
MSc Thesis

Predictive coding with
generalized losses and its
mathematical relationship
with backpropagation

Wei-Ting Sun

Graduation committee:
prof.dr. A. J. Schmidt-Hieber
dr.ir. Werner Scheinhardt
dr.ir. Bettina Schwab
dr. Juntong Chen

Role:
Chair and Daily supervisor
Independent examiner
Additional member
Additional member

August 14, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente

Acknowledgments
This master’s thesis is a culmination of 6.5 months of work. I would like to thank my
supervisor, Johannes Schmidt-Hieber, for the research topic and for providing helpful sug-
gestions and feedback along the way. I would also like to thank my graduation assessment
committee members, Werner Scheinhardt, Bettina Schwab, and Juntong Chen: thanks for
making it possible for me to graduate. Special thanks to my friends Jitse Kuilman and
Serge Johanns, who helped look over my thesis.

I wouldn’t have been able to finish my thesis on time without the Bibliotheek Twente
Hengelo Stad. I have a lot of trouble focusing and getting things done at home, so I’ve
been going to the library on weekdays to work on my thesis since June 4, and that has
helped me tremendously. The restaurant/café in the library, STOET, is also great. The
atmosphere is quite nice. I’ve eaten there a few times to avoid having to cook, and the food
is decent — I recommend the “Pulled Chicken Wrap” (€7.50 as of the time of writing).
Another establishment that has saved me from cooking is the The Döner Company branch
in Hengelo station: I often get the “Broodje falafel groot” (€5.99 as of the time of writing)
(though I feel like recently they haven’t been putting as much vegetables in the broodje,
perhaps due to shrinkflation).

One thing I’ve noticed is that, unlike my bachelor’s thesis where I spent the last three
weeks rushing to get it done and almost failed to turn it in on time, it hasn’t been as much
of a rush for me in the final days of my master’s thesis (though I am still writing this on
the day it is due). Perhaps I have gotten better at working on bigger projects. Good job,
me!

Another thing I’ve noticed is that you can really write just about anything in the
Acknowledgments section. In that spirit, I will share some media I have enjoyed re-
cently: the anime/manga series 甘々と稲妻 (Sweetness and Lightning), the manga se-
ries RTA走者はゲーム世界から帰れない (The Speedrunner Can’t Return From the Game
World), the game Stardew Valley, and the mathematics YouTube channel “Another Roof”.

Of course, I would like to thank my parents for their financial support. I wouldn’t be
where I am now without them.

Finally, a big shoutout to my friends and acquaintances throughout my master’s pro-
gram, especially Ties and Mei. The Applied Mathematics master’s program was tough,
but I did it — we did it (I hope).

Wei-Ting Sun
August 12, 2024

https://www.youtube.com/@AnotherRoof

Predictive coding with generalized losses and its
mathematical relationship with backpropagation

Wei-Ting Sun

August 14, 2024

Abstract

Backpropagation is the supervised learning algorithm that has underpinned the
continued success of neural network models in a wide range of applications. However,
it has not found success as a model for learning in the biological neural network of the
brain, as the algorithm is generally considered to be biologically implausible. Predic-
tive coding algorithms, on the other hand, are a promising class of learning algorithms
that have a biological basis and have been shown to approximate backpropagation.
One problem is that so far, they have mostly been formulated only for squared loss
functions. In this paper, we present a framework for predictive coding algorithms with
general loss functions, and we prove that for certain classes of loss functions, predic-
tive coding approximates — and in a certain limit is equal to — backpropagation.
Our results pave the way for predictive coding to be applied on more complex neural
network architectures and machine learning tasks, and further closes the gap between
biologically realistic models of learning and artificial neural networks.

Keywords: predictive coding, backpropagation, loss, biological plausibility

1

Contents
1 Introduction 3

2 Notation 5
2.1 Data . 5
2.2 Computational graphs . 5

3 From backprop to predictive coding 9
3.1 Backpropagation with stochastic gradient descent (BP) 9

3.1.1 Backpropagation with squared loss (BP-SQ) 10
3.2 Predictive coding algorithm with general loss (PC) 12

3.2.1 Derivation . 12
3.2.2 Predictive coding algorithm with squared loss (PC-SQ) 14
3.2.3 Predictive coding with squared loss and errors (PC-SQ-e) 16
3.2.4 Other node losses . 18
3.2.5 Statistical interpretation of PC and PC-SQ-e 21

3.3 Example . 25
3.3.1 BP-SQ . 25
3.3.2 PC-SQ . 26
3.3.3 PC-SQ-e . 27
3.3.4 Comparison . 28

4 Biological plausibility 30

5 Results 33
5.1 Minimization of the inference phase of PC 33
5.2 Approximate dataset loss functions . 40
5.3 Approximate parameter update steps . 44

6 Discussion and conclusion 50

2

1 Introduction
Neural network models and artificial intelligence has seen a boom in recent years, with
new architectures and technologies such as transformers [36], large language models [7,
35], and diffusion models [33, 16, 28]. These technologies have all been made possible
with the error backpropagation algorithm, or “backprop” for short [19, 37]. The success
of backprop in training neural networks has led to it being the by far most widely used
(supervised) learning algorithm for the task today [29].

While artificial neural networks and backprop were initially inspired by the biological
neural network of the human brain, it is generally considered implausible that backprop
is the algorithm used by the brain to learn. The major criticism is that backprop requires
an error or a gradient to be transported in the reverse direction, from the end to the start
of the network, which is unrealistic for the brain [9, 18].

However, we would like to have a successful, biologically plausible learning algorithm
for neural network models. A major goal of neuroscience is to better understand how the
brain learns and thinks — cognition. Such biologically plausible models would lead to a
better mechanistic understanding of human cognitive abilities, such as memory [31] and
language [26], as well as diseases of the brain [2]. Additionally, they could also lead to
improved neuromorphic hardware — hardware that is inspired by and/or aims to mimic
how the brain functions. The hope is that computers that function more similarly to the
brain would be more efficient [3].

In recent years, predictive coding has been developed as a biologically plausible algo-
rithm for learning in the brain. Predictive coding, in addition to a learning algorithm,
is also a data compression strategy and a neurological theory of perception. This theory
posits that perception in the brain is a combination of a top-down generative model of the
expected sensory information and the actual received sensory information, and the errors
between the two are used to tweak the generative model, akin to Bayesian inference [8,
13]. From this, various predictive coding algorithms have been developed for learning on
neural networks, with the aim of being both biologically plausible and useful [12, 10, 11,
23, 24, 34].

A commonly used method in the literature of showing that predictive coding algorithms
learn effectively is to show that they approximate or are equal to backprop. [38] showed
that predictive coding with squared loss on a multilayer perceptron approximates, and in
some cases approaches, backprop. [22] extended that result to neural networks that are
directed acyclic graphs. [34] devised variant predictive coding algorithms that are able
to produce exactly the same parameter updates as backprop, with squared loss and on
multilayer perceptrons. [30] then generalized those algorithms to arbitrary directed acyclic
graph networks.

However, there are few results on extending predictive coding algorithms to loss func-
tions other than squared losses. While [25] has formulated and experimentally compared
predictive coding with general distributions (equivalently, general losses) to backprop, to
the best of our knowledge, there do not yet exist mathematical proofs of this correspon-
dence in the literature.

The contribution of this paper is in mathematically proving that predictive coding with
general loss functions and on neural networks that are arbitrary directed acyclic graphs,
under certain conditions of the loss functions, also approximates and approaches backprop
in a certain limit.

We first describe the notation used in this paper in Section 2. In Section 3 we describe
the backprop algorithm (BP), and derive and present the predictive coding algorithms

3

PC, PC-SQ, and PC-SQ-e, with PC being able to accommodate general loss functions.
Section 4 is dedicated to discussing the biological plausibility of the presented algorithms.
This culminates in Section 5, where we prove various theorems relating PC to BP. Section
6 concludes the paper.

4

2 Notation
Scalars are written in lowercase italics (𝑥), vectors and arrays in bold lowercase italics
(𝒙), and random variables in their uppercase counterparts (𝑋, 𝑿); sets are written in
uppercase italics (𝑋).

2.1 Data
In the context of supervised learning, let 𝐷 = {(𝒙𝑖, 𝒚𝑖)}𝑖∈[𝑛] be a set of paired data — there
are 𝑛 datapoints, indexed by 𝑖 from 1 to 𝑛 — with 𝒙𝑖 ∈ ℝ𝑑𝒙 being the input and 𝒚𝑖 ∈ ℝ𝑑𝒚

being the output of each datapoint, and 𝑑𝒙, 𝑑𝒚 ∈ ℕ being their respective dimensions. We
assume that they are i.i.d. samples from some random variables 𝑿 and 𝒀 . The goal of
the general supervised learning problem is to learn a function that predicts 𝒀 given 𝑿.

In the context of unsupervised learning, let 𝐷 = {𝒙𝑖}𝑖∈[𝑛] be a set of unpaired data,
with 𝒙𝑖 ∈ ℝ𝑑𝒙 for all datapoints 𝒙𝑖. We assume that they are i.i.d. samples from some
random variable 𝑿. The goal of the general unsupervised learning problem is to learn the
distribution of 𝑿, i.e. to estimate the probability density at each value of 𝒙.

2.2 Computational graphs
Computational graphs are a class of functions often used as a general-purpose model
for relationships between observed variables, and are the models used by both backprop
and predictive coding. In a general sense, a computational graph 𝐺 is a tuple

𝐺 = (𝑉 , 𝐴, {(𝑗, 𝑓𝑗)}𝑗∈𝑉hid∪𝑉𝒚
). (1)

In this notation, 𝑉 is the set of nodes, which can be split into 𝑉𝒙, 𝑉𝒚, and 𝑉hid, which are
the set of input nodes (no parents), output nodes (no children), and hidden nodes (has
both parents and children, i.e. all other nodes) respectively. Additionally, 𝐴 is the set of
all arcs (directed edges). We also assume that the underlying graph (𝑉 , 𝐴) is a directed
simple acyclic graph — there cannot be multiple arcs between the same pair of nodes,
and there are no cycles. There are varieties of predictive coding algorithms that work
on arbitrary (including cyclic) computational graph [30]. However, since backpropagation
only works on acyclic graphs, and acyclicity is a useful property, we limit ourselves only
to acyclic computational graphs. Lastly, 𝑓𝑗 is the node function associated with non-input
node 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚.

Given a node 𝑗 ∈ 𝑉 , the nodes that have an arc going to 𝑗 are its parents, and the
nodes that have an arc coming from 𝑗 are its children. These are denoted by the sets pa(𝑗)
and ch(𝑗) respectively.

We assume that the number of input and output nodes |𝑉𝒙| and ∣𝑉𝒚∣ are equal to the
input and output dimensions of the data, 𝑑𝒙 and 𝑑𝒚, respectively. We also assume that
each entry of an input datapoint 𝒙 ∈ ℝ𝑑𝒙 corresponds to a unique input node 𝑗 ∈ 𝑉𝒙 —
the entry corresponding to input node 𝑗 ∈ 𝑉𝒙 is denoted by (𝒙)𝑗. Similarly, each entry of
an output datapoint 𝒚 ∈ ℝ𝑑𝒚 corresponds to a unique output node 𝑗 ∈ 𝑉𝒚, and this entry
is denoted by (𝒚)𝑗.

We often want to have a “value” stored in each node of the computational graph —
we call these node values. While different node values (feedforward values, predictive
coding node values, etc.) will be denoted with different letters, we write 𝑎𝑗 for a general
value at node 𝑗. We assume that node values are scalar real numbers. We use the notation
𝒂pa(𝑗) to denote an array of the node values of the parent nodes of node 𝑗.

5

As it is a computational graph, each non-input node 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 is associated with
a node function 𝑓𝑗 ∶ ℝdeg−(𝑗) × Θ𝑗 → ℝ. The function takes as input an array of
dimension equal to the indegree deg−(𝑗) of node 𝑗 — the number of arcs pointing into
𝑗 — and function parameters 𝜽𝑗 ∈ Θ𝑗, which are the parameters to be learned, with Θ𝑗
being the set of all possible parameters at node 𝑗 (usually ℝ𝑘 for some 𝑘). The output
is a scalar. We assume that all node functions are differentiable. However, we also note
that some node functions used in practice are not differentiable everywhere, e.g. the ReLU
function. In such cases, one should define functions that act effectively as gradients, e.g.
𝟙(𝑥 > 0) as the derivative of the ReLU function.

In practice, these node functions are almost always chosen to be of the form

𝑓𝑗(𝒂pa(𝑗); 𝜽𝑗) = 𝜓𝑗⎛⎜
⎝

∑
𝑖∈pa(𝑗)

𝜙𝑗(𝑎𝑖; 𝜽𝑗,𝑖); 𝜽𝑗,𝑗⎞⎟
⎠

, (2)

for some functions 𝜙𝑗 ∶ ℝ × Θ𝑗,𝑖 → ℝ and 𝜓𝑗 ∶ ℝ × Θ𝑗,𝑗 → ℝ. Node functions of
this form are preferred because they are symmetric with respect to permutations of the
parent nodes, can accommodate different numbers of parent nodes, and have a limited
complexity in the interactions between the parent node values. We call node functions of
this form generalized sum node functions. In this class of functions, the parameters
𝜽𝑗,𝑖 for 𝑖 ∈ pa(𝑗) model the strength of the influence of node 𝑖 on node 𝑗 — we call these the
weight parameters of node 𝑗. The weight parameters 𝜽𝑗,𝑖 and the remaining parameters
𝜽𝑗,𝑗 together make up the node parameters 𝜽𝑗.

For example, a commonly used node function in machine learning is

𝑓𝑗(𝒂pa(𝑗); 𝜽𝑗) = 𝜎⎛⎜
⎝

𝜃𝑗,𝑗 + ∑
𝑖∈pa(𝑗)

𝜃𝑗,𝑖𝑎𝑖⎞⎟
⎠

, (3)

where 𝜎 is a non-linear function, often the ReLU function. This is an example of a
generalized sum node function, with 𝜙𝑗(𝑎𝑖; 𝜃𝑗,𝑖) = 𝑎𝑖𝜃𝑗,𝑖 and 𝜓𝑗(𝑥; 𝜃𝑗,𝑗) = 𝜎(𝑥 + 𝜃𝑗,𝑗).

The algorithms in this paper also make use of so called node loss functions, functions
ℓ𝑗 ∶ ℝ × ℝ → ℝ that quantify how much its two arguments differ from each other. Like
for node functions, we also assume that all node loss functions are differentiable.

Since the graph underlying the computational graph 𝐺 is directed and acyclic, there
exists a (usually non-unique) topological ordering 𝜏𝐺 of the nodes 𝑉 : an ordering such
that for each node, its parents come before it in the ordering. In our notation, 𝜏𝐺(𝑘) gives
the 𝑘th node in the topological ordering of the nodes of 𝐺.

We sometimes want to refer to all the function parameters of a computational graph
together. For this, we use the notation 𝜽𝐺 ∈ Θ𝐺 and we call these the graph parameters:
𝜽𝐺 is a concatenation of the parameters 𝜽𝑗 of all non-input nodes 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚, and Θ𝐺
is the set of all possible graph parameters. When 𝜽𝐺 and 𝜽𝑗 both occur in an equation,
the node parameters 𝜽𝑗 are assumed to be equal to the entries of the graph parameters
𝜽𝐺 corresponding to node 𝑗.

We can now define the feedforward values 𝑧𝑗 for nodes 𝑗 ∈ 𝑉 . Given an input 𝒙
and graph parameters 𝜽𝐺 ∈ Θ𝐺, they are defined by the recursive relation

𝑧𝑗(𝒙; 𝜽𝐺) ∶= {(𝒙)𝑗 𝑗 ∈ 𝑉𝒙
𝑓𝑗(𝒛pa(𝑗)(𝒙; 𝜽𝐺); 𝜽𝑗) 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚

. (4)

Note that the feedforward values of all nodes only depend on the feedforward values of the
input nodes, which is simply the input 𝒙, and the node parameters of all nodes 𝜽𝐺, hence

6

the notation 𝑧𝑗(𝒙; 𝜽𝐺). We use the notation 𝒛pa(𝑗) to denote an array whose entries are the
feedforward values 𝑧𝑖 of the parent nodes 𝑖 ∈ pa(𝑗) of 𝑗. The entries are assumed to be in
the correct order to serve as input in 𝑓𝑗. Similarly, the notation 𝒛𝒙 and 𝒛𝒚 denote an array
whose entries are the feedforward values of the input and output nodes respectively, with
the order of the entries matching that of the input and output data 𝒙 and 𝒚 respectively.

In practice, the feedforward values can be calculated by visiting the nodes in an order
given by a topological ordering, and for every node, evaluating its feedforward value using
(4). In a topological ordering, each node’s parents always come before it, so the right
hand side in (4) is always well-defined, and since computational graphs always have a
topological ordering, their feedforward values are always well-defined.

A computational graph 𝐺 as a whole can be viewed as a single function 𝒇𝐺 that takes
as input an array with dimension 𝑑𝒙, corresponding to the input nodes, and parameters
𝜽𝐺 ∈ Θ𝐺, and that returns an output with dimension 𝑑𝒚. We define this function to output
the feedforward values of the output nodes given the input node feedforward values and
graph parameters:

𝒇𝐺(𝒙; 𝜽𝐺) ∶= 𝒛𝒚(𝒙; 𝜽𝐺). (5)

We note that in the literature, a difference in terminology is often made between
computational graphs learned with backpropagation, termed ANNs (artificial neural net-
works), and computational graphs learned with predictive coding, termed PCNs (predic-
tive coding networks) [21, 34]. In this paper, we call the underlying functions to be learned
“computational graphs” for all algorithms, while the names BP, PC, etc. only refer to the
algorithm and not the underlying function.

The notation is summarized in Table 1.

7

Object Type Notation
Probability density function of

distribution 𝒟 with parameters 𝜽 pdf 𝕡𝒟(⋅; 𝜽)

Input data array ℝ𝑑𝒙 𝒙
Output data array ℝ𝑑𝒚 𝒚
Paired datapoint pair of arrays (𝒙, 𝒚)
Dimensionality of input, output data positive integer 𝑑𝒙, 𝑑𝒚
Paired dataset set of paired arrays 𝐷 = {(𝒙𝑖, 𝒚𝑖)}𝑖∈[𝑛]
Unpaired dataset set of arrays 𝐷 = {𝒙𝑖}𝑖∈[𝑛]
Number of datapoints positive integer 𝑛
Computational graph computational graph 𝐺 = (𝑉 , 𝐴, {(𝑗, 𝑓𝑗)}𝑗∈𝑉hid∪𝑉𝒚

)
Set of all nodes set of vertices 𝑉 = 𝑉𝒙 ∪ 𝑉hid ∪ 𝑉𝒚
Set of input, hidden, output nodes set of vertices 𝑉𝒙, 𝑉hid, 𝑉𝒚
Node of computational graph vertex 𝑗 ∈ 𝑉
Set of parent and child nodes of node 𝑗 set of vertices pa(𝑗), ch(𝑗)
Indegree of node 𝑗 natural number deg−(𝑗) ∶= |pa(𝑗)|
Outdegree of node 𝑗 natural number deg+(𝑗) ∶= |ch(𝑗)|
Generic node value of node 𝑗 variable in ℝ 𝑎𝑗
Feedforward value of node 𝑗 given

input 𝒙 and graph parameters 𝜽𝐺
function ℝ𝑑𝒙 × Θ𝐺 → ℝ 𝑧𝑗(𝒙; 𝜽𝐺)

Node value of node 𝑗 variable in ℝ 𝑣𝑗
Node error of node 𝑗 variable in ℝ 𝜖𝑗
Input node values array in ℝ𝑑𝒙 𝒂𝒙
Hidden node values array in ℝ|𝑉hid| 𝒂hid
Output node value array in ℝ𝑑𝒚 𝒂𝒚
Node values of parents of node 𝑗 array in ℝdeg−(𝑗) 𝒂pa(𝑗)
Node parameters of node 𝑗 array 𝜽𝑗 ∈ Θ𝑗
Node function of node 𝑗 function ℝdeg−(𝑗) × Θ𝑗 → ℝ 𝑓𝑗(𝒂pa(𝑗); 𝜽𝑗)
Graph parameters array 𝜽𝐺 ∈ Θ𝐺
Graph function function ℝ𝑑𝒙 × Θ𝐺 → ℝ𝑑𝒚 𝒇𝐺(𝒙; 𝜽𝐺)
Node loss function of node 𝑗 with

true value 𝑎 and predicted value 𝑏 function ℝ × ℝ → ℝ ℓ𝑗(𝑎, 𝑏)
Squared node loss function ℝ × ℝ → ℝ ℓSQ(𝑎, 𝑏) ∶= 1

2(𝑎 − 𝑏)2

Cross-entropy node loss function [0, 1] × [0, 1] → ℝ ℓCE(𝑎, 𝑏) ∶= −𝑎 log 𝑏
Likelihood node loss function ℝ × ℝ+ → ℝ ℓLH(𝑎, 𝑏) ∶= − log 𝑏
Datapoint loss function for comp. graph 𝐺 function Θ𝐺 × (ℝ𝑑𝒙 × ℝ𝑑𝒚) → ℝ ℒ𝐺(𝜽𝐺; (𝒙, 𝒚))
Dataset loss function for comp. graph 𝐺 function Θ𝐺 × (ℝ𝑑𝒙 × ℝ𝑑𝒚)+ → ℝ ℱ𝐺(𝜽𝐺; 𝐷)
Learning rate for 𝑣, 𝜖, 𝜽 scalar in ℝ+ 𝜂𝑣, 𝜂𝜖, 𝜂𝜽
Gradient descent step for parameters 𝜽𝑗 array Δ𝜽𝑗
Max number of epochs scalar in ℤ+ 𝑐
Backpropagation algorithm algorithm BP
Pred. coding with general loss algorithm PC
Pred. coding with squared loss and errors algorithm PC-SQ-e

Table 1: Notation used in this paper

8

3 From backprop to predictive coding
In this section, we first discuss the backpropagation algorithm, which will lead us to
motivating and deriving our predictive coding algorithms.

3.1 Backpropagation with stochastic gradient descent (BP)
Backpropagation with stochastic gradient descent (BP) is one of the most widely-
used algorithms for performing supervised learning of paired data on computational graphs.
We assume that we have a computational graph 𝐺, a paired dataset 𝐷 = {(𝒙𝑖, 𝒚𝑖)}𝑖∈[𝑛],
and initial graph parameters 𝜽𝐺 ∈ Θ𝐺. The idea behind BP is to have a function ℒBP

𝐺
that, for each paired datapoint (𝒙, 𝒚), quantifies how much the graph function value 𝒇𝐺(𝒙)
given input data 𝒙 “deviates” from the output data 𝒚, and the graph parameters 𝜽𝐺 are
adjusted to lower this “deviation”. We call the function ℒBP

𝐺 the datapoint loss function
of BP.

How ℒBP
𝐺 is defined is by first defining a node loss function ℓBP

𝑗 ∶ ℝ × ℝ → ℝ for
each output node 𝑗 ∈ 𝑉𝒚, which quantifies how much the output data (the first argument)
and the graph function value (the second argument) differ at the node 𝑗. The datapoint
loss function is then the sum of the node loss functions of the output nodes:

ℒBP
𝐺 (𝜽𝐺; (𝒙, 𝒚)) ∶= ∑

𝑗∈𝑉𝒚

ℓBP
𝑗 ((𝒚)𝑗, 𝑧𝑗(𝒙; 𝜽𝐺)), (6)

where 𝑧𝑗(𝒙; 𝜽𝐺) is the feedforward value at node 𝑗 given input 𝒙 and graph parameters
𝜽𝐺. We note that because of the definition of the feedforward values 𝑧, they need to be
computed for all nodes in order to obtain their values at the output nodes. As a result,
they serve as the node values of BP.

We can now derive the node parameter update formulas. BP uses stochastic gradi-
ent descent to learn from a dataset: it iterates through all the datapoints, and for each
datapoint (𝒙, 𝒚), it adjusts the parameters to decrease the datapoint loss function for the
datapoint (𝒙, 𝒚). The node parameter update Δ𝜽BP

𝑗 of the parameters 𝜽BP
𝑗 at non-input

node 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 is proportional to the negative of the gradient of ℒBP
𝐺 with respect to

𝜽BP
𝑗 ,

Δ𝜽BP
𝑗 = −𝜂𝜽

𝜕ℒBP
𝐺

𝜕𝜽𝑗
(𝜽𝐺; (𝒙, 𝒚)), (7)

where 𝜂𝜽 > 0 is the learning rate. The gradient of ℒBP
𝐺 with respect to the node parameter

𝜽𝑗 is then

𝜕ℒBP
𝐺

𝜕𝜽𝑗
(𝜽𝐺; (𝒙, 𝒚)) = 𝜕ℒBP

𝐺
𝜕𝑧𝑗

(𝜽𝐺; (𝒙, 𝒚)) 𝜕𝑧𝑗
𝜕𝜽𝑗

(𝒙; 𝜽𝐺)

= 𝜕ℒBP
𝐺

𝜕𝑧𝑗
(𝜽𝐺; (𝒙, 𝒚)) 𝜕𝑓𝑗

𝜕𝜽𝑗
(𝒛pa(𝑗)(𝒙; 𝜽𝐺); 𝜽𝑗).

This holds because 𝜽𝑗 can only affect ℒBP
𝐺 through the node value 𝑧𝑗, and because

the feedforward values of non-input nodes are defined using the relation 𝑧𝑗(𝒙; 𝜽𝐺) ∶=
𝑓𝑗(𝒛pa(𝑗)(𝒙; 𝜽𝐺); 𝜽𝑗). The term 𝜕𝑓𝑗

𝜕𝜽𝑗
(𝒛pa(𝑗)(𝒙; 𝜽𝐺); 𝜽𝑗) is readily obtainable, while the term

𝜕ℒBP
𝐺

𝜕𝑧𝑗
(𝜽𝐺; (𝒙, 𝒚)) can be expressed as a recursive relation using the chain rule. If 𝑗 ∈ 𝑉𝒚

9

— an output node — then since output nodes have no children, we get
𝜕ℒBP

𝐺
𝜕𝑧𝑗

(𝜽𝐺; (𝒙, 𝒚)) = ∑
𝑘∈𝑉𝒚

𝜕ℓBP
𝑘

𝜕𝑧𝑗
((𝒚)𝑘, 𝑧𝑘(𝒙; 𝜽𝐺))

= 𝜕ℓBP
𝑗

𝜕𝑧𝑗
((𝒚)𝑗, 𝑧𝑗(𝒙; 𝜽𝐺)),

and if 𝑗 ∈ 𝑉hid — a hidden node — then by the chain rule, we have
𝜕ℒBP

𝐺
𝜕𝑧𝑗

(𝜽𝐺; (𝒙, 𝒚)) = ∑
𝑘∈ch(𝑗)

𝜕ℒBP
𝐺

𝜕𝑧𝑘
(𝜽𝐺; (𝒙, 𝒚))𝜕𝑧𝑘

𝜕𝑧𝑗
(𝒙; 𝜽𝐺)

= ∑
𝑘∈ch(𝑗)

𝜕ℒBP
𝐺

𝜕𝑧𝑘
(𝜽𝐺; (𝒙, 𝒚))𝜕𝑓𝑘

𝜕𝑧𝑗
(𝒛pa(𝑘)(𝒙; 𝜽𝐺); 𝜽𝑘).

Putting the equations together, we get that the gradient descent parameter steps Δ𝜽BP
𝑗

for node 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 is given by

Δ𝜽BP
𝑗 = −𝜂𝜽

𝜕ℒBP
𝐺

𝜕𝑧𝑗
(𝜽𝐺; (𝒙, 𝒚)) 𝜕𝑓𝑗

𝜕𝜽𝑗
(𝒛pa(𝑗); 𝜽𝑗), where (8)

𝜕ℒBP
𝐺

𝜕𝑧𝑗
(𝜽𝐺; (𝒙, 𝒚)) =

⎧{{
⎨{{⎩

𝜕ℓBP
𝑗

𝜕𝑧𝑗
((𝒚𝑖)𝑗, 𝑧𝑗(𝒙𝑖; 𝜽𝐺)) 𝑗 ∈ 𝑉𝒚

∑
𝑘∈ch(𝑗)

𝜕ℒBP
𝐺

𝜕𝑧𝑘
(𝜽𝐺; (𝒙, 𝒚))𝜕𝑓𝑘

𝜕𝑧𝑗
(𝒛pa(𝑘); 𝜽𝑘) 𝑗 ∈ 𝑉hid

(9)

In practice, the terms 𝜕ℒBP
𝐺

𝜕𝑧𝑗
(𝜽𝐺; (𝒙, 𝒚)) for non-input nodes 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 can be

calculated efficiently by calculating them in a reverse topological order, hence the name
“backpropagation”. This works because by following a reverse topological order, each
node’s children are visited before the node itself, so Eq. (9) is always evaluated after all
the terms on the right hand side have been calculated. Hence, in BP, for each observed
datapoint (𝒙, 𝒚), the node values 𝑧𝑗 are calculated in topological order, which we call the
forward pass, and then the parameter updates Δ𝜽BP

𝑗 are calculated in reverse topological
order, which we call the backward pass.

The BP algorithm is described in Algorithm 1. As the focus of this paper is on the
individual update steps, the stopping criteria for 𝜽𝐺 are of less relevance and are not
specified. Additionally, the datapoints 𝑖 ∈ [𝑛] can be traversed in any order.

3.1.1 Backpropagation with squared loss (BP-SQ)

The squared error node loss

ℓSQ(𝑎, 𝑏) ∶= 1
2(𝑎 − 𝑏)2 (10)

is a node loss function often used for regression. If all of the node loss functions of BP
are the squared error node loss, i.e. ∀𝑗 ∈ 𝑉𝒚 ∶ ℓBP

𝑗 = ℓSQ, then simplifying (9), we get for
𝑗 ∈ 𝑉𝒚

𝜕ℒBP
𝐺

𝜕𝑧𝑗
(𝜽𝐺; (𝒙, 𝒚)) = 𝑧𝑗(𝒙; 𝜽𝐺) − (𝒚)𝑗 (11)

10

Algorithm 1: Backpropagation with stochastic gradient descent (BP)
Input: Computational graph 𝐺, step size 𝜂𝜽, max number of epochs 𝑐
Data: paired data 𝐷 = {(𝒙𝑖, 𝒚𝑖)}𝑖∈[𝑛]
Result: 𝜽𝐺
Initialize 𝜽𝐺 randomly;
while 𝜽𝐺 not converged and number of epochs < 𝑐 do

for 𝑖 ∈ [𝑛] do
/* Forward pass */
for 𝑗 ∈ 𝑉 traversed through 𝜏𝐺 do

Calculate feedforward values 𝑧𝑗(𝒙𝑖; 𝜽𝐺) using Eq. (4)
end
/* Backward pass */
for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 traversed through reverse 𝜏𝐺 do

Calculate 𝜕ℒBP
𝐺

𝜕𝑧𝑗
(𝜽𝐺; (𝒙𝑖, 𝒚𝑖)) using Eq. (9);

Calculate Δ𝜽BP
𝑗 using Eq. (8);

𝜽𝑗 ← 𝜽𝑗 + Δ𝜽BP
𝑗 ;

end
end

end
return 𝜽𝐺

with no changes to the rest of the algorithm. We denote this flavor of backpropagation
with stochastic gradient descent as BP-SQ.

11

3.2 Predictive coding algorithm with general loss (PC)
Just as with BP, predictive coding with general loss (PC) is a supervised learning
algorithm for computational graphs: given a computational graph 𝐺 that models the
relationship between input and output variables 𝑿 and 𝒀 , it learns its graph parameters
𝜽𝐺 from a paired dataset 𝐷 = {(𝒙𝑖, 𝒚𝑖)}𝑖∈[𝑛]. The predictive coding algorithm is derived
from the predictive coding theory of cognition, and unlike BP, is meant to be a more
biologically plausible algorithm for learning in the brain [12, 10, 11].

3.2.1 Derivation

In this section, we will derive PC as an algorithm to minimize the sum of local node losses.
Let us first recall the main idea behind predictive coding theory. The cortex of the

brain is made up of several layers, with sensory information entering the network at the
lowest, least abstract layer, and this information needs to make its way to the highest,
most abstract layer. Each layer of the cortex predicts the values of the layer below, and
the deviation between the predicted and observed values is used to modify the connections
between the layers so that the deviation is decreased [8].

PC differs from BP in that there is a local loss at each layer that the layer tries to
minimize, whereas in BP, there is a global loss that all layers try to minimize. Thus
instead of having one large computational graph, the idea is to treat each non-input node,
together with its parents, like a small computational graph with its own node loss, and
applying stochastic gradient descent to minimize the node loss of each node separately.

To have a node loss be defined for each non-input node, each non-input node needs
an “output value” to compare with the node function value 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗). For this, we
introduce predictive coding node values 𝑣𝑗 for all nodes 𝑗 ∈ 𝑉 . Each 𝑣𝑗 is a scalar real
value stored at node 𝑗, which can be interpreted as the guess of the “true value” of that
node given the input and output datapoint 𝒙 and 𝒚 for the entire computational graph
𝐺.

In terms of the theory of predictive coding, the node values can be seen as modeling
the guesses of the true values at each cortex layer. However, for each observed datapoint,
we need to find the “best guess” values first before we modify the node parameters. This
is so that the parameters can learn from node values that accurately reflect the observed
datapoint. For input and output nodes, the predictive coding node values 𝒗𝒙 and 𝒗𝒚 are
simply the observed input and output datapoints 𝒙 and 𝒚 respectively. For the hidden
nodes, the node values are guesses of the “true value” of that node, and the node loss
functions serve as our measure of how good that guess is. Hence we aim to find values
𝒗𝑗 for 𝑗 ∈ 𝑉hid that minimize the sum of all node loss functions — this sum of node loss
functions is then our datapoint loss function for PC ℒPC

𝐺 . With the best guess values,
a stochastic gradient descent step can then be performed on the datapoint loss function
with respect to the parameters 𝜽𝐺.

For each node 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚, the node loss function ℓPC
𝑗 is applied on the predic-

tive coding node value 𝑣𝑗 and the node function value of the node values of its parents,
𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗):

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)). (12)

The datapoint loss function for PC, ℒPC
𝐺 , is then the sum of the node loss functions ℓPC

𝑗
for all non-input nodes 𝑗, with the input and output node values assigned to the input

12

and output datapoints (𝒙, 𝒚):

ℒPC
𝐺 (𝒗hid, 𝜽𝐺; (𝒙, 𝒚)) ∶= ⎡⎢

⎣
∑

𝑗∈𝑉hid∪𝑉𝒚

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

. (13)

Notice that unlike the datapoint loss function for BP, the datapoint loss function for PC
also depends on the hidden node values 𝒗hid.

PC thus works in two phases for each datapoint: first to optimize the node values 𝑣𝑗 for
𝑗 ∈ 𝑉hid (the inference phase) and second to adjust the parameters 𝜽𝐺 (the learning
phase) [21], and in both phases ℒPC

𝐺 is the function used for calculating the gradient
descent step.

We can now derive the gradient descent update steps for both the inference and learning
phases. In the inference phase, the gradient of ℒPC

𝐺 with respect to the node value 𝑣𝑗 for
𝑗 ∈ 𝑉hid is

𝜕ℒPC
𝐺

𝜕𝑣𝑗
(𝒗hid, 𝜽𝐺; (𝒙, 𝒚))

= ⎡⎢
⎣

∑
𝑘∈𝑉hid∪𝑉𝒚

𝜕ℓPC
𝑘

𝜕𝑣𝑗
(𝑣𝑘, 𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘))⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

= ⎡⎢
⎣

𝜕ℓPC
𝑗

𝜕𝑣𝑗
(𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)) + ∑

𝑘∈ch(𝑗)

𝜕ℓPC
𝑘

𝜕𝑣𝑗
(𝑣𝑘, 𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘))⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

= ⎡⎢
⎣

𝜕ℓPC
𝑗

𝜕𝑣𝑗
(𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)) + ∑

𝑘∈ch(𝑗)

𝜕ℓPC
𝑘

𝜕𝑓𝑘
(𝑣𝑘, 𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘))𝜕𝑓𝑘

𝜕𝑣𝑗
(𝒗pa(𝑘); 𝜽𝑘)⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

,

since 𝑣𝑗 only affects the node losses of the node 𝑗 and the child nodes of 𝑗. Note that only
hidden nodes are optimized. The gradient descent step is then

Δ𝑣PC
𝑗 = −𝜂𝑣

𝜕ℒPC
𝐺

𝜕𝑣𝑗
(𝒗hid, 𝜽𝐺; (𝒙, 𝒚)) (14)

for 𝑗 ∈ 𝑉hid, where 𝜂𝑣 > 0 is the learning rate.
We use 𝑣∗

𝑗 for 𝑗 ∈ 𝑉 to denote the post-inference node values, the node values
obtained at the end of the inference phase and used in the learning phase. Unless otherwise
specified, we assume that the node values have reached equilibrium by the end of the
inference phase, i.e. Δ𝑣PC

𝑗 = 0 for all 𝑗 ∈ 𝑉hid at the post-inference node values.
In the learning phase, the gradient of ℒPC

𝐺 with respect to the node parameters 𝑣𝑗 for
𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 is

𝜕ℒPC
𝐺

𝜕𝜽𝑗
(𝒗hid, 𝜽𝐺; (𝒙, 𝒚)) = ⎡⎢

⎣
∑

𝑘∈𝑉hid∪𝑉𝒚

𝜕ℓPC
𝑘

𝜕𝜽𝑗
(𝑣𝑘, 𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘))⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

= [
𝜕ℓPC

𝑗
𝜕𝜽𝑗

(𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))]
𝒗𝒙=𝒙
𝒗𝒚=𝒚

= [
𝜕ℓPC

𝑗
𝜕𝑓𝑗

(𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))
𝜕𝑓𝑗
𝜕𝜽𝑗

(𝒗pa(𝑗); 𝜽𝑗)]
𝒗𝒙=𝒙
𝒗𝒚=𝒚

.

13

The gradient descent step for node parameters 𝜽𝑗 is then for the gradient evaluated at the
post-inference node values 𝑣∗

𝑗 for 𝑗 ∈ 𝑉 ,

Δ𝜽PC
𝑗 = −𝜂𝜽

𝜕ℒPC
𝐺

𝜕𝜽𝑗
(𝒗∗

hid, 𝜽𝐺; (𝒙, 𝒚)) (15)

for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚, where 𝜂𝜽 > 0 is the learning rate.
In summary, the PC gradient descent steps are given by:

Inference phase:

∀𝑗 ∈ 𝑉hid ∶ Δ𝑣PC
𝑗 = −𝜂𝑣 [

𝜕ℓPC
𝑗

𝜕𝑣𝑗
(𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)) + (16)

∑
𝑘∈ch(𝑗)

𝜕ℓPC
𝑘

𝜕𝑓𝑘
(𝑣𝑘, 𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘))𝜕𝑓𝑘

𝜕𝑣𝑗
(𝒗pa(𝑘); 𝜽𝑘)⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

Learning phase:

∀𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 ∶ Δ𝜽PC
𝑗 = −𝜂𝜽

𝜕ℓPC
𝑗

𝜕𝑓𝑗
(𝑣∗

𝑗, 𝑓𝑗(𝒗∗
pa(𝑗); 𝜽𝑗))

𝜕𝑓𝑗
𝜕𝜽𝑗

(𝒗∗
pa(𝑗); 𝜽𝑗) (17)

The algorithm is described in Algorithm 2. A few comments: While we assume for
our analysis that the node values converge in the inference phase, in practice there is no
guarantee how many steps it would take for the node values to converge using gradient
descent, so a stopping criterion is employed to stop the inference phase when the values are
“close enough” to an equilibrium. As the focus of this paper is on the individual update
steps, the stopping criteria for 𝜽𝐺 and 𝒗hid are of less relevance and are not specified. The
datapoints 𝑖 ∈ [𝑛] can be traversed in any order. The calculations for Δ𝑣PC

𝑗 for all vertices
can be done concurrently; the same goes for 𝑣𝑗. For-loops involving nodes 𝑗 can be done
for all nodes concurrently.

3.2.2 Predictive coding algorithm with squared loss (PC-SQ)

For predictive coding with squared loss (PC-SQ), we choose in particular the squared
error loss ℓSQ(𝑎, 𝑏) ∶= 1

2(𝑎 − 𝑏)2 for all node loss functions ℓPC-SQ
𝑗 , 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚, akin to

BP-SQ. We thus get

ℒPC-SQ
𝐺 (𝒗hid, 𝜽𝐺; (𝒙, 𝒚)) = ⎡⎢

⎣
∑

𝑗∈𝑉hid∪𝑉𝒚

1
2(𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))2⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

(18)

for the datapoint loss function of PC-SQ, ℒPC-SQ
𝐺 .

In the inference phase, the gradient of ℒPC-SQ
𝐺 with respect to 𝑣𝑗 for 𝑗 ∈ 𝑉hid then

14

Algorithm 2: Predictive coding algorithm
Input: Computational graph 𝐺, learning rates 𝜂𝑣, 𝜂𝜽 > 0 for node values and

parameters respectively, max number of epochs 𝑐
Data: paired data 𝐷 = {(𝒙𝑖, 𝒚𝑖)}𝑖∈[𝑛]
Result: 𝜽𝐺
Initialize 𝜽𝐺 randomly;
Initialize ∀𝑗 ∈ 𝑉hid ∶ 𝑣𝑗 ← 0;
while 𝜽𝐺 not converged and number of epochs < 𝑐 do

for 𝑖 ∈ [𝑛] do
𝒗𝒙 ← 𝒙𝑖;
𝒗𝒚 ← 𝒚𝑖;
/* Inference phase */
while 𝒗hid not converged do

for 𝑗 ∈ 𝑉hid do
Calculate Δ𝑣PC

𝑗 using Eq. (16)
end
for 𝑗 ∈ 𝑉hid do

𝑣𝑗 ← 𝑣𝑗 + Δ𝑣PC
𝑗 ;

end
end
/* Learning phase */
for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 do

Calculate Δ𝜽PC
𝑗 using Eq. (17);

end
for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 do

𝜽𝑗 ← 𝜽𝑗 + Δ𝜽PC
𝑗 ;

end
end

end
return 𝜽𝐺

15

becomes

𝜕ℒPC-SQ
𝐺
𝜕𝑣𝑗

(𝒗hid, 𝜽𝐺; (𝒙, 𝒚))

= ⎡⎢
⎣

∑
𝑘∈𝑉hid∪𝑉𝒚

𝜕
𝜕𝑣𝑗

1
2(𝑣𝑘 − 𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘))2⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

= ⎡⎢
⎣

(𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)) + ∑
𝑘∈ch(𝑗)

(𝑣𝑘 − 𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘)) ⋅ −𝜕𝑓𝑘
𝜕𝑣𝑗

(𝒗pa(𝑘); 𝜽𝑘)⎤⎥
⎦𝒗𝒙=𝒙

𝒗𝒚=𝒚

.

In the learning phase, we get for the gradient of ℒPC-SQ
𝐺 with respect to 𝜽𝑗, for 𝑗 ∈

𝑉hid ∪ 𝑉𝒚,

𝜕ℒPC-SQ
𝐺

𝜕𝜽𝑗
(𝒗hid, 𝜽𝐺; (𝒙, 𝒚)) = ⎡⎢

⎣
∑

𝑘∈𝑉hid∪𝑉𝒚

𝜕
𝜕𝜽𝑗

1
2(𝑣𝑘 − 𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘))2⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

= [−(𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))
𝜕𝑓𝑗
𝜕𝜽𝑗

(𝒗pa(𝑗); 𝜽𝑗)]𝒗𝒙=𝒙
𝒗𝒚=𝒚

.

The gradient descent steps of PC-SQ are then

Inference phase:

∀𝑗 ∈ 𝑉hid ∶ Δ𝑣PC-SQ
𝑗 = 𝜂𝑣[− (𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)) + (19)

∑
𝑘∈ch(𝑗)

(𝑣𝑘 − 𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘))𝜕𝑓𝑘
𝜕𝑣𝑗

(𝒗pa(𝑘); 𝜽𝑘)⎤⎥
⎦𝒗𝒙=𝒙

𝒗𝒚=𝒚
Learning phase:

∀𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 ∶ Δ𝜽PC-SQ
𝑗 = 𝜂𝜽(𝑣∗

𝑗 − 𝑓𝑗(𝒗∗
pa(𝑗); 𝜽𝑗))

𝜕𝑓𝑗
𝜕𝜽𝑗

(𝒗∗
pa(𝑗); 𝜽𝑗) (20)

3.2.3 Predictive coding with squared loss and errors (PC-SQ-e)

Predictive coding with squared loss and errors (PC-SQ-e), known in the literature
as inference learning (IL), is the mainstream variety of predictive coding algorithm,
and is described in [4] and [22]. It is a modification to the PC-SQ algorithm with the
introduction of error values.

Notice that when 𝑣𝑗 appears in the gradient descent step equations of PC-SQ, (19) and
(20), it always occurs in the form 𝑣𝑗−𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗). The idea is to simplify the equations by
introducing error values 𝜖𝑗 for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 that are stored at their respective nodes and
that should be equal to 𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗). However, we do not set 𝜖𝑗 directly to that value
in PC-SQ-e. In order to match the update rule of 𝜖𝑗 with that of the node values 𝑣𝑗 and
node parameters 𝜽𝑗, an iterative update scheme is also used for 𝜖𝑗. We would like that at

16

convergence in the inference phase, for all 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚, the relation 𝜖∗
𝑗 = 𝑣∗

𝑗 − 𝑓𝑗(𝒗∗
pa(𝑗); 𝜽𝑗)

be satisfied. This can be done by updating the error with steps
Δ𝜖PC-SQ-e

𝑗 = 𝜂𝜖 (𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗) − 𝜖𝑗) ,
where its learning rate satisfies 0 < 𝜂𝜖 < 2. With this, and by replacing 𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)
with 𝜖𝑗 in the gradient descent step equations (19) and (20), we get the PC-SQ-e update
formulas:

Inference phase:
∀𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 ∶ Δ𝜖PC-SQ-e

𝑗 = 𝜂𝜖 [𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗) − 𝜖𝑗]𝒗𝒙=𝒙
𝒗𝒚=𝒚

(21)

∀𝑗 ∈ 𝑉hid ∶ Δ𝑣PC-SQ-e
𝑗 = 𝜂𝑣 ⎡⎢

⎣
−𝜖𝑗 + ∑

𝑘∈ch(𝑗)
𝜖𝑘

𝜕𝑓𝑘
𝜕𝑣𝑗

(𝒗pa(𝑘); 𝜽𝑘)⎤⎥
⎦𝒗𝒙=𝒙

𝒗𝒚=𝒚

(22)

Learning phase:

∀𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 ∶ Δ𝜽PC-SQ-e
𝑗 = 𝜂𝜽𝜖∗

𝑗
𝜕𝑓𝑗
𝜕𝜽𝑗

(𝒗∗
pa(𝑗); 𝜽𝑗) (23)

The PC-SQ-e and PC-SQ algorithms do not have exactly the same inference phase
because of the introduction of the error values 𝜖𝑗. However, the two algorithms have
matching equilibria in the inference phase.
Theorem 1 (Matching inference equilibria for PC-SQ-e and PC-SQ). On the same com-
putational graph 𝐺, graph parameters 𝜽𝐺, and paired datapoint (𝒙, 𝒚), 𝑣𝑗 = 𝑣∗

𝑗 for 𝑗 ∈ 𝑉hid
is an equilibrium for the inference phase of PC-SQ if and only if 𝑣𝑗 = 𝑣∗

𝑗 for 𝑗 ∈ 𝑉hid and
𝜖𝑗 = 𝜖∗

𝑗 = 𝑣∗
𝑗 − 𝑓𝑗(𝒗∗

pa(𝑗); 𝜽𝑗) for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 is an equilibrium for the inference phase of
PC-SQ-e.
Proof. (⟹) Let 𝑣𝑗 = 𝑣∗

𝑗 for 𝑗 ∈ 𝑉hid be an equilibrium in the inference phase of PC-SQ,
and let us consider the point 𝑣𝑗 = 𝑣∗

𝑗 for 𝑗 ∈ 𝑉hid and 𝜖𝑗 = 𝑣∗
𝑗 −𝑓𝑗(𝒗∗

pa(𝑗); 𝜽𝑗) for 𝑗 ∈ 𝑉hid ∪𝑉𝒚
in the inference phase of PC-SQ-e. First, the gradient descent steps for the errors, from
(21), are zero. Then for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚, we get

Δ𝜖PC-SQ-e
𝑗 = 𝜂𝜖 [𝑣∗

𝑗 − 𝑓𝑗(𝒗∗
pa(𝑗); 𝜽𝑗) − 𝜖𝑗]𝒗𝒙=𝒙

𝒗𝒚=𝒚

= 𝜂𝜖 [𝑣∗
𝑗 − 𝑓𝑗(𝒗∗

pa(𝑗); 𝜽𝑗) − (𝑣∗
𝑗 − 𝑓𝑗(𝒗∗

pa(𝑗); 𝜽𝑗))]𝒗𝒙=𝒙
𝒗𝒚=𝒚

= 0.
The gradient descent steps for the node values, from (22), would be, for 𝑗 ∈ 𝑉hid,

Δ𝑣PC-SQ-e
𝑗

= 𝜂𝑣 ⎡⎢
⎣

−𝜖∗
𝑗 + ∑

𝑘∈ch(𝑗)
𝜖∗

𝑘
𝜕𝑓𝑘
𝜕𝑣𝑗

(𝒗∗
pa(𝑘); 𝜽𝑘)⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

= 𝜂𝑣 ⎡⎢
⎣

−(𝑣∗
𝑗 − 𝑓𝑗(𝒗∗

pa(𝑗); 𝜽𝑗)) + ∑
𝑘∈ch(𝑗)

(𝑣∗
𝑘 − 𝑓𝑘(𝒗∗

pa(𝑘); 𝜽𝑘))𝜕𝑓𝑘
𝜕𝑣𝑗

(𝒗∗
pa(𝑘); 𝜽𝑘)⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

= Δ𝑣PC-SQ
𝑗 = 0.

17

We thus conclude that 𝑣𝑗 = 𝑣∗
𝑗 for 𝑗 ∈ 𝑉hid and 𝜖𝑗 = 𝑣∗

𝑗 − 𝑓𝑗(𝒗∗
pa(𝑗); 𝜽𝑗) for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 is

an equilibrium for PC-SQ-e.
(⟸) Let 𝑣𝑗 = 𝑣∗

𝑗 for 𝑗 ∈ 𝑉hid and 𝜖𝑗 = 𝑣∗
𝑗 − 𝑓𝑗(𝒗∗

pa(𝑗); 𝜽𝑗) for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 be an
equilibrium in the inference phase of PC-SQ-e. Then the gradient descent step for the
node value 𝑣𝑗 in PC-SQ would be, from (19),

Δ𝑣PC-SQ
𝑗

= 𝜂𝑣 ⎡⎢
⎣

−(𝑣∗
𝑗 − 𝑓𝑗(𝒗∗

pa(𝑗); 𝜽𝑗)) + ∑
𝑘∈ch(𝑗)

(𝑣∗
𝑘 − 𝑓𝑘(𝒗∗

pa(𝑘); 𝜽𝑘))𝜕𝑓𝑘
𝜕𝑣𝑗

(𝒗∗
pa(𝑘); 𝜽𝑘)⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

= 𝜂𝑣 ⎡⎢
⎣

−𝜖∗
𝑗 + ∑

𝑘∈ch(𝑗)
𝜖∗

𝑘
𝜕𝑓𝑘
𝜕𝑣𝑗

(𝒗∗
pa(𝑘); 𝜽𝑘)⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

= Δ𝑣PC-SQ-e
𝑗 = 0.

Hence at 𝑣𝑗 = 𝑣∗
𝑗 for 𝑗 ∈ 𝑉hid, the inference phase of PC-SQ is also at equilibrium.

The following corollary about the resulting parameter update step follows directly from
the above theorem:

Corollary 1. If PC-SQ and PC-SQ-e reach the same equilibrium in the inference phase,
then their parameter update steps in the learning phases are identical.

Proof. The parameter update step for PC-SQ and PC-SQ-e are respectively, for all 𝑗 ∈
𝑉hid ∪ 𝑉𝒚,

Δ𝜽PC-SQ
𝑗 = 𝜂𝜽(𝑣∗

𝑗 − 𝑓𝑗(𝒗∗
pa(𝑗); 𝜽𝑗))

𝜕𝑓𝑗
𝜕𝜽𝑗

(𝒗∗
pa(𝑗); 𝜽𝑗) and

Δ𝜽PC-SQ-e
𝑗 = 𝜂𝜽𝜖∗

𝑗
𝜕𝑓𝑗
𝜕𝜽𝑗

(𝒗∗
pa(𝑗); 𝜽𝑗),

from (20) and (23). Since from Theorem 1 we know that at the same equilibrium, it
holds that the equilibrium node values 𝑣∗

𝑗 are identical and 𝜖∗
𝑗 = 𝑣∗

𝑗 − 𝑓𝑗(𝒗∗
pa(𝑗); 𝜽𝑗) for all

𝑗 ∈ 𝑉hid ∪ 𝑉𝒚, we conclude that the parameter update steps of the two algorithms are
identical if the same inference equilibrium is reached.

The PC-SQ-e algorithm is given in Algorithm 3. A few comments: As the focus of
this paper is on the individual update steps, the stopping criteria for 𝜽𝐺, 𝝐𝐺, and 𝒗hid are
of less relevance and are not specified. Furthermore, the exact implementation may vary;
for example, [38] chose to always stop the inference phase after 20 steps, while [22] chose
to stop at “convergence”, which took around 100 to 200 inference steps. The datapoints
𝑖 ∈ [𝑛] can be traversed in any order. The calculations for Δ𝜖PC-SQ-e

𝑗 and Δ𝑣PC-SQ-e
𝑗 for all

vertices can be done concurrently; the same goes for 𝜖𝑗 and 𝑣𝑗. For-loops involving nodes
𝑗 can be done for all nodes concurrently.

3.2.4 Other node losses

The squared loss is not the only loss able to be used in predictive coding; PC allows for any
differentiable loss function to be used. Here we illustrate two machine learning tasks — in
addition to regression for PC-SQ-e — that require the use of two different loss functions
in PC: classification and probability distribution fitting.

18

Algorithm 3: Predictive coding with squared loss & errors (PC-SQ-e)
Input: Computational graph 𝐺, learning rates for errors, values, and parameters

𝜂𝜖, 𝜂𝑣, 𝜂𝜽, max number of epochs 𝑐
Data: paired data 𝐷 = {(𝒙𝑖, 𝒚𝑖)}𝑖∈[𝑛]
Result: 𝜽𝐺
Initialize 𝜽𝐺 randomly;
Initialize ∀𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 ∶ 𝜖𝑗 ← 0;
Initialize ∀𝑗 ∈ 𝑉hid ∶ 𝑣𝑗 ← 0;
while 𝜽𝐺 not converged and number of epochs < 𝑐 do

for 𝑖 ∈ [𝑛] do
𝒗𝒙 ← 𝒙𝑖;
𝒗𝒚 ← 𝒚𝑖;
/* Inference phase */
while 𝝐𝐺, 𝒗𝐺 not converged do

for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 do
Calculate Δ𝜖PC-SQ-e

𝑗 using Eq. (21);
end
for 𝑗 ∈ 𝑉hid do

Calculate Δ𝑣PC-SQ-e
𝑗 using Eq. (22);

end
for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 do

𝜖𝑗 ← 𝜖𝑗 + Δ𝜖PC-SQ-e
𝑗 ;

end
for 𝑗 ∈ 𝑉hid do

𝑣𝑗 ← 𝑣𝑗 + Δ𝑣PC-SQ-e
𝑗 ;

end
end
/* Learning phase */
for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 do

Calculate Δ𝜽PC-SQ-e
𝑗 using Eq. (23);

end
for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 do

𝜽𝑗 ← 𝜽𝑗 + Δ𝜽PC-SQ-e
𝑗 ;

end
end

end
return 𝜽𝐺

19

Multiclass classification using PC

Supervised learning of a multiclass classification task can be done using PC through the
use of the cross-entropy node loss. Let 𝐷 = {(𝒙𝑖, 𝒚𝑖)}𝑖∈[𝑛] be a paired dataset where the
output data 𝒚𝑖 ∈ {0, 1}𝑑𝒚 is in a one-hot encoded representation of categorical data with
𝑑𝒚 categories — to encode category 𝑘, we have the output data 𝒚 be the 𝟎-vector, with the
𝑘th entry replaced by a 1. Next, let 𝐺 be a computational graph with each of its output
nodes representing the probability that a given input datapoint corresponds to each of
the 𝑑𝒚 categories — this can be done by having the output nodes being the output of the
softmax function applied onto their parent layer of nodes. Then multiclass classification
can be done by having the output nodes 𝑗 ∈ 𝑉𝒚 take the cross-entropy loss as the node
loss ℓPC

𝑗 . The cross-entropy loss ℓCE is

ℓCE(𝑎, 𝑏) ∶= −𝑎 log 𝑏, (24)

where 𝑎 is the node value (the one-hot encoded categorical output data), log is the natural
logarithm, and 𝑏 is the function of its parent nodes (the probabilities of the input data
being of each of the categories). This node loss function leads to multiclass classification
because the sum of the node losses of the output nodes,

⎡⎢
⎣

∑
𝑗∈𝑉𝒚

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))⎤⎥

⎦𝒗𝒚=𝒚

= ∑
𝑗∈𝑉𝒚

−(𝒚)𝑗 log(𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))

= − log ⎛⎜
⎝

∏
𝑗∈𝑉𝒚

𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)(𝒚)𝑗⎞⎟
⎠

is the negative log-likelihood of observing the output data 𝒚 given that the output node
functions 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗) give the likelihood of each of the categories.

It is important to note that only the output node losses need to be the cross-entropy
node loss; there are no additional limitations on what the hidden node losses could be. This
means that the hidden nodes can take the squared loss, and thus multiclass classification
can also be done on PC-SQ-e — the output nodes then take the cross-entropy loss and do
not have error values. This also means that a mixed regression–classification setup is also
possible: some output nodes can take the cross-entropy loss, while others can take other
node losses, e.g. squared loss.

Probability distribution fitting using PC

PC can also be used for the unsupervised learning problem of probability distribution
fitting. Given a dataset 𝐷 = {𝒙𝑖}𝑖∈[𝑛] containing i.i.d. samples of a random variable 𝑿,
and given a class of continuous probability distributions whose probability density function
is represented by a computational graph 𝐺 and parameterized by parameters 𝜽𝐺 ∈ Θ𝐺,
the probability distribution fitting task is to find the parameter values such that the
corresponding probability density given by the output node function best matches the
probability density of the underlying random variable. Since the probability density at a
given point is a scalar, the computational graph 𝐺 only has one output node, which we
denote by 𝑘 ∈ 𝑉𝒚.

The loss function for the output nodes that achieves this can be derived through con-
sidering maximizing the log-likelihood of observing the dataset assuming that the function

20

value at the output node, 𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘), gives the probability density:

argmax
𝜽𝐺∈Θ𝐺

log ⎛⎜
⎝

∏
𝑖∈[𝑛]

[𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘)]𝒗𝒙=𝒙𝑖
⎞⎟
⎠

= argmax
𝜽𝐺∈Θ𝐺

∑
𝑖∈[𝑛]

[log (𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘))]𝒗𝒙=𝒙𝑖

= argmin
𝜽𝐺∈Θ𝐺

1
𝑛 ∑

𝑖∈[𝑛]
[− log (𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘))]𝒗𝒙=𝒙𝑖

.

This optimization problem can thus be seen as doing batch gradient descent — gradient
descent on the average

1
𝑛 ∑

𝑖∈[𝑛]
ℒ𝐺(𝒗hid, 𝜽𝐺; 𝒙𝑖) (25)

of the datapoint loss functions ℒ𝐺 evaluated for each datapoint of the whole dataset —
with the datapoint loss function

ℒ𝐺(𝒗hid, 𝜽𝐺; 𝒙) = [− log (𝑓𝑘(𝒗pa(𝑘); 𝜽𝑘))]𝒗𝒙=𝒙 . (26)

To fit this within the framework of PC, we approximate batch gradient descent with
stochastic gradient descent with the same datapoint loss function ℒ𝐺, and this datapoint
loss function is then equivalent to having the node loss function

ℓLH(𝑎, 𝑏) = − log 𝑏 (27)

on the output node 𝑙 ∈ 𝑉𝒚. We call ℓLH the likelihood node loss function. Notice that
as this is an unsupervised learning problem, this node loss function does not depend on its
first argument, the node value, but only on its second argument, the node function, and
in the datapoint loss function ℒ𝐺, only the input node values are assigned (to the input
data).

3.2.5 Statistical interpretation of PC and PC-SQ-e

Predictive coding also has a statistical interpretation and can be derived from applying
variational inference on a statistical model [4]. In this statistical model, which we denote
by ℳ, the computational graph 𝐺 is interpreted as a Bayesian network: each non-input
node 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 has a random variable 𝐴𝑗 that is modeled as being a sample from a
distribution 𝒜𝑗 — we call this the node value distribution. This distribution is deter-
mined completely by the node loss function ℓ𝑗 and the node function value 𝑓𝑗(𝑨pa(𝑗); 𝜽𝑗)
of the random variables of its parent nodes. With the input nodes assigned to input data
𝒙, a joint distribution across all non-input nodes is defined. This joint distribution is thus
dependent on the input data 𝒙 and the graph parameters 𝜽𝐺.

We can then perform Bayesian inference on this Bayesian network: given the input
and output data (𝒙, 𝒚), we want to infer the probability distribution of the value at each
node. The prior distribution is the unconditioned joint probability distribution of the node
variables 𝐴𝑗 for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚. The posterior distribution is the distribution of the hidden
node random variables 𝑨hid conditioned on observing the output data, 𝑨𝒚 = 𝒚. Thus by
Bayes’s Theorem, we have, under this statistical model ℳ,

𝕡ℳ(𝑨hid = 𝒂hid ∣ 𝑨𝒚 = 𝒚; 𝒙, 𝜽𝐺) = 𝕡ℳ(𝑨hid = 𝒂hid, 𝑨𝒚 = 𝒚; 𝒙, 𝜽𝐺)
𝕡ℳ(𝑨𝒚 = 𝒚; 𝒙, 𝜽𝐺) .

21

With arbitrary node functions 𝑓𝑗, the posterior distribution cannot in general be ex-
pressed as a simple, known distribution. Thus we would like to use variational inference
to approximate the posterior. The PC algorithm can be derived as applying variational
inference to fit a point mass distribution (Dirac delta distribution) to the posterior [20].
We derive this now.

We first consider the special case of PC-SQ. This corresponds to the network where
the node value distribution 𝒜𝑗 is a normal distribution centered around the node function
value with variance 1, i.e. 𝐴𝑗 ∼ 𝒜𝑗 = 𝒩(𝑓𝑗(𝑨pa(𝑗); 𝜽𝑗), 1) [4]. The joint likelihood is then

𝕡ℳ(𝑨hid = 𝒂hid, 𝑨𝒚 = 𝒚; 𝒙, 𝜽𝐺)

= ⎡⎢
⎣

∏
𝑗∈𝑉hid∪𝑉𝒚

𝕡𝒩(𝑎𝑗; 𝑓𝑗(𝒂pa(𝑗); 𝜽𝑗), 1)⎤⎥
⎦𝒗𝒙=𝒙

𝒗𝒚=𝒚

= ⎡⎢
⎣

∏
𝑗∈𝑉hid∪𝑉𝒚

1√
2𝜋 exp (−1

2(𝑎𝑗 − 𝑓𝑗(𝒂pa(𝑗); 𝜽𝑗))2)⎤⎥
⎦𝒗𝒙=𝒙

𝒗𝒚=𝒚

.

The distribution that we approximate the posterior with is the point mass distribution,
which is centered at hidden node values 𝒗hid that are to be optimized in variational infer-
ence. We denote this distribution by 𝒟(𝒗hid).

We apply variational inference — we want to find the values of 𝒗hid that minimize the
KL divergence between the posterior and the approximating distributions,

𝐷KL[𝕡𝒟(⋅; 𝒗hid) ∥ 𝕡ℳ(⋅ | 𝒚; 𝒙, 𝜽𝐺)]

= 𝔼𝑨hid∼𝒟(𝒗hid)[log 𝕡𝒟(𝑨hid; 𝒗hid)
𝕡ℳ(𝑨hid | 𝒚; 𝒙, 𝜽𝐺)]

= 𝔼𝑨hid∼𝒟(𝒗hid)[log 𝕡𝒟(𝑨hid; 𝒗hid)] − 𝔼𝑨hid∼𝒟(𝒗hid)[log 𝕡ℳ(𝑨hid | 𝒚; 𝒙, 𝜽𝐺)].

However, the entropy term 𝔼𝑨hid∼𝒟(𝒗hid)[log 𝕡𝒟(𝑨hid; 𝒗hid)] = log 𝕡𝒟(𝒗hid; 𝒗hid) is infinite,
since the point mass distribution has infinite probability density at its center. To obtain a
meaningful function to minimize, we simply drop this term. We justify this as follows: The
point mass distribution 𝒟 has the property that 𝑫 ∼ 𝒟(𝒅) ⟺ 𝑫′ ∶= 𝑫 − 𝒅 ∼ 𝒟(𝟎) for
all 𝒅 — that is, its parameter simply shifts the distribution. Additionally, all continuous
distributions 𝒞 with this property have an entropy that is a constant independent of its
parameter 𝒄:

∀𝒄 ∶ 𝔼𝑪∼𝒞(𝑐)[log 𝕡𝒞(𝑪; 𝒄)] = 𝔼𝑪′∼𝒞(𝟎)[log 𝕡𝒞(𝑪′; 𝟎)],

where 𝑪′ = 𝑪 − 𝒄. Furthermore, the point mass distribution can be constructed as a
limit of continuous distributions with this property. Altogether, this suggests that we can
treat the entropy term of the point mass distribution simply as a constant, meaning that
dropping the term does not change the shape of the KL divergence function. We instead
minimize the term

−𝔼𝑨hid∼𝒟(𝒗hid)[log 𝕡ℳ(𝑨hid | 𝒚; 𝒙, 𝜽𝐺)] = − log 𝕡ℳ(𝒗hid | 𝒚; 𝒙, 𝜽𝐺).

Doing variational inference with a point mass distribution is thus equivalent to finding
values that maximize the log likelihood of the posterior distribution, with the maximizer

22

being the optimal parameter of the point mass distribution. Substituting in the model
probabilities for the PC-SQ case, we get

− log 𝕡ℳ(𝒗hid | 𝒚; 𝒙, 𝜽𝐺)

= − log ⎡⎢
⎣

∏
𝑗∈𝑉hid∪𝑉𝒚

1√
2𝜋 exp (−1

2(𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))2)⎤⎥
⎦𝒗𝒙=𝒙

𝒗𝒚=𝒚

= − ⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

log (1√
2𝜋 exp (−1

2(𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))2))⎤⎥
⎦𝒗𝒙=𝒙

𝒗𝒚=𝒚

= − ⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

−1
2(𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))2 + const.⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

= ⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

1
2(𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))2⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

+ const.

= ℒPC-SQ
𝐺 (𝒗hid, 𝜽𝐺; (𝒙, 𝒚)) + const.

Therefore, minimizing the KL divergence is equivalent to minimizing the datapoint loss
function, done in the inference phase of PC-SQ. Furthermore, the post-inference node
values 𝒗∗

hid — if they converge to the global minimum — are the maximum a posteriori
estimates of the hidden node values in the posterior distribution, as well as parameters of
the point mass distribution that best approximates the posterior.

We can further decrease the KL divergence by adjusting the graph parameters 𝜽𝐺 to
lower the datapoint loss function. This then corresponds to the learning phase of PC-SQ.

In addition to framing it as a variational inference problem, it has been shown that
predictive coding algorithms are also related to the expectation–maximization (EM) algo-
rithm [20].

We can reverse the above steps to determine the node value distribution that corre-
sponds to a general node loss function of the PC algorithm. Recall that the datapoint loss
function of PC is

ℒPC
𝐺 (𝒗hid, 𝜽𝐺; (𝒙, 𝒚)) = ⎡⎢

⎣
∑

𝑗∈𝑉hid∪𝑉𝒚

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

.

We posit that this is the negative log-likelihood of some joint probability distribution (up
to an additive constant). Then minimizing this datapoint loss function is then equivalent
to maximizing the joint probability density (up to a positive multiplicative constant)

⎡⎢
⎣

∏
𝑗∈𝑉hid∪𝑉𝒚

exp (−ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)))⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

. (28)

To make this a proper probability density on graph 𝐺, we require that the integral of the
term at each node corresponding to its probability distribution, when integrated over all
possible node values, equals 1. Hence we normalize it to get the probability density of the
node distribution at node 𝑗,

𝕡𝒜𝑗
(𝑣𝑗; 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)) =

exp (−ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)))

∫ℝ exp (−ℓPC
𝑗 (𝑎, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))) d𝑎

. (29)

23

It is only when the normalizing integral is finite for all node function values 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)
that the probability density function is well-defined. Hence if this condition is satisfied for
all node losses ℓ𝑗, 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚, in a PC algorithm, then its loss-based interpretation has
an equivalent statistical interpretation with node probability density as in (29).

24

3.3 Example
We now look at a toy example of a computational graph and compare the results of
executing BP-SQ, PC-SQ, and PC-SQ-e on it. First, let 𝐺 be the following computational
graph:

0 1 2
𝑓1 = 𝜃1𝑎0 𝑓2 = 𝜃2𝑎1

𝐺 has nodes 𝑉 = {0, 1, 2}, with input node 𝑉𝒙 = {0}, hidden node 𝑉hid = {1}, and
output node 𝑉𝒚 = {2}. The node functions are 𝑓1(𝑎0; 𝜃1) = 𝜃1𝑎0 and 𝑓2(𝑎1; 𝜃2) = 𝜃2𝑎1.
The graph parameters are then 𝜽𝐺 = (𝜃1, 𝜃2), and are initialized as 𝜃1 = 𝜃2 = 1. We
perform one iteration of each algorithm on the datapoint (𝑥, 𝑦) = (2, 4), with learning
rates 𝜂𝜽 = 𝜂𝑣 = 𝜂𝜖 = 0.1.

3.3.1 BP-SQ

The BP-SQ datapoint loss function for this example is

ℒBP
𝐺 (𝜽𝐺; (𝑥, 𝑦)) = 1

2(𝑦 − 𝑧2(𝑥; 𝜽𝐺))
2

= 1
2(𝑦 − 𝜃2𝜃1𝑥)

2
.

Forward pass

Given the datapoint (𝑥, 𝑦) = (2, 4), at the end of the forward pass, we get for the feedfor-
ward values 𝑧0, 𝑧1, 𝑧2:

𝑧0 = 2 𝑧1 = 2 𝑧2 = 2
𝑓1 = 𝜃1𝑧0 = 2 𝑓2 = 𝜃2𝑧1 = 2

Backward pass

For the backward pass, substituting the known terms into the backprop equations (8) and
(9), we get

Δ𝜃BP
𝑗 = −𝜂𝜽

𝜕ℒBP
𝐺

𝜕𝑧𝑗
(𝜽𝐺; (𝑥, 𝑦)) ⋅ 𝑧pa(𝑗), where

𝜕ℒBP
𝐺

𝜕𝑧𝑗
(𝜽𝐺; (𝑥, 𝑦)) =

⎧{
⎨{⎩

𝑧𝑗(𝑥; 𝜽𝐺) − 𝑦 𝑗 ∈ 𝑉𝒚

∑
𝑘∈ch(𝑗)

𝜕ℒBP
𝐺

𝜕𝑧𝑘
(𝜽𝐺; (𝑥, 𝑦)) ⋅ 𝜃𝑘 𝑗 ∈ 𝑉hid

.

25

Performing the backward pass, we thus get

𝜕ℒBP
𝐺

𝜕𝑧2
(𝜽𝐺; (𝑥, 𝑦)) = 𝑧2(𝑥; 𝜽𝐺) − 𝑦 = 2 − 4 = −2

𝜕ℒBP
𝐺

𝜕𝑧1
(𝜽𝐺; (𝑥, 𝑦)) = 𝜕ℒBP

𝐺
𝜕𝑧2

(𝜽𝐺; (𝑥, 𝑦)) ⋅ 𝜃1 = −2 ⋅ 1 = −2

Δ𝜃BP
2 = −𝜂𝜽

𝜕ℒBP
𝐺

𝜕𝑧2
(𝜽𝐺; (𝑥, 𝑦)) ⋅ 𝑧1 = −0.1 ⋅ −2 ⋅ 2 = 0.4

Δ𝜃BP
1 = −𝜂𝜽

𝜕ℒBP
𝐺

𝜕𝑧1
(𝜽𝐺; (𝑥, 𝑦)) ⋅ 𝑧0 = −0.1 ⋅ −2 ⋅ 2 = 0.4.

3.3.2 PC-SQ

In PC-SQ, we use the squared node loss function for all (non-input) nodes, so we get for
the datapoint loss function

ℒPC
𝐺 (𝜽𝐺; (𝑥, 𝑦)) = [1

2(𝑣1 − 𝑓1(𝑣0; 𝜃1))
2

+ 1
2(𝑣2 − 𝑓2(𝑣1; 𝜃2))

2
]

𝑣0=𝑥
𝑣2=𝑦

= 1
2(𝑣1 − 𝜃1𝑥)

2
+ 1

2(𝑦 − 𝜃2𝑣1)
2
.

Inference phase

At the start of the inference phase, the node values are initialized such that the input
nodes take the input data values, the output nodes take the output data values, and the
hidden nodes are 0:

𝑣0 = 2 𝑣1 = 0 𝑣2 = 4
𝑓1 = 𝜃1𝑣0 = 2 𝑓2 = 𝜃2𝑣1 = 0

The node value step equation, (19), simplifies to

Δ𝑣PC-SQ
𝑗 = 𝜂𝑣 ⎡⎢

⎣
−(𝑣𝑗 − 𝜃𝑗𝑣pa(𝑗)) + ∑

𝑘∈ch(𝑗)
(𝑣𝑘 − 𝜃𝑘𝑣pa(𝑘)) ⋅ 𝜃𝑘⎤⎥

⎦𝑣0=𝑥
𝑣2=𝑦

for all hidden nodes 𝑗 ∈ 𝑉hid. The only hidden node is 𝑗 = 1, and plugging in the initial
values, we get

Δ𝑣PC-SQ
1 = 𝜂𝑣[− (𝑣1 − 𝜃1𝑣0) + (𝑣2 − 𝜃2𝑣1) ⋅ 𝜃2]𝑣0=𝑥

𝑣2=𝑦
= 0.1 ⋅ (−(0 − 2) + (4 − 0) ⋅ 1) = 0.6.

After this inference step, the graph looks as follows:

𝑣0 = 2 𝑣1 = 0.6 𝑣2 = 4
𝑓1 = 𝜃1𝑣0 = 2 𝑓2 = 𝜃2𝑣1 = 0.6

26

Node value steps of the inference phase are taken until the node values converge to
an equilibrium; in this case, there is only one equilibrium, 𝑣∗

1 = 3. However, in practice,
the node value 𝑣1 only approaches but never exactly reaches the equilibrium. For this
example, we continue onto the learning phase using the equilibrium node value 𝑣∗

1 = 3.

𝑣∗
0 = 2 𝑣∗

1 = 3 𝑣∗
2 = 4

𝑓∗
1 = 𝜃1𝑣∗

0 = 2 𝑓∗
2 = 𝜃2𝑣∗

1 = 3

Learning phase

In the learning phase, the parameter update step equation, (20), simplifies to

Δ𝜃PC-SQ
𝑗 = 𝜂𝜽(𝑣∗

𝑗 − 𝜃𝑗𝑣∗
pa(𝑗)) ⋅ 𝒗∗

pa(𝑗)

for all non-input nodes 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚. This evaluates to

Δ𝜃PC-SQ
1 = 𝜂𝜽(𝑣∗

1 − 𝜃1𝑣∗
0) ⋅ 𝑣∗

0 = 0.1 ⋅ (3 − 2) ⋅ 2 = 0.2
Δ𝜃PC-SQ

2 = 𝜂𝜽(𝑣∗
2 − 𝜃2𝑣∗

1) ⋅ 𝑣∗
1 = 0.1 ⋅ (4 − 3) ⋅ 3 = 0.3.

3.3.3 PC-SQ-e

Applying PC-SQ-e to this example, we initialize the node and error values as follows:

𝑣0 = 2 𝑣1 = 0
𝜖1 = 0

𝑣2 = 4
𝜖2 = 0

𝑓1 = 𝜃1𝑣0 = 2 𝑓2 = 𝜃2𝑣1 = 0

Inference phase

In the inference phase, the error (21) and node value step equations (22) simplify to

Δ𝜖PC-SQ-e
𝑗 = 𝜂𝜖 [𝑣𝑗 − 𝜃𝑗𝑣pa(𝑗) − 𝜖𝑗]𝑣0=𝑥

𝑣2=𝑦

for all 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚, and

Δ𝑣PC-SQ-e
𝑗 = 𝜂𝑣 ⎡⎢

⎣
−𝜖𝑗 + ∑

𝑘∈ch(𝑗)
𝜖𝑘𝜃𝑘⎤⎥

⎦𝑣0=𝑥
𝑣2=𝑦

for all 𝑗 ∈ 𝑉hid. The first inference step is then

Δ𝜖PC-SQ-e
1 = 𝜂𝜖 [𝑣1 − 𝜃1𝑣0 − 𝜖1]𝑣0=𝑥

𝑣2=𝑦
= 0.1 ⋅ (0 − 2 − 0) = −0.2

Δ𝜖PC-SQ-e
2 = 𝜂𝜖 [𝑣2 − 𝜃2𝑣1 − 𝜖2]𝑣0=𝑥

𝑣2=𝑦
= 0.1 ⋅ (4 − 0 − 0) = 0.4

Δ𝑣PC-SQ-e
1 = 𝜂𝑣 [−𝜖1 + 𝜖2𝜃2]𝑣0=𝑥

𝑣2=𝑦
= 0.1 ⋅ (−0 + 0 ⋅ 1) = 0,

which results in the following graph at the end of the first inference step:

27

𝑣0 = 2 𝑣1 = 0
𝜖1 = −0.2

𝑣2 = 4
𝜖2 = 0.4

𝑓1 = 𝜃1𝑣0 = 2 𝑓2 = 𝜃2𝑣1 = 0

Notice that the node value 𝑣1 has not changed. This is because the errors were all
initialized as 0. We perform another inference step to show a change in node values: the
second inference step is

Δ𝜖PC-SQ-e
1 = 𝜂𝜖 [𝑣1 − 𝜃1𝑣0 − 𝜖1]𝑣0=𝑥

𝑣2=𝑦
= 0.1 ⋅ (0 − 2 + 0.2) = −0.18

Δ𝜖PC-SQ-e
2 = 𝜂𝜖 [𝑣2 − 𝜃2𝑣1 − 𝜖2]𝑣0=𝑥

𝑣2=𝑦
= 0.1 ⋅ (4 − 0 − 0.4) = 0.36

Δ𝑣PC-SQ-e
1 = 𝜂𝑣 [−𝜖1 + 𝜖2𝜃2]𝑣0=𝑥

𝑣2=𝑦
= 0.1 ⋅ (0.2 + 0.4 ⋅ 1) = 0.06.

𝑣0 = 2 𝑣1 = 0.06
𝜖1 = −0.38

𝑣2 = 4
𝜖2 = 0.76

𝑓1 = 𝜃1𝑣0 = 2 𝑓2 = 𝜃2𝑣1 = 0.06

Inference steps are taken until convergence. Since there is only one equilibrium in the
PC-SQ inference phase, by Theorem 1, there is also only one equilibrium in the PC-SQ-e
inference phase, namely 𝑣∗

1 = 3, 𝜖∗
1 = 1, 𝜖∗

2 = 1, which we take as the inference node values:

𝑣∗
0 = 2 𝑣∗

1 = 3
𝜖∗

1 = 1
𝑣∗

2 = 4
𝜖∗

2 = 1
𝑓∗

1 = 𝜃1𝑣∗
0 = 2 𝑓∗

2 = 𝜃2𝑣∗
1 = 3

Learning phase

For the learning phase, by Corollary 1, the parameter update steps of PC-SQ-e are the
same as those of PC-SQ, so we get Δ𝜃PC-SQ-e

1 = 0.2 and Δ𝜃PC-SQ-e
2 = 0.3.

3.3.4 Comparison

To summarize, the parameter update steps of the three algorithms for this example are as
follows:

Algorithm Δ𝜃1 Δ𝜃2

BP-SQ 0.4 0.4
PC-SQ 0.2 0.3

PC-SQ-e 0.2 0.3

First, BP and the predictive coding algorithms do not produce the same parameter update
steps, and the deviation between the update steps is in general different for different
parameters. This also means that after learning on the same dataset, BP and PC in
general produce different parameter values. We also see that with the same parameter
learning rate 𝜂𝜽, the parameter update steps of PC are smaller in absolute value than
those of BP. The reason for this is that the loss in BP is accumulated at the output nodes,
while the loss in PC is spread out throughout the graph, which causes the loss at each
output node to be in general less in PC than in BP (assuming identical output node loss

28

functions). For the squared loss function (and many other losses), a smaller loss implies
a smaller (in absolute value) gradient. Since the parameter update steps are obtained by
gradient descent, this explains the smaller (in absolute value) parameter update steps of
PC.

We also note that the inference phase of PC-SQ converges faster than in PC-SQ-e — 𝑣1
is already 0.6 at the end of the first inference step in PC-SQ, while it is only 0.06 at the end
of the second inference step in PC-SQ-e. This is mostly a consequence of the initialization
of the error values 𝜖1, 𝜖2 — they were initialized as 0, which does not accurately reflect
the initial value of the difference 𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗). But even if they are initialized as this
difference, the convergence of PC-SQ-e would still be slower than PC-SQ, as the error
values 𝜖𝑗 lag behind the true difference value. This raises the question: why even consider
PC-SQ-e, when PC-SQ is a more computationally efficient algorithm? The answer is that
PC-SQ-e is, in addition to a learning algorithm for computational graphs, a candidate
model for how the brain learns [20], which we explore in the next section.

29

4 Biological plausibility
Neuroscientists search for realistic models of cognition. For a model to be realistic, it is
necessary for the model to reflect our understanding of the brain at all levels, from the
activity potentials of neurons to the connectivity between different regions of the brain
[27, 26]. As the focus of the paper is on learning algorithms for neural networks, we focus
on the level of synaptic plasticity — how the connections between neurons are modified
during learning.

As the development of predictive coding algorithms is motivated by a desire for realistic
algorithms for synaptic plasticity, in this section, we evaluate how realistic the BP and PC
algorithms are. “Realism” for synaptic plasticity is not strictly defined; instead, various
criteria for biological plausibility that the learning process in the brain is believed to satisfy
have been proposed [1, 5]. We list some commonly mentioned biological plausibility criteria
below:

• Local plasticity
Neurons can only be influenced by other neurons that they are connected with.
In particular, changes to a synapse should only be able to be induced by the two
neurons that the synapse joins. This idea is known as local plasticity or locality [4,
38, 34, 5]. However, a precise criterion is still elusive, as our understanding of the
processes that affect a synapse is still incomplete [5]. We refer to [6] for an extended
discussion of these issues and an attempt at mathematically formalizing the idea of
local plasticity.
Nevertheless, we can still attempt to formalize local plasticity within our framework
of computational graphs. Recall from Section 2 that a generalized sum node function
is a node function 𝑓𝑗 that is of the form

𝑓𝑗(𝒂pa(𝑗); 𝜽𝑗) = 𝜓𝑗⎛⎜
⎝

∑
𝑖∈pa(𝑗)

𝜙𝑗(𝑎𝑖; 𝜽𝑗,𝑖); 𝜽𝑗,𝑗⎞⎟
⎠

. (30)

This class of node functions models neuronal activity: the terms 𝜙𝑗(𝑎𝑖; 𝜽𝑗,𝑖) model
the activities of the parent nodes, and the parameters 𝜽𝑗,𝑖 model the correspond-
ing synaptic weights. If a node 𝑗 has a generalized sum node function, it may be
considered to satisfy local plasticity if the updates of each of its parameters 𝜽𝑗,𝑖 for
𝑖 ∈ pa(𝑗) only depend on the current parameter 𝜽𝑗,𝑖 and the node values 𝑎𝑗 and 𝑎𝑖:

Δ𝜽𝑗,𝑖 ↤ 𝜽𝑗,𝑖, 𝑎𝑗, 𝑎𝑖. (31)

• Hebbian plasticity rules
Hebbian plasticity is a general rule for synaptic learning proposed by Hebb in his
book The Organization of Behavior, published in 1949, which states

When an axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased. [15]

In other words, if (neuronal) cell A is a parent of (neuronal) cell B, and cell A
firing causes cell B to fire, then the synaptic connection between cell A and B is

30

strengthened. This idea of plasticity is generally regarded as being important for
biological realism [27].
Hebbian plasticity has been quantified as the change in the weight of a synapse being
proportional to the product of the neuron activities of its two adjacent neurons [39].
However, it has also been quantified as the change in synaptic weight being dependent
on the product [4], or that the product is of monotonic increasing functions of the
two neuron activities [38]. Note that in all of these formulations, Hebbian plasticity
implies local plasticity.
Translated into our framework of computational graphs, if the function at node 𝑗
is a generalized sum node function, then the node has Hebbian plasticity if the
parameter step Δ𝜽𝑗,𝑖 for all 𝑖 ∈ pa(𝑗) is proportional to (or dependent on) the
product of (monotonic increasing functions of) the node values 𝑎𝑖 and 𝑎𝑗:

Δ𝜽𝑗,𝑖 ∝ 𝑎𝑗𝑎𝑖 or Δ𝜽𝑗,𝑖 = 𝑔1(𝑎𝑗)𝑔2(𝑎𝑖), (32)

where 𝑔1 and 𝑔2 are monotone increasing functions.

• Uncoupled forward and backward weights
Synapses are unidirectional: synapses are used to send signals from the parent neuron
to the child neuron, and the child neuron cannot use the same synapse to send
signals to the parent. To send feedback to the parent, the child neuron must create
a separate connection to the parent with a separate synapse. Since the synapses
of the two connections are different, their synaptic weights should be independent
and uncoupled [39, 5]. This criterion is unfortunately not met by many learning
algorithms — this is known as the weight transport problem [23, 18].
Within our framework of computational graphs, if the node function of 𝑗 is a gener-
alized sum node function, then this means that the parameters 𝜽𝑗,𝑖, which are used
to adjust the value 𝑎𝑗 of the child node 𝑗, should not be used to adjust the value 𝑎𝑖
of the parent node 𝑖.

It is generally accepted that BP does not satisfy local plasticity, and this is its main
criticism [5, 34]. Even though the equations used in BP only refer to adjacent nodes,
the parameter steps calculated in the backwards pass are propagated from the end of the
computational graph throughout the graph to each node, and depend on the values and
parameters of all the nodes downstream. Because BP does not have local plasticity, it also
does not have Hebbian plasticity. Additionally, BP does not have uncoupled forward and
backward weights. There have been attempts to resolve this problem. It has been shown
that BP with random synaptic weights in the backwards direction is able to learn from
data, though not as well as unmodified BP [17]. This idea has since been improved upon
to reach a level of performance comparable to BP [32].

PC-SQ-e, on the other hand, was motivated primarily as a model for synaptic learning
and perception, extending from the predictive coding theory of the brain, and so is made
with the goal of being biologically plausible. Unlike PC and PC-SQ, PC-SQ-e contains
error values, which can be interpreted as the activity of “error neurons” in the brain as a
possible neural interpretation [20, 4]. PC-SQ-e satisfies local plasticity [5] and has Hebbian
plasticity rules [4, 39]. However, like BP, it does not have uncoupled forward and backward
weights [5]. Results have been published to address this; for example, a modified version
of PC-SQ-e, named BioCCPC, has been shown to resolve the weight transport problem for
some node functions [14]. There have, however, been other biological plausibility concerns

31

for PC-SQ-e, such as the unrealistically large number of error neurons needed in the brain
— one error neuron per node — in some neural interpretations of the algorithm [20].

We conclude that while neither algorithm is fully realistic as a model for synaptic
plasticity in the brain, PC-SQ-e is indeed more biologically plausible than BP, and mod-
ifications to both have been proposed that improve their realism. We refer the reader to
[5] for a further discussion on biological plausible criteria and a comparison of biological
plausibility between several learning algorithms.

32

5 Results
Over the past few years, it has been proven that various predictive coding algorithms and
backprop produce approximately or exactly equal parameter update steps. [38] showed
that PC-SQ-e approximates BP-SQ for multilayer perceptrons, and later [34] showed that
Z-IL, a modified algorithm based on PC-SQ-e, produces exactly the same parameter up-
dates as BP-SQ. This latter result was generalized to arbitrary computational graphs in
[30].

Our contribution in this paper is in showing that predictive coding for general node
losses/distributions has approximately the same parameter updates as BP with the corre-
sponding loss function on arbitrary computational graphs. In Subsection 5.1 we first show
that the datapoint loss function always has a minimum in the inference phase of PC. Then
in Subsection 5.2 we show that the parameters that minimize BP and PC are the same
under some conditions. Finally, in Subsection 5.3, we show that the parameter update
steps of BP and PC are approximately equal, and this culminates in a theorem stating
that they are equal in a certain limit.

5.1 Minimization of the inference phase of PC
Many results regarding PC require that the datapoint loss function has a minimum in
the inference phase, and/or assume that a minimum is attained. Furthermore, we would
like to have guarantees about convergence in the inference phase. In this subsection, we
prove that such a minimum is guaranteed to exist, as long as the node loss functions
satisfy certain conditions. Since the proof for PC (for general node loss functions) is quite
technical, we first start with proving the special case of the theorem for squared node loss
— i.e. for PC-SQ-e — which uses the same overall proof idea but is more transparent.

Theorem 2 (PC-SQ-e inference phase minimum existence theorem). Given any computa-
tional graph 𝐺 with parameters 𝜽𝐺 and learning from any datapoint (𝒙, 𝒚) using PC-SQ-e,
the minimization problem of the datapoint loss function ℒPC-SQ

𝐺 w.r.t. the hidden node
values 𝒗hid (corresponding to the inference phase),

inf
𝒗hid∈ℝ∣𝑉hid ∣

ℒPC-SQ
𝐺 (𝒗hid, 𝜽𝐺; (𝒙, 𝒚)) = inf

𝒗hid∈ℝ∣𝑉hid ∣
⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

1
2(𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))2⎤⎥

⎦𝒗𝒙=𝒙
𝒗𝒚=𝒚

,

is guaranteed to have a global minimum.

Proof. We prove this as follows. First, to simplify the problem, we remove the 1
2 in the

datapoint loss function and denote the resulting equivalent function to be minimized by
ℎ:

ℎ(𝒗hid) ∶= 2ℒPC-SQ
𝐺 (𝒗hid, 𝜽𝐺; (𝒙, 𝒚)) = ⎡⎢

⎣
∑

𝑗∈𝑉hid∪𝑉𝒚

(𝑣𝑗 − 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))2⎤⎥
⎦𝒗𝒙=𝒙

𝒗𝒚=𝒚

.

Since each 𝑓𝑗 is continuous, the function ℎ is also continuous. The minimization is thus
on the value of the hidden nodes 𝒗hid over the domain 𝒗hid ∈ ℝ|𝑉hid|. We show that there
is a compact subset 𝑈 ⊂ ℝ|𝑉hid| such that if a minimum exists, it must be in 𝑈 . Then
since 𝑈 is compact and ℎ is continuous, a minimum exists in 𝑈 , and thus also in ℝ|𝑉hid|.

Now the proof. First, let us denote a function value attainable by the function ℎ by
ℎ0. Since ℎ is a sum of squares and so is non-negative, we have that ℎ0 ≥ 0. We now

33

construct the 𝑈 such that the function ℎ has a value greater than ℎ0 for all points outside
of 𝑈 . Then according to a topological ordering of the computational graph, we visit each
non-output node 𝑗 ∈ 𝑉𝒙 ∪ 𝑉hid in order and associate with node 𝑗 a closed interval 𝐼𝑗,
whose interpretation is that of a bound for the optimal value of 𝑣𝑗, and is defined as

𝐼𝑗 ∶=
⎧{
⎨{⎩

[(𝒙)𝑗, (𝒙)𝑗] 𝑗 ∈ 𝑉𝒙

[min
∀𝑖∈pa(𝑗)∶𝑎𝑖∈𝐼𝑖

𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗) − √ℎ0, max
∀𝑖∈pa(𝑗)∶𝑎𝑖∈𝐼𝑖

𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗) + √ℎ0] 𝑗 ∈ 𝑉hid
.

Since we defined the 𝐼𝑗 following a topological ordering of the computational graph, the
right hand side, which only references the parent nodes of 𝑗, is always defined when defining
𝐼𝑗. Also, the min and max exist because they are extrema of continuous functions on a
compact domains. Hence the 𝐼𝑗 are well-defined. We claim that for all 𝒗hid ∈ ℝ|𝑉hid|, if
the node value of some node is not in its corresponding interval, then ℎ(𝒗hid) > ℎ0. Let
𝑗′ denote the earliest node along the topological ordering such that 𝑣𝑗′ ∉ 𝐼𝑗′ . This implies
that all of its parent nodes 𝑖 ∈ pa(𝑗′) satisfy 𝑣𝑖 ∈ 𝐼𝑖. To not be in the interval, the node
value 𝑣𝑗′ must be less than the lower endpoint or greater than the upper endpoint of 𝐼𝑗′ .
In the case that it is less than the lower endpoint, we get a lower bound for the term in ℎ
corresponding to node 𝑗′:

𝑣𝑗′ < min
∀𝑖∈pa(𝑗′)∶𝑣𝑖∈𝐼𝑖

𝑓𝑗′(𝒗pa(𝑗′); 𝜽𝑗′) − √ℎ0

0 ≤ √ℎ0 < min
∀𝑖∈pa(𝑗′)∶𝑣𝑖∈𝐼𝑖

𝑓𝑗′(𝒗pa(𝑗′); 𝜽𝑗′) − 𝑣𝑗′

ℎ0 < (min
∀𝑖∈pa(𝑗′)∶𝑣𝑖∈𝐼𝑖

𝑓𝑗′(𝒗pa(𝑗′); 𝜽𝑗′) − 𝑣𝑗′)
2

.

Since all parent nodes 𝑖 ∈ pa(𝑗′) of 𝑗′ satisfy 𝑣𝑖 ∈ 𝐼𝑖, we get that 𝑓𝑗′(𝒗pa(𝑗′); 𝜽𝑗′) ≥
min∀𝑖∈pa(𝑗′)∶𝑣𝑖∈𝐼𝑖

𝑓𝑗′(𝒗pa(𝑗′); 𝜽𝑗′), and as the latter minus 𝑣𝑗′ is non-negative, we get

≤ (𝑓𝑗′(𝒗pa(𝑗′); 𝜽𝑗′) − 𝑣𝑗′)2

= (𝑣𝑗′ − 𝑓𝑗′(𝒗pa(𝑗′); 𝜽𝑗′))2.

Similarly, if 𝑣𝑗′ is greater than the upper endpoint, then we get

𝑣𝑗′ > max
∀𝑖∈pa(𝑗)∶𝑣𝑖∈𝐼𝑖

𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗) + √ℎ0

0 ≤ √ℎ0 < 𝑣𝑗′ − max
∀𝑖∈pa(𝑗)∶𝑣𝑖∈𝐼𝑖

𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗)

ℎ0 < (𝑣𝑗′ − max
∀𝑖∈pa(𝑗)∶𝑣𝑖∈𝐼𝑖

𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))
2

≤ (𝑣𝑗′ − 𝑓𝑗′(𝒗pa(𝑗′); 𝜽𝑗′))2.

In either case, we get that ℎ0 < (𝑣𝑗′ − 𝑓𝑗′(𝒗pa(𝑗′); 𝜽𝑗′))2. Since ℎ is a sum of squares, one of
them being (𝑣𝑗′ − 𝑓𝑗′(𝒗pa(𝑗′); 𝜽𝑗′))2, this implies that ℎ0 < ℎ(𝒗hid) if there is a node 𝑗′ such
that 𝒗𝑗′ ∉ 𝐼𝑗′ . Hence if we let 𝑈 = ⨉𝑗∈𝑉hid

𝐼𝑗, then we get 𝒗hid ∉ 𝑈 ⟹ ℎ(𝒗hid) > ℎ0, as
desired.

Since all the intervals 𝐼𝑗 are closed and finite, 𝑈 is a compact subset of ℝ|𝑉hid|. Thus
ℎ attains a minimum value on the domain 𝑈 . And since ℎ0 < ℎ(𝒗hid) for all 𝒗hid ∉ 𝑈 , the
attained minimum on 𝑈 is the minimum of ℎ on all of ℝ|𝑉hid|.

34

For the corresponding theorem for general loss functions in PC, we will need the
following definition:

Definition 1 (Proper node loss function). A function ℓ ∶ ℝ × ℝ → ℝ is a proper node
loss function if it satisfies the following properties:

(i) ℓ(𝑎, 𝑏) is differentiable everywhere

(ii) ℓ has a global lower bound

(iii) If 𝑎′ ≤ 𝑎 ≤ 𝑏 ≤ 𝑏′ or 𝑎′ ≥ 𝑎 ≥ 𝑏 ≥ 𝑏′, then ℓ(𝑎, 𝑏) ≤ ℓ(𝑎′, 𝑏′)

(iv) lim𝑏→−∞ ℓ(𝑎, 𝑏) = lim𝑏→∞ ℓ(𝑎, 𝑏) = ∞ for all real numbers 𝑎

(v) lim𝑎→−∞ ℓ(𝑎, 𝑏) = lim𝑎→∞ ℓ(𝑎, 𝑏) = ∞ for all real numbers 𝑏

These properties imply an additional property:

Lemma 1. Let ℓ be a proper node loss function. Then ℓ(𝑎, 𝑎) has the same function value
for all 𝑎 ∈ ℝ.

Proof. We claim that each (𝑎, 𝑎), where 𝑎 ∈ ℝ, must be a critical point of the function ℓ,
i.e. its gradient must be 𝟎. Assume, to be contradicted, that the gradient 𝜕ℓ

𝜕(𝑎,𝑏) is not 𝟎 at
some 𝒂′ = (𝑎′, 𝑎′) where 𝑎′ ∈ ℝ. We then consider the directional derivatives at 𝒂′ in the
directions 𝐻 = {(1, 0), (−1, 0), (0, 1), (0, −1)}. At least one of the directional derivatives
must be strictly negative — we denote this direction by 𝒉 ∈ 𝐻. Then there must exist an
𝛼 > 0 such that ℓ(𝒂′) > ℓ(𝒂′ + 𝛼𝒉). We also note that either

𝑎′ + 𝛼𝒉1 ≤ 𝑎′ ≤ 𝑎′ + 𝛼𝒉2 or 𝑎′ + 𝛼𝒉1 ≥ 𝑎′ ≥ 𝑎′ + 𝛼𝒉2

must hold. Thus by property (iii) of the definition of a proper node loss function, the
inequality ℓ(𝒂′) ≤ ℓ(𝒂′ + 𝛼𝒉). That is a contradition, so the gradient 𝜕ℓ

𝜕(𝑎,𝑏)(𝑎′, 𝑎′) must
be 𝟎 for all 𝑎′ ∈ ℝ.

We now assume, again to be contradicted, that there exist two points (𝑎′, 𝑎′) and
(𝑎″, 𝑎″), with 𝑎′ < 𝑎″, with different values of ℓ. Then by the mean value theorem, there
must exist some ̃𝑎 ∈ (𝑎′, 𝑎″) such that the directional derivative of ℓ at (̃𝑎, ̃𝑎) in the
direction (1, 1) is equal to ℓ(𝑎″,𝑎″)−ℓ(𝑎′,𝑎′)

𝑎″−𝑎′ ≠ 0. However, the gradient must be 𝟎 for all
̃𝑎 ∈ ℝ, which is a contradiction. Hence we conclude that ℓ(𝑎, 𝑎) has the same value for all

𝑎 ∈ ℝ.

The squared node loss function ℓSQ(𝑎, 𝑏) = 1
2(𝑎− 𝑏)2 satisfies the definition of a proper

node loss function: It is differentiable everywhere and has the lower bound of 0. If 𝑎′ ≤
𝑎 ≤ 𝑏 ≤ 𝑏′ or 𝑎′ ≥ 𝑎 ≥ 𝑏 ≥ 𝑏′, then |𝑎 − 𝑏| ≤ |𝑎′ − 𝑏′|, and so ℓSQ(𝑎, 𝑏) ≤ ℓSQ(𝑎′, 𝑏′).
Finally, it is easy to see that taking the limit of either argument to ±∞ of ℓSQ gives ∞.
One can show that (𝑎 − 𝑏)2(𝑎2 + 𝑏2) and (𝑎 − 𝑏)4 are also examples of proper node loss
functions

On the other hand, neither the cross entropy node loss ℓCE(𝑎, 𝑏) = −𝑎 log 𝑏 nor the
likelihood node loss ℓLH(𝑎, 𝑏) = − log 𝑏 is a proper node loss function. For both functions,
taking the limit as 𝑎 → ±∞ does not both give ∞. A more fundamental problem, however,
is that neither function is defined for all 𝑏 ∈ ℝ — they are only defined for positive 𝑏.

We now state and prove the generalized theorem.

35

Theorem 3 (PC inference phase minimum existence theorem). Given any computational
graph 𝐺 with parameters 𝜽𝐺 and learning from any datapoint (𝒙, 𝒚) using PC, the min-
imization problem of the datapoint loss function ℒPC

𝐺 w.r.t. the hidden node values 𝒗hid
(corresponding to the inference phase) is guaranteed to have a minimum if its node loss
functions satisfy the following properties:

(i) ℓ𝑗 is continuous and has a global lower bound for all output nodes 𝑗 ∈ 𝑉𝒚

(ii) ℓ𝑗 is a proper node loss function for all hidden nodes 𝑗 ∈ 𝑉hid.

The proof follows the same strategy as for the squared node loss case: to show that
a minimum of the function exists, we construct a compact set 𝑈 such that input values
outside the set cannot minimize the function, and then since 𝑈 is compact and the function
is continuous, the function must have a minimum on 𝑈 , which must also be a minimum
on the whole input space.

Proof. We denote the datapoint loss function of PC at the given datapoint (𝒙, 𝒚) and
graph parameters 𝜽𝐺 by ℎ:

ℎ(𝒗hid) ∶= ℒPC
𝐺 (𝒗hid, 𝜽𝐺; 𝐷𝑖) = ⎡⎢

⎣
∑

𝑗∈𝑉hid∪𝑉𝒚

ℓ𝑗(𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))⎤⎥
⎦𝒗𝒙=𝒙

𝒗𝒚=𝒚

.

We assume that all loss functions ℓ𝑗 for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 are lower-bounded by 0. We can
assume this, as one can consider instead new loss functions

̂ℓ𝑗(𝑎, 𝑏) ∶= ℓ𝑗(𝑎, 𝑏) − 𝑐𝑗,

where 𝑐𝑗 ∈ ℝ is a lower bound for ℓ𝑗, and the new function to be minimized,

ℎ̂(𝒗hid) ∶= ⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

̂ℓ𝑗(𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))⎤⎥
⎦𝒗𝒙=𝒙

𝒗𝒚=𝒚

= ℎ(𝒗hid) − ∑
𝑗∈𝑉hid∪𝑉𝒚

𝑐𝑗.

These new node loss functions are then lower-bounded by 0. If the new function ℎ̂ has
a minimum, then so does the original function ℎ, as the two functions only differ by a
constant.

With this assumption, let ℎ0 ∈ ℝ be a function value attainable by ℎ. We then
construct a compact interval 𝐼𝑗 ⊂ ℝ for each non-output node 𝑗 ∈ 𝑉𝒙 ∪ 𝑉hid. We would
like these intervals to have the property that for all 𝑗 ∈ 𝑉hid, if 𝑣𝑗 ∉ 𝐼𝑗 and 𝑣𝑖 ∈ 𝐼𝑖 for all
parent nodes 𝑖 ∈ pa(𝑗), then the function value ℎ(𝒗hid) would exceed ℎ0.

We construct the intervals sequentially in a topological order of the computational
graph. If 𝑗 ∈ 𝑉𝒙, we define 𝐼𝑗 = {(𝒙𝑖)𝑗}, the component of the input datapoint 𝒙𝑖
corresponding to input node 𝑗. The case 𝑗 ∈ 𝑉hid is more involved. Assume that all parent
node values 𝑣𝑖 of node 𝑗 are in their respective compact intervals 𝐼𝑖 (which have already
been defined since they are defined in a topological order). Equivalently, 𝒗pa(𝑗) lies in
a connected and compact set 𝐼pa(𝑗) ∶= ⨉𝑖∈pa(𝑗) 𝐼𝑖. Since 𝐼pa(𝑗) is compact, the function
𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗) attains a minimum and a maximum on 𝐼pa(𝑗), and we denote values that
attain them by 𝒗min

pa(𝑗) and 𝒗max
pa(𝑗) respectively. Since 𝐼pa(𝑗) is connected, we can move along

a continuous path in the set from 𝒗min
pa(𝑗) to 𝒗max

pa(𝑗), and since 𝑓𝑗 is continuous, the function
value along this path attains all values between its minimum and maximum on 𝐼pa(𝑗). This

36

𝑣

𝑓
ℓ(𝑣, 𝑓) ≤ ℎ0

𝑓 ∈ 𝐹 𝐹

𝑊

𝑊 max

𝑊 min

𝑣min 𝑣max

Figure 1: Illustration of 𝐹 , 𝑊 , 𝑊 min, 𝑊 max, 𝑣min, and 𝑣max used in this proof.

implies that the set of all values of 𝑓𝑗 on 𝐼pa(𝑗) is a compact interval on ℝ — we denote
this set by

𝐹𝑗 ∶= {𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗) ∣ 𝒗pa(𝑗) ∈ 𝐼pa(𝑗)} .
We claim that if we define the set

𝑊𝑗 ∶= {𝑣𝑗 ∈ ℝ ∣ ∃𝑓𝑗 ∈ 𝐹𝑗 ∶ ℓ𝑗(𝑣𝑗, 𝑓𝑗) ≤ ℎ0}
and construct 𝐼𝑗 to be a compact interval that is a superset of 𝑊𝑗, then it would have our
desired property. We show this now. Any 𝒗hid with 𝑣𝑗 ∉ 𝐼𝑗 and 𝑣𝑖 ∈ 𝐼𝑖, ∀𝑖 ∈ pa(𝑗) for
some 𝑗 ∈ 𝑉hid would imply 𝑣𝑗 ∉ 𝑊𝑗, meaning that ∀𝑓𝑗 ∈ 𝐹𝑗 ∶ ℓ𝑗(𝑣𝑗, 𝑓𝑗) > ℎ0. Thus we get
that

ℎ(𝒗hid) = ⎡⎢
⎣

∑
𝑗′∈𝑉hid∪𝑉𝒚

ℓ𝑗′(𝑣𝑗′ , 𝑓𝑗′(𝒗pa(𝑗′); 𝜽𝑗′))⎤⎥
⎦𝒗𝒙=𝒙

𝒗𝒚=𝒚

≥ [ℓ𝑗(𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))]𝒗𝒙=𝒙
𝒗𝒚=𝒚

(since all ℓ𝑗′ ≥ 0)

> ℎ0, (since 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗) ∈ 𝐹𝑗)

which is our desired property of 𝐼𝑗. Hence it remains to show that the sets 𝑊𝑗 are always
bounded.

We proceed by showing that any set 𝑊 satisfying

𝑊 = {𝑣 ∈ ℝ | ∃𝑓 ∈ 𝐹 ∶ ℓ(𝑣, 𝑓) ≤ ℎ0}
where 𝐹 ⊂ ℝ is a compact set and ℓ is a proper node loss function is bounded from below.
This is illustrated in Fig. 1. We consider the sets

𝑊 min ∶= {𝑣 ∈ ℝ | ℓ(𝑣, min 𝐹) ≤ ℎ0} ,
𝑊 max ∶= {𝑣 ∈ ℝ | ℓ(𝑣, max 𝐹) ≤ ℎ0} .

Since ℓ is a proper loss function, the limits of ℓ(𝑣, 𝑓) as 𝑣 → ±∞ are both ∞ for each fixed
value of 𝑓 . This implies that 𝑊 min and 𝑊 max are bounded. We can then define

𝑣min ∶= {inf 𝑊 min if 𝑊 min is non-empty
min 𝐹 if 𝑊 min is empty

,

𝑣max ∶= {sup 𝑊 max if 𝑊 max is non-empty
max 𝐹 if 𝑊 max is empty

,

37

which (as the notation suggests) we claim to be a lower bound and upper bound of 𝑊
respectively.

If 𝑊 min is non-empty, i.e. ∃𝑤 ∈ 𝑊 min, then since 𝑤 ≤ min 𝐹 or 𝑤 ≥ min 𝐹 , we
have that (since ℓ is a proper node loss function) ℓ(min 𝐹, min 𝐹) ≤ ℓ(𝑤, min 𝐹) ≤ ℎ0,
and so min 𝐹 ∈ 𝑊 min, and therefore inf 𝑊 min ≤ min 𝐹 , must hold. This implies that
𝑣min ≤ min 𝐹 .

Similarly, since 𝑣 = max 𝐹 minimizes the function 𝑣 ↦ ℓ(𝑣, max 𝐹), if 𝑊 max is non-
empty, then max 𝐹 ∈ 𝑊 max, and this implies that 𝑣max ≥ max 𝐹 .

Additionally, we claim that 𝑣 < 𝑣min implies ℓ(𝑣, min 𝐹) > ℎ0. If 𝑊 min is empty, then
ℓ(𝑣, min 𝐹) > ℎ0 for all 𝑣 ∈ ℝ. Otherwise, if 𝑊 min is non-empty, then 𝑣min = inf 𝑊 min,
so 𝑣 < 𝑣min would imply that 𝑣 ∉ 𝑊 min, i.e. 𝑣 ∉ {𝑣 ∈ ℝ | ℓ(𝑣, min 𝐹) ≤ ℎ0}. Hence we
conclude that ℓ(𝑣, min 𝐹) > ℎ0 if 𝑣 < 𝑣min.

Similarly, we show that if 𝑣 > 𝑣max, then ℓ(𝑣, max 𝐹) > ℎ0. If 𝑊 max is empty, then
ℓ(𝑣, max 𝐹) > ℎ0 for all 𝑣 ∈ ℝ. Otherwise, if 𝑊 max is non-empty, then 𝑣max = sup 𝑊 max,
so 𝑣 > 𝑣max would imply that 𝑣 ∉ 𝑊 max, i.e. 𝑣 ∉ {𝑣 ∈ ℝ | ℓ(𝑣, max 𝐹) ≤ ℎ0}, and so we
get that ℓ(𝑣, max 𝐹) > ℎ0.

We prove that the set 𝑊 = {𝑣 ∈ ℝ | ∃𝑓 ∈ 𝐹 ∶ ℓ(𝑣, 𝑓) ≤ ℎ0} is lower-bounded by 𝑣min

and upper-bounded by 𝑣max. For the lower bound, we consider the value of ℓ(𝑣, 𝑓) for
𝑣 < 𝑣min and 𝑓 ∈ 𝐹 . Since ℓ is a proper loss function and 𝑣 < 𝑣min ≤ min 𝐹 ≤ 𝑓 , we have
that

ℓ(𝑣, min 𝐹) ≤ ℓ(𝑣, 𝑓).

Since 𝑣 < 𝑣min, we know from two paragraphs earlier that ℓ(𝑣, min 𝐹) > ℎ0, so we further-
more have

ℓ(𝑣, min 𝐹) > ℎ0.

We thus conclude that ℓ(𝑣, 𝑓) > ℎ0, if 𝑣 < 𝑣min.
Similarly, for 𝑣 > 𝑣max, since it holds that 𝑣 > 𝑣max ≥ max 𝐹 ≥ 𝑓 , we have that

ℓ(𝑣, max 𝐹) ≤ ℓ(𝑣, 𝑓).

Since 𝑣 > 𝑣max, we know from two paragraphs earlier that ℓ(𝑣, max 𝐹) > ℎ0, so we
furthermore have

ℓ(𝑣, max 𝐹) > ℎ0.

Hence in this case we also get that ℓ(𝑣, 𝑓) > ℎ0, if 𝑣 > 𝑣max.
Putting the two cases together, this means that 𝑣 < 𝑣min or 𝑣 > 𝑣max implies 𝑣 ∉ 𝑊 ,

thus proving that 𝑣min is a lower bound and 𝑣max is an upper bound of 𝑊 . Thus 𝑊 is a
bounded set, and 𝐼 ∶= [𝑣min, 𝑣max] is a compact superset of 𝑊 .

For this result, we have only assumed that 𝐹 is a compact set and ℓ is a proper loss
function. In particular, since 𝐹𝑗 is compact and ℓ𝑗 is a proper node loss function, we get
that 𝑊𝑗 is bounded, and we can construct a compact interval 𝐼𝑗 that is a superset of 𝑊𝑗,
and as we have shown, all the 𝐼𝑗 then have the desired properties.

To summarize, we have been able to construct, for each non-output node 𝑗 ∈ 𝑉𝒙 ∪𝑉hid,
a compact interval 𝐼𝑗 with the property that if 𝑣𝑖 ∈ 𝐼𝑖 for all parent nodes 𝑖 ∈ pa(𝑗) and
𝑣𝑗 ∉ 𝐼𝑗, then ℎ(𝒗hid) > ℎ0. We now claim that

𝑈 ∶= ⨉
𝑗∈𝑉hid

𝐼𝑗

38

has the property that 𝒗hid ∉ 𝑈 implies ℎ(𝒗hid) > ℎ0. Let 𝒗hid ∉ 𝑈 . Note that 𝑣𝑗 = (𝒙)𝑗 ∈ 𝐼𝑗
for all input nodes 𝑗 ∈ 𝑉𝒙, since in predictive coding with general loss, the input node
values are always set to the input datapoint values. Then some hidden node value is not
in its corresponding interval; let node 𝑗′ ∈ 𝑉hid denote the first node in the topological
ordering such that 𝑣𝑗′ ∉ 𝐼𝑗′ . Then 𝑣𝑖 ∈ 𝐼𝑖 for all of its parent nodes 𝑖 ∈ pa(𝑗′). Since all
intervals 𝐼𝑗 have the above property, we can conclude that ℎ(𝒗hid) > ℎ0, as required.

Finally, 𝑈 is compact, and so the function ℎ has a minimum value on 𝑈 . And since
ℎ0 < ℎ(𝒗hid) for all 𝒗hid ∉ 𝑈 , this minimum on 𝑈 is the minimum of ℎ on all of ℝ|𝑉hid|.

39

5.2 Approximate dataset loss functions
We investigate the similarity of PC and BP by comparing the topology of their losses on
the entire dataset.

While learning from a dataset with stochastic gradient descent, every datapoint is
iterated through an equal number of times, so effectively, BP searches for graph parameters
𝜽𝐺 ∈ Θ𝐺 that approximately minimize the average of its datapoint loss functions,

ℱBP
𝐺 (𝜽𝐺; 𝐷) ∶= 1

𝑛 ∑
𝑖∈[𝑛]

ℒBP
𝐺 (𝜽𝐺; (𝒙𝑖, 𝒚𝑖)) (33)

= 1
𝑛 ∑

𝑖∈[𝑛]
∑
𝑗∈𝑉𝒚

ℓBP
𝑗 ((𝒚𝑖)𝑗, 𝑧𝑗(𝒙𝑖; 𝜽𝐺)). (34)

This is also the loss function of the corresponding batch gradient descent algorithm. We
call this the dataset loss function of BP. Similarly, we can define a similar function
for PC. Recall that for each datapoint, we find the values 𝑣𝑗 for 𝑗 ∈ 𝑉hid that minimize
the datapoint loss function (the inference phase), then we adjust the parameters 𝜽𝐺 via a
gradient descent step towards minimizing the same datapoint loss function (the learning
phase). Notice that we are only learning after the the inference phase is done — the
datapoint loss function ℒPC

𝐺 has been minimized w.r.t. the hidden values 𝒗hid. We thus
define the dataset loss function as the average of the datapoint loss functions at this
minimum:

ℱPC
𝐺 (𝜽𝐺; 𝐷) ∶= 1

𝑛 ∑
𝑖∈[𝑛]

min
𝒗hid∈ℝ∣𝑉hid ∣

ℒPC
𝐺 (𝒗hid, 𝜽𝐺; (𝒙𝑖, 𝒚𝑖)) (35)

= 1
𝑛 ∑

𝑖∈[𝑛]
min

𝒗hid∈ℝ∣𝑉hid ∣
⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))⎤⎥

⎦𝒗𝒙=𝒙𝑖𝒗𝒚=𝒚𝑖

. (36)

We write “min” instead of “inf” because we know that a minimum exists by Theorem 3
as long as the node loss functions satisfy the conditions in the theorem (and Theorem 2
for the special case of PC-SQ-e).

Comparing the dataset loss functions of BP and PC, we can see that they are not
identical. However, they are approximately equal; we claim that they have the same set
of minimizers if there exist parameters such that the computational graph fits the data
perfectly. Such parameters are called interpolating:

Definition 2 (Interpolating parameters). Parameters 𝜽∗
𝐺 interpolate a computational

graph 𝐺 and a paired dataset 𝐷 = {(𝒙𝑖, 𝒚𝑖)}𝑖∈[𝑛] if the predicted and expected outputs are
equal for each datapoint in the dataset, i.e. 𝒚𝑖 = 𝒇𝐺(𝒙𝑖; 𝜽∗

𝐺) for all 𝑖 = 1, … , 𝑛.

Now the theorem and proof.

Theorem 4 (General interpolating minimizer theorem). Let 𝐺 be a computational graph
and 𝐷 = {(𝒙𝑖, 𝒚𝑖)}𝑖∈[𝑛] a paired dataset. Consider BP for training on 𝐺 and 𝐷 with node
loss functions ℓBP

𝑗 for 𝑗 ∈ 𝑉𝒚, and PC with node loss functions

ℓPC
𝑗 (𝑎, 𝑏) = {ℓBP

𝑗 (𝑎, 𝑏) 𝑗 ∈ 𝑉𝒚
ℓ𝑗(𝑎, 𝑏) 𝑗 ∈ 𝑉hid

,

where

40

(i) for all output nodes 𝑗 ∈ 𝑉𝒚: ℓBP
𝑗 is continuous and ℓBP

𝑗 (𝑎, 𝑎) for all 𝑎 ∈ ℝ are its
only global minima, and

(ii) for all hidden nodes 𝑗 ∈ 𝑉hid: ℓ𝑗 is a proper node loss function and ℓ𝑗(𝑎, 𝑎) for all
𝑎 ∈ ℝ are its only global minima.

If interpolating parameters exist, then

{𝜽∗
𝐺 ∈ Θ𝐺 | 𝜽∗

𝐺 interpolates 𝐺 and 𝐷} = argmin
𝜽𝐺∈Θ𝐺

ℱBP
𝐺 (𝜽𝐺; 𝐷)

= argmin
𝜽𝐺∈Θ𝐺

ℱPC
𝐺 (𝜽𝐺; 𝐷),

where ℱBP
𝐺 and ℱPC

𝐺 are the dataset loss functions of BP and PC respectively for the
computational graph 𝐺.
Proof. We prove this separately for BP and for PC. Note that the conditions for the node
loss functions imply those in Theorem 3, so a minimum exists for the minimization found
in the PC dataset loss function ℱPC

𝐺 .
BP: The dataset loss function to minimize for BP is

ℱBP
𝐺 (𝜽𝐺; 𝐷) = 1

𝑛 ∑
𝑖∈[𝑛]

∑
𝑗∈𝑉𝒚

ℓBP
𝑗 ((𝒚𝑖)𝑗, 𝑧𝑗(𝒙𝑖; 𝜽𝐺)).

If interpolating parameters exist, then at any interpolating parameters 𝜽∗
𝐺, the function

evaluates to

ℱBP
𝐺 (𝜽∗

𝐺; 𝐷) = 1
𝑛 ∑

𝑖∈[𝑛]
∑
𝑗∈𝑉𝒚

ℓBP
𝑗 ((𝒚𝑖)𝑗, 𝑧𝑗(𝒙𝑖; 𝜽∗

𝐺))

= 1
𝑛 ∑

𝑖∈[𝑛]
∑
𝑗∈𝑉𝒚

ℓBP
𝑗 ((𝒚𝑖)𝑗, (𝒚𝑖)𝑗).

Since we require that ℓBP
𝑗 (𝑎, 𝑎) be a global minimum for all 𝑎 ∈ ℝ, we get

≤ 1
𝑛 ∑

𝑖∈[𝑛]
∑
𝑗∈𝑉𝒚

min
𝜽𝐺∈Θ𝐺

ℓBP
𝑗 ((𝒚𝑖)𝑗, 𝑧𝑗(𝒙𝑖; 𝜽𝐺))

≤ min
𝜽𝐺∈Θ𝐺

1
𝑛 ∑

𝑖∈[𝑛]
∑
𝑗∈𝑉𝒚

ℓBP
𝑗 ((𝒚𝑖)𝑗, 𝑧𝑗(𝒙𝑖; 𝜽𝐺))

= min
𝜽𝐺∈Θ𝐺

ℱBP
𝐺 (𝜽𝐺; 𝐷).

At the same time, it must also be true that ℱBP
𝐺 (𝜽∗

𝐺; 𝐷) ≥ min𝜽𝐺∈Θ𝐺
ℱBP

𝐺 (𝜽𝐺; 𝐷), so we
conclude that equality is attained for all the above steps, and hence

𝜽∗
𝐺 ∈ argmin

𝜽𝐺∈Θ𝐺

ℱBP
𝐺 (𝜽𝐺; 𝐷).

Now the converse. Assuming that interpolating parameters exist, and some 𝜽′
𝐺 mini-

mizes the dataset loss function, then
1
𝑛 ∑

𝑖∈[𝑛]
∑
𝑗∈𝑉𝒚

ℓBP
𝑗 ((𝒚𝑖)𝑗, 𝑧𝑗(𝒙𝑖; 𝜽′

𝐺)) =∶ ℱBP
𝐺 (𝜽′

𝐺; 𝐷)

= min
𝜽𝐺∈Θ𝐺

ℱBP
𝐺 (𝜽𝐺; 𝐷)

= 1
𝑛 ∑

𝑖∈[𝑛]
∑
𝑗∈𝑉𝒚

ℓBP
𝑗 ((𝒚𝑖)𝑗, (𝒚𝑖)𝑗),

41

from the equality shown above. Since each ℓBP
𝑗 (𝑎, 𝑏) has for all 𝑎 the unique minimizer

w.r.t. 𝑏 that is 𝑏 = 𝑎, we conclude that for all datapoints 𝑖 ∈ [𝑛] and 𝑗 ∈ 𝑉𝒚,

(𝒚𝑖)𝑗 = 𝑧𝑗(𝒙𝑖; 𝜽′
𝐺),

i.e. 𝜽′
𝐺 interpolate 𝐺 and 𝐷. Combining the results, we get that if interpolating parameters

exist for 𝐺 and 𝐷, then

{𝜽∗
𝐺 ∈ Θ𝐺 | 𝜽∗

𝐺 interpolates 𝐺 and 𝐷} = argmin
𝜽𝐺∈Θ𝐺

ℱBP
𝐺 (𝜽𝐺; 𝐷).

PC: The dataset loss function to minimize for PC is

ℱPC
𝐺 (𝜽𝐺; 𝐷) = 1

𝑛 ∑
𝑖∈[𝑛]

min
𝒗hid∈ℝ∣𝑉hid ∣

⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))⎤⎥

⎦𝒗𝒙=𝒙𝑖𝒗𝒚=𝒚𝑖

.

If interpolating parameters 𝜽∗
𝐺 exist, then at the interpolating parameters 𝜽∗

𝐺,

ℱPC
𝐺 (𝜽∗

𝐺; 𝐷)

= 1
𝑛 ∑

𝑖∈[𝑛]
min

𝒗hid∈ℝ∣𝑉hid ∣
⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽∗

𝑗))⎤⎥
⎦𝒗𝒙=𝒙𝑖𝒗𝒚=𝒚𝑖

= 1
𝑛 ∑

𝑖∈[𝑛]
min

𝒗hid∈ℝ∣𝑉hid ∣
⎡⎢
⎣

∑
𝑗∈𝑉hid

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽∗

𝑗)) + ∑
𝑗∈𝑉𝒚

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽∗

𝑗))⎤⎥
⎦𝒗𝒙=𝒙𝑖𝒗𝒚=𝒚𝑖

.

If we in particular choose 𝒗hid = 𝒛hid, we get

≤ 1
𝑛 ∑

𝑖∈[𝑛]

⎛⎜
⎝

∑
𝑗∈𝑉hid

ℓPC
𝑗 (𝑧𝑗(𝒙𝑖; 𝜽∗

𝐺), 𝑓𝑗(𝒛pa(𝑗)(𝒙𝑖; 𝜽∗
𝐺); 𝜽∗

𝑗)) + ∑
𝑗∈𝑉𝒚

ℓPC
𝑗 ((𝒚𝑖)𝑗, 𝑓𝑗(𝒛pa(𝑗)(𝒙𝑖; 𝜽∗

𝐺); 𝜽∗
𝑗))⎞⎟

⎠

= 1
𝑛 ∑

𝑖∈[𝑛]

⎛⎜
⎝

∑
𝑗∈𝑉hid

ℓPC
𝑗 (𝑧𝑗(𝒙𝑖; 𝜽∗

𝐺), 𝑧𝑗(𝒙𝑖; 𝜽∗
𝐺)) + ∑

𝑗∈𝑉𝒚

ℓPC
𝑗 ((𝒚𝑖)𝑗, 𝑧𝑗(𝒙𝑖; 𝜽∗

𝐺))⎞⎟
⎠

= 1
𝑛 ∑

𝑖∈[𝑛]

⎛⎜
⎝

∑
𝑗∈𝑉hid

ℓPC
𝑗 (𝑧𝑗(𝒙𝑖; 𝜽∗

𝐺), 𝑧𝑗(𝒙𝑖; 𝜽∗
𝐺)) + ∑

𝑗∈𝑉𝒚

ℓPC
𝑗 ((𝒚𝑖)𝑗, (𝒚𝑖)𝑗)⎞⎟

⎠
.

Since we assumed that ℓPC
𝑗 (𝑎, 𝑎) is a global minimum for all 𝑎 ∈ ℝ,

= 1
𝑛 ∑

𝑖∈[𝑛]
∑

𝑗∈𝑉hid∪𝑉𝒚

min
𝑎,𝑏∈ℝ

ℓPC
𝑗 (𝑎, 𝑏)

≤ 1
𝑛 ∑

𝑖∈[𝑛]
min

𝑎,𝑏∈ℝ
∑

𝑗∈𝑉hid∪𝑉𝒚

ℓPC
𝑗 (𝑎, 𝑏)

≤ 1
𝑛 ∑

𝑖∈[𝑛]
min

𝒗hid∈ℝ∣𝑉hid ∣,𝜽𝐺∈Θ𝐺

⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))⎤⎥

⎦𝒗𝒙=𝒙𝑖𝒗𝒚=𝒚𝑖

≤ min
𝜽𝐺∈Θ𝐺

1
𝑛 ∑

𝑖∈[𝑛]
min

𝒗hid∈ℝ∣𝑉hid ∣
⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗))⎤⎥

⎦𝒗𝒙=𝒙𝑖𝒗𝒚=𝒚𝑖

= min
𝜽𝐺∈Θ𝐺

ℱPC
𝐺 (𝜽𝐺; 𝐷).

42

Since it must also hold that ℱPC
𝐺 (𝜽∗

𝐺; 𝐷) ≥ min𝜽𝐺∈Θ𝐺
ℱPC

𝐺 (𝜽𝐺; 𝐷), this implies that equal-
ity is attained at every step, and so we conclude that

𝜽∗
𝐺 ∈ argmin

𝜽𝐺∈Θ𝐺

ℱPC
𝐺 (𝜽𝐺; 𝐷).

Conversely, assuming that interpolating parameters 𝜽∗
𝐺 exist, we let 𝜽′

𝐺 be a minimizer
of ℱPC

𝐺 (⋅; 𝐷). Since equality was attained above, we get that

1
𝑛 ∑

𝑖∈[𝑛]
min

𝒗hid∈ℝ∣𝑉hid ∣
⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

ℓPC
𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽′

𝑗))⎤⎥
⎦𝒗𝒙=𝒙𝑖𝒗𝒚=𝒚𝑖

=∶ ℱPC
𝐺 (𝜽′

𝐺; 𝐷)
= ℱPC

𝐺 (𝜽∗
𝐺; 𝐷)

= 1
𝑛 ∑

𝑖∈[𝑛]
∑

𝑗∈𝑉hid∪𝑉𝒚

min
𝑎,𝑏∈ℝ

ℓPC
𝑗 (𝑎, 𝑏).

Since ℱPC
𝐺 (𝜽′

𝐺; 𝐷) is a sum of the node losses, and is equal to the sum of the minima of the
same node loss functions, this implies that each individual node loss ℓPC

𝑗 (𝑣𝑗, 𝑓𝑗(𝒗pa(𝑗); 𝜽′
𝑗))

must attain its respective minimum value. By our requirement that the node loss functions
ℓ𝑗 must have ℓ𝑗(𝑎, 𝑎) for all 𝑎 ∈ ℝ as the only global minima, this means that the two
arguments must be equal,

𝑣𝑗 = 𝑓𝑗(𝒗pa(𝑗); 𝜽′
𝑗),

for all 𝑖 ∈ [𝑛] and 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚.
Since 𝒗𝒙 is assigned to 𝒙𝑖, the values for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚 must be the feedforward

values, 𝑣𝑗 = 𝑧𝑗(𝒙𝑖; 𝜽′
𝐺), by definition. Then since 𝒗𝒚 is assigned to 𝒚𝑖, we conclude that

𝑧𝑗(𝒙𝑖; 𝜽′
𝐺) = 𝑣𝑗 = (𝒚𝑖)𝑗 for all 𝑗 ∈ 𝑉𝒚 and 𝑖 ∈ [𝑛], i.e. 𝜽′

𝐺 interpolate 𝐺 and 𝐷. Therefore
we have proven that

{𝜽∗
𝐺 ∈ Θ𝐺 | 𝜽∗

𝐺 interpolates 𝐺 and 𝐷} = argmin
𝜽𝐺∈Θ𝐺

ℱPC
𝐺 (𝜽𝐺; 𝐷).

Combining the results from BP and PC gives the theorem.

43

5.3 Approximate parameter update steps
We now show that the PC and BP algorithms produce similar — but not identical —
update steps Δ𝜽𝐺 for the parameters 𝜽𝐺.

In order to characterize more precisely how an algorithm “approximates” BP, we in-
troduce the following definition.
Definition 3 (BP-like algorithm). A supervised learning algorithm for computational
graphs is BP-like with loss ℓBP if there exists a function 𝑔 for node values such that
for all computational graphs 𝐺, graph parameters 𝜽𝐺 ∈ Θ𝐺, and datapoints (𝒙, 𝒚), the
corresponding parameter update is equal to the parameter update function of BP with loss
ℓBP

𝑗 for 𝑗 ∈ 𝑉𝒚, namely for all 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚

Δ𝜽𝑗 = −𝑐𝜆𝑗
𝜕𝑓𝑗
𝜕𝜽𝑗

(𝒂pa(𝑗); 𝜽𝑗)

where 𝑐 > 0 is a constant and 𝜆𝑗 satisfies the recursive relation

𝜆𝑗 =

⎧{{
⎨{{⎩

𝜕ℓBP
𝑗

𝜕𝑓𝑗
((𝒚)𝑗, 𝑓𝑗(𝒂pa(𝑗); 𝜽𝑗)) 𝑗 ∈ 𝑉𝒚

∑
𝑘∈ch(𝑗)

𝜆𝑘
𝜕𝑓𝑘
𝜕𝑎𝑗

(𝒂pa(𝑘); 𝜽𝑘) 𝑗 ∈ 𝑉hid

and the node values are given by 𝑎𝑗 = 𝑔(𝐺, 𝑗, 𝜽𝐺, (𝒙, 𝒚)) for all 𝑗 ∈ 𝑉𝒙 ∪ 𝑉hid.
The recursive relation in the definition is exactly the one found in the formula for the

parameter update step in BP. The idea behind this definition is that algorithms with the
same update formulas as BP, with perhaps different values used as the node values, are
approximately the same as BP.

We also need to define a new class of node loss functions:
Definition 4 (Difference node loss function). A function ℓ ∶ ℝ × ℝ → ℝ is a difference
node loss function if it has the representation ℓ(𝑎, 𝑏) = ̃ℓ(𝑎 − 𝑏) for some function
̃ℓ ∶ ℝ → ℝ and for all real numbers 𝑎, 𝑏. The function ̃ℓ is called its difference function.

Definition 5 (Proper difference node loss function). A proper difference node loss
function is a function that is both a proper node loss function (Def. 1) and a difference
node loss function (Def. 4).
Lemma 2 (Properties of proper difference node loss functions). If ℓ is a proper difference
node loss function, then its difference function ̃ℓ satisfies the following properties:

(i) ̃ℓ is differentiable everywhere,

(ii) If 𝑐′ ≤ 𝑐 ≤ 0 or 0 ≤ 𝑐 ≤ 𝑐′, then ̃ℓ(𝑐) ≤ ̃ℓ(𝑐′),

(iii) lim𝑐→−∞ ̃ℓ(𝑐) = lim𝑐→∞ ̃ℓ(𝑐) = ∞
Proof. Recall that proper node loss functions are defined in Def. 1.

(i) is trivial.
For (ii), if 𝑐′ ≤ 𝑐 ≤ 0, then we have 𝑐′ ≤ 𝑐 ≤ 0 ≤ 0; if 0 ≤ 𝑐 ≤ 𝑐′, then we have

𝑐′ ≥ 𝑐 ≥ 0 ≥ 0. These fit the first and second conditions respectively of (iii) of a proper
node loss function, and hence ̃ℓ(𝑐) = ℓ(𝑐, 0) ≤ ℓ(𝑐′, 0) = ̃ℓ(𝑐′).

For (iii), since proper node loss functions have the property lim𝑎→−∞ ℓ(𝑎, 𝑏) = lim𝑎→∞ ℓ(𝑎, 𝑏) =
∞ for all real numbers 𝑏, if we consider in particular 𝑏 = 0, then we get lim𝑐→−∞ ̃ℓ(𝑐) =
lim𝑎→−∞ ℓ(𝑎, 0) = ∞ and lim𝑐→∞ ̃ℓ(𝑐) = lim𝑎→∞ ℓ(𝑎, 0) = ∞.

44

The squared node loss function ℓSQ(𝑎, 𝑏) = 1
2(𝑎 − 𝑏)2 is not only a proper node loss

function, but also a difference node loss function: its difference function is ̃ℓSQ(𝑐) = 1
2𝑐2.

Similarly, the proper node loss function (𝑎 − 𝑏)4 is also a difference node loss function.
However, the function ℓ(𝑎, 𝑏) = (𝑎 − 𝑏)2(𝑎2 + 𝑏2), which is a proper node loss function, is
not a difference node loss function, as ℓ(1, 0) = 1 but ℓ(2, 1) = 5.

On the other hand, the function (𝑎 − 𝑏)3 is a difference node loss function, but it has
no lower bound, so is not a proper node loss function. Similarly, neither the cross entropy
node loss ℓCE(𝑎, 𝑏) = −𝑎 log 𝑏 nor the likelihood node loss ℓLH(𝑎, 𝑏) = − log 𝑏 is a difference
node loss function.

We now have all the ingredients needed to prove that PC is BP-like.

Theorem 5. Consider BP with a continuous and finitely lower-bounded loss function ℓBP
𝑗

and PC with loss function

ℓPC
𝑗 (𝑎, 𝑏) = {ℓBP

𝑗 (𝑎, 𝑏) 𝑗 ∈ 𝑉𝒚
ℓ𝑗(𝑎, 𝑏) 𝑗 ∈ 𝑉hid

where ℓ𝑗 for 𝑗 ∈ 𝑉hid are proper difference node loss functions. Then the PC algorithm is
BP-like with loss ℓBP.

Proof. Given arbitrary node loss functions for BP, we would like to find node loss functions
for PC such that it is BP-like.

We investigate the gradient descent step for the parameter 𝜽𝑗 for datapoint (𝒙, 𝒚) for
PC with arbitrary loss functions ℓPC

𝑗 for 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚. We assume that the node values
have converged to an equilibrium point of the datapoint loss function ℒPC

𝐺 by the end of
the inference phase. We recall that the post-inference node values are denoted with a ∗,
and introduce the shorthand 𝑓∗

𝑗 ∶= 𝑓𝑗(𝒗∗
pa(𝑗); 𝜽𝑗). For all hidden nodes 𝑗 ∈ 𝑉hid, we get

0 = 𝜕ℒPC
𝐺

𝜕𝑣𝑗
(𝒗∗

hid, 𝜽𝐺; (𝒙, 𝒚)) = 𝜕
𝜕𝑣𝑗

⎛⎜
⎝

∑
𝑗′∈𝑉hid∪𝑉𝒚

ℓPC
𝑗′ (𝑣∗

𝑗′ , 𝑓∗
𝑗′)⎞⎟

⎠

= 𝜕
𝜕𝑣𝑗

⎛⎜
⎝

ℓPC
𝑗 (𝑣∗

𝑗, 𝑓∗
𝑗) + ∑

𝑘∈ch(𝑗)
ℓPC

𝑘 (𝑣∗
𝑘, 𝑓𝑘(𝒗∗

pa(𝑘); 𝜽𝑘))⎞⎟
⎠

=
𝜕ℓPC

𝑗
𝜕𝑣𝑗

(𝑣∗
𝑗, 𝑓∗

𝑗) + ∑
𝑘∈ch(𝑗)

𝜕ℓPC
𝑘

𝜕𝑣𝑗
(𝑣∗

𝑘, 𝑓𝑘(𝒗∗
pa(𝑘); 𝜽𝑘))

⟹
𝜕ℓPC

𝑗
𝜕𝑣𝑗

(𝑣∗
𝑗, 𝑓∗

𝑗) = ∑
𝑘∈ch(𝑗)

−𝜕ℓPC
𝑘

𝜕𝑣𝑗
(𝑣∗

𝑘, 𝑓𝑘(𝒗∗
pa(𝑘); 𝜽𝑘))

= ∑
𝑘∈ch(𝑗)

−𝜕ℓPC
𝑘

𝜕𝑓𝑘
(𝑣∗

𝑘, 𝑓∗
𝑘)𝜕𝑓𝑘

𝜕𝑣𝑗
(𝒗∗

pa(𝑘); 𝜽𝑘).

This means that

𝜕ℓPC
𝑗

𝜕𝑣𝑗
(𝑣∗

𝑗, 𝑓∗
𝑗) =

⎧{{
⎨{{⎩

𝜕ℓPC
𝑗

𝜕𝑣𝑗
((𝒚)𝑗, 𝑓∗

𝑗) 𝑗 ∈ 𝑉𝒚

∑
𝑘∈ch(𝑗)

−𝜕ℓPC
𝑘

𝜕𝑓𝑘
(𝑣∗

𝑘, 𝑓∗
𝑘)𝜕𝑓𝑘

𝜕𝑣𝑗
(𝒗∗

pa(𝑘); 𝜽𝑘) 𝑗 ∈ 𝑉hid

. (37)

45

Additionally, the gradient step of the parameters 𝜽𝑗 is, from (17),

Δ𝜽PC
𝑗 = −𝜂𝜽 [

𝜕ℓPC
𝑗

𝜕𝑓𝑗
(𝑣∗

𝑗, 𝑓∗
𝑗) 𝜕𝑓𝑗

𝜕𝜽𝑗
(𝒗∗

pa(𝑗); 𝜽𝑗)]
𝒗𝒙=𝒙
𝒗𝒚=𝒚

. (38)

We compare this with the BP-like parameter gradient descent step with learning rate
𝑐 > 0 as found in Def. 3,

Δ𝜽𝑗 = −𝑐𝜆𝑗
𝜕𝑓𝑗
𝜕𝜽𝑗

(𝒂pa(𝑗); 𝜽𝑗),

𝜆𝑗 =

⎧{{
⎨{{⎩

𝜕ℓBP
𝑗

𝜕𝑓𝑗
((𝒚)𝑗, 𝑓𝑗(𝒂pa(𝑗); 𝜽𝑗)) 𝑗 ∈ 𝑉𝒚

∑
𝑘∈ch(𝑗)

𝜆𝑘
𝜕𝑓𝑘
𝜕𝑎𝑗

(𝒂pa(𝑘); 𝜽𝑘) 𝑗 ∈ 𝑉hid

.

From these equations, we see that if we have the node loss functions satisfy the condi-
tions

∀𝑗 ∈ 𝑉𝒚 ∶ ℓPC
𝑗 = ℓBP

𝑗 (39)

and

∀𝑗 ∈ 𝑉hid ∶
𝜕ℓPC

𝑗
𝜕𝑣𝑗

(𝑣∗
𝑗, 𝑓∗

𝑗) = −
𝜕ℓPC

𝑗
𝜕𝑓𝑗

(𝑣∗
𝑗, 𝑓∗

𝑗), (40)

and let 𝜂𝜽 = 𝑐, 𝜕ℓPC
𝑗

𝜕𝑓𝑗
(𝑣∗

𝑗, 𝑓∗
𝑗) = 𝜆𝑗, and 𝑣∗

𝑗 = 𝑎𝑗, and if we replace all instances of the terms
on the left with the equivalent terms on the right in (38) and (37), then we get exactly
the BP-like equations.

The condition in (40) is satisfied when the node loss functions of the hidden nodes are
difference node loss functions, i.e.

∀𝑗 ∈ 𝑉hid ∶ ∃ ̃ℓ𝑗 ∶ ℝ → ℝ ∶ ℓPC
𝑗 (𝑣, 𝑓) = ̃ℓ𝑗(𝑣 − 𝑓),

since

𝜕ℓPC
𝑗

𝜕𝑓𝑗
(𝑣∗

𝑗, 𝑓∗
𝑗) = 𝜕 ̃ℓ𝑗

𝜕𝑓𝑗
(𝑣∗

𝑗 − 𝑓∗
𝑗) ⋅ −1 = − 𝜕 ̃ℓ𝑗

𝜕𝑓𝑗
(𝑣∗

𝑗 − 𝑓∗
𝑗)

and

−
𝜕ℓPC

𝑗
𝜕𝑣𝑗

(𝑣∗
𝑗, 𝑓∗

𝑗) = − 𝜕 ̃ℓ𝑗
𝜕𝑓𝑗

(𝑣∗
𝑗 − 𝑓∗

𝑗) ⋅ 1 = − 𝜕 ̃ℓ𝑗
𝜕𝑓𝑗

(𝑣∗
𝑗 − 𝑓∗

𝑗)

are equal.
Furthermore, since we have assumed that the node values 𝒗hid have converged, we want

our choice of loss function to guarantee that a minimizer 𝒗∗ of ℒPC exists. By Theorem 3,
a value estimation phase minimum is guaranteed to exist if for 𝑗 ∈ 𝑉hid, ℓ𝑗 is proper, and
for 𝑗 ∈ 𝑉𝒚, ℓ𝑗 is continuous and lower-bounded. Hence PC is BP-like if the hidden node
loss functions are proper difference node loss functions.

We now claim that BP can be seen as a limit of a sequence of PC algorithms with
different node loss functions.

46

Theorem 6. Consider BP with continuous and finitely lower-bounded loss functions ℓBP
𝑗 ,

𝑗 ∈ 𝑉𝒚, and the class of PC algorithms with the loss function

ℓPC
𝑗 (𝑎, 𝑏) = {ℓBP

𝑗 (𝑎, 𝑏) 𝑗 ∈ 𝑉𝒚
𝑤ℓ𝑗(𝑎, 𝑏) 𝑗 ∈ 𝑉hid

(41)

where 𝑤 > 0, and ℓ𝑗 are proper difference loss functions with difference functions ̃ℓ𝑗(𝑐)
having the unique minimizer 𝑐 = 0. If right before seeing a new datapoint 𝑖 they have
the same graph parameters 𝜽𝐺 and assuming that a minimum is attained in the inference
phase, then at the end of processing datapoint (𝒙, 𝒚), we have that as 𝑤 → ∞, for all
𝑗 ∈ 𝑉hid, 𝑣∗

𝑗 → 𝑧𝑗(𝒙; 𝜽𝐺) and for all 𝑗 ∈ 𝑉hid ∪ 𝑉𝒚, Δ𝜽PC
𝑗 → Δ𝜽BP

𝑗 .

Proof. We simplify the statement by assuming that the unique minimum of the hidden
loss functions is 0. This can be done because adding any constant to any loss function
does not change the resulting PC and BP algorithms, and this is true because the only
terms involving the loss function in the formulas for the value estimation phase as well as
the parameter update phase is its partial derivative.

From Theorem 5, we know that this class of PC algorithms is BP-like with loss ℓBP
𝑗

for output node 𝑗 ∈ 𝑉𝒚. This, and the fact that all functions here are continuous, means
that 𝑣∗

𝑗 → 𝑧𝑗(𝒙; 𝜽𝐺) implies Δ𝜽PC
𝑗 → Δ𝜽BP

𝑗 .
First, trivially, 𝑣∗

𝑗 = (𝒙)𝑗 = 𝑧𝑗(𝒙; 𝜽𝐺) for all input nodes 𝑗 ∈ 𝑉𝒙. Then, to prove that
𝑣∗

𝑗 → 𝑧𝑗(𝒙; 𝜽𝐺) for all hidden nodes 𝑗 ∈ 𝑉hid, we extend from the proof of Theorem 3.
In that proof, we showed that each minimum node value 𝑣∗

𝑗 for 𝑗 ∈ 𝑉𝒙 ∪ 𝑉hid must be
contained in a compact interval 𝐼𝑗 = [𝑣min

𝑗 , 𝑣max
𝑗] that we constructed, so we just need to

show that 𝑣min
𝑗 , 𝑣max

𝑗 → 𝑧𝑗(𝒙; 𝜽𝐺) for all hidden nodes.
We show this sequentially with the nodes following a topological order, and hence when

proving this for node 𝑗, we can assume that we have already proven it for its parent nodes
pa(𝑗). We first tackle the lower bound. Recall that 𝑣min

𝑗 is defined as

𝑣min
𝑗 ∶= {min 𝑊 min

𝑗 if 𝑊 min
𝑗 is non-empty

min 𝐹𝑗 if 𝑊 min
𝑗 is empty

,

where

𝐹𝑗 ∶= {𝑓𝑗(𝒗pa(𝑗); 𝜽𝑗) ∣ 𝒗pa(𝑗) ∈ 𝐼pa(𝑗)} ,

and

𝑊 min
𝑗 ∶= {𝑣𝑗 ∈ ℝ ∣ 𝑤ℓ𝑗(𝑣𝑗, min 𝐹𝑗) ≤ ℎ0} ,

where ℎ0 ≥ 0 is any value attainable by the datapoint loss loss function ℒPC
𝐺 . For this

47

𝑣𝑗

̃ℓ𝑗

𝛿

𝑊 min
𝑗

min 𝐹𝑗

̃ℓ𝑗(𝑣𝑗 − min 𝐹𝑗)

min 𝐹𝑗 − 𝜖 min 𝐹𝑗 + 𝜖

Figure 2: Illustration of the relationship between 𝑣𝑗, min 𝐹𝑗, ̃ℓ𝑗, 𝑊 min
𝑗 , 𝛿, and 𝜖

used in this proof.

proof, we in particular choose

ℎ0 ∶= ℒPC
𝐺 (𝒛𝑉hid

(𝒙; 𝜽𝐺), 𝜽𝐺; 𝐷)

= ⎡⎢
⎣

∑
𝑗∈𝑉hid∪𝑉𝒚

ℓPC-SQ
𝑗 (𝑣𝑗(𝒙; 𝜽𝐺), 𝑓𝑗(𝑣pa(𝑗)(𝒙; 𝜽𝐺); 𝜽𝑗))⎤⎥

⎦ 𝒗𝒙=𝒙
𝒗𝒚=𝒚

𝒗hid=𝒛𝑉hid

= ∑
𝑗∈𝑉hid

𝑤ℓ𝑗(𝑧𝑗(𝒙; 𝜽𝐺), 𝑓𝑗(𝑧pa(𝑗)(𝒙; 𝜽𝐺); 𝜽𝑗)) + ∑
𝑗∈𝑉𝒚

ℓBP
𝑗 ((𝒚)𝑗, 𝑓𝑗(𝑧pa(𝑗)(𝒙; 𝜽𝐺); 𝜽𝑗))

= ∑
𝑗∈𝑉hid

𝑤ℓ𝑗(𝑧𝑗(𝒙; 𝜽𝐺), 𝑧𝑗(𝒙; 𝜽𝐺)) + ∑
𝑗∈𝑉𝒚

ℓBP
𝑗 ((𝒚)𝑗, 𝑧𝑗(𝒙; 𝜽𝐺))

= ∑
𝑗∈𝑉𝒚

ℓBP
𝑗 ((𝒚)𝑗, 𝑧𝑗(𝒙; 𝜽𝐺))

≥ 0.

Notice that we have used that the hidden loss functions evaluate to 0 when the difference
between the arguments is 0. Notice also that with this choice of ℎ0, it is independent of
𝑤.

Since we assume that we have proved 𝑣min
𝑗′ , 𝑣max

𝑗′ → 𝑧𝑗′(𝒙; 𝜽𝐺) for all parent nodes
𝑗′ ∈ pa(𝑗), we get that 𝐹𝑗 → {𝑓𝑗(𝒛pa(𝑗)(𝒙; 𝜽𝐺); 𝜽𝑗)} = {𝑧𝑗(𝒙; 𝜽𝐺)} as 𝑤 → ∞. Hence
min 𝐹𝑗 → 𝑧𝑗(𝒙; 𝜽𝐺) as 𝑤 → ∞ as desired.

For the first case, we then show that if 𝑊 min
𝑗 is non-empty then min 𝑊 min

𝑗 → min 𝐹𝑗,
which combined with the above result, gives min 𝑊 min

𝑗 → 𝑧𝑗(𝒙; 𝜽𝐺). We assumed that
𝑤 > 0 all hidden loss functions are proper difference loss functions, so we can rewrite
𝑊 min

𝑗 as

𝑊 min
𝑗 = {𝑣𝑗 ∈ ℝ ∣ ̃ℓ𝑗(𝑣𝑗 − min 𝐹𝑗) ≤ 𝛿} ,

where ̃ℓ𝑗 is the difference function of ℓ𝑗 and 𝛿 ∶= ℎ0
𝑤 → 0+. This is illustrated in Fig.

2. As ℓ𝑗 is a proper difference node loss function, by Lemma 2, we get that ̃ℓ𝑗 has a
unique minimum at ̃ℓ𝑗(0) = 0 by assumption and is monotone decreasing on (−∞, 0] and
monotone increasing on [0, ∞). This implies that for all 𝜖 > 0 there exists a 𝛿 > 0 such

48

that ̃ℓ𝑗(𝑣𝑗 − min 𝐹𝑗) ≤ 𝛿 implies ∣𝑣𝑗 − min 𝐹𝑗∣ < 𝜖. An explicit example is namely

𝛿 = 1
2 min { ̃ℓ𝑗(−𝜖), ̃ℓ𝑗(𝜖)} ,

as ̃ℓ𝑗(𝑣𝑗 − min 𝐹𝑗) ≤ 𝛿 < ̃ℓ𝑗(−𝜖) and ̃ℓ𝑗(𝑣𝑗 − min 𝐹𝑗) ≤ 𝛿 < ̃ℓ𝑗(𝜖), together with the
monotonicity properties, imply −𝜖 < 𝑣𝑗 − min 𝐹𝑗 < 𝜖. Thus as 𝛿 → 0+, the set 𝑊 min

𝑗
approaches the set {𝑣𝑗 ∈ ℝ ∣ ∀𝛿 > 0 ∶ ∣𝑣𝑗 − min 𝐹𝑗∣ ≤ 𝛿} = {min 𝐹𝑗}, as desired. We can
thus conclude that indeed 𝑣min

𝑗 → 𝑧𝑗(𝒙; 𝜽𝐺) as 𝑤 → ∞.
By the same line of reasoning, we can show that the maximum 𝑣max

𝑗 of the interval
𝐼𝑗 also approaches 𝑧𝑗(𝒙; 𝜽𝐺) as 𝑤 → ∞. Retracing the chain of implications, we can
thus conclude that ∀𝑗 ∈ 𝑉𝒙 ∪ 𝑉hid ∶ 𝑣∗

𝑗 → 𝑧𝑗(𝒙; 𝜽𝐺) and Δ𝜽PC
𝑗 → Δ𝜽BP

𝑗 as 𝑤 → ∞, as
desired.

49

6 Discussion and conclusion
In this paper, we have formulated a general predictive coding algorithm with arbitrary
node loss functions, which we call the PC algorithm. We then showed that PC and back-
prop, with corresponding loss functions, have identical minimizers under certain conditions
(Theorem 4). Furthermore, for certain classes of node loss functions, the parameter up-
date steps of PC are approximately equal to those of backprop (Theorem 5), and this
approaches equality in a certain limit (Theorem 6).

Through generalizing to arbitrary losses, our formulation allows predictive coding al-
gorithms to be applied on more complex neural network architectures and a wider range of
machine learning tasks. This further closes the gap between biologically realistic models
of learning and learning in silico. Additionally, our results add mathematical rigor to
the existing literature on the correspondence between predictive coding algorithms and
backprop.

Future work would be to test and evaluate the performance of predictive coding with
general losses used on complex deep learning architectures. Additionally, one can explore
the possibility of extending our predicting coding algorithm framework and results to
graphs that contain cycles, which may be useful for training architectures such as recurrent
neural networks.

50

References
[1] N. Alonso and E. Neftci. Tightening the biological constraints on gradient-based pre-

dictive coding. In International Conference on Neuromorphic Systems 2021, ICONS
2021. ACM, July 2021. doi: 10.1145/3477145.3477148.

[2] K. Amunts, M. Axer, S. Banerjee, L. Bitsch, J. G. Bjaalie, P. Brauner, A. Brovelli,
N. Calarco, M. Carrere, S. Caspers, C. J. Charvet, S. Cichon, R. Cools, I. Costantini,
E. U. D’Angelo, G. De Bonis, G. Deco, J. DeFelipe, A. Destexhe, T. Dickscheid, M.
Diesmann, E. Düzel, S. B. Eickhoff, G. Einevoll, D. Eke, A. K. Engel, A. C. Evans,
K. Evers, N. Fedorchenko, S. J. Forkel, J. Fousek, A. D. Friederici, K. Friston,
S. Furber, L. Geris, R. Goebel, O. Güntürkün, A. I. A. Hamid, C. Herold, C. C.
Hilgetag, S. M. Hölter, Y. Ioannidis, V. Jirsa, S. Kashyap, B. S. Kasper, A. d. K.
d’Exaerde, R. Kooijmans, I. Koren, J. H. Kotaleski, G. Kiar, W. Klijn, L. Klüver,
A. C. Knoll, Z. Krsnik, J. Kämpfer, M. E. Larkum, M.-L. Linne, T. Lippert, J. M.
Abdullah, P. D. Maio, N. Magielse, P. Maquet, A. L. A. Mascaro, D. Marinazzo,
J. Mejias, A. Meyer-Lindenberg, M. Migliore, J. Michael, Y. Morel, F. O. Morin,
L. Muckli, G. Nagels, L. Oden, N. Palomero-Gallagher, F. Panagiotaropoulos, P. S.
Paolucci, C. Pennartz, L. M. Peeters, S. Petkoski, N. Petkov, L. S. Petro, M. A.
Petrovici, G. Pezzulo, P. Roelfsema, L. Ris, P. Ritter, K. Rockland, S. Rotter, A.
Rowald, S. Ruland, P. Ryvlin, A. Salles, M. V. Sanchez-Vives, J. Schemmel, W. Senn,
A. A. de Sousa, F. Ströckens, B. Thirion, K. Uludağ, S. Vanni, S. J. van Albada,
W. Vanduffel, J. Vezoli, L. Vincenz-Donnelly, F. Walter, and L. Zaborszky. The
coming decade of digital brain research: A vision for neuroscience at the intersection
of technology and computing. Imaging Neuroscience, 2:1–35, Apr. 2024. issn: 2837-
6056. doi: 10.1162/imag_a_00137.

[3] Big data needs a hardware revolution. Nature, 554(7691):145–146, Feb. 2018. issn:
1476-4687. doi: 10.1038/d41586-018-01683-1.

[4] R. Bogacz. A tutorial on the free-energy framework for modelling perception and
learning. Journal of Mathematical Psychology, 76:198–211, 2017. issn: 0022-2496.
doi: 10.1016/j.jmp.2015.11.003. Model-based Cognitive Neuroscience.

[5] C. Bredenberg and C. Savin. Desiderata for Normative Models of Synaptic Plasticity.
Neural Computation, 36(7):1245–1285, June 2024. issn: 0899-7667. doi: 10.1162/
neco_a_01671.

[6] C. Bredenberg, E. Williams, C. Savin, B. Richards, and G. Lajoie. Formalizing local-
ity for normative synaptic plasticity models. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Pro-
cessing Systems, volume 36, pages 5653–5684. Curran Associates, Inc., 2023.

[7] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M.
Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners,
2020. arXiv: 2005.14165.

[8] A. Clark. Whatever next? predictive brains, situated agents, and the future of cog-
nitive science. Behavioral and Brain Sciences, 36(3):181–204, 2013. doi: 10.1017/
S0140525X12000477.

51

https://doi.org/10.1145/3477145.3477148
https://doi.org/10.1162/imag_a_00137
https://doi.org/10.1038/d41586-018-01683-1
https://doi.org/10.1016/j.jmp.2015.11.003
https://doi.org/10.1162/neco_a_01671
https://doi.org/10.1162/neco_a_01671
https://arxiv.org/abs/2005.14165
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1017/S0140525X12000477

[9] F. Crick. The recent excitement about neural networks. Nature, 337(6203):129–132,
Jan. 1989. issn: 1476-4687. doi: 10.1038/337129a0.

[10] K. Friston. A theory of cortical responses. Philosophical Transactions of the Royal
Society B: Biological Sciences, 360(1456):815–836, 2005. doi: 10.1098/rstb.2005.
1622.

[11] K. Friston. Hierarchical models in the brain. PLOS Computational Biology, 4(11):1–
24, Nov. 2008. doi: 10.1371/journal.pcbi.1000211.

[12] K. Friston. Learning and inference in the brain. Neural Networks, 16(9):1325–1352,
2003. issn: 0893-6080. doi: 10.1016/j.neunet.2003.06.005. Neuroinformatics.

[13] K. Friston. The free-energy principle: a unified brain theory? Nature Reviews Neu-
roscience, 11(2):127–138, Jan. 2010. issn: 1471-0048. doi: 10.1038/nrn2787.

[14] S. Golkar, T. Tesileanu, Y. Bahroun, A. M. Sengupta, and D. B. Chklovskii. Con-
strained predictive coding as a biologically plausible model of the cortical hierarchy,
2023. arXiv: 2210.15752.

[15] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley,
1949. isbn: 9780471367277.

[16] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models, 2020. arXiv:
2006.11239.

[17] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Commu-
nications, 7(1), Nov. 2016. issn: 2041-1723. doi: 10.1038/ncomms13276.

[18] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton. Backpropa-
gation and the brain. Nature Reviews Neuroscience, 21(6):335–346, Apr. 2020. issn:
1471-0048. doi: 10.1038/s41583-020-0277-3.

[19] S. Linnainmaa. Taylor expansion of the accumulated rounding error. BIT, 16(2):146–
160, June 1976. issn: 1572-9125. doi: 10.1007/bf01931367.

[20] B. Millidge, A. Seth, and C. L. Buckley. Predictive coding: a theoretical and exper-
imental review, 2022. arXiv: 2107.12979.

[21] B. Millidge, Y. Song, T. Salvatori, T. Lukasiewicz, and R. Bogacz. A theoretical
framework for inference and learning in predictive coding networks, 2022. arXiv:
2207.12316.

[22] B. Millidge, A. Tschantz, and C. L. Buckley. Predictive Coding Approximates Back-
prop Along Arbitrary Computation Graphs. Neural Computation, 34(6):1329–1368,
May 2022. issn: 0899-7667. doi: 10.1162/neco_a_01497.

[23] A. Ororbia. Spiking neural predictive coding for continual learning from data streams,
2022. arXiv: 1908.08655.

[24] A. Ororbia, A. Mali, D. Kifer, and C. L. Giles. Lifelong neural predictive coding:
learning cumulatively online without forgetting, 2022. arXiv: 1905.10696.

[25] L. Pinchetti, T. Salvatori, Y. Yordanov, B. Millidge, Y. Song, and T. Lukasiewicz.
Predictive coding beyond gaussian distributions, 2022. arXiv: 2211.03481.

[26] F. Pulvermüller. Neurobiological mechanisms for language, symbols and concepts:
clues from brain-constrained deep neural networks. Progress in Neurobiology, 230:102511,
2023. issn: 0301-0082. doi: 10.1016/j.pneurobio.2023.102511.

52

https://doi.org/10.1038/337129a0
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1371/journal.pcbi.1000211
https://doi.org/10.1016/j.neunet.2003.06.005
https://doi.org/10.1038/nrn2787
https://arxiv.org/abs/2210.15752
https://arxiv.org/abs/2006.11239
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1007/bf01931367
https://arxiv.org/abs/2107.12979
https://arxiv.org/abs/2207.12316
https://doi.org/10.1162/neco_a_01497
https://arxiv.org/abs/1908.08655
https://arxiv.org/abs/1905.10696
https://arxiv.org/abs/2211.03481
https://doi.org/10.1016/j.pneurobio.2023.102511

[27] F. Pulvermüller, R. Tomasello, M. R. Henningsen-Schomers, and T. Wennekers. Bi-
ological constraints on neural network models of cognitive function. Nature Reviews
Neuroscience, 22(8):488–502, June 2021. issn: 1471-0048. doi: 10.1038/s41583-
021-00473-5.

[28] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution
image synthesis with latent diffusion models, 2021. arXiv: 2112.10752.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, Oct. 1986. issn: 1476-4687.
doi: 10.1038/323533a0.

[30] T. Salvatori, Y. Song, T. Lukasiewicz, R. Bogacz, and Z. Xu. Reverse differentiation
via predictive coding, 2023. arXiv: 2103.04689.

[31] C. Savin, P. Dayan, and M. Lengyel. Optimal recall from bounded metaplastic
synapses: predicting functional adaptations in hippocampal area ca3. PLOS Com-
putational Biology, 10(2):1–22, Feb. 2014. doi: 10.1371/journal.pcbi.1003489.

[32] N. Shervani-Tabar and R. Rosenbaum. Meta-learning biologically plausible plasticity
rules with random feedback pathways. Nature Communications, 14(1), Mar. 2023.
issn: 2041-1723. doi: 10.1038/s41467-023-37562-1.

[33] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics, 2015. arXiv: 1503.03585.

[34] Y. Song, T. Lukasiewicz, Z. Xu, and R. Bogacz. Can the brain do backpropaga-
tion? — exact implementation of backpropagation in predictive coding networks. In
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 22566–22579. Curran
Associates, Inc., 2020.

[35] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B.
Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and
G. Lample. Llama: open and efficient foundation language models, 2023. arXiv:
2302.13971.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need, 2023. arXiv: 1706.03762.

[37] P. Werbos. Applications of advances in nonlinear sensitivity analysis. In System Mod-
eling and Optimization. Volume 38. Springer Berlin Heidelberg, Berlin, Heidelberg,
1982, pages 762–770. isbn: 3-540-11691-5. doi: 10.1007/BFb0006203.

[38] J. C. R. Whittington and R. Bogacz. An Approximation of the Error Backprop-
agation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic
Plasticity. Neural Computation, 29(5):1229–1262, May 2017. issn: 0899-7667. doi:
10.1162/NECO_a_00949.

[39] J. C. Whittington and R. Bogacz. Theories of Error Back-Propagation in the Brain.
en. Trends in Cognitive Sciences, 23(3):235–250, Mar. 2019. issn: 13646613. doi:
10.1016/j.tics.2018.12.005.

53

https://doi.org/10.1038/s41583-021-00473-5
https://doi.org/10.1038/s41583-021-00473-5
https://arxiv.org/abs/2112.10752
https://doi.org/10.1038/323533a0
https://arxiv.org/abs/2103.04689
https://doi.org/10.1371/journal.pcbi.1003489
https://doi.org/10.1038/s41467-023-37562-1
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://doi.org/10.1007/BFb0006203
https://doi.org/10.1162/NECO_a_00949
https://doi.org/10.1016/j.tics.2018.12.005

	Introduction
	Notation
	Data
	Computational graphs

	From backprop to predictive coding
	Backpropagation with stochastic gradient descent (BP)
	Backpropagation with squared loss (BP-SQ)

	Predictive coding algorithm with general loss (PC)
	Derivation
	Predictive coding algorithm with squared loss (PC-SQ)
	Predictive coding with squared loss and errors (PC-SQ-e)
	Other node losses
	Statistical interpretation of PC and PC-SQ-e

	Example
	BP-SQ
	PC-SQ
	PC-SQ-e
	Comparison

	Biological plausibility
	Results
	Minimization of the inference phase of PC
	Approximate dataset loss functions
	Approximate parameter update steps

	Discussion and conclusion

