variable.  
 
As I explained before a normal distribution of the errors was assumed following the results presented 
in Table 3. To validate this, a normality test will be performed for each regression, considering p-
values greater than 0.05 in order not to deny the null hypothesis of normal distribution. Finally, the 
Appendix 5 has the 48 regressions and their normality tests’ details. 

48 
regressions 

3 geographic 
entities 

4 dependent 
variables

4 GLM link 
functions 
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3.6.2. Energy poverty generalized linear models  
 
I named the 12 selected models using the EP indicators abbreviations. The Table 4, Table 5, and Table 
6 show the energy poverty models selected by applying the criteria of the former section. As is shown 
in the case of the EU and Greece all the models got accepted p-values, however, in the case of 
Denmark only one model got a relevant p-value. In addition, the tables show the link function between 
the dependent and independent variables selected per each model. In the next sections the results and 
discussions will be based on those models.  
 

Table 4 EU GLM regressions details (source: own elaboration) 
 

IKW AUB HC EPCI 
Error distribution 
(Random component)  

Normal 
distribution  

Normal 
distribution  

Normal 
distribution  

Normal 
distribution  

Link function  Inverse Inverse Inverse Inverse 
Deviance  9.45E-06 8.00E-06 1.13E-08 4.54E-06 
Prob. (LR statistic) 0.0000* 0.0000* 0.0000* 0.0000* 
Pearson statistic  9.45E-06 8.00E-06 1.13E-08 4.54E-06 

p*<0.01;p**<0.05;p***<0.1 
 

Table 5 Denmark GLM regressions detail (source: own elaboration) 
 

IKW AUB HC EPCI 
Error distribution 
(Random component) 

Normal 
distribution  

Normal 
distribution  

Normal 
distribution  

Normal 
distribution  

Link function  Identity Identity Inverse Inverse 
Deviance  3.54E-06 1.81E-04 1.11E-04 4.88E-05 
Prob. (LR statistic) 0.0000* 0.9831 0.5291 0.6111 
Pearson statistic  3.54E-06 1.81E-04 1.11E-04 4.88E-05 

p*<0.01;p**<0.05;p***<0.1 
 

Table 6 Greece GLM regressions detail (source: own elaboration) 
 

IKW AUB HC EPCI 
Error distribution 
(Random component) 

Normal 
distribution  

Normal 
distribution  

Normal 
distribution  

Normal 
distribution  

Link function  Inverse Identity Inverse Inverse 
Deviance  5.81E-05 2.47E-05 4.99E-07 1.39E-04 
Prob. (LR statistic) 0.0000* 0.0000* 0.0000* 0.0000* 
Pearson statistic  5.81E-05 2.47E-05 4.99E-07 1.39E-04 

p*<0.01;p**<0.05;p***<0.1 
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4. RESULTS 
 
Before to review the results, is necessary to provide some guidelines about how to read them. The 
results will be shown in two tables. The first will elucidates general information such as the link 
function selected. The second table will show the regression coefficients and the p-value for each 
independent variable. In inverse regressions, a positive coefficient means that when the independent 
variable increases the dependent variable decreases. A negative coefficient means that when the 
independent variable increases, the dependent variable also increases. For identity regressions, the 
relationship is direct, positive coefficients mean that an increase in the independent variable generates 
an increase in the dependent variable. For negative coefficients the effect is the opposite.  
 
4.1.Energy poverty in the EU  
 
4.1.1. Energy poverty situation in the EU  
 
The Figure 5 shows a comparison between the EP indicators and the evolution of the consumption 
and production of renewable electricity in the EU between 2013 and 2022. Since 2013 until 2017 the 
production and consumption of renewable electricity remained constant at around 30%. However, 
after 2018 they have increased by 10%. Also, the households’ electricity consumption has not seen 
any significant change over the same period.  

 

 

Figure 5 Energy poverty vs renewable consumption and production in the EU in % (source: own elaboration) 
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In terms of energy poverty from 2013 until 2019 there was a clear reduction trend, however from 
2020 the trend reversed to an increase of all the indicators with different rates. Regarding to the EP 
indicators, HC had values higher than IKW and AUB. On average HC was 14.5% of total households, 
which means that a significant portion of Europeans live in homes with inappropriate physical 
conditions. Moreover, IKW was 9% which in terms of population according to the Commission 
Recommendation (EU) 2023/2407 on energy poverty represents 40 million Europeans. It is possible 
to underline that although since 2020 the consumption and production of renewable electricity had a 
significant increase, the EP levels increased. The reasons behind this are related to inflation and the 
energy crisis produced by the Covid-19 pandemic and the Ukrainian innovation. 
 
Moreover, the Figure 6 elucidates a geographic distribution of EP indicators in the EU in 2020. It is 
possible to identify a trend: while northern and central European countries had low levels of EP, 
southeastern countries had the highest levels. Contrasting the Figure 5 and the Figure 6 it can be seen 
that between EU and national EP levels differ substantially. For example, in 2020 AUB in the EU 
was less than 13% of households, while in Greece it was slightly above 28% and in Denmark it 
hovered around 4%. This reinforces the need to compare supra-national and national level analyses 
to determine whether energy poverty policies are achieving their objectives. On this basis, it is 
possible to state that energy poverty represents a major challenge for the EU and its Member States. 
This requires each country to adapt the EC recommendations to its national context, as stated by 
Bouzarovski et al. (2021).  

Figure 6 Energy poverty geographic distribution in the EU in 2020 %households (source: own elaboration) 
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4.1.2. EU energy poverty model results  
 
The EU regressions models’ results are presented in the Table 7, in brackets I show the link 
function between the dependent and independent variables per each model.  
 

Table 7 EU GLM regressions independent vs dependent variables detail (source: own elaboration) 

p*<0.01;p**<0.05;p***<0.1 
 
4.1.2.1.Inability to keep home adequately warm (IKW) 
 
The p-values presented in the Table 7 show the consumption and production of renewable electricity, 
and the share of households in electricity consumption did not have impact on the dependent variable. 
On the other hand, the p-value of TLE was < 0.01 showing taxes influenced on IKW levels. It is 
important to highlight that TLE only includes taxes and levies related to operation of the 
infrastructure, environmental performance and promotion of renewable energies. TLE got a positive 
coefficient, which means that an increase of TLE led to a decrease of IKW. This result is not in line 
with the theory that lower taxes should reduce EP. Liobikienė et al. (2019) highlight that energy taxes 
have produced an increase of electricity prices, and even when their aims were to foster renewable 
energies’ consumption those have had the opposite effect. Thus, the result shown can be influenced 
by the mix of electricity market systems with different characteristics, pricing, taxation and subsidies 
schemes. The lack of a standardized EU-wide electricity pricing system makes the use of price 
variables for supranational regression models invalid. Thus, the results of grouping different systems 
are variables with trends that differ from the trends observed in each EU Member State, producing 
erroneous conclusions. My results are in line with Primc & Slabe-Erker (2020), who concluded that 
this characteristic leads to make wrong conclusions from a supranational level.  
 
4.1.2.2. Arrears on utility bill (AUB) 
 
The results in the Table 4 show that the inverse regression got a p-value of <1%, which validates it 
use for estimating AUB. Regarding to the independent variables, the Table 7 shows that the taxes and 
levies, and the Gini coefficient had an influence on AUB. The coefficient of TLE was positive which 
means that an increase of it led to a decrease of AUB, contradicting the assumption that lower energy 
prices reduce EP. Again, it validates that the use of variables that mixed different electricity systems 
lead to make wrong conclusions in empirical analysis.  
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Moreover, CG got a negative coefficient, which means that a reduction of income inequality led to 
reduce the levels of AUB. It is in line with the literature review presented in the chapter 2. Regarding 
to the other variables their p-values elucidate they did not impact on AUB.  
 
4.1.2.3. Housing conditions (HC) 
 
The Table 4 shows that the inverse regression has a p-value of <1% which validates use of the 
regression for estimating HC. Furthermore, the Table 7 shows that all the independent variables can 
explain HC having p-values <1%. On this basis, renewable electricity had different impacts in this 
EP indicator. The coefficients show that an increase in RREC caused a decrease in HC. While for the 
same period an increase in RREP and HEC produced an increase in HC. 
 
Moreover, ELP and TLE have positive coefficients showing that higher prices of renewable 
electricity reduced HC. It contradicts the literature review about energy affordability. This shows that 
the combination of different electricity pricing and taxes systems into a single variable distort the 
models’ results, as was explained before. Regarding CG and ARP got negative coefficients. This 
means the lower the risk of monetary poverty and income inequality, the lower the levels of HC. Also, 
EID has also a negative coefficient underling that lower levels of energy dependency decreased HC.  
 
4.1.2.4. Energy poverty combined index (EPCI)  
 
The results in the Table 4 show that the GLM inverse regression has a p-value of <1%, which means 
the model can be used to estimate EPCI. The Table 7 shows that only ELP, TLE and CG got 
significant p-values. On one hand, the coefficients elucidate that higher prices and taxes on electricity 
reduced EPCI. These results are in line with previous explanations about the use of variables that 
gather different electricity pricing systems. On the other hand, the coefficients also show that lower 
levels of income inequality led to lower EPCI.   
 
4.2.Energy poverty in Denmark 
 
4.2.1. Energy poverty situation in Denmark  
 
The Figure 7 shows the evolution of renewable electricity consumption, production and households 
sharing versus the EP indicators in Denmark between 2013 and 2022. While RREC and RREP 
increased by 50%, EP indicators have not seen any significant change. In contrast, even though 
maximum values of RREC and RREP were reached in the last 3 years, EP values increased following 
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the EU trend. Within the EP indicators, since 2020 there has been an upward trend. By 2022 IKW, 
AUB and HC, reached 5%, 4%, and 18% of total households respectively. Moreover, Denmark has 
one of the lowest energy poverty levels in the EU. However, Denmark’s HC levels was worse than 
the EU average, representing almost 16% of households.  

 
  

 
4.2.2. Energy poverty model results  
 
The Table 8 shows that the only regression which p-value is significant is for IKW, while for the 
other regressions cannot be used. Furthermore, the Table 8 indicates that the independent variables 
only had a statistically influence on IKW, while for AUB, HC and EPCI they did not. This result 
shows how difficult it is to try to represent EP through a single economic model, highlighting the 
complexity of this challenge. Thus, analyzing the validity of the GLM regressions for predicting the 
dependent variables, the results show great variability. The causes behind this could be related to the 
data quality, the amount of observation, or even the use of other statistics methods. The strengths of 
the models I have used are based on the ability to analyze different link functions to find the one that 
best fits the data. However, statistical models such as those used by Kocack et al. (2023), and 
Rodriguez-Alvarez et al. (2021) may have higher capabilities for determining statistical significance 
in cases where the value of the dependent variable at an earlier time may affect its value at a future 

Figure 7 Energy poverty vs renewable consumption and production in Denmark in % (source: own elaboration) 
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time. This development leads to claim that the complexity of EP cannot be capture in an only model. 
Moreover, its statistical relationship with the energy transition requires more research. However, the 
results obtained in the present thesis can be used to test the hypotheses raised at the end of the chapter 
2. Also, they can be employed to bridge the differences between a supranational analysis and a 
member state level analysis.  
 

Table 8 Denmark GLM regressions independent vs dependent variables detail (source: own elaboration) 

p*<0.01;p**<0.05;p***<0.1 
 
 
4.2.2.1.Inability to keep home adequately warm (IKW) 
 
The Table 8 presents that between RREC, REEP and HEC, only the former had a significant influence 
on IKW. Its coefficient was positive which means that the higher the consumption of renewable 
electricity, the lower IKW. Furthermore, ELP and TLE got p-values <1% with positive coefficients. 
This shows that as electricity prices rose, the level of energy poverty increased. Moreover, EID got a 
significant p-value with a positive coefficient. This means that the greater the dependence on external 
resources, the higher the EP levels were. Finally, the Gini coefficient got a p-value <0.01 with a 
negative coefficient. This result means that an increase of income inequality led to a decrease of IKW. 
 
4.3.Energy poverty in Greece 
 
4.3.1. Energy poverty situation in Greece  
 
The Figure 8 shows a comparison between the energy poverty indicators and the production and 
consumption of renewable electricity, and households’ share in the market in Greece from 2013 until 
2022. Both consumption and production of renewable electricity did not have any important change 
until 2016. However, from 2017 both increased by on average 23% reaching the EU’s levels by 2022. 
This follows the European trend to increase the share of renewable energies. Regarding households’ 
electricity consumption, this fluctuated around 35% remaining steady.  
 
Whitin the EP indicators, AUB reached values over 40% of total households in 2015 and 2016. In 
comparison with the EU, Greeks households performed better in terms of HC. But regarding the other 
indicators their performance was by far over the European’s performance classifying it as high energy 
poor country. However, since 2016 until 2021 the level of EP dropped significantly by 15% on 
average. Moreover, following the EU’s trend from 2021 EP increased reaching the levels recorded in 
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2018. By 2022 almost 35% of total households could not pay their energy bills on time, and 20% 
could not keep their homes warm in the same year.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Energy poverty vs renewable consumption and production in Greece in % (source: own elaboration) 
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4.3.2.  Energy poverty model results  
 
The Table 9 summarized the regression results for the case of Greece. In this case, the results only 
show a relevant statistical influence of the independent variables on IKW, AUB and HC, so the 
explanation of results will only be made on these three independent variables. 
 

Table 9 Greece GLM regressions dependent variable vs independent variable (source: own elaboration) 

p*<0.01;p**<0.05;p***<0.1 
 
4.3.2.1. Inability to keep home adequately warm (IKW)  
 
The Table 9 elucidates that the only variables which significant p-values were RREP, and GC. The 
production of renewable electricity got a positive coefficient. It means that higher production of 
renewable electricity led to reduce EP. Also, the GC has a negative coefficient validating the premise 
that the lower income inequality, the lower energy poverty.  
 
4.3.2.2. Arrears on utility bill (AUB) 
 
The Table 9 shows that the only independent variable with a p-value > 10% was the production of 
renewable electricity. RREC got a negative coefficient showing that an increase of renewable 
electricity consumption led a decrease of AUB. Whereas the share of households on electricity 
consumption got a positive coefficient, which means that it had a negative impact on AUB.  
 
Moreover, the electricity prices and taxes got a positive coefficient validating the literature review 
about the impacts of affordable energy in the mitigation of EP. In this line, CG obtained a positive 
coefficient, which show that an increase on income inequality led to an increase of AUB. Finally, 
EID also got a positive coefficient elucidating that an increase in energy security led to a reduction in 
EP.  
 
4.3.2.3.  Housing conditions (HC) 
 
The Table 9 shows that the only independent variables with a p-value > 0.1 were electricity prices, 
and taxes and levies. RREC, and HEC got a positive coefficient elucidating that an increase of those 
variables led a decrease of EP. In contrast the production of renewable electricity showed a negative 
coefficient having a negative impact in the reduction of HC.  
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Furthermore, EID and ARP got a negative coefficient showing that an increase of energy insecurity 
and risk to poverty led to an increase of HC. The Gini coefficient got a negative coefficient meaning 
that the higher income inequality, the higher levels of HC.  
 
A general comparison of the results shows a greater impact of socioeconomic variables on EP 
indicators than renewable electricity penetration. In none of the geographic units were statistical 
correlations found for all hypotheses 1 and 2. This shows that the penetration levels of renewable 
electricity have not had a strong impact on the reduction of EP. Furthermore, at the EU level the use 
of variables that bring together different electricity pricing and taxation systems distort the trends 
leading to erroneous conclusions. On the other hand, when comparing Greece and Denmark, I have 
found that socio-economic variables have had a greater impact on the former. The reason for this 
evolution can be found in the EP driver. In this regard, Bouzarovski & Tirado Herrero (2017) 
identified different drivers across Europe. The scholars found that the drivers of PE in northern 
countries are related to energy prices and inequalities in energy access. In contrast, in southern 
countries they are related to income inequalities, lack of energy access and economic poverty. Thus, 
it can be deduced that the reduction of EP would be more related to socioeconomic factors than to the 
penetration levels of renewable energies. This can be clearly seen in Denmark. Despite the high levels 
of renewable electricity, the apparent success in reducing PE is based on its levels of social protection.  
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5. RESULTS DISCUSSIONS  
 
The analysis I have conducted has found three key messages: first, measuring energy poverty levels 
remains complex. Second, I have not found a strong correlation between renewable electricity 
production and consumption and EP reduction. And third, EP has been more affected by 
socioeconomic variables such as income inequality or electricity prices. These will be explained in 
detail below.  
 
5.1. Energy poverty measurement   
 
Thomson et al. (2017) stress the multidimensional nature of EP. This shows that EP can be affected 
by social gaps, geographic location, access to education, economic poverty, among others. This 
complex context cannot be capture in a single indicator as Castaño-Rosa et al. (2019) indicate, for 
which the use of more than one indicator is more appropriate. Furthermore, the most extended data 
source for EP in the EU is the EU-SILC survey published by EUROSTAT, and it has a consensual 
approach. Among its criticisms, its subjectivity is underlined, leaving it to the interpretation of the 
households to recognize themselves as energy poor. Another criticism is that the survey is not 
intended to measure EP, as Petrova et al. (2013) highlight.  
 
Other weakness of energy poverty studies is the lack of information. In this research I had to deal 
with this. For the years 2021 and 2022 HC is not available in EUROSTAT. However, it was estimated 
through GLM regressions to bridge this gap. Therefore, is relevant that The EU must ensure the 
continuity of the indicators and avoid the previous year’s data become obsolete. The discontinuity of 
data represents significant challenges for EP policymakers when it comes to analyze the policies’ 
results. Whitin the recommendations to improve EP measurement, Thomson et al. (2017) recommend 
to implementing a separate survey for EP. With this, the scholars claim would be possible to get more 
details about the causes, and aspects that influence EP. Moreover, some indicators such as IKW 
should adjusted introducing the option of cooling. This recommendation is becoming relevant in the 
face of heat waves in southern Europe as Thomson et al. (2017) stress. Despite the EU-SLIC survey’s 
weaknesses, currently it is the most reliable data source in the EU. This has been supported by 
Thomson & Snell (2013), Petrova et al. (2013), and Rodriguez-Alvarez et al. (2021). On this basis, 
four indicators were used to measure and elucidate the context of energy poverty in the EU and in 
two Member States. When comparing the geographic distribution of the EP indicators I could 
establish a trend. It shows that northern European countries performed on average better than southern 
countries, but not for all the EP indicators.  These results are in line with the argument that it is not 
possible to capture in a single indicator all the factors that influence household EP conditions. In this 
way, analyzing these indicators separately without a complementary approach may lead to erroneous 
conclusions.  
 
Additionally, I found that indicators subjectivity may influence on households’ answers as was 
introduced before. This argument can be appreciated in the level of EP in 2020 and 2021. I expected 
that because of the economic impact of the Covid-19 pandemic energy poverty would increase, as 
also stated by Bouzarovski et al. (2020). However, in Greece the downward trend that began in 2016 
did not stop, while in Denmark the increase was not significant. At the EU level, the numbers show 
an increase of in 2020 but in 2021 these dropped to 2019’s levels. On one hand, these results could 
be related to Member States' efforts to provide financial support to cover high energy prices. This 
may distort conclusions about the effects of the increase in renewable electricity in those years. On 
the other hand, this trend can be related to subjectivity of the survey. This highlights the role of data 
reliability in analyzing policy outcomes. This in turn reinforces the need for tools focused on 
measuring EP, both directly and indirectly. 
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In general, the use of more than one indicator to measure EP provided a clear picture about its 
multidimensional aspects such as location, economy, genre, energy policies, among others. For 
instance, the geographic location influence in the cooling or warming needs of households. The 
economy influences in their possibility to face energy prices. Income inequality makes women more 
vulnerable to ended up under EP, and energy policies pave the way to mitigate or increase EP. This 
characteristic can only be collected when using more than one indicator. On this basis, this complexity 
is already capture in European Commission energy poverty definition. Thus, policymakers should 
propose mitigation strategies and performance measures according to the situation of each EU 
Member State. Finally, despite the weaknesses of the EU-SILC survey, this tool offers the possibility 
of determining whether EP policies are achieving their objectives. This calls for studies to be carried 
out at the local level.  This calls for studies at the local level, considering the diversity of socio-
economic contexts among EU countries. This is to avoid inappropriate generalizations. 
 
5.2. The effects of renewable electricity on energy poverty  
 
My results do not show a strong correlation between renewable electricity and PE reduction. What I 
have found is an impact that varies partially depending on the geographic unit of analysis. For the EU 
renewable electricity only had impact on HC showing positive outcomes for its consumption, but 
negative for its production. For case of Denmark and Greece, the results can be compared by 
indicator. Therefore, for the case of IKW the consumption of renewable electricity had positive 
impacts in Denmark, while in Greece the positive impact come from its production. Moreover, in the 
case of AUB, both production and consumption of renewable electricity had impacts only in Greece, 
which was positive. For the case of HC there were only impacts in Greece, where renewable 
electricity consumption had positive outcomes, while its production impacted negatively. Thus, the 
results do not show a clear trend of positive or negative impacts on all EP indicators at EU and 
Member States levels. However, renewable electricity consumption has shown positive results on at 
least one indicator per geographical unit, while production shows mixed results. Thus, it elucidates 
that the increased consumption of renewable electricity has had to some extent a positive impact on 
the reduction of EP. On the other hand, Swain & Karimu (2020) claim that higher demand for 
renewable electricity has led to higher prices in the EU, which should have increased EP. These 
opposing conclusions can be explained through the role of state subsidies to mitigate rising energy 
costs, or to encourage renewable self-generation. In this way, Pye et al. (2015) highlight that financial 
support measures for the payment of energy bills are in place in all EU Member States. These 
measures have obtained positive results in the short term, but it is crucial to deploy tools to address 
EP drivers in the long term. As for renewable electricity production, the variability of the results does 
not allow us to identify a pattern. However, it can be stated that its impact is more visible through 
electricity prices, and the liberalization of the electricity markets. 
 
The last paragraph leads to conclude that European policies to foster more renewable energies has 
generated different impacts between the EU and the Member States. Thus, is clear that the EU energy 
transition is aimed to replace the existing energy carriers, and the level of EP has been reduced. 
However, is also clear that this development is increasing economic burdens on households, for which 
EU Member States have had to provide economic support to cope with them. Moreover, coscript the 
analysis of the role of renewable electricity in the mitigation of EP only at EU level can generate 
wrong conclusions. In addition, the variability of results between Greece and Denmark, countries 
with different EP levels, leads to conclude that renewable electricity’s impacts should be analyzed in 
relation to their socioeconomic context. Which can be related with the implementation of specific 
policies, and how the transition is being addressed. 
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On one hand Bouzarovski et al. (2021) underline that the technical and economic gaps between EU 
Member States to mitigate EP led to obtain different results. Thus, societies with better economies 
and lower inequalities, such as Denmark, have maintained lower energy poverty than societies with 
higher monetary poverty and inequalities, such as Greece. This result was also found by Rodriguez-
Alvarez et al. (2021). The scholars underline the role of social assistances in the mitigation of EP is 
crucial and has got positive results in countries with higher economic resources. This leads to supply 
social protection to vulnerable households and enhance subsidies schemes. Thus, in these countries, 
it has been possible to mitigate the negative effects of the liberalization of the electricity market and 
the introduction of renewable sources in it. However, Bouzarovski et al. (2021) found that in most of 
them the approach about EP has been packaged as part of the monetary poverty like the case of 
Denmark. Which has generated that strategies are focused on provide economic support than in 
eradicate energy poverty’s drivers. This statement can be corroborated by analyzing the EP 
performance in Denmark. While IKW and AUB, indicators related to direct subsidies from the 
government, were by far under the EU average, indicators not related to subsidies such as HC got 
levels over the European’s average. Moreover, these strategies lead to almost unchanged EP levels 
over time. However, their sustainability depends on how long governments can continue to provide 
financial assistance to households, as stated by Bouzarovski et al. (2021). In addition, some countries 
with high levels of EP have specific policies to cope with it, developing their own definition, 
indicators and strategies. Thus, the approach has been focused on eradicate EP drivers as is the case 
of Greece, where energy poverty was significantly reduced between 2015 and 2021. This has been 
possible thanks to three types of policies such as Streimikiene et al. (2021) state. The first focused on 
giving tax incentives to the renovation of homes with the aim of increasing energy efficiency. As well 
as information campaigns on the best use of energy and to a lesser extent economic support through 
social rates. The impacts of these policies can be observed in Greece's HC levels showing lower levels 
than those obtained in Denmark. However, the economic repercussions of the Covid-19 pandemic 
and the 2022 energy crisis undermined the results of these policies, causing energy poverty to rise 
sharply again. On the other hand, all the results elucidate the impacts of electricity prices on the levels 
of EP, which can be related to the way the energy transition is being addressed. Hiteva (2013), and 
Muhammad et al. (2023) stress two reason of this, the liberalization of energy markets fostered by 
the EU since 1990s, and the incorporation renewable energies in the power mix. Thus, the 
privatization of energy companies together with the vertical integration has increased the prices. 
Moreover, the goals to achieve carbon neutrality and energy independency have transferred the 
burden of carbon externalities to electricity prices, as Primc & Slabe-Erker (2020) state. As a result 
of this, households in countries with highest level of economic poverty are facing more difficulties to 
pay their utility bills on time like the Greece’s numbers show.  
 
In addition, in general my results across the three geographic entities stress more impacts of 
socioeconomic variables on EP levels than the consumption and production of renewable electricity. 
Thus, the effects of the energy dependency index on EP show that higher dependency on external 
energy resources impact negatively on EP. This is supported by the lack of capacity of energy 
resource-importing countries to control prices. For example, the restriction of natural gas supply to 
Europe generated a crisis, which in turn increased EP in all EU Member States in 2022. Kuzemko et 
al. (2022) highlight that the consequences of this crisis have enhanced the need to achieve energy 
security through participation of renewables in the market. As proof of this, The European 
Commission launched the REPowerEU plan to catalyze the net-zero goal by 2050. To achieve this 
the EU is going to deploy more capitals into renewables to accelerate its penetration However, scholar 
such as Muhammad et al. (2023) claim that in capital-intensive stages renewables energies can 
increase price. This side effect may translate into more difficulties for households to meet their energy 
needs, generating a possible further increase in EP. Moreover, in all the geographic units, the 
electricity prices, taxes and levies, as well as income inequality, at risk of poverty and energy security 
have had negative outcomes on EP indicators. These results clearly show the socioeconomic face of 
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energy poverty. On this basis, although the models’ results show partially positive effects of 
renewable electricity consumption on some EP indicators, the intervention of the states to control 
their side effects has been crucial. The literature used in this subchapter shows that electricity prices 
have increased due to the increase of renewable energies in the electricity market. This has shifted 
economic burdens to households and has led to governments having to implement subsidy schemes. 
Therefore, it can be concluded that the trend to produce and consume more renewable electricity has 
neither mitigated nor eradicated energy poverty in the EU. Rather, the reduction of EP observed in 
the EU or in countries such as Greece is based on economic subsidies and the reduction of monetary 
poverty and income inequality. 
 
Finally, with respect to the hypotheses raised in the literature review it is noticeable that the reduction 
of EP relays more in socio-economic aspects (H3/H4/H5) than in the rate of renewable electricity 
production or consumption (H1/H2). On one hand, northern European countries with better economic 
performance and less inequalities have more possibilities to increase the penetration of renewable 
electricity and control its negative effects. Which is based on their higher capacities to financially 
support the most disadvantaged households. This is why, despite the increase in electricity prices, 
their energy poverty levels have remained almost unchanged. On the other hand, mediterranean 
countries with worse economic performance are facing more difficulties to cope with the impacts of 
the energy transition. These difficulties have made it possible to deploy policies focused on reducing 
energy poverty, with positive results, as in the case of Greece. However, their weak capacity to cope 
with economic and energy crises produces rebound effects. This is easy to appreciate in the Greek 
case, where after reducing EP by almost 15% between 2015 and 2021, in the year 2022 EP levels 
increased by an average of 9%. On this basis, it can be concluded that the mitigation of EP is related 
to the government’s capacity to cope with higher energy prices, with the countries’ economic 
performance, and less inequalities than with more penetration of renewable energies.  
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6. CONCLUSIONS AND RECOMMENDATIONS  
 
6.1.Conclusions  

 
Although the definition of energy poverty is still a work in progress, the European Commission has 
endeavored to develop its own definition. The aim of this is to recognize energy poverty as a 
substantial challenge for EU Member States. The impact of which was felt in the deprivation of 
keeping the homes of 40 million European citizens warm in 2022, as shown by EUROSTAT data. 
Also, institutions whose main task is to measure and combat fuel poverty in the EU have been created, 
such as the Energy Poverty Advisory Hub. Among the ways to measure EP the EU-SILC survey is 
the tool with the highest approval among scholars and the European Commission. However, it has 
disadvantages such as its subjective approach, and its lack of specific focus on energy poverty, which 
can lead to measurement errors. The first conclusion of this thesis is that since EP is a problem with 
complex socio-economic characteristics, improvements in its measurement strategies are required. 
These improvements come from the development of a specific survey focused exclusively on energy 
poverty. In addition to incorporating new weather patterns, such as the lack of cooling, and looking 
for more direct ways to measure deprivation on energy access, rather than just focusing on its 
consequences. 
 
The European Commission has urged the EU Member States to enhance the energy transition as a 
tool to eradicate EP. In addition, this institution has identified mechanisms through which the energy 
transition could mitigate EP. This development led to two types of hypotheses. The first type (H1/H2) 
stated that countries with higher rate of increase in consumption and production of renewable 
electricity performed better in the reduction of EP. While the second type were focused on the 
mechanisms (H3/H4/H5). The results obtained do not show that the penetration of renewable 
electricity has had an impact on the reduction of EP. This leads to answer the research question by 
stating that based on the results obtained, renewable energies have not had a positive impact on the 
reduction of EP. On the contrary, the results validate the hypotheses 3,4, and 5. In this way EP 
reduction is more linked to socio-economic aspects such as electricity prices or income inequality. 
Therefore, success in reducing EP should focus on reduce energy prices, reduce income inequality 
and improve energy security. For which each EU Member State should develop policies to cope with 
EP based on their socio-economic context.  
 
In this way, each EU Member States have created their own strategies to cope with EP. These have 
depended largely on their economic capacities to provide direct financial support to their citizens and 
the way that energy poverty is being addressed. Thus, countries with better economic performance 
have integrated EP as part of monetary poverty. While countries with weaker economies have 
deployed policies focused on combating its drivers. The results of the different strategies have varied 
among the countries. On the one hand, countries such as Denmark have maintained almost unchanged 
levels of energy poverty, while Greece has made progress in reducing it. Which leads to the 
conclusion that the reduction of EP is related to the governments’ abilities to react against the causes 
of EP such as the increase of energy prices. In addition, even when renewable electricity is reaching 
records in consumption and production in the EU, a poor capacity to manage economic and energy 
crises is leading to an increase in EP. Thus, it is concluded that reducing energy poverty requires the 
deployment of policies focused on accelerate the necessary energy transition that leave no one behind 
ensuring affordable prices, enhancing energy security and reducing social gaps. 
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6.2. Recommendations  
 
Since EP is socio-economic challenge which definition and measurement strategies that are still in 
progress, the first recommendation for further research is to study way to improve its measurement. 
In addition, will be relevant examine the effectiveness of the indicators suggested by Thomson & 
Snell (2013), Petrova et al. (2013), and Rodriguez-Alvarez et al. (2021). Regarding the energy 
transition, I recommend conducting research about it impacts in the electricity prices increase 
considering the policies focused on market liberalization and the European net zero-carbon goals. 
Moreover, it would be relevant to further research investigate the impact of approaches and policies 
against energy poverty implemented by EU Member States. As well as to study the impacts of the 
energy transition on energy poverty at the local level in each country. 
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APPENDIX 1 
 

Generalized Linear Models 
 

GLM is a statistic regression model where the dependent variable can have different types of 
distributions, and this can link with the independent variable through a link function. GLM requires 
to identify three aspects:  
 

A) The systematic component: represents the independent variables combination in the model 
B) The random component: represents the distribution of the dependent variable. For the 

distribution GLM offers different types of distribution from normal, Poison, gamma, negative 
binomial, and beta.  

C) Link function: represents how the systematic component, and the random component are 
linked. GLM offers different types of link functions, identity, logit, log, and inverse.  

 
GLM can be represented generally through the following development: 
 

𝑦 = 	α +	𝛽$𝑥! + 𝛽%𝑥! …+ 𝛽*𝑥* 	(𝐸𝑞. 1) 
 

𝑦 = 𝑔(µ!)	(𝐸𝑞. 2) 
 
Where y represents the dependent variable, and x the explanatory variables, and y can be estimated 
as a function (g) of µ. Eq.1 and 2 represents the link function and the Table 1 shows a summary of 
different types of link functions. Based on the nature of EP some random components can be ruled 
out since EPCI is not binary variable. Therefore, binominal distribution will not be considered, 
however we can combine a random component with a different link function.  

 

Table 1. Link function for GLM (own elaboration) 

 
 
 
 
 

 
 
 
 
 

Link 
function  

! = #(µ!) Random component  

Identity  µ" normal 
Logit '()#

µ"
1 − µ"

 binomial 

Log '()#µ" poison 
Inverse µ"$% gamma 
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APPENDIX 2 
 

HC estimation applying GLM  
 

1. EU  
 

 
p*<0.01;p**<0.05;p***<0.1 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Dependent Variable: EU___27___HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/10/24   Time: 12:09
Sample: 1 8
Included observations: 8
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 1 iteration
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

EU___27_IKW 1.608597 1.911302 0.841624 0.4000
EU___27_AUB -0.785545 1.608812 -0.488277 0.6254

C 0.068444 0.038938 1.757778 0.0788

Mean dependent var 0.144875     S.D. dependent var 0.011740
Sum squared resid 0.000283     Root MSE 0.005948
Log likelihood 29.26652     Akaike info criterion -6.566630
Schwarz criterion -6.536839     Hannan-Quinn criter. -6.767555
Deviance 0.000283     Deviance statistic 5.66E-05
Restr. deviance 0.000965     LR statistic 12.04736
Prob(LR statistic) 0.002421     Pearson SSR 0.000283
Pearson statistic 5.66E-05     Dispersion 5.66E-05

*

EU_27 HC equation:  
!(#$)! =	1.6085971955* IKW - 0.785545183179* AUB + 0.0684439456202	 
!(#$)! =	#$! 
 

0

1

2

3

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Series: Standardized Residuals
Sample 1 8
Observations 8

Mean      -1.86e-15
Median  -0.007122
Maximum  1.325447
Minimum -1.381781
Std. Dev.   0.845154
Skewness  -0.061187
Kurtosis   2.290641

Jarque-Bera  0.172722
Probability  0.917263�
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2. Denmark 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p*<0.01;p**<0.05;p***<0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p*<0.01;p**<0.05;p***<0.1 
 
 
 
 
 
 
 

*** 

Dependent Variable: DENMARK_HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 09:10
Sample: 1 8
Included observations: 8
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 0 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
DENMARK_IKW 1.090719 0.638133 1.709236 0.0874

C 0.124847 0.019698 6.337938 0.0000
Mean dependent var 0.158250     S.D. dependent var 0.007888
Sum squared resid 0.000293     Root MSE 0.006051
Log likelihood 29.35840     Akaike info criterion -6.839601
Schwarz criterion -6.819741     Hannan-Quinn criter. -6.973552
Deviance 0.000293     Deviance statistic 4.88E-05
Restr. deviance 0.000436     LR statistic 2.921486
Prob(LR statistic) 0.087407     Pearson SSR 0.000293
Pearson statistic 4.88E-05     Dispersion 4.88E-05

Dependent Variable: DENMARK_HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/13/24   Time: 09:18
Sample (adjusted): 2013 2020
Included observations: 8 after adjustments
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
DENMARK_IKW -44.63542 31.95743 -1.396715 0.1625
DENMARK_AUB 3.316241 20.85246 0.159034 0.8736

C 7.582128 0.836988 9.058829 0.0000
Mean dependent var 0.158250     S.D. dependent var 0.007888
Sum squared resid 0.000294     Root MSE 0.006061
Log likelihood 29.11607     Akaike info criterion -6.529018
Schwarz criterion -6.499228     Hannan-Quinn criter. -6.729944
Deviance 0.000294     Deviance statistic 5.88E-05
Restr. deviance 0.000436     LR statistic 2.410363
Prob(LR statistic) 0.299638     Pearson SSR 0.000294
Pearson statistic 5.88E-05     Dispersion 5.88E-05
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Denmark_ HC equation:  
!(#$)! =	  1.09071949948*IKW  
!(#$)! =	#$! 
 

0

1

2

3

-1.0 -0.5 0.0 0.5 1.0 1.5

Standardized Residuals

Series: Standardized Residuals
Sample 1 8
Observations 8

Mean       5.00e-16
Median  -0.243795
Maximum  1.493068
Minimum -0.927123
Std. Dev.   0.925820
Skewness   0.448181
Kurtosis   1.711079

Jarque-Bera  0.821594
Probability  0.663121�
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3. Greece 
 

 
p*<0.01;p**<0.05;p***<0.1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dependent Variable: GREECE_HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/10/24   Time: 11:50
Sample: 1 8
Included observations: 8
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 4 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

GREECE_IKW -2.953270 2.397850 -1.231632 0.2181
GREECE_AUB -7.710255 2.923656 -2.637196 0.0084

C 10.93869 0.801268 13.65173 0.0000

Mean dependent var 0.136125     S.D. dependent var 0.009672
Sum squared resid 0.000102     Root MSE 0.003565
Log likelihood 33.36112     Akaike info criterion -7.590280
Schwarz criterion -7.560490     Hannan-Quinn criter. -7.791206
Deviance 0.000102     Deviance statistic 2.03E-05
Restr. deviance 0.000655     LR statistic 27.20402
Prob(LR statistic) 0.000001     Pearson SSR 0.000102
Pearson statistic 2.03E-05     Dispersion 2.03E-05

*

Greece HC equation:  
!(#$)! =	-2.95327003137*IKW - 7.71025472632*AUB + 10.938692457 
!(#$)! =	1/#$! 
  

0

1

2

3

4

-1.0 -0.5 0.0 0.5 1.0 1.5

Series: Standardized Residuals
Sample 1 8
Observations 8

Mean       0.001689
Median  -0.113393
Maximum  1.055352
Minimum -0.891686
Std. Dev.   0.845152
Skewness   0.144595
Kurtosis   1.308971

Jarque-Bera  0.981070
Probability  0.612299�
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APPENDIX 3 
Dependent variables detail  
(a)Calculated based on Appendix 2. 
(b)Calculated based on Eq.1.  

EU-27 EPCI(b) IKW AUB HC
2013 0.119 0.108 0.14 0.156
2014 0.11675 0.104 0.137 0.156
2015 0.10975 0.096 0.151 0.153
2016 0.104 0.09 0.147 0.152
2017 0.0915 0.081 0.135 0.131
2018 0.089 0.076 0.129 0.136
2019 0.08175 0.069 0.125 0.127
2020 0.09075 0.075 0.125 0.148
2021 0.082313 0.069 0.119132 0.1291623(a)

2022 0.096813 0.093 0.128912 0.1638409(a)

Denmark EPCI(b) IKW AUB HC
2013 0.0695 0.038 0.036 0.166
2014 0.0635 0.029 0.046 0.15
2015 0.06675 0.036 0.034 0.161
2016 0.0595 0.027 0.025 0.159
2017 0.0595 0.027 0.035 0.149
2018 0.06875 0.03 0.051 0.164
2019 0.06025 0.028 0.036 0.149
2020 0.0675 0.03 0.042 0.168
2021 0.060097 0.028 0.029 0.1553869(a) 

2022 0.079368 0.051 0.035 0.1804734(a)

Greece EPCI(a) IKW AUB HC
2013 0.2705 0.295 0.352 0.14
2014 0.292 0.329 0.373 0.137
2015 0.28875 0.292 0.42 0.151
2016 0.28775 0.291 0.422 0.147
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Independent variables detail  
 

Greece EPCI(a) IKW AUB HC
2017 0.2585 0.257 0.385 0.135
2018 0.23475 0.227 0.356 0.129
2019 0.202 0.179 0.325 0.125
2020 0.18725 0.171 0.282 0.125
2021 0.161938 0.175 0.263 0.1191317(a)

2022 0.206938 0.187 0.341 0.1289119(a)

EU RREC HEC RREP ELP TLE EID GC ARP
2013 0.26769 0.2819854 0.2940007 0.1498 0.0352 0.53905 0.306 0.168
2014 0.28601 0.2743059 0.3111601 0.1496 0.0387 0.54397 0.309 0.173
2015 0.29655 0.2737872 0.3128285 0.14905 0.04145 0.55849 0.308 0.174
2016 0.30172 0.2750222 0.3161802 0.1466 0.04385 0.56057 0.306 0.175
2017 0.31104 0.2742212 0.3143874 0.1498 0.04705 0.57394 0.303 0.169
2018 0.32134 0.2731251 0.3374352 0.15675 0.04575 0.57951 0.304 0.168
2019 0.34086 0.2753374 0.3542246 0.15325 0.0548 0.60475 0.302 0.164
2020 0.37408 0.2899581 0.3993223 0.15365 0.0524 0.57464 0.3 0.167
2021 0.37754 0.2885615 0.3878025 0.16835 0.05095 0.55521 0.302 0.168
2022 0.41174 0.2844229 0.402438 0.24735 0.0085 0.62522 0.296 0.165

Denmark RREC HEC RREP ELP TLE EID GC ARP
2013 0.43084 0.320571 0.4801798 0.1276 0.1332 0.12312 0.268 0.119
2014 0.48493 0.3200608 0.5812853 0.12485 0.1407 0.12225 0.277 0.121
2015 0.51292 0.3205291 0.6803138 0.109 0.15755 0.13077 0.274 0.122
2016 0.53717 0.3205126 0.6252571 0.1096 0.1577 0.13568 0.277 0.119
2017 0.5994 0.3045675 0.7259516 0.1121 0.1493 0.11343 0.276 0.124
2018 0.62394 0.3055597 0.7067491 0.12535 0.14495 0.22697 0.278 0.127
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Denmark RREC HEC RREP ELP TLE EID GC ARP
2019 0.65347 0.318316 0.8084131 0.1261 0.13 0.38868 0.275 0.125
2020 0.65323 0.3284075 0.8430577 0.1132 0.13315 0.44892 0.273 0.121
2021 0.72916 0.3223889 0.8136716 0.1452 0.12765 0.32297 0.27 0.123
2022 0.7722 0.2950888 0.8355727 0.31885 0.11685 0.42867 0.277 0.124
Greece RREC HEC RREP ELP TLE EID GC ARP
2013 0.21241 0.345479 0.2532264 0.11165 0.0242 0.6175 0.344 0.231
2014 0.21923 0.3350786 0.2458189 0.11855 0.0341 0.65455 0.345 0.221
2015 0.22089 0.3344075 0.2894376 0.1274 0.0325 0.71047 0.342 0.213
2016 0.22657 0.3633572 0.277783 0.121 0.0334 0.72911 0.343 0.211
2017 0.24464 0.3529273 0.2511178 0.11855 0.03195 0.71282 0.334 0.202
2018 0.26001 0.3280601 0.3088652 0.11785 0.0329 0.70681 0.323 0.184
2019 0.31295 0.3358933 0.3380398 0.1213 0.027 0.74103 0.31 0.177
2020 0.35856 0.3579763 0.3666413 0.1338 0.0268 0.81415 0.314 0.176
2021 0.35934 0.3504927 0.4064073 0.14965 0.02695 0.73819 0.324 0.195
2022 0.42408 0.3351488 0.4293828 0.38895 -0.16805 0.79601 0.314 0.188
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Independent variables detail  

 
(*)  a) Single variable: available directly from EUROSTAT  
      b)Calculated variable: estimated based on indicators available in EUROSTAT 
 
 
 
 
 

 
Variable name 

and abbreviation  

 
Type of 

variable(*) 
  

 
Indicator(s) name in 

EUROSTAT   

 
EUROSTAT 

code  

 
Unit 

Renewable 
electricity 
consumption 
(RREC) 

 
 
Single  

Share of renewable 
energy in gross final 
energy consumption by 
sector  

 
sdg_07_40/ 
nrg_ind_ren 

 
 

 
Percentage  

Households’ 
electricity 
consumption 
(HEC) 

 
 
Calculated 
from multiple 
EUROSTAT 
variables 

Supply, transformation, 
and consumption of 
electricity  
 

 
nrg_cb_e 

 

 
Percentage  

Renewable 
electricity 
production 
(RREP) 

 
Calculated  

Production of electricity 
and derived heat by type 
of fuel 

 
nrg_bal_peh 

 
Percentage  

 
Electricity prices 
(ELP) 
 
Electricity taxes 
and levies (TLE) 

 
 
 
 
 
Single  

 
Electricity prices for 
household consumers - 
bi-annual data (from 
2007 onwards) 

 
 

nrg_pc_204 

 
 

Euros/kWh 

Energy import 
dependency by 
products (EID) 

Single  Energy import 
dependency by products 

 
sdg_07_50 

Percentage  

Gini coefficient 
(GC) 

Single  Gini coefficient of 
equivalized disposable 
income - EU-SILC 
survey  
 

ilc_di12 Scale 0 – 1 

At-risk-of-
poverty rate 
(ARP)  

Single At-risk-of-poverty rate 
by poverty threshold 
and household type - 
EU-SILC and ECHP 
surveys 

ilc_li03 Percentage  
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APPENDIX 4 
 
Dependent variables descriptive statistics  

p*<0.01;p**<0.05;p***<0.1 
 
 

Independent variables descriptive statistics EU 

p*<0.01;p**<0.05;p***<0.1 
 
 

EU Mean Median Maximum Minimum Std. Dev. Jarque-Bera Probability Obs.
REC 0.328857 0.31619 0.41174 0.26769 0.04614 0.759336 0.684089 10
HEC 0.279073 0.27518 0.289958 0.273125 0.006545 1.376311 0.502502 10
RREP 0.342978 0.326808 0.402438 0.294001 0.040459 1.13398 0.56723 10
ELP 0.16242 0.151525 0.24735 0.1466 0.030466 18.624290* 0.00009 10
TLE 0.041865 0.0448 0.0548 0.00085 0.013227 6.718374* 0.034766 10
EID 0.571535 0.567255 0.62522 0.53905 0.026742 1.066148 5.71535 10
GC 0.3036 0.3035 0.309 0.296 0.003893 0.400442 0.81844 10
ARP 0.1691 0.168 0.175 0.164 0.003725 0.721847 0.697032 10

Indicator / 
Descrip. Stat. Mean Median Maximum Minimum Std. Dev. Jarque-Bera Probability Obs.

EU - 27 IKW 0.0861 0.085 0.108 0.069 0.0141 0.0801 0.6700* 10
EU - 27 AUB 0.0786 0.071 0.104 0.062 0.0164 1.2664 0.5309* 10
EU - 27 - HC 0.1452 0.15 0.1638 0.127 0.0132 0.9677 0.6164* 10
EU - 27 EPCI 0.099 0.0978 0.119 0.0818 0.0136 0.8592 0.6508* 10
Denmark IKW 0.0324 0.0295 0.051 0.027 0.0075 5.9337 0.0515* 10
Denmark AUB 0.034 0.0345 0.042 0.022 0.0066 0.5072 0.7760* 10
Denmark HC 0.1602 0.16 0.1805 0.149 0.01 0.6398 0.7262* 10
Denmark EPCI 0.0658 0.0651 0.0811 0.0595 0.0066 2.6707 0.2631* 10
Greece IKW 0.2403 0.242 0.329 0.171 0.0598 1.041 0.5942* 10
Greece AUB 0.3519 0.354 0.422 0.263 0.0524 0.4165 0.8120* 10
Greece HC 0.1337 0.132 0.151 0.1191 0.0102 0.5813 0.7478* 10
Greece EPCI 0.2416 0.2466 0.292 0.183 0.0434 1.0806 0.5826* 10
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Independent variables descriptive statistics in Denmark  

p*<0.01;p**<0.05;p***<0.1 
 
 
Independent variable descriptive statistics in Greece  

p*<0.01;p**<0.05;p***<0.1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Denmark Mean Median Maximum Minimum Std. Dev. Jarque-Bera Probability Obs.
REC 0.599726 0.61167 0.7722 0.43084 0.108519 0.422481 0.809579 10
HEC 0.3156 0.320287 0.328408 0.29089 0.010294 1.339879 0.511739 10
RREP 0.710045 0.71635 0.843058 0.48018 0.120931 0.767518 0.681296 10
ELP 0.141185 0.1251 0.31885 0.109 0.06334 19.561810* 0.000057 10
TLE 0.13905 0.13695 0.1577 0.11685 0.01336 0.407108 0.815826 10
EID 0.244146 0.181325 0.44892 0.11343 0.13928 1.301613 0.521625 10
GC 0.2745 0.2755 0.278 0.268 0.003308 1.413426 0.493263 10
ARP 0.1225 0.1225 0.127 0.118 0.002593 0.368701 0.831644 10

Greece Mean Median Maximum Minimum Std. Dev. Jarque-Bera Probability Obs.
REC 0.283868 0.252325 0.42408 0.21241 0.074849 1.169051 0.55737 10
HEC 0.343882 0.340686 0.363357 0.32806 0.011849 0.827977 0.661009 10
RREP 0.316672 0.299151 0.429383 0.245819 0.066138 0.972315 0.614985 10
ELP 0.15087 0.12115 0.38895 0.11165 0.084334 21.016780* 0.000027 10
TLE 0.010175 0.029475 0.0341 -0.16805 0.062719 22.397790* 0.000014 10
EID 0.733064 0.720965 0.81415 0.6175 0.058273 0.1078 0.947527 10
GC 0.3293 0.239 0.345 0.31 0.013913 1.116745 0.572139 10
ARP 0.1998 0.1985 0.231 0.176 0.018931 0.682276 0.310961 10
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APPENDIX 5 
 

1. The EU 
 

1.1. EPCI 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p*<0.01;p**<0.05;p***<0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

0

1

2

3

4

5

-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       3.87e-14
Median   0.015101
Maximum  0.582127
Minimum -0.542545
Std. Dev.   0.333333
Skewness  -0.175901
Kurtosis   2.616111

Jarque-Bera  0.112973
Probability  0.945079�

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/13/24   Time: 19:11
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 0 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 0.357304 0.644989 0.553969 0.5796
HEC 1.238049 0.743854 1.664372 0.0960

RREP -0.187240 0.385410 -0.485819 0.6271
ELP -1.055604 0.753645 -1.400666 0.1613
TLE -2.284787 1.160177 -1.969343 0.0489
EID 0.248117 0.191293 1.297053 0.1946
GC 3.806405 2.011008 1.892784 0.0584
ARP -0.602107 1.279047 -0.470746 0.6378

C -1.229138 0.715609 -1.717612 0.0859

Mean dependent var 0.098163     S.D. dependent var 0.013555
Sum squared resid 8.62E-06     Root MSE 0.000929
Log likelihood 48.61495     Akaike info criterion -7.922991
Schwarz criterion -7.650664     Hannan-Quinn criter. -8.221732
Deviance 8.62E-06     Deviance statistic 8.62E-06
Restr. deviance 0.001654     LR statistic 190.7427
Prob(LR statistic) 0.000000     Pearson SSR 8.62E-06
Pearson statistic 8.62E-06     Dispersion 8.62E-06

*

**
**

***
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p*<0.01;p**<0.05;p***<0.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

0

1

2

3

4

-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000429
Median   0.015899
Maximum  0.520064
Minimum -0.552706
Std. Dev.   0.333333
Skewness  -0.380512
Kurtosis   2.411519

Jarque-Bera  0.385612
Probability  0.824642�

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/13/24   Time: 19:17
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 3.622321 5.699505 0.635550 0.5251
HEC 9.686857 6.799022 1.424743 0.1542

RREP -1.430871 3.443457 -0.415533 0.6778
ELP -11.47886 6.805307 -1.686751 0.0917
TLE -24.59741 10.48723 -2.345463 0.0190
EID 1.985047 1.804206 1.100233 0.2712
GC 32.17822 17.40628 1.848656 0.0645
ARP -4.586956 11.07211 -0.414280 0.6787

C -12.96740 6.607680 -1.962474 0.0497

Mean dependent var 0.098163     S.D. dependent var 0.013555
Sum squared resid 6.65E-06     Root MSE 0.000816
Log likelihood 49.91290     Akaike info criterion -8.182580
Schwarz criterion -7.910253     Hannan-Quinn criter. -8.481322
Deviance 6.65E-06     Deviance statistic 6.65E-06
Restr. deviance 0.001654     LR statistic 247.5747
Prob(LR statistic) 0.000000     Pearson SSR 6.65E-06
Pearson statistic 6.65E-06     Dispersion 6.65E-06

*

***
**
***
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p*<0.01;p**<0.05;p***<0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

1

2

3

4

-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000423
Median   0.015817
Maximum  0.527761
Minimum -0.545285
Std. Dev.   0.333333
Skewness  -0.357194
Kurtosis   2.423116

Jarque-Bera  0.351310
Probability  0.838907�

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/13/24   Time: 19:18
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 4.014311 6.431997 0.624116 0.5326
HEC 11.07767 7.655178 1.447082 0.1479

RREP -1.638316 3.883775 -0.421836 0.6731
ELP -12.64007 7.660090 -1.650121 0.0989
TLE -27.11748 11.80239 -2.297626 0.0216
EID 2.262429 2.024578 1.117482 0.2638
GC 36.45269 19.69856 1.850525 0.0642
ARP -5.274694 12.52391 -0.421170 0.6736

C -14.35574 7.429147 -1.932353 0.0533

Mean dependent var 0.098163     S.D. dependent var 0.013555
Sum squared resid 6.87E-06     Root MSE 0.000829
Log likelihood 49.74976     Akaike info criterion -8.149952
Schwarz criterion -7.877625     Hannan-Quinn criter. -8.448693
Deviance 6.87E-06     Deviance statistic 6.87E-06
Restr. deviance 0.001654     LR statistic 239.5950
Prob(LR statistic) 0.000000     Pearson SSR 6.87E-06
Pearson statistic 6.87E-06     Dispersion 6.87E-06

*

**
***

**
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p*<0.01;p**<0.05;p***<0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

1

2

3

4

-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.001024
Median   0.016183
Maximum  0.446780
Minimum -0.611762
Std. Dev.   0.333332
Skewness  -0.555153
Kurtosis   2.441839

Jarque-Bera  0.643468
Probability  0.724891�

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/13/24   Time: 19:20
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -38.74152 47.93753 -0.808167 0.4190
HEC -71.69431 58.13435 -1.233252 0.2175

RREP 11.25668 28.90455 0.389443 0.6969
ELP 127.2689 58.89163 2.161069 0.0307
TLE 268.9017 91.07440 2.952549 0.0032
EID -15.18655 15.94755 -0.952281 0.3410
GC -265.7743 142.1863 -1.869198 0.0616
ARP 33.68961 90.80124 0.371026 0.7106

C 90.99078 57.33236 1.587075 0.1125

Mean dependent var 0.098163     S.D. dependent var 0.013555
Sum squared resid 4.54E-06     Root MSE 0.000674
Log likelihood 51.82654     Akaike info criterion -8.565307
Schwarz criterion -8.292981     Hannan-Quinn criter. -8.864049
Deviance 4.54E-06     Deviance statistic 4.54E-06
Restr. deviance 0.001654     LR statistic 363.4797
Prob(LR statistic) 0.000000     Pearson SSR 4.54E-06
Pearson statistic 4.54E-06     Dispersion 4.54E-06*

***

***
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1.2. IKW 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
p*<0.01;p**<0.05;p***<0.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

0

1

2

3

4

5

-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       6.31e-14
Median   0.015101
Maximum  0.582127
Minimum -0.542545
Std. Dev.   0.333333
Skewness  -0.175901
Kurtosis   2.616111

Jarque-Bera  0.112973
Probability  0.945079�

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:15
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 1 iteration
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 0.561616 0.859321 0.653558 0.5134
HEC 1.188281 0.991039 1.199026 0.2305

RREP -0.375565 0.513483 -0.731406 0.4645
ELP -1.132924 1.004083 -1.128317 0.2592
TLE -2.570783 1.545707 -1.663176 0.0963
EID 0.221518 0.254860 0.869177 0.3848
GC 3.927389 2.679272 1.465842 0.1427
ARP -1.118440 1.704078 -0.656331 0.5116

C -1.139595 0.953407 -1.195287 0.2320

Mean dependent var 0.086100     S.D. dependent var 0.014130
Sum squared resid 1.53E-05     Root MSE 0.001237
Log likelihood 45.74586     Akaike info criterion -7.349173
Schwarz criterion -7.076846     Hannan-Quinn criter. -7.647915
Deviance 1.53E-05     Deviance statistic 1.53E-05
Restr. deviance 0.001797     LR statistic 116.3731
Prob(LR statistic) 0.000000     Pearson SSR 1.53E-05
Pearson statistic 1.53E-05     Dispersion 1.53E-05

*

***
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p*<0.01;p**<0.05;p***<0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:16
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 6.765286 9.050675 0.747490 0.4548
HEC 9.149794 10.82750 0.845052 0.3981

RREP -3.813916 5.450892 -0.699687 0.4841
ELP -14.43297 10.91657 -1.322116 0.1861
TLE -32.18592 16.84487 -1.910726 0.0560
EID 1.689442 2.893996 0.583775 0.5594
GC 36.83384 27.69777 1.329848 0.1836
ARP -11.24392 17.66712 -0.636432 0.5245

C -12.48984 10.55061 -1.183803 0.2365

Mean dependent var 0.086100     S.D. dependent var 0.014130
Sum squared resid 1.27E-05     Root MSE 0.001129
Log likelihood 46.66536     Akaike info criterion -7.533072
Schwarz criterion -7.260746     Hannan-Quinn criter. -7.831814
Deviance 1.27E-05     Deviance statistic 1.27E-05
Restr. deviance 0.001797     LR statistic 140.0701
Prob(LR statistic) 0.000000     Pearson SSR 1.27E-05
Pearson statistic 1.27E-05     Dispersion 1.27E-05

*

***

0

1

2

3

4

-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000529
Median   0.013961
Maximum  0.512362
Minimum -0.558897
Std. Dev.   0.333333
Skewness  -0.397414
Kurtosis   2.400698

Jarque-Bera  0.412881
Probability  0.813475�
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p*<0.01;p**<0.05;p***<0.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

0

1
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3

4

-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000515
Median   0.014082
Maximum  0.519885
Minimum -0.552042
Std. Dev.   0.333333
Skewness  -0.376068
Kurtosis   2.409149

Jarque-Bera  0.381172
Probability  0.826474�

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:17
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 4 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 7.373073 10.00787 0.736728 0.4613
HEC 10.47544 11.95077 0.876549 0.3807

RREP -4.223939 6.026970 -0.700840 0.4834
ELP -15.66048 12.03232 -1.301535 0.1931
TLE -34.98024 18.56144 -1.884565 0.0595
EID 1.936026 3.182873 0.608264 0.5430
GC 41.18764 30.69909 1.341657 0.1797
ARP -12.48640 19.56643 -0.638155 0.5234

C -13.76518 11.62689 -1.183909 0.2364

Mean dependent var 0.086100     S.D. dependent var 0.014130
Sum squared resid 1.30E-05     Root MSE 0.001140
Log likelihood 46.56425     Akaike info criterion -7.512851
Schwarz criterion -7.240524     Hannan-Quinn criter. -7.811592
Deviance 1.30E-05     Deviance statistic 1.30E-05
Restr. deviance 0.001797     LR statistic 137.2461
Prob(LR statistic) 0.000000     Pearson SSR 1.30E-05
Pearson statistic 1.30E-05     Dispersion 1.30E-05

*

***
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p*<0.01;p**<0.05;p***<0.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:18
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -84.37683 91.42279 -0.922930 0.3560
HEC -55.36072 111.0340 -0.498593 0.6181

RREP 40.18591 54.61290 0.735832 0.4618
ELP 187.3600 115.0179 1.628964 0.1033
TLE 409.4366 178.4020 2.295023 0.0217
EID -9.599478 30.94297 -0.310231 0.7564
GC -328.2189 271.9987 -1.206693 0.2276
ARP 113.7690 174.2872 0.652767 0.5139

C 79.63801 110.2939 0.722053 0.4703

Mean dependent var 0.086100     S.D. dependent var 0.014130
Sum squared resid 9.45E-06     Root MSE 0.000972
Log likelihood 48.15655     Akaike info criterion -7.831311
Schwarz criterion -7.558984     Hannan-Quinn criter. -8.130052
Deviance 9.45E-06     Deviance statistic 9.45E-06
Restr. deviance 0.001797     LR statistic 189.0896
Prob(LR statistic) 0.000000     Pearson SSR 9.45E-06
Pearson statistic 9.45E-06     Dispersion 9.45E-06

*

**
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.001386
Median   0.012199
Maximum  0.428294
Minimum -0.619585
Std. Dev.   0.333330
Skewness  -0.563218
Kurtosis   2.470410

Jarque-Bera  0.645551
Probability  0.724136�
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1.3.  AUB  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       7.46e-14
Median   0.015101
Maximum  0.582127
Minimum -0.542545
Std. Dev.   0.333333
Skewness  -0.175901
Kurtosis   2.616111

Jarque-Bera  0.112973
Probability  0.945079�

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/16/24   Time: 08:25
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 0 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREP -0.552287 0.542289 -1.018436 0.3085
HEC 1.603440 1.046634 1.531997 0.1255

RREC 0.762843 0.907527 0.840573 0.4006
ELP -1.200960 1.060410 -1.132543 0.2574
TLE -2.464862 1.632419 -1.509945 0.1311
EID 0.247293 0.269157 0.918769 0.3582
GC 6.452589 2.829574 2.280410 0.0226
ARP -1.660063 1.799674 -0.922424 0.3563

C -1.951695 1.006892 -1.938337 0.0526

Mean dependent var 0.078600     S.D. dependent var 0.016386
Sum squared resid 1.71E-05     Root MSE 0.001307
Log likelihood 45.20005     Akaike info criterion -7.240011
Schwarz criterion -6.967684     Hannan-Quinn criter. -7.538752
Deviance 1.71E-05     Deviance statistic 1.71E-05
Restr. deviance 0.002416     LR statistic 140.5158
Prob(LR statistic) 0.000000     Pearson SSR 1.71E-05
Pearson statistic 1.71E-05     Dispersion 1.71E-05

*

**
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000866
Median   0.018361
Maximum  0.486612
Minimum -0.585393
Std. Dev.   0.333332
Skewness  -0.481621
Kurtosis   2.406023

Jarque-Bera  0.533601
Probability  0.765826�

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/16/24   Time: 08:27
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREP -5.799466 5.889687 -0.984681 0.3248
HEC 14.76310 11.67980 1.263986 0.2062

RREC 8.511108 9.804490 0.868083 0.3853
ELP -14.40161 11.92404 -1.207780 0.2271
TLE -30.10009 18.38602 -1.637118 0.1016
EID 1.922175 3.135378 0.613060 0.5398
GC 66.07195 29.51725 2.238418 0.0252
ARP -15.68878 19.05087 -0.823520 0.4102

C -22.39768 11.40308 -1.964179 0.0495

Mean dependent var 0.078600     S.D. dependent var 0.016386
Sum squared resid 1.28E-05     Root MSE 0.001130
Log likelihood 46.65280     Akaike info criterion -7.530560
Schwarz criterion -7.258233     Hannan-Quinn criter. -7.829301
Deviance 1.28E-05     Deviance statistic 1.28E-05
Restr. deviance 0.002416     LR statistic 188.2294
Prob(LR statistic) 0.000000     Pearson SSR 1.28E-05
Pearson statistic 1.28E-05     Dispersion 1.28E-05

*

**
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p*<0.01;p**<0.05;p***<0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

0

1

2

3

4

-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000850
Median   0.018084
Maximum  0.496428
Minimum -0.576853
Std. Dev.   0.333332
Skewness  -0.454083
Kurtosis   2.402147

Jarque-Bera  0.492580
Probability  0.781695�

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/16/24   Time: 08:29
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 4 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREP -6.394192 6.505807 -0.982844 0.3257
HEC 16.50529 12.89072 1.280401 0.2004

RREC 9.337035 10.82283 0.862716 0.3883
ELP -15.70742 13.11252 -1.197895 0.2310
TLE -32.78551 20.21415 -1.621910 0.1048
EID 2.189669 3.447599 0.635129 0.5253
GC 73.14127 32.71611 2.235635 0.0254
ARP -17.53660 21.06777 -0.832390 0.4052

C -24.53165 12.56165 -1.952901 0.0508

Mean dependent var 0.078600     S.D. dependent var 0.016386
Sum squared resid 1.32E-05     Root MSE 0.001148
Log likelihood 46.49700     Akaike info criterion -7.499401
Schwarz criterion -7.227074     Hannan-Quinn criter. -7.798142
Deviance 1.32E-05     Deviance statistic 1.32E-05
Restr. deviance 0.002416     LR statistic 182.4241
Prob(LR statistic) 0.000000     Pearson SSR 1.32E-05
Pearson statistic 1.32E-05     Dispersion 1.32E-05

*

**
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.002086
Median   0.020750
Maximum  0.418182
Minimum -0.662086
Std. Dev.   0.333326
Skewness  -0.697462
Kurtosis   2.727220

Jarque-Bera  0.841758
Probability  0.656470�

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/16/24   Time: 08:30
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREP 65.32775 58.41470 1.118344 0.2634
HEC -130.7122 117.3981 -1.113409 0.2655

RREC -101.0979 99.32164 -1.017884 0.3087
ELP 180.4648 127.4652 1.415796 0.1568
TLE 380.4332 197.5193 1.926056 0.0541
EID -11.33325 33.03901 -0.343026 0.7316
GC -667.8567 282.6550 -2.362798 0.0181
ARP 141.0866 187.1146 0.754011 0.4508

C 200.6565 117.4647 1.708228 0.0876

Mean dependent var 0.078600     S.D. dependent var 0.016386
Sum squared resid 8.00E-06     Root MSE 0.000894
Log likelihood 48.99301     Akaike info criterion -7.998602
Schwarz criterion -7.726276     Hannan-Quinn criter. -8.297344
Deviance 8.00E-06     Deviance statistic 8.00E-06
Restr. deviance 0.002416     LR statistic 301.1740
Prob(LR statistic) 0.000000     Pearson SSR 8.00E-06
Pearson statistic 8.00E-06     Dispersion 8.00E-06*

***
**
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1.4. HC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -1.30e-14
Median   0.015101
Maximum  0.582127
Minimum -0.542545
Std. Dev.   0.333333
Skewness  -0.175901
Kurtosis   2.616111

Jarque-Bera  0.112973
Probability  0.945079�

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:14
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 1 iteration
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -0.362718 0.188272 -1.926564 0.0540
HEC 1.223153 0.217131 5.633261 0.0000

RREP 0.466513 0.112501 4.146743 0.0000
ELP -0.627622 0.219989 -2.852976 0.0043
TLE -1.843926 0.338655 -5.444848 0.0000
EID 0.409271 0.055838 7.329596 0.0000
GC 1.201070 0.587012 2.046072 0.0407
ARP 1.627396 0.373353 4.358865 0.0000

C -0.931486 0.208886 -4.459307 0.0000

Mean dependent var 0.145200     S.D. dependent var 0.013209
Sum squared resid 7.35E-07     Root MSE 0.000271
Log likelihood 60.92841     Akaike info criterion -10.38568
Schwarz criterion -10.11336     Hannan-Quinn criter. -10.68442
Deviance 7.35E-07     Deviance statistic 7.35E-07
Restr. deviance 0.001570     LR statistic 2135.963
Prob(LR statistic) 0.000000     Pearson SSR 7.35E-07
Pearson statistic 7.35E-07     Dispersion 7.35E-07

***

*

*
*

*
*
*
**

*



 
 

 69 

 
 
p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -1.30e-14
Median   0.015101
Maximum  0.582127
Minimum -0.542545
Std. Dev.   0.333333
Skewness  -0.175901
Kurtosis   2.616111

Jarque-Bera  0.112973
Probability  0.945079�

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:15
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -2.701033 0.757816 -3.564232 0.0004
HEC 7.836695 0.897518 8.731516 0.0000

RREP 3.521342 0.459129 7.669613 0.0000
ELP -4.550584 0.887946 -5.124846 0.0000
TLE -13.11892 1.365569 -9.606926 0.0000
EID 2.696374 0.234958 11.47597 0.0000
GC 6.670712 2.319833 2.875515 0.0040
ARP 11.76818 1.463652 8.040290 0.0000

C -8.707901 0.867663 -10.03604 0.0000

Mean dependent var 0.145200     S.D. dependent var 0.013209
Sum squared resid 2.46E-07     Root MSE 0.000157
Log likelihood 66.39826     Akaike info criterion -11.47965
Schwarz criterion -11.20733     Hannan-Quinn criter. -11.77839
Deviance 2.46E-07     Deviance statistic 2.46E-07
Restr. deviance 0.001570     LR statistic 6380.198
Prob(LR statistic) 0.000000     Pearson SSR 2.46E-07
Pearson statistic 2.46E-07     Dispersion 2.46E-07

*

* 

*

*

*
*
*
*

*
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000271
Median   0.013596
Maximum  0.555253
Minimum -0.524105
Std. Dev.   0.333333
Skewness  -0.263373
Kurtosis   2.487355

Jarque-Bera  0.225111
Probability  0.893548�

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:15
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -3.124711 0.995030 -3.140318 0.0017
HEC 9.272689 1.173823 7.899565 0.0000

RREP 4.063649 0.601647 6.754211 0.0000
ELP -5.275439 1.165218 -4.527427 0.0000
TLE -15.26251 1.792207 -8.516042 0.0000
EID 3.175745 0.306411 10.36433 0.0000
GC 8.096787 3.056084 2.649399 0.0081
ARP 13.66172 1.930452 7.076951 0.0000

C -9.817981 1.133728 -8.659909 0.0000

Mean dependent var 0.145200     S.D. dependent var 0.013209
Sum squared resid 3.11E-07     Root MSE 0.000176
Log likelihood 65.22697     Akaike info criterion -11.24539
Schwarz criterion -10.97307     Hannan-Quinn criter. -11.54414
Deviance 3.11E-07     Deviance statistic 3.11E-07
Restr. deviance 0.001570     LR statistic 5047.532
Prob(LR statistic) 0.000000     Pearson SSR 3.11E-07
Pearson statistic 3.11E-07     Dispersion 3.11E-07

*

* 

*

*

*
*
*
*

*
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p*<0.01;p**<0.05;p***<0.1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:17
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 19.60569 1.135573 17.26502 0.0000
HEC -50.59745 1.372714 -36.85943 0.0000

RREP -26.08658 0.693947 -37.59160 0.0000
ELP 33.44309 1.337197 25.00984 0.0000
TLE 94.11892 2.056575 45.76490 0.0000
EID -17.91911 0.365968 -48.96365 0.0000
GC -36.24784 3.397361 -10.66941 0.0000
ARP -84.64260 2.132983 -39.68274 0.0000

C 49.74707 1.335400 37.25257 0.0000

Mean dependent var 0.145200     S.D. dependent var 0.013209
Sum squared resid 1.13E-08     Root MSE 3.35E-05
Log likelihood 81.82331     Akaike info criterion -14.56466
Schwarz criterion -14.29233     Hannan-Quinn criter. -14.86340
Deviance 1.13E-08     Deviance statistic 1.13E-08
Restr. deviance 0.001570     LR statistic 139541.0
Prob(LR statistic) 0.000000     Pearson SSR 1.13E-08
Pearson statistic 1.13E-08     Dispersion 1.13E-08

*

* 

*

*

*
*
*
*

*
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000570
Median   0.011500
Maximum  0.511209
Minimum -0.559216
Std. Dev.   0.333333
Skewness  -0.387109
Kurtosis   2.380955

Jarque-Bera  0.409429
Probability  0.814880�
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2. DENMARK 
 

2.1. EPCI 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p*<0.01;p**<0.05;p***<0.1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 10:17
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 0 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC -0.057109 0.089607 -0.637330 0.5239
HEC -0.143355 0.704469 -0.203494 0.8387

RREP -0.020160 0.087033 -0.231639 0.8168
ELP 0.120969 0.115912 1.043626 0.2967
TLE 0.388766 0.523627 0.742448 0.4578
EID 0.060020 0.062195 0.965037 0.3345
GC -0.795180 1.155628 -0.688094 0.4914
ARP 0.927630 2.035797 0.455659 0.6486

C 0.178109 0.537624 0.331290 0.7404
Mean dependent var 0.065472     S.D. dependent var 0.006300
Sum squared resid 4.89E-05     Root MSE 0.002211
Log likelihood 39.94275     Akaike info criterion -6.188550
Schwarz criterion -5.916224     Hannan-Quinn criter. -6.487292
Deviance 4.89E-05     Deviance statistic 4.89E-05
Restr. deviance 0.000357     LR statistic 6.309900
Prob(LR statistic) 0.612562     Pearson SSR 4.89E-05
Pearson statistic 4.89E-05     Dispersion 4.89E-05
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       4.65e-15
Median   0.002880
Maximum  0.459216
Minimum -0.716939
Std. Dev.   0.333333
Skewness  -0.789446
Kurtosis   3.360460

Jarque-Bera  1.092846
Probability  0.579017�
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p*<0.01;p**<0.05;p***<0.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 10:18
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 2 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC -0.857259 1.421351 -0.603129 0.5464
HEC -2.023603 11.40891 -0.177370 0.8592

RREP -0.348287 1.373534 -0.253570 0.7998
ELP 1.779400 1.788364 0.994988 0.3197
TLE 6.154668 8.328939 0.738950 0.4599
EID 0.945919 0.999037 0.946831 0.3437
GC -12.19174 18.15825 -0.671416 0.5020
ARP 15.00642 32.10011 0.467488 0.6402

C -1.159414 8.572450 -0.135249 0.8924
Mean dependent var 0.065472     S.D. dependent var 0.006300
Sum squared resid 4.88E-05     Root MSE 0.002210
Log likelihood 39.94497     Akaike info criterion -6.188994
Schwarz criterion -5.916667     Hannan-Quinn criter. -6.487735
Deviance 4.88E-05     Deviance statistic 4.88E-05
Restr. deviance 0.000357     LR statistic 6.313141
Prob(LR statistic) 0.612200     Pearson SSR 4.88E-05
Pearson statistic 4.88E-05     Dispersion 4.88E-05
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       4.62e-06
Median   0.002586
Maximum  0.461556
Minimum -0.710212
Std. Dev.   0.333333
Skewness  -0.771943
Kurtosis   3.280819

Jarque-Bera  1.026018
Probability  0.598691�
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p*<0.01;p**<0.05;p***<0.1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 10:19
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 2 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC -0.918454 1.516977 -0.605450 0.5449
HEC -2.177603 12.15865 -0.179099 0.8579

RREP -0.369644 1.466466 -0.252065 0.8010
ELP 1.909286 1.912026 0.998567 0.3180
TLE 6.569531 8.887449 0.739192 0.4598
EID 1.009981 1.065281 0.948089 0.3431
GC -13.04188 19.38986 -0.672614 0.5012
ARP 15.99470 34.27264 0.466690 0.6407

C -0.970602 9.144895 -0.106136 0.9155
Mean dependent var 0.065472     S.D. dependent var 0.006300
Sum squared resid 4.88E-05     Root MSE 0.002210
Log likelihood 39.94467     Akaike info criterion -6.188933
Schwarz criterion -5.916607     Hannan-Quinn criter. -6.487675
Deviance 4.88E-05     Deviance statistic 4.88E-05
Restr. deviance 0.000357     LR statistic 6.312699
Prob(LR statistic) 0.612249     Pearson SSR 4.88E-05
Pearson statistic 4.88E-05     Dispersion 4.88E-05

0

1

2

3

4

5

-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       4.32e-06
Median   0.002607
Maximum  0.461399
Minimum -0.710661
Std. Dev.   0.333333
Skewness  -0.773056
Kurtosis   3.285990

Jarque-Bera  1.030106
Probability  0.597469�
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p*<0.01;p**<0.05;p***<0.1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 10:20
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC 12.91275 22.60729 0.571176 0.5679
HEC 28.83382 185.8227 0.155168 0.8767

RREP 5.950912 21.72181 0.273960 0.7841
ELP -26.32061 27.88079 -0.944041 0.3451
TLE -97.80564 132.8774 -0.736059 0.4617
EID -14.96891 16.11855 -0.928676 0.3531
GC 187.4093 287.4874 0.651887 0.5145
ARP -241.5915 507.8317 -0.475731 0.6343

C -6.568166 137.7304 -0.047689 0.9620
Mean dependent var 0.065472     S.D. dependent var 0.006300
Sum squared resid 4.88E-05     Root MSE 0.002209
Log likelihood 39.95159     Akaike info criterion -6.190318
Schwarz criterion -5.917992     Hannan-Quinn criter. -6.489060
Deviance 4.88E-05     Deviance statistic 4.88E-05
Restr. deviance 0.000357     LR statistic 6.322835
Prob(LR statistic) 0.611118     Pearson SSR 4.88E-05
Pearson statistic 4.88E-05     Dispersion 4.88E-05
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       1.93e-05
Median   0.002336
Maximum  0.463464
Minimum -0.703686
Std. Dev.   0.333333
Skewness  -0.756791
Kurtosis   3.207506

Jarque-Bera  0.972497
Probability  0.614929�
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2.2. IKW 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -1.23e-14
Median   0.002880
Maximum  0.459216
Minimum -0.716939
Std. Dev.   0.333333
Skewness  -0.789446
Kurtosis   3.360460

Jarque-Bera  1.092846
Probability  0.579017�

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:24
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 0 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -0.079281 0.024122 -3.286726 0.0010
HEC -0.071279 0.189637 -0.375872 0.7070

RREP 0.014887 0.023428 0.635405 0.5252
ELP 0.186310 0.031203 5.970979 0.0000
TLE 0.384964 0.140956 2.731095 0.0063
EID 0.033422 0.016742 1.996262 0.0459
GC -1.189478 0.311086 -3.823636 0.0001
ARP 0.807560 0.548020 1.473596 0.1406

C 0.231443 0.144724 1.599206 0.1098

Mean dependent var 0.032400     S.D. dependent var 0.007531
Sum squared resid 3.54E-06     Root MSE 0.000595
Log likelihood 53.06606     Akaike info criterion -8.813212
Schwarz criterion -8.540886     Hannan-Quinn criter. -9.111954
Deviance 3.54E-06     Deviance statistic 3.54E-06
Restr. deviance 0.000510     LR statistic 143.1383
Prob(LR statistic) 0.000000     Pearson SSR 3.54E-06
Pearson statistic 3.54E-06     Dispersion 3.54E-06

*
*

*

*

*
*
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -0.000119
Median   0.002015
Maximum  0.458680
Minimum -0.710188
Std. Dev.   0.333333
Skewness  -0.774662
Kurtosis   3.278736

Jarque-Bera  1.032541
Probability  0.596742�

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:25
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -2.368085 0.834443 -2.837922 0.0045
HEC -0.867083 6.634946 -0.130684 0.8960

RREP 0.372288 0.820172 0.453915 0.6499
ELP 5.284641 0.985863 5.360419 0.0000
TLE 11.75247 4.885566 2.405550 0.0161
EID 1.017451 0.593140 1.715364 0.0863
GC -36.40311 10.30179 -3.533670 0.0004
ARP 28.98856 18.86451 1.536672 0.1244

C 1.792088 4.983306 0.359618 0.7191

Mean dependent var 0.032400     S.D. dependent var 0.007531
Sum squared resid 3.68E-06     Root MSE 0.000607
Log likelihood 52.87270     Akaike info criterion -8.774541
Schwarz criterion -8.502214     Hannan-Quinn criter. -9.073282
Deviance 3.68E-06     Deviance statistic 3.68E-06
Restr. deviance 0.000510     LR statistic 137.6707
Prob(LR statistic) 0.000000     Pearson SSR 3.68E-06
Pearson statistic 3.68E-06     Dispersion 3.68E-06

*
*

*

*

*
*
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p*<0.01;p**<0.05;p***<0.1 
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-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -0.000119
Median   0.002042
Maximum  0.458689
Minimum -0.710399
Std. Dev.   0.333333
Skewness  -0.775112
Kurtosis   3.281160

Jarque-Bera  1.034270
Probability  0.596226�

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:27
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -2.450185 0.859194 -2.851725 0.0043
HEC -0.942417 6.828923 -0.138004 0.8902

RREP 0.387821 0.844197 0.459396 0.6459
ELP 5.478007 1.017698 5.382744 0.0000
TLE 12.15065 5.030142 2.415568 0.0157
EID 1.052026 0.610312 1.723751 0.0848
GC -37.63273 10.62042 -3.543432 0.0004
ARP 29.81836 19.42624 1.534953 0.1248

C 2.031783 5.131311 0.395958 0.6921

Mean dependent var 0.032400     S.D. dependent var 0.007531
Sum squared resid 3.68E-06     Root MSE 0.000606
Log likelihood 52.87838     Akaike info criterion -8.775677
Schwarz criterion -8.503350     Hannan-Quinn criter. -9.074418
Deviance 3.68E-06     Deviance statistic 3.68E-06
Restr. deviance 0.000510     LR statistic 137.8283
Prob(LR statistic) 0.000000     Pearson SSR 3.68E-06
Pearson statistic 3.68E-06     Dispersion 3.68E-06

*
*

*

*

*
*
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -0.000219
Median   0.001450
Maximum  0.458407
Minimum -0.702706
Std. Dev.   0.333333
Skewness  -0.757803
Kurtosis   3.194245

Jarque-Bera  0.972830
Probability  0.614827�

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:33
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 4 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 71.86383 29.26009 2.456036 0.0140
HEC -8.581473 236.9849 -0.036211 0.9711

RREP -9.157536 29.08020 -0.314906 0.7528
ELP -154.1065 32.78836 -4.700036 0.0000
TLE -364.8975 171.7268 -2.124872 0.0336
EID -31.73042 21.19124 -1.497337 0.1343
GC 1121.009 350.5432 3.197920 0.0014
ARP -1012.189 661.0584 -1.531165 0.1257

C -105.3317 175.7738 -0.599246 0.5490

Mean dependent var 0.032400     S.D. dependent var 0.007531
Sum squared resid 3.81E-06     Root MSE 0.000618
Log likelihood 52.69584     Akaike info criterion -8.739167
Schwarz criterion -8.466840     Hannan-Quinn criter. -9.037909
Deviance 3.81E-06     Deviance statistic 3.81E-06
Restr. deviance 0.000510     LR statistic 132.8511
Prob(LR statistic) 0.000000     Pearson SSR 3.81E-06
Pearson statistic 3.81E-06     Dispersion 3.81E-06

*
*

*

**

*-
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2.3. AUB  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p*<0.01;p**<0.05;p***<0.1 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 11:09
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 0 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC -0.077782 0.172231 -0.451611 0.6515
HEC 0.033007 1.354038 0.024377 0.9806

RREP -0.008043 0.167283 -0.048083 0.9616
ELP -0.031271 0.222791 -0.140359 0.8884
TLE -0.342134 1.006448 -0.339942 0.7339
EID 0.027897 0.119543 0.233366 0.8155
GC 1.074154 2.221198 0.483592 0.6287
ARP 2.183481 3.912945 0.558015 0.5768

C -0.438294 1.033351 -0.424148 0.6715
Mean dependent var 0.036900     S.D. dependent var 0.007666
Sum squared resid 0.000181     Root MSE 0.004249
Log likelihood 33.40872     Akaike info criterion -4.881745
Schwarz criterion -4.609418     Hannan-Quinn criter. -5.180486
Deviance 0.000181     Deviance statistic 0.000181
Restr. deviance 0.000529     LR statistic 1.929731
Prob(LR statistic) 0.983091     Pearson SSR 0.000181
Pearson statistic 0.000181     Dispersion 0.000181

0
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4

5

-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -3.13e-15
Median   0.002880
Maximum  0.459216
Minimum -0.716939
Std. Dev.   0.333333
Skewness  -0.789446
Kurtosis   3.360460

Jarque-Bera  1.092846
Probability  0.579017�
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p*<0.01;p**<0.05;p***<0.1 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 11:17
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 4 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC -2.047078 5.292959 -0.386755 0.6989
HEC -0.742400 40.64070 -0.018267 0.9854

RREP -0.330205 4.576309 -0.072155 0.9425
ELP -0.810883 6.644229 -0.122043 0.9029
TLE -8.010509 27.03807 -0.296268 0.7670
EID 0.815905 3.418622 0.238665 0.8114
GC 29.07408 59.32664 0.490068 0.6241
ARP 53.15386 113.5184 0.468240 0.6396

C -15.07762 28.59559 -0.527271 0.5980
Mean dependent var 0.036900     S.D. dependent var 0.007666
Sum squared resid 0.000188     Root MSE 0.004341
Log likelihood 33.19355     Akaike info criterion -4.838709
Schwarz criterion -4.566383     Hannan-Quinn criter. -5.137451
Deviance 0.000188     Deviance statistic 0.000188
Restr. deviance 0.000529     LR statistic 1.806324
Prob(LR statistic) 0.986385     Pearson SSR 0.000188
Pearson statistic 0.000188     Dispersion 0.000188

0
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-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -0.000448
Median   0.003354
Maximum  0.529942
Minimum -0.641245
Std. Dev.   0.333333
Skewness  -0.469874
Kurtosis   2.866953

Jarque-Bera  0.375344
Probability  0.828886�



 
 

 82 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p*<0.01;p**<0.05;p***<0.1 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 11:18
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC -2.128122 5.473287 -0.388820 0.6974
HEC -0.712322 42.03563 -0.016946 0.9865

RREP -0.337770 4.754842 -0.071037 0.9434
ELP -0.844436 6.875969 -0.122810 0.9023
TLE -8.366355 28.10288 -0.297705 0.7659
EID 0.845313 3.541571 0.238683 0.8114
GC 30.17674 61.66006 0.489405 0.6246
ARP 55.39635 117.5710 0.471174 0.6375

C -15.52584 29.66983 -0.523287 0.6008
Mean dependent var 0.036900     S.D. dependent var 0.007666
Sum squared resid 0.000188     Root MSE 0.004339
Log likelihood 33.19772     Akaike info criterion -4.839545
Schwarz criterion -4.567218     Hannan-Quinn criter. -5.138287
Deviance 0.000188     Deviance statistic 0.000188
Restr. deviance 0.000529     LR statistic 1.808669
Prob(LR statistic) 0.986326     Pearson SSR 0.000188
Pearson statistic 0.000188     Dispersion 0.000188

0
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-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -0.000479
Median   0.003337
Maximum  0.526759
Minimum -0.644408
Std. Dev.   0.333333
Skewness  -0.482885
Kurtosis   2.875984

Jarque-Bera  0.395038
Probability  0.820764�
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p*<0.01;p**<0.05;p***<0.1 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 11:20
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 5 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC 57.31810 166.4264 0.344405 0.7305
HEC 66.76912 1252.461 0.053310 0.9575

RREP 10.67348 122.3166 0.087261 0.9305
ELP 20.59324 196.3369 0.104887 0.9165
TLE 191.6228 716.7099 0.267364 0.7892
EID -23.91108 103.1052 -0.231910 0.8166
GC -811.9639 1573.702 -0.515958 0.6059
ARP -1318.109 3338.995 -0.394762 0.6930

C 325.3773 798.2343 0.407621 0.6836
Mean dependent var 0.036900     S.D. dependent var 0.007666
Sum squared resid 0.000189     Root MSE 0.004345
Log likelihood 33.18497     Akaike info criterion -4.836994
Schwarz criterion -4.564667     Hannan-Quinn criter. -5.135735
Deviance 0.000189     Deviance statistic 0.000189
Restr. deviance 0.000529     LR statistic 1.801513
Prob(LR statistic) 0.986504     Pearson SSR 0.000189
Pearson statistic 0.000189     Dispersion 0.000189

0
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-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000577
Median   0.003643
Maximum  0.606196
Minimum -0.561474
Std. Dev.   0.333333
Skewness  -0.146140
Kurtosis   2.896274

Jarque-Bera  0.040078
Probability  0.980161�
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2.4. HC 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
p*<0.01;p**<0.05;p***<0.1 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:27
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 1 iteration
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC 0.007906 0.137954 0.057308 0.9543
HEC -0.463869 1.084562 -0.427701 0.6689

RREP -0.102370 0.133991 -0.764011 0.4449
ELP 0.142526 0.178452 0.798680 0.4245
TLE 1.127269 0.806148 1.398340 0.1620
EID 0.145340 0.095752 1.517879 0.1290
GC -1.875920 1.779143 -1.054396 0.2917
ARP -0.088081 3.134204 -0.028103 0.9776

C 0.687844 0.827697 0.831034 0.4060
Mean dependent var 0.160186     S.D. dependent var 0.010001
Sum squared resid 0.000116     Root MSE 0.003403
Log likelihood 35.62787     Akaike info criterion -5.325575
Schwarz criterion -5.053248     Hannan-Quinn criter. -5.624316
Deviance 0.000116     Deviance statistic 0.000116
Restr. deviance 0.000900     LR statistic 6.771335
Prob(LR statistic) 0.561493     Pearson SSR 0.000116
Pearson statistic 0.000116     Dispersion 0.000116

0
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       5.27e-16
Median   0.002880
Maximum  0.459216
Minimum -0.716939
Std. Dev.   0.333333
Skewness  -0.789446
Kurtosis   3.360460

Jarque-Bera  1.092846
Probability  0.579017�
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p*<0.01;p**<0.05;p***<0.1 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:28
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC 0.063521 0.860646 0.073807 0.9412
HEC -2.901544 7.017141 -0.413494 0.6792

RREP -0.664662 0.844972 -0.786609 0.4315
ELP 0.863759 1.114504 0.775016 0.4383
TLE 7.272703 5.205586 1.397096 0.1624
EID 0.935644 0.616105 1.518642 0.1289
GC -12.18799 11.50514 -1.059351 0.2894
ARP -0.134356 19.69317 -0.006822 0.9946

C 1.516653 5.350375 0.283467 0.7768
Mean dependent var 0.160186     S.D. dependent var 0.010001
Sum squared resid 0.000114     Root MSE 0.003372
Log likelihood 35.71969     Akaike info criterion -5.343938
Schwarz criterion -5.071612     Hannan-Quinn criter. -5.642680
Deviance 0.000114     Deviance statistic 0.000114
Restr. deviance 0.000900     LR statistic 6.915364
Prob(LR statistic) 0.545791     Pearson SSR 0.000114
Pearson statistic 0.000114     Dispersion 0.000114
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       6.65e-05
Median   0.002696
Maximum  0.445870
Minimum -0.725033
Std. Dev.   0.333333
Skewness  -0.844883
Kurtosis   3.425839

Jarque-Bera  1.265270
Probability  0.531190�
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p*<0.01;p**<0.05;p***<0.1 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:30
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 2 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC 0.072345 1.024877 0.070589 0.9437
HEC -3.453437 8.300109 -0.416071 0.6774

RREP -0.785589 1.004181 -0.782318 0.4340
ELP 1.034609 1.326887 0.779727 0.4356
TLE 8.606346 6.158948 1.397373 0.1623
EID 1.107679 0.729453 1.518506 0.1289
GC -14.40411 13.60818 -1.058489 0.2898
ARP -0.253472 23.42064 -0.010823 0.9914

C 2.317311 6.329347 0.366122 0.7143
Mean dependent var 0.160186     S.D. dependent var 0.010001
Sum squared resid 0.000114     Root MSE 0.003378
Log likelihood 35.70199     Akaike info criterion -5.340398
Schwarz criterion -5.068072     Hannan-Quinn criter. -5.639140
Deviance 0.000114     Deviance statistic 0.000114
Restr. deviance 0.000900     LR statistic 6.887393
Prob(LR statistic) 0.548829     Pearson SSR 0.000114
Pearson statistic 0.000114     Dispersion 0.000114

0
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       6.75e-05
Median   0.002732
Maximum  0.448475
Minimum -0.723516
Std. Dev.   0.333333
Skewness  -0.834505
Kurtosis   3.413248

Jarque-Bera  1.231821
Probability  0.540149�
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p*<0.01;p**<0.05;p***<0.1 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:31
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  
RREC -0.492801 5.376192 -0.091664 0.9270
HEC 18.26575 45.51662 0.401298 0.6882

RREP 4.322997 5.340342 0.809498 0.4182
ELP -5.246212 6.987800 -0.750767 0.4528
TLE -47.05449 33.76213 -1.393706 0.1634
EID -6.037587 3.977607 -1.517894 0.1290
GC 79.43013 74.86683 1.060952 0.2887
ARP -1.698743 123.8801 -0.013713 0.9891

C -15.11231 34.73326 -0.435096 0.6635
Mean dependent var 0.160186     S.D. dependent var 0.010001
Sum squared resid 0.000111     Root MSE 0.003338
Log likelihood 35.82227     Akaike info criterion -5.364454
Schwarz criterion -5.092128     Hannan-Quinn criter. -5.663196
Deviance 0.000111     Deviance statistic 0.000111
Restr. deviance 0.000900     LR statistic 7.079434
Prob(LR statistic) 0.528087     Pearson SSR 0.000111
Pearson statistic 0.000111     Dispersion 0.000111

0
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-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000147
Median   0.002530
Maximum  0.431450
Minimum -0.732537
Std. Dev.   0.333333
Skewness  -0.897598
Kurtosis   3.490385

Jarque-Bera  1.443002
Probability  0.486022�
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3. GREECE 
 

3.1. EPCI 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       1.90e-15
Median  -0.075676
Maximum  0.514493
Minimum -0.490051
Std. Dev.   0.333333
Skewness   0.308546
Kurtosis   1.933881

Jarque-Bera  0.632255
Probability  0.728967�

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/13/24   Time: 20:55
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 0 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -0.498242 0.616215 -0.808552 0.4188
HEC -0.764430 0.903375 -0.846194 0.3974

RREP -0.233952 0.307571 -0.760643 0.4469
ELP -0.334373 1.809477 -0.184790 0.8534
TLE -0.702862 2.158835 -0.325575 0.7447
EID 0.500065 0.301644 1.657799 0.0974
GC 1.277977 4.588792 0.278500 0.7806
ARP 0.489073 2.136442 0.228919 0.8189

C -0.104602 0.860248 -0.121595 0.9032

Mean dependent var 0.239038     S.D. dependent var 0.047217
Sum squared resid 0.000174     Root MSE 0.004173
Log likelihood 33.58924     Akaike info criterion -4.917847
Schwarz criterion -4.645520     Hannan-Quinn criter. -5.216589
Deviance 0.000174     Deviance statistic 0.000174
Restr. deviance 0.020065     LR statistic 114.2311
Prob(LR statistic) 0.000000     Pearson SSR 0.000174
Pearson statistic 0.000174     Dispersion 0.000174*

***
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000224
Median  -0.112472
Maximum  0.467552
Minimum -0.481720
Std. Dev.   0.333333
Skewness   0.366428
Kurtosis   1.836522

Jarque-Bera  0.787816
Probability  0.674416�

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/13/24   Time: 20:57
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 4 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -1.729188 2.653203 -0.651736 0.5146
HEC -3.590548 3.719902 -0.965226 0.3344

RREP -1.070015 1.106985 -0.966603 0.3337
ELP -3.514287 8.076300 -0.435136 0.6635
TLE -5.829136 9.613675 -0.606338 0.5443
EID 2.041046 1.300076 1.569944 0.1164
GC 10.38774 20.15186 0.515473 0.6062
ARP -0.945798 8.812133 -0.107329 0.9145

C -3.501348 3.902806 -0.897136 0.3696

Mean dependent var 0.239038     S.D. dependent var 0.047217
Sum squared resid 0.000157     Root MSE 0.003961
Log likelihood 34.11066     Akaike info criterion -5.022132
Schwarz criterion -4.749806     Hannan-Quinn criter. -5.320874
Deviance 0.000157     Deviance statistic 0.000157
Restr. deviance 0.020065     LR statistic 126.8969
Prob(LR statistic) 0.000000     Pearson SSR 0.000157
Pearson statistic 0.000157     Dispersion 0.000157*
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p*<0.01;p**<0.05;p***<0.1 
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-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000249
Median  -0.100972
Maximum  0.485102
Minimum -0.484556
Std. Dev.   0.333333
Skewness   0.339322
Kurtosis   1.842961

Jarque-Bera  0.749707
Probability  0.687390�

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/13/24   Time: 20:58
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 4 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -2.426949 3.490787 -0.695244 0.4869
HEC -4.582223 4.941473 -0.927299 0.3538

RREP -1.373546 1.537005 -0.893651 0.3715
ELP -3.774005 10.49531 -0.359590 0.7192
TLE -6.509370 12.50009 -0.520746 0.6025
EID 2.718179 1.704303 1.594892 0.1107
GC 11.56371 26.37865 0.438374 0.6611
ARP 0.009865 11.74454 0.000840 0.9993

C -3.612282 5.066629 -0.712956 0.4759

Mean dependent var 0.239038     S.D. dependent var 0.047217
Sum squared resid 0.000164     Root MSE 0.004049
Log likelihood 33.89136     Akaike info criterion -4.978272
Schwarz criterion -4.705946     Hannan-Quinn criter. -5.277014
Deviance 0.000164     Deviance statistic 0.000164
Restr. deviance 0.020065     LR statistic 121.4086
Prob(LR statistic) 0.000000     Pearson SSR 0.000164
Pearson statistic 0.000164     Dispersion 0.000164*
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.000439
Median  -0.143453
Maximum  0.588820
Minimum -0.451122
Std. Dev.   0.333333
Skewness   0.582352
Kurtosis   2.083144

Jarque-Bera  0.915484
Probability  0.632711�

Dependent Variable: EPCI
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/13/24   Time: 21:00
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 4 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 5.617794 11.62040 0.483442 0.6288
HEC 17.92871 16.45878 1.089310 0.2760

RREP 4.934425 4.055860 1.216616 0.2238
ELP 25.67064 37.29304 0.688349 0.4912
TLE 39.22939 44.41527 0.883241 0.3771
EID -8.864848 6.028790 -1.470419 0.1414
GC -67.96822 88.08920 -0.771584 0.4404
ARP 17.15137 36.07224 0.475473 0.6345

C 16.10875 17.43604 0.923877 0.3556

Mean dependent var 0.239038     S.D. dependent var 0.047217
Sum squared resid 0.000139     Root MSE 0.003726
Log likelihood 34.72172     Akaike info criterion -5.144344
Schwarz criterion -4.872018     Hannan-Quinn criter. -5.443086
Deviance 0.000139     Deviance statistic 0.000139
Restr. deviance 0.020065     LR statistic 143.5227
Prob(LR statistic) 0.000000     Pearson SSR 0.000139
Pearson statistic 0.000139     Dispersion 0.000139*
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3.2. IKW  
 

 
 
p*<0.01;p**<0.05;p***<0.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:41
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 0 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 0.267472 0.988419 0.270606 0.7867
HEC -1.345445 1.449028 -0.928515 0.3531

RREP -0.387791 0.493349 -0.786038 0.4318
ELP -0.927730 2.902430 -0.319639 0.7492
TLE -1.209086 3.462805 -0.349164 0.7270
EID 0.277977 0.483841 0.574520 0.5656
GC 5.080346 7.360494 0.690218 0.4901
ARP -0.295881 3.426886 -0.086341 0.9312

C -0.912439 1.379852 -0.661259 0.5084

Mean dependent var 0.240300     S.D. dependent var 0.059837
Sum squared resid 0.000448     Root MSE 0.006693
Log likelihood 28.86413     Akaike info criterion -3.972826
Schwarz criterion -3.700500     Hannan-Quinn criter. -4.271568
Deviance 0.000448     Deviance statistic 0.000448
Restr. deviance 0.032224     LR statistic 70.92780
Prob(LR statistic) 0.000000     Pearson SSR 0.000448
Pearson statistic 0.000448     Dispersion 0.000448*

0
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3

4

5

-0.5 0.0 0.5

Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -5.51e-15
Median  -0.075676
Maximum  0.514493
Minimum -0.490051
Std. Dev.   0.333333
Skewness   0.308546
Kurtosis   1.933881

Jarque-Bera  0.632255
Probability  0.728967�
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.002942
Median  -0.112029
Maximum  0.528336
Minimum -0.479724
Std. Dev.   0.333319
Skewness   0.396008
Kurtosis   1.917635

Jarque-Bera  0.749502
Probability  0.687460�

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:43
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 4 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 1.085554 3.298170 0.329138 0.7421
HEC -4.644561 4.472721 -1.038420 0.2991

RREP -1.340283 1.284149 -1.043712 0.2966
ELP -4.624290 10.00528 -0.462185 0.6439
TLE -6.420210 11.87102 -0.540831 0.5886
EID 0.547370 1.569056 0.348853 0.7272
GC 27.61855 25.45522 1.084986 0.2779
ARP -6.302693 11.02706 -0.571566 0.5676

C -7.209384 4.988869 -1.445094 0.1484

Mean dependent var 0.240300     S.D. dependent var 0.059837
Sum squared resid 0.000221     Root MSE 0.004706
Log likelihood 32.38759     Akaike info criterion -4.677518
Schwarz criterion -4.405191     Hannan-Quinn criter. -4.976260
Deviance 0.000221     Deviance statistic 0.000221
Restr. deviance 0.032224     LR statistic 144.5260
Prob(LR statistic) 0.000000     Pearson SSR 0.000221
Pearson statistic 0.000221     Dispersion 0.000221

*
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.003052
Median  -0.100597
Maximum  0.473029
Minimum -0.481970
Std. Dev.   0.333318
Skewness   0.342392
Kurtosis   1.838115

Jarque-Bera  0.757878
Probability  0.684587�

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:44
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 1.554970 4.858257 0.320068 0.7489
HEC -6.614319 6.673408 -0.991146 0.3216

RREP -1.891143 2.022389 -0.935103 0.3497
ELP -5.974851 14.49894 -0.412089 0.6803
TLE -8.117127 17.22645 -0.471201 0.6375
EID 0.960818 2.301039 0.417558 0.6763
GC 34.55702 37.16281 0.929882 0.3524
ARP -6.545941 16.39018 -0.399382 0.6896

C -8.526997 7.212297 -1.182286 0.2371

Mean dependent var 0.240300     S.D. dependent var 0.059837
Sum squared resid 0.000293     Root MSE 0.005412
Log likelihood 30.98969     Akaike info criterion -4.397938
Schwarz criterion -4.125611     Hannan-Quinn criter. -4.696679
Deviance 0.000293     Deviance statistic 0.000293
Restr. deviance 0.032224     LR statistic 109.0323
Prob(LR statistic) 0.000000     Pearson SSR 0.000293
Pearson statistic 0.000293     Dispersion 0.000293

*
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       0.005945
Median  -0.146286
Maximum  0.696676
Minimum -0.434677
Std. Dev.   0.333274
Skewness   0.850355
Kurtosis   2.866108

Jarque-Bera  1.212643
Probability  0.545353�

Dependent Variable: IKW
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 08:46
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -1.455223 8.179859 -0.177903 0.8588
HEC 14.06466 11.13423 1.263191 0.2065

RREP 4.439299 2.578668 1.721547 0.0852
ELP 17.23032 26.08372 0.660577 0.5089
TLE 26.58556 30.76797 0.864066 0.3876
EID -0.061819 4.099707 -0.015079 0.9880
GC -121.6853 61.88451 -1.966330 0.0493
ARP 38.62372 24.94489 1.548362 0.1215

C 28.11188 12.47073 2.254230 0.0242

Mean dependent var 0.240300     S.D. dependent var 0.059837
Sum squared resid 5.81E-05     Root MSE 0.002409
Log likelihood 39.08108     Akaike info criterion -6.016216
Schwarz criterion -5.743889     Hannan-Quinn criter. -6.314957
Deviance 5.81E-05     Deviance statistic 5.81E-05
Restr. deviance 0.032224     LR statistic 554.0466
Prob(LR statistic) 0.000000     Pearson SSR 5.81E-05
Pearson statistic 5.81E-05     Dispersion 5.81E-05*
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3.3. AUB 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       4.80e-14
Median  -0.075676
Maximum  0.514493
Minimum -0.490051
Std. Dev.   0.333333
Skewness   0.308546
Kurtosis   1.933881

Jarque-Bera  0.632255
Probability  0.728967�

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 11:26
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 1 iteration
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -2.513781 0.232065 -10.83223 0.0000
HEC 1.268740 0.340208 3.729301 0.0002

RREP -0.011435 0.115830 -0.098723 0.9214
ELP 3.719388 0.681444 5.458099 0.0000
TLE 3.675265 0.813011 4.520561 0.0000
EID 0.456790 0.113598 4.021100 0.0001
GC -7.680335 1.728125 -4.444316 0.0000
ARP 2.364028 0.804578 2.938223 0.0033

C 1.761236 0.323967 5.436470 0.0000

Mean dependent var 0.351900     S.D. dependent var 0.052431
Sum squared resid 2.47E-05     Root MSE 0.001571
Log likelihood 43.35503     Akaike info criterion -6.871006
Schwarz criterion -6.598680     Hannan-Quinn criter. -7.169748
Deviance 2.47E-05     Deviance statistic 2.47E-05
Restr. deviance 0.024741     LR statistic 1000.832
Prob(LR statistic) 0.000000     Pearson SSR 2.47E-05
Pearson statistic 2.47E-05     Dispersion 2.47E-05*

*
*

*
*
*
*
*
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -0.000472
Median  -0.104503
Maximum  0.524072
Minimum -0.475677
Std. Dev.   0.333333
Skewness   0.396094
Kurtosis   1.890850

Jarque-Bera  0.774074
Probability  0.679066�

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 11:29
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 4 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -6.995534 0.890786 -7.853215 0.0000
HEC 3.332922 1.254158 2.657498 0.0079

RREP -0.206040 0.387757 -0.531362 0.5952
ELP 9.834566 2.677946 3.672428 0.0002
TLE 9.352176 3.180820 2.940178 0.0033
EID 1.193718 0.430724 2.771423 0.0056
GC -20.74878 6.569957 -3.158130 0.0016
ARP 5.795300 2.877751 2.013830 0.0440

C 3.083894 1.266213 2.435525 0.0149

Mean dependent var 0.351900     S.D. dependent var 0.052431
Sum squared resid 3.92E-05     Root MSE 0.001981
Log likelihood 41.03860     Akaike info criterion -6.407720
Schwarz criterion -6.135393     Hannan-Quinn criter. -6.706461
Deviance 3.92E-05     Deviance statistic 3.92E-05
Restr. deviance 0.024741     LR statistic 629.3651
Prob(LR statistic) 0.000000     Pearson SSR 3.92E-05
Pearson statistic 3.92E-05     Dispersion 3.92E-05

*

*

*

*
*
*
*
*
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -0.000498
Median  -0.089457
Maximum  0.517171
Minimum -0.483747
Std. Dev.   0.333333
Skewness   0.344422
Kurtosis   1.902863

Jarque-Bera  0.699257
Probability  0.704950�

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 11:30
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -10.97503 1.192442 -9.203829 0.0000
HEC 5.370271 1.715233 3.130927 0.0017

RREP -0.172913 0.558457 -0.309627 0.7568
ELP 15.83664 3.544198 4.468329 0.0000
TLE 15.38396 4.219031 3.646325 0.0003
EID 1.952975 0.581537 3.358297 0.0008
GC -33.15263 8.835437 -3.752235 0.0002
ARP 9.820507 3.996536 2.457255 0.0140

C 5.704277 1.680312 3.394773 0.0007

Mean dependent var 0.351900     S.D. dependent var 0.052431
Sum squared resid 3.15E-05     Root MSE 0.001775
Log likelihood 42.13716     Akaike info criterion -6.627432
Schwarz criterion -6.355105     Hannan-Quinn criter. -6.926174
Deviance 3.15E-05     Deviance statistic 3.15E-05
Restr. deviance 0.024741     LR statistic 784.2574
Prob(LR statistic) 0.000000     Pearson SSR 3.15E-05
Pearson statistic 3.15E-05     Dispersion 3.15E-05

*

*

*

*
*
*
*
*
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p*<0.01;p**<0.05;p***<0.1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0

1

2

3

4

5
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -0.001203
Median  -0.137256
Maximum  0.524964
Minimum -0.450420
Std. Dev.   0.333331
Skewness   0.519296
Kurtosis   1.895936

Jarque-Bera  0.957346
Probability  0.619605�

Dependent Variable: AUB
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 11:31
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 19.60263 3.562174 5.502997 0.0000
HEC -8.605728 4.945574 -1.740087 0.0818

RREP 1.039310 1.317696 0.788732 0.4303
ELP -25.52342 10.93806 -2.333451 0.0196
TLE -22.95260 12.94585 -1.772969 0.0762
EID -3.207096 1.754105 -1.828337 0.0675
GC 55.46076 25.61591 2.165090 0.0304
ARP -13.66258 10.48406 -1.303177 0.1925

C -9.164818 5.056812 -1.812371 0.0699

Mean dependent var 0.351900     S.D. dependent var 0.052431
Sum squared resid 6.36E-05     Root MSE 0.002522
Log likelihood 38.62614     Akaike info criterion -5.925229
Schwarz criterion -5.652902     Hannan-Quinn criter. -6.223971
Deviance 6.36E-05     Deviance statistic 6.36E-05
Restr. deviance 0.024741     LR statistic 388.0891
Prob(LR statistic) 0.000000     Pearson SSR 6.36E-05
Pearson statistic 6.36E-05     Dispersion 6.36E-05

**

*

*

**
***
***
**-
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3.4. HC 

 
p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean      -7.72e-14
Median   0.075676
Maximum  0.490051
Minimum -0.514493
Std. Dev.   0.333333
Skewness  -0.308546
Kurtosis   1.933881

Jarque-Bera  0.632255
Probability  0.728967�

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:42
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Identity
Dispersion computed using Pearson Chi-Square
Convergence achieved after 0 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -0.344065 0.037781 -9.106862 0.0000
HEC -0.081391 0.055387 -1.469501 0.1417

RREP 0.099070 0.018857 5.253592 0.0000
ELP 0.012600 0.110941 0.113575 0.9096
TLE -0.051163 0.132360 -0.386543 0.6991
EID 0.243708 0.018494 13.17763 0.0000
GC -0.716809 0.281344 -2.547807 0.0108
ARP 0.807266 0.130987 6.162926 0.0000

C 0.125390 0.052743 2.377385 0.0174

Mean dependent var 0.133704     S.D. dependent var 0.010204
Sum squared resid 6.55E-07     Root MSE 0.000256
Log likelihood 61.50719     Akaike info criterion -10.50144
Schwarz criterion -10.22911     Hannan-Quinn criter. -10.80018
Deviance 6.55E-07     Deviance statistic 6.55E-07
Restr. deviance 0.000937     LR statistic 1430.638
Prob(LR statistic) 0.000000     Pearson SSR 6.55E-07
Pearson statistic 6.55E-07     Dispersion 6.55E-07

*

*

*

*
**
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p*<0.01;p**<0.05;p***<0.1 
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       3.64e-05
Median   0.085486
Maximum  0.501250
Minimum -0.515640
Std. Dev.   0.333333
Skewness  -0.306230
Kurtosis   1.941436

Jarque-Bera  0.623194
Probability  0.732277�

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:44
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Log
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -2.415622 0.269580 -8.960700 0.0000
HEC -0.670989 0.387116 -1.733305 0.0830

RREP 0.655674 0.129778 5.052256 0.0000
ELP -0.163618 0.807336 -0.202664 0.8394
TLE -0.717298 0.962579 -0.745183 0.4562
EID 1.772215 0.130173 13.61427 0.0000
GC -4.664227 2.048046 -2.277403 0.0228
ARP 5.610636 0.935126 5.999869 0.0000

C -2.138632 0.386638 -5.531361 0.0000

Mean dependent var 0.133704     S.D. dependent var 0.010204
Sum squared resid 5.74E-07     Root MSE 0.000240
Log likelihood 62.16608     Akaike info criterion -10.63322
Schwarz criterion -10.36089     Hannan-Quinn criter. -10.93196
Deviance 5.74E-07     Deviance statistic 5.74E-07
Restr. deviance 0.000937     LR statistic 1632.292
Prob(LR statistic) 0.000000     Pearson SSR 5.74E-07
Pearson statistic 5.74E-07     Dispersion 5.74E-07
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       3.74e-05
Median   0.083960
Maximum  0.499547
Minimum -0.515516
Std. Dev.   0.333333
Skewness  -0.306243
Kurtosis   1.938314

Jarque-Bera  0.625965
Probability  0.731263�

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:46
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Logit
Dispersion computed using Pearson Chi-Square
Convergence achieved after 2 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC -2.816916 0.313753 -8.978141 0.0000
HEC -0.763953 0.451929 -1.690430 0.0909

RREP 0.772158 0.151889 5.083703 0.0000
ELP -0.142881 0.936905 -0.152503 0.8788
TLE -0.768322 1.117177 -0.687735 0.4916
EID 2.055123 0.151816 13.53692 0.0000
GC -5.509787 2.377057 -2.317903 0.0205
ARP 6.554053 1.088603 6.020610 0.0000

C -2.002984 0.448304 -4.467918 0.0000

Mean dependent var 0.133704     S.D. dependent var 0.010204
Sum squared resid 5.87E-07     Root MSE 0.000242
Log likelihood 62.05445     Akaike info criterion -10.61089
Schwarz criterion -10.33856     Hannan-Quinn criter. -10.90963
Deviance 5.87E-07     Deviance statistic 5.87E-07
Restr. deviance 0.000937     LR statistic 1596.232
Prob(LR statistic) 0.000000     Pearson SSR 5.87E-07
Pearson statistic 5.87E-07     Dispersion 5.87E-07
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Series: Standardized Residuals
Sample 2013 2022
Observations 10

Mean       7.25e-05
Median   0.095994
Maximum  0.509192
Minimum -0.513607
Std. Dev.   0.333333
Skewness  -0.313229
Kurtosis   1.965795

Jarque-Bera  0.609180
Probability  0.737426�

Dependent Variable: HC
Method: Generalized Linear Model (Newton-Raphson / Marquardt steps)
Date: 05/14/24   Time: 15:47
Sample: 2013 2022
Included observations: 10
Family: Normal
Link: Inverse
Dispersion computed using Pearson Chi-Square
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.  

RREC 16.96276 1.928552 8.795591 0.0000
HEC 5.529539 2.723835 2.030057 0.0424

RREP -4.290805 0.892994 -4.804967 0.0000
ELP 3.201905 5.874277 0.545072 0.5857
TLE 7.946709 7.000460 1.135170 0.2563
EID -12.94326 0.924409 -14.00166 0.0000
GC 29.75995 14.85819 2.002933 0.0452
ARP -38.88822 6.661463 -5.837790 0.0000

C 8.911729 2.821608 3.158386 0.0016

Mean dependent var 0.133704     S.D. dependent var 0.010204
Sum squared resid 4.99E-07     Root MSE 0.000223
Log likelihood 62.86280     Akaike info criterion -10.77256
Schwarz criterion -10.50023     Hannan-Quinn criter. -11.07130
Deviance 4.99E-07     Deviance statistic 4.99E-07
Restr. deviance 0.000937     LR statistic 1876.500
Prob(LR statistic) 0.000000     Pearson SSR 4.99E-07
Pearson statistic 4.99E-07     Dispersion 4.99E-07
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