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Management summary

This thesis aims to reduce travel times for inspectors at Eurofins Food, Feed and Water Benelux.
Bureau de Wit, a company of Eurofins that specializes in hygiene and food safety provides inspec-
tions and other services to ensure facilities are compliant with the HACCP regulations. Bureau de
Wit has numerous inspectors spread throughout the Netherlands and Belgium to provide inspec-
tions at their clients’ facilities to ensure hygiene standards and food safety at the facilities. Bureau
de Wit is facing pressure to meet growing demand and ensure all the facilities get inspected in
time. Hence it is essential, that the inspectors work more efficiently to meet these challenges. We
aim to improve the routes of the inspectors by optimizing travel each day and thus allowing more
time for inspections over the planning horizon.

An analysis of the current logistics situation was first performed to acquire an understanding of
the current logistics structure, constraints, limitations, KPIs and practices. The inspectors visit
customers and inspect their facilities, where they also take samples. These samples are transported
to the laboratory for further analysis. Since it is infeasible for inspectors to drive to the laboratory
each day the inspectors drop the samples off at a predetermined location. In the night the samples
get collected by an external party and get transported to the laboratory. The planning of customers
and dropping the samples off at a predetermined location are the logistics this thesis focuses on.
From the analysis of the current situation, the challenge at Bureau de Wit was identified to be a
routing problem.

Bureau de Wit currently has no planning system or tool in place and is entirely reliant on the
planning the inspectors make themselves. This offers flexibility to the inspectors but also causes
the routes to be suboptimal. Eurofins is unsure whether route optimization would lead to significant
cost and time savings. The aim of this research was thus to determine how Eurofins could improve
their inspector planning without compromising service quality.

The literature suggests that given the characteristics of the problem, we can formulate it as a vehicle
routing problem (VRP). Including the constraints and characteristics of the routing problem, we
can define it as a periodic vehicle routing problem with time windows and dropoffs (PVRPTWD).
The model that comes closest in the literature to this VRP variation is the PVRPTW. The problem
is formulated as a Mixed Integer Linear Program (MILP) and is solved using two solution methods,
one exact and one approximate solution method. The solution methods are an exact MILP solver
and tabu search (TS) metaheuristic respectively.

The MILP is solved using a general-purpose solver. Before applying the solution approaches to the
real-world instances the parameters of the models were tuned. We create artificial data instances
based on the Eurofins data for parameter tuning. The TS parameters were optimized to induce
desired search behaviour to effectively produce a high-quality solution. The runtime parameters
for both the TS and MILP were set to 1800 seconds based on the results of the testing. The
TS algorithm consists of an initialization phase, where an initial solution is constructed using
a customized greedy insertion heuristic and an optimization phase. In the optimization phase,
the tabu search swaps customer schedules to descend to local optima and escape them using a
diversification mechanism.

After setting the parameters, the TS and MILP approaches were applied to three real-world in-
stances based on the monthly workload of an inspector. The 3 real-world data instances were
related to three different inspectors in different working areas each having unique characteristics.
Each instance has a unique node density, average speed, and support facility availability testing
the efficacy of the solution approaches in different environments. The results of the TS and MILP
are as follows.

The Tabu Search outperforms the MILP in complex data instances, finding solutions that are,
on average, 1,71% better than those produced by the MILP. The MILP outperforms the TS in
small-scale instances, achieving an optimal solution within ten minutes. The tabu search can
improve from an initial solution by around 30% when allocated a computing time of 1800 seconds.

1



The MILP was unable to achieve the optimal solution for any real-world data instance within
the allocated runtime with an average optimality gap of 6,54%. Using TS as the main solution
approach the current travel time can be reduced by up to 25%. The MILP achieves lower values
when applied to real-world instances.

To conclude, replacing manual planning with an optimized planning approach and incorporating
this approach in the operations improves the routing performance and leads to reduced costs and
travel times. We thus recommend Eurofins to implement our suggested planning model for their
inspectors or a similar approach. A reduction of 25% of travel times is possible when applying the
solution approach. Therefore, the action problem is solved using this solution approach. Addition-
ally, we recommend that Eurofins investigates the working areas of the inspectors, so the customers
assigned to each inspector are optimal from a logistics perspective. We also recommend that a
logistics check is done before signing a contract with a customer since this can lead to operational
difficulties. The logistics check is to ensure that adding a customer to the operations is feasible and
not at considerably high costs. The scientific contributions of this work lie in the development of
a customised construction heuristic and add to the metaheuristic body of knowledge by providing
a case study of TS demonstrating its effectiveness in a complex real-world problem.
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List of Acronyms

• BdW: Bureau de Wit

• CRISP-DM: Cross Industry Standard for Data Mining

• CVRP: Capacitated Vehicle Routing Problem

• HACCP: Hazard Analysis and Critical Control Points

• KPI: Key Performance Indicator

• LZV: Lab Zeeuws Vlaanderen

• MDVRP: Multi Depot Vehicle Routing Problem

• MILP: Mixed Integer Linear Programming

• MPSM: Managerial Problem Solving Method

• MTZ: Miller-Tucker-Zemlin

• NP-hard: Nondeterministic Polynomial-time hard

• PTSP: Periodic Travelling Salesman Problem

• PVRP: Periodic Vehicle Routing Problem

• PVRPTW: Periodic Vehicle Routing Problem with Time Windows

• PVRPTWD: Periodic Vehicle Routing Problem with Time Windows and Dropoffs

• TS: Tabu Search

• VNS: Variable Neighborhood Search

• VRP: Vehicle Routing Problem

• VRPTW: Vehicle Routing Problem with Time Windows
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Chapter 1

Introduction

This chapter provides an overview of the Eurofins situation by discussing the problem this thesis
addresses and outlines the problem-solving approach for this problem. First, Eurofins’ background
and company profile are described followed by Section 1.1, which outlines the problem as perceived
by Eurofins and the motivation for the setup of this thesis. The relevant core problem is identified
and the action problem to be solved in this project is discussed in Section 1.2. The research
questions are covered in Section 1.3 discussing relevant research questions and the problem-solving
approach. The scope of this research is discussed in Section 1.4.

1.1 Background

In this section, we discuss the organizational structure of Eurofins, its core business, and current
operational challenges. Eurofins Food, Feed & Water Testing Benelux, hereafter referenced as
Eurofins is a business line of Eurofins Benelux that provides food and water safety solutions offering
services ranging from laboratory testing and inspections to consultancy services. Eurofins mission
is: ”To contribute to global health and (food) safety by providing our customers with high-quality
laboratory and advisory services” (Eurofins Food Feed Water Benelux, 2024). A business line is
a division of the Eurofins Company, which operates with a high degree of autonomy. A business
line consists of business units, which are independent subsidiary companies of the business line.
Eurofins has 8 business units that each offer unique services related to ensuring food and water
safety. To determine food or water safety laboratory testing of samples and on-site analysis are
crucial, which are the core business of Eurofins. Eurofins faces operational challenges in offering
these services, which leads to the problem described in the following paragraph.

Eurofins faces challenges regarding the transportation of samples from customers to its laboratories
for testing and analysis in its logistics operations. Currently, business units each coordinate their
sample transportation process, some business units operate their own in-house logistics units and
others outsource this process or opt for a combination. The networks are generally limited in
resilience with high operating costs varying in quality of operations between logistics divisions
but allow the business units to maintain control over their operations and allow for a customized
logistics design to satisfy their needs. Management and operations personnel are convinced that
many optimizations and efficiencies are to be exploited by integrating capabilities, processes, and
networks. However, Eurofins can be characterized as a divisional organization (Mintzberg, 1980).
Eurofins maintains autonomous business units with their own goals and subsequent logistical needs,
which makes integration complex. Figure 1 shows an organizational overview of Eurofins’ divisions
relevant to this thesis. This thesis focuses on one of these business units, Bureau de Wit.
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Figure 1.1: Organizational chart of Eurofins and the relevant entities.

Bureau de Wit is an expert in food safety and hygiene through performing hygiene inspections and
consolatory services. To ensure the hygiene and food safety of their clients samples are taken from
the clients tested at the laboratory. This causes challenges for Bureau de Wit to satisfy customer
demand and ensure food safety throughout the Netherlands and Belgium. Research is needed to
identify opportunities and propose new solutions to increase the logistics efficiency at Bureau de
Wit.

1.2 Problem identification

This section identifies the problems faced by BdW regarding its logistics operations. Through the
use of a problem cluster one core problem is identified: manual inspection planning.

1.2.1 Action Problem

Bureau de Wit is operating in an industry where finding personnel is becoming increasingly difficult
and costs are rising. The need to spend the limited amount of hours an employee has efficiently is
thus becoming more urgent.

This eventuality becomes even more clear when the amount of customer orders increases signif-
icantly. Serving all customers, while maintaining high-quality service is becoming increasingly
challenging. Additionally, with the introduction of increasing and ever-changing hygiene regu-
lations, the work pressure on inspectors increases. This means that the logistics challenges in
planning and routing inspectors need to be more efficient.

According to Heerkens and van Winden (2017) an action problem is ”The discrepancy between
norm and reality, as perceived by the problem owner”. We thus formulate the following action
problem:

’The routing time of inspectors at Eurofins should be reduced by 10%, without compromising
service quality. ’
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1.2.2 Problem cluster

Figure 1.2: Problem cluster for reducing route duration

First, to tackle the action problem the root cause of that problem must be tackled. An observation
study has been conducted to determine the underlying problems of the action problem, which
was executed by interviewing the problem owner in this case Eurofins management and logistics
employees. The underlying problems have been organized into a problem cluster to display the
causal relationships between different problem statements. Heerkens and van Winden (2017) states
that the goal of the problem cluster is to identify potential core problems according to the problem
owner. The problem cluster is displayed in Figure 1.2.

Operations personnel and inspectors experience long route duration times or have difficulty fin-
ishing their tasks within the designated period. There is a high degree of unnecessary travel time
resulting in a large amount of kilometres travelled. Some inspectors experience having no prede-
termined routing, the cause of having to drive excessive times to visit all customers on a given
day. The routes currently get manually planned by the inspectors themselves in combination with
customer wishes this creates sub-optimal routes according to management. Additionally, this ne-
cessity to plan the routes by the inspectors results in having less time to visit customers. The
inspectors also have difficulty estimating when they arrive at customers causing them to not plan,
since they can visit a different amount of customers each day. The demand of the customer is also a
factor causing non-optimized routes, by having stringent wishes, however, this factor is determined
to be non-influenceable by management.

1.2.3 Core problem

There are two core problems identified in the problem cluster. These problems are the furthest
from the action problems and are the underlying causes of the other problems in the problem
cluster. The first underlying problem is the stringent customer wishes for some customers. These
customers have agreements with the company dictating visit times and frequencies. However, these
wishes can cause the routing to be inefficient, since inspectors have obligations to visit a certain
customer while visiting another would be more optimal. These decisions and agreements are made
between sales and the customer and are thus non-influenceable problems and are thus left out of
scope.

The other core problem, manual inspection planning is something that can be influenced. Cur-
rently, inspectors plan their routes and visit times by themselves. Due to the large amount of
clients an inspector needs to visit each month, planning is challenging since there are a lot of
combinations of customers to be visited each day all with different opening times, preferences, and
agreements. This problem can be defined as a complex vehicle routing problem (VRP). The quality
of the routes thus relies almost completely on the inspector’s experience and prowess in planning.
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The feasibility of planning thus takes priority over making efficient routes for a month. However,
Bureau de Wit is unsure about the impact of commercial planning software and the improvement
in the inspectors’ routes. Given that this is an underlying problem that leads to other previously
identified problems the following core problem is defined:

’Manual inspector planning is inefficient in making routes and Eurofins should use quantitatively
based inspector planning.’

1.3 Research questions

Considering the problem identification, action, and core problems (Section 1.2) in cooperation
with the stakeholders, the main research question is formulated. This question specifically targets
the core problem and is focused on finding a solution. The reader is referred to Appendix D to
get background information about the methodology and approach, which lead to these research
questions. We formulate the following question:

’How can Eurofins improve their inspector planning in order to reduce routing duration times
without compromising service quality at Bureau de Wit?’

To answer the main research question, the following research sub-research questions are formulated
and describe the steps needed to complete the research. For each sub-research question, the main
objectives and purpose are discussed. The sub research questions are:

1. What is the current transportation network at Bureau de Wit?

The objective of this research question is to gain insights into the current business operations
in regard to the sample transportation network. An accurate analysis of this current net-
work helps with identifying possible improvements and evaluating solution fit, which will be
discussed in the later steps. The route planning methodology, KPIs, limitations and network
design have to be identified.

2. Which methods are applicable for solving the Eurofins vehicle routing problem according to
scientific literature?

This question focuses on finding knowledge in regards to optimization techniques related to
the Eurofins situation. Scientific literature is looked into to discover relevant VRP variants
that fit the current network considering the practical constraints and are compatible with
the available data and choosing the most suitable one. The literature review provides an
overview of techniques and relevant models to formulate a suitable solution approach.

3. Which model and technique should be used to optimize the inspection planning at Eurofins?

This question aims to find a solution approach to optimize inspector planning for the chosen
VRP variant. The most complex techniques are likely not feasible due to the time span of
this thesis. Assumptions, requirements and model inputs should be considered in answering
this research question

4. How does the chosen solution approach perform compared against to the current situation?

This question covers the evaluation of the model and the impact of the proposed solution.
The evaluation is done by analyzing KPIs relevant to the inspector’s planning. To assess the
performance of the proposed solution the change in KPIs is analysed. The other aspect is
the verification of the model outcomes and model validation.

5. What conclusions and recommendations can be made from executing the thesis at Eurofins?

The final step covers the main outcomes of this research and provides recommendations
for Eurofins for future actions and points of interest. Avenues for future research and this
research’s practical limitations are identified. Finally, the practical and theoretical contribu-
tions of this work are discussed.
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1.4 Scope

The logistics operations of Eurofins and its business units are very extensive as mentioned in
Sections 1.1 and 1.3, so covering all aspects of this operation is infeasible. In coordination with
the problem owner, a research scope has been defined taking half a semester of research time into
account. As expanded upon in Section 1.1 Bureau de Wit is the business unit focused on, the
other business units are thus out of scope.

This research will only take the Netherlands as the geographical scope of this research since the
relevant logistics operations of Bureau de Wit are not extensive enough to warrant exploration
in Belgium and Luxembourg. Furthermore, this research shall constrain itself to the planning
of individual inspectors and not take the planning as a whole. Secondly, we limit the scope of
this research to the monthly planning of an inspector even though many other different planning
policies are possible. Most customers have a specified visit frequency (yearly, bi-yearly, quarterly,
monthly), and inspectors of Bureau de Wit work based on monthly planning, it is the wish of the
company to keep this planning interval. The inspector routing and planning are considered to be
in the scope of this research when it comes to the logistics of Bureau de Wit. In Chapter 2 other
logistics operations in Bureau de Wit are elaborated upon to get a clear picture. However, sample
transportation that is not done by the inspectors is left out of scope of this research.

The reader is referred to Section 4.1 for assumptions made to formulate the mathematical model.
An assumption that is made about customers is that all customer orders are known before planning
and any uncertainty in customer orders is left out of scope. Due to insufficient data and the
functioning of the mathematical model, this assumption was made. Additional assumptions made
throughout this work are elaborated upon in their respective section.
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Chapter 2

Context analysis

This chapter provides a context analysis of Eurofins’s current situation in particular Bureau de
Wit. As outlined in Section 1.3 the following research question is answered in this chapter What
is the current transportation network at Bureau de Wit?. This chapter begins by summarising a
preliminary observation study, where all the business units of Eurofins were analyzed based on
their logistics operations, which is followed by a discussion on why Bureau de Wit is chosen as
the focus of this thesis in Section 2.1. Section 2.2 explores the business unit logistics operations in
particular the planning aspects in detail, as well as the characteristics of this logistics problem. This
is followed by discussing the relevant KPIs to assess the performance of the solution and current
logical performance in Section 2.3. Finally, we discuss the problem requirements and limitations
in Section 2.4 followed by a subconclusion in Section 2.5.

2.1 Organization

In this section, the logistics of the most important business units within Eurofins are discussed. This
Section is based on the preliminary research done at Eurofins and provides background information
on the other business units. Due to the complex organizational structure of Eurofins, the sample
transportation design varies vastly. The business units are clustered based on their logistical
operations.

2.1.1 Heerenveen

Heerenveen consists of 2 business units operating out of the same laboratory, hereafter simply
referred to as Heerenveen. The sample transportation activities for Heerenveen mainly consist of
using the linehaul and Eurofins logistics. The line haul is a network that connects Eurofins labs
throughout northwestern Europe. The line haul allows Heerenveen to transport samples to other
Eurofins labs on the line haul and receive samples from those other labs for testing within a day.
The line haul’s operations are outsourced.

The other large sample transportation activity that is relevant is the use of Eurofins Logistics.
Eurofins Logistics is a business unit that is not part of the same Eurofins referred to in this thesis,
but another unit in the overall Eurofins organization. Eurofins logistics provides transportation,
warehousing, and customer service to other Eurofins entities. Heerenveen uses Eurofins logistics
to transport samples from customers to their lab.

Heerenveen also operates a dedicated line in the northern Netherlands visiting their most important
customers. This line is outsourced and Heerenveen has significantly decreased these dedicated lines
over the past three years. Additionally, Heerenveen is one of the two biggest labs in Eurofins and
almost all samples from Bureau de Wit and C-mark are transported to and tested at this site.
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2.1.2 Lab Zeeuws Vlaanderen

Similarly to Heerenveen, LZV also uses the line haul to transport and receive samples for testing
from other Eurofins labs. LZV also makes use of Eurofins logistics, but only for transportation
orders, it cannot fulfill itself.

LZV also operates its own vehicle fleet to pick up and take samples at customers throughout the
day. The routes get planned ad-hoc based on the changing circumstances because throughout the
day LZV receives requests for sample pickup and taking while the vehicles are already executing
their routes. The samples get collected and taken throughout the day and are all received at the
lab at the end of the day.

2.1.3 BdW and C-mark

Bureau de Wit and C-mark have almost identical sample transportation networks. First of all,
both entities have inspectors that visit clients but for different types of services. During these
inspections, multiple samples get taken for testing in the laboratory in Heerenveen. Throughout
the day an inspector visits multiple clients taking samples at almost every visit, the samples then
get dropped off at one of the many support facilities at the end of the day. The support facilities
are geographically spread out throughout the Netherlands. The samples at the support facility
get collected by Eurofins logistics at night and dropped off at Heerenveen before the lab’s opening.
See Figure 2.1 for a schematic representation of this process.

Figure 2.1: BdW’s and C-mark’s sample transportation process.

2.1.4 Other business units

The other business units have fewer sample transportation operations. Most business units opt to
outsource their sample transportation activities to Eurofins logistics, Rush logistics or other third
parties.

2.1.5 Bureau de Wit choice

Due to the vastly different organization of logistics in each business unit combining logistics op-
erations is considered to be not feasible. This is the reason that together with the stakeholders
in this project it has been decided to focus on one business unit and look to improve the logistics
operations at that business unit. Bureau de Wit has been chosen as the focus of this thesis for
multiple reasons. Bureau de Wit currently lets their inspectors plan their routes themselves, while
other business units use dedicated planning software to create routes and coordinate logistics. The
management believes the operational efficiency can be increased by improving the planning the
inspectors currently make. Additionally, since the scope of this project would get too large if
multiple business units were involved it has been chosen to focus on one, which is Bureau de Wit.
Additionally, the operations of Bureau de Wit are of such scale that small improvements in the
schedule can lead to large overall gains in terms of cost and customer satisfaction.

The planning of inspectors between Bureau de Wit and C-mark varies vastly. C-mark plans its
inspectors based on monthly planning and gets controlled by a team of planners, who alter the
routes and planning based on the circumstances. Bureau de Wit does not plan their inspectors and
provides them with a list of customers to visit within the calendar month and lets the inspectors
plan routes. The inspectors report to the operations of Bureau de Wit, however, at Bureau de
Wit the operations team interferes almost never with the planning the inspectors make. This
aforementioned situation, where inspectors create their routes is the core topic this thesis tackles
as mentioned in Section 1.2.
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2.2 Bureau de Wit’s logistics problem

As mentioned in Chapter 1 and Section 2.1.5, we will focus on the planning of Bureau de Wit.
Together with the company and stakeholders considering the limited time frame we have decided
to focus on this specific business unit of Eurofins. The section begins by outlining the trans-
portation network of Bureau de Wit focusing on the planning process and discussing the sample
transportation network. The current network characteristics are discussed in Section 2.2.1 and a
small illustration is provided for clarity. This is followed by outlining the characteristics of the
network and discussing characteristics that can be changed within the network in Section 2.2.2.
The current performance of Bureau de Wit’s network and the relevant KPIs are in Section 2.2.3.
These KPIs also serve as the key figures to assess the proposed solution in the later Chapters 5 and
6. Finally, the requirements and limitations for the solution methodology are presented in Section
2.2.4.

2.2.1 Sample transportation network

Bureau de Wit has a combination of a planning and routing problem, which involves visiting
customers, inspecting their facilities, and taking samples to be analyzed in the laboratory. This
section provides an overview of this planning and routing process and the underlying principles
driving these processes. As noted earlier we focus on the Bureau de Wit’s planning and routing
process due to the scope, but the process described below is similar to that of C-Mark.

Planning process

Bureau de Wit currently opts for a decentralized planning process, where the inspectors create and
drive their own routes. There is currently no central route planning software in place to create
routes for inspectors or tools to aid in this process. Letting inspectors plan their own routes gives
them a high level of autonomy and flexibility, which has its advantages and disadvantages. The
advantages are that inspectors know their operating area and customers well, which is good for
customer service since inspectors can customize their service based on the customers’ preferences.
The disadvantage however is that letting inspectors plan themselves can create sub optimal routes
when approached from a logistical perspective.

In the current planning process the operations department of Bureau de Wit currently provides
a monthly list of customers and tasks to each inspector needs to finish within a calendar month
and gives full autonomy to the inspector to plan their own routes and schedules. The list of
customers an inspector receives is based on the geographical location of the inspector’s home,
since this is also their starting location. The amount of visits on the customer list is around the
same volume for each inspector. This planning process is provided in Figure 2.2. The process
begins the week before the beginning of each month, where all customer visits for the next month
get aggregated. Then the logistics department assigns these customers to an inspector based on
geographic area and workload. The inspectors then receive their customer list for the month and
plan the customers in their schedules. The inspectors have autonomy in their working hours as
long as the customers on their list get serviced within the month and comply with any additional
agreements there may be between Bureau de Wit and the customer. There are large differences in
the manner an inspector plans their customers, some prefer planning on a weekly basis, some plan
for the whole month, and some plan just a few days before they visit. Using an application on
their smartphones inspectors report their progress back to the operations department and notify
in case of unforeseen circumstances.

Figure 2.2: BdW’s current planning process.
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Transportation network

As mentioned in Section 2.2.1 the inspectors inspect the customers’ facilities and take samples
throughout the day used for testing. The samples thus need to be transported from the inspector’s
vehicle to the laboratory. Eurofins has a support facility network, which business units can use
for their logistical operations. This support facility network is used by Bureau de Wit and its
inspectors, by using them as drop-off locations for the samples collected throughout the day. In
the current system inspectors visit the customers and take samples and these samples get dropped
off at the end of the day before a specified time at one of these dropoff locations. After the dropoff
deadline, Eurofins Logistics collects these samples and delivers the samples to the Heerenveen lab
before the start of the morning shift using their network of hubs, vehicles, drivers, and planning
software. Figure 2.3 provides a high-level schematic overview of the current network for one day,
where multiple inspectors and dropoff locations are located from Bureau de Wit’s point of view,
and Figure 2.4 provides an example of the problem that one inspector faces over an arbitrary time
period from the inspector’s point of view. The latter as defined in Section 1.3 is also the scope of
this research, we thus solely focus on the planning from the inspectors’ point-of-view. Consequently,
the depot locations and the night sample transportation logistics by Eurofins Logistics were also
left out of scope.

Figure 2.3: Schematic overview of the planning for multiple inspectors on one day.
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Figure 2.4: Schematic overview of the planning for one inspector over 3 days.

2.2.2 Network characteristics

To provide a more comprehensive understanding of Bureau de Wit’s network characteristics, the
key aspects that define the inspector planning of Bureau de Wit are discussed. The aspects of
customer service times, customer visit times, customer visit frequency, and vehicles are discussed.
These aspects are explained in the following sections and play a key role in the model formulation
in later chapters.

Service times and demands

The Bureau de Wit clients request a wide array of services ranging from legionella inspections to
3-hour-long factory inspections. If a client is known and an inspector comes for an inspection the
service time is uncertain, since there are varying factors that can shorten or prolong inspection
time. However, Bureau de Wit has an in-house estimation tool to estimate the duration of a
visit based on visit type and customer. For this thesis, this estimation tool is assumed to be
accurate enough for the mathematical model discussed in Chapter 4 and according to inspectors
and operations personnel, the estimations are accurate if aggregated daily. The re-inspections and
new clients cause the number of visits in a month and the total orders within a month to be slightly
stochastic. Re-inspections and new customers make up around X% (hidden for confidentiality) of
total visits in a month, so requests are assumed to be deterministic over the span of a month.
There is also the aspect of pickup demand or in this case number of samples that are taken that
need to be transported to the lab. This aspect will be addressed in a later section.

Customer visit times

When a client is to be inspected they usually do not specify a specific date or time the inspector
needs to do their visit. This would defeat the purpose of hygiene inspections since facilities are
always supposed to be hygienic when food is prepared, so the time an inspector visits should not
matter when it comes to hygiene standards. However, inspectors are subject to time windows in
which they visit and inspect for certain clients. The inspectors are constrained to the opening times
of their clients, which we define as a time interval in which an inspection takes place. Most clients
have a wide period in which an inspection can take place, usually 8:00-17:00 with some having
even larger time intervals. Some clients have shorter time windows on specified days, especially
restaurants, which are closed in the mornings for example. The inspectors always take opening
times into account when creating their routes.
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Inspections take place throughout the week, excluding Saturdays and Sundays. The other type of
client availability is opening days where certain clients are closed on certain days of the week or
specific days, which are usually holiday-related. This is also an aspect that is taken into account
when an inspector makes their planning.

Visit frequency

As mentioned earlier clients get planned based on a monthly basis, however, clients can of course be
visited multiple times in a month due to agreements or re-inspections if a client fails an inspection.
So there is a visit frequency for every client, with most clients just having one inspection planned
in a month. If a client must be visited multiple times in a month, the inspections take place in
different weeks or an interval of days between successive visits is assigned.

Vehicles

Bureau de Wit leases a fleet of vehicles for every inspector. Every inspector owns a vehicle, which
they use to drive to customers, store inspection equipment, and store samples taken on-site at the
customers. The inspector always drives this vehicle when doing inspections and the inspector can
keep this vehicle at home. So routes and vehicles start at the inspector’s home and they end at
the inspector’s home. The samples taken during the day get stored in a cooling unit in the vehicle.
The physical size of the samples is so small that there is practically always enough room for the
samples to be stored in the cooling unit. Since the samples always get dropped off at the support
facilities at the end of the day, there are never storage capacity limitations when executing a route
for a day, so pickup demand is assumed to be negligible.

2.3 Key performance indicators

The main Key Performance Indicator (KPI) for the Bureau de Wit’s logistics network is the amount
of time associated with servicing all clients. Cost is a main driver when looking at the performance
of a logistics network, however in this case most costs are fixed or are derivatives of execution time.
The main costs include personnel, vehicle, fuel, consumables, and overhead costs. Personnel costs
and vehicle costs are fixed. Fuel costs are based on the distance traveled, which is highly correlated
to the amount of driving hours. Consumables, items used for inspecting a client a variable cost, and
most other costs are also variable. So route execution time is the main KPI to assess the inspector’s
planning performance since lowering this time allows to visit more customers in the same amount
of time decreasing the costs associated with visiting a customer since these fixed costs get spread
out over a larger amount of visits. The total time to service all customers is thus the KPI that
should be decreased as much as possible and is also the most important indicator to resolve the
action problem described in Section 1.2. Optimizing the route execution time leads to lowered
costs and hiring pressure, which can contribute to the company’s profitability and consequently
competitive positioning.

The other critical KPI is the average driving time in hours per day. This indicator of time indicates
how long an inspector is driving to clients per day. Driving hours are non-productive because it
does not contribute to the value-adding service of inspecting, so allowing inspectors more time to
inspect can increase the quality of inspectors and it allows for more customers to be visited in a
day if the average driving time is lowered. Secondly, this KPI is relevant since it has an impact on
the carbon emissions and travel distance of the vehicles. Since, if the vehicle is driving less time
with the same average speed, the total distance travelled on a given day is lower reducing fuel
consumption and consequently a reduction in fuel cost and carbon emissions.

2.4 Requirements and limitations

To formulate a solution to the Eurofins routing problem several requirements and limitations should
be considered. The total amount of working hours an inspector has per week is at maximum, 40
hours per week. There is, however, flexibility in the amount of working hours per day and the
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time of those working hours for an inspector. Furthermore, a limitation concerning the working
days for inspectors and clients is that no visits can be scheduled on Saturdays and Sundays and
some holidays. The time windows specified by the clients need to be adhered to even if it results
in less efficient routes. There are no vehicle capacity limitations, as well as the working hours of
an inspector except the total working hours specified earlier.

The route planning should be made for each day in the calendar month for an inspector. A limita-
tion is that now all time windows are exactly known since this is information that is communicated
between inspector and client, but not communicated to the operations department. Another limi-
tation is that not all visits are known before the beginning of a planning period, however, this is
assumed to be negligible. This thesis focuses only on the operations of Bureau de Wit’s inspection
planning. Requests from other business units are also left out of scope.

2.5 Conclusion

This chapter explored the current logistics at Eurofins by answering the following research question
What is the current sample transportation network at the business unit level?. First, all major
logistics operations of the key business units were discussed. Every business unit has its own
mix of private and outsourced methods to satisfy its logistical needs. Heerenveen uses Eurofins
Logistics, an internal logistics service unit to transport their packages from their clients to their
labs, a dedicated line collecting samples from important customers in one region of the Netherlands
and the line-haul and transportation network connecting Eurofins labs all over Europe for inter-
laboratory transportation. Lab Zeeuws Vlaanderen also uses the linehaul and some private couriers.
Lab Zeeuw Vlaanderen also operates a private fleet of vehicles to collect samples at short notice
from customers throughout the day. Bureau de Wit and C-mark, almost exclusively use their
private fleet of vehicles to do onsite inspections at the customers where they take samples to be
tested in the lab in Heerenveen. The samples are deposited at a support facility and transported
by Eurofins Logistics to the Heerenveen lab at night. Finally, the other smaller entities mainly use
private carriers to transport their samples from and to other customers and labs.

After deliberation, it has been decided to focus on the logistics of Bureau de Wit, in particular
the monthly planning of inspectors. The Bureau de Wit sample transportation logistics are based
on a network of support facilities, where samples collected throughout the day are deposited at a
support facility and picked up by Eurofins Logistics which transports the samples to the laboratory.
Currently, the inspectors are given a monthly list of customers that need to be visited within the
month. The inspectors plan these customer visits themselves with varying degrees of efficiency.
When a customer is able to be inspected is influenced by various factors including, the geographic
position of the clients, time windows, open and closing days, agreements, and the drop off deadline.
The inspectors need to adhere to these time windows and potential customer preferences to keep
customer satisfaction and do their inspections when the facilities are opened. Additionally, the
service time is a critical component in the planning of routes. The Key Performance Indicators
(KPIs) for Bureau deWit’s scheduling logistics include the route execution time and average driving
time per day. These 2 KPIs are crucial for understanding the schedule efficiency and optimizing
the planning, ensuring visits get efficiently planned throughout the planning horizon of a month.
The requirements and constraints to consider are; service times, time windows, planning horizon,
clients available days, support facility locations, and inspector working hours. The limitations are
that visits are known after the planning need to be inserted mid-way through the execution of
the planning are not disregarded. Lastly, the scope is defined to be the scheduling of individual
inspectors, the entire scheduling problem for all inspectors simultaneously is considered to be out
of scope. To remain consistent throughout this thesis, the aforementioned problem will be referred
to as Eurofins’s transportation problem, since it is about the sample transportation for one of
Eurofins’s business units.
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Chapter 3

Literature review

Eurofins’s situation can best be described as a routing problem for which its current inspection
planning requires optimization by minimizing overall route execution time. We previously referred
to this problem as a scheduling and planning problem, however in the following sections it is made
clear that it is also a routing problem. This Chapter will thus discuss relevant literature in regards
to model approach, and solution methods for routing problems considering the characteristics of
Eurofins’s transportation process. So the following research question is addressed Which model and
technique should be used to optimize the inspection planning at Eurofins? First, we introduce the
vehicle routing problem in Section 3.1 and discuss various characteristics a vehicle routing problem
can contain. This is followed by presenting the mathematical formulation of VRP variants and
a discussion of which variants align best with the characteristics of the Eurofins’s situation in
Section 3.2. Heuristic and metaheuristic solution approaches that fit the mentioned VRP variants
are discussed in Section 3.3. Finally, we conclude by discussing the most appropriate VRP variant
and its solution approach in Section 3.4.

3.1 Vehicle routing problem

The vehicle routing problem (VRP) is a logistical problem, where a set of routes are determined
to serve a set of customers by a set of vehicles. The goal of the VRP is to minimize or maximize
a set objective, usually cost or distance traveled. The first VRP was introduced by Dantzig
and Ramser (1959), which was called ”The Truck Dispatching Problem”. Danzig and Clarke
aimed to find optimal routing for homogeneous gasoline trucks between a gas terminal and service
stations. Five years later, the problem was generalized by Clarke and Wright (1964) as a linear
optimization problem on how to serve a set of geographically dispersed customers from a central
depot using a fleet of trucks with varying capacities, which is now known as the ”Vehicle Routing
Problem” (VRP). The VRP is known as an NP-hard problem introduced by Lenstra and Kan
(1981), meaning that algorithms that can exactly solve the problem are only efficient in small-scale
instances. The Clarke and Wright savings algorithm is one such algorithm, which is a step-by-
step decision process for achieving local optimization (Clarke and Wright, 1964), however, this
algorithm does not guarantee a globally optimal solution.

3.1.1 Taxonomy of VRPs

VRPs have increased in complexity to deal with real-life situations and do not satisfy this original
formulation and definition byClarke and Wright (1964)(Braekers et al., 2016). This is also the
case for the situation at Eurofins, where there an inspector needs to visit multiple locations across
a month, whilst adhering to various constraints. Ni and Tang (2023) adapted the three-level
taxonomy proposed in Braekers et al. (2016) and Eksioglu et al. (2009). Figure 3.1 displays the
VRP taxonomy of Ni and Tang (2023) and the characteristics matching with the Eurofins situation
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eluded to in Chapter 2. Most modern VRPs combine several of these characteristics displayed in
Figure 3.1.

Figure 3.1: Taxonomy for VRP literature (Ni and Tang, 2023) Characteristics aligning with the Eurofins
situation are highlighted in red.

The most studied VRPs are deterministic VRPs, for which customer requests are known and
information is known before the execution of routes (Braekers et al., 2016). This concept extends
to the number of stops, demand, and other information on a given route. One of the most common
extensions of the VRP is the VRP with time windows (VRPTW). The VRPTW extends to VRP
to include the constraint that customers can only be served in a specified time interval. Sometimes
soft time windows are used, which are usually used to model customer satisfaction. In the VRP
with soft time windows, the VRP is relaxed to a VRP with penalty costs (Ghannadpour et al.,
2014). Furthermore, the capacitated vehicle routing problem (CVRP) is also known as the classical
VRP and is used extensively. The CVRP operates under the additional constraint that customers
have deterministic demand, which has to be satisfied with vehicles that have a limited capacity
(Braekers et al., 2016). The multi-depot vehicle routing problem (MDVRP) is a more complex
routing problem compared to the general VRP, as the MDVRP considers that the fleet of vehicles
can depart from multiple depots, while most general VRPs only consider one depot (Montoya-
Torres et al., 2015). So, when multiple depots are considered for serving a set of customers with a
set of vehicles the problem becomes a MDVRP. Another characteristic and variant of the vehicle
routing problem is the periodic vehicle routing problem (PVRP). This variant is applicable when
the planning is made over a certain period (a month for example) and deliveries or services can
be provided to the customer in different days. The PVRP allows customers to be visited once or
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multiple times (Campbell and Wilson, 2014).

The different variants of the VRP and relevant characteristics can be combined into one math-
ematical model with an accompanying solution methodology. Vieira et al. (2023) combines the
characteristics mentioned above and incorporates the additional characteristics of site dependency,
heterogeneous fleet, multiple drips, and fleet sizing into the mathematical formulation. A charac-
teristic not mentioned in the Ni and Tang (2023) taxonomy is the characteristic of having multiple
starting locations and a set of end locations. The multi-depot vehicle routing problem MDOVRP
comes close to this characteristic, however in the MDOVRP vehicles are allowed to end on any
customer node (Lalla-Ruiz et al., 2016), whilst in the Eurofins problem the inspectors need to
return home, but need to visit a deposit location first. In this thesis, we limit the scope to encom-
pass one inspector, however, in the full scale of the problem, multiple depots should be considered.
The following subsection, the mathematical formulation of the VRP is provided. Later, the afore-
mentioned variants of the VRP: VRPTW, and PVRP are discussed more extensively and the
mathematical models are provided.

3.1.2 Combining VRP characteristics

The aforementioned VRP models have a wide range of characteristics. As mentioned earlier, in
real-world scenarios a wide variety of characteristics need to be incorporated to get an accurate
model. Additionally, the complex VRPs also need to be solved to have practical value. So, we
discuss the combination of several VRP characteristics and its solution methods in this section.
The periodic vehicle routing problem (PVRP) is one such model, where periodicity is incorporated
in the VRP. Periodicity is a generalization of the VRP, where instead of planning for one period,
multiple periods need to be planned. Cordeau et al. (1997) formulated such a PVRP and solved
it using a tabu search heuristic. In this case the authors solve for the basic VRP objective namely
prioritizing the minimization of vehicles followed by minimizing travel costs. Interestingly, the
solution method for the PVRP also works for the MDVRP, since an MDPVRP can be formulated
as a PVRP with some minor adaptations. Cordeau et al. (1997) also demonstrate that the tabu
search for the PVRP also works for the PTSP, VRP and MDVRP. Cordeau et al. (2001) extended
this tabu search heuristic to also include time windows within the solution approach. Consequently,
similar to the relationship between de PVRP and MDVRP the same relationship is present in the
PVRPTW and MDVRPTW. Yu and Yang (2011) demonstrate one of the more modern approaches
to the PVRPTW, where they solve the PVRPTW using ant colony optimization (ACO). The model
differs from the Cordeau et al. (2001) model, where they optimize for total transportation distance
as a secondary objective instead of the total travel time. Additionally, the Yu and Yang (2011) do
not include a maximum tour duration (MTD) constraint, while the tabu search based articles do. In
the PVRP and PVRPTW’s discussed they make use of regular visit schedules, schedules where the
interval between 2 visits is equal. However, due to the practical inconvenience where a restaurant
does not want to supply on consecutive days a different formulation of visit schedules is necessary.
Rothenbächer (2019) addresses this issue with flexible visit schedules, where visit schedules reflect
theses constraints. The formulated PVRPTW with flexible visit schedules is consequently solved
using an extension of the branch-and-cut algorithm, which is an exact method.

Instead of combining VRP characteristics, combining solution approaches is also possible which
Hesam Sadati et al. (2021) demonstrated. Hesam Sadati et al. (2021) solves an MDVRP and
extensions of the MDVRP, the MDOVRP and MDVRPTW using a variable neighbourhood search
(VNS) with tabu shaking (TS) algorithm. The tabu shaking algorithm is based on the tabu
search (TS). A dropoff characteristic or characteristic, which serves as a support facility but does
not contribute to the value creation has not been discussed yet. Liu (2019) uses Mixed Integer
Programming (MIP) to solve a complex vehicle routing problem for meal delivery using drones.
Throughout the day the battery of the drones get depleted and need to be recharged at specified
recharge stations. This characteristic even though less prevalent in existing PVRP literature is a
constraint used in practical problems involving drone deliveries. Another interesting note is that
Liu (2019) uses a multi-tier, multi-objective objective function, where multiple business objectives
are defined and quantified and sorted based on importance in a certain tier.
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Article
VRP characteristics

Objective
Solution

MethodologyTW MD P MTDDL

Cordeau
et al.
(1999)

✓ ✓ ✓

Minimize number of
vehicles first and minimize
total travel time

Tabu search
(TS)

Cordeau
et al.
(2001)

✓ ✓ ✓ ✓

Minimize number of
vehicles first and minimize
total travel time

Tabu search
(TS)

Yu and
Yang
(2011)

✓ ✓

Minimize number of
tours first and minimize
total transportation distance

Ant colony
optimization
(ACO)

Rothenbächer
(2019)

✓ ✓ ✓ Minimize total costs
Branch-and-Price-
and-Cut (exact)

Hesam
et al.
(2021)

✓ ✓ ✓

Based on data
set used
(Minimize
objective)

Variable
Neighbourhood
Search (VNS)
with Tabu
Shaking (TS)

Liu
(2019)

✓ ✓ ✓

Multi-tier,
multi-objective
function. The
tiers are: safety,
lateness, efficiency.

Mixed
Integer
Program
(MIP)

Table 3.1: Literature review of VRP variants and solutions.

Table 3.1 provides an overview of the six articles referred to in this section. The objectives of
the routing problems in the articles are summarised and the solution approaches are presented for
each article. We discuss solution approaches later in this literature review in Section 3.3. The four
characteristics of the Eurofins routing problem; time windows, periodicity, maximum tour duration
and dropoffs are not all covered in one of the articles reviewed. Cordeau et al. (2001) comes the
closest to the Eurofins situation with 3 out of 4 characteristics aligning.

3.2 Mathematical formulation of VRPs

In this section, we discuss the different mathematical formulations of the three VRP variants
mentioned in Section 3.1. In Section 3.1.1 we provide the formulation of the classical VRP followed
by the VRP with time windows in Section 3.1.2. Finally, in Section 3.1.3, we discuss the periodic
VRP.

3.2.1 classic VRP

The classical Vehicle Routing Problem (VRP) is presented using an adapted formulation by Munari
et al. (2016). In the Munari formulation, a two-index formulation is used, however, a multi-index
formulation is required when constraints become too complex. The problem considers the classical
case of having a set of customers with known demand to be served by a fleet of vehicles from a
central depot. The model aims to minimize the cost objective function by constructing a set of
optimal routes. The formulation is as follows:

Sets and indices

1. Set of customers: C = {1, ...n}

2. Set of all nodes: N = C ∪ {0, n+ 1}, with 0 and n+ 1 representing the depot nodes. (start
at node 0 and return to node n+1)

Paramaters
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1. Q: Maximum capacity of each vehicle

2. K: Fleet size of K vehicles

3. qi: Non negative demand associated with customer i

4. cij : Cost of travelling from node i to node j

Decision Variables

A binary decision variable xij , where

xij =

{
1, if there is a route that travels directly from node i to node j

0, otherwise

yj = cumulated demand on the route before visiting node j

Objective Function

min
∑
i∈N

∑
j∈N

cijxij (3.1)

Constraints ∑
j∈{0,C}

xij = 1 ∀i ∈ C, i ̸= j (3.2)

∑
i∈{0,C}

xih −
∑

j∈{C,n+1}

xhj = 0 ∀h ∈ C, h ̸= i, h ̸= j (3.3)

∑
j∈C

x0j ≤ K (3.4)

yj ≥ yi + qjxij −Q(1− xij) ∀i, j ∈ N (3.5)

qi ≤ yi ≤ Q ∀i ∈ N (3.6)

xijk ∈ {0, 1} ∀i, j, k (3.7)

In this formulation, the objective function is defined by (3.1) and imposes that the total travel
costs of the routes should be minimized. Constraint (3.2) ensures that all customers are visited
once. Constraint (3.3) guarantees the correct flow of vehicles, by simply stating that if a vehicle
arrives at a node h it must also depart from node h. The number of routes is limited to K
stated in Constraint (3.4). The capacity of the vehicles cannot exceed Q through the expressions
(3.5) and (3.6). Constraint (3.5) also ensures subtour elimination. Later in this chapter, a different
formulation for subtour elimination is discussed. Finally, (3.7) ensures the integrity of each decision
variable by ensuring it is a binary variable.

3.2.2 VRP with Time Windows

The vehicle routing problem with time windows (VRPTW) is an extension of the classical VRP,
where customers must be served within a certain time interval. These time windows can be soft
or hard, where a soft time window indicates a non-binding constraint that can be violated for a
certain penalty cost and a hard time window indicates it cannot violated. We continue adapting the
formulation of Munari et al. (2016), where the formulation stays consistent with the formulation
presented in Section 3.1. We add the following parameters, decision variables and constraints to
the formulation described by constraints (3.1)-(3.7).

Parameters

1. ai: Opening time of customer i time window

2. bi: Closing time of customer i time window
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3. tij : Travel time from customer i to customer j

4. si: Service time of customer i, optional parameter in case there are service times

Decision Variables

1. wi = time instant service begins at node i

Constraints

wj ≥ wi + (si + tij)xij −Mij(1− xij) ∀i ∈ N \ {n+ 1} ,∀j ∈ N \ {0} (3.8)

ai ≥ wi ≥ bi ∀i ∈ N (3.9)

Constraint (3.8) ensures that the customer is fully served within the time window and also ensures
the decision variable wi is calculated correctly. Constraint (3.9) ensures that each customer is
visited within the allowed time window. The Mij represents a sufficiently large non-negative
number.

3.2.3 Periodic VRP

The periodic vehicle routing problem extends PVRP requires that customers are visited in one or
multiple days within a planning period (Campbell and Wilson, 2014). Each customer has a set of
feasible visit options and customers must thus be assigned to a feasible visit option. Consequently,
a VRP is solved for each day within the planning period. We use an adapted formulation of
the PVRP by Cordeau et al. (1997). We use the same sets and parameters as defined in the
formulations of the VRP and VRPTW. The only exception is that we define the depot node only
as {0} instead of {0, n+ 1}. The formulation is as follows:

Sets and Indices

1. Arc set: A =
{
(i, j)

k,l
}
, where k refers to vehicle k and l refers to the day of visit l from

node i to node j

2. Set of days: T = {1, ...t} in the planning horizon

3. Set of allowable visit combinations for customer i: Pi

Parameters

1. cijkl: Cost of travelling from node i to node j using vehicle k on day l

2. Dk: Daily maximum route execution time for vehicle k

Decision Variables

xijkl =

{
1, if vehicle k visits node j directly after node i on day l

0, otherwise

arl =

{
1, if day l belongs to visit combination r, with r ∈ P

0, otherwise

yir =

{
1, if customer i is assigned to visit combination r ∈ Pi

0, otherwise

Objective Function

min
∑
i∈N

∑
j∈N

∑
k∈K

∑
l∈T

cijklxijkl (3.10)
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Constraints∑
r∈Pi

yir = 1 ∀i ∈ C (3.11)

∑
j∈N

∑
k∈K

xijkl −
∑
r∈Pi

arlyir = 0 ∀i ∈ C,∀l ∈ T (3.12)

∑
i∈N

xihkl −
∑
j∈N

xhjkl = 0 ∀h ∈ N, ∀k ∈ K,∀l ∈ T (3.13)

∑
j∈C

x0jkl ≤ 1 ∀k ∈ K,∀l ∈ T (3.14)

∑
i∈N

∑
j∈N

qixijkl ≤ Qk ∀k ∈ K,∀l ∈ T (3.15)

∑
i∈N

∑
j∈N

(cijkl + di)xijkl ≤ Dk ∀k ∈ K,∀l ∈ T (3.16)

∑
i∈C

∑
j∈C

xijkl ≤ |S| − 1 ∀k ∈ K, ∀l ∈ T, S ⊆ V \ {0} , |S| ≥ 2 (3.17)

xijkl ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ K,∀l ∈ T (3.18)

yir ∈ {0, 1} ∀i ∈ C, r ∈ Pi (3.19)

The objective function (3.10) has been changed to include a four-indices decision variable. Con-
straint (3.11) ensures one allowable visit combination is assigned to each customer and constraint
(3.12) ensures that the customer is only visited on days corresponding to that combination. Con-
straints (3.13) and (3.14) are similar to constraints (3.4) and (3.5) respectively but are specifically
tailored to the PVRP. Limits on daily capacity and route duration are ensured through constraints
(3.15) and (3.16) respectively. A more general subtour elimination formulation is provided by con-
straint (3.17). Finally, constraints (3.18) and (3.19) ensure the integrity of each decision variable
by ensuring it is a binary variable.

3.3 Heuristics and metaheuristics

Numerous ways have been developed to find optimal solutions to vehicle routing problems, which
are known as exact algorithms (Braekers et al., 2016). The Clarke and Wright heuristic (Clarke and
Wright, 1964) and integer linear programming, a mathematical optimization program are one of the
first approaches to solve the VRPs. Lenstra and Kan (1981) were the first to prove that the VRP
is an NP-hard problem, meaning that as the number of nodes increases, so does the complexity of
the problem, making it computationally hard to solve. Exact algorithms thus become inefficient
at solving large problem instances, so heuristics and meta-heuristics were developed to get near-
optimal solutions in a reasonable amount of time. In many real-world instances, VRPs with often
complex constraints and variants of the VRP, exact methods are too time-consuming to solve.

There are two main types of exact heuristics namely constructive and improvement heuristics.
The improvement heuristics improve solutions to local optima, a solution that cannot be improved
further within its neighbourhood. In contrast, constructive heuristics make an initial solution to
the problem (Laporte, 2009). Metaheuristics can also be divided into two main categories; local
search and population-based metaheuristics. Local search explores a solution space by moving each
iteration to another solution in the solution space. Secondly, population-based metaheuristics take
a population of solutions and aim to improve the population through various techniques mimicking
biologic evolution (Laporte, 2009). Campbell and Wilson (2014) introduced the following key
constructive heuristics for PVRPs; Clarke and Wright savings algorithm, nearest neighbour, and
two-stage heuristics were generally the first explored heuristics and are now mostly used for creating
initial solutions. The main improvement heuristics are based on simple operations such as moving,
swap and 2-opt. Laporte (2009) outlined the distinction between intraroute and interroute moves,
where intraroute moves aim to improve each route separately and interroute aims to improve
multiple routes simultaneously.
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Metaheuristics to solve instances of the VRP are a staple in most VRP research (Braekers et al.,
2016). Due to the nature of the PVRP and its relationship to the MDVRP solution methods
including metaheuristics are proven to be effective in both cases (Campbell and Wilson, 2014). In
the same review Campbell and Wilson (2014) identify that the most commonly used metaheuristics
to solve PVRPs are tabu search (TS) and Variable Neighbourhood Search (VNS). Other significant
metaheuristics are ant colony optimization (ACO), genetic algorithm and greedy randomised search
procedure (GRASP), however, due to the scope of this research these techniques will not be
discussed further. For a comprehensive overview of these metaheuristics, the reader is referred
to Gendreau et al. (2008). Sections 3.3.1-3.3.2 discuss these main metaheuristics for PVRP and
Section 3.3.3 discusses a construction heuristic.

3.3.1 Tabu search

Tabu Search (TS) is a local search metaheuristic developed by Glover (1986) that explores the
solution space and escapes local optima through iterations. Tabu search has been applied to many
variants of the VRP, with Cordeau et al. (1997) applying it to PVRP, MDVRP and PTSP. Three
years later, Cordeau et al. (2001) would adapt its tabu search algorithm to include VRPs with time
windows, with the MDVRPTW and PVRPTW as illustrations. The TS algorithm starts with an
initial solution and explores its neighbouring solutions by applying local moves, like reinsertion,
2-opt and swap (Cordeau et al., 2001; Campbell and Wilson, 2014). The solution including the
neighbouring solutions is then assessed based on the objective function or other KPIs. To avoid
cycling back to the same solution, recent solutions are declared tabu. So, if a solution is tabu the
algorithm cannot choose that solution unless a certain aspiration level or criterion is met. After
each iteration, the tabu list is updated and goes to the next iteration until a stopping criterion
is met, which is a maximum number of iterations or achieving a solution satisfying a certain
objective. The tabu search algorithm allows for intermediate infeasible solutions to diversify the
solution space. A simplified tabu search heuristic is based on the Cordeau et al. (1997) heuristic
is provided in Algorithm 5 in Appendix A.

3.3.2 Variable neighbourhood search

Variable neighbourhood search (VNS) is a metaheuristic, whose main idea is to systematically
change neighbourhoods. VNS thus exploits the solution space by descending to local minima and
diversifies the search by systematically changing neighbourhood, which is escaping the valleys that
the local minima are situated in (Hansen et al., 2010). VNS has numerous extensions and can have
a high level of sophistication to exploit a VRPs unique characteristics. A basic VNS algorithm
based on Hansen et al. (2010) is provided in Algorithm 6 in Appendix A. One of the advantages
of VNS is that it requires relatively few parameters making it relatively easy to tune compared
to other metaheuristics like TS. VNS has many extensions, for instance, variable neighbourhood
descent (VND). In VND the current solution is improved for all its neighbourhoods, while in the
basic VNS explores the neighbourhoods and only performs a local search.

3.3.3 Greedy algorithm

Greedy algorithms are heuristics that focus on making locally optimal decisions. Greedy algorithms
thus often do not produce globally optimal solutions, but can quickly yield locally optimal solutions
in a short amount of time (Zhang et al., 2016). Greedy heuristics are most often used in construction
heuristics like insertion. Algorithm 7 in Appendix A provides a greedy insertion heuristic for the
initial route solution. Greedy insertion treats the decision of inserting a customer in a route as the
local decision and inserts customers one by one into the routes (Liu et al., 2023). Greedy algorithms
are often used for generating initial solutions, due to their efficiency. The solution space is much
smaller in greedy algorithms because it only makes decisions based on small local decisions like
choosing which customer to visit next instead of trying to find the optimal route for that day.
Incorporating a greedy algorithm for construction can thus quickly yield feasible solutions.
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3.4 Conclusion

This chapter addresses the following research question Which methods are applicable for solving the
Eurofins transportation problem according to scientific literature?. The characteristics of the Eu-
rofins routing problem were quickly identified to be a complex vehicle routing problem. Through
exploration of the VRP literature and looking for variants applicable to the Eurofins situation,
a small gap remains to match the characteristics of the VRP variant to the Eurofins situation.
Namely, the dropoff locations or fixed locations at the end of the route in combination with time
windows, and periodicity were not found. There are ways of incorporating these characteristics
using constraints. Out of the VRP variants reviewed (VRP, VRPTW, PVRP), the closest variant
was found in Cordeau et al. (2001), which combines the PVRP and VRPTW to create a Periodic
Vehicle Routing Problem with Time Windows (PVRPTW). The variation shares most character-
istics with the Eurofins situation, however, it does not incorporate the dropoff aspect. This shows
the complexity and specificity of the Eurofins situation making a tailored approach necessary. This
chapter also discussed solution methods for solving the Eurofins situation and it become clear that
a metaheuristic approach is preferable over exact methods. Limited exact methods were developed
for this problem and only problems to the complexity of the PVRP are shown to be successful.
Additionally, the scale of the problem of around 80 to 100 customers makes exact methods unde-
sirable, due to their computational requirements due to the nondeterministic polynomial growth of
the solution space with the addition of more variables and constraints. This makes metaheuristics
the most suitable solution approach since they can find solutions within a realistic amount of time
considering the problem scale. Metaheuristics are a more high-level heuristic that can balance the
solution quality and computational time, providing a reasonable solution within a realistic amount
of time. For the PVRPTW, two main metaheuristic approaches emerge as candidates for solving
the Eurofins situation, tabu search (TS) and variable neighbourhood search (VNS).

For this thesis tabu search is chosen as the main metaheuristic approach. VNS is also a very suit-
able metaheuristic since it can systematically explore multiple neighbourhood structures allowing
an extensive search of the solution space. Tabu Search even though it explores a more limited
neighbourhood structure, can exploit characteristics of the PVRPTW better, namely choosing the
visit schedule of a customer. Because choosing the schedule of a customer is likely to be the most
influential decision on route quality, the Tabu Search can solely focus on the neighbourhood that
represents this characteristic the best, whilst VNS also explores less influential neighbourhoods.
This schedule allocation is likely to be the determining factor determining the quality of the solu-
tion. Tabu search can focus on this particular neighbourhood structure and get to a good quality
solution quicker than VNS since it only explores this neighbourhood structure. The complexity
of the Eurofins problem makes Tabu Search a good approach and can be adapted to include the
dropoff characteristic of the Eurofins problem. TS in combination with a neighbourhood structure
to exploit the periodicity component of the Eurofins situation is crucial for achieving a good quality
solution to the problem.

The literature provides insights into a wide range of VRP variants and its solution methodologies,
however, a variant that addresses all characteristics of the Eurofins situation was not found neces-
sitating a novel approach. Due to the closeness of the Eurofins situation to the PVRPTW, solution
methodologies that are effective on the PVRPTW are also identified as potential effective solution
methodologies for the Eurofins situation. Tabu Search is chosen as the solution method, due to
its effectiveness in large-scale PVRPTW scenarios and its adaptability to include more complex
constraints and variables. This thesis thus aims to solve the complex routing problem by using a
tabu search algorithm adapted to Eurofins’s needs.
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Chapter 4

Mathematical model: PVRPTWD

The literature review concludes that Eurofins’s inspector planning problem contains several charac-
teristics found in the literature related to vehicle routing problems (VRPs). This chapter discusses
the model, which is used to answer the research questionWhat is an effective solution design for the
Eurofins transportation process?. This chapter starts with presenting the transportation model for
Eurofins, including the model’s underlying requirements and assumptions in Section 4.1. Section
4.2 presents the mathematical formulation of the model. Section 4.3 discusses the main solution
methodology for the model with a Tabu Search Algorithm being the core metaheuristic approach.
Finally, Section 4.4 provides a conclusion.

4.1 Model description

The Eurofins transportation can be described simply as a periodic vehicle routing problem with
time windows and drop-offs (PVRPTWD) and can be defined as follows.

Assume G = (V,A) to be a complete directed graph, where C = {1, ...n} is the set of nodes
that contains all customer nodes, and F = {0} represents the home of the inspector and D =
{n+ 1, ..n+m} represents drop-off locations. So, we define the node set V = C ∪ F ∪ D =
{0, 1, .., n+m} and the arc set A, defined by A = {(i, j) : i, j ∈ V, i ̸= j}. Finally, let T = {1, ..., τ}
be the set of time periods in the planning horizon with a time period being equal to one working
day and the horizon one month. Vertex set D represents the set of uncapacitated dropoff locations
and N represents the set of customers to be served. The vehicles are assumed to be incapacitated.
For each customer i ∈ C a predefined set of allowable visit combinations Pi is associated, where a
combination p ∈ Pi consists of the specific days a customer can be visited with p ⊆ T . The days
a customer can be visited is dependent on the customer’s visit frequency ei and other constraints.
For instance if we have a planning horizon of 3 days and customer i needs to be visited 2 times,
Pi = {(1, 2) , (2, 3) , (1, 3)}. For each arc (i, j) we associate travel cost cij , which is equal to the
travel time from travelling from node i to j. Furthermore, for each customer i ∈ C a non-negative
service time si is defined. A specified time interval a customer must be served within, [ai, bi], which
we refer to as a time window. The dropoff locations D, also have a specified time window but have
no service time. In case a vehicle arrives before the opening time the vehicle must wait until the
time window opens at time ai before serving customer i. On a given day the total time to execute
a route cannot exceed Smax.

The PVRPTWD aims to select a visit schedule for each customer and design routes to minimise
the total time spent executing the routes. The model aims to achieve this objective while satisfying
the requirements listed below in Section 4.1.1 and considering the model assumptions discussed in
Section 4.1.2.
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4.1.1 Requirements

This section lists the requirements for the VRP. The requirements listed below are included in the
model formulation using constraints.

1. Each customer must be visited once or multiple times on different days according to the visit
frequency within the planning horizon.

2. Each customer has to be fully served when visited.

3. The time windows of the customers, as well as the dropoff points, have to be adhered to.

4. Each vehicle starts and ends each trip at home.

5. Each vehicle must visit a dropoff location before returning home.

6. The total time to execute a route on a given day does must not exceed 10 hours unless
specified otherwise.

4.1.2 Assumption

The following assumptions have been made to effectively model the Eurofins situation.

1. The service times of the customers are considered deterministic.

2. The opening times of all customers are assumed to be fixed.

3. The travel time is considered to be the ratio between the distance in kilometres and a constant
average speed in kilometres per hour.

4. The geodetic distance is considered the distance between 2 nodes.

5. The routes are scheduled immediately before the execution of the first route begins.

6. All customer orders (number of visits, time windows and service times) are known within the
planning horizon.

7. The number of visits for a customer is considered deterministic.

8. The drivers have no limitation in working hours and are limited only to the maximum amount
of working hours each day.

9. The capacity of the vehicles is infinite.

10. The inspections take place on normal working days, Monday to Friday.

11. The dropoff locations are considered to be uncapacitated.

4.2 Mathematical formulation

The mathematical formulation of the Eurofins problem is based on the models presented by Ah-
madi Basir et al. (2024) and Cordeau et al. (1997). Our proposed model below takes the MTZ-based
(Miller et al., 1960) formulation proposed in Ahmadi Basir et al. (2024) as the basis of the math-
ematical model and adds additional constraints to reflect the requirements and assumptions. The
model is formulated as a Mixed Integer Linear Program (MILP) and begins by setting the param-
eters and defining the set and indices of the Eurofins inspection planning problem. Consequently,
the decision variables, objective function and constraints are defined based on the requirements
(Section 4.1.1).
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4.2.1 Sets and indices

Notation Description Value

C Set of customer nodes {1, 2, ..., n}

F Set of inspector home node {0}

D Set of dropoff nodes {n+ 1, ..., n+m}

V Set of all nodes C ∪ F ∪D

T Set of days in the planning horizon {1, ..., τ}

Pi Set of possible schedules of customer i p ∈ Pi, p ⊆ T

K Set of homogeneous vehicles {1, ..., κ}

Table 4.1: The sets and indices of the MILP model

4.2.2 Parameters

Notation Description Range

cij Travel time from node i to node j cij ≥ 0

Smax Maximum route execution time of inspectors 10, unless specified otherwise

ai Start time of customer i’s time window

bi Start time of customer i’s time window bi > ai

ri Service time of customer i ri ≥ 0

ei Visit frequency of customer i in time horizon 1 ≤ ei ≤ τ

M Sufficiently large positive constant

Table 4.2: Parameters of the MILP model

4.2.3 Decision variables

The decision variables of the model are defined as follows:

xijt =

{
1 if vehicle travels directly from node i to node j on day t

0 otherwise

sip =

{
1 if schedule p ∈ Pi is chosen to visit customer i

0 otherwise

yit =

{
1 if customer i is visited on day t

0 otherwise

wit = start time of serving customer i at day t

4.2.4 Objective function

The function to minimise total time spent on executing the routes can be formulated as:
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min
∑
i∈V

∑
j∈V

∑
t∈T

cijxijt +
∑
i∈C

rifi (4.1)

The objective function is minimizing the total route execution time. The travel costs cij represent
the time it takes to go from node i to node j and ri represents the time of visiting customer i.

4.2.5 Constraints

The constraints which are defined in line with the model requirements and assumptions for the
Eurofins routing problem are listed below. We subject the model to the following constraints:

∑
p∈Pi

sip = 1 ∀i ∈ C (4.2)

∑
p∈Pi:t∈p

sip = yit ∀i ∈ C, ∀t ∈ T (4.3)

xijt ≤
yit + yjt

2
∀i, j ∈ C, t ∈ T (4.4)∑

j∈C

x0jt ≤ |K| ∀t ∈ T (4.5)

∑
j∈C\{i}

xijt = yit ∀i ∈ C,∀t ∈ T (4.6)

∑
j∈C\{i}

xjit = yit ∀i ∈ C,∀t ∈ T (4.7)

∑
i∈C

xi0t = 0 ∀t ∈ T (4.8)

wit + ri + cij − wjt ≤M (1− xijt) ∀i ∈ V,∀j ∈ V \ F,∀t ∈ T (4.9)

ai ≤ wit ≤ bi ∀i ∈ N \ F,∀t ∈ T (4.10)∑
i∈V

∑
j∈V

(ri + cij)xijt ≤ Smax ∀t ∈ T, i ̸= j (4.11)

xijt ∈ {0, 1} ∀i, j ∈ V,∀t ∈ T, i ̸= j (4.12)

sip ∈ {0, 1} ∀i ∈ C, ∀p ∈ Pi (4.13)

yit ∈ {0, 1} ∀i ∈ C,∀t ∈ T (4.14)

In this formulation constraint (4.2) ensures that a visit schedule is selected for each customer.
Constraint (4.3) relates the schedule selection variable with the customer visit variable. Constraint
(4.4) guarantees that only arcs of customer pairs assigned to the same day can be used. The number
of vehicles, which in the Eurofins case of the PVRPTWD is equal to one, is ensured in Constraint
(4.5). Constraints (4.6) and (4.7) ensure that each customer is visited exactly once on a given
day, which also implies flow conservation. Constraint (4.8) ensures that the route can only return
to the inspector via the dropoff node by forbidding travel from a customer node to the home
node. Constraints (4.9) and (4.10) together guarantee that the time windows are respected in the
routes. Note that the large positive constant M may be equal to max(i,j)∈A {ai + ri + cij − bj}.
Additionally, Constraint (4.9) ensures subtour elimination. Constraint (4.11) ensures that on a
given day the maximum amount of working hours is not exceeded. Finally, constraints (4.12)-(4.14)
ensure the integrity of the decision variables.
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4.3 Solution methodology

The problem is formulated as a Mixed Integer Linear Program (MILP). The MILP is formulated
using 14 constraints, 3 binary decision variables and 1 continuous variable. Due to this complexity
and increase in the number of customer nodes and potential dropoff nodes, the complexity and
computation time increase exponentially. The problem is thus NP-hard making the problem likely
solvable in small instances, but infeasible to solve to optimality in larger instances. For example,
in the real-world scale of this problem of having 2 dropoff locations, and 97 customers over a time
horizon of 20 days. We have 200000 binary xijt variables (100 x 100 x 20), 2000 yit variables,
2000 wit variables, and around 2000 sip variables depending on the amount of allowable schedules.
This encompasses a scenario of up to 208000 variables for the real-world scenario. Because of this
complexity in the larger instances using exact methods, tabu search as a metaheuristic approach
is expected to be more efficient. Due to the closeness of the PVRPTWD, to the PVRPTW a Tabu
Search metaheuristic is identified as a suitable heuristic for solving the PVRPTWD. Tabu Search
is proven to be one of the most effective metaheuristics when it comes to periodic vehicle routing
problems and their extensions.

4.3.1 Initial route construction

The first step in the solution methodology is constructing initial routes. The initial route creation
serves as a relatively quick way to find a feasible initial solution to reduce solving time since the
tabu search heuristic does not need to spend excessive time on finding an initial feasible solution.
The initial solution is crafted as follows and is inspired by the construction heuristic presented in
Cordeau et al. (2001), customers i are first assigned a random combination p ∈ Pi and a random
dropoff location is selected d ∈ D for every day t ∈ T . Then, for each day the customers (that are
to be visited based on visit combination p) and the random dropoff location are sorted based on
the angle between the inspector’s home and dropoff location θ, with the random dropoff location
being the last element in the sorted list. Starting with the first element of this list, the locations
are inserted into the route for that day one by one, minimizing the increase in total travel time for
the route. The pseudocode presented in algorithm 1 displays this procedure.

Algorithm 1 Basic initial route construction

InitialRoutes ← ∅
V isitCombination← AssignRandomV isitCombination(P )
for day ∈ T do

route← ∅
CustomersForDay ← AddCustomer(customer, V isitCombination)
DropoffDay ← RandomDropOff(D)
SortedCustomers← SortByAngle(CustomersForDay)
for customer ∈ SortedCustomers do

position← FindBestInsertion(customer, c, route)
route← Insert(position, customer)

end for
InitialRoutes(day)← AddRoute(route)

end for
InsertInitialRoutes(InitialRoutes) ▷ Inject initial solution

Algorithm 1 has a lot of randomness in the creation of the solution especially in assigning visit
combinations. This creates a high probability of having some long and some very short days.
Additionally, since a depot gets randomly assigned to a day we improve the algorithm by pairing
customers to the depot based on geographic positioning. Because the depots determine the end
of the routes, we can exploit this characteristic to potentially get better solutions. To address the
issue of random depot allocation and daily route times with high variance, a customized algorithm
is developed based on Algorithm 1 that is specifically tailored to address these weaknesses. The
concept of assigning combinations based on spreading service times comes from Chao et al. (1995).
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The idea of exploiting the dropoff location is created by observing the performance of Algorithm
1. The proposed algorithm is presented in Algorithm 2.

Algorithm 2 Customized initial route construction

InitialRoutes ← ∅
CustomerDepot ← AssignCustomerToDepot(customers, depot)
DepotDays ← AssignDaysToDepot(CustomerDepot,Days)
V isitCombination← AssignV isitCombinationEqualSpread(CustomerDepot,DepotDays, P )
for ∀t ∈ T do

route← ∅
CustomersForDay ← AddCustomer(customer, V isitCombination)
DropoffDay ← RandomDropOff(D)
SortedCustomers← SortByAngle(CustomersForDay)
for customer ∈ SortedCustomers do

position← FindBestInsertion(customer, c(i, j), openwindow(i), route)
RouteInsert(position, customer)

end for
InitialRoutes(day)← route

end for
InsertInitialRoutes(InitialRoutes) ▷ Inject initial solution

Algorithm 2 is similar to 1, however, there is a more deterministic methodology behind as-
signing a visit schedule to a customer. Firstly, customers get assigned to the closest depot in
CustomerDepot. This is followed by assigning random days to the depots based on the number
of customers assigned to that depot, so depots with more customers assigned to them get assigned
more days in DepotDays. Finally, instead of a visit combination getting randomly chosen for a
customer, a two-phase process is used in AssignV isitCombinationEqualSpread. The goal of this
function is to find a schedule for each customer that would result in an even spread of total daily
service times for each depot in order to have less variance in daily route times. In this process,
the customers get sorted based on decreasing visit frequency. In the first phase, based on the days
assigned to the depot the customer is also assigned to valid visit combinations get filtered. A valid
visit combination is a combination whose days are also in the days assigned to the depot. In case
no such schedule can be found a random combination is selected. In the second phase, the visit
schedule is chosen based on the schedule that results in the minimum amount of service time. The
visit combination selection for a customer is finalised by adding the service times corresponding to
the visit schedule to the respective days. So for example, if an arbitrary customer has the decision
to choose between schedule 1: (2) and schedule 2: (5) the aggregated service times for days 2 and
5 are 4.5 hours and 5.5 hours respectively. Schedule 1 gets chosen because it results in the lowest
aggregated service time, in case a schedule with multiple days needs to be chosen it is the sum of
these aggregated service times.

4.3.2 Tabu search

The tabu search algorithm is the metaheuristic that is implemented to solve the mathematical
model. The tabu search heuristic described here is an adapted version of the tabu search heuristic
presented in (Cordeau et al., 2001). For the tabu search, we define the following: s ∈ S, where S
represents the set of solutions s formed by routes that satisfy all constraints except the maximum
route duration constraint and time window constraints (Constraints (4.11) and (4.10) respectively).
These constraints may be violated at a certain penalty cost. To include these violations in the
mathematical model, we formulate the following evaluation function based on concepts introduced
in Chao et al. (1995).

min f(s) = c(s) + α ∗ dv(s) + γ ∗ twv(s) (4.15)
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Here, c(s) represents the total travel time of the routes for a solution s and is equal to the Equation
(4.15), dv(s) is the total violation of the duration constraints and twv(s) represents the violation
of the time window constraints. The hyperparameters α and γ influence the TS to choose solutions
that violate these constraints and are dynamically adjusted in a later explained mechanism. A
duration constraint violation is simply equal to the non-negative difference in route execution time
for a day and the maximum route duration, Smax. A time window violation is expressed as the
difference between arrival time and closing time (wit − bi)

+
, with x+ = max {0, x}, x is in this

case equal to wit − bi. If a vehicle arrives before the open window ai the vehicle in the model
waits for oi = wit − ai. We integrate these constraint violations into the tabu search heuristic
using non-negative slack variables. The slack variables are there to quantify the violation of
individual constraints. So we define the slack variables for time windows violations as SlackTWit

for ∀i ∈ C, ∀t ∈ T and for duration violations as SlackDurationt for ∀t ∈ T according to the
aforementioned equations and descriptions. Based on constraints (4.11) and (4.10) we define the
following equations for the tabu search:

ai ≤ wit ≤ bi + SlackTWit ∀i ∈ C, ∀t ∈ T (4.16)∑
i∈V

(wit + cij) ≤ Smax + SlackDurationt ∀t ∈ T (4.17)

SlackTWit ≥ 0 ∀t ∈ T, ∀i ∈ V (4.18)

SlackDurationt ≥ 0 ∀t ∈ T (4.19)

Consequently, we define the total duration violation (4.20) and time window violations (4.21) used
in Equation (4.15) equal to:

dv(s) =
∑
t∈T

SlackDurationt (4.20)

twc(s) =
∑
t∈T

∑
i∈C

SlackTWit (4.21)

The tabu search algorithm takes the solution produced in the initial route construction and begins
iterating over the following steps. The tabu search chooses the best non-tabu solution in its
neighbourhood N(s). After choosing a solution α and γ get updated based on whether or not the
duration constraint and time window constraints are violated. α gets multiplied by 1 + δ, with δ
being a non-negative number if the solution adheres to the duration constraints and gets divided by
1+ δ if it does not. For γ the same process applies but with respect to the time window violations.
To determine if constraints are not violated, we check the total slack of the constraints, so dv(s)
or twv(s) is equal to 0. The tabu search is repeated until a termination condition is met, in this
case, a time limit. During this process, the best solution and costs s∗ and c∗ are stored.

Furthermore, we define θ to be the tabu list length. After selecting a new solution s, where
customers i get reinserted into different days t the insertions (i, t) get assigned the tabu attribute
and put at the front of the tabu list, which is based on the insertion presented in Algorithm 4.
The use of insertion (i, t) will thus be forbidden for the iterations when (i, t) is in the tabu list.
(i, t) will lose its tabu status when it is at the back of the tabu list and a new attribute gets
inserted while the list is full. If a solution is found that would result in a smaller cost than the
overall best solution, the tabu status of the attributes that would prohibit choosing that solution
is revoked. The aforementioned procedure is called the aspiration criterion. The final element
of the tabu search is a diversification mechanism using the penalty factor of a solution p(s), we
evaluate solutions based on the equation (4.15), f(s) plus the penalty factor p(s). The penalty
factor is part of the diversification strategy, where we incentivise the search to look into unexplored
or lesser-explored regions when the search finds itself trapped in local optima. The penalty cost
is based on the attribute ρit, which represents the number of times attribute (i, t) is added to the
solution in the tabu search. The formula for the penalty cost is provided in Equation (4.22):
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p(s̄) = λc(s̄)
√
nK

∑
(i,t)∈B(s̄)

ρit (4.22)

Here in Equation (4.22), λ represents the strength of the diversification mechanism. The other
components scale the penalty cost relative to the objective cost and problem size. In case the
solution s̄ would result in a better evaluation cost f(s̄) than the current solution f(s) we set
p(s̄) = 0. Algorithm 3 presents the tabu search (pseudo)code.

Algorithm 3 Tabu Search

Current route: s← InitialRoutes ▷ Algorithm 1
α← 1
γ ← 1
tabu list ← ∅
tabu list lenght: θ
Best solution: s∗

Best cost: c(s∗)

if s is feasible then
s∗ ← s
c(s∗)← c(s)

else
c(s∗)←∞

end if

while time < TimeLimit do
N(s)← ExploreNeighbourhood(s)
NewSolution ← ∅
NewSolutionCost ←∞
for s̄ ∈ S do

NeighbourCost(s̄)← f((s̄) + p(s̄))
if NeighbourCost(s̄) < c(s∗) then ▷ Aspiration criteria

NewSolution ← s̄
NewSolutionCost ← NeighbourCost(s̄)

else if s̄ IsNotTabu then ▷ Check if solution uses move on tabu list
if NeighbourCost(s̄) < NewSolutionCost then

NewSolution ← s̄
NewSolutionCost ← NeighbourCost(s̄)

end if
end if
if NewSolutionCost < c(s∗) s̄ is feasible then

s∗ ← NewSolution
c(s∗)← NewSolutionCost

end if
UpdateAlpha(NewSolution, slack duration, δ)
UpdateGamma(NewSolution, slack timewindow, δ)
UpdateTabuList(θ, NewSolution)
s← NewSolution

end for
end while
return s∗
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4.3.3 swap and reinsert

The Algorithm 4 displays the basic operation used in the TS used in this solution approach.
The algorithm consists of two main parts. The core idea behind the algorithm is to explore
the neighbourhood of feasible solution s by reinserting customer i into different visit combina-
tions r. For this transformation to work and keep track of the tabu status we define B(s) =
{(i, t) | customer i is visited on day t}. We also define bpt, which is equal to 1 if day t belongs to
visit combination r.

The first part of the algorithm replaces the visit combination p of customer i with another visit
combination called p′ ∈ Pi. After this replacement, we remove the customer or add the customer
based on this new visit combination p′. See appendix C Figures C.1 and C.2 for a solution
representation.

Algorithm 4 Swap visit combination

Feasible solution s:
Customers n:
P: all possible combinations of customers and visit combinations
i← RandomCustomer(n)
p← CurrentV isitCombination(Pi)
p′ ← NewRandomV isitCombination(Pi)
for t ∈ T do

if bpt = 1 & bp′t = 0 then
xjit, xiht = 0 ∀j, h ∈ V ▷ Remove customer from route
xjh = 1 ▷ Link predecessor and successor

else if bpt = 0 & bp′t = 1 then
Insert(i, t) ▷ Insert customer i on day t, minimise increase in f(s)

end if
end for
return B(s)

4.4 Conclusion

In this chapter, we discussed the proposed solution methodology to address the Eurofins’s situation
as well as the underlying mathematical model describing this situation. This chapter answers
the research question: Which model and technique can be implemented to solve the Eurofins’s
transportation problem?. The Eurofins’s routing problem was first formulated as a Periodic Vehicle
Routing Problem with Time Windows and Dropoffs (PVRPTWD). The model adheres to a set of
assumptions and requirements which are the following; each customer must be visited a specified
number of times within the planning horizon. A customer can only be visited once per day and
each customer is fully served when visited. Each vehicle starts at home and ends at home on a
given day and each vehicle must visit a dropoff location before returning to home. The vehicle is
constrained so that the total time to execute a route on a day must not exceed 10 hours. Finally,
the customers must be served within a specified time interval called a time window.

Furthermore, assumptions have been made to create a feasible solution and for its practicality.
Firstly, service times and opening times are fixed. Secondly, the travel time between 2 points is
considered to be the ratio between the geodetic distance and an average speed and is thus also
deterministic. All customers and orders are known before scheduling. Inspectors need to take and
transport samples, however, if the samples are small enough in size, the capacity of the vehicle
can be considered infinite. The inspections take place during normal working hours from Monday
to Friday. The solution approach is using a Mixed Integer Linear Program (MILP) as the base
formulation of the problem, and a tabu search metaheuristic to solve the larger instances. Tabu
search is used to solve the model since it provides good diversification and exploitation mechanics
to solve relatively large problem instances. An initial solution is constructed and applied before
initiating the tabu search to speed up optimization times. The initial solution is created by
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assigning random visit combinations to customers and applying a greedy insertion heuristic to find
an initial solution. The core principle of the tabu search is to quickly explore the solution space
through simple neighbourhood operations and move out of local optima through a diversification
strategy using penalties. Additionally, a tabu list, a list with forbidden moves is used to prevent
cycling. This overall solution approach addresses the Eurofins routing problem and demonstrates
how a tabu search heuristic can be applied to a real-world vehicle routing problem.
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Chapter 5

Solution evaluation

This chapter evaluates the proposed solution methodology of using a Tabu Search heuristic to solve
the Eurofins routing problem. The aim of this chapter is to assess the solutions created by the
solution methodology against the current performance of Eurofins. We thus address the following
research question: How does the chosen solution approach perform compared against to the current
situation?. We begin this chapter by outlining the experiment design in Section 5.1. Section 5.2
describes the data instances used in the experiments, covering both artificial and real-world data
instances. The model parameters for the tabu search are covered in Section 5.3 followed by the
results from the testing using these parameters in Section 5.4.

Note: to maintain confidentiality values in Section 5.4 have been multiplied by an arbitrary number.

5.1 Experiment Design

The experiment design is split up into two distinct phases. Labeled P1 and P2 respectively. The
first experiment P1 is dedicated to the parameter tuning for the tabu search and MILP. The MILP
is solved using a combination of exact and approximate solution techniques by using a general-
purpose solver, Section 5.1.1 provides details of this solver. In this chapter when we refer to the
MILP the solution approach using the MILP solver is meant. Parameter tuning is an important part
of the experiment design since good parameter tuning can aid in finding good quality solutions
within a feasible timeframe. This first phase goal is to find a suitable time parameter for the
tabu search and MILP, other parameters are also discussed. Furthermore, parameters for the
initialization phase are also addressed. For the parameter tuning phase, 10 artificial data sets are
created based on the company’s data. These data sets are created to have a larger sample size and
test the general applicability of the model on a more diverse set of data as opposed to the similar
sized data sets from Eurofins.

Secondly, after the parameter tuning phase has concluded, the algorithms are applied to three
real-world data instances from Eurofins in experiments P2. These data instances are based on
the planning of three inspectors over a month. These data instances are used to evaluate the
inspector’s planning performance against the proposed algorithms. The aim is thus to have the
solution method’s effectiveness evaluated in terms of planning to reduce the number of hours to
execute a monthly workload. Finally, an analysis between the KPIs from the current inspectors’
planning and the solution methodology’s planning is performed to look for patterns explaining
potential discrepancies in KPI values.

5.1.1 Technical specifications

The experiments and solving the data instances were conducted on a laptop equipped with an AMD
Ryzen 5 5600H processor, 3301 MHz and 16GB RAM. The MILP and tabu search heuristic were
both implemented and used, using the PyCharm Community Edition 2023.2.1 IDE to integrate

37



Python 3.11.5 64-bit. The MILP is implemented using a general purpose solver, Gurobi Optimizer
version 11.0.1 using an academic license.

5.2 Data instances

This section discusses the data instances used for the experiments. We use a combination of
artificial and real-world data for the aforementioned experiments. The data instances used for
parameter tuning are artificially created. These data instances range from 10 to 100 customers,
and from 2 to 20 days to test the proposed solution methodology and smaller and larger problem
instances. This wide range of data instances creates an environment, where the model can be tested
on its robustness exposing potential weaknesses and showing its strengths, unlike the real-world
data, which are all the same problem size avoiding overfitting. Correctly tuning the parameters
is also crucial for model performance, where we can effectively weigh computational performance
against solution quality. This parameter tuning process is discussed in Section 5.3 using artificial
data. Secondly, the three real-world instances are discussed by providing details on the parame-
ter calculation and characteristics of the instances. The parameters are based on the real-world
data representing actual customer time windows, number of visits and other characteristics. The
instances are used to test the current situation against our proposed solution methodology.

5.2.1 Artificial data

For tuning for the tabu search parameters artificial data instances ranging from 10 to 100 customers
and 2 to 20 days were created based on the real-world data instances provided by Eurofins. The
number of days is proportional to the amount of customers, with 5 customers accounting for one
day. The customer node locations are randomly generated within a 50 by 50 kilometer grid.
The service times and time windows are also generated based on the Eurofins customers. In
table 5.1 the 4 basic drop off location configurations can be found. A drop off configuration is a
geographic description of the positioning of the dropoff locations compared to the home location
of the inspector.

Configuration
ID

Number of
dropoff locations

Geographic description

C1 1 Dropoff location is the same as the inspector’s home

C2 1
Dropoff location is located between 20-30
kilometers from inspector’s home

C3 2
Dropoff locations are located between 20-30
kilometers from inspector’s home

C4 3
Dropoff locations are located between 20-30
kilometers from inspector’s home

Table 5.1: Overview of drop off configurations for the artificial data instances, and real-world data instances.

The time windows are chosen based on the opening and closing times from Eurofins client list. This
methodology also applies to the number of customers and possible visit combinations, where we can
exclude certain visit combinations based on if a client is closed on Friday for example. Distances
between 2 nodes are calculated based on the Euclidean distance between these 2 points. In the
next section we will use a different method to calculate the distance which takes the curvature of
the earth into account. The distortion caused by using the Euclidean distance is however minimal
due to the relatively small area. Finally, we use varying average speeds ranging from 30 km/h to
50 km/h. An overview of the data instances used can be found in table 5.2 with each data instance
representing a different number of customer nodes, days, dropoff configuration, and speed.
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ID
Configuration

ID
Number of

customer nodes
Days

Speed
(km/h)

A1 C2 10 2 30
A2 C1 20 4 35
A3 C4 30 6 50
A4 C3 40 8 40
A5 C2 50 10 35
A6 C1 60 12 50
A7 C4 70 14 40
A8 C3 80 16 35
A9 C1 90 18 40
A10 C2 100 20 45

Table 5.2: Overview of the 10 artificial datasets used for parameter tuning and performing experiments.

5.2.2 Real-world data instances

In order to find an optimal routing strategy for the Eurofins transportation problem, 3 real-world
instances are used. The data is extracted from three different inspectors with three different
working areas, in terms of customer density, dropoff location positioning and average speeds. The
real-world instances reflect a monthly planning an inspector gets at the beginning of each month,
the data used are April or May 2024. The data includes customer locations, visit frequencies,
service times, time windows and open days. The data instances are based on the monthly planning
of an inspector, which amounts to an average of 20 working days, including holidays and other
responsibilities where inspectors do not inspect. 3 monthly plannings from different inspectors
were chosen to be analysed.

For practicality, only dropoff points that actually get used by that inspector are taken into account.
The closing time of dropoff points is 18:00 unless specified otherwise. The customer data locations,
which are only provided in addresses are converted into GPS coordinates using the Google Maps
API tool. Additionally, the visit frequencies are based on the number of times a customer visited
in a month by the inspector on different days. Spacing between visits is also taken into account
by ensuring that visits to the same customer must be in different weeks. The data sets customer
nodes and dropoff configuration are provided in table 5.3, the amount of customer nodes for all
data sets is similar in size ranging from 88 to 100 customer nodes. Each data instance is from a
different geographic of the Netherlands with a different amount of customer nodes, with different
time windows, visit frequencies and allowed visit days. The variation in node density, average
speed, and geographic positioning of nodes make each data instance unique and allow the proposed
solution approaches to be tested in various real-world scenarios.

The average speed of the vehicles is calculated by using the GPS data from the vehicles and
extracting the average speed, for time periods the vehicle is non-stationary. Since, this average
speed is over the actual road distance, instead of the absolute distance used in the model, the
average speed needs to be adjusted to take the lower absolute distance into account. The rule of
thumb is that the actual distance on the road is 30% higher than the Euclidean distance (Boyacı
et al., 2021), however due to the high road density of the Netherlands this factor is lower. Berens
(1988) estimates that optimal factors for western European counties with high road density lie
between 1.20 and 1.25, for this thesis, we take a detour factor of 1.25 to compensate for using
Euclidean distance instead of actual road distances.

ID
Number of
Customers

Dropoff
ID

Average
Speed (km/h)

I1 101 C2 48.33
I2 94 C1 48.50
I3 87 C3 62.24

Table 5.3: Overview of real-world data instances. (values multiplied by arbitrary number for confidentiality)
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5.3 Paramater tuning

This section covers the parameter tuning of the tabu search and MILP. For both the tabu search and
MILP a maximum computation time parameter is implemented using the artificial data instances
discussed in Section 5.2.1. The other parameters for the tabu search itself are discussed in Section
5.3.2. Additionally, the initialization algorithm for the tabu search is chosen in Section 5.3.1. The
maximum computation time for the tabu search and MILP are discussed separately in Sections
5.3.3. and 5.3.4 respectively.

5.3.1 Initialization choice

In Section 4.3.1 of the solution methodology, two algorithms were proposed for constructing an
initial solution. The first algorithm randomly assigns a visit combination to each customer and
uses a greedy insertion heuristic to insert customers into the routes. The second algorithm uses a
more complex mechanism to assign visit combinations to customers based on the dropoff locations
and the customer locations and service times. The choice of algorithm is important for selecting
a visit combination, which influences the tabu search by allowing it to start in a more favourable
position. So, through experiments, the most effective construction heuristic is chosen. We define
the following:

• Experiment H1 : Randomised visit combination selection. This construction heuristic creates
different results each time due to randomly selection visit combinations. So, this experiment
is conducted 5 times to account for variability in the solution output quality.

• Experiment H2 : Customer-dropoff based visit combination selection. This method also con-
tains some randomness in assigning the days to the depots. Consequently, this experiment
is also conducted 5 times to account for variability in the solution output quality.

For these experiments the following values are reported; minimum, maximum and average costs.
The average computation times are also reported. The results of the experiments are presented
in Table 5.4. The first column corresponds to the data instance on which the algorithms were
experimented. The Following 4 columns present the values corresponding with experiment H1
and the last 4 columns with experiment H2. The first 3 columns of each experiment provide the
minimum, average and maximum objective values with the fourth column providing the average
computation time. Note that the time reported is the time it takes to construct the routes, the
time it takes to assess and inject this solution in the tabu search is not included.

ID
H1 H2

Objective Time Objective Time
Min Avg Max Time (s) Min Avg Max Time (s)

A1 24,26 43,78 61,85 0,001 22,94 33,59 48,5209 0,001
A2 38,94 77,09 110,92 0,001 36,64 44,32 52,545 0,001
A3 59,32 98,02 150,43 0,001 71,28 73,34 75,7641 0,002
A4 123,20 163,54 195,36 0,001 110,01 111,59 113,231 0,002
A5 210,16 230,18 238,65 0,002 180,99 190,12 194,795 0,002
A6 115,53 149,49 165,55 0,003 96,78 97,89 98,513 0,003
A7 172,49 191,87 222,06 0,007 117,23 120,82 124,308 0,009
A8 295,82 338,24 391,75 0,009 189,01 198,50 209,844 0,009
A9 262,08 286,27 340,02 0,010 160,71 175,60 187,209 0,011
A10 303,06 332,13 358,44 0,010 216,91 220,61 225,881 0,010
Average 160,49 191,06 223,50 0,0045 120,25 126,64 133,06 0,0050

Table 5.4: Summary of experiments H1 and H2. The lowest average objective and lowest average compu-
tation time are displayed in bold.
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Table 5.4 shows differences in performance between the randomised visit combination selection
(Experiment H1 ) and customer-dropoff based visit combination selection (Experiment H2 ). Both
algorithms have different ways of constructing the initial routes for the tabu search impacting the
solution quality and time to reach a certain solution quality itself.

It is clear that the customer-dropoff-based visit combination selection (Experiment H2 ) consis-
tently, outperforms the randomised visit combination selection (Experiment H1 ) in terms of min-
imizing the initial objective value. There are insights into these algorithms through these exper-
iments. Firstly, even though there is a limited sample size for each instance of 5 experiments for
each algorithm, it is clear that the randomised selection algorithm displays more variance in its
solution quality, sometimes producing better results than the customer-dropoff-based algorithm.
The experiments done on dataset A3 showcase this pattern where the randomised algorithm finds
an initial solution of 59.32, while the other algorithm’s best initial solution is equal to 71,28. Over-
all, it is clear that the customer-dropoff-based algorithm has a small range of initial solution values,
while the randomised selection algorithm has a very broad range of initial solution values. This
behaviour is expected, because even though both algorithms contain some kind of randomness, the
random selection algorithm has considerably more randomness in selecting the visit schedules, as
opposed to the dropoff based algorithm.

The random selection algorithm, however, seems to have a slight edge in computational time
compared to the customer-dropoff-based algorithm across a couple of instances. However, this
edge in computational time is incredibly minimal only accounting for a few milliseconds. The
sample size is, however, too limited to comment on the kind of pattern the computational time
experiences with an increasing amount of nodes.

In conclusion, the customer-dropoff-based visit combination selection algorithm (ExpirimentH2)
clearly appears to be the better construction heuristic for initializing the tabu search. This al-
gorithm produces better initial solutions compared to the randomised visit combination selec-
tion in almost all instances, while the difference in computation time is almost negligible. The
customer-dropoff-based algorithm suggests that incorporating key features of the routing problem
can enhance initial solution quality significantly, where in this case exploiting the positioning of
the dropoff locations and spreading the amount of service time.

5.3.2 Tabu search paramaters

The tabu search has 4 main parameters to set; δ, λ, θ and TimeLimit. Additionally, there are
initialization parameters of α and γ, which are dynamically adjusted based on route duration
and time violations respectively. Because there are no clear measures available to evaluate the
effectiveness of most parameters, the parameter tuning for the tabu search comes down to the
evaluation of the researchers. The parameters for the tabu search for the Eurofins problem will
thus, be based on the parameter values presented in Cordeau et al. (1997), since extensive testing
and experimentation for these parameters was done for the unified tabu search heuristic this
solution methodology is based on.

Experimentation has been conducted to validate these Cordeau parameters by observing if the
search behaviour each parameter induces is evident and if it is present to its desired extent. In the
following section, each parameter is covered and argumentation is provided if the desired influence
each parameter induces is satisfactory. Setting the parameters for the tabu search well has a
great impact on the solution quality and influences the search process significantly. So setting
these parameters well to extract the desired behaviour of the tabu search is crucial for having an
effective solution methodology.

Diversification: λ

The λ is responsible for diversifying the search process. This is the scalar that penalises repeating
moves. Using a too small value of λ results in not having the desired diversification of the search and
results in choosing solutions close to the initial solution. On the other hand, having a too large value
of λ results in the tabu search choosing low quality solutions because it quickly disregards solutions
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in which previously made moves were used. After observing the experiments, the parameter value
in Cordeau seems to have this desired behaviour of diversification, while not taking on low-quality
solutions. Cordeau recommends a λ of 0.01 to 0.02, for the Eurofins problem there is a wide range
of high-quality solutions, so a more aggressive diversification is warranted. We thus set λ = 0.02

Initialization: α and γ

These first two parameters have the least impact on the tabu search since these parameters are dy-
namically adjusted based on route duration and time window violations respectively. As discussed
in Section 4.3.3 high values of α or γ constraints the search to look for solutions that do not violate
any constraints and low α and γ values allow the search to take on solutions that violate these
constraints by a larger extent. A range of α and γ was experimented upon with α and γ having
a range of 0.1 to 10. If the δ is tuned well, these parameters will reach their desired values in a
couple of iterations. Because in the first couple of iterations, the researcher prefers the tabu search
to accept solutions that do not violate any constraints, the following initialization parameters are
set to α = 5 and γ = 5.

Violation adjustment: δ

This parameter is an important parameter since it influences α and γ and thus the aggressiveness
of looking for solutions that violate the route duration and time window constraints. Having a too
small value results in having almost no diversification, since the search cannot take on solutions
that would violate these constraints. Contrarily, a too high value results in the search taking on
extremely infeasible solutions. Cordeau settles on a value of 0.5 to achieve this balance between
highly infeasible solutions and diversification. In the solution methods tabu search this balance
also seems to show when using this value. An interesting revaluation for the value of δ is that it
follows a kind of three phase pattern. In the first phase, α and γ increase significantly, since the
initial solution almost always violates the constraints. In the second phase, α and γ stabilise in a
certain range, with α and γ increasing or decreasing in value with a random probability. In the
final phase, where the improvements to the best solution are minimal α and γ almost exclusively
decrease. So we set δ = 0.5.

Tabu list length: θ

The tabu list length parameter θ, determines the maximum number of moves within the tabu
list at any given time. The best value of θ increases with problem size, since in large instances
there are more possibilities to cycle back to a local optimum than in smaller instances. Cordeau
recommends a value of θ of [7.5 ∗ log10 n], with n being the number of customers to account for
this characteristic of increasing problem size. However, in our methodology, a list length is used
instead of setting a move as tabu for the θ number of iterations. Since, with swapping customers,
there is a chance that multiple attributes get added after an iteration the tabu list length needs to
be adjusted to compensate. A tabu attribute gets set to non-tabu quicker if the list length stays
the same, but multiple attributes can be added in one iteration. After numerous observations, a θ
of [10 ∗ log10 n] seems sufficient to prevent cycling. So we set θ = [10 ∗ log10 n].

5.3.3 Tabu search runtime

The proposed solution methodology and Cordeau et al. (2001) tabu search diverge on the stopping
criterion of the TS. In our solution methodology, the tabu search is terminated after a certain
amount of runtime. This parameter is the most crucial parameter since it influences the optimally
of the result the most. A low runtime can be effective in finding a decent solution in a short time
but has a high chance of settling on a solution that is low quality. A high runtime, however, can
cause the tabu search to needlessly waste computation time, to find very minor improvements in
the solution or not to find a better solution at all. Thus, selecting an appropriate runtime for the
tabu search that balances solution quality against runtime is paramount.

To find the optimal runtime the following series of experiments (R1 - R3) have been conducted.
The experiments range from allocating 10 minutes, 30 minutes and 120 minutes of runtime to
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the tabu search using the parameters set in Section 5.3.2. The experiments have been conducted
on the artificial data instances A1 − A10 outlined in Table 5.2. As discussed in Section 5.3.1
the customer-drop-off based visit combination selection construction heuristic has been used for
creating the initial solutions to these data instances. The improvement, compared to the initial
objective has been reported across all data instances, as well as the initial values are reported in
Table 5.5.

ID
R1 R2 R3

Initial
result

Result Time ∆% Result Time ∆% Result Time ∆%

A1 36,985 15,955 600 56,86% 15,955 1800 56,86% 15,955 7200 56,86%
A2 41,672 33,525 600 19,55% 33,525 1800 19,55% 33,525 7200 19,55%
A3 64,644 51,708 600 20,01% 51,708 1800 20,01% 51,708 7200 20,01%
A4 91,756 62,281 600 32,12% 62,160 1800 32,26% 61,994 7200 32,44%
A5 191,671 96,383 600 49,71% 94,605 1800 50,64% 93,468 7200 51,24%
A6 96,781 79,261 600 18,10% 79,261 1800 18,10% 79,261 7200 18,10%
A7 127,636 93,376 600 26,84% 91,343 1800 28,43% 91,249 7200 28,51%
A8 199,159 162,615 600 18,35% 124,724 1800 37,37% 123,483 7200 38,00%
A9 189,935 131,468 600 30,78% 125,795 1800 33,77% 125,655 7200 33,84%
A10 224,093 161,065 600 28,13% 155,213 1800 30,74% 153,980 7200 31,29%
Avg. 126,433 88,764 600 30,05% 83,429 1800 32,77% 83,028 7200 32,98%

Table 5.5: Summary of experiments R1−R3. The best objective for each instance is given in bold.

Table 5.5 shows the outcome of experiments R1 − R3. The objective, computation time and
improvement for each experiment is provided. The improvement is based on the difference between
the objective value and the initial solution value, which is also provided. The tabu search improves
the initial solution by 18% to 57% depending on the data instance solved and solve time. In general
the longer the computation time the better the improvement.

This improvement in solution quality comes at a cost of increased computation time. The R2
instance of allowing for a computation time of up to 30 minutes seems to strike the best balance
between solution quality and computation time. On average the solution gets improved by 32.77%
in the R2 experiments against the on average 32.98% improvement of the R3 experiments, whilst
having four times as much computation time allocated. The R1 experiments also show promising
results with an average 30,05% improvement demonstrating that tabu search can quickly improve
from the initial solution. However, since R2 strikes an acceptable balance between solution quality
and computation time, we use a computation time of 1800 seconds for the tabu search.

5.3.4 MILP runtime

To find the optimal runtime for the MILP a balance between solution quality and computation time
is made. The following three experiments are created to find the best balance between computation
time and solution quality. We define the following three experiments L1, L2 and L3, which allow
us to test for varying computation times, from 10 minutes to 120 minutes.

• Experiment L1 allows for a short computation time of 10 minutes.

• Experiment L2 allows for a moderate computation time of 30 minutes.

• Experiment L3 allows for a long computation time of 120 minutes.
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ID
L1 L2 L3

Result Time Gap Result Time Gap Result Time Gap

A1 15,955 0,3 0,00% 15,955 0,3 0,00% 15,955 0,3 0,00%
A2 33,525 600 0,68% 33,525 1800 0,42% 33,525 3495 0,00%
A3 51,708 57,3 0,00% 51,708 57,3 0,00% 51,708 57,3 0,00%
A4 62,301 600 2,88% 62,301 1800 2,77% 61,900 7200 1,84%
A5 92,786 600 4,75% 91,985 1800 3,88% 91,315 7200 3,09%
A6 79,273 600 3,09% 79,058 1800 2,57% 79,017 7200 2,47%
A7 175,266 600 48,90% 92,011 1800 2,64% 91,715 7200 2,32%
A8 139,085 600 13,50% 124,878 1800 3,34% 123,470 7200 2,24%
A9 135,154 600 12,60% 126,410 1800 5,76% 125,654 7200 4,90%
A10 191,265 600 29,70% 155,839 1800 5,72% 154,299 7200 4,68%
Average 97,632 485,76 11,61% 83,367 1446 2,71% 82,856 5395 2,15%

Table 5.6: Summary of experiments L1− L3. The best objective for each instance is given in bold.

Table 5.6 shows the outcome of experiments L1 − L3. The objective, computation time and
optimality gap for each experiment are provided. For instance, D1 and D3 optimality is achieved
across all experiments, terminating the MILP optimization before its allocated computation time
and thus displaying a lower value in Table 5.6 than the allocated runtime. for instance, D2 no
optimality gap is shown at the extended computation time. For data instances D4 − D10, the
optimality gap consistently decreases with an increasing amount of computation time allocated.
Especially for larger instances, the optimality gap decreases significantly with an increasing amount
of computation time between experiments R1 and R2. There is still an expected decrease in the
optimality gap between experiments R2 and R3, however, the decrease is significantly lower.

The average best solutions are found in the instances where a prolonged computation time is allo-
cated. However, experiment R2 shows a better balance between solution quality and computation
time. When comparing the optimality gap between experiments R2 and R3, a decrease of 0,56%
is observed against a quadrupling of computation time. A computation time of 600 seconds is
not preferable, since the optimality gap especially in larger instances is large. Given the average
objective of 83,3671 and an optimality gap of 2,71%, a computation time of 1800 seconds is the
most reasonable option for solving the MILP.

5.4 Evaluation of real-world scenarios

This section evaluates the real-world scenarios described in Section 5.2.2 using the MILP and tabu
search. The parameters for both these solution methodologies have been discussed in the previous
Section 5.3 and all experiments are consequently done using these parameters. The results for
both the MILP and tabu search will be compared, to determine the strengths and weaknesses of
both solution methodologies. Furthermore, for each instance, the best result from the two solution
methodologies is compared against the real-world KPIs to determine to which extent the proposed
solution methodologies are superior to the planning of the inspectors. Lastly, trends and patterns
in regard to the solution methodologies solution are presented. The trends and patterns explain
the difference in solution quality between inspectors compared to the computer made planning and
identify characteristics of an efficient monthly planning.

Note: values are multiplied by an arbitrary number for confidentiality.

5.4.1 MILP and tabu search solutions

The experiments of phase 2 as outlined in Section 5.1 assess the inspector’s planning against the
planning made from the 2 solution methodologies. The data instances are the real-world Eurofins
data, where each instance represents a monthly list of orders that need to be fulfilled by the end of
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the month. The MILP and tabu search are performed on the three instances described in Section
5.2.2 and the results are presented in Table 5.7 and Table 5.8 respectively. For the parameters
used in the following experiments please see Section 5.3.

The results for the MILP for the three instances are presented in Table 5.7. For each instance,
the data instance ID, nodes, dropoff configuration (Table 5.1) and number of days are given.
In subsequent columns, the model costs are represented in the Objective column followed by the
optimality gap given as a percentage. Next, the computation time is provided. In the last columns,
insights into solutions are displayed by displaying the travel time in hours, the distance travelled
in kilometres and providing how many days each depot is used.

The results for the tabu search are presented in Table 5.8. Since the tabu search uses an initial
solution as a starting point to improve from the initial solution is also reported. Another change
from the MILP is that the tabu search reports the improvement compared to the initial solution
as opposed to reporting an optimality gap. The other reported values are similar to those of the
MILP.

The MILP and tabu search are applied to 3 real-world data instances, as discussed in Section
5.2.2. The aim is to make a comparison between the planning quality of the inspector against the
solution quality of the MILP and tabu search. Based on the outcomes a small analysis is provided
by discussing trends and patterns in the tabu search algorithm. The MILP and tabu search use
the parameters described in Section 5.3.

5.4.2 Results of real-world instances

The tabu search and MILP are applied to the real-world scenario data instances I1 − I3. The
results for the tabu search are provided in Table 5.8 and the results for the MILP are presented in
Table 5.7.

The MILP results on data instances I1 − I3 are detailed in Table 5.7. For each instance, the
data instance, number of nodes, the dropoff configuration and number of data are provided. The
Following columns provide the route time, and the total amount of time it takes to execute the
monthly workload. The optimality gap and computation time are also provided. The other columns
provide insights regarding the solution such as the travel time, distance travelled, number of times
dropoff 1 is visited and number of times dropoff 2 is visited.

Instance Nodes
Dropoff
ID

Days Gap
Time
(s)

Route
Time (h)

Travel
Time (h)

Distance
(km)

D1 D2

I1 103 C2 20 5.81% 1800 213,32 45,74 1804,11 20 -
I2 96 C1 19 2,28% 1800 214,70 32,50 1302,96 19 -
I3 90 C3 20 10,80% 1800 220,66 58,11 2999,91 7 13
Average - - - 6,54% 1800 216,23 45,44 2032,59 - -

Table 5.7: Overview of the MILP results on real-world instances I1 − I3. (values are multiplied by an
arbitrary number for confidentiality)

The MILP failed to identify the optimal solutions as expected and an optimality gap of 2.28% to
10.80% is present. This reinforces the notion of the MILP’s computational limitations in achieving
optimality in larger problem size. Especially in case I3 the MILP has problems identifying the
optimal solution, which likely is because this is the most complex data instance due to its dropoff
configuration. The average route time calculated by the MILP is 216,23 hours.

45



Instance Nodes
Dropoff
ID

Days
Initial
result

Improvement
Time
(s)

Route
Time (h)

Travel
Time (h)

Distance
(km)

D1 D2

I1 103 C2 20 295,86 29,06% 1800 209,86 42,28 1666,59 20 -
I2 96 C1 19 249,66 12,80% 1800 217,71 32,98 1322,53 19 -
I3 90 C3 20 269,44 21,84% 1800 210,61 48,06 2472,03 7 13
Average - - - 271,66 21,23% 1800 212,53 41,12 1821,05 - -

Table 5.8: Overview of the TS results on real-world instances I1−I3. (values are multiplied by an arbitrary
number for confidentiality)

The tabu search outcomes are shown in Table 5.8. For each instance, the same information as the
MILP is displayed except for the optimality gap, which is replaced by the initial solution created
by the construction heuristic and improvement by the TS expressed as a percentage.

The tabu search shows varying results for each instance. The tabu search has an average total
route time of 212,53 hours with an average improvement of 21,23% demonstrating its capability
to improve solutions substantially from an initial solution. In the I3 instance the tabu search opts
to visit the second dropoff locations 13 times and the first location 7 times demonstrating that
having 2 dropoff locations can improve routing times.

Solution method analysis

Tabu search shows in almost all instances a significant improvement from the initial solution.
In contrast, the MILP was not able to solve the large-scale instances within the 1800 second
computation time. The TS was able to improve from the initial solution by an average of 21,23%
while maintaining the same runtime. With equal runtimes, the tabu search beat the MILP by
on average of 3,70 hours, which is a substantial improvement. The tabu search outperforms the
MILP in instances I1 and I3 and was outperformed in instance I2. Considering that I1 and I3,
were the more complex instances where the customer nodes are spread throughout a large area as
opposed to instance I2, where the customers are clustered in a small area. The tabu search is likely
to be more effective in these complex cases, while the MILP is effective in the more basic data
instances. The MILP is likely outperformed by the Tabu Search in instances I1 and I3, because it
was unable to find the optimal solution. It is unknown if the TS finds the optimal solution since
the lower bound of the solution space is unknown. This indicates that the tabu search ability to
find near-optimal solutions in large scale scenarios.

Another noteworthy observation is that the tabu search tends to converge faster to a near-optimal
solution compared to the MILP. A larger sample, size is necessary to quantify this behaviour.
With the tabu search being set to 1800 seconds this is an inflexible parameter, using a different
termination criterion could result in reduced runtimes by simply terminating when an improved
solution is not found after an arbitrary amount of time for example. Overall, the values from the TS
and MILP are relatively close to each other. There are explanations for this behaviour. Firstly, the
MILP resulted in better solutions than the tabu search. By changing certain Gurobi parameters,
as well as the formulation of constraints, the MILP finds better solutions in less time. Especially,
using an efficient mathematical formulation of the subtour elimination presented in Chapter 4.2.5
decreased runtimes significantly. On the other hand, the tabu search is able to find on average better
solutions than the MILP, but still has significant room for improvement. Especially, the insertion
mechanism and subsequent solution evaluation are expensive computationally, which significantly
increases the time of one tabu cycle. Other optimizations in regard to the programming of the
TS can significantly decrease computation time. In conclusion, the TS marginally outperforms the
MILP solution approach, however, the TS computation is likely to decrease significantly by using
more efficient programming and calculation approaches.

Comparison total travel time

The inspector’s planning is compared against the outcomes of the MILP and tabu search solution
approaches. By comparing the travel time of each inspector against the travel time outcomes in
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the MILP and TS conclusions are drawn. Figure 5.1 displays a graph comparing these solution
methods and the planning of the inspectors.

Figure 5.1: Graph showing the travel times for each data instance and planning method. (values hidden
for confidentiality)

The monthly time spent on travelling for the MILP, TS and the actual inspector planning are
plotted in Figure 5.1. The blue bar represents the actual planning of the inspectors, the orange
bar represents the tabu search results, and the green the MILP results. It is clear that TS and
MILP consistently outperform the inspector-made planning. The figures suggest a potential travel
time reduction of 8% to 25% if Eurofins starts optimizing the inspector planning. The scenario
however an optimistic estimation as the scenarios represent the historic planning of one month for
an inspector. Throughout the month the inspectors got extra client inspections planned, which
the inspectors could not anticipate. The tabu search results indicate a consistent time saving
of around 22% compared to the inspector-made planning. If we take the best result from the
TS and MILP the average travel time gets reduced by 23,86% Both the MILP and TS solution
approaches indicate improvements over the current planning methodology. The MILP shows on
average lesser results compared to the tabu search for the same computation time, indicating that
TS outperforms the MILP in higher-complexity instances. However, it is difficult to make claims
about whether TS is superior to MILP since we use 2 different measures of performance, optimality
gap and improvement in Section 6.3 we discuss this further. In similar-sized instances, TS is thus
recommended compared to the MILP, which can be too computationally time-consuming to run if
more complexity is added.

5.4.3 Trends and patterns

This section discusses the trends and patterns observed in the solutions provided by specifically
tabu search. The solutions to instances I1 − I3 are provided in Appendix B in Figures B.1, B.2,
B.3.

The routes constructed by the tabu search seem to follow a cluster pattern, where the TS clusters
certain customers together to visit in one day. This pattern is clear when looking at Figure, where
the TS proposes to visit all customers in Groningen (North), in one day (Day 16 Route). This is
in contrast to the inspector, that comes to these locations on three different days. Furthermore,
the tabu search prefers to have high variability in daily routing times, opting to have as long as
possible route each day and compensating it with a shorter route on the following day. This is likely
because the tabu search looks for possibilities to visit all customers in one area even if the route
takes longer than average. An extended allowed maximum route time per day can thus decrease
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the total travel time. This behaviour can best be observed in Figure B.2. There are clear outliers
in this work area and the tabu search creates a route denoted in grey, to visit all the outliers in
2 days. All the outliers could not be visited in one day due to the maximum daily route time.
The final observation is that the routes created by TS rarely follow an erratic pattern. It prevents
creating routes that move back and forth in areas but makes routes that almost make a continuous
line from the homes through the customers to the depot. This characteristic is not present in the
planning made by the inspectors where usually they visit one area and there is limited reasoning
behind the order of visits.

5.5 Conclusion

This chapter discusses the data instances, parameter tuning process and evaluation of the MILP and
TS using various experiments. This chapter aimed to compare the proposed solution approaches
against the current Eurofins situation.

This chapter first discussed the setup for the experiments followed by the creation of data sets for
parameter tuning and comparison to the real-world instances. There were 2 data sets created one
artificial dataset, whose instances were based on the Eurofins data. The artificial instances varied
in size by each data instance having a varied number of nodes, dropoff configuration, days in the
planning horizon and average speed. Additional to the artificial data set a real-world data set was
created. The instances of the real-world dataset were created based on the monthly planning of an
inspector and were created to compare the results of the TS and MILP against the actual KPIs.

The experiments were conducted in 2 phases. The first phase was to tune the parameters of the
proposed solution methodologies and the second phase was the actual comparison against real-world
scenarios. The first phase focussed on tuning the parameters of the MILP by first determining a
maximum computation time. The parameters of the tabu search were consequently tuned, as well
as the maximum computation time. The customer-dropoff-based visit combination selection was
chosen as the construction heuristic for the tabu search due to its consistency in producing initial
routes. The computation times for both the MILP were set to 1800 seconds because it has a great
balance between computation time and solution quality. Similarly, the computation time for the
tabu search was also set at 1800 seconds.

In the second phase, the TS and MILP were applied to the real-world data instances. Using the
parameters set in Phase 1 the Tabu Search outperforms the MILP due to the complexity of the
real-world instances. The MILP is effective in finding optimal solutions, especially in small-scale
instances (≤ 40 nodes), however, it has difficulty achieving the optimal solution In large-scale
instances. The TS significantly decreases the total travel time of Bureau de Wit’s inspectors by
recommending optimized routes by having a more systematic approach to planning and being able
to consider the whole planning horizon. The TS shows an average decrease in travel time of 25%
compared to the current Eurofins situation while performing the same services.

These results provide an indication to Eurofins about the efficiency of inspector planning at Bureau
de Wit. It is clear that using vehicle routing to plan routes for inspection is critical to minimizing
travel times in order to allocate more time to the inspections. The analysis shows that using
prolonged routes, clustering and using multiple depots can significantly decrease travel times.
Because the problem size is similar for almost every inspector the TS is recommended, since it
outperforms the MILP in the complex inspector routing planning scenarios. For relatively simple
inspector planning problems the MILP is recommended.
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Chapter 6

Conclusions, recommendations
and discussion

This chapter provides concluding remarks in regards to this thesis by providing final conclusions,
recommendations and insights based on the findings presented in the thesis from addressing the
Eurofins transportation problem. Thus in this chapter, the last research question is discussed
namely,What conclusions and recommendations can be made from executing the thesis at Eurofins?.

This chapter begins by providing final conclusions followed by a discussion that outlines the limi-
tations of this research as well as the theoretical and practical contributions of this work. Avenues
for future research are discussed aswell. Finally, we provide some recommendations for Eurofins.

6.1 Conclusions

This thesis set out to address the knowledge gap for Eurofins to test the impact of having dedicated
planning tools on their operations. The main goal was to find a solution method to effectively plan
an inspector’s monthly workload in the shortest time frame, and to increase the planning effective-
ness by executing the same workload in a shorter time span. Through reviewing existing literature
to create a foundation for the solution methodology a periodic vehicle routing problem with time
windows and dropoffs (PVRPTWD) was formulated. 2 solution methodologies for this mathe-
matical formulation were developed, a Mixed Integer Linear Program (MILP) and a tabu search
(TS). The solution methods were customised to fit the characteristics of the Bureau de Wit’s plan-
ning and routing problem, such as time windows, visit frequencies, route duration and customer
availability. To tune the MILP and the tabu search for applicability to the Eurofins problem, 10
artificial data instances were created based on the Eurofins data. The solution methodologies were
tuned with the goal of handling scenarios with varying amounts of nodes and days to ensure the
models work in a wide range of scenarios. After the tuning process, the two solution methods were
applied to real-world scenarios provided by Eurofins. After extensive experimentation, the tabu
search proved to be superior in large-scale scenarios and in improving the inspectors’ planning ef-
ficiency. The tabu search produces plannings that reduce the travel time by 25% compared to the
current inspector-made planning. The experiments demonstrated that routing based on the most
constrained points creates effective planning. The MILP as the tabu search has extended com-
putation times, however, the tabu search is preferable due to it discovering high-quality solutions
quicker than the MILP.

6.2 Discussion

This section discusses the theoretical and practical contributions of this work. Lastly, this section
outlines the limitations of this work.
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6.2.1 Theoretical contribution

This research conducted a literature study on VRP variants, however existing formulations that
incorporate nodes that must be visited at the end of a period have not been found. Numerous
studies have been conducted on the PVRP and its variants Campbell and Wilson (2014), however,
the aforementioned characteristic, which is almost similar to an open vehicle routing problem has
not been found. This created a need to develop a novel formulation by adapting the formulation
presented by Ahmadi Basir et al. (2024) and adding the in this research defined dropoff constraint.

The contribution lies in adapting the well-known Tabu Search methodology presented in Cordeau
et al. (2001) to this specific variation of the PVRPTW. This research also uses a novel construction
heuristic by using the concept presented in Chao et al. (1995) to spread customers across the plan-
ning horizon and exploit that with the PVRPTWD characteristics of the depot locations. Through
assigning customers to dropoff locations and subsequently assigning certain days to dropoff loca-
tions and only then assigning visit combinations to customers based on spreading the service times
a new construction is created. This customer-dropoff location-based visit combination selecting
mechanism outperforms the randomised construction heuristic based on the Cordeau et al. (2001)
initialization heuristic.

Finally, this research contributes by providing a case study of using tabu search as an adaptable
and effective metaheuristic for a complex practical problem. Additionally, This case study provides
evidence that using tabu search in logistics, particularly for problems with a scheduling component
is effective in large-scale instances compared to traditional exact methods.

6.2.2 Practical contribution

This research is performed at Eurofins Food, Feed and Water, superficially at Bureau de Wit the
hygiene inspection division of Eurofins. The practical contribution for Eurofins is the insights into
the planning quality of their inspectors. Using the insights of the model and current KPIs of the
inspectors an opportunity to improve routing efficiency is identified. The tabu search algorithm
demonstrated that travel times can be reduced by 25% encouraging an adoption of software of
similar capabilities into their operations.

The algorithm also demonstrated how tactical and strategic level decisions impact operational
performance. The impact of selecting geographically efficient dropoff locations as well as the
impact of adding new customers and agreements with customers in regard to visit frequency and
time windows. This effect also works vice versa, where these operational insights can be used
for tactical and strategic level decisions when it comes to customer selection and dropoff location
selection. Additionally, the use of tabu search and by extend other metaheuristics algorithms
as a scalable solution for vehicle routing and scheduling problems can serve as helpful tools for
companies experiencing increasing amounts of complexity in their logistics operations.

6.2.3 Limitations and future research

To limit the complexity of this research a scope and assumptions were defined. The research thus
has multiple limitations, but also provide avenues for future research. The following limitations
are defined:

• This research has taken the monthly planning from one inspector as its scope as described
in Chapters 1 and 2. The full-scale problem of having multiple geographically dispersed
inspectors and dropoff locations throughout the Netherlands is too large of a scope considering
a planning horizon of one month. Future research could be conducted to address this full scale
problem or can be used to create a strategic level model that determines dropoff locations.
The working areas of each inspector could be investigated using this methodology as well.

• This research is performed from a operational logistics perspective. However, tactical and
other strategic level decisions are assumed to be fixed. Future research is needed to investigate
tactical and strategic level decisions on the efficiency of the inspector planning, such as
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flexibility of working hours, (electric) vehicle selection, customers specific geographic pricing
and geographically based hiring policies.

• The customer visits are determined to be deterministic, however, this ignores the dynamic
behaviour of customer requests throughout the month. The dynamism is mainly due to new
customers being added throughout the month and re-inspections. However, the lack of data
on these occurrences limits our ability to investigate their effect on planning efficiency.

• For the parameter tuning of both the MILP and tabu search the parameters could have been
more extensively tuned. Since the adjustment of parameters for the tabu search is a subjective
process, the parameters could have been tuned better through the use of statistics. Another
limitation of tabu search is that is unknown if the solution space is sufficiently explored,
because unlike the MILP there is no known best objective bound.

• The limited sample size of only three monthly plannings provides limited statistical evidence
of the true efficacy of the proposed solution methods. Future research could increase the
sample size by using the plannings of more inspectors and also take plannings from different
months and assessing how seasonal demand influences optimized planning.

• For the mathematical formulation the following assumptions were crucial including the dis-
tances, vehicle speeds, service times and time windows. Future models can use real-world
data to determine travel times. Additionally, opening times were taken as time windows,
but are not always equal to when a customer can or wants to be visited. These characteris-
tics that add more complexity to the model, but create a more accurate representation are
characteristics to include in future research.

6.3 Recommendations

Based on the outcomes of this research, it is strongly advised that Eurofins use software to plan
their inspectors. Additionally, the company should encourage flexible working hours for their
inspectors, especially in working areas with highly geographically dispersed customers. Finally,
to have better communication with sales and logistics a logistics check should be performed to
see what the impact of inserting a customer into the planning is before making agreements. In
case Eurofins wants to extend the TS heuristic efforts can be made to increase the efficiency of
the algorithm decreasing computation times. Another direction for the TS algorithm is to extend
the model to incorporate more complex constraints and add other characteristics to the model.
The main focus for improving the solution approaches should be to focus on increasing the data
quality. Firstly, the service times are now approximations, however, using historical data from
different sites and previous visits a more accurate service time estimation can be made.

The development or integration of commercial routing software is recommended for daily oper-
ations. A well-designed software allows the company to incorporate real-time changes, such as
unexpected sick leave, customer requests and unforeseen traffic circumstances into their daily
decision-making. The greatest reduction in route execution time can be achieved through integrat-
ing the tabu search or other effective algorithms to create routes for the inspectors. For problems
with a low amount of nodes, less than 40 the MILP can also be considered as an effective tool to
integrate.

Furthermore, we recommend for future research Eurofins focuses on the other aspects of the inspec-
tors’ planning. First, there is the problem of selecting dropoff locations, so analysis of the addition
and removal of certain dropoff locations can increase the efficiency of the network by decreasing
non-productive kilometres compared to the cost of operating a dropoff location. Secondly, we rec-
ommend Eurofins investigate the possibility of dynamic work areas, where instead of assigning all
customers within one area to one inspector, we assign customers based on an optimization model,
where a customer can be assigned to multiple inspectors based on costs.
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Appendix A

Algorithms

Algorithm 5 Basic tabu search heuristic

Initial solution s: s← InitialSolution(x)
Tabu list: T ← ∅
while k ≤ kterminate do s′ ← BestSolution(N (s)

if s′ /∈ T then
S ← S′

Update T
else if s′ ∈ T & AspirtationCriteriaSatisfied then

S ← S′

Update T
else

Decrease T
end if

end while
return s∗ ▷ point with best evaluation so far

Algorithm 6 Basic VNS algorithm

Neighbourhood: k
current solution: x
while t ≤ tmax do

k ← 1
while k ≤ kmax do

k ← k + 1
x′ ← Shake(x, k)
x′′ ← LocalSearch(x′)
Neighbourhoodchange(x, x′′, l) ▷ Change neighbourhood

end while
end while
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Algorithm 7 Greedy insertion

Customers: C = {1, ..n}
Route: R← ∅
InsertionList: L ⊆ C

while L ̸= ∅ do
CheapestInsertion(L, R) ▷ Find cheapest insertion in list L
Insert(R, i)
L← L \ i

end while
return R
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Appendix B

Tabu search routes

B.1 Tabu search results I1

Figure B.1: Tabu search routes for data instance I1. Background from OpenStreetMap

58



B.2 Tabu search results I2

Figure B.2: Tabu search routes for data instance I2. Background from OpenStreetMap

B.3 Tabu search results I2

Figure B.3: Tabu search routes for data instance I3. Background from OpenStreetMap
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Appendix C

Solution example

Figures C.1 and C.2 provide a schematic representation of a visit schedule swap. In this example
the schedule of customer 7 gets swapped where it needs to be visited on day 2 instead of day 3. So
p = {3} and p′ = {2}. The consequent attributes that get changed are thus that attribute (7, 3)
gets removed from the solution B(s) and (7, 2) gets added, since customer 7 does not get visited
on day 3 anymore, but gets visited on day 2 instead. The other attributes in B(s) stay the same.
The full encoding of the solution B(s) before the swap is thus:

B(s) =

{
(1, 3), (2, 3), (3, 3), (4, 1), (5, 1), (5, 2), (6, 3), (7,3), (8, 1),

(9, 1), (10, 1), (11, 2), (12, 2), (13, 1), (13, 2), (14, 2), (15, 2), (16, 1)

}

The solution after the swap can consequently be defined as (change highlighted in bold):

B(s′) =

{
(1, 3), (2, 3), (3, 3), (4, 1), (5, 1), (5, 2), (6, 3), (7,2), (8, 1),

(9, 1), (10, 1), (11, 2), (12, 2), (13, 1), (13, 2), (14, 2), (15, 2), (16, 1)

}

Figure C.1: Schematic representation of solution before swapping visit combination. The swapped customer
is highlighted by the red dot.
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Figure C.2: Schematic representation of solution before swapping visit combination. The swapped customer
is highlighted by the red dot.
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Appendix D

Research design

This Appendix discusses the main research methodology, CRISP-DM and the research approach
and outline. The research methodology is described in Appendix D.1 and the research approach
is discussed in Appendix D.2.

D.1 Research methedology

The structure of this thesis is based on the CRoss Industry Standard for Data Mining method-
ology (CRISP-DM) as described in Chapman (2000). This methodology consists of six major
phases; business understanding, data understanding, data preparation, modelling, evaluation, and
deployment (Schröer et al., 2021). These steps form an iterative process as shown in Figure D.1
and moving between particular phases is possible and beneficial. CRISP-DM is chosen because
the phases in CRISP-DM fit the approach for evaluating new sample transportation logistics net-
works. The success of the data-driven model is highly dependent on the interaction between the
data preparation and modelling phases of this research since the usefulness of the data-driven model
is dependent on the quality of the data chosen in the data preparation phase. Because CRISP-
DM is the de facto standard in data mining research and is highly regarded as a methodology for
incorporating customer and business needs within the process to create actionable improvements
(Hotz, 2024) this methodology is selected.

Figure D.1: the CRISP-DM methodology (Hotz, 2024).
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D.2 Research approach

As mentioned in Section previously CRISP-DM is the foundation of this research design. The
formulated sub-questions in Section 1.3.3 are thus linked to different phases of the CRISP-DM
cycle. In this section, we cover the approach to answer each sub-research question and give an
outline of the structure of this thesis.

Firstly, the current situation at Eurofins is discussed in Chapter 2. This chapter covers the first
phase of the CRISP-DM cycle, business understanding. It begins by elaborating on the current lo-
gistics networks operated by Eurofins. Followed by elaborating on the network characteristics and
organization. The relevant KPIs to an inspector’s planning are discussed as well as requirements
and limitations of the network. Secondly, literature research is performed to explore relevant meth-
ods for vehicle routing problems with constraints applicable to the Eurofins situation and theories
for and how to minimize the relevant costs in Chapter 3. Time windows, planning horizons and
service times are vehicle routing constraints and are the inclusion criteria that are taken into ac-
count in this literature review. Furthermore, this literature review provides an understanding and
foundation for the mathematical model and solution techniques that can be used in the modelling
phase. The third research question is answered by creating a mathematical formulation of the
vehicle routing problem and creating a solution approach based on the literature review. Require-
ments and assumptions are formulated, on which the mathematical model is based. Using this
mathematical model, a solution technique is created. This process is discussed in Chapter 4. Next,
in Chapter 5 the model performance is tested through a quantitative analysis, by comparing the
model results against the current situation. Before the model is tested against the current situation
the parameters for the solution methodologies are tuned to balance solution quality and computa-
tional time. Lastly, final conclusions are drawn in Chapter 6 based on the results of the solution
outcome and analysis. This chapter provides conclusions and recommendations to the company in
regard to the outcomes of this research. The limitations and contributions are discussed as well.

It should be noted that the final phase of the CRISP-DM cycle, deployment, is not included in this
research approach. It is unlikely that a completely new planning approach can be implemented
within the time span. However, In Chapter 6 recommendations for deployment are provided.
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Appendix E

Use of AI

The following tools were in this thesis that (may) utilize Artificial Intelligence (AI):

• ChatGPT 4o

• GitHub CoPilot

• Grammarly

• Mendeley

The AI used in ChatGPT is mainly used for programming assistance in Python, understanding
concepts, LATEXassistance and minor writing assistance such as; looking up synonyms, spelling
check, small parts of text, and punctuation. Grammarly was also used to be a spelling check,
punctuation and finding appropriate synonyms. The rephrasing or tone suggestions of Grammarly
were not used. GitHub CoPilot was used as a programming aid in Python. Mendeley may use
AI in the creation of references or the bibliography. Mendeley was used to organise and track the
sources in this report efficiently.

After using an AI tool, the content was thoroughly reviewed and edited as needed. We take
responsibility for the contents of the final content.
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