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Abstract

Safe drinking water is crucial, yet 2.2 billion people lacked access to it in 2022.

Chlorination, a common disinfection method, can produce harmful disinfection by-products

(DBPs) like trihalomethanes (THMs) and halo-acetic acids (HAAs). These DBPs pose

health risks, but only 30% of over 700 identified DBPs have been quantified, emphasizing

the need for better predictive models. This project aims to further understand the rela-

tionship between water parameters such as, pH, alkalinity, DOC/TOC and SUVA/UVA,

and the concentration of DBPs after chlorination; by doing a data analysis on publicly

accessible data from the EPA and trying to fit various regression models for it. The best

fit model achieved an R2 of 0.5 which was a Ridge Regression model for the bromoform

DBP. The findings reveal the challenges to making accurate predictive models without

enough good quality data.
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Chapter 1

Introduction

Clean and safe drinking water should be an accessible resource to everyone. However, ac-

cording to the UN, 2.2 billion people still lacked safely managed drinking services in 2022

[1]. Moreover, due to phenomena such as climate change, population growth and global

industrialization, the quality and availability of our waters are put under considerable

stress [2]. Currently, as ground water is becoming more limited and scarce, most of our

drinking water is sourced from surface water, such as lakes and rivers, and or wastewater

[3]. The water is then treated in several steps, to remove all kinds of undesired particles.

Usually, disinfection is the last step where chemicals such as chlorine, chloramine or chlo-

rine dioxide, are added to the water to help keep it safe and drinkable as it travels through

potentially contaminated pipes to reach our homes and businesses [4].

Disinfection using chlorine – chlorination — is one of the cheapest and effective

methods that is used across the world to achieve safe drinking water [5, 2]. It removes

most of the pathogens present in the source water to prevent water borne illnesses, such as

cholera, diarrhoea, dysentery and so on [6]. Disinfection is highly necessary, as according

to the World Health Organization (WHO), nearly 80% of human diseases in developing

countries were due to unsafe drinking water [7].

Despite this, an unintended side effect resulting from disinfection and chlorination

is the formation of disinfection by products (DBPs). Chlorine reacts with natural organic

matter (NOM) and other pollutants present in the water, producing all kinds of DBPs [8].

Alongside NOMs, other factors such as potential of hydrogen (pH), water temperature,
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reaction time, amount of chlorine, bromide concentration etc. also affect the formation of

DBPs.

In the 70s it has been discovered that certain DBPs, such as trihalomethanes

(THMs) and haloacetic acids (HAAs), are likely to be carcinogenic, genotoxic and muta-

genic [5]. Long term exposure of these DBPs have also been linked to an increased risk for

several cancers including bladder, liver and colon cancers [9]. Since then over 700 different

DBPs have been identified in drinking water treatment plants (DWTPs), but only about

30% has actually been quantified [10].

1.1 Problem Statement

The challenge of this project is that it is unclear which exact water conditions, prior to or

while disinfecting, form particular DBPs. Moreover, with the number of newly discovered

DBPs growing, the potential health effects of each of them are yet to be investigated. For

example, toxicity data revealed that emerging nitrogenous DBPs (N-DBPs) are found to

be more toxic than carbonaceous DBPs (C-DBPs) [2]. This shows that more research is

needed on the formation factors and mechanisms of DBPs.

Due to the large variety of NOM and uncertain formations, slight changes in

the water quality parameters can reduce the formation of one DBP, while increasing the

formation of other DBPs, which may also pose additional cancer risks [5]. This makes

it difficult to target specific DBPs and keep to regulation standards. According to Kali

et al, the concentration of regulated DBPs surpassed the permissible limit in most of the

regions investigated [2]. This further shows the need for research into predicting DBPs

in a timely manner in order to let DWTPs know whether they have surpassed the limit

before its deployed to the communities.

Furthermore, standard drinking water monitoring and DBP detection methods

require complicated instruments such as gas chromatography (GC) and mass spectrome-

try (MS) that is time consuming and expensive [11]. Additionally, accurate models also

require large datasets, but the lack of high quality data management and models being

non-reproducible also contribute to the challenge [12]. Therefore, it is important to do

further research into the conditions that make up the most harmful DBPs, try to central-

ize available data in order to make more accurate models that can predict the formation
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of DBPs without the need for expensive equipment to eventually be able to mitigate the

risks on human health.

1.2 Research Questions

The main research question of this project is:

How does the formation of DBPs in chlorinated drinking water correlate with

water quality parameters?

The sub-questions will be:

1. What are the most significant water quality parameters in predicting DBPs?

2. What methods/models have been made to predict DBPs?

3. How effective are current methods/models that try to detect and predict the forma-

tion of DBPs?

1.3 Overview of the Report Structure

Chapter 2 contains the background information such as a deeper look into DBPs and the

factors surrounding the formation of them from what is known in literature. Chapter

3 explains the methods and techniques that has been used to realise this project from

literature search methodologies, cyclical methods to the software and coding languages.

Chapter 4 illustrates the conceptual idea of the project and the steps to achieve it. Chapter

5 shows the process, results and reflection of each iteration of the data science cycle.

Chapter 6 will evaluate the predictive models and discuss, as well as mention what can be

done in the future. Lastly chapter 7 is the conclusion where previous chapters are briefly

summarised and the overall picture of the project is illustrated.
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Chapter 2

Background Research

This chapter aims to answer the research questions previously stated. Section 2.1 will

briefly go over the water treatment process and the implications of it, Section 2.2 will

dive into what DBPs are and the types of them, Section 2.3 explains the different factors

affecting DBP formation, Section 2.4 highlights the different health effects caused by DBPs,

Section 2.5 assesses the different methods used in predicting DBPs and lastly Section 2.6

gives a conclusion to this chapter.

2.1 The Water Treatment Process

The water treatment process is slightly different per country, regulation and water source,

but to simplify, water undergoes roughly 5 procedures before water is sent out to commu-

nities. As Figure 2.1 points out, the first step in this process is coagulation. Here chemicals

with a positive charge are added to the water to neutralize the negative charges of dirt

and other dissolved particles [13]. This allows for particles to bind with the chemicals to

form slightly larger particles. Next, it goes through flocculation which is a process where

heavier particles called flocs are formed through gentle mixing of the water and adding

more chemicals. After that, sedimentation occurs which is a step where solids are sepa-

rated from the water by flocs sinking to the bottom of the tank due to them being heavier

than water. Once that is done, the clear water on top of the flocs is filtered to separate

additional solids from the water by going through differently sized pores of filters made out

of different materials (e.g sand, gravel and charcoal). Lastly, the water gets disinfected

10



by one or more chemical disinfectants, ozone or ultraviolet (UV) light. The latter two

work well for disinfection but they do not continue killing pathogens as the water travels

through the pipes [4]. Therefore, it is recommended by regulatory authorities to maintain

a residual chlorine concentration of 0.2 mg/L in the distribution system to mitigate future

microbiological (re)contamination [14].

In the present world, due to stricter regulations, DWTPs have started to experi-

ment with different ways of disinfection. For example the idea of sequential disinfection,

where more than one disinfectant is used at different stages of the treatment process, has

been experimented with such as the combination of chlorine dioxide followed chlorination.

Results indicated that these methods had the potential to decrease DBP formation of

THMs, HAAs, and HANs, but produced chlorite and chlorate in another multi disinfec-

tion method [14]. Furthermore, due to excessive costs of alternative methods [2], many

developing countries do not have access to these advanced methods. This further shows

the importance of researching DBP formation specific to chlorination as it will impact the

most amount of people overall.

2.2 Introduction to Disinfection Byproducts

DBPs come in all kinds of chemical formations. Subsection 2.2.1 showcases the different

types and major families of DBP, Subsection 2.2.2 will introduce the regulated DBPs and

their current regulations and Subsection 2.2.3 will highlight the emerging DBPs that are

recently discovered.

2.2.1 Types of DBPs

There are multiple families of DBPs which can be categorised in 3 types, namely aliphatic,

alicyclic and aromatic DBPs. Aliphatic DBPS can be split into 2 additional types, nitroge-

nous DBPs (N-DBPs) and carbonaceous DBPs (C-DBPs). More C-DBPs are found in the

water, while the toxicity of N-DBPs are higher and form in waters with more dissolved

organic nitrogen (DON). Alicyclic DBPs are less explored while aromatic DBPs can act

as precursors to aliphatic DBPs [9].

Out of DBPs that have been quantified in drinking water, the levels are typi-

cally present at small amounts, such as below a µg/L or low-to-mid µg/L [15]. The most
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Figure 2.1: The Water Treatment Process [4]

common family of DBPs found in chlorinated drinking water are THMs [3] which in-

clude, chloroform/trichloromethane (CF/TCM, CHCl3), dibromochloromethane (DBCM,

CHBr2Cl), bromodichloromethane (BDCM, CHBrCl2) and bromoform (BF, CHBr3). An-

other big family of DBPs are HAAs where such as Dichloroacetic acid (Cl2CH-CO2H),

trichloroacetic acid (TCAA, Cl3C-CO2H), monochloroacetic acid (MCAA, ClCH2CO2H).

2.2.2 Regulated DBPs

About 25% of all known DBPs are from the THM and HAA family [2] and which is likely

why it is widely regulated. The first regulation for DBPs came to the US in 1979 when

the association between THMs and elevated chronic cancer risks were discovered. HAAs

followed the next year due to their frequency in the waters [16]. These so called regu-

lated DBPs (R-DBPs) have acronyms for them such as THM4, where the number 4 refers

to the 4 THM DBPs that are regulated (chloroform, DBCM, BDCM and bromoform).

Similarly, HAA5 and HAA9 refer to the set of 5 and 9 HAA DBPS that are regulated.
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For HAA5 it is MCAA, DCAA, TCAA, MBAA and DBAA [13]. Likewise HAA9 con-

tains HAA5 plus bromochloroacetic acid (BCAA), bromodichloroacetic acid (BDCAA),

dibromochloroacetic acid (DBCAA) and tribromoacetic acid (TBAA) additionally [17].

DBP Group DBP U.S. EPA (µg/L) WHO (µg/L) EU (µg/L)

THMs Chloroform 70 ** 300

BDCM 45 60

DBCM 60 ** 100

Bromoform 6 100

THM4 80 * 100

HAAs MCAA 70 20

DCAA 60 50

TCAA 20 200

MBAA 60

DBAA 60

HAA5 60 * 60 *

HAN DCAN 6 20

DBAN 20 70

Inorganic DBPs Bromate 10 * 10 10

Chlorite 1000 * 700

Chlorate 1000 700

NNA NNDMA 0.01 0.1

Table 2.1: Regulatory limits (*) or guideline values (non-regulatory

limits) (**) for DBPs established by different organizations [13, 9]

Table 2.1 showcases the current regulations from the United States Environmental

Protection Agency (U.S. EPA), WHO and the European Union (EU). It is noticeable that

the EPA regulates the most amount of DBPs while EU only has 3 regulation guidelines

of which 2 are aggregated values and not specific to a certain DBP.

While regulations for other countries do exist, it is also not as extensive as the

U.S. or WHO and might also not be comparable due to the different kinds of source

water low-income countries have to try and regulate. As such, a study conducted by

Furst et al. [18], highlighted that although the THM4 levels in Rajasthan, India did not
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exceed the international guidelines, other more toxicological DBPs were observed in high

concentrations. Unlike high-income countries, the distribution systems can let sewage

water be infiltrated and hence affecting the water quality. This showed that these THM4

regulations might not be an adequate indicator of overall DBP exposure when it comes to

polluted water supplies in some low-income countries. Therefore, a predicative model that

could take into account all the different potential water quality condition and accurately

predict the amount of DBPs in necessary.

2.2.3 Emerging DBPs

Emerging DBPs are DBPs that are not regulated. Although it may seem like these DBPs

are less harmful because they are not regulated yet, it is actually the opposite. For example

halobenzoquinones (HBQs) are a new kind of DBP, that can cause damage to DNA and

whose toxicity was higher than that of THMs and HAAs [14]. Several N-DBPs still need

quantification and toxicity studies that conclude on the toxicity levels of different DBPs.

Ionated DBPs are also an emerging DBPs that are hugely toxic to humans, animals, as

well as aquatic life [19] [20].

2.3 Factors influencing DBPs

In this section several factors that influence DBP fomation are discussed.

2.3.1 Natural Organic Matter (NOM)

NOMs are an extremely complex mixture of organic compounds that vary in chemical and

physical characteristics [22]. The composition and concentration of NOM in water can

vary depending on factors such as the source of the water and seasonal changes [23] [9].

Generally, higher concentrations of NOM result in increased formation of DBPs due to

the greater availability of organic precursors for chlorination [24].

As 2.2 illustrates, NOM is made up of dissolved organic matter (DOM) which

contains dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). DOC can

be further broken down to its humic (humic acid, fulvic acid, and humin) and non-humic

material [25]. Amino acids (AAs) are known as the important precursors of nitrogenous

disinfection by-products (N-DBPs) and account for about 15-35% of dissolved organic

nitrogen (DON) [15].
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Figure 2.2: Venn diagram representation of the various forms of

organic matter found in natural water [21]

Parameters that try to measure/quantify NOMs are dissolved organic nitrogen

(DON), dissolved organic carbon (DOC), and UVA254, where DOC is the actual concen-

tration of DOC while UVA254 measures the absorbance of UV light by organic matter at

specifically 254nm of wavelength. It is often used as a surrogate for DOC. UV254 is higher

for humic acids because of the higher aromatic content and greater molecular size of this

type of compound [26].

2.3.2 Potential of Hydrogen (pH)

The pH, or potential of hydrogen, plays a crucial role in the formation of disinfection

by-products (DBPs). The pH of the water affects the speciation of chlorine-based dis-

infectants, with different forms having varying reactivity towards organic precursors. In

general, higher pH levels can lead to increased formation of certain DBPs, such as tri-

halomethanes (THMs), due to enhanced chlorination reactions [2]. Conversely, lower pH

levels can favor the formation of other DBPs, such as haloacetic acids (HAAs) and N-DBPs

[9]. Therefore, careful monitoring and control of pH during water treatment processes are

essential to mitigate the formation of DBPs.
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2.3.3 Temperature

Temperature also plays a significant role in the formation of disinfection by-products

(DBPs) during chlorination processes in water treatment. Higher temperatures can accel-

erate the reactions between chlorine and organic matter, leading to increased formation

of DBPs [27]. This is because elevated temperatures generally increase the kinetic energy

of molecules, promoting more rapid chemical reactions [9]. Additionally, warmer water

can stimulate microbial activity, resulting in higher concentrations of organic precursors

available for chlorination [8].

2.3.4 Chlorine Dosage

Chlorine dosage is a critical factor in water treatment processes, especially in the context

of disinfection by-product (DBP) formation. Balancing the need for effective disinfec-

tion with the minimization of DBP formation requires careful consideration of chlorine

dosage. Insufficient chlorine dosage may result in inadequate disinfection, leaving harmful

pathogens untreated, while excessive chlorine dosage can lead to the overproduction of

DBPs [9].

2.3.5 Bromide

According to Oblensky and Singer, bromide had a significant influence on most DBPs

that were tested [28]. Bromide naturally occurs in many water sources, and when chlo-

rine is used as a disinfectant, it can react with bromide to form brominated DBPs, which

often have higher toxicity than their chlorinated counterparts [29]. For example, bromi-

nated THMs (Br-THMs) and brominated HAAs (Br-HAAs) are among the most common

brominated DBPs formed during chlorination. Moreover, concentrations of bromide are

also generally considered a factor, because they can influence the distribution of the four

THM compounds [30].

2.4 Health and Environmental Impacts

Health effects associated with DBPs vary depending on the specific compounds formed,

their concentration in water, and individual susceptibility. Some DBPs, such as tri-

halomethanes (THMs) and haloacetic acids (HAAs), have been linked to adverse health

effects including cancer, reproductive problems, and developmental disorders, especially
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with long-term exposure [9].

Brominated DBPs, in particular, are of concern due to their higher toxicity

compared to chlorinated DBPs. Brominated compounds, such as bromoform and bro-

modichloromethane, have been classified as probable human carcinogens by regulatory

agencies [29]. Additionally, the combined activity of residual chlorine and DBPs may pose

greater risks to aquatic ecosystems, affecting aquatic organisms and disrupting ecological

balance [20].

2.5 State of the Art in DBP Prediction

To predict complex problems such as DBP formation, many factors need to be taken into

account.

2.5.1 Multiple Linear and Non-Linear Regression

Multiple linear regression is a statistical technique used to model the relationship between

a single dependent variable and two or more independent variables. It builds upon the

foundation of simple linear regression by allowing for the consideration of multiple pre-

dictors simultaneously. The aim is to develop a linear equation that best fits the data,

representing the relationship between the dependent variable and each independent vari-

able, an example of what it graphically looks like can be seen in Figure 2.3. This equation

includes coefficients for each independent variable, indicating the magnitude and direction

of their impact on the dependent variable while holding other variables constant. The

performance of linear regression is reliant on the correlation of the data and so it is used

in conjunction with correlation metrics such Pearson’s correlation [31].

Throughout the research, many equations of linear and non-linear regression mod-

els were identified. They were then compared by metrics such as R2 as it is an indicator of

how well the model fits the data. One equation was chosen out of all the models gathered

by comparing the R2 values, unless there was only one equation found for a specific DBP.

In table 2.2 we can see that various parameters were used in making linear as well

as non-linear equations for each DBP where pH, UV254, DOC/TOC, chlorine dosage and

chlorine reaction time were the most common and impactful parameters considered.
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Figure 2.3: Linear Regression [31]

2.5.2 Parameter Values for THMs

As one of the most prevalent and researched DBPs, THMs had multiple models and hence

there were more equations that were comparable to each other.

Table 2.3 is a table where focus was laid on THM and the values for the parameters

of logarithmic regression equations. Regular linear regression equations were taken the log

of in order to standardize the equations and make the values of the parameters comparable.

Thus, non-linear equation where parameters were multiplied by each other or squared

could not be evaluated together with the linear equations as they do not mean the same

thing from a mathematical standpoint. From the table we can see that pH has a the

most positive correlation with the formation of THMs, followed by UV254 and chlorine

consumed/dose.

2.5.3 Machine Learning Methods

With developments in artificial intelligence and data science, supervised machine learning

has been a increasingly common way for researchers to model the formation of DBPs.

Many different techniques exists and the most commonly used ones were artificial neural

networks (ANN) and fuzzy interference systems (FIS). Kulkarni and Chellam demon-

strates that their ANN model identified DOC and bromide concentrations to be the most

important parameter for both THMs and HAAs with slight differences in the numbers

depending on whether the water was pre-treated/filtered or not [35]. Okoji et al. explored

the use of FIS to predict DBPs and found that DOC and UV254 are the most impor-

tant factors contributing to the formation of THMs along with pH and temperature [27].
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DBP Example Equation R2 Reference

THMs THM = 10−0.038 × (Cl2)0.654 × (pH)1.322 ×

(time)0.174 × (SUVA)0.712

0.88 Uyak et al. [32]

CF/TCM log(CF) = −1.935 − 0.2393 × log(Br) + 0.0170 ×

(temp) − 0.0012 × (alk) + 0.1993 × log(toc) + 0.4450

× log(uv) + 0.3824 ×log(cl2) + 0.0921 × log(t) +

0.1133 ×log(pH)

0.6854 Oblensky and

Singer [28]

BDCM BDCM = 10−1.188 (Br)0.411 (UV254)1.042 (t)0.259 ×

(Temp)0.560 (pH)1.732 (Cl2/DOC)0.238 × (R2 = 0.972,

p<0.0005, n = 36)

0.972 Hong et al. [33]

HAA9 HAA9 (µg / L) = −345 + 1.695(Temperature)

+ 93.1(pH) − 226(UVA254) + 4.95(Cl2) +

5.66(NO−
2 −N) + 16.6(DOC) + 0.325(NH+

4 −N)

− 0.0693(Temperature)2 − 6.41(pH)2 +

190821(UVA254)2 − 1.73(NO−
2 −N)2 −3.77(DOC)2 −

0.01663(NH+
4 −N)2

0.811 Okoji et al. [27]

TCAA TCAA (µg / L) = 11.47 − 1.42(Tempera-

ture) − 2.26(pH) + 5.71(UVA254) + 1.39(Cl2) −

3.11(NO−
2 −N) + 3.42(DOC) − 1.458 (NH+

4 −N) −

2.86(Temperature)2 − 1.32(pH)2 + 3.63(UVA254)2 −

3.56(NO−
2 −N)2 − 1.45 (DOC)2 − 3.196(NH+

4 −N)2 −

2.11(Br−)2

0.818 Okoji et al. [27]

DCAA Ln(DCAA) = 6.256 + 0.643 × Ln(UV254) 0.768 Peng et al. [34]

HANs T-HANs = 10−1.065 (Br)0.346(DOC)0.369

×(Cl2/DOC)0.520 (t)0.238 (Temp)0.373 ×(R2 =

0.943, p<0.0005, n = 36)

0.943 Hong et al. [33]

DCAN DCAN = 10−0.583(Br)−0.581 (t)0.297(Cl2/DOC)0.577 ×

(DOC)1.452 (Temp)0.472 × (R2 = 0.933, p<0.0005, n

= 36)

0.933 Hong et al. [33]

CH Ln(CH) = 8.945 + 0.558 × Ln(UV254) 2.37 × Ln(pH)

+ 0.152 × Ln(TOC)

0.752 Peng et al. [34]

Table 2.2: The equations and R2 value per DBP from literature

In general the parameters that are shown to be the most correlated are ones related to

NOMs, pH and temperature. Overall, machine learning has been shown to score better in

statistical values against testing data.
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Parameter Value

pH 1.576

UV254 0.3235

Temperature 0.015

Reaction time 0.1465

TOC 0.188

chlorine consumed 0.291

chlorine residual 0.167

Table 2.3: The parameters and their average values from logarithmic

regression equations for THMs found in literature

Table 2.4 is a summary and comparison of methods of each ML method used for

DBP formation and the benefits vs limitations of it.

2.6 Conclusion and Discussion

To conclude, this literature review aimed to answer the research questions stated in Sub-

section 1.2, and highlighted the critical importance of understanding the formation of

disinfection byproducts (DBPs) in water treatment processes. By exploring the various

environmental parameters implicated in DBP formation (NOMs, pH, bromide concentra-

tions, chlorine dose, temperature) and evaluating the existing modelling techniques for

prediction of DBPs (regression and supervised machine learning), valuable insights have

been made in order to mitigate the risks associated with DBP formation.

The limitations of these studies however, is that a majority only focus on THMs

and HAAs which are already regulated while there are only few models and parameters

identified for emerging DBPs that also have the potential to be harmful to humans. Fur-

thermore, the lack of openly available data make it harder to make and fully trust all

kinds of mathematical and AI models as research conducted on small sample sizes tend to

be unreliable as a general scientific practice. On top of that, climate change and pollution

continuously affect our water quality from temperature to other kinds of NOMs and hence

the models that were made a decade ago might not be relevant anymore.

For future research, scientists should incorporate models that can change over
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Method Benefits Limitations

Multiple

Linear

Regres-

sion

(MLR)

Simple, indicates

strength and direc-

tion of each coefficient

Have to choose param-

eters carefully, assumes

linearity, outliers shake

it up

Artificial

Neural

Network

(ANN)

For comple×nonlinear

relationships, tolerant

to missing values, auto-

matic learning

Black box, need a lot

of data, computationally

intensive

Random

Forest

(RF)

Robust to overfitting,

handles missing data

well

Accuracy and robustness

determined by the “den-

sity” of decision trees,

More memory and re-

sources needed

Adaptive

Network-

based

Fuzzy

Inference

System

(ANFIS)

Handles nonlinear re-

lationships, good with

vague or uncertain data

as outputs and decisions

are easy to interpret

with a well-defined sys-

tem

Applicability depen-

dent on operator-

defined parameters and

experience-prone to

human error, limited

scalability for large

datasets

Radial

Basis

Function

Kernel

(RBF)

Versatile, widely appli-

cable

Performance depends on

problem and choice of al-

gorithm, can be imprac-

tical

Table 2.4: Machine learning methods and its benefits and limitations

[12]

time based on the continuous data being collected to achieve real time monitoring of

water treatment plants and also have a central database for water quality data in order

to make more reliable prediction models. This should further improve the knowledge and

understanding of DBP formation and help inform governments on what regulations are

necessary.
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Chapter 3

Methods and Techniques

In this chapter, the methods and techniques that are used for realising the background

information, and overall project are described in each subsection. Section 3.1 will briefly

go over the literature search strategy, Section 3.2 will dive into one of the processes used

throughout the project, Section 3.3 explains the data science life cycle, Section 3.4 high-

lights the different metrics used to evaluate the models, Section 3.5 explains the model

testing method and 3.6 mentions the software and tools used.

3.1 Literature Search Strategy

To find appropriate literature several methods were used. First and foremost google scholar

was used by searching with keyword combinations where the main keyword was "DBP" or

"disinfection byproduct" followed by others such as "model", "regression", "water param-

eters", "water quality", "machine learning", "prediction". Then filters were used to search

through most recent papers first (especially for literature reviews) and each title was read,

where papers with potential added up into the browser as a new tab.

From there on, a reference managing software named Zotero was used to "col-

lect" papers/literature that seemed to be relevant after reading the abstract and scanning

through them. It started out with a lot of papers which got narrowed down to much

less after careful inspection of the actual subject matter of the papers, such as relevant

disinfection method (chlorine), relevant methods of analysis (regression, ML) and whether

the publication was to be trusted or not, from there on it reduced in number because some
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papers had similar content and did not add much more to the research.

Furthermore, literature reviews were looked at first to get a broader idea of the

context and past research that has already been concluded. While reading them the

snowball method was used where papers were found through looking at the sources/papers

that literature reviews were referring to and adding them to the list if deemed relevant.

Lastly, literature was searched for regression equations and metrics that validate

the models. The model was checked whether it used water quality parameters or not and

each equation was noted down.

3.1.1 Selection of DBPs

Since there are many DBPs, it was useful to narrow down a list of DBPs to consider while

doing research. The list of priority of research was based on a previous study that assessed

the health impacts of each DBP [9]. ’Table 5’ in that paper shows a list of DBPs in order

of THMs, HAAs, HANs and oxyhalide, NNAs, etc. This order was kept in mind when

looking for papers, equations and data. The data available also only had data on regulated

DBPs that are considered the most dangerous and hence it seemed like a good option to

use despite the drawbacks.

3.2 CreaTe Design Process

Normally, the graduation projects from the Creative Technology study follow the steps

from the Design Process for Creative Technology written by A. Mader and W. Eggink [36].

Projects following this design process begin with a divergent phase, where various

potential solutions are explored. This is followed by a convergent phase to narrow down

these ideas to a single solution. During the transition from divergence to convergence,

reflection occurs at key stages, allowing earlier decisions to be revisited and adjusted as

necessary. The process is not strictly linear; instead of taking one large divergent step and

one large convergent step, several rounds of divergence and convergence are conducted.

This approach allows for the integration of new information at each stage.

The Creative Technology design process specifically consists of four phases: Ideation,

Specification, and Realisation, followed by an Evaluation phase. Each of these phases in-
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volves repeated cycles of divergence and convergence, and earlier phases can be revisited

if new insights are gained later on. This iterative process is visually represented in Figure

3.1.

Figure 3.1: The CreaTe Design Process [36]

For this project, the stages are largely followed but with some consideration to

the making of machine learning models. For the ideation stage, the concept of creating a

machine learning model for predicting DBP formations was mostly led by the literature

and state of the art research. Low fidelity prototypes such as sketches or paper prototypes

did not seem very appropriate in conveying the design unlike other create projects, as it
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was going to be a piece of software. The literature research helped in making decisions for

which specific algorithms or methods could be successfully used for the problem and which

metrics should be used to evaluate it. Lastly, this time was also spent on learning more

about statistics and machine learning theory as well as the possible ways to implement it

and thinking about the next steps.

The specification and realisation stages for this project blend into each other as

selected machine learning models will be trained in iterations, tested and evaluated to

make choices on the data and models in order to reach a better performing model which

follows the steps of the data science life cycle. Lastly, the project will conclude with an

evaluation of the best-performing model and against previous existing models.

3.3 Data Science Life Cycle

Figure 3.2: The Data Science Life Cycle by Madison Hunter [37]

As mentioned previously, the data science life cycle was kept in mind when doing

this project. Just like the Creative Technology design process, machine learning develop-

ment is a cycle where earlier stages will have to be re-examined to improve the performance
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of the machine learning model.

3.3.1 Understanding the Problem

Looking at Figure 3.2, the first step is to define and understand the problem. It is im-

portant to know what the goal is and to think of the steps in order to achieve it. The

goal in terms of this project is to understand the relationship/correlation between water

parameters and DBPs better and make a machine learning model that can predict the

concentration of a given DBP. The goal can also change for example in the earlier stages

when data exploration was key to work out the best approach to making the model.

3.3.2 Data Collection

It is important to collect good data and databases were found through using Dataset

Search by Google and also reading the methodology part of papers to see what data

they used to make their models. Easily available databases were only on water quality

of a specific region/treatment plant, which include some interesting fields such as pH and

DOC. However, those did not include any information about DBP concentrations and

hence it was left out as it would not be applicable for this project. An ideal database

would have all the important water parameters mentioned in the literature, have a large

amount of data that can be trained, be consistent in definition and labels and should

be timely to the situation. The latter two features have been met in the dataset used

explained further in chapter 4.

3.3.3 Data Cleaning and Preparation

The data that is collected might need some cleaning and organisation or some scaling

such that it can be correctly interpreted by a machine learning model. For example, there

might be incorrectly formatted data, corrupt data, duplicates or null values and extreme

outliers. The data cleaning process should be done but its crucial not to spend too much

time on perfecting the database and instead testing bit by bit to see how it affects the

results.

3.3.4 Exploratory Data Analysis

The fourth step is the exploratory data analysis phase where it is done to summarize the

main characteristics of a data set and it consists of making data visualisations in order to
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quickly see patterns or anomalies in the data. It will be useful for developing the models

later on. Examples that are used in the following chapter are summary statistics, scatter

plots, pie charts and histograms.

3.3.5 Model Building

The last step is for building the actual model and deciding on what sort of model to

make. Machine learning models can either be supervised or unsupervised, where super-

vised means it will use training data to ’learn’ patterns in order to classify unseen data or

forecast future trends while unsupervised models find similarities within the data, under-

stand relationships between different data points and perform additional data analyses.

This project will use supervised modelling as it might not have enough data for a good

unsupervised model.

3.4 Metrics Used

The metrics used for evaluating the models are those most commonly found in literature

on machine learning. Below is a list with brief explanations of the metrics used where the

first one is just for general data analysis:

• Pearson Correlation (r): linear correlation between two sets of data (ranges from -1

to 1)

• Coefficient of Determination(R2): proportion of variance in the dependent variable

; how well the model fits the data (from 0 to 1, but can be negative)

• Mean Squared Error (MSE): the average squared difference between the estimated

values and the actual value (lower value is usually better)

• Root Mean Squared Error (RMSE): how well the model is able to predict the target

value/accuracy (the lower the value, the better)

• Mean Absolute Percentage Error (MAPE): measures the prediction accuracy of the

model; how far off predictions are on average (the lower the percentage, the better)
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3.5 Model Testing Methodology

With machine learning models, in order to test the performance, the dataset is commonly

split into a training dataset and a testing dataset. The training part is used to train the

chosen model and the testing part is used for evaluating the performance of the trained

model on data that is previously not seen by the model during training. This section

describes how that was implemented in the project.

3.5.1 Splitting the Data

As previously stated, the models were initially evaluated using a simple train-test-split

approach. This method involves dividing the entire dataset into two parts: a training set

and a testing set. The larger training set is used to train the model, while the smaller

testing set is used to assess the model’s performance on unseen data.

For this project, the dataset was randomly divided into a 70% training set and a

30% testing set, a common ratio suitable for the dataset’s relatively large number of rows.

This was implemented in the Python code using the train_test_split() function from the

sklearn.model_selection library. The test_size parameter was set to 0.3, allocating 30%

of the data to the testing set. The random_state parameter was set to 42 to ensure

reproducible results across multiple runs and iterations.

3.6 Software and Tools

Figure 3.3: The libraries and specific tools imported for realising the

project

For developing prediction models and doing the data analysis, Python 3.11 will
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be the main language used for programming as it has a lot of useful libraries for machine

learning such as numPy and scikit-learn. Another library called seaborn [38] and mat-

plotlib was also used for making plots and visualizations. From scikit-learn, out of the

linear models available mainly the LinearRegression() and Ridge() functions were used for

training the model, the reasons explained in chapter 5. Figure 3.3 shows the imports and

libraries used for implementing the project.
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Chapter 4

Ideation and Data Exploration

The aim of the ideation process for this graduation project was to identify the project

needs and desired outcomes. Further it was to establish the steps needed to develop the

data analysis and regression model.

4.1 Data Collection and Compilation

4.1.1 The EPA Database

Eventually what was found, was a lot of separate files on measurements taken ranging

from water parameters to regulated DBPs at water treatment plants from the United

States. The fourth Six-Year-Review database is a database collected by the Environmental

Protection Agency (EPA) from January 3rd 2012 through December 31st 2019 [17]. It

contains the data of water treatment plants, ranging across 50 states, 10 Regions, and

several territories of the United States as seen in Figure 4.4. All DBP concentrations have

a unit of µg/L.

4.1.2 Missing Data

As table 4.1 shows, a lot of data is missing where 3 out of 6 water parameters (indicated

by ’p’) have more than 95% missing/null data and 5 out of 13 DBPs have more than

77% of the data missing and hence pre-processing needed to be done in order to have

workable/trainable dataset. This percentage was derived from the non-null count divided

by 18499 which is the total amount of rows.
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# Column Dtype Non-Null Count Percentage Missing

1 PWSID object 18499 non-null 0%

2 DATE object 18499 non-null 0%

3 p_PH float64 6237 non-null 66.28%

4 p_DOC float64 62 non-null 99.66%

5 p_TOC float64 9877 non-null 46.61%

6 p_ALKALINITY float64 13051 non-null 29.45%

7 p_SUVA float64 421 non-null 97.72%

8 p_UVA float64 62 non-null 99.66%

9 d_BROMATE float64 397 non-null 97.85%

10 d_CHLORITE float64 2004 non-null 89.17%

11 t_BROMOFORM float64 5512 non-null 70.20%

12 t_CHLOROFORM float64 12017 non-null 35.04%

13 t_BROMODICHLOROMETHANE float64 12027 non-null 34.99%

14 t_DIBROMOCHLOROMETHANE float64 10559 non-null 42.92%

15 t_TTHM float64 12886 non-null 30.34%

16 h_DIBROMOACETIC_ACID float64 4203 non-null 77.28%

17 h_DICHLOROACETIC_ACID float64 8023 non-null 56.63%

18 h_HAA5 float64 11550 non-null 37.56%

19 h_MONOCHLOROACETIC_ACID float64 2556 non-null 86.18%

20 h_MONOBROMOACETIC_ACID float64 1466 non-null 92.08%

21 h_TRICHLOROACETIC_ACID float64 7383 non-null 60.09%

Table 4.1: Overview of dataset with the percentage of missing data

4.2 Data Pre-Processing

The aforementioned EPA database had to be combined from several files into one dataset

which was kindly done by Balaram Guddanti in a form of an excel spreadsheet. The

columns consisted of the water treatment plant id (’PWSID’), the date, parameters (’p’)

and DBPs (’t’ for THM family, ’h’ for HAA and ’d’ for inorganic DBPs). He further

processed it to contain rows where each row has at least one parameter and one DBP

concentration value, which is the same dataset that is shown in Table 4.1.
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4.2.1 Outliers

Further data pre-processing was done such as taking out obvious outliers by filtering by

the Inter-Quartile Range (IQR) from the summary statistics. Data was also filtered per

column to see if any values were strange. Noticing that a maximum value for some DBPs

were in the 1000s while the lowest and usual measurements were below 100s made it

obvious that there were some outliers that need to be removed. The columns that had

outliers are listed below with the value that it has been filtered on. The code below shows

the final set of outliers:

data = data . drop ( data [ data [ ’t_BROMODICHLOROMETHANE’ ] >= 2 0 0 ] . index )

data = data . drop ( data [ data [ ’h_MONOCHLOROACETIC_ACID’ ] >= 2 0 0 ] . index )

data = data . drop ( data [ data [ ’t_CHLOROFORM’ ] >= 4 0 0 ] . index )

data = data . drop ( data [ data [ ’p_ALKALINITY ’ ] >= 6 0 0 ] . index )

4.2.2 Further Methods

At this stage a plan was made for further tackling missing data. One solution was to

take the mean of every column and fill that into the unknown data. From testing this

and reflecting on it some other methods were proposed, where the details are written in

Chapter 5.

4.3 Data Exploration and Analysis

4.3.1 Summary Statistics of the Parameters

Parameter Mean Std Min Max Units

pH 7.55 0.58 0.43 13 n/a

DOC 2.71 1.25 0.73 5.55 mg/L

TOC 2.91 1.83 0.001755 31.6 mg/L

Alkalinity 125.32 103.12 0.0134 1430 mg/L

SUVA 2.38 0.70 0.94 8.975 L/mg-m

UVA 4.01 3.03 0.008 9.4 cm-1

Table 4.2: Summary Statistics of the Parameters

One of the first things to find out when doing data exploration is the summary
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Figure 4.1: Distribution of Parameters

statistics. Table 4.2 is the summary statistics of the dataset after outliers have been

weeded out. As mentioned it was also generated before the outliers in order to find any

anomalities in the data. The range of pH is quite large where the minimum value is near 0

while the max is 13 but Figure 4.1 shows that the distribution is quite normal. SUVA also

has a normal distribution but in the lower range while TOC and Alkalinity have slightly

skewed distributions. DOC and UVA have very strange distributions and hence it might

be a bottleneck later on.

4.3.2 Parameters vs DBPs

The second visualisation that was explored was scatterplots of parameters vs DBPs with

a red line indicating the regulation limit for that DBP. Figure 4.2 is a curious example

where most of the data points were above the regulation limit. SUVA seems to go in an

upwards correlation motion while UVA has no correlation at all. (Perhaps at this stage

considerations for dropping some parameters should have occured).
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Figure 4.2: Parameters vs TCAA (µg/L)
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4.3.3 Correlation Heatmap

To better understand the correlations between data a correlation heatmap was carefully

crafted where attention was paid to the color so that it was more obvious which corre-

lations were important and in which direction. As one can see in Figure 4.3, there are

big correlations between water parameters which were only considered much later in the

project as an issue/something to fix.

Furthermore, Chloroform has medium correlation with DCAA and TCAA which

both contain chlorine in their chemical composition. The same observation can be made

about DBPs with Bromide and so it is logical to assume that when one form of chlorine

containing DBP is formed, others will follow too, same for bromide. HAA5 has a really

high correlation with DCAA which could mean that there is some bias where there is more

data of DCAA available than other HAAs.

4.3.4 Investigation on Location

By extracting the first 2 letters of the ’PWSID’ the data could further be categorised into

states and then into regions according to the EPA as seen in Figure 4.4.

When further investigating the categorisation of states, it was explored which state

had the highest average concentration of a certain DBP. pH was indifferent to location

as expected, as water treatment plants are usually advised to keep the pH at a certain

level. Additionally, Colorado and Pennsylvania are the only states that have data on the

parameters: DOC, UVA and SUVA which is not a great distribution and could potentially

mean some bias for these States Texas makes up 21.3% of the datapoints followed by

California with 11%. Furthermore, California and Arizona (Region 9) seemed to have the

highest average DBCM, while regions with highest averages for bromoform all have access

to the ocean. This is no coincidence as the sea is rich in bromide [40].

Lastly, Figure 4.5 shows the distribution of regions and its noticaeble that the 3

biggest regions make up more than half of the dataset which could indicate some bias for

the water quality / environment from those regions.
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Figure 4.4: How the states are divided into regions [39]

Figure 4.5: The Regions and the corresponding make up of the

dataset [39]
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4.4 Next Steps

The next steps that would be iterated to meet specific solutions to problems, concluded

from this chapter for the realisation phase are:

1. Pre-processing the data of the EPA database (with different methods to mitigate

missing data)

2. Train the data with various regression models

3. Calculate regression functions and measure metrics such as R2, MAPE, MSE, RMSE

[41]

4. Validate these models by comparing them to other models and test data to see

effectiveness of predicting DBPs
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Chapter 5

Realisation and Results

This chapter aims to describe the processes of each iteration and the results along with a

reflection. Section 5.1 , Section 5.2 and Section 5.3

5.1 Iteration 1: Simple Regression

The first iteration was the most simple linear regression model I could make by replacing

null values with the mean for each column of parameters done by the code:

# b l i n d l y f i l l parameter NAs wi th mean

data [PARAMETERS] = data [PARAMETERS] . f i l l n a ( data [PARAMETERS] . median ( ) )

5.1.1 Process

Python notebooks were used instead of regular python files as it is more efficient to run

chucks during testing so that when you want to change a snippet of code not everything

needs to be run again. The outliers were taken out from the data and a copy of the data

was made. As you can see in Figure 5.1, After just isolating the parameters and targeted

DBP (in this case the total THMs), NA (cells with no data) were dropped in order for

the LinearRegression() function to work [42]. The train_test_split is done and the ’score’

calculates the R2 value.
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Figure 5.1: Snippet of code from the first iteration

5.1.2 Results

So far since it was just a test to see how to code linear regression models, the metrics

collected are only that of the aggregated THM and HAA columns with R2 as the only

parameter. These correspond to 0.078 for THMs and 0.099 or 0.1 for HAAs. Since both

values are more near the 0 than the 1, it is safe to assume that the model did not fit very

well.

5.1.3 Reflection

While having a go at trying to see if models found in literature could be used to for my

own dataset, I realised that I could only compare it against few models/equations as I did

not have the same parameters as them. Upon consultation with my supervisor we decided

to use additional data from a water treatment plan in Coimbra, Portugal to see if filling

those gaps would improve the predictions. That process is described iteration 2.

5.2 Iteration 2: More Parameters

The second iteration thus included two additional parameters from Coimbra’s data where

the values were 0.174 for the chlorine dose (mg/L) and 20 degrees for temperature:

data [ ’p_CHLORINE_MG_L’ ] = 0.174

data [ ’p_TEMPERATURE’ ] = 20
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5.2.1 Process

The same code was used as the previous iteration where the only difference being those

two additional columns.

5.2.2 Results

Because the added values are constant they barely added anything to the results, which

is logical because having a constant means that the regression line will always pass that

point / would be on the same height as the y-intercept (if said constant was the only

parameter). Nevertheless the results are 0.068 for THMs and 0.088 or 0.9 for HAAs which

is technically worse than before.

5.2.3 Reflection

What I realised at this stage is the fact that there is a lot of correlation going on between

the parameters and wondered whether that would be an issue. I stumbled upon the term

multicollinearity and looked up ways to mitigate it / what to do about it. It led me

to find out about another regression model, the Ridge Regression. When the issue of

multicollinearity occurs, least-squares are unbiased, and variances are large, which results

in predicted values being far away from the actual values [43].

Also since the results didn’t improve I decided to entirely ditch those columns

and went back to my original dataset.

5.3 Iteration 3: Testing Different Models

The last iteration consisted of comparing two different regression methods for all DBPs.

5.3.1 Process

To optimalise the process of testing many DBPs a general function was made with pa-

rameters such as the type of regression (regressor), DBP and an array of parameters to

potentially remove in order to get results. In the case that there was no output due to not

having enough data, the parameter columns that were removed were the ones with the

least amount of data (and most NAs) which made less rows drop/dissapear when doing

’dropna()’, hence resulting in a score.
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Figure 5.2: The general regressing function
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5.3.2 Results

Many calls to the general regression function with different DBPs and methods gave the

result shown in Table 5.1.

DBP R2 value using LinearRegression() R2 value using Ridge()

THM -1.32 -0.98

CF -2.53 -1.55

BF 0.0673 0.501

BDCM -0.302 -0.49

DBCM -1.014 0.11

HAA -6.918 -2.06

TCAA 0.085 0.13

DCAA -10.728 -10.73

MCAA -2780.64 -508.60

DBAA -29.58 -47.59

MBAA -54.98 -55.03

Bromate 0.0000045 -0.48

Chlorite -0.062 -0.058

Table 5.1: The R2 value per DBP per Method

5.3.3 Reflection

The results show that bromoform (BF) makes a huge jump in terms of how well the model

fits, which has the highest score of 0.5; others don’t differ much in the sense that the scores

are pretty much equal except MCAA where it goes from -2780 to -508 which is still really

bad but is a noticeable difference. We can not be certain on how reliable this 0.5 value is

and maybe it is overfitting because it has a very small dataset size.
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Chapter 6

Evaluation, Discussion and Future

Work

This chapter aims to answer the research question of how effective current methods/models

are in predicting DBPs. Section 6.1 shows how the results are evaluated, Section 6.2

discusses the evaluation results and lastly Section 6.3 will talk about future direction this

project can go into.

6.1 Evaluation

For the evaluation phase, it is important to evaluate the models made against a state-of-

the-art example. Therefore the equations derived from literature were tested out. The

code in Figure 6.1 was used to see whether the equation applied to the dataset.

6.1.1 Applying Equations from Literature on Dataset

In order to evaluate whether the equations found in Chapter 2 apply universally to any

dataset on water parameters and DBPs, a test was carried out. All equations are from a

paper by Peng et al. [34], as that were the only paper that had matching parameters.

6.2 Discussion

Looking at Table 6.1 it is clear that the models are not universal because the R2 values

are very negative which means that the model’s predictions are worse than a constant
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Figure 6.1: An example code used to derive the metrics while applying

the equation

function that always predicts the mean of the data. RMSE and MAPE are higher than

the original equation which also indicates a bad performance. The reasons for this could

be that the original equations are fitted to a dataset which took samples from China that

is not close to the sea, while the dataset that was used for this project came from the US

which has many different climates across the country and has a lot of states that have

access to the sea. Bromide is the seventh most abundant minerals in the sea [40] which

is also a precursor for B-DBPs such as Bromoform and hence could be a reason as to

why bromoform could be predicted semi accurately and also why it didn’t work on this

project’s database.

6.2.1 Limitations

Reflecting on the project, there are several ways in which it could have been improved for

the next time. Firstly, the search for a better database should have been conducted more

intensively. More e-mails could have been sent to authors, try to scrape the web for similar

databases etc. This is because the results heavily depend on the quality of the database.

There is not much to train when there is not a lot of data and smaller datasets increases

the likelihood that the model over-fits because it does not contain enough data samples

to accurately represent all possible input data values [44]. Additionally, more advanced
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Equation R2 (pa-

per)

R2 RMSE

(paper)

RMSE MAPE(%)

(paper)

MAPE

(%)

Ln(THMs)=

1.579 + 0.477

× Ln(UV254)+

1.829 × Ln(pH)

0.594 -4.71 0.184 1.334 3.745 32.0

Ln(HAAs)=

6.681 + 0.645 ×

Ln(UV254)

0.706 -22.41 0.183 2.373 3.266 65.4

Ln(DCAA)=

6.256 + 0.643 ×

Ln(UV254)

0.768 -14.64 0.156 1.615 3.081 61.7

Ln(TCAA)=

5.224 + 0.608

× Ln(UV254)+

0.134 × Ln(TOC)

0.706 -2.38 0.185 0.88 4.325 34.7

Table 6.1: Equations and metrics derived from literature [34] compared

against applied metrics

methods could have been used in outlier detections such as K-Nearest Neighbours or

clustering methods in order to increase the data quality although it might reduce the risk

of overfitting as well.

Another limitation, also due to not having enough data, is that there wasn’t a

clear baseline or target to meet and so the evaluation process has not been able to be as

thorough as it should be. Perhaps hyperparameter tuning could have been done to delete

parameters that don’t add much to the dataset such as DOC, UVA and SUVA, but then

again not many parameters would be left to analyse the data. In terms of outliers, only

the upper bounds were considered which may affect the overall skewed-ness and bias of

the dataset.

The limitations of the project in general is that we could not collect data ourselves

as it is too expensive and not suitable for the Netherlands since it uses Ozone and UV
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radiation. An interesting approach would have been to compare the formations of ozone

and uv radiation versus that of chlorine to see whether alternative methods are better at

mitigating DBPs.

As water and the environment constantly changes the likelihood that predictions

will not be accurate anymore after a certain period of time is likely. Therefore in a real

world context, such as a water treatment plant in Southern California who implemented

site-specific THM4 models, proved that real time monitoring could be achieved as long as

the prediction models were updated frequently [45]. This further shows the limitation of

this project in a real world context.

6.3 Future Work

In the future, more careful planning should be taken into consideration throughout the

whole data science process as better results could have potentially be had if there was

more quality data or exploring other methods to make the model more robust against

missing data.

Some ways in which the project could be improved on are perhaps doing a cross-

validation of suitable models with k-folds in order to see which chuck of training data

performs best / is the most accurate. Furthermore, the project could have developed into

a combination of a classification algorithm and an aggregate regression model where it will

first classify which DBP might be formed and then of how much. Classification could also

be used to predict, given the input of water quality parameters, whether the DBP amount

would go over the regulation limit or not by only focusing on the data where it goes over

the limit. Lastly, since the date of measurement was available an analysis on the effect of

seasons on DBP formation could have also been explored in another project.
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Chapter 7

Conclusion

In a world where drinking water availability is put under pressure by many factors such as

climate change, population growth and global industrialization, disinfection using chlorine

seemed to be the most cost-effective solution until the discovery of DBPs. This made it

clear that more research needed to be done on how to mitigate/regulate them, what the

exact health effects are, the chemical composition of every possible and existing DBP, and

how they might form.

Knowledge gaps from literature show that the formation of DBPs are largely

unknown, where it is unclear which exact water conditions form particular DBPs, the

impact of each parameter on particular DBPs and making reproducible models for pre-

dicting DBPs. Hence, this project tried to solve the problem of the formation of DBPs

by analysing the correlations between water parameters and DBP concentrations, and

making a predictive model for it.

From the research done in this project it was found that location has an influence

on some of the DBPs formed, Ridge Regression is a better alternative for datasets where

parameters are multi-correlated, and lastly that some models from other studies are not

universal in their application of predicting DBPs and hence that predicting DBPs is likely

a case by case situation per certain geographical location or water treatment plant, as

more factors such as chlorine dosages are at play other than just water parameters.

Although results from this project are not very good, it shows the importance

of data quality in a dataset when trying to train a machine learning model as well as
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understanding the bigger problem.

Overall, this project shows that there is still a long way to go for DBP research in

terms of using machine learning in order to predict DBP formations. Without international

cooperation and research into making a centralised and high quality database on water

parameters (plus other factors influencing DBP formation) and DBP concentrations, it

will be difficult to make reliable and accurate machine learning models that can automate

and regulate water treatment plants to ensure safe drinking water.
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