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i  

ABSTRACT   

The increasing impacts of climate change as well have reinforced concerns about heat exposure, especially 

in urban areas where temperatures are exaggerated due to the urban heat island effect. Specifically, informal 

settlements, within urban areas are attributed with these higher temperatures as compared with surrounding 

formal areas. Several studies have attempted to model and characterise temperature variations using both 

Land Surface Temperature and Air temperature and have attributed variations to differences in the urban 

form and fabric such as morphology and green infrastructure. Other studies have established that informal 

settlements can and often exhibit different urban characters including morphology. They have been 

characterised by dense, compact structures and limited vegetation. Despite these gaps and the 

understanding of the relevance of urban morphology to temperature, none of these studies have extensively 

included detailed morphological parameters in modelling air temperature.   

This study addresses the limitations of current methods by leveraging urban morphometrics and random 

forest to estimate air temperature within informal settlements, with a specific focus on Nairobi, Kenya. It 

explores the relationship between urban morphology and air temperature, hypothesizing that distinct 

morphological characteristics of informal settlements significantly influence local temperature variations. 

Through a detailed morphological analysis and advanced machine learning techniques, the study models air 

temperature with high spatial resolution, providing insights into the patterns and drivers of thermal 

variations.  

From this study, it was established that there are strong morphological differences between formal and 

informal areas in the study area. The random forest model successfully predicted air temperature with an 

R^2 of 0.73, revealing significant warmer temperatures within informal settlements. The model also allowed 

the assessment of importance of detailed morphology to air temperature. This analysis revealed urban 

morphology to only play a supplementary role in air temperature prediction. Urban morphometrics only 

influence temperature in a confounding manner, thus only at a contextual level or neighbourhood level, 

does it impact these variations.   

Keywords: urban morphology, Informal settlements, air temperature estimation, random forest regression  
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1. INTRODUCTION  

Climate change and associated global temperature rises have resulted in growing concerns about heat 

exposure. This concern is especially essential in urban areas due to the urban heat island effect, which reveal 

significant temperature variations between and within urban and rural areas. Different types of urban areas 

show very contrasting temperatures. In particular informal areas tend to have higher temperatures 

compared to neighbouring formal areas (Mehrotra et al., 2018). Current methods exploring these thermal 

variations focus both on air temperature and Land Surface Temperature. The latter, measures the 

temperature of the earth’s surface and may not necessarily be what people perceive. Traditional air 

temperature, on the hand, measured 2m above the earth surface, is measured by meteorological stations 

and may better reflect perceived temperatures. These stations are however, often sparsely distributed at 

irregular intervals thus making it difficult to explore local scale variabilities of air temperature.   

Meanwhile, recent efforts on machine learning propose new ways to address current data and 

methodological gaps in exploring these thermal variations. This research aims to provide insights into air 

temperature variabilities in informal settlements by leveraging machine learning.  

1.1. Background and Justification   

The latest IPCC report explains with certainty that extremely hot temperatures have increased both in 

frequency and intensity since the 1950s (IPCC, 2023). The report further describes extreme temperature as 

one of the most fatal climate change hazards that adversely impacts human health and livelihoods. Liu et 

al., (2017) account tens of thousands of heat related deaths globally within the last decade, including the 

death toll of over 30,000 people during the 2003 heatwave in Europe as reported by the United Nations 

Environment Programme, (2003).  Kjellstrom et al., (2018), on the other hand, explain the economic 

impacts of heat exposure by revealing that increasing heat exposure results in heat stress of workers and 

thus reduced productivity, accounting for substantial losses in work hours annually.   

Urban areas are particularly exposed to these temperature hazards due to the urban heat island (UHI) 

phenomenon which refers to higher temperatures in urban areas compared to surrounding rural areas. 

These hazards are however not experienced similarly within urban areas (Kisters et al., 2022), as several 

studies reveal significant temperature variabilities, indicating that informal areas, are exposed to higher heat 

exposure (Scott et al., 2017; Egondi et al., (2012).   

Informal settlements, also referred to as deprived urban areas or slums (Abascal et al., 2022), thought varied 

across different contexts, are often predominantly inhabited by the urban poor, with lower socio-economic 

conditions and therefore lack the adaptive capacities to deal with the impacts of heat exposure and heat 

stress. With higher recorded incidence of heat-related health risks and mortality, these areas are more 

vulnerable as they bear a higher compounding burden to the impacts of this climate stressor (Nag et al., 

2009; Rathi et al., 2017).   

These temperature differences have been associated with the densification and reduced vegetative cover as 

urban surfaces, such as concrete and asphalts etc, typically exhibit low albedos and thus absorb more heat 

than they reflect resulting in the warming (Ochola et al., 2020).  Kotharkar et al., (2023); and Peng et al., 

(2022), share similar results while investigated this notion and found morphology to be an influencing factor 

of temperature differences in the urban space. This intuitively presupposes that different configuration of 

the urban fabric experience temperature, and its impacts differently. Informal settlements are often 

characterised by distinct morphologies, described by Abascal et al., (2022) as compact dense settlements 

with limited vegetative cover. Given that these are same urban characters associated with heat absorption, 

this could explain the significant temperature differences between formal and informal areas.  

Much of the studies on thermal variations have been explored using Land Surface Temperature (LST) 

measurements from various satellite imagery. Though LST is useful in understanding surface heating and 

may provide foundational insights on temperature, it does not directly reflect the thermal comforts that 
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people experience.  To provide a more accurate understanding of heat exposure, air temperature offers a 

more precise representation of perceived heat (Gholamnia et al., n.d.). However, the sparse distribution of 

meteorological stations makes it difficult to assess local-scale temperature variations within urban areas, 

particularly in informal settlements.   

Recent advancements in machine learning offers methods to address these data gaps. By integrating several 

data sources, machine learning can be used to predict air temperature at finer spatial resolution, allowing 

for detailed analysis of local temperature. Despite the opportunities such models provide in exploring 

thermal variations within the informal context, unfortunately, none of such studies have been employed in 

estimating air temperature in informal settlements. Moreover, urban morphology, which as previously 

established, contributes to temperature, especially at the local level, have not been extensively considered in 

such studies. This research, therefore, aims to leverage machine learning techniques to provide deeper 

insights into air temperature variabilities within informal settlements. By utilizing advanced modelling 

approaches, the study seeks to fill the gaps of traditional air temperature assessments to offer a more 

comprehensive understanding of thermal variations. The findings aim to contribute to the development of 

targeted interventions to mitigate heat exposure and improve living conditions for residents of informal 

settlements.  

1.2. Problem Statement  

Whilst previous studies have only focused on mapping out detailed patterns of Land Surface Temperature 

in informal settlements, e.g., Cao et al., (2022), Mehrotra et al., (2018), Ochola et al., (2020) and Scott et al., 

(2017), this study chooses air temperature over land surface temperature because it is directly related to 

human comfort as it represents the temperature that people perceive and experience (Zhang et al., 2016a). 

It is the temperature that influences daily activities and thermal comfort considerations. Increased air 

temperature is associated with heat stress and heat stress-related mortality and as such pose great risks to 

public health (Nascetti et al., 2022). Therefore, as this study concerns exposure to climate stressors in 

deprived communities, air temperature is more appropriate. In addition to its importance to exposure and 

public health, air temperature is one of the most used climatic variables in climate change studies as it plays 

an important role in most biological and physical processes, making it a significant predictor of terrestrial 

environmental conditions (Benali et al., 2012; Nascetti et al., 2022; Y. Z. Yang et al., 2017). Accurate 

spatiotemporal measurement of air temperature is tremendously beneficial and in high demand for 

environmental studies (Y. Z. Yang et al., 2017).   

Traditional air temperature studies however do not extensively include morphology in modelling air 

temperature, and none are designed for the context of informal settlements, which often exhibit distinct 

morphologies. Thus, no studies exist that models air temperature in informal settlements to assess how 

different configurations and morphologies of informal settlements contribute to local urban heat, as such, 

the essence of this study.  The study, therefore, fills two gaps;  

• Measuring and exploring local scale patterns of air temperature within informal settlements.  

• Extensively incorporating urban morphological characteristics in modelling air temperature. 

This study thus proposes a morphologically based approach to modelling air temperature by employing 

morphometrics to leverage the detailed characterization of informal morphology.  

Estimating air temperature by extensively including morphology of informal settlements is of great 

relevance in recent times of UN-Habitat and World Bank slum upgrading agenda. These initiatives aim to 

improve the living conditions of slum dwellers with an emphasis on participatory climate resilience and 

adaptation strategies. This intersection with SDG 11.1 target (ensure access for all to adequate, safe and 

affordable housing and basic services and upgrade slums) and target 13.1 (Strengthen resilience and adaptive 

capacity to climate-related hazards, especially in vulnerable communities) makes this research of great 

relevance as it is imperative to assess the root causes of temperature variability to successfully develop 

targeted and effective interventions.  
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1.3. Research Objectives and Questions   

The main objective of this study is to explore local scale temperature variations in informal settlements to 

assess the relationship that exist between daily air temperature (in peak summer season) and the urban 

morphology by leveraging machine learning methods. The hypothesis underlying this study is that there are 

air temperature variations within and across formal and informal settlements and these variations are related 

to and can be explained my morphological differences. In line with this, specifically, the sub-objectives and 

research questions are as follows.   

1. To measure the urban morphological characteristics within and around informal settlements in  

Nairobi   

• Are there distinguishing morphological patterns observed within and between formal area?   

• What morphological characteristics are key in distinguish informal settlements from each 

other and formal areas and why?  

2. To measure and analyse the patterns of air temperature within and between informal and formal 

areas.  

• What spatial patterns of air temperature are observed within informal settlements?  

• What spatial patterns of air temperature are observed across informal and formal 

settlements?  

  

3. Modelling Air temperature from slum morphological characteristics, and auxiliary variables, 

employing random forest.    

• Based on literature, what covariates are significant to model air temperature?  

• What is the accuracy of the Air temperature model?  

• What are the key morphological characteristics that contribute significantly to the 

temperature variations?  

1.4. Conceptual Framework   

The underlying principle to local scale air temperature estimation in this study, is in imbedding extensively 

morphological aspects of the urban fabric of informal settlements. As morphology plays a crucial role in local 

microclimatic conditions (Stewart & Oke, 2012), and may provide great justifications to temperature variations. 

With the hypothesis that the physical morphology of an area plays a role in its air temperature, slum 

morphometrics is central to the air temperature model in explaining higher temperatures in informal 

settlements.  

Though not a risk analysis, this study touches on both hazard and vulnerability. It provides a framework 

for estimating air temperature hazard intensity taking into consideration the physical conditions of informal 

settlements, often, a physical manifestation of their vulnerabilities (Isunju et al., 2016; Ren et al., n.d.) and 

thus beneficial to risk assessment.   

The figure below provides a graphical representation of the framework, highlighting the focus study areas, 

data, and methods, that have been used in previous studies and the proposed approach (in green) employed 

in this study to address gaps identified. While current studies do not focus on informal settlements and do 

not extensively incorporate detailed description of morphology in air temperature estimation, this study 

seeks to account for these gaps.  
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Figure 1: Conceptual Framework  
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2. LITERATURE REVIEW   

2.1. Heat and Urbanisation  

Much of the impacts of heat exposure are recorded in cities due to the urban heat island effect (Koppe et 

al., 2004). Urbanization has caused increasing impervious surfaces, which retain heat and exacerbate 

temperature burdens causing higher temperatures in urban areas as compared to their surrounding 

semiurban and rural areas. This is referred to as an UHI, which has been described by Ochola et al., (2020) 

as being one of the most extensive and significant signs of climate modification in the urban space.  

The world’s urban population is expected to increase from 55% to 70% by 2050 with most of this projected 

urbanization estimated to happen in cities in the global South, specifically in Sub-Saharan Africa (World 

Cities Report 2022, n.d.; United Nations, 2018). Again, heat extremes, are projected to increase both in 

intensity and frequency as the climate warms. Specifically in Africa, these extremes are projected to have 

increases in magnitudes and durations twice more relative to Europe (IPCC, 2023; Z. Liu et al., 2017; Scott 

et al., 2017). Considering these combined adverse projections, heat exposure and its effects will get worse 

in the coming years, as such, urban heat islands and its effects are a great cause of concern not only to urban 

planners but to policy makers, public health officials and urban disaster risk management community. This 

climate risk in Africa is thought more alarming especially because countries in the region tend to have 

inadequate resources to properly deal with and manage climate related hazards and risks (Scott et al., 2017).  

2.2. Heat Exposure and Vulnerability in Informal Settlements  

Exposure to heat is therefore not distributed proportionately globally. Equally, even within regions and 

nations, these hazard events do not occur uniformly across space as Morrow (2008) and Yoon (2012) 

explain hazards and impacts are shared disproportionally within nations, often with vulnerable groups 

experiencing higher exposure levels as they tend to reside in harmful conditions in high-risk locations and 

bearing a larger brunt of the economic and health impacts because they lack access to adaptive resources. 

In relation to extreme heat and heat exposure, several studies have been conducted that localizes heat related 

risks and imply that informal settlements are more at risk to heat. For example, Nag et al., (2009); Rathi et 

al., (2017) revealed higher temperatures, heat related illness and mortality in informal and slum areas in 

Indian cities. Similarly in the African context, Egondi et al., (2012; Scott et al., (2017) analysed temperature 

patterns in Nairobi, Kenya and observed higher temperatures and heat related illness and mortality in slums 

relative to neighbouring formal settlements. These studies, focused on characterizing risks by addressing 

heat vulnerability using demographic, and other socio-economic attributes.   

However, since risk is defined as a function of both vulnerability and exposed population to hazard 

(Reisinger et al., n.d.), assessing hazard intensity and exposure cannot be neglected in risk assessment. 

Unfortunately, only few research analyses the heat exposure component of risk in relation to informal 

settlements. Wang et al., (2019) examines local scale temperature patterns in slum areas in Ahmedabad and 

revealed the exposure of slum areas to intense locally high temperatures. This analysis also exposed the size 

of slums as a contributing factor to temperature intensity, associating larger slums with higher local 

temperatures in comparison to smaller slum settlements. Similarly, Mehrotra et al., (2018); Ochola et al 

(2020); Ramsay et al., (2023); Scott et al., (2017); Wu et al., (2018) assessed the intrinsic patterns and 

variability of temperatures in informal settlements and slums within the urban landscape.  

The methods and techniques used by these studies varied substantially with Wang et al., (2019) focusing on 

morphologically based exploration of thermal patterns using land surface temperature (hereon LST) and 

Scott et al., (2017) examining temperature variations between informal settlements with air temperature 

measurements obtained from installing 50 ground temperature sensors across strategic locations within the 

slums and comparing them to data from meteorological weather stations in Nairobi. Ochola et al., (2020) 

studied the variability of temperatures in Nairobi by characterizing the entire urban landscape (including 
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informal settlements) into Local Climate zones (LCZ) and explored the variability of LST amongst these 

zones.  

2.3. Conceptualizing Informal Settlements in Temperature Research  

Several variations of informal settlements have been considered in thermal studies. This is largely due to the 

polysemic nature of the term, as what is ‘informal’ is widely contextual and very much dependent on existing 

formal spatial-governing structures. Thus, the definition of informal settlements is location specific and 

varies across countries. For example, whilst Mehrotra et al., (2018) studied all urban informal housing 

clusters within the urban landscape, Scott et al., (2017) considered informal settlements to be areas that 

have a majority share of buildings with low, dense housing types built from poor construction materials 

such as galvanized iron sheets, mud, clay, and wood and also lack accessibility to basic human services such 

as healthcare and clean water. Wu et al., (2018) on the other hand considered urban villages in China 

characterized by overcrowded areas with small compact substandard storey buildings situated in areas with 

little to no vegetation cover and improper sanitary conditions as a form of informal settlement.   

Despite their varied definitions, all these informal settlements share commonalities, particularly in terms of 

lower socio-economic status, poverty, and deprivation. Building on this foundation of deprivation, Abascal 

et al. (2022) acknowledges the intersections among these areas and propose expressing their degrees of 

deprivation to ensure standardization across differing contexts. This expression, "deprived urban area" 

(DUA), encompasses all these characterizations to define poor areas and their residents. As such, from 

hereon; this term is used interchangeably with informal settlements.  

This deprivation often manifests in the physical structures and is expressed in characterisation of the 

fundamental elements of the urban form such as streets, buildings, and plots termed morphology (Abascal 

et al., 2022; Kuffer et al., 2022; Oliveira et al., 2023).  

2.4. Influence of Urban Morphology on Local Temperature  

It is important to note that DUA’s are not homogenous nor monolithic (Scott et al., 2017). Again, as seen 

in the works of Nag et al., (2009); Ochola et al., (2020); Rathi et al., (2017); Scott et al., (2017); Wang et al., 

(2019) and Wu et al., (2018), they have varied, heterogenous surfaces and characteristics and thus have 

different configurations that may influence local temperature variations. Again, as the morphological 

characteristics of informal settlements tend to be very distinct from formal surroundings, it suggests that, 

that morphology may be the main contributing factor to temperature variations between informal 

settlements and surrounding formal areas.   

Scott et al., (2017) reiterates this by explaining that physical environment of a local area influences its 

microclimate and thus temperature and suggests that the internal characteristic of urban morphology is 

highly correlated to urban temperatures. In the same vein, numerous studies have explored the relationship 

between urban morphology and both land surface and air temperature.  For example, Peng et al., (2022) 

found building density to be the most important variable explaining much of the variation in local thermal 

conditions which is in line with findings by Li et al., (2023a) that indicates an increase in air temperatures 

with increase in building coverage ratio up to 40 percent (similar to building density). This finding is 

explained by larger heat loss through radiation as concrete surface areas increase with corresponding 

increase in buildings. The findings also reveal that, when building coverage ratio increases above 40% up 

to 70%, the results is an increase in air temperature as a result of the shadow effect of denser buildings 

resulting in cooler local thermal conditions. Puche et al., (2023), shared the similar findings by associating 

higher building density with higher air temperatures locally, though its extent was not explored as was done 

in Li et al., (2023a). This study also explored building height factor as a much higher significant contributor 

to lower air temperatures than building density. Though these studies uncover the significance of building 

density to air temperature, Puche et al., (2023), finds that it does not influence LST distribution significantly 
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however building height and the presence of vegetation are the two main factors contributing to LST 

decrease in the urban environment.   

The study of local climate zones as proposed by Stewart & Oke, (2012) provide a link between urbanization 

and its impacts on local thermal characteristics and supports the claim of a strong relationship between the 

urban configuration and temperature. The studies classify several urban morphology characteristics and 

relate them to temperature values, finding significant variations in thermal conditions between different 

urban classes.   

It is seen, therefore, from these numerous studies that morphology plays a significant role in micro-climatic 

conditions, especially at the local level, as such are important predictors to estimation of both LST and air 

temperature.  

2.5. Current Advances in Air Temperature Estimation  

Traditionally, air temperature is measured by meteorological stations that provide highly accurate estimates 

with high temporal resolution but limited by sparse distribution in space resulting in course spatial 

resolution. This point-scale measurement makes it difficult to analyse spatial variations of temperature 

continuously (Wu et al., 2018). To compensate for this shortcoming various attempts are made at 

interpolating station measurements using various geostatistical approaches such as kriging in order to 

spatially map out air temperature. These approaches may be effective in temperature estimates near the 

stations but have substantial errors with increase in distance from stations. This is especially the case in 

instances where there is sparse or inconsistent distribution of stations (Janatian et al., 2017; Y. Z. Yang et 

al., 2017). In the context of developing countries, these stations are substantially inadequate and in instances 

where available, are highly variable in spatial distribution and usually outside the scope of informal 

settlements (Janatian Nasime et al., 2017; Scott et al., 2017) therefore, such techniques will not provide 

accurate spatial estimates and are inappropriate for this case study.   

Air temperature is an intricate phenomenon to model due to the complex relationships that exist between 

environmental factors that influence it (Gholamnia et al., n.d.). Surface heating and cooling processes are 

the main modulators of daily Tair cycle determined by the energy balance of the earth-atmosphere system 

through an interplay of absorption of incoming solar radiation, emission of infrared radiation and sensible 

and latent heat exchange between the earth surface and the atmosphere. This results in a high variability of 

spatio-temporal patterns of TAIR resulting from the complex variability of these environmental factors 

such as latitude, cloud cover, particulate matter, wind speed, time, thermal inertia, soil moisture, albedo and 

emissivity etc that control the energy balance of earth-atmosphere relationship (Benali et al., 2012; Janatian 

Nasime et al., 2017; Y. Z. Yang et al., 2017).   

Numerous studies have been undertaken in an attempt to address these complexities associated to air 

temperature estimation. Several have leveraged the power of earth observation satellites to provide data on 

the reflected, absorbed, and transmitted solar energy from the sun’s interactions with the earth surface. In 

this vein, remotely sensed land surface temperature (LST) has been investigated as a possible measure to 

improve the spatio-temporal accuracies of air temperature estimation as it is available on a regular basis and 

is spatially contiguous making it especially beneficial to areas with very sparse stations (Y. Z. Yang et al., 

2017). This author defines LST as the ‘skin’ temperature of the earth surface and is a key indicator of the 

net surface energy balance driven by surface emissions.   Benali et al., (2012) explains that though LST and 

air temperature are highly correlated, they mean different things physically, have different magnitudes and 

respond very differently to atmospheric conditions, thus, have a complex relationship. Several other factors 

influence the interplays and interactions between LST and air temperature. For example, vegetation plays a 

crucial role in the dynamics between LST and air temperature. Highly vegetated areas provide shade and 

can significantly reduce the amount of direct sunlight reaching the ground, thus a reduced LST in that area. 

Again, the large surface roughness and low albedo of vegetation promotes sensible heat distribution. 

Through evapotranspiration, vegetation contributes to larger latent heat fluxes influencing microclimatic 

conditions and thus air temperature (Benali et al., 2012; Gholamnia et al., n.d.).   



AN URBAN MORPHOLOGY BASED METHOD FOR AIR TEMPERATURE ESTIMATION IN INFORMAL SETTLEMENTS  

8  

Despite the complex relationship between LST and air temperature, many studies have estimated air 

temperature using LST successfully. Below is a table that shows an overview of such studies.  

  
Table 1:Literature Review on Existing Methods  

Author  Data  Source   Method  Result  

(Yang et al.,  

2017)  

LST, View Zenith Angle   

Clear Days ,View Times  

NDVI   

MODIS AQUA   

8-day  average  

LST 2002–2016   

multiple  linear  

regression   

TMax: R2 0.90  

TMin: R2 0.94  

TMean: R2 0.94    

(Nascetti et al.,  

2022)  

LST   

NDVI   

Landsat-8  Neural  Network 

(NN)  regression 

model  

Tmean: R2 0.87  

(Benali et al.,  

2012)  

LST,  Latitude,  

Meteorological data    

Distance  to  coast  and  

clearwater  

MODIS TERRA  Linear Regression  MEF: 0.93  

(Janatian  
Nasime et al.,  

2017)  

LST, Altitude, Julien Day  

Latitude, NDVI, EVI   

MODIS TERRA   Multiple  Linear  

Regression   

R2 :0.91  

(Li  et  al.,  

2023b)  

Meteorological data   

ENVI-MET urban canopy 

simulated air temperature.   

Urban3D morphology   

China 

meteorological 

data center  

Airborne 

 laser 

scanning  

Random  Forest  

Regression   

  

(Gholamnia et  

al., n.d.)  

LST, Land cover maps   

Meteorological data   

Elevation  

INSAT3-D  Linear Regression   MAEs between  

[0.1, 2.9] ◦C  

(Keung Tsin et 

al., 2020)  
NDVI, Distance to water 

bodies, Sky view factor  

Distance to roads, Elevation,  

Landsat 8   

Transect walks  

Linear Regression 

model   
R2: 0.69   

  

(Zhang et al.,  

2016b)  

  

Metrological data, LST, 

NDVI, Longitude, Latitude, 

Julien day, Solar Zenith  

Angle   

MODIS   Linear Regression, 

Support Vector 

Machine, Neural  

Network   

  

Table 1 above provides and overview of studies that estimate air temperature using LST. For example, 

Benali et al., (2012) estimated average air temperature of Portugal over a 10-year period based on MODIS 

LST data utilizing several simple linear models. Based on the results of the study, daytime LST explained 

83.3% of variability while nighttime LST explained 92% with an RMSE of 1.38 °C. Similarly, Zhang et al., 

(2016) recorded an average RMSDs of all models ranging from 1.81°C to 2.64°C with nighttime LST 

contributing to higher model accuracies. Though all the models performed relatively well, the methods and 

products (models) have some limitations which can further be improved. The majority of the models 

focused only on using liner regression models in Tair estimations, though as explained in sections above, 
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there exists nonlinear relationships between LST and Tair. This sentiment is shared by both Yang et al., 

(2017) and Benali et al., (2012) by explaining the need for advanced non-linear algorithms in improving the 

performance of Tair especially given the variability and complexities of the variables.  Furthermore, though 

many studies have stressed the importance of morphology in local air temperature, most models fail to 

include these characteristics as features. To the best of the authors knowledge, there only a handful of 

studies that include urban morphology in Tair modelling and none are extensive, and none focuses on 

informal settlements. Though Li et al., (2023c) introduces some urban morphology characteristics, the 

method itself; highly dependent on data from meteorological stations and the use of Envi-met simulation 

which (a paid software) raises questions on transferability of method.  Concerning generalizability, however, 

Gholamnia et al., n.d.; Nascetti et al., (2022); and Yang et al., (2017) express concerns on the variability of 

results when applied on different settings indicating the influential role of spatial context and land cover 

classes in Tair modelling. This implies, since no studies exist that models air temperatures in informal 

settlements despite their distinct morphological characteristics, this research is imperative.   

According to Yu et al., (2020) by evaluating the complex relationships between the input and the target 

variables, feature importance machine learning algorithms such as random forest evaluate the significance 

of each feature to the target variable. By estimating the total decrease in impurity of each feature across all 

trees, random forest algorithm is able evaluate the most contributing features to model prediction. Thus, 

features with higher ‘importance scores’ were frequently used in splits contributing to large reductions in 

impurity and thus more significant to model prediction.   

Given that this study seeks to understand the relationship between temperature and morphometric 

characters, Random Forest was used to tease out the most significant influencers of thermal variability. The 

RF algorithm has become widely used in recent times in the study of air temperature prediction due to its 

interpretability in relation to input variables (Li et al., 2023a; D. Yang et al., 2023). Besides its interpretability, 

this model was selected for the study, as, according to He et al., (2022) this algorithm is relatively fast to 

train, has a high precision, offers strong generalization abilities and is best-known application for evaluating 

the impact of each feature on model performance as such revealing important predictors within a dataset.  

  

  

  

  

  

  

  

  

  

  

  

  

3. METHODOLOGY  

This chapter provides a comprehensive overview of the methodology employed to achieve the results of 

the study. Given the case study approach of this research, the chapter begins with a general description of 
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the city and then narrows down to the specific informal settlements selected for the study. Following this, 

a general overview of the research methodology is presented, accompanied by a flowchart illustrating the 

processes. After which specific details of the research methodology and methods ensues and concludes the 

chapter.   

3.1. Study Area   

This study area is Nairobi, the capital city of Kenya located in the southwestern part of the country at 

approximately 1.2921° S, 36.8219° E, and covering a total land mass of 696.1km2. Sitting at an altitude of 

approximately 1,795 metres (5,889 ft) above sea level, the city has a subtropical highland climate under the 

Koppen climate classification with two major rainfall seasons in mid-March – May and October – 

December. Nairobi experiences its warmest months between January and March with mean max 

temperatures between approximately 25.8°C and 26.7°C and coolest months between June and July with 

mean min temperatures of approximately 12 °C (NCCG, 2020). According to the recent climate action 

report of Nairobi County however, studies of historical meteorological data reveals that the city has been 

experiencing significant increasing trends in temperatures. Figure 1 below presents the study area map as 

well as some physical characteristics of Nairobi in Appendix 1.  

 

Figure 2:Study Area Map  

  

As one of the fastest growing cities in Africa and a major regional economic hub in East Africa, Nairobi is 

home to about 4,397,073 people according to the country’s population census of 2019 and is projected to 

be increase to 6 million people by 2030 (NCCG, 2020). Due to this rapid population growth however, the 

city is not able to meet the high demand for land which has resulted in an incessant expansion of informal 

settlements in the city. It is estimated that though informal settlements occupy less than 10% of the total 

land mass of Nairobi, roughly 60% of the population resides in informal settlements (NCCG, 2020; 

UNHABITAT, 2005). Hosting numerous informal settlements including Kibera; the largest informal 

settlement in Africa, the Nairobi County government acknowledges the vulnerabilities these settlements 

face especially in the face of climate change. Specifically referencing multiple studies that indicate that these 
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informal settlements suffer from multiple climate stressors, including higher LST and air temperatures and 

heat stress related deaths compared to formal settlements. As a result, the city’s government is interested in 

reducing the impacts of climate stressors on these settlements.    

This study scope is limited to 5 informal settlements in Nairobi; Kibera, Mukuru, Koriogocho, Waruku, and 

Pumwani with boundaries defined by taking convex hulls of all insitu air temperature routes(transects).   

These settlements together formed the area of interest pictured in figure 2 above. See appendix 14 for aerial 

views.  

3.2. Research Methodology   

The general flow of this research was structured in four phases, reflecting the objectives of the study. 

Descriptions of all datasets used in the study are summarised in Appendix 2  

The first phase, (shown in yellow frame from figure 6 below), address’s objective1 and constitutes the 

morphometric computation. This phase starts with the preprocessing of building footprint dataset, which 

is then used in the computation of morphometrics. Following this, K-means clustering is employed to 

morphologically distinguish between DUA and non DUA’s. Statistical tests are finally employed to tease 

out the important features. Phase two, (shown in blue frame from figure 6 below) incorporates the 

measurement and assessment of air temperature data. It involves the preprocessing and exploratory spatial 

data analysis of collected insitu air temperature measurements.  The third phase (shown in purple frame 

from figure 6 below), involves the preprocessing and computation of all covariates; NDVI, NDWI, NDBI, 

LST and elevation. The final phase, (shown in purple frame from figure 6 below), employ the main outputs 

of all previous phases; insitu measurements, computed morphometrics, and covariates in building a random 

forest model of air temperature. A graphical representation of these phases is shown in the flowchart below.  
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Figure 3:Flowchart  

3.3. Morphometric Computation  

The method of measuring morphology as applied in this study adopts morphometrics approach by 

Fleischmann et al., (2022) which provides an extensive method of detailing out numerical characteristics of 

the urban form. The method describes three fundamental elements of urban form: buildings, streets, and 

plots. However, since informal settlements tend to lack clearly defined streets, and thus lack of street 

configuration datasets, only buildings and plots are considered morphological elements in this study. For 

buildings, the height is also considered to capture the full extent of the third dimensional morphology. 

Given the polysemic nature of plots, morphological tessellations; a Voronoi tessellation based spatial unit 

derived from building footprints is adopted, following the work of (Fleischmann et al., 2022; J. Wang et al., 

2023). The tessellation provides a means to describe the morphological influence each building exerts in its 

immediate spatial context.   

Based on these elements, a selected group of 31 morphometric characters are implemented from the 

comprehensive list of 71 characters in the appendix 3 provides a defined list of morphometric characters 

used in the study as well as the theoretical foundations for computation.   

A key principle of morphometrics supposes an identifiable relationship between the morphometric 

characters.  As such, each character is measured at different scales characterized by the topological relations 

that exist between the elements. Thus, each character is measured at two scales: the individual element itself  



AN URBAN MORPHOLOGY BASED METHOD FOR AIR TEMPERATURE ESTIMATION IN INFORMAL SETTLEMENTS.  

13  

(small), and the element in the context of neighbours within a specified topological step (Large). These primary 

characters, measure the individual morphometric elements but fail to detail spatial patterns that exist in the study 

area. To account for this, each primary character is defined by its tendency in its context which is an aggregation 

of morphological cells within three topological steps of the element.  This is done by employing four spatially 

lagged contextual characters; Interquartile mean to capture the local tendency, Interquartile-range, Interdecile 

Theil index (IDT), and Simpsons diversity index(SDI) to capture the distribution of values within the specified 

context. Specific details on the calculation of these characters are provided in appendix 4.    

For calculating each contextual character, each primary character becomes an input and thus the full set of 

morphometric characters employed is 26 primary characters and 104 contextual characters totalling 130 

characters which then account for detailed characterization of urban morphology in the study area. The 

methods applied in executing this phase is explained the sections below.  

3.3.1. Data Preprocessing for Morphometric Computation  

Building footprint data covering the full extent of Nairobi with confidence level above 70% was obtained 

from the Google building footprint dataset Version 3. This resulted in approximately 800,000 buildings. All 

multipolygons were exploded to ensure that each building had a unique ID’s, after which buildings with 

faulty or no geometry information were removed. Polygons with an area smaller than 10m2 were removed 

as such smaller objects were assumed to be ancillary structures. Height data sets from World settlement 

footprint 3d were obtained and pre-processed.  

Using a spatial join, the height information was appended to the centroids of intersecting buildings, while 

the mean height value was computed to replace all missing height data.  

3.3.2. Morphometrics Computation Hyperparameters  

As explained previously, the urban form characters used in the study are buildings (building footprints) and 

plots represented by morphological tessellations. Building tessellation geometries from building footprint 

requires tuning two hyperparameters.  

• Inward offset distance: This distance is used in shrinking polygons, to generate gaps between adjacent 

geometries, to be used in defining the boundaries of each tessellation around the building footprint. 

Selecting too large values may lead to the collapse of building polygons, while too little results in incorrect 

saw-like geometries. Thus, this hyperparameter requires priori knowledge of the study area characteristics.  

The default setting for this hyperparameter is 0.4m based on Fleischmann et al., (2020)’s experimentation 

on Zurich.   

• Discretisation interval: The tessellation generation process involves approximating the polygonal 

shape of buildings into points, to be used in generating Voronoi tessellations (a subsidiary step to 

morphological tessellation). This hyperparameter value defined the distance between these points, thus a 

large value will result in saw-like polygons and loss of shape details whilst the opposite increases 

computational burden. The default value of this hyperparameter is 0.5m   

With the understanding that Nairobi’s informal settlements are unlike Zurich and characterised by dense, 

small buildings (Scott et al., 2017), using the default settings was not optimal as it resulted in massive data 

loss to building collapse and faulty geometries.  Following heuristics, a trial-and-error approach was used in 

selecting the bet set of hyperparameters that reduced polygon collapse, while reducing overlapping features. 

Following this experiment, an inward offsetting of 0.6 and discretisation value of 0.4 were adopted as it was 

optimum in reducing data loss as seen from table 2 below. The derived tessellation along with the pre-

processed building footprints were then used as inputs in computing morphometrics.  

   
Table 2: Morphometric hyper parameter tuning  

  Inward offset distance  Discretisation interval  Polygon collapse   Polygon overlap  

Default   0.4m  0.5m  1  9178  
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V1  0.5m  0.4  19  705  

 

  

3.4. Clustering Analysis  

To determine distinct morphological areas within the study area, clustering was employed on the computed 

urban morphometric characters. Clustering is a method of partitioning data points in a feature space into 

individual clusters, such that members within a cluster, are more similar than members of other clusters. 

Han et al., (2012) explains that the choice of clustering algorithm should depend on the input requirements, 

data dimensionality as well as model interpretability. Considering these requirements, in relation to the 

morphometric data, K-means algorithm was selected. This algorithm is suited for numeric continuous data, 

is highly scalable, thus can handle high feature dimensionality as well as large volume of samples, and is 

easily interpretable Han et al., (2012).   

K-means assigns clusters by first choosing an arbitrary k object as initial cluster centres, and iteratively 

assigns and reassigned each sample to the cluster centres of which the sample is most similar, while updating 

cluster means at each step. Cluster means and reassignment are updated constantly until each sample is 

closest to its cluster centre than the any other cluster. An illustration of this process is seen below.  

 

Figure 4: K-means algorithm process; adapted from Han et al., (2012)  

The k-means model was necessary to assess if there were significant morphological differences between 

formal and informal areas. This algorithm requires the selection of a hyperparameter; number of clusters or 

‘K’. Using all the contextual morphometric characters as features(n=112), this model was run using k = 2 

to cluster the study area in two distinct areas.   

K-means algorithm has been known to be sensitive to initialisation seeds, (Qi et al., 2016). To buffer for 

this, the study, applied the k-means++, a derivative of k-means which selects initial cluster centroids based 

on the empirical probability distribution of sample point’s contribution to WCSS is used. The model is 

repeated 10,000 times across different initialisation, after which the model with the best results in terms of 

WCSS is selected. To assess the quality of the clustering, the silhouette score, which is a measure of the 

separation distance between clusters was used.   

The k-means algorithm does not provide and inherent feature importance metric. As such, to better 

understand the specific morphological features most important in discriminating the classes, the mean 

values of all features were determined per cluster. After which the variance of these feature means is 

calculated across the clusters. An ANOVA statistic was then performed on these means to evaluate 

significant variations between the cluster.  

V2   0.55   0.4   26   425   

V3   0.6   0.4   32   342   

V4   0.65   0.4   71   303   

V5   0.7   0.4   109   283   
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3.5. Insitu Air Temperature Measurement   

This section details out the data collection, preprocessing and analysis of the insitu air temperature 

measurements used in this study.   

3.5.1. Data Collection Methods  

Air temperature measurements were obtained from the study area following a collaborative citizen science 

approach to leverage local knowledge in design and implementation. Due to this, settlements were selected 

based on the availability and willingness of community activist groups to collaborate in the data collection 

process.  

Workshops were organised for each settlement to train the participants on the guidelines and the use of 

equipment for the data collection exercise. During these workshops, participants were engaged to design 

mobile routes through and around each informal settlement. The routes were designed to cover diverse 

urban characters based on a qualitative assessment of participants local knowledge of the area stated below;  

• Land cover and land uses.  

• Building densities  

• Road types (major, minor, footpaths).   

• Building morphology (high rise, low rise, size, shape).  

Participants (citizens) walked the paths of the designed route, while holding an already configurated Kestrel 

Drop 2 air temperature sensor and Garmin GNSS receivers attached to sticks at approximately 2m above 

the ground. These sensors logged temperature data at a 10 second interval, thus allowing detailed recordings 

of temperature. For each settlement, the data collection period spanned 15.00 to 17.00 at which time peak 

temperatures are expected due to radiative heat loss. During the mobile transect walk period, the Kunak air 

temperature sensor was simultaneously employed as a reference station to control for daily weather 

conditions and for temporal corrections during data preprocessing. This sensor was stationed at a fixed 

location in each settlement, positioned about 2 meters above the ground, away from any artificial influences 

of temperature.  

This method was repeated for each of the 6 settlements, resulting in approximately 18,250 temperature 

datapoints, acquired between 27th January to 16th February 2024. The table and figures and tables below 

provide further details on the specification of fieldwork.  

  
Table 3: Acquisition dates per settlement  

Settlement  Date  Time   

Kibera  27-01-2024  15.00  

To  

17.00  

Mukuru  30-01-2024  

Kariobangi/Koriogocho  02-02-2024  

Pumwani  04-02-2024  

Waruku  08-02-2024  

  
Table 4: Sensor Specifications  

Sensor  Resolution   Accuracy  Settings  Purpose  

Kestrel Drop 2   0.1 °C  ± 0.5 °C   10 seconds log  Fixed  /  Mobile  Temperature  

Measurements   

Garmin eTrex 10   3metres  3metres  20 seconds log   Mobile Location logger   

Kunak Air station   0.01 ºC  ± 0.9 ºC  10 seconds log   Stationary  Temperature  

Measurement   
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Figure 5: Community Engagement and Data Collection  

3.5.2. Insitu Air Temperature Preprocessing   

Field data was pre-processed following three distinct phases highlighted in the flowchart in figure 9 below. 

From the figure, Box 1 highlights the methods used in attaining the geolocated temperature. Box 2 explains 

the temperature gradient modelling, necessary to understand the temperature temporal patterns in the study 

area. Box three finally applies the outputs of the previous steps for temporal correction, thus ensure 

synchronous times between the temperature measurement.  

  

 

Figure 6:Workflow of field data preprocessing  

The numbered boxes in the workflow above guide the flow of progression in preprocessing the insitu 

measurements. The two datasets obtained from the insitu measurements were cleaned and merged using 
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the time parameter.  The data was then cleaned of outliers by, averaging out all datapoints with a rate of 

change higher than the mean rate of change within the route data. This was done to eradicate sharp spikes 

and drops within the data. Following this preliminary cleaning, temporal correction was employed, as seen 

in box 2. According to the work of Fung et al., (2009) and L. Liu et al., (2017), temporal corrections must 

be applied to mobile temperature to guarantee the comparability of temperature readings. Temporal 

adjustments should be applied to bring values to a single, unified time point because the temperature records 

are taken at non-synchronous times. Typically, reference temperature data is obtained concurrently from 

stationary weather stations, from which temporal patterns are drawn, by assessing the trend that is created 

between the start and finish times.   

Temporal correction was performed using the Kunak stationary sensor as a reference, in accordance with 

the single temporal correction modelling approach suggested by (Fung et al., 2009). By assuming perfect 

consistency of temperature variability spatially, this method proposes modelling temperature trends using a 

single stationary sensor.   

Thus, the temporal gradient modelling at each settlement, used the Kunak as baseline dataset in highlighting 

the trend of temperature. Different degrees of polynomial regressions were then employed to model the 

temperature pattern over time after which mobile temperature readings were transposed to the same time 

reference time point (15.15).  This results in geo-located air temperature data at the same time point and as 

such suitable for comparability. Finally, the data was then aggregated into 50X50metre grids, using the 

mean.  

3.6. Auxiliary Variables Computation  

Per the objectives of this study, several auxiliary covariates were derived and used in the modelling process. 

Amongst them included remotely sensed indices such as NDVI, NDWI, NDBI as well as LST. These land 

cover indices have been widely used in estimating air temperature and have been established to generally 

have some relationship to air temperature (Benali et al., 2012; Fung et al., 2009; Gholamnia et al., n.d.). This 

section of the methodology provides the theoretical background of the use of such indices in the study as 

well as methods used in their preprocessing and analysis.  

3.6.1. Sentinel 2 Image Preprocessing and Land cover computation     

Sentinel 2 images were collected and used in the computation of land cover indices. This sensor provides 

publicly available global multispectral imagery with a revisit time of 5 days. It acquires images in the visible 

and near infrared at a 10m cell size and 20m resolution in the short-wave infrared (SWIR) and thus makes 

it possible to capture the urban land cover complexity at a fine resolution with a single acquisition. 

Specifically, Sentinel-2 MSI Level-2A multispectral images were acquired as they are atmospherically 

corrected surface reflectance values in cartographic geometry.    

Using the Google Earth engine API, 5 atmospherically cleaned sentinel 2 images spanning the extent of the 

study area were acquired within the period of the insitu measurements. Selection criteria was based on 

prioritising (1) Images within the same season as the data collection period (peak summer season) and (2) 

Images with the least amount of cloud cover. By following these criteria, heuristics was used in determining 

the optimum number cloud percentage allowance. 17% cloud cover was selected because it was realised 

that going below the 17% threshold reduced resulting images from 5 to only 1 image. Thus, ultimately 5 

images (each with band 3, 4, 8,11 representing Green, Red and Near Infrared respectively and SCL band) 

with varying acquisition dates within the summer season were acquired.   

The scene classification band (SCL) provided by Sentinel 2 uses a scene classification algorithm to identify 

cloud pixels of varying probabilities. This was used to identify and mask out all cloud pixels, after which the 

mean was applied to all remaining pixels across each band, resulting in 4 mean composite bands of band 3, 

4, 8, and 11. By visually inspecting the composites, it was realised that there existed some gaps, where there 

was no pixel information.  Thought these areas were located outside the scope of the area of interest, gap 

filling was applied by replacing gaps with mean values of nearest neighbour pixels within a 3x3 window.   
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Following the works of the foundational works establishing these indices, as well as their recent uses urban 

studies, the table below provides a breakdown on the formulas used in computing the NDVI, NDBI and 

NDWI of the images. The results of these are land cover metrics are seen in appendix1.  

  
Table 5: Land cover metrics computation  

Description  Acronym  Formulation  Adapted from Sentinel 2 

bands  
Reference   

Normalized  

Difference  

Vegetation Index   

NDVI  (NIR − Red)/ (NIR +  

Red)  

(B8 − B4) / (B8 + B4)  (Purevdorj et al.,  

1998; Yu et al., 

2020)  

Normalized 

Difference 

 Builtup 

Index (NDBI)  

NDBI  (SWIR  −  NIR)/  

(SWIR + NIR)  

(B11 – B8) / (B11 + B8)  (McFeeters,  

1996; Onačillová 

et al., 2022)  

Normalized 

Difference 

 Water 

Index (NDWI)  

NDWI  (Green  −  NIR)/  

(Green + NIR)  

(B3 – B8) / (B3 + B8)  (Zha et al., 2010)  

3.6.2. Land Surface Temperature Preprocessing   

For a detailed mapping of LST in the study area, The ECOsystem Spaceborne Thermal Radiometer 

Experiment on Space Station (ECOSTRESS) was used as it provides global coverage of the highest 

resolution (70m) freely available data thus supporting replicability. This satellite enables calculation and 

mapping of land Surface Temperature every 1-5 days at a 70metre resolution.   

Similar to Sentinel 2 data retrieval, ECOSTRESS atmospherically cleaned images spanning the entire extent 

of Nairobi were obtained. Image selection was limited to the peak summer (01-12-2023 to 30-03-2024) 

during which data collection period occurred. Following this filtering, four images as well as their 

corresponding Control (QC) flags were obtained. Using the QC flags, pixels corresponding to bits 1 and 2 

(corresponding to best quality data with least uncertainties in retrieval) were kept, whilst all other pixels 

were set to nan. Following this, only two images; one acquired during the daytime, and the other during 

nighttime, covered the entire extent of the Area of interest. Minor gaps (nan values), found outside the 

scope of the study area, were nonetheless filled by computing mean values of nearest neighbour pixels 

within a 3x3 window.   

3.6.3. Characterising Urban Greenery  

Lin et al., (2023) and Stewart & Oke, (2012), suggest that different configurations and compositions of 

greenery potentially influence temperature differently, as such, going beyond the usual NDVI estimation 

was necessary to capture this more detailed interaction. A local climate zone classification map from 

WUDAPT with a 70% accuracy at 100m resolution was used to characterize the composition and 

configuration of greenery within the study area. The data was reclassified such that all classes below class10, 

that signify different built-up configurations according to the local climate zone classification (see appendix 

6) were reclassified to class 0. All other classes (from 11-17) representing different variants of greenery were 

the focus of this analysis. The resulting raster was then down sampled using the nearest neighbour from 

100m to50m resolution (Spatial unit of analysis). Using a buffer of 150meters, around each data point, class 

area and aggregation index landscape metrics computation is done. Class area was used as a proxy to 

quantify the composition of greenery whiles aggregation index characterises the aggregation or compactness 

of greenery within a 150-metre buffer.  after which configuration and composition metrics computations 

were undertaken following the works of (Lin et al., 2023; Peng et al., 2010).    
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3.7. Scale of Analysis and Data Aggregation  

All datasets were unified into a single tabular data frame as this is a requirement for machine learning models. 

The insitu measurements being the variable of interest, was used as reference data frame, unto which all 

other variables were attached. However, to ensure consistency, all variables were transformed into the same 

spatial unit prior to merging. Per the objectives of the study, local analysis of temperature variations 

considering morphology, two conditions were considered in the selection of the optimal spatial unit of 

analysis. Given that the insitu measurements were done along routes within the settlement, while 

morphology, was at a building level, the spatial unit had to be;   

• High enough resolution so as limit the aggregation and loss of local details of all variables 

especially temperature.   

• Low enough resolution to maximise information gain of morphological characters.  

Previous studies such as (Mahabir et al., 2020) used a trial-and-error approach in deciding the optimal spatial 

unit. Similarly, this study experimented with varying sizes of regular grid cells of 10x10m, 20x20m, and 

50x50m grids. The grids were overlaid with the temperature and morphological datasets, after which the 

grid size of 50m was chosen following visual inspection as seen in the figure below.  

 
Figure 7: Spatial unit of analysis  

By using a spatial join, the insitu temperature measurements are aggregated using the mean and joined to 

the 50x50 metre grids. Similarly, previously calculated morphometric characters (at the building level) were 

joined by averaging the morphometric values of building centroids intersecting with the grid. This was 

replicated for all land cover indices (NDVI, NDWI, NDBI) as well as elevation data obtained from ALOS 

PALSAR at 12.5m resolution.     

In the case of ECOSTRESS LST however, at a 70m resolution, the images had to be resampled to 50m 

prior to joining. Using the bilinear resampling tool in ArcGis Pro, the 50m grid was snapped to the 

environment, serving as a reference cell size. This is done to ensure that the resulting image is the same cell 

size and aligns perfectly with the grid. Finally, resampled raster at the same resolution and alignment as the 

grid is merged using a spatial join.  Thus finally, this step resulted in a tabular format dataset, consisting of 

154 independent variables, including morphometrics, auxiliary variables and insitu air temperature 

measurements as the dependent variable.   

3.8. Modelling Air Temperature-Morphology Association Using Random Forest  

Proposed by (Breiman, 2001), the random forest algorithm is a non-parametric ensemble machine learning 

algorithm that leverages several decision trees in predictions. Each tree in the algorithm is built from a 

randomly selected subset of training data samples and variables after which the final prediction is based on 

the aggregation of the individual predictions of each tree. The power of Random Forest Regression lies in 

its randomness and ensemble approach, which mitigates overfitting by introducing two variations of 

randomness:  
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1. A bootstrapped sample is used in training each tree.  

2. At each node, a randomly select subset of available variables are used.  

Bagging, which is essentially a resampling with replacement technique, is used to create several variations 

of the training data, on which each tree is built, thus each tree is built on a different subset of the training 

data. By doing this, noises and biases in the data are distributed across the trees resulting in less risk of 

overfitting.   

For each tree, sample data is used in splitting the values of selected variables recursively resulting in tree like 

structures of several parent and child nodes. Decisions at node points are made by first evaluating all 

possible splits for all features in the subset and considers all possible threshold values to data splitting based 

on the optimal split point that ensures the largest decrease impurity or variance for regression. This is 

repeated severally in each tree until the stopping criteria such as the maximum tree depth or no further 

impurity is left. All prediction across the trees are then aggregated, as the prediction result.   

During this process, due to the random selection of samples and variables, about 1/3rd of the dataset is not 

used in building the model; the out-of-bag (OOB) which can then be used in calculating the OOB error 

score for hyperparameter optimisation. Adapted from Carranza et al., (2021), the figure below shows a 

graphical representation of the random forest algorithm.   

 

Figure 8: Random forest algorithm; By using bootstrapped samples, each tree is built by splitting feature values at the 

nodes based on decrease in impurity or variance. The process is repeated until stopping criteria is reached.  

3.8.1. Random Forest Model Implementation and Optimisation   

Prior to training the random forest model, the dataset was split into 80% for training, testing sets and 20% 

for validation as is typical for most random forest modelling(Breiman, 2001; He et al., 2022; Yu et al., 2020). 

This was done by first dividing the entire dataset into 20 equally split grids. 20% of the grids were selected 

by teasing out grids with the least interaction (minimal boundary intersection) with other grids to ensure 

spatial disjoints.  Thus, validation points should minimally touch boundaries with any training points. This 

was done to reduce optimistic predictions based on spatial information leakages resulting from spatial 

autocorrelation.   

A two-step hyperparameter tuning was employed to ensure the most optimal set of hyperparameter for 

training. First an initial model was run for each of the hyper parameters with a varying range of randomly 
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selected values, whilst setting the other hyperparameters constant. The best performing 4 of each 

hyperparameter were then selected to constitute values for determining the best set of hyperparameter using 

the grid search cv method. The GridSearchCV method used for decided the best hyperparameter 

combination, used a 5-fold cross validation to train and test each pairwise combination of hyperparameters, 

returning the best set that maximised the R^2. Using a 5-fold cross validation method, the training dataset 

was then employed in training the random forest model. The figures below plot the initial training and test 

points and 5-fold validation sets. Appendix 7 shows the k-fold cross validation train and testing sets.  

 

Figure 9:Data splitting: 80% training and hyperparameter testing and 30 for model validation  

  

 

Figure 10:Validation and training grids  

  

Using the same model parameters and configuration, three variants of random forest was built. The first 

model; a global model, trained across all 6 settlements within the study area provided insights into the global 

relationships between the features and air temperature. The second and third models were trained and built 

at regional levels, allowing the exploration of more detailed relationships at a higher scale. This was achieved 

by exploring the data, revealing significant temperature and elevation differences between the Western and 

Eastern parts of the study area. Acknowledging the high correlation between elevation and temperature 

elevation, k-means clustering model was run on the elevation datapoints thus separating the study area into 
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two distinct groups, perfectly separating western and eastern settlements as seen in figure below. Each 

cluster thereby was used as a region on which the two independent regional models was built, following the 

same methods used in model1.  

  

  

 

 Figure 11:Model Implementation    

3.8.2. Model Accuracy Measures   

In line with Benali et al., (2012), He et al., (2022), Nascetti et al., (2022) and Peng et al., (2022) coefficient 

of determination (R^2) as well the correlation score(r) will be used evaluation frameworks on model 

assessment. These two-accuracy metrics ensured a thorough assessment of the performance and accuracy 

of the model. The coefficient of determination (R^2) (aka the goodness of fit) is an accuracy measure that 

measures the proportion of variance of the predicted values, explained by the model whilst correlation 

coefficient assesses the direction and strength of linear relationships between actual and predicted values, 

therefore allowing the understanding of underlying patterns.  

3.8.3. Citizen Science Model Validation  

The predicted air temperature was validated by citizens as this study is related to perceived temperature in 

these settlements.  Three active members and leaders of the community activist groups used during the data 

collection process were consulted for this validation. These participants have been residents of Kibera, 

Pumwani and Waruku for not less than 10 years and are knowledgeable about conditions within their 

settlements.  

By engaging in online semi-structured interviews, each participant was asked about the relative thermal 

conditions of each neighbourhood within the settlement using google earth engine basemap as a reference. 

Selected neighbourhoods with perceived higher temperatures were pinned after which the map of predicted 

temperatures is presented. Comparisons of perceived hotspots areas were made with predicted hotspots, 

after which discussions ensued on prediction deviations.  
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4. RESULTS   

This section of the report presents and interprets the results and findings from the study. The chapter is 

organised based on the research objectives as such, it begins with an analysis of morphometrics, aiming to 

explore and decode the various morphological configurations and patterns within the study area, addressing 

Objective 1. Following this, section 4.2 analyses the covariates through correlation analysis and PCA to 

provide insights for feature selection as inputs for the random forest model. Section 4.3 highlights the model 

results and presents important features to temperature variations. The following section analyse local-scale 

temperature variations across these morphological configurations.   

4.1. Urban Morphometrics Results   

4.1.1. Assessing Urban morphological Clusters in The Study Area   

Following the computation of the urban morphometric characteristics, the K-means unsupervised 

algorithm was performed to discriminate morphologically homogenous regions. The resulting clusters  were 

mapped as seen in figure12.  

The average silhouette coefficient of the clustering was 0.3 which typically indicates a clear distinction or 

separation between clusters. However, 0.3 is much closer to 0 (decision boundary) than 1 (perfect 

separation) or -1 (wrong labels) implying that though there is a clear split, data points are close to the 

decision boundary. Given the proximity between the formal/ informal areas, in this study, it is not expected 

to have such sharp vast differences in physical conditions.  
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Figure 12:Morphological clusters, k=2  

By visual inspection, it is seen that for most of the settlements, there is evident clustering. Much of the 

central areas of each settlement fall within the same cluster 0, with cluster 1 prevailing more towards the 

outskirts of the settlement. This suggests that central parts of these settlements tend to exhibit similar 

morphological characteristics and vice versa. It is interesting to note, however, that all the settlements, but 

Koriogocho exhibited this pattern. Much of this settlement was classified in cluster 0, with a few random 

classes of 0 resulting in salt and pepper-like pattern, suggesting no apparent spatial clustering.   

The resulting clusters were then superimposed with the deprived urban area buildings to evaluate if the 

clusters were aligned to the formal/informal categories. By calculating the number of buildings in each 

cluster that intersected with the formal and informal polygons, it was realised that, globally, 77% of all 

buildings from cluster 0, belonged in informal areas while 66% of all cluster 1 buildings were in formal 

areas. This suggests that though with some margin of error, the model was able to separate between DUA 

and non-DUA areas, indicating that indeed there are significant morphological differences between these 

areas. This is seen in the figure below, visualising a bar plot and snapshot of the analysis on Waruku.  
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Figure 13:Kmeans evaluation with reference data  

4.1.2. Characterising Emerged Clusters  

From the feature importance analysis, four metrics; building Perimeter (bPeri_rang), tessellation weighted 

neighbour (tWNeigh_me), tessellation longest axis length (Tlal_meanl), tessellation covered area (tCA_mea) 

and building volume façade (BvolFaca_2) had the highest f-statistic score > 90000 with the lowest pvalues 

≤ 0.005. This suggests that there were significant differences in mean values of these features between the 

clusters relative to within cluster variance and thus could better discriminate the clusters. Evidence of this 

is shown in Figure 18 below that presents a boxplot of the range of the values for the features per cluster. 

As seen in the plots there are substantial difference in the value ranges of all features between the two 

clusters, highlighting the importance of these features in separating the clusters.  
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Figure 14: K-means Important features for cluster separation; k=2  

Analysing the features most informative in separating the clusters, provides a means to understand the 

differences that exist between these morphologically diverse areas. From the plots, its intuitive that building 

volume, has the most difference amongst the two clusters with range of values of cluster 1 about twice that 

of cluster 0. Thus, buildings within cluster 1 have significantly larger building volumes, this can be associated 

with the higher building heights and building areas (seen in plots 5 and 9). The opposite is true for buildings 

within cluster 0, which generally exhibits smaller values regarding building size thus volume, height, area, 

and perimeter. This is true, for most informal settlements tend to be populated with temporary structures, 

which are usually smaller in size and height. In line with findings from Abascal et al., (2022), there are 

substantial differences in size between formal and informal areas.    

With regards to compactness metrics, such as mean interbuilding distance and tessellation weighted 

neighbour, cluster 1 exhibits lower less compactness. Mean interbuilding distance, quantifies the mean 

distance between a building and its neighbours, providing some insights into how close buildings are to one 

another. Tessellation weighted neighbour on the other is a weighted number of neighbours within a 

specified neighbourhood (3 topological steps). Higher values indicate more neighbours within a 

neighbourhood whilst lower values indicate higher isolation levels and possible open spaces. These metrics 

provide insights as to how dense and compact neighbourhoods are. With cluster 1 showing wider range of 

values with a median score much higher than the maximum score of clusters 0, it can be presumed that 

there tends to be larger intervals and spaces between formal areas as compared to informal areas. This could 

be associated with formal areas building according to planning building regulations and codes. Combined 

with low values of weighted neighbours, areas within cluster 1, are likely to have more open spaces at the 

neighbourhood level, in comparison to cluster1.     

Following the evaluation of the K-means clustering and the subsequent analysis of morphological variables 

within the clusters, it became evident that the study area is divided into two primary morphologically distinct 

areas corresponding to formal and informal classifications. This initial classification highlights significant 
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differences in the built environment, spatial arrangement, and overall structure between formal and informal 

settlements.  

This diversity is expressed through variations in specific metrics such as size, and compactness, as discussed 

in section 4.1.2. These findings provide a detailed understanding of the urban fabric and its variations within 

the study area. Given these established morphological differences, the next critical step is to explore and 

understand the measured temperature patterns across these clusters.  

4.2. Analysing Data Descriptives   

Prior to estimating air temperature, exploratory spatial data analysis (ESDA) was conducted to gain insights 

into the data structure, identify spatial patterns and relationships, and ensure data quality. ESDA is critical 

for model configurations by providing insights to address spatial dependencies and validating model 

assumptions, as well as feature selection and engineering. ESDA thus enhances the reliability and accuracy 

of the modelling process, leading to more robust and spatially informed predictions.  

Details of these results on the insitu measurements are highlighted in appendix 8 for further reference.   

4.2.1. Correlation Between Covariates and Air temperature   

As explained in the methodology several covariates, were calculated to complement morphometrics in the 

modelling of air temperature. All the covariates were then evaluated in relation to temperature to understand 

correlations that exist between them in an attempt to understand covariates relationships pre modelling. In 

total, there were 155 covariates to 1 dependent variable: temperature. Out of these covariates, 142 had 

statistically significant Pearson correlation with temperature as seen in figure below.  

 

Figure 15: Statistically significant covariates correlation to temperature. From left to right, NDWI, 

NDBI,LST_DAY, building shared wall ratio range, mean building equivalent rectangular index, mean 

building convexity, mean tessellation area ratio, mean building mean building rectangular index, mean 

tessellation weighted neighbour, mean shared wall ratio, elevation, NDVI, mean building cell alignment, 

building corner theil, building circular compactness range, building rectangular index range, building cell 

alignment range, building convexity theil.  
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With a Pearson correlation score of -0.69, elevation had the strongest correlation with temperature, followed 

by NDWI, NDBI, NDVI and LST_DAY.  All morphology related features, though significant had 

correlation scores below 0.3 with shared wall ratio, being the most correlated at a score of 0.29. Out of all 

the 136 morphometric features with a significant relationship to temperature, 118 were contextual features 

with only 18 primary features. This underscores the importance of considering broader neighbourhood 

characteristics rather than individual building attributes in understanding temperature variability.  

Overall, outside elevation, none of these covariates had a particular strong relationship with temperature. 

This low correlation does not however only signify weak or no relationship to temperature but could also 

imply that relationships are nonlinear and too complex to be captured by simple bivariate analysis 

necessitating more advanced analyses.  

4.2.2. Determining Feature Selection using Principal Component Analysis  

Principal component analyses was attempted to reduce the feature dimensionality, ensuring that only 

important were considered for modelling. Results of this analysis (seen in appendix 9) showed that no single 

component could explain more than 20% of the variance individually. Instead, it took the combined effort 

of the first 10 components to account for 70% of the total variance. This indicates that the dataset lacks a 

dominant single source of variability that can be captured in a single linear combination of features. Rather, 

the dataset's variability is spread across multiple dimensions. This underlines the complexity of the 

relationships among the variables, suggesting potential non-linearities. This finding aligns with the 

correlation analysis, affirming that while individual variables may not show strong linear relationships with 

the target, their combined effects across multiple dimensions significantly influence the dataset's variability.  

4.3. Temperature - Morphology Relationship Modelling  

As previously explained, the Random Forest model was used in modelling air temperature in an attempt to 

understand the relationships that exist between urban morphometrics and air temperature. Following the 

results and insights from both the principal component and correlation analysis, all variables were employed 

in the random forest modelling process.  

4.3.1. Determining best hyperparameters for tuning the model.    

During the training stage, the range of values for the cross-validation training were selected based on their 

efficacy in reducing the out of bag error. The results of this step are seen in the figures below.  

 

Figure 16: Selecting best set of hyperparameters  

From the figure, the best three hyperparameters each that contributed to the least OOB error was selected, 

to be constitute the range of hyperparameters to use in the Grid search Cross validation method in the next 

steps. It is important to note that the first initialisation seeds for this experimentation is always influenced 

by heuristics, as such, it is best to assume local optimal hyperparameters and not global. As expected in 

machine learning training, increasing the number of estimators as well as max features, initially resulted in 

reduced OOB errors as the model learns the patterns within the data until a point of overfitting, at which 
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errors increase substantially on unseen data resulting in high OOB scores.  The following range of 

hyperparameters (‘selected range’ in the table below), thus were considered. And finally an optimum set of 

hyperparameters; 800 trees, maximum tree depth of 30, and maximum feature selection of 0.7.   

  
Table 6:Selected set of hyperparameters for model training  

Hyper Parameter  Selected Range   GridSearchCV best   

Number of estimators  200, 400, 600, 800,1000  800  

Max depth  30, 50, 70  30  

Max features  0.3,0.5,0.7  0.7  

Model1 had an accuracy (R^2) of 0.89, Root Means Square Error of 0.36 and out of bag error rate of 0.46 

on the training set. Figure17 A represents the training accuracy, that plots the relationship between the 

predicted and actual temperature values. From the plot, there is an almost perfect alignment of fit of the 

predicted and actual values seen by comparing the line of perfect fit. This indicates that the model 

performed very well in predicting the already seen (trained) datapoints. With a testing accuracy (R^2) of 

0.73, RMSE 0.98, and OOB error of 0.6, the test set performed slightly below the training, as expected. 

From the right plot in the same figure 17there are slight deviations from the line of perfect fit, especially 

towards the tail ends of the temperature distribution, suggesting that the model errors increase as it predicts 

increasing temperature values. Thus, for the higher temperature ranges, the model tends to predict lower 

temperatures than the observed. This is a typical shortfall of the Random Forest regression algorithm, in 

that it takes an average prediction of all trees, resulting in smoothed predictions. This means that outliers 

are penalised as they have to significantly affect the split points to influence predictions. This occurrence is 

seen in the kernel density functions comparisons between the training dataset and predicted values in 

appendix 10. This notwithstanding, model1 results indicates a good performance as the features were able 

to explain about 78% of the variance in temperature.  

Figure 18 B on the other hand plots the testing accuracies for Model 2 and 3 regional models (Trained on 

the data subset). With an R^2 of 0.54 and 0.5 respectively, these models performed significantly poorer than 

the global model. This can be associated with the relatively small training data points used in building these 

models, resulting in possible model overfitting and thus low testing accuracies. Despite this fact however, 

both models exhibit similar characteristics in prediction as seen in the residual errors in the tail ends of both 

distribution plots.   

 

Figure 17: Training and Testing Accuracies Model 1  
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Figure 18: Testing Accuracies Models 2 and 3  

4.3.2. Important predictors for temperature across all models     

Using both the mean decrease in impurity and the permutation importance feature of the random forest 

algorithm(global) the independent variables were inspected to understand the most influencing to 

temperature variance. This analysis is important to understand the extent of each feature affect temperature 

variation. The two methods employed assess this contribution differently. By averaging each features 

contribution to variance at each node across all trees, the Mean decrease impurity accurately assesses the 

importance of each feature in the model. This method has been accused of its bias in over inflating the 

importance of high cardinality features (such as elevation) as it provides more possible thresholds for 

splitting, though they may not be intrinsically the most important. Given this setback, the permutation 

feature importance method, which randomly permutates feature values and compares changes in accuracy 

as a means to understand feature’s contribution to target variable was also used.   

From the two plots (from Model1), the same set of variables are considered important, though at different 

ranks, signifying consistency of these variables in contributing to the target. In both cases, as seen in the 

plots below that ranks the top 20 variables, elevation consistently was selected as the most relatively 

important variable, with a significantly large gaps between the next important variable. This is consistent 

with the previously conducted correlation analysis, that revealed elevation having the highest correlation 

score of -0.7. This is not a novel discovery as several literature exist on the lapse rate phenomenon, that 

describes the general decrease in temperature with increasing altitude. This is also captured in the works of 

Janatian et al., (2017) and K. Wang et al., (2011), explaining that variables such at altitude that are related to 

the spatial variability of climatological factors tend to have significantly larger influences to surface air 

temperature. This notwithstanding, it is important to acknowledge that the model’s biases to high cardinality 

features in the splitting stage can overshadow the influence of other features in the model.    

Similarly, remote sensing variables, related to land surface and land cover properties (LST, NDVI, NDWI, 

NDBI) were ranked next important after elevation with an average range between 0.08 and 0.05. 

Morphological variables then followed with relative importance less than 0.05, except mean building height, 

which ranked higher than both NDVI, NDBI and NDWI, making it the most important morphological 

variable.  It is interesting to note that all the selected important morphological variables are contextual with 

no primary character being of relevance. This finding is consistent with both the correlation and Principal 

Component analysis. This goes to show the importance of neighbourhood level characteristics to 

temperature.  
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Figure 19: Feature importance of global model. From top; Elevation, LST Night, LST_DAY, building volume 

range, mean height, NDWI, mean building Orientation, mean interbuilding distance, building orientation, NDBI, 

building neighbour distance, mean building volume, building alignment theil, tessellation floor area ratio, NDVI, 

mean tessellation orientation, tessellation area ratio, mean floor area, building cell alignment.  

Conversely, the two regional models shared similar feature importances with the global model, with 

elevation being the most important feature (see appendix 13). However, it was realised that in both models, 

the magnitude of importance was reduced significantly compared to the global model. With an importance 

score (mean decrease in variance) of about 0.5 in the global model, elevation importance was 0.26 and 0.07 

in model 2 and model respectively. Due to the large disparities in elevation and locations between these two 

regions, the importance of elevation was over-emphasised in prediction in the global model as it provided 

a consistent linear relationship with temperature globally, whilst other morphological variable’s relationship 

with temperature may change across different areas, though not making it any less important.  This indicates 

that by restricting modelling to regional areas, as expected, the influence of elevation in prediction was 

decreased substantially, allowing to focus more detailed scale patterns of morphological influence at a more 

local level.  Thus, similar to the modifiable areal unit problem (MAUP), this modelling was necessary to be 

executed at multi scale to understand the nuanced contribution of all variables in the prediction.   

Though the selected most important features were similar to that of model 1, in the regional models, the 

apart from Elevation and LST_Night, morphological variables ranked consistently higher than the other 

land cover and land surface properties, similar to the findings of (Janatian et al., (2017) , stating that land 

surface and cover properties were found to have an almost negligible effect on temperature variations 

especially when there is limited variability and range of values, as expected in these regional models.  

The results of these plots relate to the implication that individual urban morphometrics may not play 

significantly to temperature variability. This is supported by the partial dependency plots employed on all 

three models to ascertain the individual influence of these importance metrics on predicted temperature 

variations. The results of these are seen in Appendix 11 and 16.  

4.3.3. Sensitivity Analysis: Analysing feature influences.  

To explore the significance of the various predictor variables to temperature, sensitivity analysis was carried 

out. Three scenario models were developed by varying and changing the predictor sets used in training, 
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while holding all hyperparameters constant. The evaluation metrics were then compared across these 

models to understand their significant contributions to temperature as well as ensure consistency of results. 

In the first model, all variables were considered and used for training, the second model was trained on all 

variables except elevation, leaving morphometrics and land cover indices. In the final scenario model, only 

morphometrics were used in training.  

  
Table 7:Sensitivity Analysis  

Scenario 

Model  
Training Variables  Hyperparameters  Results     

Training   Test Set   

RMSE  R^2  RMSE  R^2  

A  All Variables  max_depth=30, 

max_features=0.7, 

n_estimators=800  

0.36  0.85  0.98  0.73  

B  All Variables minus 

Elevation  
0.39  0.71  1.4  0.36  

C  All Variables minus 

Morphometrics  
0.42  0.92  1.0  0.54  

D  Only Morphometric  

Variables   

0.45  0.62  1.5  0.29  

E  All  variables 

 + composite 

Morphometrics  

0.79  0.74  1.1  0.61  

By varying the sets of features used in training, it is possible to gain more insights to the features significance 

to temperature as well as the robustness prediction. From the table above, there is a consistent drop in 

model performances as more variables are removed. There is a significant drop in R^2 from 0.73 to 0.36 

by removing elevation as a predictor, affirming the importance of elevation to the model. In scenario C, 

when all variables are used without morphometrics, performance again reduced by 0.73 to 0.54, implying 

its influence in explaining variance. There is an even larger drop in R^2 when the model is trained only on 

morphometric variables; scenario D is only able to explain about 30% of the observed variance in 

temperature.   

The greater the decrease in model performance, the higher the importance of the predictors removed. From 

this analysis, though morphology has some influence in temperature variation, it cannot be employed alone 

as the main contributor to temperature, instead a confluence of variables especially elevation; relating to 

actual topography and environmental factors contribute the most to temperature variance. This is 

corroborated in appendix 15 that reveals the higher importance of morphometrics when compounded and 

aggregated into a single index. Thus, individual urban morphometric characters have little to no impact to 

temperature variation, but as a whole, they can be quite significant, implying confounding interactions.   

4.3.4. Analysing relationships between Morphology and predicted temperature.  

Conversely, the relationships between the features and temperature are analysed by plotting the predicted 

values against each important feature. Though as established previously, there is a significant importance of 

elevation as compared to the other features, this analysis provides much detailed insights, example being 

the direction of linear relationships which feature importance does not provide.  
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Figure 20; From top left; elevation, LST day, LST night, building volume, Mean height, NDWI, building orientation, 

NDBI. Feature relationship with predicted temperature Model 1.  

The plot above verifies the feature importance results, showing that elevation has a signifying relationship 

with temperature. With a correlation r of -0.91, it is evident, the near perfect linear negative relationship; 

increasing elevation associated with decreasing temperature values.  The other plots however indicate 

weaker relationships, though intuitive interpretations of the directions are relevant. For example, in the last 

plot, a positive relationship between NDBI and temperature Is expected as built-up surfaces like concreate 

tend to have lower albedo and absorb large amounts of heat from the sun, resulting in higher temperatures. 

Similarly, the Bmibd_mean plot (third to last plot) which represents the mean interbuilding distance shows 

a negative linear relationship, implying that higher building distances are associated with lower temperatures 

as greater spacing between buildings reduces the canyon effect thus allowing for better wind circulation 

better heat dispersion.  

Given the weak relationships observed from model 1, the same analysis is conducted using predictions from 

the regional level (Model2) to ascertain if by zooming in regionally, the impact of elevation is reduced, 

thereby allowing better understanding of morphological relationship to temperature Appendix13. It was 

realised that despite the same negative linear relationship observed from model 1, the r of 0.24 observed 

from the relationship is substantially lower from model1 of 0.9. Instead, in this model building volume, 

mean interbuilding distance and NDBI had better R^2, indicating a better relationship between these 

features and temperature.  

4.4. Spatio-Thermal Dynamics of Predicted Temperature   

Given that model 1 had the highest accuracy and thus could explain the variance in temperature the most, 

it was adopted in prediction of air temperature across the entire study area. From the map below, the 

predicted temperature ranges between 25°C to about 33°C implying some significant variability. It is evident 

that lower temperature values tend to be located towards the western part of the map. Waruku and Kibera, 

in particular, exhibit generally lower temperature profiles compared to other areas, with median 

temperatures ranging between 27°C and 28.5°C as seen from the boxplots in figure 23 Kibera experiences 

higher variability in temperature distribution, with temperatures range of about 25°C reaching up to 31.5°C. 
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This increased variability in Kibera might be credited to its heterogeneous urban morphology within the 

settlement. According to Puche et al. (2023), morphological differences can lead to localized temperature 

fluctuations, resulting in the observed variability.  

Additionally, both Waruku and Kibera, which exhibit lower temperatures, are situated in the western part 

of Nairobi. This region is characterized by higher altitudes, suggesting that topography plays a significant 

role in moderating temperatures as explained in the sections above. Higher altitudes are generally associated 

with cooler temperatures due to the adiabatic lapse rate (Janatian et al., 2017), which causes temperatures 

to decrease with elevation gain. This topographical influence, combined with the complex urban 

morphology, likely contributes to the cooler and more variable temperature profiles observed in these 

settlements.  

Despite this influence, there still exists obvious variations even within these settlements, though not 

particularly extreme, central areas exhibit relatively higher temperatures compared to the outskirts as seen 

in Waruku. The pattern is observed amongst most settlements particularly in Mukuru, except Koriogocho 

which had much of the settlement exhibiting uniformly higher temperatures.   

  

 

Figure 21: Predicted Air temperature  

Using the settlement boundaries, temperature was compared across all informal and formal settlements to 

assess global temperature differences. The comparison reveal difference in temperature ranges between 

formal and informal areas, suggesting that the settlements generally do not experience extreme temperature 

disparities. Notably, formal areas tend to exhibit slightly lower temperatures, with approximately a 1°C 

difference in both median and minimum temperature values compared to informal areas. Statistical 

significance of this difference was assessed using an independent Mann-Whitney U statistic. This 

nonparametric test was chosen over the other popular tests due to non-normality of the data distribution 

within the two groups. With a significant p value of 1.14×10−98 far below the 0.05 accepted significance 

level, there is strong evidence of statistical difference in temperature between these groups. This supported 

by a U statistic of 52,675,461.0 indicating significant magnitudes in temperature differences between formal 

and informal areas.   
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To explore this at a settlement scale, the comparison is performed per settlement, allowing to evaluate the 

temperature differences between formal and informal areas within each settlements shown in the following 

boxplots in figure 23.This revealed that across all the settlements, informal areas consistently showed a 

higher median and minimum temperature as compared to formal areas within the same settlement though 

not with very large variations, reiterating the global assessment.  

  

 

Figure 22: Boxplot of Predicted Air temperature  

This analysis was replicated using morphological clusters identified in section 4.1. This step was crucial for 

investigating thermal variations across morphologically diverse areas and linking temperature variability with 

morphology. Utilizing clustering outcomes from the clustering analysis, differences between two distinct 

clusters: Cluster 0, primarily comprising informal areas, and Cluster 1, characterized by formal areas were 

assessed.  As anticipated, the results indicated higher temperature values in Cluster 0 and lower temperatures 

in Cluster 1, consistent with expectations. Details are provided in the appendix 12 for further reference.  

The identified important features to both temperature variations and morphological clusters are compared. 

This was necessary to further explore the association of morphology and temperature. From the plot, it is 

observed that morphometrics that were ranked with the highest correlation (between 0.29 to 0.27) were 

amongst the same ones seen as most important for distinguishing the morphological clusters. Similarly, 

most feature importance morphometrics were significant in distinguishing morphological clusters. The table 

below provides a summary of all important morphometric features and the association with distinguishing 

clusters.  

  
Table 8: Important features across morphological distinction and Temperature prediction  

Morphometrics   Significant correlation 

(with predicted air 

temperature)  

Feature 

metrics   
Importance  Distinguishing  

Morphometric Clusters  

Building volume range     ✓   YES  

Mean building Height    ✓  YES  
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Building mean interbuilding 

distance   
  ✓  YES  

Theil building orientation     ✓  NO  

Cell alignment     ✓  YES  

Formfactor     ✓  NO  

Floor area ratio    ✓  YES  

Mean tessellation Area    ✓  YES  

Building  circular  
compactness  

✓    YES  

Equivalent  rectangular  
index   

✓    NO  

Building rectangularity  ✓    NO  

Building Corner mean  ✓    YES  

  

4.5. Citizen science Validation of Predicted Temperature Maps  

  

Given that the study concerns the thermal comforts in the communities, the qualitative judgements of 

citizens concerning the relative thermal conditions in their settlements were of interest. A semi-structured 

interview with participants was used to this effect.   

Overall, in all the settlements the general consensus was that the model could capture the intra-DUA 

temperature variations well, with evident temperature differences between DUA’s and peripheral formal 

areas though with differing accuracies between settlements. They shared the optimisms that the modelled 

temperature highlighted higher temperatures within central DUA as compared to the outlying areas, which 

was confirmed to be true due to the densities and compactness. They also highlighted the model’s accuracies 

in capturing differences even within DUA’s, remarking the changes in temperature between differing urban 

characteristics. For instance, lower temperatures in central Mukuru, along the river as well as in open green 

pockets.  

There were however some abnormalities observed between perceived and predicted thermal conditions. In 

Waruku especially, formal areas in the periphery, surrounded by lush greenery, and open spaces perceived 

to be cooler areas were predicted to be only slightly cooler than central DUAS. It was confirmed that these 

areas, though with higher greenery, were lying in much low-lying regions than the DUAS and other formal 

areas in Waruku. This was corroborated with the elevation map of the settlement, confirming that this area, 

though formal, was the lowest elevation point in Waruku and thus had contributed to slightly higher 

predictions. This notwithstanding, it was still slightly predicted to be lower than the DUA, thus given the 

impression that minus elevation, these DUAS would fare worse. Deviations in Pumwani revealed the 

importance of building materials and land use in prediction. In Kitui Village, a DUA within Pumwani, the 

model estimated quite high temperatures, however, this is an area that locals perceive to have lower 

temperatures. Despite Kitui Village being a DUA it is majorly constituting of mud and wooden huts and is 

residents in these areas are considered to be better off due to cooler temperatures even during the peak 

temperature periods. Because the training data did not include information on building materials, model 
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predictions were made without this consideration and thus resulting in such deviations. Conversely, 

industrial areas around Koriogocho were predicted to have cooler temperatures relative to DUA’s. The 

participant from Koriogocho however explained that despite this area’s large buildings and relatively open 

spaces, the industrial activities release persistent hot fumes leading to the general warming of that area. It 

was therefore expected to have warmer conditions, highlighting the importance of considering land use 

types in temperature modelling.   

Participants shared remarks on the promising results expressed pride in having contributed both in the data 

collection as well as its evaluation. They stressed on the usefulness of such maps especially in advocating 

for better living conditions within DUA’s and the urgent need for upgrading in line with climate stress 

concerns.  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

5. DISCUSSIONS  

This study aimed to explore local-scale temperature variations to uncover underlying patterns of urban 

morphological influences.  This chapter presents an interpretation of the findings of the study, beginning 

with a summary of the proposed model, scope, and its applicability, indicating what the model is and what 

it is not. Subsequent sections provide insights to the patterns of temperature and its relationship with 
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building morphology, offering a thorough interpretation of how urban form impacts thermal conditions 

within informal settlements.  

Further, these insights are discussed in the broader context of vulnerability analysis and the societal benefits 

of the study. The chapter also characterizes uncertainties and limitations encountered during the research 

and provides recommendations for future work. Finally, the conclusions section explains the key takeaways, 

emphasizing the implications for urban planning and climate adaptation strategies.  

5.1. Applications of Proposed Model  

  

The air temperature prediction model in this study was successful in capturing local scale temperature 

variability and provided insights into understanding these variations across morphologically diverse areas in 

the informal settlements under study.   

It is important to establish that the proposed model is not a physics-based model but a statistical regression 

model, that empirically models air temperature as a function of urban morphometrics, LST, land cover 

metrics and auxiliary variables. It is therefore intricately tailored to the specific context of the settlements 

under study’s unique characteristics; thus, it provides accurate estimates within the spatial and temporal 

scope within which the research was carried.   

Given the absence of physical parameters such as wind patterns, solar radiation, humidity etc, the model is 

based on observed patterns rather than underlying physical mechanics. The results of this model are, not to 

be interpreted as absolute measurements but to provide insights to relative thermal conditions within the 

study area. Consequently, the variations it captures are specific to the unique interactions and characteristics 

of the original environment, deeming the model’s limitation to generalisability in different contexts. When 

applied to a different geographical or climatic setting, where these physical interactions vary significantly, 

the model may fail to accurately predict temperature variations.   

Although it is primarily designed for the study area, the model has the potential to provide preliminary 

insights into thermal variations in other urban areas with similar climatic and morphological characteristics. 

For instance, other informal settlements even within Nairobi that were not studied or in in other tropical 

cities with comparable urban density and building structures might show analogous temperature patterns, 

though with wary interpretations.    

Thus, the proposed model is not a one-size-fits-all solution, thus, while the model's framework can be 

transferred, its parameters and inputs need to be adjusted to suit local conditions for accurate results.  

5.2. Air Temperature Variability at The Local Scale  

Several studies on microclimate allude to significant variability in temperature even at a local scale (Li et al., 

2023a; Stewart & Oke, 2012). Through this study, this variability is analysed within the context of deprived urban 

areas.  

From the study, it was revealed statistically significant differences within and between deprived and 

nondeprived urban areas. The highest temperatures were consistently recorded in all DUA’s, whilst the 

opposite was true for non-deprived areas. In all the settlements, except Kibera, the median temperatures of 

DUA’s were between 0.6°C to 1.2 °C higher than their non DUA counterparts, with minimum temperatures 

in DUA’s consistently lower or same to non DUA’s. Spatially, this was reflected in the clustering of higher  
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temperatures in central areas of the settlements, relative to the peripheral areas that tend to be non DUA. 

These findings are Similar to the work Scott et al., (2017), that reveals general warmer temperatures of 

about 1.8°C difference within informal settlements of Nairobi relative to neighbouring formal areas. The 

study highlights that this variability may partially be explained by differences in surface characteristics.  

Expectedly, the same pattern was observed across the morphological clusters, revealing higher temperatures 

within morphological areas associated with DUA’s and vice versa. Specifically, much of the hotspots were 

concentrated in clusters 0, the lowest temperatures on the other hand were populated in cluster 1(see 

Appendix 12). Comparing the mean temperatures across clusters, it was established, that despite the varied 

types of nonDUAS considered in the study, they consistently exhibited lower temperatures compared to 

their DUA counterparts.    

Within the study area alone, these areas included gated residential communities (1), industrial areas (2), 

buildings within informal areas but with less deprivation (3), seen in the figures below. As such, the variance 

in temperature values is reflected in this diversity of morphology.  

 

Figure 23Gated residential NonDUA in Waruku: Sateliteview view (in redframe) , (in greenframe):  street view. 

Images obtained from Google earth Pro (Acquired 14/02/2024)  

  

 
Figure24:Industrial NonDUA in Mukuru: Sateliteview view (in redframe) , (in greenframe):  street view. Images 

obtained from Google earth Pro (Acquired 14/02/2024)  
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Figure 25: Less deprived within in informal area Kibera: Sateliteview view (in redframe) , (in greenframe):  street view. 

Images obtained from Google earth Pro (Acquired 14/02/2024)  

DUAs on the other hand tend to have similar physical characteristics rooted in shared experiences of 

multifaceted socio-economic challenges (Abascal et al., 2022; Isunju et al., 2016). These areas are often 

plagued by poverty and located in high-cost urban regions where access to affordable housing is limited. 

As a result, residents frequently resort to makeshift structures and overcrowded living conditions, with little 

or no greenery and open spaces. This reflects the economic struggles of poverty, unemployment, leading 

to a distinct and similar urban landscape characterized by substandard living conditions. This is reflected in 

the low separability and cophenetic distances of the two DUA classes (Appendix7). A summary of the two 

main morphological clusters as well as mean predicted temperatures is presented in the figure below.  

 

Figure 26: Derived cluster description  

 The findings from this study underscore significant thermal inequality within the informal settlements 

under investigation. The statistically significant differences in air temperature between deprived urban areas 

(DUAs) and non-deprived urban areas (non-DUAs) highlight how socio-economic factors and urban 

morphology converge to create disparate thermal environments. DUAs consistently recorded higher 

median temperatures compared to non-DUAs, reflecting the compounded effects of limited green spaces, 

overcrowded living conditions, and substandard housing structures that lack proper ventilation. This 
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disparity is further exacerbated by the presence of taller buildings and larger building volumes in nonDUAs, 

which contribute to localized cooling through shading and altered wind patterns.  

The spatial distribution of temperature hotspots within the settlements indicates that central areas, typically 

characterized by higher building densities and fewer green spaces, experience the highest temperatures. This 

spatial pattern aligns with morphological clusters associated with DUAs, where the lack of greenery and 

open spaces is most pronounced. These areas also exhibit less variability in temperature, suggesting a more 

stable yet persistently higher thermal environment. In contrast, non-DUAs show greater variance in 

temperature values, reflective of the diverse morphological features within these areas, including gated 

communities, industrial zones, and less-deprived segments of informal settlements. This morphological 

diversity contributes to a wider range of thermal conditions, as different urban forms interact uniquely with 

microclimatic factors.  

5.3. Important Influences to Temperature Variation  

The results in 5.4 imply elevation to be the most important feature to air temperature estimation. This was 

seen in all the model variations, though with differing magnitudes. This is likely attributed both models 

biases as well as the features predictive power. The random forest regression algorithm at each node, 

decides splits based on the feature that maximally reduces variance of the target variable within a randomly 

selected (bootstrap and bagging) subset of the data. Though this randomness is what reduces overfitting, it 

could potentially lead to biased selection of features. Thus, though unlikely, it is highly possible to 

consistently select the same set of features whilst other features never get chosen, leading to some 

information loss during the training process (Breiman, 2001).  Aside from this, the splitting process can 

introduce biases, towards higher cardinality data such as elevation as they provide a unique value that 

provide consistent oneon-one relationship to the target. By providing distinct splitting opportunities, Site  

On the other hand, elevation in itself tends to have a relevant predictive power in relation to temperature, 

especially in the absence of critical physics parameters. Several literatures exist on the study on the 

temperature lapse rate, which the describes the of temperature values with altitude. Due to the coupling 

effects of both adiabatic cooling and atmospheric pressure, generally, temperature tends to reduce with 

increasing elevation (Kattel et al., 2018). This was observed in this study, with the settlements in relatively 

higher elevations, such as Waruku, consistently with reduced temperature as recounted by Janatian et al., 

(2017), who also explains that elevation tends to include the spatial variability effects of climatological 

factors. This goes a long way to increase accuracies of statistical models which are not purely based on the 

energy-balance physics interactions. This gives a basis to the heavy loading of elevation in the model, as 

well as an explanation as to the failures of the scenario models, which saw drastic drops in accuracies, with 

the removal of elevation as a feature.   

Following the plots in 5.4.5 elevation had the highest correlation with temperature, with a negative strong 

correlation score -0.9, indicating that temperature is highly dependent on elevation and reduces with 

increasing altitudes. It is thereby a reliable predictor to temperature over vertical distances.   

Land cover indices have been employed as auxiliary variables by most air temperature estimation studies as 

they present the potential to explain variant surface types and their interactions with solar radiation, heat 

retention, and atmospheric processes. In this study, expectedly, all land cover indices used contributed 

significantly to the study and resulting in the top 10 most informative variable to air temperature. LST 

specifically, (day and night) consistently ranked top 5 variables amongst all the variants models, with an 

observed strong positive correlation to air temperature similarly observed by (Benali et al., 2012; Janatian 

et al., 2017; Zhang et al., 2016a). LST measures the heat emitted from the earth’s surface, influenced by 

solar radiation, atmospheric conditions, and land cover. This direct surface heating significantly impacts the 

air temperature above it. During the day, the earth surfaces absorb solar energy, increasing in temperature 

and transferring this heat to the air through conduction and convection, thus elevating the air temperature. 

This phenomenon is particularly pronounced and more complex in urban areas, where materials like 

concrete and asphalt, with high heat capacities and low albedo, retain and slowly release heat, leading to a 

much complex relationship of LST with air temperature (Janatian et al., 2017).    
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The auxiliary variables explained above exhibited the most influence on air temperature prediction, 

however, the compounding efforts of morphometrics was substantial in explaining a relevant measure of 

variance. The impacts of these morphometrics are explained in this section.   

Preliminary analysis using Principal component analysis revealed that confounding relationships that exist 

within the dataset, thus the variance in the dataset could not be explained by any 1 component. This was 

further in the sensitivity analyses, that showed the significant drop in R^2 by modelling and predicting air 

temperature without morphometrics, despite the low feature important scores of the individual metrics. 

This presents insights into the compounding importance of morphology as a whole. This suggests that 

individually, each metric may not necessarily influence air temperature very significantly, but with the 

interactions with other morphometrics as well as possibly auxiliary variables, the significant of 

morphometrics is enhanced. Thus, complex confounding relationship of morphometrics exist with air 

temperature, signifying the weak correlation scores of important morphological variables. This further 

explains the findings of other studies such as Kotharkar et al., (2023, Li et al., (2023a) and Stewart & Oke, 

(2012), that all find higher correlation of urban morphology to air temperature. All these studies do not us 

detailed measurements of morphometrics as done in this study. Morphological parameters are often limited 

to area-based and compound metrics such as green cover ratio, surface ratio etc similar to the local climate 

zone studies. The morphological metrics, usually much dependent on land cover indices, tend to have a 

more simple and linear correlation with air temperature. Thus, with such coarse morphological metrics, it 

is feasible to establish such direct association with air temperature, which further supports the findings of 

this study. To the best of the authors knowledge, no studies exist on air temperature predictive modelling 

with Morphometrics, which focuses on the detailed characterisation of building geometries.   

Though not always, as Peng et al., (2022) finds that 3D morphological variables tend to almost always have 

a significance to air temperature though a much more varied and complex relationship. Li et al., (2023b), 

confirms this finding by explaining that building height, tends to have a much complex relationship with 

air temperature, explaining that increase in building height within low- and high-rise buildings, increased 

local temperatures, however, the opposite was true for multistorey and mid-rise buildings.   

Similarly, in this study, the most important features to temperature were metrics associated with vertical 

development. For example, mean height building as well as building volume ranked among the top 10 most 

important features. Building heights relationship in this study was not very informative as a result of the 

limited diversity in height values within the study are. This is associated to the height data spatial scale of 

100 metres, resulting in the aggregation and lack of detailed analysis in understanding, the relationship. 

Overall, the linear relationship indicated that buildings with lower volume and height, are associated with 

higher temperatures. However, all the few cases of relatively tall buildings above 20m were associated with 

between 29-30 °C of temperature. The same pattern was observed with building volume. This gives a 

glimpse into the complexity of 3D morphological relationships. This can be explained by the shade effect 

created by taller buildings that reduce the amount of direct solar radiation reaching the ground and 

lowerlevel structures, resulting in cooler temperatures, however, in other cases where there is more 

compactness and dense built up, taller buildings can alter wind patterns by blocking or channelling airflow, 

which affects the distribution of heat, leading to reduced ventilation and cooling (Li et al., 2023c; Puche et 

al., 2023; Yu et al., 2020). This varied relationships as well as data limitations contributed to limited 

understanding in the assessment of 3D metrics in this study.    

Another key finding of this study was the importance of contextual or neighbourhood level metrics to air 

temperature. All the metrics that were consistently selected across all the models as important features were 

contextual in nature. Thus, they were computed across relative neighbourhood levels, within three 

topological steps of each other. They constitute the tendencies and diversity of metrics within a local 

neighbourhood scale. This implied that, though each buildings morphology may not necessarily be very 

influential in impacting temperature a combined efforts of neighbouring buildings characteristics instead 

influences temperatures significantly.  

5.4. Limitations and recommendations  

Several limiting factors were encountered in the study. This section elaborates on these challenges and 

potential effects on the results.  
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The WSF 3D despite being the highest resolution open dataset on building heights, at a resolution of 100 

meters, it was still relatively coarse for the objectives of this study. This granularity is makes it difficult for 

capturing the fine-scale variations in building heights within the informal settlements. This leads to the 

aggregation of diverse height values, masking the detailed variations that can significantly influence local 

temperature patterns. For instance, the presence of tall buildings interspersed with low-rise structures 

creates microclimates that a coarse dataset cannot accurately represent. This limitation affects the model's 

ability to capture the complex interactions between building heights, urban morphology, and air 

temperature. The models thus overlooked critical micro-scale thermal variations. This is particularly limiting 

giving the extensive literature on the importance of heights in thermal variations.   

Al-Mudhaffer et al., (2022) establishes the importance of building construction materials especially in 

regulating temperature. Despite the established knowledge that thermal conditions are significantly 

impacted by construction materials, the lack of available open datasets for this data is lacking. The study 

therefore did not extensively include data on building materials, which is a significant factor influencing 

heat dynamics, especially in informal settlements (Mehrotra et al., 2018), as different materials have different 

thermal properties, such as concrete, metal, or thatch and interact differently with solar radiation, affecting 

heat retention and dissipation. The absence of this meant that cannot account for the variations in heat 

absorption and emission characteristics of different structures, leading to less accurate temperature 

predictions especially in relation to absolute temperature.   

Although the remotely sensed data used in the study acquired within the summer period, it did not coincide 

with the actual days or weeks of data collection. The sentinel and ECOSTRESS LST images were acquired 

in December 2023 and March 2024 whilst the data collection period was January and February. This 

temporal mismatch introduces uncertainties in correlating surface characteristics observed from satellite 

imagery with ground-based real-time temperature readings and influences the magnitude of generalisation 

that could be derived from results.   

Similarly, the building footprint data used in this study was not based on current imagery, though it is the 

most current up-to date dataset on building footprints. This is a significant limitation given the dynamic 

nature of informal settlements, which tends to undergo rapid changes. Using outdated footprint data results 

may result in a mismatch between the actual morphological characteristics and measured characters leading 

to inaccuracies in capturing the true urban form and its impact on temperature patterns.  

Lastly, the aggregation of air temperature data to 50 meters resulted in the loss of fine-scale details, crucial 

for understanding microclimatic variations within informal settlements. Despite the need for this 

aggregation for maximal morphometric information gain, as explained above, the aggregation smooths out 

localized extremes and nuances, leading to generalized temperature patterns that may overlook significant 

small-scale variations. This level of aggregation is less effective in capturing the heterogeneity of informal 

settlements, where short distances can exhibit substantial temperature differences due to varying building 

materials, vegetation cover, and urban morphology.  

5.5. Uncertainties from citizen science data  

Human influences are a primary source of uncertainty in citizen science data collection(Downs et al., 2021). 

Despite training, participants sometimes deviated from instructions, such as holding sensor sticks at varying 

heights, leading to inconsistencies in temperature readings. Physical contact with the sensors also posed a 

problem, as the exposed Kestrel sensors could register body temperatures instead of air temperatures, 

causing sudden spikes and drops in the readings. While the Kestrel sensor's sensitivity to small changes is 

beneficial, it also makes it susceptible to such interferences, complicating the interpretation of true air 

temperature readings.  

Sensor inefficiencies further contribute to data uncertainties. The lack of a protective shield for the Kestrel 

sensor exposed it to direct sunlight, potentially causing artificially high readings. Citizens were instructed to 

place fixed sensors in shaded areas and away from metal materials to mitigate this issue. However, verifying 

the adherence to these instructions and the physical conditions of the sensor locations remains challenging. 

Despite participants' reports of compliance, the accuracy of the fixed sensor readings is uncertain, 

highlighting the need for more robust measures to ensure data reliability in future studies.  
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5.6. Random Forest Model Limitations  

The use of Random Forest regression in this study, while effective for handling complex datasets, tends to 

smooth out predictions. This smoothing effect reduces the model's sensitivity to extreme temperature 

values, potentially overlooking localized hotspots or areas with significantly lower temperatures. Random 

Forest regression operates by averaging multiple decision trees, which can dampen the impact of outliers 

and extreme values, leading to more generalized predictions (Breiman, 2001).  

While smoothing can be beneficial for overall model stability, it limits the model's ability to capture sharp 

temperature gradients and microclimatic variations. In informal settlements, where small-scale variations 

can significantly impact residents' thermal comfort, this limitation is crucial. The model's tendency to 

generalize results may obscure important localized thermal phenomena that are critical for targeted 

interventions.  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

6. CONCLUSION  

This study focused on exploring local-scale temperature variations within informal settlements, emphasizing 

the influence of urban morphological factors on air temperature. To achieve this three objectives and 

research questions were outlined. The first section of this chapter highlights how the findings of this 

research answers the outlined questions.  

The first research question concerns determining if there are morphological patterns observed within and 

between informal and formal areas and what morphological characteristics are key in distinguishing them. 

To this effect, this study utilised momepy toolkit in measuring detailed descriptions of some 117 primary 
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and contextual characters across 5 informal settlements within Nairobi. The k-means clustering analysis 

revealed two distinct morphological groups within the study area. Further evaluations revealed an 

intersected with reference formal and informal areas, indicating that indeed formal areas are 

morphologically unique to informal areas. The findings highlighted that those morphological characters 

related to size and compactness such as building perimeter, building area, building volume, mean height, 

mean interbuilding distance and number of neighbours were particularly different amongst these two areas.    

In answering the research question on spatial patterns of air temperature observed within and across 

informal and formal settlements, this study revealed, first, that there are thermal differences across the 

informal settlements. Particularly, Kibera and Waruku tend to experience relatively cooler temperatures 

than the other informal settlements. This was found to be associated with the fact that they are located in 

higher elevation and thus the temperature lapse rate influences the thermal conditions. The study also 

revealed significant temperature differences between formal and informal areas with about 0.5°C to 1.2°C 

higher median temperatures within informal settlements as compared to their formal counterparts.  

Finally, the last research question pertaining to the accuracy of the Air temperature model and key 

morphological characteristics that contribute significantly to the temperature variations, the final air 

temperature predictive model successfully predicted air temperature across the study area with an R^2 of 

0.7 thus, it could efficiently explain about 70% of the variance in air temperature. Using feature importance 

elevation was identified to be the most important variable. This study found that, morphometrics played 

only a supplementary role in the prediction. Various analysis such as the sensitivity analysis and PCA 

confirmed that despite the fact that morphometrics contributes to air temperature variations, it may not 

necessarily be the most influencing factor.   

The most influencing morphometric character to temperature variation however were features relating to 

height. Specifically, mean building height and building volume at the neighbourhood level contributed the 

most to temperature variations.    

  

The findings of the study underscored significant temperature disparities between deprived urban areas 

(DUAs) and non-deprived urban areas (non-DUAs). Lessons learned from this study implies, that urban 

planners and civil society organisations interested in improving thermal conditions of informal settlements, 

adopt a holistic approach that considers the entire urban fabric, including greenery, building materials, and 

neighbourhood context, beyond just building geometries. This comprehensive perspective is crucial in 

targeted interventions to mitigate climate-related risks.  

6.1. Ethical Considerations  

Several aspects of this study may raise ethical concerns, particularly regarding its potential influence on 

policy decisions. The detailed physical characterization of informal settlements in relation to 

morphometrics, as well as the identification of hazard-related differences between formal and informal 

areas, may pose risks to community privacy. While the aggregation of data at a 50-meter resolution may 

buffer some details, it is crucial to acknowledge the potential misuse of the study's findings. There is a risk 

that the data could be used to segregate and target informal settlements for evictions and slum destruction, 

which would defeat the purpose and aim of this research.  

The primary objective of this study is to provide insights into the conditions within informal settlements to 

support and enhance slum upgrading efforts. Therefore, it is essential to recognize the distinction between 

association and causation. While this study offers valuable insights into temperature variability through its 

association with urban morphology, it does not establish direct causation. Consequently, any policy 

influence should be approached cautiously to avoid drawing causal inferences without further corroborative 

studies.  

It is also important to consider the inherent biases associated with any modelling technique. Choices related 

to model selection, hyperparameters, and feature selection can significantly influence model predictions. 

Specifically, for the random forest algorithm used in this study, these biases can impact the interpretation 

and findings of the results. As discussed in Section 5.3, such biases must be acknowledged and addressed 

to ensure the validity and reliability of the conclusions drawn from the model.  
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While this study seeks to inform and improve slum upgrading efforts, it is critical to handle the findings 

responsibly and ethically to ensure that the primary goal of enhancing the quality of life in informal 

settlements is achieved.  

 6.2.  Recommendations For Further Work   

Though this study provided relevant insights into the interactions of urban morphometrics with air 

temperature and successfully estimated temperature variations within informal areas, more insights is still 

needed concerning the comprehensive characterisation of morphology in informal settlements. 

Recommendations are provided below that can help build upon the work that has been done in this study.   

• Exploring the integration of physical models such as energy balance models and datasets with 

statistical models such as the random forest model used in this study, will further increase 

accuracy and the generalisability of temperature estimates. This will ensure a healthy balance 

in capturing complex associations of surface characteristics whilst modelling the underlying 

physical interactions. This will go a step beyond this study as highlighted previously, the 

importance of physical parameters to air temperature estimation.  

• The aggregation of insitu temperature data to 50metres resulted in a less detailed analysis, 

though it was necessary to capture more morphological information. Further research can 

investigate this study at a point scale and relate point measurements to surrounding 

morphometric characteristics within a specified buffer. Apart from allowing a much-detailed 

analysis, such a study can also associate the influence of urban morphometric to air 

temperature within varying distances.   

• Finally, improved datasets and covariates, such as building materials, higher resolution height 

dataset and temporally aligned covariates will go a long way to reduce biases by ensuring a 

more realistic characterisation of covariates thereby improving accuracy of predictions.     
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7. APPENDIX  

ANNEX  1: STUDY AREA CHARACTERISTICS: NDBI and LST and DEM   

 

 

   

ANNEX  2: DATASETS AND SOURCES   

  

DATA  SOURCE  FORMAT  RESOLUTION  YEAR  Access  
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Building  

Footprint   

Google  Open  

Buildings Version  

3  

Geojson    2023  Open  Buildings 

V3  

Polygons  |  Earth  

Engine  Data  

Catalog  |  Google 

for Developers .  

Building  

Height  

World Settlment  

Footprint 3D  

Rater  90m  2015  EOC Geoservice 

Maps - World  

Settlement  

Footprint (WSF) 

3D - Global, 90m  

(dlr.de)  

Digital  

Elevation  

Model  

ALOS PALSAR  Raster  12.5m  2022  Earthdata Login 

User Registration  

(nasa.gov)  

NDVI,  

NDBI,NDWI  

Sentinel 2  Raster  10m  2023- 

2024  

Harmonized  

Sentinel-2  MSI:  

MultiSpectral  

Instrument, Level- 

2A  |  Earth Engine 

Data  

Catalog  |  Google 

for Developers  

Urban  

Greenery  

Characters  

Local  Climate  

Zone(WUDAPT)  

Raster  100m  2023  Submitted  LCZ  

Maps (rub.de).  

Land Surface  

Temperature   

ECOSTRESS  Raster  70m   2023- 

2024  

Earthdata Login 

User Registration  

(nasa.gov)  

ANNEX  3: URBAN MORPHOMETRICS CHARACETERS  

Morphological Characters As Adopted From Fleischmann et al., (2022)  

Index  Element  Definition   Category  

Area  Building   area covered by a building footprint in m2.  Dimension  

Height   Building   building height in m(required input for other 

metrics)  
Dimension  

Volume  Building   Building footprint multiplied by its height in m3  Dimension   

Form factor   Building   captures 3D unitless shape characteristic of a 

building  
Shape   

Volume to Façade ratio  Building  proxy of volumetric compactness.  Shape  

Perimeter  Building  sum of lengths of the building exterior walls in m.  Dimension  

Courtyard Area   Building  sum of areas of interior holes in footprint polygons 

in m2 .  
Dimension  

Circular compactness   Building  Area of footprint / area of minimal enclosing circle  Shape  

Squareness   Building  Sum of deviation of angle of corner from 90 degrees 

/ number of corners.  
Shape  

Corners   Building   Vertex of building exterior shape with an angle 

between adjacent line segments ≤ 170 degrees  
Shape  
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Equivalent rectangular 

index  
Building  Measure of shape complexity of building footprint  Shape  

Elongation  Building  Indirectly measures the deviation of the shape from 

a square  
Shape  

Centroid-corner 

distance deviation  
Building  It captures potential circularity of object and 

topological imprecision of building polygon.  
Shape  

Centroid - corner mean 

distance  
Building  Captures the dimension of the object dependent on 

its shape  
Shape  

Solar orientation  Building   Captures the deviation of orientation from cardinal 

directions.  
Distribution  

Cell alignment  Building   Reflects the relationship between a building and its 

cell.  
Distribution   

Longest axis length  Tessellation 

Cell   
Proxy of plot depth for tessellation-based analysis.  Dimension   

Area  Tessellation 

Cell  
Area covered by a tessellation cell footprint in m2  

.  

Shape  

Circular compactness  Tessellation 

Cell   
 Captures the relation of tessellation cell footprint 

shape to its minimal enclosing circle  
Shape   

Solar orientation  Tessellation 

Cell  
Captures the deviation of cell  orientation from 

cardinal directions  
Distribution  

Coverage Area Ratio  Tessellation 

Cell  
Captures intensity of development.  Intensity  

Equivalent rectangular 

index  
Tessellation 

Cell  
Measure of shape complexity of tessellation Cell  Shape   

Shared walls ratio  Adjacent 

buildings   
Captures the amount of wall space facing the open 

space  
Distribution  

Alignment  Neighbouring 

buildings   
Calculates the mean deviation solar orientation of 

buildings on adjacent cells from a building  
Distribution  

Mean distance  Neighbouring 

buildings   
 Captures the average proximity to other buildings.  Distribution  

Weighted neighbours  Tessellation 

cell   
Reflects granularity of morphological tessellation.  Distribution  

Area covered  Neighbouring  

cells   

Captures the scale of morphological tessellation  Dimension  

Reached area  Neighbouring 

segments   
It captures an accessible area.  Dimension  

Perimeter wall length  Adjacent 

buildings   
Length of an exterior ring of a polygon composed of 

footprints of adjacent buildings  
Dimension  

Mean  inter-building  

distance  

Neighbouring 

buildings  
Captures the average proximity between buildings.  Distribution  

Building adjacency   Neighbouring 

buildings   
Number of joined structures/ number of buildings   Distribution  

  

ANNEX 4: CONTEXTUAL CHARACTER CALCULATIONS   
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Adapted from (Fleischmann et al., 2022)  

  

APPENDIX 5 : SENSORS USED FOR THE STUDY   

 

From left, Kunak Stationary sensor, Garmin etrex 10, Kestrel Drop 2 and walking sensor sticks.  

  

ANNEX 6 : Local CLIMATE ZONE CLASSES    
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     Adapted from (Stewart & Oke, 2012)  

  

ANNEX 7 : KFOLD CROSS VALIDATION   

 

  

  

  

  

  

ANNEX 7: DETAILED KMEANS ANALYSIS   
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ANNEX 8; INSITU MEASUREMENT DESCRIPTIVES   
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ANNEX 9; PRINCIPAL COMPONENT ANALYSIS   
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ANNEX 10: PDF of predicted and actual values  

 

  

  

  

  

  

  

  

  

  

  

ANNEX 11; PARTIAL DEPENDENCY PLOTS   
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ANNEX 12; TEMPERATURE VARIANCE ACROSS CLUSTERS  ANNEX 13; 

TEMPERATURE RELATIONSHIPS MODEL 2  
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ANNEX 14 ; Study areas  

 

  

 

  

  

  

  

  

  

ANNEX 15: Feature Importance Composite Morphometrics   
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Appendix 16; PARTIAL DEPENDENCY PLOT MODEL 2  
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