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A B S T R A C T

Introduction Autonomic Nervous System (ANS) disorders and cardiac problems are often
interrelated. The ANS controls heart rate and maintains homeostasis of blood pressure. This
study aimed to evaluate the Sympathetic Nervous System (SNS) using a novel method, Sympathetic
Skin Nerve Activity (SKNA) (measured using conventional Electrocardiography (ECG) elec-
trodes). The research identified a gap in simplified, explainable models that simulate the Heart
Rate (HR), average Skin Sympathetic Nerve Activity (aSKNA), and Electrodermal activity (EDA)
response to the Valsalva Manoeuvre (VM). Therefore, we aimed to create an explainable model
to better understand autonomic cardiac regulation.
Objectives The primary goal was to create an explainable mathematical model of autonomic
cardiac regulation and its response to the VM, specifically simulating HR, aSKNA, and EDA.
The objective was to train the model on experimental data. The hypothesis was that this model
could enhance understanding of the ANS and its role in cardiac function, with the simulated
features expected to closely resemble experimental data.
Method An exploratory study was conducted in 2024 at the eHealth House at the University
of Twente with ten healthy subjects. Additionally, the dataset of Study 2023, earlier obtained
by Tertoolen[1] was employed. A simplified model was developed, encompassing barorecep-
tors, the ANS, the cardiovascular system, and the skin. The model simulated HR, aSKNA, and
EDA using the timing of VM performance as an input. Model parameters were optimized for
both datasets (Study 2023 and Study 2024) using the Nelder-Mead method, suitable for non-
linear problems. Model performance was assessed using the coefficient of determination (R2)
and the (normalized) Root Mean Square Error (RMSE).
Results The results from Study 2023 and Study 2024 were generally comparable. Yet, Study
2024 exhibited lower aSKNA values and lacked usable EDA data. The model demonstrated
adequate performance metrics on Study 2023, Tertoolen’s dataset, with R-squared values and
NRMSEs of 0.623 and 0.257 for HR, 0.770 and 0.193 for aSKNA, and 0.587 and 0.041 for EDA.
The model performed slightly worse on the newly obtained dataset, Study 2024, with an R-
squared value of 0.075 and an NRMSE of 0.379 for HR, but the model achieved an R-squared
value of 0.692 and an NRMSE of 0.199 for aSKNA. The HR prediction, in particular, exhibited
timing issues.
Conclusion This thesis explored the functioning of autonomic cardiac regulation by develop-
ing a simplified model. The sympathetic response to the VM was measured in ten participants
by recording ECG and acquiring HR and aSKNA. An additional dataset with six participants,
recorded earlier by Tertoolen in 2023, which also included EDA, was utilized. The model pre-
dictions showed a useful resemblance to measurements, giving insight into the role of the
ANS in cardiac regulation, although further model and parameter optimization is necessary.

Keywords – Autonomic cardiac regulation, Sympathetic Skin Nerve Activity, Valsalva Ma-
noeuvre, Electrocardiogram, Electrodermal Activity, Mathematical modelling
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1
I N T R O D U C T I O N

The average human body possesses more than 7 trillion nerves[2]. This profoundly complex
system[3] is an essential part of humans. The ANS controls involuntary processes such as heart
rate, digestion, and respiratory rate to maintain homeostasis of among others, blood pressure,
within the body. Dysfunctions in the ANS, such as hyperactivity or hypoactivity, can lead to
a variety of health issues, including cardiovascular diseases, gastrointestinal disorders, and
metabolic imbalances. The ANS is subdivided into the SNS and the Parasympathetic Nervous
System (PSNS). The ANS is crucial in cardiac regulation. Modelling the autonomic cardiac reg-
ulation adds to the physiological understanding of the cooperation between the cardiovascular
system and the ANS in maintaining constant blood pressure as well as keeping the heart rate
and blood pressure within physiologically acceptable boundaries. Furthermore, it helps in the
early detection of cardiac or autonomic nervous system issues. With a better understanding
of how cardiac regulation functions, it becomes easier to detect dysfunctions and their un-
derlying causes. By developing accurate models, different conditions can be simulated and
the outcomes of various interventions can be predicted, ultimately improving diagnosis, treat-
ment, and management of ANS-related disorders. Furthermore, such models can facilitate
the development of targeted therapies and personalized medicine approaches, contributing to
better health outcomes and quality of life for individuals affected by ANS dysfunctions.

This thesis will focus mainly on the SNS as the sympathetic nerve activity can be easily (indi-
rectly) measured via the skin using conventional ECG, called SKNA[4, 5]. The sympathetic nerve
activity is intricately linked to individuals’ fitness levels and has implications for both cardiac
as well as non-cardiac diseases and autonomic dysfunctions[4, 6]. The method to record SKNA
is innovative and non-invasive and based on branches of sympathetic nerves within the skin.
The activity signal is at ultra-low voltage levels and needs to be sampled at a high sampling
rate. Subsequently, the retrieved signal can be processed using a high-pass filter to retrieve
the SKNA[7]. For this research, the targeted frequency range is 500 to 1000 Hz. The signal is
in the order of a few microvolts, ranging from about -50 to 50 µV.

Understanding the dynamics of the ANS and simulating specific aspects, such as the SKNA,
holds significant interest and relevance in physiological modelling. Creating an explainable,
physiological and dynamic model of autonomic cardiac regulation, including SKNA simu-
lation, will provide a more comprehensive understanding of the body’s regulatory mecha-
nisms under both normal and abnormal conditions. The model’s accuracy and correspon-
dence to reality can be evaluated by comparing the model with experimental data. This ap-
proach helps detect signs of abnormal autonomic innervation, which may be challenging to
observe clinically. Existing cardiovascular models are often too detailed and even focus on
the level of individual nerves[8]. The models have simulated the HR, vascular resistance, and
the (para)sympathetic tone[9] or thoracic sympathetic nerve activity[8]. However, the aSKNA

in combination with HR and EDA has not been simulated before.
The recent development of non-invasive methods to measure the sympathetic tone via ECG,
SKNA, has created new opportunities. These methods make it easier and more cost-effective
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2 introduction

to evaluate the SNS. Continuous monitoring is possible while maintaining patient comfort
and safety. Additionally, they require less specialized knowledge compared to prevalent tech-
niques like microneurography[10]. Furthermore, microneurography is invasive as needles are
inserted into individual neuron fibres (the activity measured with this method is called Skin
Sympathetic Nerve Activity (SSNA))[11]. Consequently, SKNA can be more widely adopted in
both clinical and research settings.

At present, there are several models available which aim to simulate the HR or the ANS. For
example, the master thesis of Svendby[12] proposed a mathematical model to simulate HR
during cycling and Thoonen et al.[13] predicted HR during several activities, in his master
thesis.

Ishbulatov et al. proposed a mathematical model[14] during a (passive) head-up tilt test of
the cardiovascular autonomic control. However, the precise mathematics of their model were
not disclosed. Some models delved deeper into the baroreflex mechanism, which helps main-
tain nearly constant blood pressure levels. For example, Rybak et al. proposed a model of
a sympatho-respiratory brainstem network[8]. They focused on modelling the effects of the
baroreflex on respiratory activity. Doyle et al. proposed a closed-loop model of the barore-
flex[15] with first and second-order neurons. In 2006 and 2008 Olufsen et al. published two sig-
nificant articles employing a baroreflex model for HR regulation during orthostatic stress[16]
and postural changes[17]. Sturdy, Ottesen, and Olufsen explored the specifics of modelling the
differentiation between A- and C-type baroreceptor firing patterns[18]. Some models focused
on estimating subject-specific cardiac parameters and simulating hemodynamics. In 2007, Neal
and Bassingthwaighte already estimated subject-specific cardiac output[19] and blood volume
during hemorrhage. Additionally, in 2006, Liang and Liu simulated hemodynamic responses
to the Valsalva Manoeuvre [20]. In 2010, Hemalatha and Manivannan[21] conducted a simi-
lar study, also using a lumped parameter electrical analog model. Lastly, Kana and Holcik[9]
provided significant inspiration for this thesis with their simplified mathematical model of
cardiovascular control during the Valsalva Manoeuvre as they also quantified the sympathetic
tone and made a comparison with Heart Rate Variability (HRV) (a common biomarker of ANS
response[22]).

Though comprehensive, the existing models lack the desired level of simplification and the
simulation of the aSKNA and EDA. EDA can be integrated as a complementary signal and can
be relatively easily measured using wearable devices. Therefore, it is particularly useful to un-
derstand its relationship with the ANS. This research aims to bridge this gap by developing
a simplified autonomic cardiac regulation model. Additionally, the project aims to compare
simulated data, including aSKNA and HR, with recorded data sets, acquired during this re-
search and earlier by Jacomine Tertoolen[1]. Her master thesis ’Evaluation of the Cardiac Tone
by Sympathetic Skin Nerve Activity’, aimed to estimate cardiac tone using SKNA with the
ultimate goal of evaluating stellate ganglion blockades (a medical intervention to reduce Ven-
tricular Arrhythmias). She concluded that the SKNA seems indeed correlated with various
parts of the ANS, providing a strong rationale for continuing research in this direction. There-
fore, it is also beneficial to develop a model to better understand this correlation. Tertoolen
recorded a large data set consisting of a pilot study as well as a validation dataset. These data
included SKNA, HR, Breathing Rate (BR), and HRV, and for the pilot study also EDA. Addi-
tionally, during this research, experiments were conducted with 10 healthy subjects. During
the experiments, the Valsalva Manoeuvre[23] was used as a disturbance of the system which
lowers the Blood Pressure (BP) and stimulates the sympathetic nervous system to increase the
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BP. In this way, the aSKNA and EDA are expected to transiently increase which can be verified
in the model and compared to experimental data. This method was also used in Tertoolen’s
study to stimulate the sympathetic systems of the subjects.

In this study, to achieve the objectives of creating an autonomic cardiac regulation model
and validating simulated features against experimental data, a comprehensive literature re-
view was undertaken to gather background information on the nervous system, particularly
focusing on the Sympathetic Nervous System (SNS). The relation between various organs
and subsystems was explored, leading to the formulation of a logical feedback system rep-
resented by appropriate, approximate, mathematical equations. The model was implemented
using MATLAB’s Simulink[24]. Subsequently, parameter estimation was performed using the
Nelder-Mead method, an optimization technique well-suited for nonlinear problems. MAT-
LAB’s fminsearchbnd function, which finds the local minima of a cost function, was employed
to derive the estimated parameters. The ultimate validation of the model’s efficacy involved a
comparison with real data, referring to Tertoolen’s recorded dataset from 2023 and the exper-
imental data acquired during this research. The model’s performance was quantified by the
coefficient of determination, the R-squared, the RMSE and the Normalized Root Mean Square
Error (NRMSE), normalized with respect to the range of the measured data. The hypothesis
was that a well-simplified cardiac regulation model could be created which further enhances
understanding of the ANS and its role in cardiac function. Besides, simulated features related
to ANS performance were expected to show a satisfactory resemblance to experimentally ob-
tained features.

This thesis follows the subsequent structure: chapter 2 provides background information and
an overview of recent studies regarding SKNA, chapter 3 describes the methodology of data
acquisition, data processing and the development of the autonomic cardiac regulation model.
Chapter 4 presents the results. In chapter 5 an elaborate discussion on these results can be
found, and final conclusions are given in chapter 6. Appendix A contains the code, subject
specifics, and individual results.





2
B A C K G R O U N D

This chapter provides background information on the division of the nervous system, signals
related to autonomic nervous activity, the functionality of the baroreflex mechanism, and tests
that stimulate the baroreflex and ANS activity. Additionally, an overview of the state of the
art in SKNA and EDA is presented.

2.1 the nervous system

The nervous system receives signals from different body parts about external changes and
responds to them by sending new signals back. The nervous system (see fig. 1) consists of the
Central Nervous System (CNS) and Peripheral Nervous System (PNS), respectively, the brain
and spinal cord, and the nerves which connect the spinal cord to the rest of the body. The
ANS[25] is part of the peripheral nervous system and controls involuntary processes, e.g. di-
gestion, heart rate, and breathing rate. The ANS is then subdivided into the SNS, the PSNS, and
the Enteric Nervous System (ENS). The SNS activates the body, also called the "fight-or-flight-
response". Sympathetic activation effects include increasing heart rate and cardiac output. At
the same time, the PSNS stimulates the activities which occur when the body is at rest (these
include digestion, lacrimation (crying), and sexual arousal). These activities are called "rest
and digest" processes. The parasympathetic tone slows down the heart rate. The ENS, on the
other hand, encompasses reflex pathways which control the muscles of the digestive system
and its secretion or absorption and blood flow. It is sometimes even categorized as an inde-
pendent system and has many neurons structured like a mesh. Understanding the interaction
between the SNS and PSNS is important to accurately model autonomic cardiac regulation.

The Nervous System

Central Nervous System
CNS

Peripheral Nervous System
PNS

Autonomic Nervous System
ANS

Somatic Nervous System

Sympathetic
Nervous System

SNS

Parasympathetic
Nervous System

PSNS

Enteric
Nervous System

ENS

Figure 1: Schematic overview of subdivisions of the nervous system.
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6 background

2.2 signals related to activity of the ans

Autonomic activity is reflected by many body signals that relate to involuntary processes.
The classic (psychophysiological) lie-detector, or polygraph [26, 27] is an example of a device
which combines multiple signals to tell whether someone is dishonest. Deception[28] requires
more effort and thus causes a higher or different cognitive and emotional response which is
often described as fear or arousal. These emotions cause an elevated autonomic response. In
1921 the first polygraph was produced by John Larson[27]. It measured respiration rate, blood
pressure, and heart rate to detect dishonesty. Nowadays, many signals are used, among others
BP, BR, electrodermal Skin Conductance (SC), body temperature, HR, HRV. Autonomic activity
is also related to Carbon Dioxide concentration (this was investigated by Braune et al.[29],
where sympathetic activity was stimulated by applying hypercapnia conditions, and Jordan
et al.[30] suggested that sympathetic activity also influences the cerebral vasculature and thus
indirectly the CO2 levels). Moreover, ANS activity influences cardiac output, baroreceptor
response, pupil[31] dilation, and the recently discovered aSKNA.

2.3 baroreflex

The autonomic cardiac regulation is heavily dependent on the baroreflex[32]. The baroreflex
aims to maintain homeostasis of the arterial bloodpressure and is activated when a change
in blood pressure occurs. The baroreceptors are located in the aortic arch and the carotid
sinus, where they sense a change in arterial pressure due to the deformation of the viscoelas-
tic wall of the arteries. Subsequently, the receptors will react to this mechanotransduction by
adjusting the afferent firing rate accordingly. This information, the firing rate, is sent to the
Nucleus Tractus Solitarii (NTS) located in the medulla oblongata of the brainstem. The NTS
contains many sensory nuclei. This stimulates the ANS and the sympathetic and parasympa-
thetic tones are produced. Via the vagal nerve, the parasympathetic tone is delivered to the
heart, changing its contractility and heart rate. The sympathetic outflow, on the other hand, is
transmitted by numerous neurons. The chemicals acetylcholine and noradrenaline are largely
responsible for heart rate regulation. Respectively, the parasympathetic system manages the
acetylcholine concentrations, and the sympathetic system the noradrenaline concentrations.
Due to complexity, the sympathetic system responds slower than the parasympathetic system.
Moreover, in case of elevated blood pressure, parasympathetic activity inhibits sympathetic
activity. This provokes a decrease in heart rate leading to the desired blood pressure. In sum-
mary, the baroreceptors sense changes in blood pressure, transfer this information to the ANS,
modulate the heart rate and consequently regulate the blood pressure.

2.4 autonomic function tests

Autonomic function tests[34, 35] can be used to trigger the baroreflex and autonomic nerve
activity. Examples of such cardiovascular reflex tests consist of the earlier mentioned Valsalva
Manoeuvre, but also deep breathing, isometric handgrip test, cold water pressor test, mental
arithmetic, head-up tilt test, and orthostatic test. With the deep breathing technique, the differ-
ence in heart rate (respiratory arrhythmia) is evaluated, which declines with age. During hand
gripping (with the use of a dynamometer) a rise in blood pressure is observed. This increase in
blood pressure is again an indicator of autonomic function. Moreover, the cold water pressor
test stimulates the subject by using cold water as the name indicates. The subject submerges
their hand in a bowl of ice water for a short time (ca. 2 min) which drives the heart rate and
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Figure 2: Schematic display illustrating the key anatomical structures involved in the baroreflex[33].

blood pressure up. By providing several small mathematical problems, such as subtractions
and additions, the subject is imposed with a mental stressor which activates the sympathetic
system. Both the head-up tilt test and orthostatic test are based on moving the body (from a
supine or sitting position into a standing position), where the first method is passive and the
latter active. The movement ensures a blood flow rush towards the lower limbs and thus a
drop in blood pressure. Lastly, pharmacological stimulation, e.g. phenylephrine, can be used
to evaluate the sensitivity of the baroreceptors.

The autonomic function test utilized in Tertoolen’s study, as well as in this research, involves
the VM in conjunction with postural changes (supine-to-sit and sit-to-stand). The VM is a
breathing technique in which the subject is asked to inhale deeply and exhale against a closed
airway. Subsequently, the intrathoracic pressure increases, the Mean Arterial Pressure (MAP)
drops and in turn activates the sympathetic nervous system to ensure that blood pressure in-
creases to the desired level. In fig. 3, the four phases associated with the VM[36] (in a healthy
individual) are shown. During phases 1 and 2 the intrathoracic pressure is applied and sus-
tained.
Phase 1: At the onset of the VM the rise in intrathoracic pressure compresses the pulmonary
vessels, pushing blood into the left ventricle of the heart. This temporarily increases stroke
volume and MAP. The baroreceptor reflex reacts to the increased MAP by briefly lowering the
heart rate.
Phase 2: The sustained high intrathoracic pressure then inhibits venous return to the heart.
This reduces stroke volume causing a decline in MAP. The baroreceptors facilitate an increase
in heart rate, bringing MAP back to near-normal levels.
Phase 3: After, in this case, 10 s, releasing the intrathoracic pressure allows venous return to
the intrathoracic vessels. During the experiments of Tertoolen and the experiments performed
for this study, subjects were instructed to hold the intrathoracic pressure for 15 s. After this
the stroke volume decreases and the MAP drops further leading to an additional reflexive rise
in heart rate.
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Phase 4: The left heart chamber refills as usual whereafter the MAP rises. With a still ele-
vated heart rate, the MAP overshoots. The baroreflex quickly adjusts this resulting in reflex
bradycardia. Finally, the MAP and heart rate return to baseline.

Figure 3: MAP and heart rate during the Valsalva Manoeuvre, taken from[36].

2.5 skin sympathetic nerve activity

In recent years a growing interest has been shown in the various functionalities of SKNA.
The non-invasive method for SNA assessment has been proven useful in clinical studies in
various fields (e.g. [6, 37, 38]). In table 1 an overview can be found of such studies. Base-
line aSKNA values show dispersion and are between 0.77 µV and 2.5 µV. Numerous studies
show correlation between (a)SKNA and different diseases[4] and fitness[6]. The functioning
of the ANS is complicated and although sympathetic activity is related to many diseases it
cannot be used as a marker for a specific condition. Moreover, given the wide variability of
reported values, an isolated aSKNA value may not be particularly informative and should
always be interpreted within a broader context. Some features derived from SKNA signals
that are commonly used are the mean aSKNA, number of bursts, inter-burst interval, burst
duration and area, and burst amplitude. Previously, HRV analysis was used to assess auto-
nomic activity[39]. However, this method is limited by its focus on the sinoatrial node and its
inability to provide real-time information. In contrast, SKNA provides a better reflection of
overall and current sympathetic activity. Cai et al. provided a new, quantitative, method for
ANS assessment by employing Visibility Graph (VG)[40] on envelope Sympathetic Skin Nerve
Activity (eSKNA). This nonlinear dynamics analysis method effectively evaluated the ANS
from a network aspect. VG features (based on SKNA) were found to be superior over HRV
features in distinguishing cerebral hemorrhage patients from control group patients. Li and
Zheng published a review on current cardiac sympathetic activity assessment methods[41].
They noted that while SKNA can non-invasively record cardiac sympathetic nerve activity,
the method has certain limitations. Specifically, movement artefacts from patients significantly
affect the quality of the recorded signals. Additionally, SKNA lacks established reliable refer-
ence values. Furthermore, it is worth noting that Xing et al.[42] proposed a modification at
system level by combining an analogue front-end chip with a low-noise first-stage amplifier,
an adaptive PLI filter and clipping of outliers. This reduced system noise and motion artefacts.
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Overall, SKNA is regarded as a valuable and respected method for assessing SNA, which
has proven useful in evaluating people’s health. Therefore, modelling autonomic regulation
and its role in cardiovascular health, along with simulating aSKNA, can provide valuable
insights into underlying mechanisms. A simplified and explainable model can particularly
enhance the understanding and application of these findings. The processed aSKNA contains
fewer artefacts than the SKNA and is considered to more accurately capture the essence of
the SNA. Consequently, it is more logical and feasible to model. Additionally, the field would
benefit from implementing more uniform standardization procedures for SKNA processing.
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Table 1: Summary of recent studies regarding SKNA and associated parameters. Largely based on Tertoolen’s literature study[1] with addition of studies con-
ducted since then and up to the present.

Study population n Sex (male %) Age (yr) BMI (kg/m2) aSKNA (µV) Device fs (kHz) Reference

Healthy subjects 8 1 (13) 41 ± 11 32.4 ± 5.1 0.89 ± 0.17 BM 10 He, 2020[38]

12 5 (42) 31.7 ± 7.4 n/a 1.52 ± 0.71 PLS 10 Chen, 2021[43]

165 97 (59) 47.97 ± 13.59 23.48 ± 3.15 0.77 ± 0.22 BM 10 Huang, 2022[44]

14 0 (0) 31 ± 6 n/a .98 ± 0.06 FI80 Lee, 2022[45]

19 0 (0) 30 ± 6 n/a 1.17 ± 0.31 F180 1 Hwang, 2022[46]

6 3 (50) 25 ± 2.5 22.9 ± 3.6 0.71 ± 0.21 BM 9.6 Tertoolen, 2023[1]

47 20 (42) 26.5 ± 11.4 24.3 ± 3.9 0.77 ± 0.21 BM 9.6 Tertoolen, 2023[1]

29 4 (13.8) 53.48 ± 9.41 23.78 ± 3.66 0.81 ± 0.24 Chen, 2023[47]

72 44 (61.1) 57.76 ± 8.74 n/a 1.12 ± 0.35 HF ECG 4 Wang, 2023[48]

9 5 (55.6) 20-42 n/a 4.05 ± 4.09
1 Bio Amp 10 Baghestani, 2023[49]

16 8 (50) 20-57 n/a 0.26 ± 0.13 Bio Amp 10 Baghestani, 2024[49]

Arrhythmias

Paroxysmal AT 11 4 (36) 66 ± 10 n/a 1.07 ± 0.10 BM 10 Uradu, 2017[50]

VA during unsedated ICD implant 39 35 (50) 66.1 ± 10.2 32.6 ± 5.6 1.41 ± 0.53 BM 10 Zhang, 2019[51]

VA during sedated ICD implant 11 8 (72.7) 58.5 ± 16.2 31.3 ± 5.5 0.83 ± 0.22 BM 10 Zhang, 2019[51]

ICD for primary prevention 15 9 (60) 62.7 ± 16.7 27.4 ± 5.1 0.98 ± 0.41 BM 10 Zhang, 2019[51]

Persistent AF 12 6 (50) 73 (60.5-80) 32.2 (27.4-40.1) 1.09 [0.91-1.33] BM 10 Kusayama, 2019[52]

Paroxysmal AF 8 4 (50) 66 (59-77) 31.4 [25.5-51.0] 1.12 [1.02-1.30] BM 10 Kusayama, 2019[52]

LQTS undergoing LCSD 17 8 (47) 21 ± 9 27.51 ± 8.74 1.36 ± 0.67 BM 10 Han, 2020[53]

Proximal SVT 16 6 (38) 44 ± 16 n/a BM 10 Han, 2020[53]

Electrical storm 1 6 (60) 52.7 ± 12.4 n/a 0.89 ± 0.22 PLS 10 Chen, 2021[43]

TTM at 36 °C post-cardiac arrest 6 5 (83) 52.2 ± 18.8 28.37 ± 4.91 0.90 ± 0.20 BM 10 Kutkut, 2021[37]

TTM at 33 °C post-cardiac arrest 23 16 (70) 51.5 ± 19.3 31.22 ± 9.78 0.76 ± 0.13 BM 10 Kutkut, 2021[37]

Paroxysmal AF 7 3 (43) 57 ± 14 n/a 1.22 ± 0.35 F180 1 Hwang, 2022[46]

Paroxysmal AF 37 34 (92) 58.9 ± 9.0 538.2 [432.9-663.9]2 MP36 2 Sung, 2022[54]

Coronary Artery Disease

CAD undergoing CABG 11 7 (64) 60 ± 13 31.1 ± 6.7 2.5 [1.9-3.1] PLS 10 Shen, 2017[55]

AMI 20 20 (100) 52.8 ± 13.5 27.2 ± 4.2 1.024 [0.852-1.399] BM 10 Liu, 2021[56]

1 Note that here SKNA is reported instead of aSKNA.
2 See footnote 1.
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Study population n Sex (male %) Age (yr) BMI (kg/m2) aSKNA (µV) Device fs (kHz) Reference

AMI 20 20 (100) 51.9 ± 14.5 23.6 ± 2.9 0.680 [0.617-0.728] BM 10 Liu, 2021[56]

CAD 8 5 (62.5) 67.3 ± 9.7 n/a 1.17 ± 0.20 PLS 10 Chen, 2021[43]

ACS 128 110 (86) 57.87 ± 11.72 25.98 ± 4.01 1.05 ± 0.35 BM 10 Huang, 2022[44]

Heart failure

HFrEF and indication for CRT 36 30 (83.3) 69.1 ± 12.3 30.1 ± 6.2 1.52 ± 0.65 BM 10 Xiao, 2020[57]

LVEF < 35 % 1.58 ± 0.63 BM 10 Xiao, 2020[57]

LVEF > 35 % 0.88 ± 0.36 BM 10 Xiao, 2020[57]

HFrEF and indication for ICD 10 7 (70) 61.7 ± 19.9 27.8 ± 6.0 0.97 ± 0.49 BM 10 Xiao, 2020[57]

Dysautonomia

NCS, without syncope 36 13 (33) 42.2 ± 15.5 n/a 1.38 ± 0.38 BM 10 Kumar, 2020[58]

NCS, with syncope 14 3 (22) 33 ± 19.1 n/a 1.42 ± 0.52 BM 10 Kumar, 2020[58]

NCS, without syncope 25 8 (32) 42.2 ± 17 n/a 1.02 ± 0.29 BM 10 Huang, 2021[59]

NCS, with syncope 16 4 (25) 46.6 ± 16.1 n/a 1.21 ± 0.30 BM 10 Huang, 2021[59]

OI 16 2 (13) 35 ± 10 n/a 0.99 ± 0.07 F180 Lee, 2022[45]

OI 18 1 (6) 37 ± 11 n/a 1.04 ± 0.11 F180 1 Hwang, 2022[46]

OI, without drugs 17 2 (12) 39 ± 12 n/a 1.03 ± 0.13 F180 Lee, 2022[45]

Neurological disorder

Drug resistant epilepsy with VNS 6 2 (33) 40 ± 11 n/a 1.06 [0.93-1.18] BM 10 Yuan, 2017[60]

Drug resistant epilepsy without VNS 20 7 (35) 37 ± 8 n/a 1.38 [1.01-1.75] BM 10 Yuan, 2017[60]

Other

OSA 18 6 (33) 50 ± 17 37.5 ± 12.1 0.96 ± 0.36 BM 10 He, 2020[38]

Esophageal squamous cell carcinoma 39 36 (92) 59.15 ± 6.56 23.28 ± 3.28 0.77 ± 0.03 BM 10 Tang, 2022[61]

Undergoing HD with an IDWG > 3 kg 25 18 (72) 51.0 [44.5-60.5] 24.1 ± 3.6 1.11 ± 0.29 CMD 4 Zhang, 2022[62]

Undergoing HD with an IDWG < 3 kg 51 30 (59) 66.0 [50.0-71.0] 22.6 ± 4.0 1.18 ± 0.42 CMD 4 Zhang, 2022[62]

OAB 23 1 (4.3) 54.43 ± 10.09 23.85 ± 3.86 1.08 ± 0.37 Chen, 2023[47]

OAB, post-treatment 23 1 (4.3) 54.43 ± 10.09 23.85 ± 3.86 0.94 ± 0.33 Chen, 2023[47]

OAB with DO 10 1 (10) 56.70 ± 9.63 24.70 ± 4.80 1.24 ± 0.42 Chen, 2023[47]

OAB without DO 13 0 (0) 52.69 ± 10.21 23.19 ± 2.96 0.95 ± 0.27 Chen, 2023[47]

ICH 77 52 (67.5) 60.52 ± 16.38 n/a 0.87 ± 0.34 HF ECG 4 Wang, 2023[48]

POTS 79 7 (8.9) 36 ± 11 25 Faros 180 ECG 1 Liu, 2023[63]
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Data are means ± SD or numbers (proportions). ACS = acute coronary syndrome, AF = atrial fibrillation, AMI = acute myocardial infarction, AT = atrial tachycardia,
BM = Biomonitor, CABG = coronary artery bypass graft, CAD = coronary artery disease, CMD = custom-made device, CRT = cardiac resynchronization therapy, fs
= sampling frequency, F180 = Faros 180 ECG monitor, HD = hemodialysis, HFrEF = Heart failure with reduced ejection fraction, ICD = implantable cardioverter-
defibrillator, IDWG = interdialytic weight gain, LCSD = left cardiac sympathetic denervation, LQTS = long QT syndrome, LVEF = left ventricle ejection fraction,
MP36 = MP36 system (BIOPAC Systems), NCS = neurocardiogenic syncope, OI = orthostatic intolerance, OSA = obstructive sleep apnea, PLS = Powerlab System,
SVT = supraventriclar tachycardia, TTM = targeted temperature management, VA = ventricular arrhythmia, VNS = vagal nerve stimulator, OAB = overactive bladder,
DO = detrusor overactivity, ICH = intracerebral hemorrhage, POTS = postural orthostatic tachycardia syndrome.
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2.6 electrodermal activity

EDA[64] is the electrical activity measured on the skin. The conductivity of the skin varies
mainly due to sweat secretion. This was first discovered[65] in 1878 by the Swiss Hermann
and Luchsinger. Sweat excretes from the sweat glands, which lie in the dermis, below the epi-
dermis. Within the epidermis, the stratum corneum is the outermost layer composed of dead
skin cells. This barrier can be compared to a resistor.

There are two types of sweat glands, namely, eccrine and apocrine. Apocrine sweat glands
are rarer and can be found in specific locations such as armpits, areola and perineum. The ec-
crine ones on the other hand constitute the majority of sweat glands in humans. They include
sweat ducts and secretory coils. The ducts spiral through the cornified layer ending up as
sweat pores on the skin. Clearly, the main purpose of sweat secretion is to provide thermoreg-
ulation to maintain homeostasis of the body temperature. The evaporation of sweat expends
energy and leads to the cooling of the skin and consequently a decrease in body temperature.
However, perspiration is not only related to thermal sweating but also to emotional sweating.
Two other uses involve skin responses during the preparation of specific motor actions and
reticular formation in the brainstem through general arousal. Sudor related to sympathetic
activity is predominantly present on palmar and plantar sites.

Sympathetic nerves innervate the sweat glands and, as sympathetic activity activates the body,
EDA is linked to psychological and physiological arousal. This was proven during microneu-
rography studies[66]. Sudomotor neurons are part of the autonomic nervous system. Each
sudomotor is specialized to control several sweat glands and each sweat gland is controlled
by multiple sudomotor neurons.

EDA can be recorded either exosomatically or endosomatically[65]. The first applies direct
or alternating current to the skin and records the change in skin conductance or resistance.
The latter, however, records electric potential differences within the skin, without external
current. The endosomatic method results in monophasic, biphasic, or triphasic skin potential
responses, which are difficult to analyze and understand. Therefore, the exosomatic method
is preferred.

The electrical system consists of the skin and its sweat glands, and a measurement system.
Here, biological mechanisms that drive the electrical responses can be seen as the voltage
source and the stratum corneum serves as a variable resistor according to its hydration de-
gree. The deeper layers of the skin have fixed but relatively low resistance. Lastly, the sweat
gland ducts act as shortcuts that allow electrical current to flow more easily through the skin.

Electrodermal activity consists of a tonic component and a phasic component[65]. These
are called the Skin Conductance Level (SCL) and Skin Conductance Response (SCR) when
measured via the exosomatic method. Otherwise, they are referred to as the Electrodermal
Level (EDL) and Electrodermal Response (EDR). The SCL is independent of any applied stim-
uli. It can be influenced by factors like the (skin or ambient) temperature. The phasic response
is known to be linked with sudomotor nerve activity triggered by physiological stimuli.
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EDA analysis

In the past, various mathematical methods have been developed to analyze recorded EDA
and model the components of interest, the phasic and tonic components. These methods aim
to decompose the phasic signal into individual SCRs linked to each stimulus and model how
sympathetic activity prompts these SCRs. Earlier methods often required visual inspection to
resolve the overlap issue, where individual SCRs caused by different separate stimuli overlap.
However, this led to subjectivity in analysis.

Barry et al.[67] used graphical tools to improve the baseline by subtracting each SCR from
the preceding SCR. For this Lim et al.[68] used a response function with 4-8 parameters op-
timized for each SCR, allowing for variations in individual SCR shapes. This method also
needed visual inspection to choose the best model.

Alexander et al.[69] introduced the first Linear Time Invariant (LTI) model for EDA analy-
sis. Due to the description of the peripheral system as an LTI system more automation in
analysis was possible. [69]’s model interprets skin conductance as the convolution of bursts
of sudomotor nerve activity with a fixed Impulse Response Function (IRF), aiming to esti-
mate sympathetic nervous system activity from observed SC data. Benedek and Kaernbach
criticized (part of) Alexander et al.’s model and introduced two alternative LTI approaches:
nonnegative deconvolution [71] and Continuous Deconvolution Analysis (CDA)[70]. In these
models, the LTI assumption was refined to include the variability in SCR shape. They partition
SMNA into components describing phasic activity and EDA variations, assuming a pharma-
cokinetic model of sweat diffusion dynamics. Both models employ a biexponential IRF known
as the Bateman function. While observation noise is acknowledged in the above-mentioned
methods, it was not explicitly modelled. Instead, a noisy SMNA was estimated and the phasic
component was retrieved by low-pass filtering and applying a heuristic peak detection.

In 2014, Bach introduced the SCRalyze toolbox[72] for analyzing evoked SCRs. The software
package includes multiple models based on an LTI system assumption. Both Alexander et al.
and Bach use an IRF optimized on big datasets. SCRalyze employs optimization techniques to
estimate the input signal, SMNA, or parameters that best fit the observed SC data. Addition-
ally, these models include a noise term to address potential deviations from time invariance
assumptions.

Shortly after, Greco et al. introduced a method for the decomposition[74] of SC into smooth
tonic and sparse phasic components. They achieve this by solving a convex optimization prob-
lem and incorporating physiological constraints and regularization terms. For example, a non-
negative constraint was imposed because of the inherently positive nature of SMNA. In 2016

they proposed a new approach to estimate ANS activity from EDA again using convex opti-
mization[73]. The model is based on Bayesian statistics and represents SC as three components:
a steady tonic component, obtained through the convolution of an IRF, a sparse nonnegative
SMNA phasic driver, and additional noise. The IRF is represented using an Autoregressive
Moving Average (ARMA) model to create an Infinite Impulse Response (IIR) function. This
model provides more accuracy than a FIR approach by avoiding the need to truncate the IRF.
Additionally, it achieves higher computational efficiency due to a concise system representa-
tion.
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In summary, this chapter highlighted the roles of the sympathetic and parasympathetic branches
of the ANS in active and relaxing involuntary processes. Together with the baroreceptors, they
maintain homeostatic blood pressure by increasing and decreasing heart rate, respectively. Au-
tonomic function tests such as the VM effectively trigger autonomous nervous responses. The
manoeuvre entails four characteristic phases. During the first two phases, subjects exhale
against a closed airway, thereby maintaining high intrathoracic pressure, leading to an in-
crease in HR and SNA. Afterwards, the air is released and the MAP and HR are restored. The
chapter also underscored the significance of SKNA and the added value of EDA in assessing
SNA, autonomic cardiac regulation, and overall health. Finally, compelling reasons were given
to model this complex system.





3
M E T H O D S

The following chapter describes the methods used for retrieving and analyzing the experi-
mental data. Furthermore, a model is presented that describes the basics of autonomic cardiac
regulation.

3.1 materials

This section describes the study designs of the experimentally obtained data by Tertoolen and
this research.

Study Design Tertoolen: Study 2023

An explorative study was performed by Jacomine Tertoolen[1] between 2022 and 2023, pro-
viding an elaborate dataset, referred to as ’Study 2023’. A pilot study was executed with six
healthy adult subjects. Their characteristics can be found in table 2.

Table 2: Subject characteristics for Tertoolen’s pilot [1], Study 2023. The data are means ± standard
deviation or numbers (with proportions in % in brackets). BMI is the Body Mass Index and
BSA is the Body Surface Area.

Pilot dataset (n = 6)

Age (yr) 25.0± 2.8
Sex (male) 3 (50%)

Length (m) 1.75± 0.11
Weight (kg) 69.3± 8.8
BMI (kg/m2) 22.9± 3.9
BSA (m2) 1.83± 0.12

The following equipment was used:

• the Biomonitor ME6000 (Mega Electronics Ltd., Kuopio, Finland[75]) to record ECG with
a sampling frequency of 4800 Hz,

• 12 Ag/AgCl electrodes (3M, Minnesota, USA)

• the Shimmer3 GSR+ (Shimmer, Dublin, Ireland[76]) to record EDA with a sampling
frequency of 64 Hz.

Four leads were calculated from twelve electrodes connected to the Biomonitor that were
applied to the subjects as shown in fig. 4. The Shimmer3 GSR+ was put on the index and
middle finger on the right hand of the subject. The protocol can be seen in table 3.

17
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Figure 4: Set-up of the electrodes and leads during the pilot experiment of Tertoolen[1], Study 2023.
Roman numbers indicate leads, where light blue indicates a positive electrode and darker
blue is a negative electrode. The darkest blue dots are the grounds. Leads I and II are in the
manner of Einthoven’s triangle[77].

Table 3: Protocol for Study 2023, Tertoolen’s pilot[1]. The durations are minima that could have been
deviated from.

Phase 1 2 3 4 5 6 7

Mode Lying Sitting Standing

Duration (s) 300 15 20 105 15 20 105

Activity VM1 VM2

Study Design 2024

Next to Tertoolen’s data set, an additional experiment was conducted in the eHealth House at
the University of Twente, referred to as ’Study 2024’. The Ethics Committee Computer and In-
formation Science of the University of Twente approved the study (reference number 230728).
Ten healthy subjects were recruited for this study of which 70% male. The inclusion criteria
were as follows: participants had to be between 18 and 60, have a Body Mass Index (BMI)
lower than 40 kg/m2, be free of cardiovascular diseases, respiratory diseases, metabolic disor-
ders, and not being pregnant. All subjects signed a consent form to participate in the study
and agreed to the use of their anonymized data for scientific research. Subject characteristics
can be seen in table 4, while individual characteristics per subject can be seen in appendix A
table 9.

Table 4: Subject characteristics for Study 2024.

Experiment 2024 (n = 10)

Age (yr) 26.8± 8.1
Sex (male) 7 (70%)

Length (m) 1.78± 0.07
Weight (kg) 73.0± 11.5
BMI (kg/m2) 23.0± 3.2
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Figure 5: Set-up of the sensor distribution for the experiment in the eHealth House, Study 2024. The
numbers indicate channels and 0 indicates the Patient Ground wristband just above the Em-
patica E4. Roman numbers indicate leads, where light blue indicates a positive electrode and
dark blue is a negative electrode. Electrodes 1, 2, 3, and 4 consisted of smaller patches more
suitable to record SKNA, while 5, 6 and 7 are larger electrodes.

The equipment included:

• Smartwatch (Empatica E4, Cambridge, United States of America[78]) to record EDA with
a sampling frequency of 4 Hz,

• Sixteen channel Refa Amplifier (TMSi international, Enschede, the Netherlands [79]) able
to record with sampling frequencies up to 20 kHz, set to record ECG with a sampling
frequency of 2048 Hz, with associated accessories; cables, Patient Ground wristband,
USB cable, electrodes etc.

The set-up is schematically shown in fig. 5. The Empatica was used to record electrodermal
activity at the wrist and the Refa was used to record and amplify the heart’s electrical activity.
The protocol was similar to Tertoolen’s timeline. It can be found in table 5.

Table 5: Activity timeline for Study 2024.

Phase 1 2 3 4 5 6

Duration (s) 60 30 15 30 15 30

Activity Lying Sitting VM1 Standing VM2 Standing

3.2 data processing

Figure 6 shows the pipeline used for data analysis in this research. Data analysis was per-
formed using MATLAB. After data collection, leads were calculated from the raw ECG data
(according to figs. 4 and 5). A lead is the potential difference between the ’positive’ and ’neg-
ative’ electrode. Subsequently, a second-order notch filter was applied at 50 Hz with a 1.43

Hz bandwidth at the -3 dB point to remove powerline noise. The data were bandpass filtered
with a second-order Butterworth filter between 0.5 and 40 Hz to retrieve clear ECG, accord-
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ing to Ricciardi et al.[80]. These frequencies were chosen to optimize ECG quality. This study
used the widely accepted Pan-Tompkins method[81] to detect R-R intervals[82]. The heart rate
was computed from these intervals. Subsequently, a sliding window averaging method was
applied with a window length of 10 samples and a 5-sample overlap. The data were then
resampled to 1 Hz using interpolation to match the frequency of the aSKNA signal.

The notch-filtered data were also band-pass filtered between 500 and 1000 Hz using a fifth-
order Butterworth filter to obtain the SKNA. Next, the SKNA data were processed by taking
the absolute values and then using a leaky integrator over a 100 ms window, as commonly
used[6, 10, 49], yielding the iSKNA. Integration smoothened the SKNA signal, highlighting
changes in sympathetic activity. The iSKNA was then averaged over a one-second window to
obtain the aSKNA. This ensures further smoothing of the signal. A Gaussian Mixture Model
(GMM) was used on the aSKNA data to identify significant events in the experiment. This sep-
arated baseline activity from peaks. The threshold was defined as the lowest mean amplitude
(of the two Gaussian distributions) with three times the associated standard deviation. This
threshold helped classify timestamps associated with notable events during the experiment
(such as postural changes and VMs).

For the analysis of the acquired EDA data, Greco et al.’s cvxEDA[73] approach was used.
This method models skin conductance y as a combination of three components: the phasic
component r, the tonic component t and white Gaussian noise ϵ, which accounts for predic-
tion errors, measurement noise, and artefacts.

y = r+ t+ ϵ (1)

Through convex optimization, the model effectively separates the different aspects of EDA
signals. The problem to be optimized is formulated by Greco et al. as follows

minimize
1

2
||

−ϵ︷ ︸︸ ︷
r︷︸︸︷
Mq +

t︷ ︸︸ ︷
Bl+Cd−y ||22 +α||

p︷︸︸︷
Aq ||1 +

γ

2
||l||22

subj. to Aq ⩾ 0.

(2)

Here, the tonic component t comprises cubic B-splines to represent smooth curves and a linear
trend to represent the general linear change of the tonic component over time. B is a tall matrix
with cubic B-spline basis functions in its columns, l is a vector of spline coefficients, C is anN×
2 matrix with Ci,1 = 1, Ci,2 = i/N, and d is a 2× 1 vector with the offset and slope coefficients
of the linear trend. The phasic component r is modelled as an IIR function using an ARMA

cascade formulated in matrix form, where M is a tridiagonal matrix with Mi,i =Mi,i−2 = 1,
Mi,i−1 = 2 with 3 ⩽ i ⩽ N, and q is an auxiliary variable to find p indirectly. The error term
ϵ is assumed to consist of an independent identically distributed sequence of zero-average
Gaussian random variables with variance σ2. p is the Sudomotor Nerve Activity (SMNA) with
a tridiagonal matrix A with Ai,i = ψ, Ai,i−1 = θ, Ai,i−2 = ζ, where 3 ⩽ i ⩽ N, and α is a
substitution factor for σ2/λδ. ψ, θ and ζ are defined in the context of the transfer function of
the ARMA model. δ is the sampling interval and λ is the average number of spikes per unit
of time, thus, λδ represents the expected firing rate per interval. In the last term, γ substitutes
σ2/σ2l , where σ2l is the variance of the amplitude at each knot li which is assumed to have
a normal distribution and be independent and identically distributed. α and γ control the
penalty on the phasic and tonic components, respectively. By increasing α a sparser estimate is
created, due to the stronger l1-norm penalization, with stronger suppression of noise-induced
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spurious spikes, but simultaneously it leads to more signal distortion. With a smaller α-term
the opposite will happen. Larger values of γ lead to a stronger penalization of l and a smoother
solution. Equation (2) describes a convex optimization problem, meaning both the objective
and the constraint function are convex. Consequently, the global optimum will be found after
rewriting the given problem in standard quadratic programming form and solving it.

Data Collection
(Experiment with VM)
• Dataset 2023 Tertoolen
• Dataset 2024

Raw ECG

Calculate Leads

Notch Filter
2nd Order IIR

50 Hz, 1.43 Hz bandwidth

Bandpass Filter
2nd Order
0.5-40 Hz

ECG

RR-Interval Detection
using Pan Tompkins

• Bandpass 5-15 Hz
• Derivative
• Squared
• Moving average 150 ms

window

HR
(resampled

to 1 Hz)

Bandpass Filter
500 - 1000 Hz

Butter 5th Order

SKNA

Integrate
Leaky Integrator with k=0.1

iSKNA

Averaging
Window 1 s

aSKNA

Burst Analysis
Using Gaussian Mixture

with 2 Components

Raw EDA

cvxEDA
Convex Optimization

Phasic
Component

Tonic
Component

Figure 6: Schematic overview of the signal processing workflow.
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3.3 conceptual model

The conceptual model consists of several physiological blocks, namely: the baroreceptors, the
autonomic nervous system, the pulmonary system, the cardiovascular system and the skin.
The cardiovascular system consists of the peripheral system, the heart and the arterial system
including large arteries such as the aorta. This conceptual model can be found in fig. 7. The
baroreceptors are a sensor which measures the difference between the actual blood pressure
(arterial systemic pressure Pas(t)) and the aspired blood pressure (the mean arterial systemic
pressure Pasmean). The baroreceptors fire accordingly with a firing rate n(t). The ANS can
be seen as the controller as it regulates the heart and peripheral system with the autonomic
tone (the parasympathetic Tpar(t) and sympathetic tone Tsym(t) respectively). Besides, the
aSKNA(t) was modelled as the sympathetic output. The autonomic tone causes the heart to
beat faster or slow down. This leads to a change in Heart Rate HR(t), stroke volume SV(t),
and cardiac input Qin(t). At first, when the HR increases the stroke volume will decrease
and the cardiac output will initially increase reaching a maximum, whereafter it decreases.
Sympathetic activity also influences the peripheral system by increasing the peripheral resis-
tance PR(t). In contrast, the pressure in the venous systemic compartment is approximately
constant and is affected by the intrathoracic pressure Ps(t). A regular breathing movement
already leads to a difference in intrathoracic pressure transferred by the pulmonary system.
Sympathetic nerves innervate the sweat glands present in the skin. This leads to the phasic
electrodermal activity signal yp(t). The tonic activity, known as SCL can be seen as yt(t). The
EDA measured at the surface of the skin, is indicated as y(t).

Baroreceptors Autonomic 
Nervous System

Cardiovascular system

Heart

Arterial system

Controller

T./0(t)

Sensor

P/1(t)

-+

Pulmonary 
system

Breath VM

P/123/4 n(t)

Q54 (t)

aSKNA(t)

HR t ,
SV(t)

T162(t)

PR t ,
P71(t)

P1(t)

Sweat glands
y.(t)

Epidermis
Uncontrolled factorsy8(t)

y(t)

Skin

Q9:8(t)
Peripheral system

Figure 7: Conceptual model for the autonomic cardiac regulation, where Pasmean is the mean arterial
systemic pressure, Pas(t) is the arterial systemic pressure, n(t) is the firing rate, Tsym(t) and
Tpar(t) are the sympathetic and parasympathetic tone and aSKNA(t) the average SKNA,
Ps(t) is the intrathoracic pressure, Pvs(t) is the venous systemic pressure, and Qin(t) and
Qout(t) are the cardiac output and the blood flow through the peripheral system, respectively.
PR(t) is the peripheral resistance, y(t) is the EDA, yp(t) the phasic component and yt(t) the
tonic component. Breath VM is the applied disturbance.
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3.4 assumptions

Several assumptions were made for the above given conceptual model and the mathematical
model that will follow. Here these assumptions are presented and motivated.

1. The model consists of the autonomic nervous system, pulmonary system, cardiovascular
system and skin. These capture the key interactions in cardiac regulation. However, it
is a simplification, as other factors, such as the influence of hormones, temperature
regulation, and metabolic rate, are not taken into account.

2. The modelled subject is assumed to be at rest with constant breathrate and constant
intrathoracic pressure Ps(t) until the VM is performed.

3. To describe the arterial systemic pressure Pas(t) a first-order differential is used accord-
ing to Grodins model[83] with an assumed compliance Cas.

4. The parasympathetic tone Tpar(t) is linearly dependent on the baroreceptors’ firing rate
n(t).

5. The relation of the aSKNA(t) is assumed to be linearly dependent on the sympathetic
outflow Tsym(t).

6. The sympathetic Tsym(t) and parasympathetic Tpar(t) tones are assumed to be instantly
related. This assumption excludes the time delay belonging to the complex sympathetic
response.

7. Local and hormone control of arteriolar resistance is negligible. The peripheral resistance
PR(t) is dependent on the sympathetic tone Tsym(t).

8. A linear effect of the intra-thoracic pressure Ps(t) on the venous systemic pressure Pvs(t)
is assumed.

9. The arterial walls are assumed to be elastic. The firing rate is not equally sensitive to
decreases and increases of carotid pressure[32]. A pressure decrease leads to a faster
firing rate response n(t).

10. Concerning the EDA, it is assumed that the tonic component yt(t) is linked to uncon-
trolled factors[64], these could include thermoregulation, the general arousal aspect of
sweating, humidity, emotional state, and individual physiological variability. This is a
slowly varying signal dependent on uncontrolled factors. The phasic component yp(t)
of the EDA is related to sympathetic activity. For this reason, the tonic component was
not estimated. Instead, the phasic component yp(t) was estimated and compared to the
phasic component r(t) that was based on the measured skin conductance signal y(t).

11. The rise and decay times for SCRs[84] are expected to remain constant during the ex-
periment. Yet, they can vary per person. These are assumed to be Gaussian distributed.
Hence, general parameter estimation was performed to create a general model.

12. SCRs are assumed to follow a Gaussian distribution with a mean and variance[84].

13. The sweat ducts are assumed to be empty at t = 0[84].

14. Blood pressure Pas(t) and heart rate HR(t) are maintained within the physiological
range (for mean arterial pressure this is 60 to 110 mmHg [85, 86] and for heart rate this
is about 40[87] to 210 bpm[88]). It should be noted that these are age-specific.
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3.5 mathematical method

In this section, the mathematics of the afore-introduced model will be tackled. Specifically,
first, the cardiovascular system will be approximated to produce heart rate, blood pressure
and aSKNA signals, and second, the dermal system to simulate the phasic response of the
EDA. For an overview of the used parameters, see the Nomenclature at the end of this chapter.

3.5.1 Cardiac Regulation

The cardiovascular model is largely based on Kana and Holcik’s mathematical model describ-
ing the cardiac mechanism during VM[9]. To model the baroreceptors’ response to changes in
blood pressure the following equation, derived from [9] and [32], was used:

ṅ(t) = K · (Pas(t) − Pasmean) ·
(M−n(t)) ·n(t)(

M
2

)2 −
n−N0

τ
. (3)

Here, n is the firing rate (Hz) of the baroreceptors bounded by the minimum N0 and maxi-
mum M threshold firing rate (Hz), K is a weighting factor (Hz/mmHgs), Pas is the arterial
systemic pressure (mmHg), and τ is the time constant (s) related to the response time. For
n(t) = M, ṅ(t) = 0− M−N0

τ . At this point, the firing rate is saturated and can only decrease.
However, it will quickly rise again if the measured pressure is lower than the desired blood
pressure. In case the actual arterial pressure is equal to the aimed pressure (Pas = Pasmean),
the firing rate will again be saturated (ṅ(t) = 0− M−N0

τ ) and reach n = N0.
The autonomic nervous system will translate the baroreceptors’ firing rates to a sympathetic
and parasympathetic tone, Tsym, and Tpar ([]) respectively. The tones are here defined as
dimensionless fractions in the range of 0 ⩽ T ⩽ 1. This is described in eq. (4)[9].

Tpar(t) =
N0 +n(t)

M

Tsym(t) =
1− Tpar(t)

1+β · Tpar(t)

(4)

Here, β is a dampening factor which considers the inhibitory influence of the parasympathetic
tone. The delay of the sympathetic activity relative to the parasympathetic activity is not
incorporated in this model. The parasympathetic tone is assumed to be translated to the
measurable aSKNA with the following equation:

aSKNA(t) = aSKNA0 (1+KaSKNA · Tsym(t)) . (5)

Here, the KaSKNA is a scaling factor, aSKNA0 is the baseline average Skin Sympathetic Nerve
Activity in µV. Subsequently, the heart responds to the (para)sympathetic activity. This is
modelled (as by Kana and Holcik in [9]) by

HR(t) = H0 · (1−Mp · Tpar(t) +Ms · Tsym(t))

= H0 ·
(
1−Mp · Tpar(t) +Ms ·

1− Tpar(t)

1+β · Tpar(t)

)
.

(6)

In eq. (6), HR is the heart rate (in bpm, beats per minute). H0 refers to the intrinsic heart rate
(bpm) when denervated and it is dependent on age. The intrinsic rate takes place when the
autonomic activity is inhibited. Mp and Ms are scaling factors for the parasympathetic and
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sympathetic response, respectively. With the change in heart rate, the cardiac output[9] to the
arteries will change accordingly.

Qin(t) = HR(t) · SV(t)
= H0 · (1−Mp · Tpar(t) +Ms · Tsym(t)) · SV(t)

Qout(t) =
Pas(t) − Pvs(t)

PR(t)

(7)

Qin is the cardiac output (L/min), the blood flow pumped into the arterial system and SV is
the stroke volume.Qout is the blood flow (L/min) out of the arterial system into the peripheral
system, related to the arterial systemic pressure Pas (mmHg), the venous systemic pressure
Pvs (mmHg) and the peripheral resistance PR (mmHgmin/L). The stroke volume is defined
by Kana and Holcik as

SV(t) = Kstr ·
Pvs(t)

Pas(t)
. (8)

Here, Kstr is a weighting factor (L/b). At the same time, sympathetic activity influences the
resistance in the peripheral system[9]:

PR(t) = R1(t) + PR0 · (1+KPR · Tsym(t)) . (9)

Here, R1 is a variable which will be defined later on. The venous systemic pressure is assumed
to be constant when there is no disturbance (created by the breath rate).
Finally, the systemic arterial pressure is approximated by

Ṗas(t) =
Qin(t) −Qout(t)

60 ·Cas

=
H0 · (1−Mp · Tpar(t) +Ms · Tsym(t)) · SV(t) − Pas(t)−Pvs(t)

PR(t)

60 ·Cas
.

(10)

Where Cas is arterial systemic compliance (L/mmHg). The denominator was multiplied by
60 to convert the units of the blood flow Q from [L/min] to [L/s]. This relation was based on
Grodins’s [83] model of the mechanical part of the cardiovascular system.

Modelling the Valsalva Manoeuvre

The system is disturbed by the performance of the VM. As explained in section 2.4, this pro-
cedure consists of four phases.

In the first phase, the intra-thoracic and intra-abdominal pressure will gradually increase by
taking a big breath and holding it. This constricts the pulmonary vessels leading to an increase
in peripheral resistance, increasing the stroke volume as well as the arterial systemic pressure.
The baroreceptor reflex comes into effect by lowering the heart rate. The increase in peripheral
resistance is modelled by a Gaussian function R1 (mmHgmin/L). This function was chosen to
simulate the smooth and symmetrical nature of the pressure change.

R1(t) = R1amp · e
−(t−dPtime−(P1dur/8))

2

2·(P1dur/8)
2

if t ⩾ 0 (11)

R1amp is the amplitude of the resistance (mmHgmin/L) increase during phase 1, dPtime is
the start time (s) of the VM, and P1dur is the duration (s) of phase 1. The inclusion of P1dur
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in the numerator ensures that the increase in resistance begins slightly after the initiation of
the VM, rather than instantaneously. The division by 8 prevents the resistance increase from
starting too late. In the denominator, the division by 8, prevents the resistance increase from
being overly broad.

Meanwhile, the intrathoracic pressure (mmHg) is modelled with a logistic function. The choice
for this function was motivated in order to produce an S-shaped curve, ideal for modelling
processes that start with a slow increase, accelerate quickly, and then flatten as they reach a
maximum. Additionally, the logistic function is mathematically convenient and its parameters
can be easily adjusted.

Ps(t) =


Psmax·10−1·edPrate·t

Psmax+10−1·(edPrate·t+1)
if dPtime ⩽ t ⩽ dPtime + dPdur

0 if 0 ⩽ t < dPtime ∨ t > dPtime + dPdur

(12)

Here, Psmax is the maximum intra-thoracic pressure (mmHg), dPrate is the rate of increase
of pressure (1/s) and dPdur is the duration (s) of phase 1 and 2, the forced expiration. In
this case, the growing pressure is bounded by the maximum intra-thoracic pressure. The
temporary increase in stroke volume is incorporated by an increase in venous pressure

Pvs(t) = Pvs0 +Kvs · Ps(t), (13)

where Kvs is a weighting factor (). No additional variable is introduced during phase 2. How-
ever, the stroke volume will change. Due to the high intrathoracic pressure, venous return to
the heart is reduced and the stroke volume decreases (leading to a drop in arterial pressure).
The baroreflex is triggered again. The stroke volume is now formulated as follows:

SV(t) = Kstr ·
Pvs0 −Kvs · Ps(t)

Pas(t)
(14)

During the third phase, the intrathoracic pressure is released and the venous return restores
the intrathoracic vessels. This pressure drop is modelled by a negative Gaussian function P3
(mmHg) (again, for simplicity and a smooth symmetrical response):

P3(t) = −P3amp · e
−(t−dPtime−dPdur−(P3dur/4)

2)
2·(P3dur/8)

2
, (15)

where P3amp is the amplitude of pressure (mmHg) drop during phase 3, dPdur is the duration
(s) of the forced expiration (phase 1 and 2) and P3dur is the duration (s) of phase 3. The stroke
volume has now changed into

SV(t) = Kstr ·
Pvs0 −Kvs · Ps(t) + P3(t)

Pas(t)
. (16)

In phase 4 the arterial pressure starts to rise again after the left ventricle is refilled. The heart
rate is still quite high and this results in an overshoot in the arterial pressure as well as the
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stroke volume. This is rectified by the baroreflex, leading to a reflex bradycardia, after which
all return to normal. The stroke volume through all four phases can be summarized as

SV(t) =



Kstr · Pvs0+Kvs·Ps(t)
Pas(t)

if 0 ⩽ t < dPtime + P1dur

Kstr · Pvs0−Kvs·Ps(t)+P3(t)
Pas(t)

if dPtime + P1dur ⩽ t ⩽ dPtime + dPdur + P3dur

Kstr ·
Pvs0−Kvs·Ps(t)+P3(t)+P4amp

Pas(t)

if dPtime + dPdur + P3dur < t ⩽ dPtime + dPdur + P3dur + P4dur

Kstr · Pvs0+Kvs·Ps(t)+P4amp/5
Pas(t)

if t > dPtime + dPdur + P3dur + P4dur

(17)

where P4dur is the duration (s) of phase 4 and P4amp is the amplitude of pressure (mmHg)
increase that addresses the overshoot of the stroke volume in phase 4.

3.5.2 Dermal system

To simulate the phasic component of the EDA a second-order differential equation is used (ac-
cording to [84]) to imitate both the diffusion of sweat via the sweat ducts and the evaporation
from the skin. The EDA is stimulated by sympathetic activity, therefore the sympathetic tone
Tsym is taken as an input:

τrτdÿp(t) + (τr + τd)ẏp(t) + yp(t) = Tsym(t). (18)

Here, τr is the rise time (s) for each SCR, τd the decay time (s), and yp is the phasic component
(µS) of the Skin Conductance signal. τr and τd were directly taken from [84].

3.6 parameter estimation

The parameters introduced in the mathematical method were estimated by training them.
To do so the MATLAB function fminsearchbnd was used which performs bound-constrained
optimization using fminsearch[89]. Boundaries and initial parameters were taken from [9].
fminsearch makes use of the Nelder Mead[90] method. This method creates a simplex (with
n + 1 vertices) using the provided initial n parameters and perturbing them slightly. The
algorithm takes the following steps:

1. The points are sorted according to their function values from lowest to highest.

2. The centroid of all points except the worst point is calculated.

3. The ’worst’ point is reflected through this centroid.

4. If the reflected point is better than the best, expand in this direction. Use the best one
out of the expanded and reflected points.

5. In case the reflected point is worse than the worst point, contract towards the centroid.
Assuming that the contracted point is better than the worst, go to step 1 again. On the
other hand, if the contracted point is not better, execute a ’shrink’. Replace all points
(except for the best point) with points closer to the best point.
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6. Repeat these steps until the simplex remains almost constant. Ideally, the iterative cycle
should be terminated when the function to be optimized, falls below a predefined toler-
ance. However, this is rarely the case. Instead, the algorithm is often terminated after a
maximum number of iterations or when the change in function values is small enough.

An example of one iterative cycle for a two-dimensional problem can be seen in fig. 8.

Figure 8: An iteration of the Nelder-Mead algorithm in two-dimensional space[91].

Subsequently, the model was trained on the average of Tertoolen’s dataset and separately on
the average of the dataset of 2024. Standard deviations were calculated to quantify the amount
of variation in the distribution of the data around the mean. To personalize the model the H0

and aSKNA0 can be changed (based on average HR and aSKNA before performing the VM).
The final estimated parameters can be found in chapter 4.

model assessment

The following statistical measures were calculated to evaluate the model: the coefficient of
determination, R2, Root Mean Squared Error, RMSE, and the normalized RMSE. They can be
seen in table 6. The coefficient of determination[92], R2 was calculated using

R2 = 1−
SSres

SStot

= 1−

∑
i

(
ypred(i) − ymeas(i)

)2∑
i (ymeas(i) − ȳmeas)

2
.

(19)

Here, SSres is the residual sum of squares, SStot is the total sum of squares, ypred indicates
the predicted signal, and ymeas is the measured signal. The R-squared value measures the
goodness of fit of a model and ranges from zero to one (where 1 indicates a perfect fit).
The RMSE[93] (as the name suggests) was determined as

RMSE =

√√√√(∑T
i=10 ypred(i) − ymeas(i)

)2

T
. (20)

The RMSE was taken over an appropriate epoch (from t = 10s onward) to minimize the
effects of previous or posterior activities on measured data and sufficiently long after model
initialization. An RMSE of zero indicates a perfect fit. The NRMSE[94] was normalized with
respect to the range, in the following manner

NRMSE =
RMSE

max(ymeas) −min(ymeas)
. (21)
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The NRMSE ranges from zero to one if the predicted data is in the same range as the mea-
sured data. Here, again zero indicates a perfectly fitted model.

In summary, the methodology provided details on the experiments of Tertoolen and this
research, where ECG and EDA were recorded of subjects performing the VM and posture
changes. A schematic overview outlined the signal processing workflow used to retrieve HR,
SKNA, aSKNA, and the phasic and tonic components of EDA. The proposed model inte-
grated the cardiovascular system, baroreceptors, ANS, and skin. A mathematical model was
presented with differential equations for the arterial systemic pressure, the firing rate of the
baroreceptors and the phasic component of the EDA. Lastly, the chapter described the param-
eter estimation method.





4
R E S U LT S

In the following section, the results of the experiments that were conducted are shown. More-
over, a comparison is made between the modelled HR, aSKNA, and EDA, and those measured
features from Tertoolen’s dataset. Furthermore, the acquired dataset (heart rate and aSKNA
data) is compared to the predicted signals.

results study 2023 , tertoolen

In fig. 9 the mean with standard deviations over the features of interest can be seen for Study
2023, the pilot dataset of Tertoolen. The aSKNA response to the VM precedes the heart rate
and EDA response.

Subsequently, these average data were used to train the model parameters. This can be seen
in fig. 10. An example of these features for individual subjects over the entire timeline can be
seen in the appendix A in figs. 16 to 21. The heart rate and aSKNA predictions seem to follow
the measured data quite nicely. The (mean) EDA amplitude exhibits fluctuations, contrasting
with the smoother EDA prediction, but overall the trend is similar.

Figure 9: Mean (red) measured heart rate, aSKNA, and the phasic component of EDA for Tertoolen’s
pilot dataset shown over time, where the VM is performed at t = 30 s for 15 s. During this
epoch, the subject was sitting and performed the second VM. The green areas indicate the
standard deviation.

31
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Figure 10: Predicted (blue) and measured (red) mean heart rate, aSKNA, and the phasic component of
EDA over time. The measured data is from Study 2023, Tertoolen’s pilot dataset. The subject
was sitting and performed the Valsalva Manoeuvre between 30 and 45 s.

results study 2024

Below, the results of Study 2024 are presented. Due to a technical issue with the Refa, the
sampling frequency of the ECG data was in question. This will be discussed in more detail in
chapter 5. Thus, data processing was carried out using both assumed sampling frequencies:
2048 and 1250 Hz. The results of this analysis are given here. The final estimated parameters
and the general parameters can be found in tables 7 and 8.

Sampling frequency 2048 Hz

First, the results are given with an assumed sampling frequency of 2048 Hz. Figure 11 shows
the mean measured heart rate and aSKNA data with standard deviation for the acquired
dataset, Study 2024. The plot depicts the VM during standing. Prior, the activities of lying
down, sitting, and the initial VM were performed. Unfortunately, EDA data was not recorded
for all subjects and the acquired EDA data was not up to standards. Moreover, the alignment
between the Refa and E4 data was somewhat unclear. Consequently, it was difficult to deter-
mine the exact timing of the experiment activities. The individual results per subject can be
seen in appendix A.2.2.

The baseline heart rate for Study 2024 is higher than for Study 2023 with an average of 138

bpm and 82 bpm, respectively. The aSKNA data is more comparable, although the peak am-
plitude of 2024 exceeds that of 2023, 0.56 µV versus 0.43 µV. The standard deviation for 2024

is a bit larger than in 2023 due to the wider spread of data.

In fig. 12 the model versus measured data from Study 2024 can be seen. The model was
again optimized, but this time using the mean dataset of 2024. The model predicts a lower
baseline heart rate. The aSKNA prediction shows a delayed response. When comparing the
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aSKNA data from both Study 2024 and Study 2023, it reveals that the VM initially triggers a
sharp response that gradually decreases. This behaviour is less pronounced in the predicted
aSKNA data. Moreover, the model predicts a simultaneous (or even a delayed) response of
the aSKNA and heart rate to the VM, while all measured data suggested only a delayed heart
rate response.

Figure 11: Mean (red) measured heart rate and aSKNA for the dataset of 2024 shown over time, where
the VM is performed at t = 15 s for 15 s. During this epoch, the subject was standing. The
green areas indicate the standard deviation.

Figure 12: Predicted (blue) and measured (red) mean heart rate and aSKNA over time. The measured
data is from the dataset acquired in 2024. The subject was standing and performed the
Valsalva Manoeuvre between 15 and 30 s.
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Sampling frequency 1250 Hz

Here, the results are provided with an assumed sampling frequency of 1250 Hz. Consequently,
it was not possible to use a bandpass filter with a bandwidth of 500 to 1000 Hz. Therefore,
SKNA data was acquired by filtering between 500 and 625 Hz.

Figure 13 shows the mean measured heart rate and aSKNA data with standard deviation
for the acquired dataset, Study 2024. The plot depicts the VM during standing. Prior, the ac-
tivities of lying down, sitting, and the initial VM were performed. The individual results per
subject can be seen in appendix A.2.1.

Here, the baseline heart rate for Study 2024 is comparable to Study 2023, 73 and 82 bpm,
respectively. This mean heart rate falls within a more physiologically expected range com-
pared to the findings from Study 2024 (2048 Hz). The aSKNA peak amplitude is considerably
lower, 0.19 µV, compared to 0.43 µV in Study 2023.

In fig. 14 the model versus the (in 2024) measured data can be seen. The model was again op-
timized using the mean dataset of 2024. The model predicts an expedited heart rate response
compared to the measured heart rate data, while the aSKNA prediction shows a delayed re-
sponse relative to measured aSKNA data. The predicted heart rate response occurs faster than
the predicted aSKNA response to the VM. This is in contrast with measured data.

Figure 13: Mean (red) measured heart rate and aSKNA for Study 2024 shown over time, where the VM
is performed at t = 15 s for 15 s. During this epoch, the subject was standing. The green areas
indicate the standard deviation.
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Figure 14: Predicted (blue) and measured (red) mean heart rate and aSKNA over time. The measured
data is from Study 2024. The subject was standing and performed the Valsalva Manoeuvre
between 15 and 30 s.

model performance

Table 6 shows the model performance using the coefficient of determination, R2, the Root
Mean Squared Error, RMSE, and the normalized RMSE.

Table 6: Comparison of model performance using the coefficient of determination (R2), the Root Mean
Squared Error (RMSE), and Normalized Root Mean Squared Error (NRMSE) on Tertoolen’s
dataset and the acquired dataset.

R2 RMSE NRMSE

Mean 2023 Tertoolen

HR 0.623 8.790 bpm 0.257

aSKNA 0.770 0.075 µV 0.193

EDA 0.587 0.041 µS 0.041

Mean 2024 (2048 Hz)

HR 0.694 17.605 bpm 0.356

aSKNA 0.486 0.115 µV 0.264

Mean 2024 (1250 Hz)

HR 0.075 12.368 bpm 0.379

aSKNA 0.692 0.027 µV 0.199

The coefficient of determination mainly assesses the shape of the plot and its fit to the model,
placing less emphasis on the difference in average amplitude. The model performs best on
Study 2023 (Tertoolen’s dataset) according to the R-squared values. This is also true according
to the NRMSE. The aSKNA prediction is most comparable over both studies (and for both
assumed sampling rates for Study 2024), with R-squared values between 0.486 and 0.770.



36 results

However, especially heart rate prediction for Study 2024 (with an assumed sampling frequency
of 1250 Hz) falls short, with an extremely low value for the coefficient of determination, 0.075,
and a somewhat high NRMSE, 0.379. This results mainly from the difference in timing. The
lowest NRMSE value, 0.041, is reported in the EDA assessment. However, the corresponding
coefficient of determination is only 0.587.

Table 7: General model parameters.

General Definition Value Unit

N0 Minimum threshold baroreceptors firing rate 35 [9] Hz

M Maximum baroreceptors firing rate 120 [9] Hz

Psmax Maximum intra-thoracic pressure 40 [9] mmHg

dPdur Duration of forced expiration (VM) 15 s

τr Rise time SCR 0.73 [84] s

τd Decay time SCR 2.86 [84] s

In summary, this results chapter showed good correspondence based on statistical and vi-
sual comparison between the modelled and measured features: heart rate, aSKNA, and EDA.
However, the clear faster response of the sympathetic activity compared to SCR and heart rate
response in measured data was not reflected by the model. However, the predictions did show
similarity with measurements, especially for the model trained on Tertoolen’s dataset.
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Table 8: Final estimated parameters for each dataset.

Parameter Definition Study 2023 Study 2024 (fs = 2048 Hz) Study 2024 (fs = 1250 Hz) Unit

β Dampening factor 1.36 1.39 1.40

Cas Arterial systemic compliance 0.10 0.10 0.15 L/mmHg

τ Time constant 3.21 3.45 3.47 s

K Weighting factor 0.94 0.95 0.96 Hz/mmHg

H0 Mean heart rate 89.81 100.00 84.75 bpm

Pasmean Mean arterial systemic pressure 116.47 117.62 119.96 mmHg

aSKNA0 Baseline aSKNA 0.06 0.05 0.02 µV

KaSKNA Scaling factor aSKNA 5.90 6.40 6.29

Mp Scaling factor parasympathetic response 0.71 0.08 0.38

Ms Scaling factor sympathetic response 0.11 0.82 0.22

Pvs0 Mean venous systemic pressure before VM 9.42 9.97 10.02 mmHg

Kvs Weighting factor for the venous systemic pressure 0.34 0.32 0.33

PR0 Baseline peripheral resistance 6.24 6.55 6.58 mHgmin/L

KPR Scaling factor peripheral resistance 3.19 1.80 3.2

Kstr Weighting factor stroke volume 0.92 0.94 0.94 L/b

P1dur Duration phase 1 2.09 2.13 2.13 s

R1amp Amplitude resistance increase in phase 1 2.57 2.73 2.74 mmHgmin/L

P3dur Duration phase 3 3.59 3.72 3.73 second

P3amp Amplitude of pressure drop in phase 3 2.60 2.69 2.70 mmHg

P4dur Duration phase 4 2.35 2.42 2.43 s

P4amp Amplitude of pressure increase in phase 4 4.12 4.21 4.21 mmHg

dPtime Timestamp start VM 28 15 15 s

dPrate Growing rate pressure 5.00 5.00 5.00
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D I S C U S S I O N & R E C O M M E N D AT I O N S

In this exploratory research, a model was proposed to predict the ANS response to the perfor-
mance of a VM. The features modelled were heart rate, aSKNA, and the phasic tone of EDA.
The model was trained on the mean data of Tertoolen’s dataset and the dataset acquired dur-
ing this research. In chapter 4 the results were given of the measured as well as predicted
data.

inconsistency sampling frequency study 2024

As briefly mentioned in chapter 4, the sampling frequency of the ECG data was called into
question. The analyzed data yielded unusually high heart rates that fell outside the expected
physiological range for this type of experiment. By calculating the frequency using the known
start and end timestamps and the number of samples, the sampling frequency was deter-
mined to be approximately 1250 Hz. Upon reviewing the system specifications (see fig. 45), it
became evident that a sampling frequency of 2048 Hz was not an available option. Instead, the
system allowed for frequencies of among others, 1250 Hz and 2500 Hz. After a collaborative
discussion with TMSi[95], we reached the conclusion that the Refa device likely operated at
the nearest possible sampling frequency (rounded down), which was a sampling frequency of
1250 Hz.
It is highly likely that the 1250 Hz data is correct. Therefore, it seems most logical to focus on
discussing and interpreting these results further.

discussion of results

The measured data from Study 2023 and Study 2024 (with a sampling frequency of 1250Hz)
indicated that the heart rate and phasic EDA display a delayed response to the autonomic
function test, while the sympathetic response precedes. This can be explained by the fact that
sympathetic activity triggers the increase in heart rate and stimulates the eccrine sweat glands,
resulting in a rise in phasic EDA. Both of these processes might require a short period of time.

For both experiments, the second VM was chosen to depict. For Study 2023, Tertoolen’s exper-
iment, this was after performing the following activities; lying, VM, lying, and sitting. Yet, for
our experiment, Study 2024, the subjects performed the following activities; lying, VM, sitting,
and standing. From figs. 23, 24 and 27 in appendix A.2.1, it can be observed that the heart rate
did not always return to baseline after each activity. Likely, the time provided for heart rate
recovery between activities was inadequate.

The aSKNA signal returns to baseline after each activity because the SNS responds rapidly
and its activity is short-lived. However, the amplitude of the measured aSKNA responses var-
ied between studies. This difference may be due to variations in filtering parameters. In Study
2024, data could only be filtered between 500 and 625 Hz, because the sampling frequency was
1250 Hz. This limited the maximum frequency that could be accurately analyzed (known as

39
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the Nyquist frequency). In contrast, in Study 2023, SKNA was analyzed with a bandpass filter
between 500 and 1000 Hz, allowing a broader frequency range. Besides, Tertoolen also stated
in her thesis that a sampling frequency above 2000 Hz was required to overcome aliasing.

Regarding the EDA results, it can be said that the effect of the VM is not as clear as in
the literature, as illustrated in [49], and has a large variation in amplitude, thus it also has a
quite large standard deviation interval. Perhaps the processing of EDA data can be refined.
Moreover, the quality of EDA might be lower, although both Tertoolen and Baghestani et al.
collected EDA signals from the index and middle finger. Unfortunately, the EDA data from
Study 2024 was of lower quality. This might be explained by the signal being recorded on
the wrist (using the Empatica E4). Eccrine sweat glands are primarily located on the palms of
the hands, soles of the feet, forehead and armpits[65]. Therefore, wrist-worn devices to record
EDA seem less reliable (though Mee et al.[96] saw that wrist-based measurements of EDA
demonstrated directional consistency with palm-based measurements but had modest corre-
lations with them). Lastly, the EDA data was not recorded consistently for all subjects and the
timing alignment between the E4 (EDA) data and Refa (ECG) data was unclear. Baghestani
et al. observed an average delay in EDA burst onset of 4.6 s compared to the iSKNA burst.
This makes the alignment between data even more difficult. A solution for this could be to
trigger all signals by starting with a VM. Following this, a sufficiently long recovery period
should be provided, after which the actual protocol could be executed.

The simulated features (figs. 10 and 14) are quite promising and show similarity to measured
data. Especially the simulated sympathetic activity, as reflected by the simulation of aSKNA,
compared to Study 2023, Tertoolen’s dataset, shows potential judging by the reported (table 6)
high R-squared value (0.770) and the NRMSE (0.193). However, the baseline aSKNA should be
adjusted lower based on measured data (from Study 2023). The reported statistical measures
for Study 2024 show a reduced performance for heart rate prediction, but a comparable per-
formance for aSKNA prediction. The timing of the heart rate response is particularly complex.

It is evident that the shape of measured and predicted data differ somewhat. The reason for
this could be incorrect model parameters and the level of simplification of the model. Specifi-
cally, as stated in chapter 2, the SNS is involved in a more complex process and thus exhibits
a delayed response compared to the PSNS, with a typical delay of 4 to 7 s[32]. This delay, as
incorporated by Ottesen and Olufsen[32], was not included in our model, which significantly
impacts the timing of the heart rate, aSKNA, and EDA responses. I have shortly experimented
with incorporating a time delay in the Simulink model. However, this introduced instability
into the system. Specifically, the heart rate showed fluctuations as it tried to reach equilibrium,
and the system demonstrated considerable oscillations when the VM was applied as a distur-
bance. This suggests that while timing is important, it must be carefully integrated to avoid
negatively affecting model performance.
The model aims to simulate a general response to the VM. The model parameters are expected
to improve with additional time. Perhaps employing a different optimization technique or
function, rather than fminsearch, could reduce computation time. Additionally, exploring al-
ternative approaches, such as machine learning, may lead to a more accurate model, though
it poses the risk of overfitting.
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recommendations

Looking back on the experiments, it is recommended to change the study design. Sufficient
recovery time should be incorporated between stimuli (e.g. waiting 30 s or more after VM to
stand up). This adjustment would prevent the VM from influencing the response to standing
up, and vice versa, thereby also improving the accuracy of data analysis. Besides, this makes
it easier to model. Furthermore, as the model predicts a response to the VM, only the VM
should be tested. The postural changes are not the focus of this study, but various static pos-
tures could be incorporated in different sessions. Lastly, I would invest more time into the
integration of the time delay for the sympathetic tone compared to the parasympathetic tone
into the model.
Finally, I would suggest incorporating blood pressure measurements into the protocol. This ad-
ditional input (along with the timing of the VM, which is now the only input), could enhance
the model and improve its physiological accuracy. I was unable to do so due to equipment
being unavailable.
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C O N C L U S I O N

In this thesis, the autonomic cardiac regulation was explored by evaluating the sympathetic
response to the Valsalva Manoeuvre in ten participants. A simplified model was developed
to simulate three features related to sympathetic activity: aSKNA, heart rate, and phasic tone
of EDA. The model parameters were trained on the mean data from a previously obtained
dataset from Tertoolen[1], Study 2023, and on the mean data from the dataset acquired during
this research, Study 2024.

Finally, the predicted features showed useful similarity to the measured signals; however,
statistical analysis indicated room for improvement. The heart rate prediction on the dataset
of Study 2023 was quite promising with an adequate R-squared value of 0.623 and an RMSE
normalized with respect to the range of 0.257. Heart rate prediction on the dataset of Study
2024 (sampled at 1250 Hz) lacked timing precision, leading to an R-squared value of 0.075,
and an NRMSE of 0.379. However, aSKNA prediction on both datasets was satisfactory with
reported R-squared values of 0.770 (Study 2023) and 0.692 (Study 2024), and NRMSEs of 0.193

(Study 2023), and 0.199 (Study 2024). EDA prediction results (for Study 2023) were also en-
couraging with an R-squared value of 0.587 and NRMSE of 0.041.
The model predicted simultaneous heart rate and aSKNA responses to the VM, whereas mea-
sured data showed a delayed heart rate response. The model did not incorporate the difference
in timing between the sympathetic response and the faster parasympathetic response.

Consequently, further model and parameter optimization is necessary, potentially incorporat-
ing machine learning and the delay in sympathetic response. Additionally, integrating mea-
sured blood pressure signals could enhance the model’s accuracy. In conclusion, this study
presents a well-simplified initial attempt at modelling autonomic cardiac control, resulting
in heart rate, aSKNA, and EDA simulations comparable with experimental data. This resem-
blance gave insight into the functioning of autonomic cardiac regulation and laid a foundation
for future research.

43



B I B L I O G R A P H Y

[1] Jacomine Tertoolen. ‘Evaluation of the Cardiac Tone by Sympathetic Skin Nerve Activ-
ity.’ In: Masterthesis (2023).

[2] Brain & Spine specialists. Nervous System Facts: Human Nerves Explained. 2023. url:
https : / / brainandspinecenterllc . com / 2023 / 06 / 23 / how - many - nerves - are - in -

the-human-body/#:~:text=Divingintotheworldof,toabody’selectricalwiring..
[3] Office of Communications. What are the parts of the nervous system? 2018. url: https:

/ / www . nichd . nih . gov / health / topics / neuro / conditioninfo / parts# : ~ : text =

Thecentralnervoussystemis,allpartsofthebody..
[4] Thomas H. Everett, Anisiia Doytchinova, Yong-Mei Cha, and Peng-Sheng Chen. ‘Record-

ing Sympathetic Nerve Activity from the Skin.’ In: Trends Cardiovasc Med. 1 (2018),
463–472. doi: 10.1016/j.tcm.2017.05.003..

[5] Ting Yu Li, Wei Chung Tsai, and Shien Fong Lin. ‘Non-invasive Recording of Parasym-
pathetic Nervous System Activity on Auricular Vagal Nerve Branch.’ In: Proceedings of
the Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
EMBS 2020-July (2020), pp. 4337–4340. issn: 1557170X. doi: 10.1109/EMBC44109.2020.
9176098.

[6] Xiao Liu et al. ‘Skin sympathetic nerve activity as a biomarker of fitness.’ In: Heart
Rhythm 18.12 (2021), pp. 2169–2176. issn: 15563871. doi: 10.1016/j.hrthm.2021.08.031.

[7] Anisiia Doytchinova et al. ‘Simultaneous noninvasive recording of skin sympathetic
nerve activity and electrocardiogram.’ In: Heart Rhythm 14.1 (2017), pp. 25–33. issn:
15563871. doi: 10.1016/j.hrthm.2016.09.019. url: http://dx.doi.org/10.1016/
j.hrthm.2016.09.019.

[8] Ilya A. Rybak, Yaroslav I. Molkov, Julian F.R. Paton, Ana P.L. Abdala, and Daniel B.
Zoccal. ‘Modeling the Autonomic Nervous System.’ In: Primer on the Autonomic Nervous
System (2012), pp. 681–687. doi: 10.1016/B978-0-12-386525-0.00143-8.

[9] Michel Kana and Jiri Holcik. ‘Mathematical model-based markers of autonomic ner-
vous activity during the Valsalva Maneuver and comparison to heart rate variability.’
In: Biomedical Signal Processing and Control 6.3 (2011), pp. 251–260. issn: 17468108. doi:
10.1016/j.bspc.2011.05.001. url: http://dx.doi.org/10.1016/j.bspc.2011.05.001.

[10] Takashi Kusayama et al. ‘Simultaneous noninvasive recording of electrocardiogram and
skin sympathetic nerve activity (neuECG).’ In: Nature Protocols 15.5 (2020), pp. 1853–
1877. issn: 17502799. doi: 10.1038/s41596-020-0316-6. url: http://dx.doi.org/10.
1038/s41596-020-0316-6.

[11] K Yamamoto, G Sobue, S Iwase, T Mitsuma, and T Mano. ‘[Skin sympathetic nerve
activity in amyotrophic lateral sclerosis].’ In: Rinsho shinkeigaku = Clinical neurology 34.4
(Apr. 1994), pp. 377–80. issn: 0009-918X.

[12] Stian Roti Svendby. MATHEMATICAL MODELLING OF HEART RATE DURING CY-
CLING EXERCISE. Tech. rep. 2016.

[13] Maarten Thoonen, Peter Veltink, Frank Halfwerk, Robby Van Delden, and Ying Wang.
‘A Movement-Artefact-Free Heart-Rate Prediction System.’ In: Computing in Cardiology
2022-Septe (2022), pp. 1–4. issn: 2325887X. doi: 10.22489/CinC.2022.190.

[14] Yurii M. Ishbulatov, Anatoly S. Karavaev, Anton R. Kiselev, Margarita A. Simonyan,
Mikhail D. Prokhorov, Vladimir I. Ponomarenko, Sergey A. Mironov, Vladimir I. Grid-

44

https://brainandspinecenterllc.com/2023/06/23/how-many-nerves-are-in-the-human-body/#:~:text=Diving into the world of,to a body's electrical wiring.
https://brainandspinecenterllc.com/2023/06/23/how-many-nerves-are-in-the-human-body/#:~:text=Diving into the world of,to a body's electrical wiring.
https://www.nichd.nih.gov/health/topics/neuro/conditioninfo/parts#:~:text=The central nervous system is,all parts of the body.
https://www.nichd.nih.gov/health/topics/neuro/conditioninfo/parts#:~:text=The central nervous system is,all parts of the body.
https://www.nichd.nih.gov/health/topics/neuro/conditioninfo/parts#:~:text=The central nervous system is,all parts of the body.
https://doi.org/10.1016/j.tcm.2017.05.003.
https://doi.org/10.1109/EMBC44109.2020.9176098
https://doi.org/10.1109/EMBC44109.2020.9176098
https://doi.org/10.1016/j.hrthm.2021.08.031
https://doi.org/10.1016/j.hrthm.2016.09.019
http://dx.doi.org/10.1016/j.hrthm.2016.09.019
http://dx.doi.org/10.1016/j.hrthm.2016.09.019
https://doi.org/10.1016/B978-0-12-386525-0.00143-8
https://doi.org/10.1016/j.bspc.2011.05.001
http://dx.doi.org/10.1016/j.bspc.2011.05.001
https://doi.org/10.1038/s41596-020-0316-6
http://dx.doi.org/10.1038/s41596-020-0316-6
http://dx.doi.org/10.1038/s41596-020-0316-6
https://doi.org/10.22489/CinC.2022.190


bibliography 45

nev, Boris P. Bezruchko, and Vladimir A. Shvartz. ‘Mathematical modeling of the car-
diovascular autonomic control in healthy subjects during a passive head-up tilt test.’ In:
Scientific Reports 10.1 (Dec. 2020). issn: 20452322. doi: 10.1038/s41598-020-71532-7.

[15] Francis J. Doyle, Michael A. Henson, Babatunde A. Ogunnaike, James S. Schwaber, and
Ilya Rybak. Neuronal Modeling of the Baroreceptor Reflex with Applications in Process Mod-
eling and Control. Woodhead Publishing Limited, 1997, pp. 87–127. doi: 10.1016/b978-
012526430-3/50006-4. url: http://dx.doi.org/10.1016/B978-012526430-3/50006-4.

[16] Mette S Olufsen, Hien T Tran, Johnny T Ottesen, Research Experiences, Undergraduates
Program, Lewis A Lipsitz, and Vera Novak. ‘Modeling baroreflex regulation of heart rate
during orthostatic stress.’ In: Am J Physiol Regul Integr Comp Physiol 291 (2006), pp. 1355–
1368. doi: 10.1152/ajpregu.00205.2006.-During. url: http://www.ajpregu.org.

[17] Mette S. Olufsen, April V. Alston, Hien T. Tran, Johnny T. Ottesen, and Vera Novak.
‘Modeling heart rate regulation - Part I: Sit-to-stand versus head-up tilt.’ In: Cardiovascu-
lar Engineering 8.2 (2008), pp. 73–87. issn: 15678822. doi: 10.1007/s10558-007-9050-8.

[18] Jacob Sturdy, Johnny T. Ottesen, and Mette S. Olufsen. ‘Modeling the differentiation of
A- and C-type baroreceptor firing patterns.’ In: Journal of Computational Neuroscience 42.1
(Feb. 2017), pp. 11–30. issn: 15736873. doi: 10.1007/s10827-016-0624-6.

[19] Maxwell Lewis Neal and James B. Bassingthwaighte. ‘Subject-specific model estimation
of cardiac output and blood volume during hemorrhage.’ In: Cardiovascular Engineering
7.3 (Sept. 2007), pp. 97–120. issn: 15678822. doi: 10.1007/s10558-007-9035-7.

[20] Fuyou Liang and Hao Liu. ‘Simulation of hemodynamic responses to the Valsalva ma-
neuver: An integrative computational model of the cardiovascular system and the au-
tonomic nervous system.’ In: Journal of Physiological Sciences 56.1 (Feb. 2006), pp. 45–65.
issn: 18806546. doi: 10.2170/physiolsci.RP001305.

[21] K. Hemalatha and M. Manivannan. ‘Valsalva maneuver for the analysis of interaction
hemodynamic - Model study.’ In: ITC 2010 - 2010 International Conference on Recent Trends
in Information, Telecommunication, and Computing. 2010, pp. 28–32. isbn: 9780769539751.
doi: 10.1109/ITC.2010.54.

[22] Jennie Tsao, Subhadra Evans, Laura Seidman, Lung, Lonnie Zeltzer, and Bruce Naliboff.
‘Heart rate variability as a biomarker for autonomic nervous system response differences
between children with chronic pain and healthy control children.’ In: Journal of Pain
Research (June 2013), p. 449. issn: 1178-7090. doi: 10.2147/JPR.S43849.

[23] Chandra Mohan Kumar and André A J Van Zundert. ‘Intraoperative Valsalva maneuver:
a narrative review.’ eng. In: Canadian journal of anaesthesia = Journal canadien d’anesthesie
65.5 (May 2018), pp. 578–585. issn: 1496-8975 (Electronic). doi: 10.1007/s12630-018-
1074-6.

[24] Simulink Documentation. Simulation and Model-Based Design. 2024. url: https://www.
mathworks.com/products/simulink.html.

[25] Dr. Qaiswer Shah Lakanwal and Dr. Mujahed Hematyar. ‘Autonomic nervous system
anatomy.’ In: International Journal of Advanced Academic Studies 3.3 (2021), pp. 130–135.
issn: 27068919. doi: 10.33545/27068919.2021.v3.i3b.590.

[26] ScienceDirect. Lie Detection - an overview. 2013. url: https : / / www . sciencedirect .

com / topics / nursing - and - health - professions / lie - detection# : ~ : text = Lie %

20detection%20is%20based%20on,questioned%20by%20a%20trained%20examiner.
[27] John Synnott, David Dietzel, and Maria Ioannou. ‘A review of the polygraph: history,

methodology and current status.’ In: Crime Psychology Review 1.1 (Jan. 2015), pp. 59–83.
issn: 23744014. doi: 10.1080/23744006.2015.1060080.

[28] National Research Council. The Polygraph and Lie Detection. Washington, DC: The Na-
tional Academies Press, 2003.

https://doi.org/10.1038/s41598-020-71532-7
https://doi.org/10.1016/b978-012526430-3/50006-4
https://doi.org/10.1016/b978-012526430-3/50006-4
http://dx.doi.org/10.1016/B978-012526430-3/50006-4
https://doi.org/10.1152/ajpregu.00205.2006.-During
http://www.ajpregu.org
https://doi.org/10.1007/s10558-007-9050-8
https://doi.org/10.1007/s10827-016-0624-6
https://doi.org/10.1007/s10558-007-9035-7
https://doi.org/10.2170/physiolsci.RP001305
https://doi.org/10.1109/ITC.2010.54
https://doi.org/10.2147/JPR.S43849
https://doi.org/10.1007/s12630-018-1074-6
https://doi.org/10.1007/s12630-018-1074-6
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://doi.org/10.33545/27068919.2021.v3.i3b.590
https://www.sciencedirect.com/topics/nursing-and-health-professions/lie-detection#:~:text=Lie%20detection%20is%20based%20on,questioned%20by%20a%20trained%20examiner
https://www.sciencedirect.com/topics/nursing-and-health-professions/lie-detection#:~:text=Lie%20detection%20is%20based%20on,questioned%20by%20a%20trained%20examiner
https://www.sciencedirect.com/topics/nursing-and-health-professions/lie-detection#:~:text=Lie%20detection%20is%20based%20on,questioned%20by%20a%20trained%20examiner
https://doi.org/10.1080/23744006.2015.1060080


46 bibliography

[29] S. Braune, A. Hetzel, A. Prasse, K. Dohms, B. Guschlbauer, and C. H. Lücking. ‘Stim-
ulation of sympathetic activity by carbon dioxide in patients with autonomic failure
compared to normal subjects.’ In: Clinical Autonomic Research 7.6 (Dec. 1997), pp. 327–
332. issn: 0959-9851. doi: 10.1007/BF02267726.

[30] Jens Jordan, John R. Shannon, Andre Diedrich, Bonnie Black, Fernando Costa, David
Robertson, and Italo Biaggioni. ‘Interaction of Carbon Dioxide and Sympathetic Ner-
vous System Activity in the Regulation of Cerebral Perfusion in Humans.’ In: Hyperten-
sion 36.3 (Sept. 2000), pp. 383–388. issn: 0194-911X. doi: 10.1161/01.HYP.36.3.383.

[31] Francesco Onorati, Riccardo Barbieri, Maurizio Mauri, Vincenzo Russo, and Luca Mainardi.
‘Reconstruction and analysis of the pupil dilation signal: Application to a psychophysi-
ological affective protocol.’ In: 2013 35th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC). IEEE, July 2013, pp. 5–8. isbn: 978-1-4577-
0216-7. doi: 10.1109/EMBC.2013.6609423.

[32] J. T. Ottesen and M. S. Olufsen. ‘Functionality of the baroreceptor nerves in heart rate
regulation.’ In: Computer Methods and Programs in Biomedicine 101.2 (2011), pp. 208–219.
issn: 01692607. doi: 10.1016/j.cmpb.2010.10.012. url: http://dx.doi.org/10.1016/
j.cmpb.2010.10.012.

[33] Stuart Ira Fox. Human Physiology. 10th ed. New York, NY: McGraw-Hill Education, 2008.
isbn: 9780073344331.

[34] Agnieszka Zygmunt and Jerzy Stanczyk. Methods of evaluation of autonomic nervous system
function. 2010. doi: 10.5114/aoms.2010.13500.

[35] C. J. Mathias, I. Corazza, P. Guaraldi, G. Barletta, and P. Cortelli. ‘Autonomic nervous
system: Clinical testing.’ In: The Curated Reference Collection in Neuroscience and Biobehav-
ioral Psychology. Elsevier Science Ltd., Jan. 2017, pp. 911–928. isbn: 9780128093245. doi:
10.1016/B978-0-12-809324-5.01817-4.

[36] David Chambers, Christopher Huang, and Gareth Matthews. Basic Physiology for Anaes-
thetists. Section 3 Cardiovascular Physiology. Chapter 41 Valsalva Manoeuvre. Cambridge Uni-
versity Press, July 2019, p. 175. isbn: 9781108565011. doi: 10.1017/9781108565011. url:
https://www.cambridge.org/core/product/identifier/9781108565011/type/book.

[37] I. Kutkut et al. ‘Skin sympathetic nerve activity as a biomarker for neurologic recovery
during therapeutic hypothermia for cardiac arrest.’ In: Heart rhythm 18 (2021). doi: 10.
1016/j.hrthm.2021.03.011.

[38] Wenbo He, Yuzhu Tang, Guannan Meng, Danning Wang, Johnson Wong, Gloria A.
Mitscher, David Adams, Thomas H. Everett, Peng-Sheng Chen, and Shalini Manchanda.
‘Skin sympathetic nerve activity in patients with obstructive sleep apnea.’ In: Heart
Rhythm 17.11 (Nov. 2020), pp. 1936–1943. issn: 15475271. doi: 10.1016/j.hrthm.2020.
06.018. url: https://linkinghub.elsevier.com/retrieve/pii/S1547527120305968.

[39] Nancy Gullett, Zuzanna Zajkowska, Annabel Walsh, Ross Harper, and Valeria Mon-
delli. ‘Heart rate variability (HRV) as a way to understand associations between the au-
tonomic nervous system (ANS) and affective states: A critical review of the literature.’
In: International Journal of Psychophysiology 192 (Oct. 2023), pp. 35–42. issn: 01678760. doi:
10.1016/j.ijpsycho.2023.08.001.

[40] Zhipeng Cai, Hongyi Cheng, Yantao Xing, Feifei Chen, Yike Zhang, and Chang Cui.
‘Autonomic nervous activity analysis based on visibility graph complex networks and
skin sympathetic nerve activity.’ In: Frontiers in Physiology 13 (Sept. 2022). issn: 1664-
042X. doi: 10.3389/fphys.2022.1001415.

[41] Jiakun Li and Lihui Zheng. The Mechanism of Cardiac Sympathetic Activity Assessment
Methods: Current Knowledge. June 2022. doi: 10.3389/fcvm.2022.931219.

https://doi.org/10.1007/BF02267726
https://doi.org/10.1161/01.HYP.36.3.383
https://doi.org/10.1109/EMBC.2013.6609423
https://doi.org/10.1016/j.cmpb.2010.10.012
http://dx.doi.org/10.1016/j.cmpb.2010.10.012
http://dx.doi.org/10.1016/j.cmpb.2010.10.012
https://doi.org/10.5114/aoms.2010.13500
https://doi.org/10.1016/B978-0-12-809324-5.01817-4
https://doi.org/10.1017/9781108565011
https://www.cambridge.org/core/product/identifier/9781108565011/type/book
https://doi.org/10.1016/j.hrthm.2021.03.011
https://doi.org/10.1016/j.hrthm.2021.03.011
https://doi.org/10.1016/j.hrthm.2020.06.018
https://doi.org/10.1016/j.hrthm.2020.06.018
https://linkinghub.elsevier.com/retrieve/pii/S1547527120305968
https://doi.org/10.1016/j.ijpsycho.2023.08.001
https://doi.org/10.3389/fphys.2022.1001415
https://doi.org/10.3389/fcvm.2022.931219


bibliography 47

[42] Yantao Xing et al. ‘Design and evaluation of an autonomic nerve monitoring system
based on skin sympathetic nerve activity.’ In: Biomedical Signal Processing and Control 76

(July 2022), p. 103681. issn: 17468094. doi: 10.1016/j.bspc.2022.103681.
[43] Songwen Chen, Guannan Meng, Anisiia Doytchinova, Johnson Wong, Susan Straka,

Julie Lacy, Xiaochun Li, Peng Sheng Chen, and Thomas H. Everett IV. ‘Skin Sym-
pathetic Nerve Activity and the Short-Term QT Interval Variability in Patients With
Electrical Storm.’ In: Frontiers in Physiology 12.December (2021). issn: 1664042X. doi:
10.3389/fphys.2021.742844.

[44] T. C. Huang et al. ‘Skin sympathetic nerve activity and ventricular arrhythmias in acute
coronary syndrome.’ In: Heart Rhythm 19 (2022). doi: 10.1016/j.hrthm.2022.04.031.

[45] Andrew Lee, Xiao Liu, Carine Rosenberg, Sanjana Borle, Daerin Hwang, Lan S. Chen,
Xiaochun Li, Noel Bairey Merz, and Peng-Sheng Chen. ‘Skin sympathetic nerve activ-
ity in patients with chronic orthostatic intolerance.’ In: Heart Rhythm 19.7 (July 2022),
pp. 1141–1148. issn: 15475271. doi: 10 . 1016 / j . hrthm . 2022 . 03 . 015. url: https :

//linkinghub.elsevier.com/retrieve/pii/S1547527122002399.
[46] Daerin Hwang et al. ‘Sympathetic toggled sinus rate acceleration as a mechanism of sus-

tained sinus tachycardia in chronic orthostatic intolerance syndrome.’ In: Heart Rhythm
19.12 (Dec. 2022), pp. 2086–2094. issn: 15475271. doi: 10.1016/j.hrthm.2022.08.015.
url: https://linkinghub.elsevier.com/retrieve/pii/S1547527122023116.

[47] Yu Chen Chen et al. ‘Skin sympathetic nerve activity as a potential biomarker for overac-
tive bladder.’ In: World Journal of Urology 41.5 (May 2023), pp. 1373–1379. issn: 14338726.
doi: 10.1007/s00345-023-04376-1.

[48] Weiwei Wang et al. ‘Skin sympathetic nerve activity as a biomarker for outcomes in
spontaneous intracerebral hemorrhage.’ In: Annals of Clinical and Translational Neurology
10.7 (July 2023), pp. 1136–1145. issn: 2328-9503. doi: 10.1002/acn3.51795. url: https:
//onlinelibrary.wiley.com/doi/10.1002/acn3.51795.

[49] Farnoush Baghestani, Youngsun Kong, William D’Angelo, and Ki H. Chon. ‘Analysis
of sympathetic responses to cognitive stress and pain through skin sympathetic nerve
activity and electrodermal activity.’ In: Computers in Biology and Medicine 170 (Mar. 2024),
p. 108070. issn: 00104825. doi: 10.1016/j.compbiomed.2024.108070. url: https://
linkinghub.elsevier.com/retrieve/pii/S0010482524001549.

[50] A. Uradu, J. Wan, A. Doytchinova, K. C. Wright, A. Y. Lin, L. S. Chen, C. Shen, S. F. Lin,
T. H. Everett, and P. S. Chen. ‘Skin sympathetic nerve activity precedes the onset and
termination of paroxysmal atrial tachycardia and fibrillation.’ In: Heart Rhythm 14 (2017).
doi: 10.1016/j.hrthm.2017.03.030.

[51] Pei Zhang et al. ‘Characterization of skin sympathetic nerve activity in patients with car-
diomyopathy and ventricular arrhythmia.’ In: Heart Rhythm 16.11 (Nov. 2019), pp. 1669–
1675. issn: 15563871. doi: 10.1016/j.hrthm.2019.06.008.

[52] T. Kusayama, J. Wan, A. Doytchinova, J. Wong, R. A. Kabir, G. Mitscher, S. Straka, C.
Shen, T. H. Everett Iv, and P. S. Chen. ‘Skin sympathetic nerve activity and the temporal
clustering of cardiac arrhythmias.’ In: (2019). doi: 10.1172/jci.insight.125853.

[53] J. Han, M. J. Ackerman, C. Moir, C. Cai, P. L. Xiao, P. Zhang, K. A. Briske, L. R. Zheng, P.
S. Chen, and Y. M. Cha. ‘Left cardiac sympathetic denervation reduces skin sympathetic
nerve activity in patients with long QT syndrome.’ In: Heart Rhythm 17 (2020). doi:
10.1016/j.hrthm.2020.03.023.

[54] Wei-Ting Sung et al. ‘Alteration of Skin Sympathetic Nerve Activity after Pulmonary
Vein Isolation in Patients with Paroxysmal Atrial Fibrillation.’ In: Journal of Personalized
Medicine 12.8 (Aug. 2022), p. 1286. issn: 2075-4426. doi: 10.3390/jpm12081286. url:
https://www.mdpi.com/2075-4426/12/8/1286.

https://doi.org/10.1016/j.bspc.2022.103681
https://doi.org/10.3389/fphys.2021.742844
https://doi.org/10.1016/j.hrthm.2022.04.031
https://doi.org/10.1016/j.hrthm.2022.03.015
https://linkinghub.elsevier.com/retrieve/pii/S1547527122002399
https://linkinghub.elsevier.com/retrieve/pii/S1547527122002399
https://doi.org/10.1016/j.hrthm.2022.08.015
https://linkinghub.elsevier.com/retrieve/pii/S1547527122023116
https://doi.org/10.1007/s00345-023-04376-1
https://doi.org/10.1002/acn3.51795
https://onlinelibrary.wiley.com/doi/10.1002/acn3.51795
https://onlinelibrary.wiley.com/doi/10.1002/acn3.51795
https://doi.org/10.1016/j.compbiomed.2024.108070
https://linkinghub.elsevier.com/retrieve/pii/S0010482524001549
https://linkinghub.elsevier.com/retrieve/pii/S0010482524001549
https://doi.org/10.1016/j.hrthm.2017.03.030
https://doi.org/10.1016/j.hrthm.2019.06.008
https://doi.org/10.1172/jci.insight.125853
https://doi.org/10.1016/j.hrthm.2020.03.023
https://doi.org/10.3390/jpm12081286
https://www.mdpi.com/2075-4426/12/8/1286


48 bibliography

[55] M. J. Shen et al. ‘Simultaneous recordings of intrinsic cardiac nerve activity and skin
sympathetic nerve activity from human patients during the postoperative period.’ In:
Heart Rhythm 14 (2017). doi: 10.1016/j.hrthm.2017.06.030.

[56] C. Liu, C. H. Lee, S. F. Lin, and W. C. Tsai. ‘Temporal Clustering of Skin Sympathetic
Nerve Activity Bursts in Acute Myocardial Infarction Patients.’ In: Frontiers in Neuro-
science 15 (2021). doi: 10.3389/fnins.2021.720827.

[57] P. L. Xiao, C. Cai, P. Zhang, C. V. DeSimone, D. K. Ernst, Y. H. Yin, P. S. Chen, and Y. M.
Cha. ‘Cardiac resynchronization therapy modulates peripheral sympathetic activity.’ In:
Heart Rhythm 17 (2020). doi: 10.1016/j.hrthm.2020.02.022.

[58] A. Kumar et al. ‘Skin sympathetic nerve activity as a biomarker for syncopal episodes
during a tilt table test.’ In: Heart Rhythm 17 (2020). doi: 10.1016/j.hrthm.2019.10.008.

[59] T. C. Huang et al. ‘High skin sympathetic nerve activity in patients with recurrent syn-
cope.’ In: Journal of Personalized Medicine 11 (2021). doi: 10.3390/jpm11111053.

[60] Yuan Yuan et al. ‘Left cervical vagal nerve stimulation reduces skin sympathetic nerve
activity in patients with drug resistant epilepsy.’ In: Heart Rhythm 14.12 (Dec. 2017),
pp. 1771–1778. issn: 15563871. doi: 10.1016/j.hrthm.2017.07.035.

[61] Chen Ling Tang, Wei Chung Tsai, Jui Ying Lee, Yao Kuang Wang, Yi Hsun Chen, Yu
Wei Liu, Ming Chieh Lin, Pen Tzu Fang, Yu Ling Huang, and I. Chen Wu. ‘Higher pre-
treatment skin sympathetic nerve activity and elevated resting heart rate after chemora-
diotherapy predict worse esophageal cancer outcomes.’ In: BMC Cancer 22.1 (Dec. 2022).
issn: 14712407. doi: 10.1186/s12885-022-10180-8.

[62] Yike Zhang, Jing Wang, Yantao Xing, Chang Cui, Hongyi Cheng, Zhenye Chen, Hongwu
Chen, Chengyu Liu, Ningning Wang, and Minglong Chen. ‘Dynamics of Cardiac Auto-
nomic Responses During Hemodialysis Measured by Heart Rate Variability and Skin
Sympathetic Nerve Activity: The Impact of Interdialytic Weight Gain.’ In: Frontiers in
Physiology 13 (May 2022). issn: 1664042X. doi: 10.3389/fphys.2022.890536.

[63] Xiao Liu et al. ‘Skin sympathetic nerve activity and nocturnal blood pressure nondip-
ping in patients with postural orthostatic tachycardia syndrome.’ In: Journal of Hyperten-
sion 41.8 (Aug. 2023), pp. 1290–1297. issn: 0263-6352. doi: 10.1097/HJH.0000000000003465.

[64] Hui Sophie Wang. A Unified Dynamic Model of Electrodermal Activity. Tech. rep. 2023.
[65] Wolfram Boucsein. Electrodermal Activity. Second. Springer, 2012. doi: 10.1007/978-1-

4614-1126-0.
[66] G. Bini, K. E. Hagbarth, P. Hynninen, and B. G. Wallin. ‘Thermoregulatory and rhythm-

generating mechanisms governing the sudomotor and vasoconstrictor outflow in human
cutaneous nerves.’ In: The Journal of physiology (1980). doi: 10.1113/jphysiol.1980.
sp013413.

[67] Robert J. Barry, Sabine Feldmann, Evian Gordon, Kathryn I. Cocker, and Chris Ren-
nie. ‘Elicitation and habituation of the electrodermal orienting response in a short inter-
stimulus interval paradigm.’ In: International Journal of Psychophysiology 15.3 (Nov. 1993),
pp. 247–253. issn: 01678760. doi: 10.1016/0167-8760(93)90008-D.

[68] Chong L. Lim, Chris Rennie, Robert J. Barry, Homayoun Bahramali, Ilario Lazzaro, Barry
Manor, and Evian Gordon. ‘Decomposing skin conductance into tonic and phasic com-
ponents.’ In: International Journal of Psychophysiology 25.2 (Feb. 1997), pp. 97–109. issn:
01678760. doi: 10.1016/S0167-8760(96)00713-1.

[69] D.M. Alexander, C. Trengove, P. Johnston, T. Cooper, J.P. August, and E. Gordon. ‘Sepa-
rating individual skin conductance responses in a short interstimulus-interval paradigm.’
In: Journal of Neuroscience Methods 146.1 (July 2005), pp. 116–123. issn: 01650270. doi:
10.1016/j.jneumeth.2005.02.001.

https://doi.org/10.1016/j.hrthm.2017.06.030
https://doi.org/10.3389/fnins.2021.720827
https://doi.org/10.1016/j.hrthm.2020.02.022
https://doi.org/10.1016/j.hrthm.2019.10.008
https://doi.org/10.3390/jpm11111053
https://doi.org/10.1016/j.hrthm.2017.07.035
https://doi.org/10.1186/s12885-022-10180-8
https://doi.org/10.3389/fphys.2022.890536
https://doi.org/10.1097/HJH.0000000000003465
https://doi.org/10.1007/978-1-4614-1126-0
https://doi.org/10.1007/978-1-4614-1126-0
https://doi.org/10.1113/jphysiol.1980.sp013413
https://doi.org/10.1113/jphysiol.1980.sp013413
https://doi.org/10.1016/0167-8760(93)90008-D
https://doi.org/10.1016/S0167-8760(96)00713-1
https://doi.org/10.1016/j.jneumeth.2005.02.001


bibliography 49

[70] Mathias Benedek and Christian Kaernbach. ‘A continuous measure of phasic electro-
dermal activity.’ In: Journal of Neuroscience Methods 190.1 (June 2010), pp. 80–91. issn:
01650270. doi: 10.1016/j.jneumeth.2010.04.028.

[71] Mathias Benedek and Christian Kaernbach. ‘Decomposition of skin conductance data by
means of nonnegative deconvolution.’ In: Psychophysiology (Mar. 2010). issn: 00485772.
doi: 10.1111/j.1469-8986.2009.00972.x.

[72] Dominik R. Bach. ‘A head-to-head comparison of SCRalyze and Ledalab, two model-
based methods for skin conductance analysis.’ In: Biological Psychology 103 (Dec. 2014),
pp. 63–68. issn: 03010511. doi: 10.1016/j.biopsycho.2014.08.006.

[73] Alberto Greco, Gaetano Valenza, Antonio Lanata, Enzo Scilingo, and Luca Citi. ‘cvxEDA:
a Convex Optimization Approach to Electrodermal Activity Processing.’ In: IEEE Trans-
actions on Biomedical Engineering 63.4 (Apr. 2016), pp. 1–1. issn: 0018-9294. doi: 10.1109/
TBME.2015.2474131. url: http://ieeexplore.ieee.org/document/7229284/.

[74] Alberto Greco, Antonio Lanata, Gaetano Valenza, Enzo Pasquale Scilingo, and Luca Citi.
‘Electrodermal activity processing: A convex optimization approach.’ In: 2014 36th An-
nual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE,
Aug. 2014, pp. 2290–2293. isbn: 978-1-4244-7929-0. doi: 10.1109/EMBC.2014.6944077.

[75] Mega Electronics Ltd. Biomonitor ME6000 Multisignal system. Tech. rep. Kuopio, Finland.
[76] Shimmer. GSR+ User Guide. Tech. rep. Dublin, Ireland, 2018.
[77] Wikipedia. Einthoven’s triangle. url: https://en.wikipedia.org/wiki/Einthoven%27s_

triangle.
[78] Empatica E4. url: https://www.empatica.com/en-gb/research/e4/.
[79] TMSi. REFA amplifier. url: https://www.tmsi.com/products/refa/.
[80] Danilo Ricciardi et al. ‘Impact of the high-frequency cutoff of bandpass filtering on ECG

quality and clinical interpretation: A comparison between 40Hz and 150Hz cutoff in
a surgical preoperative adult outpatient population.’ In: Journal of Electrocardiology 49.5
(Sept. 2016), pp. 691–695. issn: 00220736. doi: 10.1016/j.jelectrocard.2016.07.002.

[81] Jiapu Pan and Willis J. Tompkins. ‘A Real-Time QRS Detection Algorithm.’ In: IEEE
Transactions on Biomedical Engineering BME-32.3 (Mar. 1985), pp. 230–236. issn: 0018-9294.
doi: 10.1109/TBME.1985.325532.

[82] Hooman Sedghamiz. Complete Pan Tompkins Implementation ECG QRS detector. Apr. 2018.
url: https://nl.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-
tompkins-implementation-ecg-qrs-detector.

[83] F.S. Grodins. Control Theory and Biological Systems. Ed. by Columbia University Press.
New York, 1963.

[84] Md Rafiul Amin and Rose T Faghih. Identification of Sympathetic Nervous System Activation
from Skin Conductance: A Sparse Decomposition Approach with Physiological Priors. Tech. rep.
2020.

[85] Lingzhong Meng, Weifeng Yu, Tianlong Wang, Lina Zhang, Paul M. Heerdt, and Adrian
W. Gelb. ‘Blood Pressure Targets in Perioperative Care.’ In: Hypertension 72.4 (Oct. 2018),
pp. 806–817. issn: 0194-911X. doi: 10.1161/HYPERTENSIONAHA.118.11688.

[86] Rachel Nall, Heather Hobbs, and Elaine Luo. Understanding Mean Arterial Pressure. 2023.
url: https://www.healthline.com/health/mean-arterial-pressure#normal-map.

[87] Deb Hipp and Ardeshir Hashmi. Normal Resting Heart Rate By Age (Chart). 2024. url:
https://www.forbes.com/health/wellness/normal-heart-rate-by-age/.

[88] Hatem Ghouili, Zouhaier Farhani, Sofiane Amara, Soukaina Hattabi, Amel Dridi, Noomen
Guelmami, Anissa Bouassida, Nicholas Braghazzi, and Ismail Dergaa. ‘Normative data
in resting and maximum heart rates and a prediction equation for young tunisian soccer

https://doi.org/10.1016/j.jneumeth.2010.04.028
https://doi.org/10.1111/j.1469-8986.2009.00972.x
https://doi.org/10.1016/j.biopsycho.2014.08.006
https://doi.org/10.1109/TBME.2015.2474131
https://doi.org/10.1109/TBME.2015.2474131
http://ieeexplore.ieee.org/document/7229284/
https://doi.org/10.1109/EMBC.2014.6944077
https://en.wikipedia.org/wiki/Einthoven%27s_triangle
https://en.wikipedia.org/wiki/Einthoven%27s_triangle
https://www.empatica.com/en-gb/research/e4/
https://www.tmsi.com/products/refa/
https://doi.org/10.1016/j.jelectrocard.2016.07.002
https://doi.org/10.1109/TBME.1985.325532
https://nl.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-tompkins-implementation-ecg-qrs-detector
https://nl.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-tompkins-implementation-ecg-qrs-detector
https://doi.org/10.1161/HYPERTENSIONAHA.118.11688
https://www.healthline.com/health/mean-arterial-pressure#normal-map
https://www.forbes.com/health/wellness/normal-heart-rate-by-age/


50 bibliography

players: A cross-sectional study.’ In: EXCLI Journal 22 (2023), pp. 670–680. issn: 16112156.
doi: 10.17179/excli2023-6215.

[89] MathWorks. Optimizing Nonlinear Functions. url: OptimizingNonlinearFunctions.
[90] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright. ‘Conver-

gence Properties of the Nelder–Mead Simplex Method in Low Dimensions.’ In: SIAM
Journal on Optimization 9.1 (Jan. 1998), pp. 112–147. issn: 1052-6234. doi: 10 . 1137 /

S1052623496303470.
[91] Jade Yu Cheng and Thomas Mailund. An iteration of the Nelder-Mead method over two-

dimensional space. Mar. 2015. url: https://en.wikipedia.org/wiki/File:An-iteration-
of- the- Nelder- Mead- method- over- two- dimensional- space- showing- point- p-

min.png.
[92] Wikipedia. Coefficient of determination. url: https://en.wikipedia.org/wiki/Coefficient_

of_determination.
[93] Wikipedia. Root Mean Square Deviation. url: https://en.wikipedia.org/wiki/Root_

mean_square_deviation.
[94] S.A. Otto. How to normalize the RMSE [Blog post]. url: https://www.marinedatascience.

co/blog/2019/01/07/normalizing-the-rmse/#.
[95] Nicolle van Rijswijk. Sampling frequency. TMSi Support. (On 07/08/2024).
[96] D. J. van der Mee, M. J. Gevonden, J. H.D.M. Westerink, and E. J.C. de Geus. ‘Validity

of electrodermal activity-based measures of sympathetic nervous system activity from a
wrist-worn device.’ In: International Journal of Psychophysiology 168 (Oct. 2021), pp. 52–64.
issn: 18727697. doi: 10.1016/j.ijpsycho.2021.08.003.

https://doi.org/10.17179/excli2023-6215
Optimizing Nonlinear Functions
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1137/S1052623496303470
https://en.wikipedia.org/wiki/File:An-iteration-of-the-Nelder-Mead-method-over-two-dimensional-space-showing-point-p-min.png
https://en.wikipedia.org/wiki/File:An-iteration-of-the-Nelder-Mead-method-over-two-dimensional-space-showing-point-p-min.png
https://en.wikipedia.org/wiki/File:An-iteration-of-the-Nelder-Mead-method-over-two-dimensional-space-showing-point-p-min.png
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Root_mean_square_deviation
https://en.wikipedia.org/wiki/Root_mean_square_deviation
https://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/#
https://www.marinedatascience.co/blog/2019/01/07/normalizing-the-rmse/#
https://doi.org/10.1016/j.ijpsycho.2021.08.003


A
A P P E N D I X

a.1 study 2023

This section gives the individual results for Study 2023, Tertoolen’s dataset. Furthermore, the
mean results are provided for the first VM.

Figure 15: Mean (red) measured heart rate, aSKNA, and the phasic component of EDA for Study 2023,
Tertoolen’s dataset, shown over time, where the VM is performed at t = 30 s for 15 s. During
this epoch, the subject lay down and performed the first VM. The green areas indicate the
standard deviation.

51



52 appendix

Figure 16: Heart rate, aSKNA, and the phasic component of EDA over the entire timeline for participant 1 of
Study 2023, Tertoolen’s dataset. Activity phases are indicated in the text above the graph.

Figure 17: Participant 2 of Study 2023, Tertoolen’s dataset.

Figure 18: Participant 3 of Study 2023, Tertoolen’s dataset.
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Figure 19: Participant 4 of Study 2023, Tertoolen’s dataset.

Figure 20: Participant 5 of Study 2023, Tertoolen’s dataset.

Figure 21: Participant 6 of Study 2023, Tertoolen’s dataset.
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a.2 study 2024

Below, additional results are given on Study 2024, the dataset obtained during this research.

Table 9: Individual subject characteristics for Study 2024.

Participant Sex Age [year] Weight [kg] Height [cm] BMI [kg/m2]

1 Female 23 54.6 170 18.9

2 Male 24 83.5 187 23.9

3 Male 23 84.5 175 27.6

4 Male 28 66.5 168 23.6

5 Male 49 70.7 186 20.4

6 Male 29 92.2 178 29.1

7 Female 23 65.5 177 20.9

8 Male 23 73.4 183 21.9

9 Male 23 77.2 187 22.1

10 Female 23 61.9 169.5 21.5

a.2.1 Sampling frequency 1250 Hz

This subsection provides the results for an assumed sampling rate of 1250 Hz.

Figure 22: Mean (red) measured heart rate, aSKNA, and the phasic component of EDA for Study 2024 shown
over time, where the VM is performed at t = 15 s for 15 s. During this epoch, the subject sat, performed
the first VM, and then stood up. The green areas indicate the standard deviation.
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Figure 23: Participant 1 of Study 2024.

Figure 24: Participant 2 of Study 2024.

Figure 25: Participant 3 of Study 2024.
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Figure 26: Participant 4 of Study 2024.

Figure 27: Participant 5 of Study 2024.

Figure 28: Participant 6 of Study 2024.
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Figure 29: Participant 7 of Study 2024.

Figure 30: Participant 8 of Study 2024.

Figure 31: Participant 9 of Study 2024.
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Figure 32: Participant 10 of Study 2024 (fs = 1250 Hz).

Figure 33: Predicted (blue) and measured (red) mean heart rate and aSKNA, and the predicted phasic component
of EDA over time. The measured data is from Study 2024. The subject was standing and performed
the Valsalva Manoeuvre between 15 and 30 s.

a.2.2 Sampling frequency 2048 Hz

These are the results with a sampling frequency of 2048 Hz, which we had ’set’ as a sampling rate.
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Figure 34: Mean (red) measured heart rate, aSKNA, and the phasic component of EDA for Study 2024 shown
over time, where the VM is performed at t = 15 s for 15 s. During this epoch, the subject sat, performed
the first VM, and then stood up. The green areas indicate the standard deviation.

Figure 35: Participant 1 of Study 2024.
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Figure 36: Participant 2 of Study 2024.

Figure 37: Participant 3 of Study 2024.

Figure 38: Participant 4 of Study 2024.
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Figure 39: Participant 5 of Study 2024.

Figure 40: Participant 6 of Study 2024.

Figure 41: Participant 7 of Study 2024.
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Figure 42: Participant 8 of Study 2024.

Figure 43: Participant 9 of Study 2024.

Figure 44: Participant 10 of Study 2024.
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a.2.3 Refa specifications

Figure 45: Specifications of the Refa with 16 channels and maximal sampling frequency of 20 kHz.
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