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MANAGEMENT SUMMARY 

We conduct this research at Voortman Steel Group located in Rijssen and some of its clients in 
the Netherlands. Voortman fabricates machinery for processing steel beams, plates and tubes. 
This research focusses on the production process of metal plates at Voortman’s clients. Currently 
Voortman’s clients determine their production schedule manually and there are little to no 
policies for dealing with incoming orders. Therefore, Voortman assumes that the performance of 
their production schedules can be improved in terms of lead times and in-process inventory. With 
longer lead times, fewer clients can be served in the same timespan if the work in progress 
remains the same. When the lead times are shortened, the average in-process inventory level 
decreases overall as well. Therefore, less space is needed in the warehouse and there is space for 
more machinery or other purposes. 

To research how we can make the production process more efficient, we formulate the following 
research question: 

“How can the processing of metal plates be scheduled more efficiently in terms of inventory levels 
and lead times?” 

The first stage of the research consists of interviewing production planners at Voortman’s clients 
and visiting production lines to get a better image of the scheduling process and the machine 
environment. Voortman has three types of clients. For this research steel distributors are chosen 
as a target clients. Steel distributors act as suppliers in the steel processing chain often used to 
outsource production steps. Therefore, steel distributors aim to maintain short lead times while 
ensuring quality end products. Currently, production schedulers at steel distributors determine 
their schedule by prioritizing jobs that are due earlier, which resembles the earliest due date 
dispatching rule (EDD). Their production process consists of five stages with sometimes 
machines in parallel. These production stages are: cutting, bevel cutting, deburring, 
drilling/tapping and bending. 

Next, we conduct a literature review to gather information for the solution design. Through 
reviewing literature, we classify the machine scheduling problem we identify at steel distributors. 
The machine environment of a steel distributor is a flexible flow shop in which some production 
stages can be skipped. Also, we collect a selection of dispatching rules for which we test the 
performance in experiments. These dispatching rules are: 

• Shortest processing time (SPT) 
• Earliest due date (EDD) 
• Weighted shortest processing time (WSPT) 
• Minimal slack (MS) 
• Apparent tardiness cost (ATC) 
• Shortest processing time and earliest due date (SPT/EDD) 
• Shortest processing time and minimal slack (SPT/MS) 

For the weighted shortest processing time, we determine the weight by the remaining time until 
the due date. Besides that, we tested two combinations of dispatching rules which were SPT/EDD 
and SPT/MS. For the formula for ATC a value for 𝑘 must be determined. Therefore, we run 
experiments in which we tune the value to find the value for 𝑘 for which the dispatching rule 
performs the best. We find that 𝑘 = 4 yields the best performance. Furthermore, we use the same 



iv 
 

method to determine the value for 𝛼 for the SPT/EDD rule and SPT/MS rule. This is used in the 
following formula: 𝛼 ∗ 𝑆𝑃𝑇 + (1 − 𝛼) ∗ 𝐸𝐷𝐷. For SPT/MS, the formula is the same, but EDD is 
substituted by MS. We find that 𝛼 = 0.3 performs the best for SPT/EDD and 𝛼 = 0.8 performs the 
best for SPT/MS. 

Next, we measure the performance of the dispatching rules through conducting experiments on 
a dataset that consists of orders. This dataset is based on estimates made in consultation with 
Voortman to resemble the list of orders of a steel distributor. Therefore, we are able to adjust the 
properties of the datasets to run experiments with different scenarios. In the regular scenario, the 
ATC rule performs the best with an average lead time of 12,26 working hours, on average 870.94 
pieces of in-process inventory and a due date performance of 93.8%. Next, we test how the 
dispatching rules perform if we alter the standard deviation of the processing times. Also, we test 
the performance in over- and undercapacity and we test the rules when there the same number 
of orders arrive every day. From all experiments we conclude that the ATC rule performs the best 
in most cases. However, the SPT/MS rule sometimes outperforms the ATC rule by a small amount 
with regards to average lead times and average in-process inventory levels. For both dispatching 
rules, the due date performance is never lower than 90%, even in undercapacity. Still, the ATC rule 
outperforms the SPT/MS rule in nearly all cases regarding the due date performance. Furthermore, 
we notice that these two rules, the WSPT rule and the MS rule always outperform the EDD rule, 
which is currently used to determine the production schedule.  

Based on the research and the results from the experiments, we make the following 
recommendations: 

• Study the dispatching rules using real-world data rather than estimated datasets. 
• Consider implementing a tool that utilizes dispatching rules like the apparent tardiness 

cost to automatically determine the production schedule. 
• Conduct a comparable study on the production process at the other types of clients. 

This research has limitations, which are important to hold into account when using this research 
in future work. There are no datasets with real-world data available for the experiments. Therefore, 
we use datasets based on estimates to test the performance of the dispatching rules. 
Furthermore, we gather information through interviews and company visits. The information 
gathered might be subject to bias, because during these interviews, participant tend to create a 
better image of their company compared to reality, as they are doing business with Voortman. 
Also, we make some assumptions for the solution model. Finally, the research primarily focusses 
on the metal plate production process at Voortman’s clients. The findings of this research might 
not be directly applicable to other types of machine environments of other types of clients or a 
machine environment in a different industry. 
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1. INTRODUCTION 

This chapter serves as an introduction to the research. Section 1.1 introduces the company 
Voortman Steel Machinery and DIGI-STEEL which are part of the Voortman Steel Group. Second, 
Section 1.2 provides a detailed description of the metal plate process. Next, Section 1.3 
elaborates on the problem context. Finally, Section 1.4 describes the research design. 

1.1. Company description 
Voortman Steel Machinery 
Voortman Steel Machinery, is a mechanization company that fabricates machinery for metal 
processing. Parts processed by these machines are for example used for big building projects like 
the Grolsch Veste in Enschede. The machines can be arranged and delivered as an entire machine 
line, tailored to the needs of the client. Currently, Voortman has about 700 employees and is still 
growing. These employees are located at Voortman’s headquarters in Rijssen or at one of the other 
offices spread around the world. These offices all operate under the flag of Voortman Steel Group. 

DIGI-STEEL 
DIGI-STEEL is a start-up, and part of the Voortman Steel Group, that focusses on software 
development to optimize the metal processing. This is done by introducing fully cloud-based 
software solutions for steel processing industries. Their aim is to minimize user interaction and to 
allow transferring data effortlessly from the digital model of metal parts to the machine. In this 
research, we address the production process of metal plates on behalf of DIGI-STEEL. 

1.2. Metal plate processing 
As mentioned earlier, Voortman fabricates machinery for steel processing. One type of products 
that can be processed using these machinery is metal plates. This process starts with a flat metal 
plate which is transformed into a part of a machine, ship, or any other object.  

A typical plate process starts with a metal plate that needs to be cut. With cutting, a metal plate 
is placed on a flat surface called the machine bed. The machine moves over the plate and by using 
for example a plasma or oxy-fuel torch the plate is cut. Figure 1 displays an image of an operating 
cutting machine from Voortman. From a single plate, multiple shapes are cut. Using the machine, 
only big holes can be made because there is a high chance that the drill of the machine will break 
off. Also, bevels can be cut using the cutting machine. A bevel is a diagonal cut. This means that 
the machine cuts into other materials as well if the parts are too close to each other. Therefore, 
parts need to be further apart from each other. So fewer parts fit on the machine bed at the same 
time. If the client wants to save material, he can decide to do the beveling step manually at a 
separate working station. 
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Figure 1: A Voortman cutting machine 

During the cutting phase, imperfections called burrs appear. So after cutting and beveling, these 
burrs are removed from the edges and the surface during a process called deburring. Next, small 
holes and screw threads can be made at the drilling and tapping workstation. This is done by hand, 
as these holes are smaller than the holes that can be cut by the machine. Following this, the metal 
plate can be bent using a bending machine.  Finally, the part can be coated. For beams, this can 
be done using a machine. However, for processed plates, there are no machines for coating. 
Therefore, this task is done by hand. After coating, the processed plate is ready for delivery or 
assembly. Figure 2 below shows the steps in the production process of metal plates as described 
in this section. 

 

Figure 2: Typical metal plate process 

1.3. Problem context 
Voortman estimates some clients process 5200 orders on average yearly that consist of 40 pieces 
on average. Voortman’s clients schedule the tasks of the process described above by themselves. 
However, scheduling tasks requires good scheduling techniques and policies. Yet, Voortman’s 
clients make their production schedule manually. Often, they only use some rule of thumb, like 
reserving one week for a single task to have enough slack in the production schedule. While we 
assume that the lead time of an entire order can be shortened to less than a week. Due to a lack 
of scheduling policies, it is difficult to scale up. For example, when demand increases, there is not 
enough space in the schedule to allocate more jobs. As a result, lead times are prolonged. When 
lead times are longer, fewer clients can be served in the same time span if the work in progress 
remains the same. Also, chances are higher that clients receive their order too late and may 
switch to competitors that can guarantee a timely delivery. Therefore, less sales and revenue can 
be generated. Besides that, when inventory levels become higher, more storage capacity is 
needed, which increases costs. This also means that average handling times between tasks, and 
thus lead times, become longer as for example some pieces may be difficult to find in a bigger pile 
of pieces. In the end, these higher costs together with lower revenues lead to suboptimal profits. 
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Figure 3: Problem cluster 

As depicted in the problem cluster in Figure 3, the problem context points out that manually 
creating the production schedule is the core problem, as it is the beginning of the problem cluster 
and there is no other problem causing it (Heerkens & van Winden, 2017). Also, manually creating 
the production schedule is a problem that can be influenced. By manually creating the production 
schedule is meant that no scheduling algorithms or heuristics.  

1.4. Research design 
The objective of this research is to recommend how to schedule tasks in the metal plate process 
to shorten lead times and decrease inventory. By making the process more efficient, more clients 
can be served in the same time span and less costs are incurred. Besides that, when less 
inventory capacity is needed, the space can be utilized for other purposes, such as more 
machines. In the end, this improvement should result in an increase in profits. The research 
objective leads to the following formulation of the main research question:  

“How can the processing of metal plates be scheduled more efficiently in terms of inventory 
levels and lead times?” 

To enhance manageability of the research, we formulate several sub questions. These sub 
questions give structure to the thesis as the chapters are divided accordingly. 

1. What is the current situation regarding scheduling of the metal plate process? 
a. What does the metal plate process look like? 
b. Which methods are currently used to schedule the metal plate process? 

First, we analyze the current situation at Voortman’s clients through visiting production lines and 
conducting interviews with production schedulers and other employees that are closely involved 
in the process. These employees provide firsthand experience regarding the metal plate process. 
This involves an explanation of the steps involved in the process, the possible routes through the 
process and other characteristics of the process. Besides that, production schedulers can show 
how they schedule tasks in the process. Chapter 2 describes the current situation at Voortman’s 
clients regarding their production processes. Besides that, Chapter 2 contains an explanation of 
the scheduling method for steel distributors, which are one of the three types of clients Voortman 
serves. 

2. What is discussed in literature regarding scheduling of production processes? 
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a. What are the key concepts in machine scheduling? 
b. Which types of machine environments are distinguished in the literature? 
c. Which scheduling heuristics are discussed in literature? 

Second, we conduct a literature review to gain knowledge about machine scheduling. The 
literature provides a wide range of information on the key concepts of machine scheduling, the 
different types of machine scheduling problems and methods to address these types of machine 
scheduling problems. Chapter 3 summarizes the most important findings from the literature 
review. 

3. How can we improve the scheduling of the metal plate process? 
a. How can the current situation be defined as a machine scheduling problem? 
b. How can the production process of metal plates be modelled? 
c. Which scheduling heuristics are considered suitable for this problem? 

To answer this question, we reassess the current situation using the main findings from the 
literature review. Using this information, we can specify which type of machine scheduling 
problem is addressed. From there, the focus shifts to possible solutions in the form of scheduling 
heuristics. Chapter 4 provides an exploration of these topics. 

4. What is the best scheduling method to use in the metal plate process? 
a. Which dispatching rules performs the best? 
b. How does the standard deviation of processing times impact the performance of 

the dispatching rules? 
c. How does the number of orders impact the performance of the dispatching rules? 
d. How does the arrival pattern of the orders impact the performance of the 

dispatching rules? 

Finally, we run experiments to test under which dispatching rule performs the best. To do so, we 
use generated datasets with orders. Because we use generated datasets, we can adjust the 
parameters to test the performance of the dispatching rules in different scenarios. Chapter 5 
presents the setup of the experiments and the results. Given these results, we can draw 
conclusions regarding the scheduling method of the metal plate production process. 
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2. CURRENT SITUATION 

DIGI-STEEL has little to no information regarding the scheduling methods of their clients. 
Therefore, we are analyzing the current situation at Voortman’s customers. This chapter answers 
the research question: “What is the current situation regarding scheduling of the metal plate 
process?” through an analysis at Voortman’s clients. First, the different types of clients and their 
production processes are described in Section 2.1. Second, Section 2.2 discusses how steel 
distributors (a specific type of client) schedule their metal plate process. Finally, the chapter is 
summarized in Section 2.3. 

2.1. Production processes 
This section answers the question: “What does the metal plate process look like?” This metal 
process is different for the different clients Voortman has. Therefore, we explore these three types 
of processes to select the most suitable process to research more in depth. Voortman divides its 
clients in three categories: (1) steel fabrication companies, offshore & energy industry, (2) 
equipment manufacturers and (3) steel distributors. Subsection 2.1.1 discusses the steel 
fabrication companies, offshore & energy industry,  Next, Subsection 2.1.2 discusses the 
equipment manufacturers and Subsection 2.1.3 discusses the steel distributors. Finally, 
Subsection 2.1.4 explains which process we use for further analysis. 

2.1.1. Steel fabrication companies, offshore & energy industry 

Steel fabrication companies make steel structures for large building constructions like office 
buildings, bridges, production halls, shopping centers and sport halls. Besides that, there is the 
offshore & energy industry. This industry consists of manufacturing companies that make 
constructions and components for offshore activities, which are primarily focused on the 
production of energy. These companies process very large steel parts that are suitable for their 
constructions. 

Process 
Both metal plates and metal beams are involved in this process and eventually welded together. 
The metal plates production process often only consists of a cutting and deburring stage. 
However for this type of client, both tasks are done simultaneously and considered as a single 
step. For example, when a metal beam is cut and leaves the cutting machine, the metal beam is 
deburred immediately. Before the next cut beam leaves the cutting machine, the previous beam 
already finished the deburring stage. Because of the simplicity of this process, this process can 
be optimized by nesting rather than scheduling. Nesting refers to the process of arranging multiple 
parts that are cut from a single piece in a way that maximizes the use of material and minimizes 
the amount of scrap metal. As mentioned earlier, as the last step, the metal plates are welded 
together with metal beams to become a part of a big structure. Therefore, production schedulers 
have to make sure that the metal plates and beams are ready at the right time. Also, welding the 
parts together is an extra step in the process. 

2.1.2. Equipment manufacturers 

Equipment manufacturers  produce equipment for material handling, construction and mining, 
agriculture, recycling, and many other industries. Examples of equipment include ship cranes, 
industrial trucks, combine harvesters, shredders, and press containers. 
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Process 
The final products of equipment manufacturers consist of multiple parts that have to be 
assembled at the end of the process. This means that multiple process flows come together in 
the final step. When looking at one of these process flows, the process flow resembles the 
process that is depicted in Figure 2 in Chapter 1. An example of an equipment manufacturer is 
Company A. This company fabricates recycling installations and sorting systems. Their process 
consists of the following steps: cutting, deburring, construction metalwork, bending, welding and 
coating. Construction metalwork is a workstation at which multiple steps are done like drilling, 
tapping and manual beveling. For equipment manufacturers the same holds as for steel 
fabrication companies, offshore & energy industry, production schedulers have to make sure that 
all parts of the assembly are ready to be assembled. For equipment manufacturers, this is a bigger 
challenge because the process consists of more stages prior to the assembly stage. As a result of 
the complexity of this process, equipment manufacturers have relatively long lead times. 

2.1.3. Steel distributors 

Steel distributors act as suppliers within the steel processing chain and are mostly used for 
outsourcing production steps. Other actors in the steel processing chain, like equipment 
manufacturers, order products from steel distributors for example when they are not able to 
perform a specific task or do not have enough capacity to produce the desired number of parts on 
time. Steel distributors sell various products like profiles, plates, tubes and bars.  

Process 
The production process of steel distributors is comparable to the production process of 
equipment manufacturers. However, steel distributors do not weld pieces together and do not 
make assemblies, which means that no flows from other parts join the process. Hence, this 
makes their production process less complex compared to equipment manufacturers. This 
allows them to aim for short lead times, which makes them suitable for their clients. For example, 
when an equipment manufacturer outsources a step in their production process to a steel 
distributor, it would be unfavorable that this delays their production process. An example of a 
steel distributor is Company B. They aim to have a lead time of a maximum 1.5 weeks while 
ensuring consistency in quality.  

2.1.4. Focus client for further research 

In this research, we aim to improve the production process of metal plates at Voortman’s clients. 
However, the production processes at the three types of clients differ too significantly to conduct 
a single generic research. Therefore, we have to choose one of the processes from these three 
types of clients to use for further research. We consider the production process of steel 
distributors as the most suitable for further research. The first reason for this choice is that steel 
distributors are focusing more on optimizing their production processes compared to the other 
clients, especially with regards to lead times and utilization of their machinery. Also, their 
production process is very similar to the majority of the production process of equipment 
manufacturers. Therefore, equipment manufacturers can apply the conclusions and 
recommendations of this research to improve the stages of their process that overlap with the 
stages of the steel distributors. 

2.2. Scheduling methods 
This section discusses the methods that are used at steel distributors to schedule the metal plate 
process. Subsection 2.2.1 elaborates on the aim of the schedule and how this differs from other 



7 
 

types of clients. After that, Subsection 2.2.2 discusses how tasks and jobs are prioritized. Next, 
Subsection 2.2.3, explains how parts are clustered throughout the production process. Finally, 
Subsection 2.2.4 describes how production schedulers cope with rush orders and rejections of 
failed parts. 

2.2.1. Lead times & time buffers 

Overall, steel distributors try to promise short lead times as this makes them more attractive to 
their clients. These clients often use steel distributors to prevent delays in their production 
processes. Therefore, lead times are of great importance to them. The other two types of clients 
focus less on maintaining short lead times, because their production processes are more 
complex. This difference in aims is noticeable in the way the production process is planned at a 
steel distributor compared to an equipment manufacturer. For example, Company A (equipment 
manufacturer) would reserve one week in which a step in the production process can be 
executed, whereas Company B (steel distributor) tries to keep a maximum time buffer of 1 day 
between two steps in the production process. 

2.2.2. Prioritized scheduling 

Besides keeping short time buffers between tasks, Company B often schedules tasks in the 
production process by due date in ascending order to maintain short lead times. This resembles 
the earliest due date dispatching rule, which is discussed in Chapter 3. However, they do not make 
use of this dispatching rule as jobs with earlier due dates are not always prioritized. At the 
beginning of the week, the process scheduler schedules the steps according to his liking, keeping 
in mind that tasks with an earlier due date have priority.  

2.2.3. Clustering 

An order that comes in at Company B might consist of sets of different parts. Throughout the 
process the order does not stay together entirely. Therefore, only the same parts that undergo the 
same processing steps are kept together. Otherwise, parts are kept idle at a workstation at which 
they are not processed, whilst waiting for the other parts to be finished. Therefore, parts skip the 
machines at which no task needs to be executed and are collected together with the other parts 
after the final step to be shipped to the client. 

2.2.4. Rush orders & rejections 

Often, production schedulers determine the production schedule at the beginning of the week, 
based on the received orders and the progress of the other orders. However, it could be the case 
that a rush order comes in. In a lot of cases, these rush orders have to be finished within a week 
which impacts the production schedule. Also, it could be the case that something went wrong in 
the process and a part is not processed correctly. If that is the case, the part will be rejected and 
the part has to start the process again. If the production scheduler wants to finish these parts on 
time, he must give these parts priority over other orders to catch up with the wasted time. 
Therefore, rejected parts and rush orders can be treated the same way. The production scheduler 
has to postpone tasks with a lower priority in order to fit the rush orders and the parts that were 
rejected in the production schedule. However, they often do not have a fixed procedure to adjust 
their schedule. 

2.3. Conclusion 
In Section 2.1 we presented that he production processes of Voortman’s clients vary because of 
the aim of their business. Steel fabrication companies and the offshore and energy industry only 
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have a single stage in their production process. Because this process can be optimized by nesting 
rather than scheduling, this type of process is not interesting to explore further in this research. 

On the other hand, steel distributors and equipment manufacturers have production processes 
with a lot of similarities. However, steel distributors are more suitable as a focus client for this 
research, as they have the most interest in shortening lead times and making their production 
process more efficient. Also, it is possible to analyze the entire plate production process of steel 
distributors within the scope of the research as they have a single process flow without 
interference of other process flows. Besides that, the conclusions and recommendations that 
result from researching the process of steel distributors can also be applied to the majority of the 
process of equipment manufacturers. 

Section 2.2 discussed the scheduling method of the metal plate process at steel distributors. 
Company B was used as an example of a steel distributor. In short, Company B tries to promise 
short lead times by keeping short time buffers between two tasks of the same job, scheduling by 
ascending due date and not clustering the entire order through the production process. However, 
they do not make use of a heuristic or dispatching rule that optimizes their production process. 
Also, they have to adjust their production schedule for rush orders and rejected parts that have to 
be finished on time, but they lack a procedure to do so. 
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3. THEORETICAL FRAMEWORK 

This chapter covers all the important findings from reviewing literature. The research question that 
this chapter answers is: “What is discussed in literature regarding scheduling of production 
processes?” 

The first section of this chapter explains the key concepts of machine scheduling. After that, 
Section 3.2 presents the attributes of tasks. Next, Section 3.3 discusses types of machine 
environments that are identified in scheduling. Section 3.4 lists some reoccurring restrictions and 
constraints that impact the nature of a machine scheduling problem. Following, Section 3.5 
describes commonly used objective functions in machine scheduling. Finally, Section 3.6 
considers some methods to solve machine scheduling problems through heuristics. 

3.1. Key concepts of machine scheduling 
This section explores the key concepts of machine scheduling. First the two components of a 
schedule are presented, the jobs and the machines (Subsection 3.1.1). The second subsection 
(3.1.2) presents how machine scheduling problems are denoted. Next, in Subsection 3.1.3, the 
difference between online and offline scheduling is explained. 

3.1.1. Jobs and machines 

The two main components of scheduling problems are jobs and machines. Often machines are 
also referred to as processor or workstation. The number of jobs and machines are denoted by 𝑛 
and 𝑚 respectively. These numbers are assumed to be finite in all scheduling problems. Jobs and 
machines are also used in subscripts for processing time (𝑝𝑖𝑗) for example. This variable has the 
subscript 𝑖 and 𝑗 which refer to the machine and the job respectively (Blazewicz, et al., 2001; 
Leung, 2004; Pinedo, 2022). 

3.1.2. Notation 

Machine scheduling problems can differ in various ways. The nature of the jobs, the objective 
function, the type of machines and other restrictions on the schedule influence how a machine 
scheduling problem must be addressed. Graham, Lawler, Lenstra and Rinnooy (1979), introduce 
a convenient way to notate different machine scheduling problems. The notation consists of three 
fields: 𝛼 (machine environment), 𝛽 (problem characteristics) and 𝛾 (optimality criteria). The first 
field only contains a single entry, the second field can contain zero to multiple entries and the final 
field often contains a single entry (Leung, 2004; Pinedo, 2022). These three fields are separated 
by vertical bars. An example of this notation is 𝐽|𝑝𝑟𝑚𝑝|𝐶𝑚𝑎𝑥. Sections 3.3, 3.4 and 3.5 discuss the 
meaning of the fields in this example. 

3.1.3. Online and offline scheduling 

In machine scheduling, a distinction is made between offline and online scheduling. With offline 
scheduling, all data such as processing times, release dates and due dates are known 
beforehand. This allows decisionmakers to determine their schedule at time zero. Sometimes, 
offline scheduling is referred to as predictive production scheduling or offline-planning 
(Blazewicz, et al., 2001). On the other hand, there is online scheduling, also known as reactive 
production scheduling or online control (Blazewicz, et al., 2001). With online scheduling, not all 
data is known in advance. It could be that not all jobs are known until the last job is released 
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(Pinedo, 2022). An advantage of online scheduling is that it allows the decisionmaker to make real-
time adjustments to the schedule. 

3.2. Task attributes 
This section describes the attributes of tasks in machine scheduling. These attributes impact the 
efficiency of a production process. Therefore, it is important to take these attributes into account 
when determining a production schedule. 

Processing time  
Processing time is denoted by 𝑝𝑖𝑗, which represents the time for how long job 𝑗 has to be 
processed on machine 𝑖. Sometimes, the subscript of the machine is left out when the processing 
time is not dependent on the machine or only processed on one machine (Blazewicz et al., 2001; 
Leung, 2004; Pinedo, 2022). Sometimes the 𝑝𝑗  symbol is present in the 𝛽 field. This means that 
the processing time for each job is restricted. For example, 𝑝𝑗 = 1 means that all processing times 
are 1 time unit (Leung, 2004). 

Release date 
The release date of job 𝑗 is denoted by 𝑟𝑗. The release date indicates the date when a job arrives in 
the system and can start its processing (Leung, 2004; Pinedo, 2022). In some cases the release 
date is referred to as arrival time or ready time (Blazewicz et al., 2001). When the release date 
symbol is appears in the 𝛽 field, job 𝑗 cannot start processing before the release date. If this 
symbol is not shown, jobs can start at any time (Leung, 2004; Pinedo, 2022). 

Due date 
The due date 𝑑𝑗 is the date job 𝑗 is meant to be completed. After the due date, completion of the 
job is still allowed. Therefore, the due date is not a constraint and not specified in the 𝛽 field 
(Leung, 2004; Pinedo, 2022). Although, the due date is important for making use of due date driven 
objective functions which are discussed in Section 3.5. 

Deadline 

Sometimes deadlines are used which are denoted by 𝑑̅𝑗, which is the deadline of job 𝑗. This is 
easily confused with the due date (𝑑𝑗). The difference is that for deadlines, it is not allowed to 
finish job 𝑗 after that point. The deadline is a constraint that can appear in the 𝛽 field (Blazewicz 
et al., 2001; Leung, 2004; Pinedo, 2022). 

Weight 
Sometimes, jobs are given a priority factor. This can be done by giving weight to a job. The weight 
of a job is denoted by 𝑤𝑗. A weight can also represent the actual cost or benefit of a specific job. 
This priority factor is used for dispatching rules like weighted shortest processing time, which is 
discussed in Section 3.6 (Blazewicz et al., 2001; Leung, 2004; Pinedo, 2022). 

Setup times 
Sometimes a period of time is needed to prepare a machine for the next task, this is called setup 
time. The duration of the setup time can depend on the sequence of jobs. These are called 
sequence dependent setup times, denoted by 𝑠𝑡𝑗𝑘 where 𝑗 represents the first job and 𝑘 
represents the second job. When 𝑗 equals zero, 𝑠𝑡0𝑘 indicates the setup time before the very first 
job of the sequence (Pinedo, 2022). 

Sometimes the setup time between two jobs is zero. This could occur because two jobs belong 
to the same job family. Jobs that are in the same job family have little to no setup times between 
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them if they are executed consecutively. Setup times depending on job families are denoted by 
𝑠𝑡𝑔ℎ where 𝑔 and ℎ represent two job families (Pinedo, 2022).  

3.3. Machine environments 
This section discusses the most reoccurring types of machine scheduling environments that can 
be found in literature and therefore answers the question :”Which types of machine environments 
can be distinguished in the literature?” These machine environments can be divided into two 
major groups: single-stage scheduling and multiple-stage scheduling, which are discussed in 
Subsections 3.3.1 and 3.3.2 respectively. The type of machine environment is denoted in the 𝛼 
field of the notation (𝛼|𝛽|𝛾) described in Section 3.1.2. 

3.3.1. Single-stage scheduling 

Single-stage scheduling involves jobs that consist of a single task. This is a fundamental type of 
scheduling. This type of scheduling can be applied to machine environments that do not have 
multiple stages. Also, single-stage scheduling is used for analyzing one stage of a multi-stage 
scheduling problem. 

Single-machine 
This is the most simple machine scheduling environment. Single-machine systems consist of only 
one processor and is denoted by 1 in the machine environment field. This type of problem can be 
used as a building block for more complex problems. For instance, single-machine scheduling is 
used for analyzing bottlenecks in a multi-processor environment (Blazewicz et al., 2001) Besides 
that, entire production lines can be analyzed as a single machine, because single-machine 
scheduling is mathematically more tractable. Therefore, single-machine problems are useful for 
more general scheduling problems. For example, it can be used for economic lot sizing and 
capacitated lot sizing (Boctor, 2022). 

Parallel machine scheduling 
Parallel machine scheduling problems are single-stage scheduling problems that contain a set of 
multiple machines. For this reason, the scheduler has to choose which task will be performed on 
what machine. However, the processing times may vary depending on what type of parallel 
machine scheduling problem is dealt with. This subsection covers three different types of parallel 
machine scheduling problems: identical machines, uniform machines and unrelated machines. 

1. Identical machines 

In an identical machine system (𝑃), the processors have the same resource capacity limit (Ji, Hu, 
Zhang, Cheng, & Jiang, 2022). Therefore, the task processing speeds are equal as well (Blazewicz 
et al., 2001; Leung, 2004; Pinedo, 2022). This means that the processing time of a job is not 
dependent on which machine is chosen.  

2. Uniform machines 

For uniform machines (𝑄) holds that processors differ in task processing speed (Dosa, 
Fuegenschuh, Tan, Tuza, & Wesek, 2019). However, the processing speeds remain constant and 
do not depend on the task processed (Blazewicz et al., 2001; Leung, 2004; Pinedo, 2022).  This is 
a more difficult problem compared to a parallel machine system with identical machines, as the 
difference in handling time increases as tasks become bigger (Dosa, Fuegenschuh, Tan, Tuza, & 
Wesek, 2019). 

3. Unrelated machines 
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For unrelated machines (𝑅), processing times can differ for each machine and processing rates 
are not fixed within a range (Li, Cote, Coelho, & Wu, 2022). The processing speed depends on the 
particular task that is processed and the machine (Blazewicz et al., 2001; Pinedo, 2022). Methods 
that can be applied to parallel machine scheduling for unrelated machines can be applied to 
identical and uniform machines, but not the other way around. Companies have various reasons 
to select a machine in a parallel machine system; one machine might be more energy-consuming 
but more efficient for instance (Wang & Che, 2022).  

3.3.2. Multi-stage scheduling 

In contrast to single-stage scheduling environments, jobs in multi-stage scheduling environments 
involve multiple tasks that need to be completed. This means that not only the order of the jobs 
at the machines has to be determined, but also the order of tasks can vary per job.  The 
possibilities of different orders and routes through the process for jobs depend on the type of 
scheduling problem. For multi-staged scheduling environments, often it is assumed that buffers 
between machines have unlimited capacity and jobs do not directly have to resume processing 
after completion of a task (Blazewicz et al., 2001). 

Flow shop 
A flow shop (𝐹) consists of a set of  machines. Each job has to be processed on each one of the 
machines and each jobs follow the same order of machines through the process (Blazewicz et al., 
2001; Leung, 2004; Pinedo, 2022). The first operation is performed on machine 𝑀1, the second is 
𝑀2 and the last operation is executed on machine 𝑀𝑚 (Garey, Johnson, & Sethi, 1976). Therefore, 
the number of tasks of a job is equal to the number of machines 𝑚. 

Job shop 
A job shop (𝐽) also consists of a set of 𝑚 machines. Jobs follow a predetermined sequence of 
machines. However, these sequences may differ between jobs. Also, the number of tasks may 
vary for jobs (Blazewicz et al., 2001; Pinedo, 2022).  Where the first job might have to be processed 
on machine 1 first, then machine 2 and finally machine 3, another job might start on machine 2, 
followed by machine 3 and finish on machine 1. 

Open shop 
An open shop scheduling problem (𝑂) is similar to a job shop problem. Every job has to be 
processed on each one of the machines, which means that the number of tasks within a job is 
again equal to the number of machines. However, there are no restrictions for the routing of every 
job (Blazewicz et al., 2001; Pinedo, 2022). 

Flexible flow shop & flexible job shop 
When one more stages in a flow shop or a job shop environment consists of parallel machines, 
the machine environment is called a flexible flow shop or job shop. The flexible flow shop is 
denoted by (𝐹𝐹) and the flexible job shop as (𝐹𝐽). For a flexible flow shop, the job first has to visit 
stage 1, then stage 2 and so on. In a flexible job shop, jobs have different predetermined routes 
and orders of machines through the shop (Pinedo, 2022).  
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3.4. Restrictions & constraints 
This section describes some reoccurring characteristics of jobs in machine scheduling. Job 
characteristics influence the complexity and nature of a machine scheduling problem. These 
characteristics are specified in the 𝛽 field of the notation (𝛼|𝛽|𝛾). 

Preemption 
A scheduler may decide to interrupt (preempt) a task. This is called preemption. Not all schedules 
allow for preemption. When preemption is allowed, a schedules is preemptive, which is notated 
as 𝑝𝑚𝑡𝑛 (Blazewicz et al., 2001) or 𝑝𝑟𝑚𝑝 (Pinedo, 2022) in the 𝛽 field. Otherwise, the schedules 
is non-preemptive. In some cases a distinction is made between two types of preemption. When 
a preempted task can resume from the point where the task was interrupted, this is called 
preempt-resume. In other cases, a task cannot be resumed from that point, so it has to start from 
the beginning again. This case is called preempt-repeat (Lambrechts, Demeulemeester, & 
Herroelen, 2010). 

Precedence constraints 
For a single machine and parallel machine environments, precedence constraints may appear. In 
the most general case, this is denoted by  𝑝𝑟𝑒𝑐 in the 𝛽 field (Leung, 2004; Pinedo, 2022). The 
precedence is pictured in a diagram where each node represents a job and an arrow from job 1 to 
job 2 indicates that job 1 must be finished before job 2 can start processing (Blazewicz et al., 2001; 
Leung, 2004). Furthermore, there are some special forms of precedence constraints. When a job 
has at most one predecessor and at most one successor constraint is denoted by 𝑐ℎ𝑎𝑖𝑛𝑠 in the 𝛽 
field. If each job has at most one predecessor, the constraint is denoted by 𝑜𝑢𝑡𝑡𝑟𝑒𝑒. When the job 
has at most one successor the constraint is denoted by 𝑖𝑛𝑡𝑟𝑒𝑒 (Blazewicz et al., 2001; Leung, 
2004; Pinedo, 2022).  

No-wait 
The no-wait requirement may occur in flow shops and is denoted by 𝑛𝑤𝑡 in the 𝛽 field. When the 
no-wait requirement applies, jobs are not allowed to wait between two successive machines 
(Blazewicz et al., 2001; Leung, 2004; Pinedo, 2022). Therefore, a job often has to wait before 
starting the first task to ensure that the job can go through the flow shop without waiting between 
machines.  

Other restrictions and constraints 
There are many more restrictions and constraints that can be specified in the 𝛽 field. For a broader 
overview of more restrictions and constraints, we refer the reader to Pinedo (2022) and Leung 
(2004). 

3.5. Objective functions 
The performance of a schedule can be measured in multiple manners depending on the aim of 
the schedule. Some companies aim to finish jobs as soon as possible for from the moment the 
job starts the process, whereas other companies aim to have the least number of jobs finished 
after the due date. These aims can be quantified into objective functions which are specified in 
the 𝛾 field of the notation (𝛼|𝛽|𝛾). Objective functions are functions that need to be minimized or 
sometimes maximized, where an objective to be minimized is always a function of the completion 
times of the jobs (Pinedo, 2022). This section discusses some frequently reoccurring objective 
functions, which are split up in two categories: completion-time based objectives and due date-
driven objectives. 
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3.5.1. Completion time-based objectives 

This subsection elaborates on objective functions that are based on the completion time of a job. 
The completion time measures the total amount of time it takes for a task to be completed from 
the beginning of the schedule. The completion time of  job 𝑗 is denoted by 𝐶𝑗. In most cases, 
minimizing the completion time decreases costs like holding costs and inventory costs. 

Makespan 
The makespan, denoted by 𝐶𝑚𝑎𝑥, is the time the last job is finished. The makespan is defined as 
max⁡(𝐶1, … , 𝐶𝑛) where 𝐶𝑗  is the completion time of job 𝑛 (Leung, 2004; Pinedo, 2022). A commonly 
used objective function is to minimize the makespan which is denoted by just 𝐶𝑚𝑎𝑥. When the 
makespan is minimized, overall this implies that machines are utilized well (Pinedo, 2022). 

Total weighted completion time 
The total weighted completion time is denoted by ∑𝑤𝑗𝐶𝑗 for job 𝑗 (Blazewicz et al., 2001; Leung, 
2004; Pinedo, 2022). The sum of the weighted completion times can give an indication of the 
holding or inventory costs, when the weight is valued by the costs  (Pinedo, 2022). Therefore, by 
minimizing the weighted total completion time, often holding or inventory costs are minimized as 
well. 

3.5.2. Due date-driven objectives 

This subsection discusses several objective functions that are due date-driven. Reaching due 
dates are important for customer satisfaction and delays often incur costs. Therefore, due date-
driven objectives focus on minimizing delays and ensuring timely completion of jobs. 

Maximum lateness 
The lateness of a job is defined as 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗  for job 𝑗. The lateness is positive when the job is 
completed late and negative when the job is completed early. The maximum lateness is defined 
as 𝐿𝑚𝑎𝑥 = max(𝐿1, … , 𝐿𝑛) (Blazewicz et al., 2001; Leung, 2004; Pinedo, 2022).  This measures the 
worst violation of the due dates. 

Total tardiness 
The tardiness of job 𝑗 is defined as 𝑇𝑗 = max⁡(𝐿𝑗, 0) where 𝐿𝑗 is the lateness . This means that the 
tardiness equals zero when a job is finished early or on time and the tardiness is positive when a 
job is finished late. The total weighted tardiness is denoted by ∑𝑇𝑗 (Leung, 2004; Pinedo, 2022). In 
some cases, the total tardiness of a job is multiplied by its weight. This can be used to calculate 
the total weighted tardiness (∑𝑤𝑗𝑇𝑗). Just like the total weighted completion time, the total 
weighted tardiness can give a cost indication by valuing the weight by costs (Pinedo, 2022). 

Number of tardy jobs 
The total number of tardy jobs is denoted by ∑𝑈𝑗, where 𝑈𝑗 = 1 when job 𝑗 is tardy (𝐿𝑗 > 0). The 
number of tardy jobs can reflect the due date performance, which is vital for some companies. 
Sometimes the weighted number of tardy jobs is calculated. This is denoted by ∑𝑤𝑗𝑈𝑗  (Leung, 
2004; Pinedo, 2022).  

3.5.3. Composite objective functions 

When there are multiple objectives, a composite objective function can be used. A composite 
objective function is a combination of two or more objective functions. An example of an 
composite objective function is 𝜃1∑𝑤𝑗𝑇𝑗 + 𝜃2𝐶𝑚𝑎𝑥. This objective function is a combination of 
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the total weighted tardiness (∑𝑤𝑗𝑇𝑗) and the makespan (𝐶𝑚𝑎𝑥). 𝜃1 and 𝜃2 are the weights of the 
two objectives (Pinedo, 2022). 

3.6. Heuristics 
In deterministic scheduling, one tries to find an optimal schedule, which depends on the chosen 
objective function. However, most scheduling problems, like the job shop scheduling problem, 
are considered to not have quick and easy approaches to find an optimal solution are called “NP-
hard problems”. Approaches that can be used to solve small instances of these problems are not 
suitable for solving NP-hard problems such as bigger instances of scheduling problems. To come 
up with an approximate solution, heuristics can be used. Subsections 3.6.1 and 3.6.2 discuss two 
classes of heuristics, which are dispatching rules and local search algorithms respectively. 

3.6.1. Dispatching rules 

One type of heuristics are dispatching rules. A dispatching rule, also known as a priority rule, “is a 
function of attributes of the jobs and/or the machines” (Pinedo, 2022). Some examples of 
attributes are listed in Section 3.2. In general, dispatching rules are easy to implement and useful 
to find a reasonably good schedule. 

Local and global dispatching rules 
Dispatching rules can be divided into two categories: local and global rules. First, local 
dispatching rules only make use attributes of the job, the task or the machine. An example of a 
local dispatching rule is earliest due date rule which prioritizes jobs with the earliest due date. On 
the other hand, global dispatching rules also use attributes of other elements in the process, such 
as the queue length at the next machine or the processing time of the job on the next machine 
(Pinedo, 2022).  

Static and dynamic dispatching rules 
Another way to classify dispatching rules is the distinction between static and dynamic rules. 
Static rules are not dependent on time. An example of a static dispatching rule is shortest 
processing time (SPT). This rule only makes use of the processing time, which does not change 
over time. In contrast, dynamic dispatching rules are dependent on time (Pinedo, 2022). Job 
characteristics like slack (𝑠𝑙𝑎𝑐𝑘 = ⁡𝑑𝑗 − 𝑝𝑗 − 𝑡𝑖𝑚𝑒) change as time increments. Therefore, 
priority values of operations may change during the execution of the dispatching rule. 

Composite dispatching rules 
When two or more ‘elementary’ dispatching rules are combined into one rule, it becomes a 
composite dispatching rule. Static and dynamic dispatching rules can be combined. An example 
of a composite rule that combines a static and dynamic rule is the Apparent Tardiness Cost (ATC) 
heuristic. This rule combines the Weighted Shortes Processing Time rule (WSPT) and the Minimal 
Slack rule (MS) (Pinedo, 2022). 

Examples of dispatching rules 
Table 1 presents some commonly used dispatching rules, their abbreviations and the attributes 
used to determine the priority of the job: 

Dispatching rule Abbreviation Priority 
Earliest Due Date1 EDD Job of which the job has the earliest due date (𝑑𝑗) 
Shortest Processing Time1 SPT Job with the shortest processing time (𝑝𝑗) 
Longest Processing Time1 LPT Job with the longest processing time (𝑝𝑗) 
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Weighted Shortest 
Processing Time1 

WSPT Job with the highest weight divided by the 
processing time (𝑤𝑗/𝑝𝑗) 

Minimal Slack1 MS Job of which the job has the minimum slack =
max⁡(𝑑𝑗 − 𝑝𝑗 − 𝑡, 0) 

Apparent Tardiness Cost1 ATC Job with the highest priority value 𝐼𝑗(𝑡) =
𝑤𝑗

𝑝𝑗
∗

exp⁡ (−
max(𝑑𝑗−𝑝𝑗−𝑡,0)

𝑘∗𝑝̅
) where 𝑘 is a scaling 

parameter and 𝑝̅ is the average processing time of 
the remaining jobs. 

Most operations 
remaining2 

MOR Job with the highest number of operations 
remaining  

Least operations 
remaining2 

LOR Job with the lowest number of operations 
remaining 

Critical ratio2 CR Job with lowest critical ratio 𝐶𝑅 =
(𝑑𝑗−𝑡)

𝑝𝑗
 where 𝑝𝑗  

denotes the remaining processing time for job 𝑗. 
Table 1: Dispatching rules 1 (Pinedo, 2022),  2 (Korytkowski et al., 2013) 

Generation schemes 
For scheduling using dispatching rules, a generation scheme is required to make the schedule. 
Two schemes can be distinguished: the serial and the parallel generation scheme. In every stage, 
a generation scheme determines the decision set, which is the set of all schedulable activities. 
Kolisch (1996), provides an elaborate description of both generation schemes. 

1. Serial generation scheme 

For the serial generation scheme, the decision set 𝐷𝑠 consists of the unscheduled tasks of which 
the predecessor is already scheduled. The already scheduled tasks are part of the scheduled set 
𝑆𝑠. The serial method iterates over the jobs. So the serial method has stages 𝑠 = 1,… , 𝑛, for which 
the first stage is the job with the highest priority. The tasks of the job with the highest priority are 
scheduled at the first point that both the machine and the task are available and there is enough 
time to process the task. After that, the task is moved to the completed set and the next stage is 
the job with the highest priority from the decision set (Kolisch, 1996). Figure 4 depicts the flow 
diagram of the serial generation scheme. 
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Figure 4: Flow diagram serial generation scheme 

2. Parallel method 

As described by Kolisch (1996), for the parallel generation scheme, every stage 𝑠 is associated 
with a time 𝑡𝑠, where 𝑡𝑏 ≥ 𝑡𝑎 for 𝑏 > 𝑎. These times are the times a machine becomes available 
and are often the completion time of a task. For the tasks that are scheduled, there are two sets: 
𝐹𝑠, the set  of completed tasks and 𝐴𝑠, the active set of tasks that are scheduled but still active at 
time 𝑡𝑠. The third set is the decision set 𝐷𝑠 which includes all unscheduled tasks that can be 
scheduled at time 𝑡𝑠. Unscheduled tasks are available, when all preceding tasks are completed 
and the machine is available at time 𝑡𝑠 for the required processing time. 

The parallel generation scheme consists of a number of steps. Figure 5 shows the flow diagram of 
the steps in the parallel generation method. First, the new schedule time is determined. Then, 
tasks with a completion time equal to the schedule time are removed from the active set 𝐴𝑛. Also, 
new available tasks will be added to the decision set 𝐷𝑛. Next, a task from the decision set is 
selected according to the dispatching rule and starts at the current schedule time 𝑡𝑛. This activity 
is moved from the decision set to the active set. This second step will be repeated until the 
decision set is empty (Kolisch, 1996). 
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Figure 5: Flow diagram parallel generation scheme 

3.6.2. Local search heuristics 

This subsection covers heuristics that are used to find an improved schedule. These heuristics 
cannot be used for determining a schedule, but they can be used to make improvements. A local 
search heuristic, often called a meta-heuristic, starts with a feasible schedule. The heuristic tries 
to iteratively find a better schedule in the neighborhood of the current schedule. A schedule is a 
neighboring schedule, if the schedule can be derived from the current schedule using a specific 
defined modification. A neighborhood is a collection of these modified schedules (Blazewicz et 
al., 2001;  Pinedo, 2022).   

Iterative improvement 
A very simple improvement heuristic is the iterative improvement. The heuristic starts with a 
feasible solution and chooses a better solution in the neighborhood to become the current 
solution. This process continuous until there is no better solution than the current solution in the 
neighborhood (Brucker, 2006; Gawiejnowicz, 2008). 

Steepest descent 
The steepest descent search resembles the iterative improvement algorithm. In steepest 
descent, all neighbors of the current schedule are considered. From all neighboring schedules, 
the best schedule is chosen as the schedule. From there, from all neighboring schedules, the best 
schedule is selected as the schedule until there is no better schedule left (Gawiejnowicz, 2008). 

Simulated annealing 
In each iteration, simulated annealing uses two schedules, the current schedule and the 
neighboring schedule. During an iteration, a random schedule is selected from the neighborhood 
(Brucker, 2006). When the selected schedule is better than the current schedule, the current 
schedule is changed to the selected schedule.  When the selected schedule is worse than the 
current schedule, there is still a probability that it is accepted as the current schedule (Blazewicz 
et al., 2001; Pinedo, 2022). This probability is determined by the difference between the values 
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(often the objective functions) of the two schedules and a control parameter. If the neighboring 
value is higher than the current value, the formula for this probability is as follows: 

𝑃(𝑚𝑜𝑣𝑒⁡𝑡𝑜⁡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔⁡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒) = 𝑒𝑥𝑝 (
𝑐𝑢𝑟𝑟𝑒𝑛𝑡⁡𝑣𝑎𝑙𝑢𝑒 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔⁡𝑣𝑎𝑙𝑢𝑒

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
) 

This control parameter, also called the temperature, decreases while applying the heuristic. When 
this temperature becomes lower, the chance that a neighbor with a worse value is selected 
decreases (Pinedo, 2022). 

A variant of simulated annealing is the threshold acceptance method. This heuristic accepts a 
neighboring solution if the difference between the current value and the neighboring value is lower 
than a certain threshold. This threshold is gradually reduced while executing the heuristic 
(Brucker, 2006). 

Tabu-search 
The disadvantages of simulated annealing and the threshold acceptance method is that they can 
come back to solutions that they previously visited. To avoid that, visited solutions can be stored 
in a tabu-list and only solutions that are not on the list are accepted. In a tabu-search, a move is 
considered from the current schedule to the best schedule in the neighborhood, which is the 
candidate schedule. However, if the candidate schedule is already visited and is therefore 
included in the tabu-list, the schedule stays the same. The most recent visited solutions are 
stored on top of the list. The list often has a maximum number of solutions that can be stored. 
Therefore, solutions that were visited a certain number of iterations ago are removed from the list 
and can be accepted again. The tabu search ends when a certain top criterion is met. An example 
of  a stop criterion is a maximum number of iterations (Blazewicz et al., 2001; Brucker, 2006; 
Pinedo, 2022). 

3.7. Summary 
In summary, the literature has provided an elaborate theoretical framework that is needed to 
address the machine scheduling problem at Voortman’s clients. First, Section 3.1 examined key 
concepts of machine scheduling by discussing the main components of machine scheduling 
problems, the notation and the distinction between online and offline scheduling. Next, Section 
3.2 described the which important task attributes need to  be taken into account when 
determining a schedule such as processing times, release dates and due dates. After that, 
Section 3.3 discussed various machine environments that can either consist of a single 
production stage or multiple production stages. Following, Section 3.4 discussed restrictions and 
constraints that might occur in a machine scheduling problem such as preemption, precedence 
constraints and the no-wait requirement. Subsequently, Section 3.5 discussed the objectives of 
machine scheduling and how these objectives can be quantified. Most objective functions are 
based on the completion time of a job or on the due date of a job. However, it is also possible to 
combine objective functions in a composite objective function. Finally, Section 3.6 explored 
heuristics that can be used to find an optimal schedule. A schedule can for example determined 
through using dispatching rules that determine the sequence of jobs according to certain criteria. 
Besides that, an existing schedule can be improved by a local search heuristic.  

We can use the insights gained form this literature review to formulate the solution design in 
Chapter 4. The exploration of the key concepts, the different machine environments, the 
restrictions and constraints and the objective functions can be used to classify the machine 
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environment. Furthermore, the discussed heuristics allow us to develop methods to determine a 
more efficient schedule. 

  



21 
 

4. SOLUTION DESIGN 

This chapter answers the research question: How can we improve the scheduling of the metal 
plate process?” To answer the research question, we first need to gain a deeper understanding of 
the of the scheduling problem. Therefore, Section 4.1 discusses the scheduling problem that we 
address. After that, we formulate our solution model. However, before doing so, Section 4.2 
outlines the restrictions and constraints that the solution model must adhere to. Next, Section 
4.3 describes the assumptions we make to simplify the scheduling problem into a manageable 
problem. Then, Section 4.4 describes the dispatching rules that we test. Finally, Section 4.5 
introduces the solution model in which we test the dispatching rules form Section 4.4 to find an 
improved scheduling method for the metal plate production process. 

4.1. Scheduling problem 
This section discusses the scheduling problem that is identified at steel distributors. First Section 
4.1.1 briefly introduces the production process. After that,  Section 4.1.2 explains how we classify 
the machine environment according to literature. Next, Section 4.1.3 examines whether 
scheduling is done online or offline. Following, Section 4.2 discusses the objectives of this 
scheduling problem. Then, Section 4.3 discusses how this scheduling problem can be denoted 
according to the Graham notation that Section 3.1.2 discusses. Finally, Section 4.1.4 provides a 
lean problem description that summarizes this entire section. 

4.1.1. Metal plate process 

As described in Chapter 2, the production process of steel distributors consists of six steps. 
Because the coating stage is outsourced very often, this stage is left out of scope. Figure 6 shows 
the five remaining stages of the production process. All orders are cut and deburred. The 
remaining stages are optional depending on the job. The production scheduler determines the 
production schedule at the beginning of each week. However, there are no policies for 
determining the scheduling and coping with rush orders. Also, steel distributors often do not track 
data to analyze the performance of their production process. Voortman assumes that production 
schedules can be improved by using policies to determine their production schedule. 

 

Figure 6: Production process of steel distributors 

4.1.2. Machine environment 

The machine environment we are addressing consists of a series of 5 machines. Therefore, we 
consider the machine environment  multi-stage. The sequence of tasks of a job is predetermined 
and tasks are not interchangeable. Therefore, the machine environment is not a job shop or open 
shop. Because all jobs follow the same order, the machine environment resembles a flow shop. 
However, for some production stages, there are multiple machines in parallel. Company B has 5 
cutting machines for example. Also, jobs do not have to execute every task. For example, one job 
may be processed on each of the machines whereas another order may not need to be bent and 
manually drilled. Therefore, we consider this machine environment a flexible flow shop in which 
tasks can be skipped. 
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4.1.3. Online/offline scheduling  

As Section 2.2 describes, production schedulers of steel distributors determine their production 
schedule at the beginning of each week. This schedule is based on the orders that have been 
received until that point in time. Sometimes, during the week, a failed part might be rejected or 
they might receive a rush order. In this case, the schedule is adjusted real time, but the 
characteristics of the job such as processing time and due date are known beforehand. Hence, 
we consider this scheduling problem offline. 

4.1.4. Objective 

Section 3.5 describes some frequently used objective functions for machine scheduling 
problems. However, these objective functions only consist of a single aim, such as minimizing the 
number of tardy jobs. To measure the performance of the improved schedule, we selected 
multiple key performance indicators. Therefore, defining a single objective function would not suit 
the aim of this research. To test possible solutions to improve the scheduling of the metal plate 
production process we consider the results of all key performance indicators. The most important 
key performance indicators are lead times, in-process inventory levels, due date performance 
and the utilization of the machines. Voortman aims to have a due date performance around 95% 
while minimizing the lead times and in-process inventory. 

4.1.5. Notation 

As Section 3.1.2 describes, machine scheduling problems can be notated the following way: 
𝛼|𝛽|𝛾 where 𝛼 denotes the machine environment, 𝛽 denotes the constraints and restrictions and 
𝛾 denotes the objective function. Because we do not specify the objective function, we do not fill 
anything in in the 𝛾 field of the notation. Neither do we fill in the 𝛽 field of the notation, because 
there are no general constraints or restrictions to specify in the 𝛽 field. We classified the machine 
environment as a flexible flow shop in which tasks can be skipped. Skipping tasks is not 
conventional for a flexible flow shop we denote the machine environment by⁡𝐹𝐹𝑆∗ in the 𝛼 field.  

4.1.6. Summary 

In short, steel distributors need to make their production process more efficient in terms of lead 
times, inventory levels, due date performance and utilization of machines. Their production 
process consists of five stages: cutting, beveling, deburring, drilling/tapping and bending. The 
order of these tasks is fixed, however not all jobs have to execute every task. Therefore, we 
consider the machine environment as a flexible flow shop in which tasks can be skipped. The 
scheduling is done offline at the beginning of each week. We denote this machine scheduling 
problem by 𝐹𝐹𝑆∗| − | −, because we classify the machine environment as  a flexible flow shop in 
which orders can be skipped, there are not constraints for the 𝛽 field and there is no objective 
function for the 𝛾 field. There is not a single objective function as this scheduling problem has 
multiple objectives. These objectives are minimizing lead times and in-process inventory, whilst 
maintaining an acceptable due date performance and machine utilization. 

4.2. Restrictions & constraints solution model 
To determine an optimal schedule, the schedule must satisfy a set of constraint and restrictions 
to ensure feasibility. The following points outline the restrictions and constraints that are relevant 
to the machine scheduling problem we address: 

• Preemption is not allowed as it is unconventional for steel distributors to interrupt a task 
as a result of an adjustment in the schedule. 
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• There are no precedence constraints between jobs. However, some jobs might have a 
higher priority than another. Yet, this does not imply that one job is not allowed to start 
processing. 

• It is possible to have in-process inventory between production stages. So, jobs do not have 
to start the next task after finishing another. Hence, the no-wait requirement does not 
apply. 

• Before a job can start on a machine, time is required to set up the machine. 
• When a job is finished on one machine, it has to be transported to the next machine. The 

time it takes to bring all pieces of a job to the next machine depends on the availability of 
logistics workers, the number of pieces and the distance to the next machine. 

• Every machine can process only one task at a time. 
• A job can only be at one machine at a time, because all pieces of a job are clustered 

together at all times. 
• Jobs cannot be scheduled outside the work shifts which are from 8:00 until 16:00. 

4.3. Assumptions solution model 
We plan to translate the real-world situation of steel distributors into a solution model. However, 
the real-world situation is too complex to develop a clear framework. To simplify the real-life 
scenario into a manageable mathematical model that we can analyze, we make the following 
assumptions: 

• Tools, staff and raw materials are always available during work shifts. 
• All staff start and end their shift at the same time. 
• When a task is interrupted because of a break or the end of the shift, the task can resume 

without additional setup and processing time. 
• Machines of the same type have the same operating speed. 
• It takes 30 minutes to move all pieces from one production stage to the next. 

4.4. Testing dispatching rules 
To determine which scheduling method gives the best performance of the production schedule, 
we analyze and compare the results of testing several dispatching rules. The dispatching rules we 
test are chosen in consultation with Voortman. We analyze results for the following dispatching 
rules: 

• Earliest due date (EDD) 
• Shortest processing time (SPT) 
• Weighted shortest processing time (WSPT) 
• Minimal slack (MS) 
• Apparent tardiness cost (ATC) 
• Composite dispatching rules 

Earliest due date 
The earliest due date rule (EDD) prioritizes jobs with smaller due dates. Therefore, jobs for which 
the due date is closer in time will be processed first. This means that the due date performance 
should improve upon application of this rule. Furthermore, the rule is used to reduce the lateness 
of jobs as the job that has to be finished the earliest is prioritized. Attaining a high due date 
performance is one of the objectives of the scheduling problem. Therefore, we consider this 
dispatching rule suitable for solving this problem. 
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Shortest processing time 
The shortest processing time rule (SPT) sorts the jobs in ascending order of processing time. 
Mainly, the shortest processing time rule is applied to minimize the average job completion time 
(Leung, 2004), which is one of the objectives of the scheduling problem. 

Weighted shortest processing time (own version) 
The shortest processing time (SPT) and the earliest due date (EDD) rules focus on two separate 
objectives. However, our objective is to both decrease the lead times and improve the due date 
performance. Hence, we came up with an own version of the weighted shortest processing time 
rule. The weighted shortest processing time rule (WSPT) prioritizes the job for which the weight 

divided by the processing time (
𝑤𝑗

𝑝𝑗
) returns the highest value. To determine the weight of a job we 

came up with the following formula: 𝑤𝑗 =
1

max⁡(𝑑𝑗−𝑡,⁡⁡⁡1)
. 𝑑𝑗 is the due date of job 𝑗 and 𝑡 is the 

current time. The weight of the job is determined according to the amount of time left till the due 
date of the job. Therefore, this rule can be used to maintain short lead times while accounting for 
the remaining time until the due date. The denominator cannot be negative, because this would 
result in a negative outcome of the formula. If we allowed the denominator to be lower than zero, 
overdue jobs would have the lowest priority.  

Minimal slack 
The minimal slack rule (MS) prioritizes job with the least amount of slack. Slack is the time that is 
the time that is left until the due date while accounting for the processing time. The slack of a job 
is calculated as follows: 𝑠𝑙𝑎𝑐𝑘𝑗 = 𝑑𝑗 − 𝑡 − 𝑝𝑗(𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔), where 𝑝𝑗(𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔) is the remaining 
processing time of job 𝑗. Similar to the earliest due date rule, the minimal slack rule prioritizes 
jobs with an earlier due date. Both rules minimize the risk of jobs completing late. However, the 
minimal slack rule also accounts for jobs that have longer processing times. 

Apparent tardiness cost 
The apparent tardiness cost dispatching rule (ATC) is a composite dispatching rule that is often 
used to reduce costs that are associated with late jobs. The rule combines the conventional 
weighted shortest processing time (WSPT) rule and the minimum slack (MS) rule into the following 

formula:⁡ 𝐼𝑗(𝑡) =
𝑤𝑗

𝑝𝑗
∗ exp⁡ (−

max(𝑑𝑗−𝑝𝑗−𝑡,0)

𝑘∗𝑝̅
). 𝑝̅ is the average of the remaining processing times 

and 𝑘 is a scaling parameter which we determine through running experiments and analyzing 
which value of k returns the best performing schedule. Furthermore, all jobs have the same 
weight, which we set to 1. 

Composite dispatching rules 
Besides testing the already existing dispatching rules, we introduce two composite dispatching 
rules. Some dispatching rules, like the shortest processing time (SPT) rule, only take the 
processing time of a job into account, ignoring factors like the due date. Therefore, we expect that 
the due date performance is lower when we solely use the SPT rule compared to a combination 
of the SPT rule and a dispatching rule that takes the due date into account. Therefore, we combine 
the SPT rule with the EDD and the MS in two composite dispatching rules, which we name the 
SPT/EDD and SPT/MS rules respectively. The formula for the SPT/EDD rule is 𝛼 ∗ 𝑆𝑃𝑇 + (1 − 𝛼) ∗

𝐸𝐷𝐷. The formula for the SPT/MS rule is very similar to the formula for the SPT/EDD, namely 𝛼 ∗
𝑆𝑃𝑇 + (1 − 𝛼) ∗ 𝑀𝑆. In both formulas 𝛼 is a weight ranging from 0 to 1. The values for 𝛼 are 
determined through tuning the value for 𝛼 in experiments. 
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4.5. Solution model 
For the solution we use the dispatching rules that Section 4.4 discusses to determine a 
production schedule and obtain results of the key performance indicators. The solution model 
consists of two parts. First, Section 4.5.1 discusses how we generate datasets containing lists of 
order to be scheduled. Second, Section 4.5.2 explains how we use a Python tool to determine 
production schedules according to the dispatching rules to test their performance. 

4.5.1. Generating datasets 

We did not succeed in receiving a real dataset or data on processing times from one of Voortman’s 
clients. Therefore, we generate datasets to run experiments with. These datasets contain 52 
weeks of orders. The data that we generate per order are: order size, release date, due date and 
processing time per task. This section discusses how we make estimates in consultation with 
Voortman on which we base the datasets. 

Number of orders & order size 
Voortman expects that steel distributors schedule the same hours of tasks as working hours in a 
week. So if a steel distributor has two cutting machines that are operating the entire week of 40 
hours, this means that the workload is approximately 80 hours of cutting tasks per week. This is 
the expectation for all workstations except for the drilling and tapping workstation, because this 
is the only workstation that is not busy at all times. Voortman assumes that the workload for the 
drilling and tapping workstation is 75% of the working hours. Furthermore, the processing times 
for the cutting stage are estimated by using the averages from data of Voortman’s own production 
hall. The processing times of the remaining stages are deducted from the hours the machine is 
operating and the estimated orders. Voortman assumes that the mean order size is 40 pieces, 
with a standard deviation of 10. From the data from Voortman’s production hall can be derived 
that the average processing time at the cutting machine is 0.05 hours per piece. Multiplying the 
average order size with the average processing time gives an average of 2 cutting hours per order. 
Based on this estimate, one can also derive the mean number of orders per week as all orders 
need to be cut. The number of orders per week is 20 per each cutting machine, in a 40 hour work 
week. The machine environment in which we test the dispatching rules is similar to the machine 
environment of a steel distributor we visited and interviewed. This machine environment consists 
of 5 cutting machines. This means that the dataset contains 100 orders (200 hours of cutting 
workload) per week. Therefore, the datasets contain 5200 orders each. 

Due dates & release dates 
The due dates in the datasets are randomly distributed over weekdays two weeks from the start 
of the schedule till two weeks after the end of the schedule. We choose to determine a production 
schedule for one year starting on July 1 2024, so the earliest possible due date is on July 15 2024. 
Furthermore, Voortman estimates that: 

• 20% of the orders come in 3 weeks prior to the due date. These are orders for which the 
client expects a lower price, because of the long period before the due date. 

• 60% of the orders come in 2 weeks prior to the due date. These are the regular orders of a 
steel distributor. 

• 20% comes in 1 week prior to the due date, which are the rush orders that are processed 
for a higher price and the orders with failed parts that have to be processed again. 

We incorporate this into the dataset by setting the release date to 1, 2 or 3 weeks prior to the due 
date based on these probabilities. 
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Processing times & setup times 
As mentioned earlier, the processing time at the cutting machine is derived from data that is 
collected in the production hall. These processing times include the setup times of the machines. 
Therefore, we use an aggregated setup time per piece that is included in the processing times. 
Table 2 presents the processing time per stage per piece. In the datasets, the processing times 
are calculated for the entire order by multiplying the number of pieces by the processing time per 
piece. For these processing times we use a standard deviation of 10% of the processing time to 
reduce regularity in the schedule. 

Stage Processing time (h) 
Cutting 0.05 
Manual beveling 0.067 
Deburring 0.02 
Drilling & tapping 0.25 
Bending 0.083 

Table 2: Processing times per piece per stage 

Routes through the process 
The routes through the process vary per job. Therefore, what the probability is that an order has a 
task on a certain machine. Every order has to be cut and deburred. Therefore, all orders in the 
dataset contain processing times for these tasks. To calculate what percentage of orders visits 
the other three stages (manual beveling, drilling and tapping and bending), we used the same 
method as for calculating the number of orders. We determined how many orders can be 
processed on average in the time these machines are available. Next, we calculated the 
percentage of orders that has to be processed on each type of machine relative to the total 
number of orders: 

• 15% of the jobs are processed on the manual beveling machine. 
• 6% of the jobs are processed on the drilling/tapping machine. 
• 12% of the jobs are processed on the bending machine. 

4.5.2. Python tool 

To test the performance of the dispatching rules, we develop a tool in Python that determines the 
production schedule for 52 working weeks. The production schedule starts July 1, 2024, so it ends 
on June 27, 2025. Furthermore, the datasets are based on the machine environment of Company 
B. Therefore, we use the same machine environment which consists of 5 cutting machines, 1 
beveling machine, 2 deburring machines, 2 drilling/tapping machines and 1 bending machine. The 
input for the tool is the dataset that Section 4.5.1 describes. Furthermore, we need to specify the 
selected dispatching rule and the value for 𝑘, in case the ATC rule is selected. 

As Section 3.6.1 explains, for implementation of a dispatching rule a generation scheme is 
required. To solve this scheduling problem we chose to generate the schedule according to the 
parallel generation scheme. This scheme is suitable for determining a schedule with low idle 
times of machines, because the parallel generation scheme is designed to schedule a job as soon 
as the machine is available (Kolisch, 1996). Reaching a high utilization of the machines is one of 
the goals for improving the schedule. Hence, the parallel generation scheme suits better than the 
serial generation scheme. 

Figure 7 displays how we apply the parallel generation scheme in our Python tool. The tool selects 
the machine that is available the earliest to schedule a task on that machine. Then, the decision 
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set is created for that machine for that point in time. Jobs that are in the decision set must comply 
with these criteria: 

• The job must be released. 
• The job cannot be busy at another machine. 
• The job is not in transport between production stages. 
• The job has to perform a task on the machine. 
• All preceding tasks must be completed. 

When the decision set is created, there are two options: there are one or more jobs that can be 
scheduled or the decision set is empty. When there are one or more jobs to be scheduled, the tool 
schedules a job according to the selected priority rule. The next time that the machine becomes 
available is the time when the job is finished on the machine. When the decision set is empty, the 
tool sets the next point in time to select that machine to the first moment that a job, becomes 
available for that machine. So either a job that was busy or a new job is released that can start on 
that machine. 

In this scheduling problem, throughout the week, new jobs are received. However, these jobs are 
only scheduled from the next week, because production schedulers determine the schedule at 
the beginning of each week. Therefore, when the next point in time a machine becomes available 
surpasses the end of the week, these new jobs are released to be scheduled. In this research we 
aim to recommend which scheduling method works the best overall. Therefore, we do not adjust 
the weekly schedule during the week when an urgent order comes in for example. Also, urgent 
orders will have a higher priority in most of the dispatching rules that Section 4.4 mentions. Hence, 
urgent orders will be scheduled sooner overall. 

When the next machine and next point in time are set, this loop repeats itself. The loop ends when 
the earliest time that a machine is available is outside of the given period to schedule tasks. In our 
case this means that if the time is beyond 16:00 on June 27, 2025, the tool is finished scheduling. 
The loop does not only end when the next point in time is outside of the timeframe. It also ends 
when all jobs are scheduled as there are no jobs left to schedule anymore. 

The output of the tool is the production schedule, an overview of the unscheduled tasks, an 
overview of the utilization of the machines and an overview of the other key performance 
indicators (average lead time, average in-process inventory and due date performance).  
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Figure 7: Flowchart scheduling tool 

4.6. Summary 
This chapter formulated the solution design of the research. First, we described the machine 
scheduling problem we address. After that, we outlined the restrictions and constraints that the 
solution model must adhere to. Next, we simplified the scheduling problem by making 
assumptions to turn the scheduling problem into a manageable solution model. Then, we 
selected the dispatching rules which we test. These dispatching rules are: shortest processing 
time (SPT), earliest due date (EDD), our own version of weighted shortest processing time (WSPT), 
minimal slack (MS) and apparent tardiness cost (ATC). Besides that, we try to combine the SPT 
with the EDD rule and the SPT with the MS rule in two composite dispatching rules to test whether 
a combination of these dispatching rules yields an improved performance. Finally, we described 
our solution model to test the performance of the dispatching rules. First, we generate datasets 
with a list of orders. Next, we import the dataset into a Python tool that generates a schedule 
according to the parallel generation scheme. This tool generates the productions schedule and 
the key performance indicators as output, which we use to compare the performance of the 
dispatching rules.  
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5. EXPERIMENTS & RESULTS 

This chapter evaluates the solution design through experimenting with the dispatching rules 
Section 4.4 describes. First, Section 5.1 discusses the experimental design which includes a 
description of the experiments we run. Next, the following sections present the experiments and 
the results. Finally, Section 5.8 summarizes the chapter. 

5.1. Experimental design 
To evaluate the effectiveness of the solution model, we run a set of experiments. In these 
experiments, we test the dispatching rules that Section 4.4 discusses. This section describes the 
experiments we run and settings of these experiments. First, Section 5.1.1 provides an overview 
of the experiments we run. Next, Section 5.1.2 discusses how we compare the results of the 
experiments through key performance indicators. Finally, Section 5.1.3 describes how we reduce 
randomness of the outcome and the computational settings of the experiments. 

5.1.1. Experiments 

To obtain the answer to our main research question, we have to perform a set of experiments. To 
reduce variability in the results of the experiments, run the tool with 5 datasets. The properties of 
these datasets may differ per experiment. For the first couple of experiments, we generated 5 
datasets with the properties that Section 4.5.1 describes. In the other experiments, properties like 
the standard deviation of the processing times, the number of orders and the pattern in which 
orders arrive. The other properties of the dataset always remain the same as Section 4.5.1 
describes. Table 3 shows the properties for experiments 1 up to and including 3. 

Std. dev. processing time # orders Order arrival pattern 
10% 5200 Random 

Table 3: Properties experiments 1-3 

First, before we run experiments to compare the performance of dispatching rules, we determine 
the value for 𝑘 that returns the best performance of the ATC rule. We do this by running the tool 
for different values for 𝑘 and comparing the results of the key performance indicators. In the next, 
experiment we use the same datasets to tune the value for 𝛼 for the SPT/EDD rule. After that, we 
repeat this with the same datasets for the SPT/MS rule. 

When the values for 𝑘 and 𝛼 are determined, we start with the first experiment to compare the 
performance of the dispatching rules. For this experiment, we generate 5 new datasets with the 
same properties as in Table 3. We view these properties as “regular circumstances”, because 
Voortman assumes the datasets with these properties resemble the order list of a steel distributor 
the most. The results of this experiment provide us with a good indication of which dispatching 
rule performs the best. 

Besides testing the dispatching rules under regular circumstances, we also test which 
dispatching rules perform the best in other scenarios. Therefore, in the fourth experiment, we test 
the performance of the dispatching rules when the variability of the processing times becomes 
higher or lower. In the first three experiments, the standard deviation of the processing times was 
10%. In these scenarios, we adjust the standard deviation of the processing times to 0%, 5% and 
15% and compare the results to the results for the experiment with a standard deviation of 10%. 
Table 4 displays the properties of the datasets for this experiment. 
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Std. dev. processing time # orders Order arrival pattern 
0%, 5%, 15% 5200 Random 

Table 4: Properties experiment 4 

In the fifth experiment, we test the performance of the dispatching rules in under- and 
overcapacity. We test these scenarios by adjusting the number of incoming orders by 5%. This 
means we run experiments for 4.940 and 5.460 orders. As Table 5 shows, the other properties 
remain the same as in the first three experiments. 

Std. dev. processing time # orders Order arrival pattern 
10% 4.940, 5.460 Random 

Table 5: Properties experiment 5 

Throughout all experiments, the orders arrived randomly during the weeks. Therefore, more orders 
can be received in one week compared to another. In this scenario, the same number of orders 
arrive every day. Therefore, the workload that comes in every week is more equal compared to the 
previous experiments. Table 6 shows that all properties of the dataset are the same as in the first 
three experiments except for the order arrival pattern. 

Std. dev. processing time # orders Order arrival pattern 
10% 5200 Constant 

Table 6: Properties experiment 6 

5.1.2. Key performance indicators 

From the schedule that is generated by the tool, we want to analyze the performances of the 
dispatching rules that we test in the experiments. To analyze and compare the performances of 
the dispatching rules, we use the following key performance indicators: 

• Utilization of the machines; the percentage of time that a machine is busy processing jobs 
compared to the total time in the schedule. Machines are major investments for steel 
distributors. Hence, they find it important that their machines are running most of the 
time. 

• Average lead time; the average of the lead times of all finished tasks. The lead time is the 
time from the moment the first task of a job commences until the final task is finished. 
Shortening the lead times is one of the objectives of the scheduling problem identified at 
steel distributors. 

• Average in-process inventory; the average amount of inventory that is idle in the process. 
Steel distributors aim to use space in their warehouses as efficiently as possible. 
Therefore, they aim to have as little in-process inventory to save space. 

• Due date performance: this is the percentage of the jobs that is finished on time. To keep 
customers satisfied, steel distributors must finish orders on time. 

5.1.3. Experimental validation  

This section covers the validation of the experiments including randomness of results and 
computational settings. 

Randomness 
Datasets generated with the properties that Section 5.1.1 describes might deviate from each 
other. Therefore, the outcome of the experiment might differ per dataset, while the properties of 
the datasets are the same. To reduce randomness of the results, we run each experiment with 5 
different datasets with the same properties. 
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Computational settings 
The code of the tool is made in Python 3.12.3. Furthermore, we used Microsoft Excel version 2405 
to generate and store data. Finally, we run the experiments in the UT-JupyterLab. This is a server 
hosted by the University of Twente that contains multiple powerful processors, memory cards and 
graphics cards. For the exact specifications we refer to the website of the University of Twente 
(University of Twente, sd). 

5.2. Experiment 1: determining value for 𝑘 
First, we determine the value of 𝑘 for the apparent tardiness cost (ATC) dispatching rule to make 
sure we analyze the performance of the best performing version of the ATC rule. We do this by 
running experiments in which we tune the value for 𝑘 and comparing the results. The first values 
to run experiments with are integer values. Table 7 presents the key performance indicators for 
testing integer value. 

𝒌 = 
Average lead time 

(hours) 
Average in-process 
inventory (pieces) 

Due date performance 
(%) 

1 14.32 1027.9 95.2 
2 13.91 1000.6 95.0 
3 13.42 958.4 94.7 
4 13.08 934.9 94.2 
5 13.32 968.7 93.3 
6 13.49 993.7 92.5 
7 13.85 1031.3 91.7 

10 14.67 1137.4 89.8 
Table 7: Results experiments integer values for 𝑘 

The results show that the due date performance decrease as the value for 𝑘 increments. 
Therefore, the probability that the value is greater than 10 will be the best performing value is very 
low as the due date performance is more than 5% lower than for 𝑘 = 1, while 𝑘 = 1 also performs 
better regarding the other key performance indicators. Furthermore, the utilization of the drilling 
and tapping machines also diminishes for higher values of 𝑘. The best value for 𝑘 depends on the 
preference of the key performance indicators. As some values for 𝑘 perform better in terms of due 
date performance, whereas other values perform better in terms of average lead time. Voortman 
aims to have a due date performance around 95% or higher, therefore we consider the values for 
𝑘 that fulfil this aim. For 𝑘 = 4, the apparent tardiness cost rule performs best in terms of average 
lead time and average in-process inventory, whilst the due date performance is 94.2%. Therefore, 
we test values for 𝑘 close to 4 with one decimal point. We test these values on 5 new datasets 
because the previous experiment has already shown that the best performing value of 𝑘 is around 
4. Hence, using the same datasets will yield the same results. 

The results in Table 8 show that there is little difference in all key performance indicators when the 
value for 𝑘 is adjust with 0.1. From this experiment, we notice that 𝑘 = 4.0 again returns the lowest 
average lead time and the lowest average in-process inventory. Also, the due date performance of 
94.2% is acceptable regarding the aim of around 95%. Therefore, for the remainder of the 
experiments in which we implement the apparent tardiness cost (ATC) rule, the value of 𝑘 equals 
4. 

𝒌 = 
Average lead time 

(hours) 
Average in-process 
inventory (pieces) 

Due date performance 
(%) 

3.5 13,26 955,61 94,4% 
3.6 13,25 959,86 94,3% 
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3.7 13,16 946,99 94,3% 
3.8 13,21 954,36 94,3% 
3.9 13,20 957,13 94,2% 
4.0 13,14 949,88 94,2% 
4.1 13,17 953,68 94,1% 
4.2 13,37 975,55 94,0% 
4.3 13,35 978,08 94,0% 
4.4 13,25 962,23 93,8% 
4.5 13,43 984,12 93,7% 

Table 8: Results experiments values with one decimal point for 𝑘 

5.3. Experiment 2: determining value for 𝛼 (composite dispatching rules) 
As Section 4.4 describes, we also test two composite dispatching rules. The formula for these 
composite dispatching rules is 𝛼 ∗ (𝑅𝑢𝑙𝑒⁡𝐴) + (1 − 𝛼) ∗ (𝑅𝑢𝑙𝑒⁡𝐵). We combine the shortest 
processing time (SPT) rule with the earliest due date (EDD) and minimal slack (MS) rules. For both 
rules we determine the value for 𝛼 that yields the best performance of the dispatching rule. We do 
this by running experiments and tuning the value for 𝛼. We compare the results to analyze which 
value for 𝛼 performs the best. First, Section 5.3.1 discusses the results for the SPT/EDD rule. Next, 
Section 5.3.2 presents the results for the SPT/MS rule. 

5.3.1. SPT/EDD 

For the SPT/EDD rule we determine the value for 𝛼 in the following formula 𝛼 ∗ 𝑆𝑃𝑇 + (1 − 𝛼) ∗

𝐸𝐷𝐷. We run experiments with values for 𝛼 between 0.1 and 0.9. These experiments yield the 
results shown in Table 9. For higher values of 𝛼 the due date performance decreases. This can be 
explained by the fact that when 𝛼 increases, the SPT rule weighs more and the EDD weighs less. 
The due date performance is the highest for 0.3 and 0.4. The average lead time and the average in-
process inventory are lower for 0.3. Hence, we consider 0.3 the best performing value for 𝛼 in the 
SPT/EDD rule and use this value in the remaining experiments. 

𝜶 = 
Average lead time 

(hours) 
Average in-process 
inventory (pieces) 

Due date performance 
(%) 

0.9 19,36 1226,73 79,0% 
0.8 17,34 1107,31 80,7% 
0.7 16,05 1033,78 81,6% 
0.6 14,76 945,46 82,1% 
0.5 14,23 909,00 82,2% 
0.4 13,57 850,94 82,3% 
0.3 13,11 820,68 82,3% 
0.2 12,78 799,67 82,2% 
0.1 12,75 798,34 82,0% 

Table 9: Results experiments determining value for 𝛼 in SPT/EDD rule 

5.3.2. SPT/MS 

To determine the best performing value for 𝛼 for the SPT/MS rule, we also run experiments with 
values between 0.1 and 0.9. Table 10 shows the results for these experiments. We notice that for 
higher values of 𝛼 the average lead time and average in-process inventory decreases, because the 
SPT rule weighs more for higher values of 𝛼. For 𝛼 = 0.8, we find an optimum for all three key 
performance indicators. Therefore, we consider 0.8 the best value to use in the remaining 
experiments. 

𝜶 = 
Average lead time 

(hours) 
Average in-process 
inventory (pieces) 

Due date performance 
(%) 
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0.9 13,37 982,61 93,1% 
0.8 13,18 934,72 94,0% 
0.7 14,12 1005,12 93,6% 
0.6 14,84 1076,62 92,8% 
0.5 14,96 1097,05 92,6% 
0.4 16,11 1188,80 91,6% 
0.3 16,73 1179,14 91,3% 
0.2 16,86 1162,88 91,6% 
0.1 17,00 1164,67 91,8% 

Table 10: Results experiments determining value for 𝛼 in SPT/MS rule 

5.4. Experiment 3: Comparing under regular circumstances 
Now the best performing values for 𝑘 and 𝛼⁡are determined. We run experiments under regular 
circumstances for the selected dispatching rules to test which dispatching rule returns the best 
performing schedule. Table 11 and Figure 20 in Appendix 9.1 display the exact results of the 
experiment and the utilization of the machines respectively. In the tool, the machines are 
numbered. For example, a cutting machines are numbered 1.1, 1.2, 1.3, and so on, because it is 
the first machine in the sequence. Table 12 in Appendix 9.2 serves as a legend for the numbers of 
the machine. Figure 8 shows that the ATC rule and the SPT/MS rule outperform the other 
dispatching rules in average lead time. The SPT/MS rule performs slightly better than the ATC rule 
with a lead time of 12,13 hours compared to 12,26 hours. Also, it can be noticed that the 
dispatching rules that solely prioritize on one attribute of a job overall perform the worst regarding 
the average lead time. Figure 9 also shows that the ATC rule and the SPT/MS rule outperform the 
rest of the dispatching rules with regards to average in-process inventory. The shapes of both 
graphs are quite similar to each other. Therefore, there seems to be a correlation between the 
average lead time and the average in-process inventory. When the lead time of jobs are shorter 
while the processing times remain the same, it means that jobs are idle for shorter periods on 
average. This means there is also less in-process inventory. 

 

 

Figure 8: Average lead time under regular 
circumstances

  

Figure 9: Average in-process inventory under regular 
circumstances 

Figure 10 displays the due date performance of the dispatching rules under regular 
circumstances. The ATC rule and the SPT/MS rule also outperform the other dispatching rules 
regarding this key performance indicator. Both rules approximately have the same due date 
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performance, which is 93,8% and 93,7% for the ATC rule and the SPT/MS rule respectively. 
Therefore, we conclude that the SPT/MS rule outperforms the ATC rule by a small fraction 
regarding the average lead time and average in-process inventory level. However, this small 
difference can rely on chance as we ran 5 experiments to determine these results. The similarity 
between the two rules can be explained by that both rules use the same attributes of a job to 
determine the priority, namely slack and processing time. Furthermore, we assume that the EDD 
rule resembles the current scheduling method of steel distributors. We notice that MS and WSPT 
outperform this dispatching rule as well. 

 

Figure 10: Due date performance under regular circumstances 

5.5. Experiment 4: Varying processing times 
After running experiments under regular circumstances, we test the performance of the 
dispatching rules for a scenario in which there is less or more variability in the processing times. 
This scenario is created by adjusting the standard deviation of the processing times to 0%, 5% and 
15%, where 10% is the standard deviation under regular circumstances. Appendix 9.3 presents 
the exact results and graphs showing the machine utilization. Figure 11 shows the average lead 
times that result from these experiments. Overall, the average lead time increases when the 
variability in processing times increases. Also it can be noticed that the performances of the ATC 
and the SPT/MS rule are very similar and outperforming the other dispatching rules. 
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Figure 11: Average lead times for different standard deviations of processing times 

Figure 12 depicts the average in-process inventory, which resembles Figure 11 that shows the 
average lead times. This strengthens the idea that the average lead time and the average in-
process inventory are correlated. Surprisingly, the SPT/EDD rule outperforms the ATC and the 
SPT/MS rule in some cases, while it does never outperform any of both rules regarding the average 
lead time.  

 

Figure 12: Average in-process inventory for different standard deviations of processing times 

 

Finally, we analyze the due date performance for different levels of variation in the processing 
times. Figure 13 shows the due date performance of the dispatching rules. From this can be 
concluded that the SPT/EDD rule performs well regarding the average lead time and the average 
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in-process inventory but performs far worse in terms of due date performance compared to the 
ATC rule and the SPT/MS rule. It is difficult to judge which of these two rules performs the best for 
different levels of variability in processing times. For the average lead time and the average in-
process inventory, both rules have similar performances and the best performing rule differs per 
level of variability. However, Table 15 demonstrates that for the due date performance, the ATC 
rule always outperforms the SPT/MS rule by a small fraction. Therefore, we consider the ATC rule 
as more suitable over multiple levels of variability in processing times, while there is a very small 
difference with the SPT/MS rule. 

 

Figure 13: Due date performance for different standard deviations of processing times 

5.6. Experiment 5: Over- and undercapacity 
Next, we analyze how the dispatching rules perform when 5% more orders come in and 5% less 
orders come in. We run experiments with 5 datasets of 4.940 orders and 5 datasets of 5.460 
orders. The results of these experiments and graphs of the utilization of the machines are shown 
in Appendix 9.4. Figure 14 shows the average lead times for the different scenarios. We notice that 
for the EDD and the MS rule the average lead time increases when there are more orders. These 
two rules differ from the other rules as all other rules also take the shortest processing time into 
account. Therefore, when a new short order arrives, this order will be processed in a short time 
which diminishes the average lead time. Furthermore, we notice that the performances of the ATC 
and the SPT/MS rule are similar again and that those rules are the best performing in both 
undercapacity and overcapacity. Also, the graph for the average in-process inventory shown in 
Figure 15 is very similar to the graph of the average lead time 

In both graphs, it can be noticed that the SPT rule performs the worst in overcapacity. This can be 
caused by the fact that the SPT rule now selects jobs with longer processing times more often as 
all jobs with short processing times are finished. When an order with a shorter processing time 
comes in, the SPT rule selects this order and ignores the order with the longer processing time. 

When 5% more orders are received, it becomes more important to prioritize the right jobs. 
However, this also means that a lot of jobs cannot be finished as there is more hours in workload 
than hours in the schedule. From the utilization can be noticed that the utilization of the 
drilling/tapping machines is very low for the dispatching rules that take the processing time into 
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account. When there are a lot of orders, these rules almost never select the rules with long 
processing times. Therefore, a lot of these jobs will not be processed at all and be left over at the 
end of the schedule. Jobs with long processing times often have to be processed at this station. 
Therefore, the utilization of these machines is very low.

 

Figure 14: Average lead times for different numbers of orders 

 

Figure 15: Average in-process inventory levels for different numbers of orders 

Figure 16 displays the due date performance in over- and undercapacity. In overcapacity the due 
date performance is very high overall. Still, the ATC rule and the SPT/MS rule are the two best 
performing dispatching rules. Overall, the due date performance deteriorates when more orders 
arrive and thus the workload increases. In undercapacity, we notice that the EDD rule is the worst 
performing, while this rule only takes the due date of a job into account. The EDD rule selects the 
job with the earliest due date. However, there are more jobs with the same due date than can be 
finished before that due date. Therefore, not all jobs are finished on time and the left over jobs still 
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have to be processed. Hence, the backlog of orders increases all the time and the due date 
performance becomes worse over time. 

 

Figure 16: Due date performance for different numbers of orders 

From this experiment, we can conclude that the ATC and SPT/MS rule perform the best for the 
scenarios of over- and undercapacity as well. Table 18 in Appendix 9.4 shows that the due date 
performance is better for the ATC rule in all cases. Hence, we consider the ATC rule as the most 
suitable rule in these scenarios. 

5.7. Experiment 6: Constant order arrival pattern 
In this scenario, we test how the dispatching rules perform when the same amount of orders is 
received every day. This reduces the variability of workload over the weeks. This means there are 
less peaks of orders that cause situations of undercapacity. The exact results and graph of the 
utilization of the machines can be found in Appendix 9.5. Figure 17 and Figure 18 demonstrate 
that the ATC rule and the SPT/MS rule are the two best performing dispatching rules for a constant 
order arrival pattern as well. Table 19 shows that the SPT/MS rule outperforms the ATC rule with 
regards to average lead time and average in-process inventory by a small amount. 
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Figure 17: Average lead time constant order arrival 
pattern

 

Figure 18: Average in-process inventory constant 
order arrival pattern

Figure 19 displays the due date performance of the dispatching rules when orders have a constant 
arrival pattern. From the graph we notice that the ATC rule and the SPT/MS rule again outperform 
the other dispatching rules. Like for the other experiments, the ATC rule outperforms the SPT/MS 
rule on a small fraction with regards to the due date performance. In this experiment the ATC rule 
reached the objective of a 95% due date performance. Therefore, we conclude that the ATC rule 
is the best performing dispatching rule when there is a constant order arrival pattern. 

 

Figure 19: Due date performance constant order arrival pattern 

5.8. Summary 
We run experiments with the following dispatching rules to test how the method of scheduling at 
steel distributors can be improved: shortest processing time, earliest due date, weighted shortest 
processing time (weight based on remaining time until the due date), minimal slack, apparent 
tardiness cost, SPT/EDD and SPT/MS. First, we determine the value for 𝑘 for the ATC rule and we 
determine the values for 𝛼 for the SPT/EDD and the SPT/MS rule that perform the best. We run the 
remainder of the experiments with these values. Next, we test these dispatching rules in multiple 
scenarios. The scenarios we tested are regular circumstances, altering variabilities in processing 
times, over- and undercapacity and a constant order arrival pattern. 
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6. CONCLUSION 

6.1. Conclusions 
This section discusses the main findings and motivates the answer to the main research question: 

“How can the processing of metal plates be scheduled more efficiently in terms of inventory levels 
and lead times?” 

We started this research with an analysis of the current situation regarding the scheduling of the 
metal plate production process at Voortman’s clients. Voortman serves three types of clients for 
metal plates processing: ‘steel fabrication companies, offshore & energy industry’, ‘equipment 
manufacturers’ and ‘steel distributors’. We chose to explore the production process of steel 
distributors and their method of scheduling in more detail. This research involved analyzing of 
which stages their production process consists;  how production schedulers determine the 
schedule in general; what their aims are when determining the schedule; how they deal with 
received orders, rush orders and rejected parts and how pieces are clustered throughout the 
production process. 

Next, we conducted a literature review to establish a theoretical framework. The theoretical 
framework provided relevant theory that we could use to classify the machine scheduling 
problem. The machine environment is a flexible flow shop in which some production stages can 
be skipped. Furthermore, the schedule is determined  offline at the beginning of each week with 
on a time horizon of one week. We did not identify a single objective function because the 
performance of the schedule relies on multiple key performance indicators. Therefore, we 
measured the performance of the dispatching rules through four key performance indicators: 
utilization of machines, average lead time, average in-process inventory and due date 
performance. 

To improve the scheduling method for the metal plate production process, we developed a tool 
which automatically determines the schedule according to a dispatching rule. Before the tool can 
be implemented, we selected a set of dispatching rules to run experiments with. We 
experimented with the following already existing dispatching rules: shortest processing time 
(SPT), earliest due date (EDD), minimal slack (MS), weighted shortest processing time (WSPT) and 
apparent tardiness cost (ATC). For the apparent tardiness cost, we experimented with multiple 
values for 𝑘 to determine which value enhances the performance of the dispatching rule the most. 

Besides that, we tested two composite dispatching rules which were SPT/EDD and SPT/MS. The 
formula for SPT/EDD is as follows: 𝛼 ∗ 𝑆𝑃𝑇 + (1 − 𝛼) ∗ 𝐸𝐷𝐷. By running experiments we 
determined the best performing value for 𝛼 which is 0.3. SPT/MS has a similar formula: 𝛼 ∗ 𝑆𝑃𝑇 +
(1 − 𝛼) ∗ 𝑀𝑆. For this dispatching rule we found that 𝛼 = 0.8 yields the best performance. 

After completing the set of dispatching rules, we tested the performance of these dispatching 
rules in multiple scenarios. First, we tested the dispatching rules on a list of orders that was based 
on estimations in consultation with Voortman. Because this list of orders was based on 
estimations, we could adjust properties of these datasets to test different scenarios. Therefore, 
next, we tested how the dispatching rules perform if we altered the standard deviation of the 
processing times. After that, we tested how the dispatching rules perform in undercapacity and 
overcapacity. For these cases the number of orders is adjusted by 5% for the same time period. 
Lastly, we tested in a scenario in which every day the same amount of orders are received. In every 
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experiment the ATC rule and the SPT/MS rule performed the best. The average lead time and the 
average in-process inventory were nearly the same for all experiments. Also, the due date 
performances was above 90% for all experiments. However, in most cases the ATC rule 
outperformed the SPT/MS rule with regards to the due date performance. Therefore, we conclude 
that the ATC rule performed the best from this set of dispatching rules in most scenarios. 
Furthermore, we noticed that the WSPT rule and the MS rule outperform the EDD rule very often, 
while that dispatching rule resembles the current scheduling method the most. 

6.2. Recommendations 
As a result of the research, several recommendations can be made for Voortman and its clients. 

First, Voortman and their clients should consider to study the dispatching rules using real-world 
data rather than estimated datasets. Such a study will provide a more accurate evaluation of the 
dispatching rules and their impact on the efficiency of the production process. 

Second, Voortman’s clients should consider implementing a tool that utilizes dispatching rules 
like the apparent tardiness cost (ATC) to automatically determine the production schedule. In this 
way, the majority of the scheduling process is completed in a short time and the production 
scheduler can analyze the proposed schedule and adjust the schedule if necessary. 

Furthermore, we recommend Voortman to conduct a comparable study on the production 
processes at the other two types of clients. To gain insight in how those processes can be made 
more efficient in terms of lead times and inventory levels as well. Especially the process for the 
steel fabrication companies, offshore & energy industry differs a lot from the process we 
researched. 

6.3. Contributions 

6.3.1. Theoretical 

In this research, we analyzed the performance of the schedule by implementing dispatching rules 
on a machine environment that is not classified in literature. Therefore, there is little information 
available in literature on this type of machine environment. Furthermore, we tested two 
dispatching rules that cannot be found in literature. The first is the weighted shortest processing 
time for which the weights are based on the remaining time until the due date. The second is a 
composite dispatching rule that we developed which combines the shortest processing time and 
the minimal slack rules. 

6.3.2. Practical 

This research was conducted on behalf of Voortman Steel Group. The solution design in 
combination with the results from the experiments serve as the practical contribution for the 
company. Furthermore, Voortman had little to no insights in the scheduling methods at their 
clients. Therefore, the contextual analysis is a practical contribution to the company as well. 

6.4. Limitations 
This section covers the limitations of the research. These limitations should be taken into account 
when implementing the provided solution. 

First, there was no dataset with real-world data available for the experiments. Therefore, we used 
a dataset based on estimates to test the performance of the dispatching rules. These estimates 
are based on assumptions. For instance, the order sizes are normally distributed with a mean of 
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40 pieces. In the real world an order may consist of 300 pieces. However, that does not occur in 
the dataset we tested. 

Second, the data on the production processes at Voortman’s customers is gathered through 
interviews and company visits. The information gathered might be subject to bias, because during 
these interviews, participant tend to create a better image of their company compared to reality, 
as they are doing business with Voortman. For example, one interviewee claimed that their 
company maintained a maximum lead time of one week and a half. However, this turned out to be 
twice as much in some cases. 

Furthermore, for the solution model we made several assumptions, such as the constant 
availability of staff, machinery and raw materials. Also, there were no variations in the time buffers 
in which a job that has completed a task is transported to the next machine. These assumptions 
do not hold in a real-world setting. Therefore, this might impact the generalizability of the 
conclusions. 

Finally, the research primarily focusses on the metal plate production process at Voortman’s 
clients. The findings of this research might not be directly applicable to other types of machine 
environments of other types of clients or a machine environment in a different industry. 
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8. GLOSSARY 

8.1. Terms 
Term Definition 
Apparent Tardiness Costs 
(ATC) 

A dispatching rule which prioritizes jobs according to a formula that 
combines the weighted shortest processing time (WSPT) and the 
minimal slack (MS) rules. 

Bending The process of deforming a metal plate to reach a desired angle or 
curve. 

Bevel cutting The process of cutting diagonally through a metal surface. 
 

Coating The process of applying a colored layer to the metal surface. 
 

Construction metalwork A work station where manual drilling, tapping and milling is done. 
 

Cutting The process of separating or shaping metal plates into a desired 
shape.  
 

Deburring The process of removing imperfections (burrs) that appear after 
cutting from the edges and surface. 
 

Dispatching rule A heuristic that determines the priority of jobs in a scheduling 
process. 

Earliest Due Date (EDD) A dispatching rule which prioritizes jobs with earliest due dates. 
Flexible Flow Shop (𝐹𝐹) A flow shop with machines in parallel at one or more stages. 
Flexible Job Shop (𝐹𝐽) A job shop with machines in parallel at one or more stages. 
Flow Shop (𝐹) A machine environment in which jobs follow a predetermined route 

for which the order of the machines is fixed. 
Job 
 

A collection of tasks that are grouped together. In this research, jobs 
consist of two or more tasks. 
 

Job Shop (𝐽) A machine environment in which jobs follow a predetermined route 
for which the order of machines may vary. 

Longest Processing Time 
(LPT) 

A dispatching rule which prioritizes jobs with the longest processing 
times. 

Machine 
 

Equipment used to perform a task. 
 

Machine bed 
 

A flat surface on which a metal plate is placed to be processed. 
 

Makespan (𝐶𝑚𝑎𝑥) The total time that is required to finish all jobs. 
Minimal Slack (MS) A dispatching rule which prioritizes jobs with the least amount of 

slack time. 
No-wait (𝑛𝑤𝑡) A constraint where jobs cannot wait between two machines. 
Open Shop (𝑂) A machine environment in which jobs do not follow a predetermined 

route and the order of machines may vary. 
Precedence constraint 
(𝑝𝑟𝑒𝑐) 

A constraint for which certain jobs have to precede others. 

Preemption 
(𝑝𝑟𝑚𝑝⁡𝑜𝑟⁡𝑝𝑚𝑡𝑛) 

The ability to interrupt a task to start another. 

Setup Time The time it takes to prepare a machine for a task. 
Shortest Processing Time 
(SPT) 

A dispatching rule which prioritizes jobs with shortest processing 
times. 



35 
 

Slack The amount of time that a job can be delayed without completing the 
job late. 

Steel distributors 
 

Steel processing companies that supply steel parts to other 
companies. Often, companies outsource tasks they are unable to do 
to steel distributors. For more information, see Section X. 
 

Task 
 

A single unit of work that has to be done. In this research, a task is 
always part of a job that consists of two or more tasks. Often 
referred to as operation. 
 

Weighted Shortest 
Processing Time (WSPT) 

A dispatching rule which prioritizes jobs with the highest weights 
divided by the processing times. 

Welding 
 

The process of joining two or more pieces of metal by fusing the 
material. 
 

8.2. Abbreviations 
Abbreviation Definition 
ATC Apparent Tardiness Cost 
EDD Earliest Due Date 
𝐹 Flow Shop 
𝐹𝐹 Flexible Flow Shop 
𝐹𝐽 Flexible Job Shop 
𝐽 Job Shop 
LPT Longest Processing Time 
MS Minimal Slack 
𝑛𝑤𝑡 No-wait 
𝑂 Open Shop 
𝑝𝑚𝑡𝑛 Preemption 
𝑝𝑟𝑒𝑐 Precedence constraint 
𝑝𝑟𝑚𝑝 Preemption 
WSPT Weighted Shortest Processing Time 

8.3. Variables 
Variable Definition 

𝐴𝑠 𝑎𝑐𝑡𝑖𝑣𝑒⁡𝑠𝑒𝑡⁡𝑎𝑡⁡𝑠𝑡𝑎𝑔𝑒⁡𝑠 
𝐶𝑗  𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛⁡𝑡𝑖𝑚𝑒⁡𝑜𝑓⁡𝑗𝑜𝑏⁡𝑗 
𝐷𝑠  𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡𝑠𝑒𝑡⁡𝑎𝑡⁡𝑠𝑡𝑎𝑔𝑒⁡𝑠 
𝑑𝑗  𝑑𝑢𝑒⁡𝑑𝑎𝑡𝑒⁡𝑜𝑓⁡𝑗𝑜𝑏⁡𝑗 
𝐹𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑⁡𝑠𝑒𝑡⁡𝑎𝑡⁡𝑠𝑡𝑎𝑔𝑒⁡𝑠 
𝑖 𝑚𝑎𝑐ℎ𝑖𝑛𝑒⁡𝑛𝑢𝑚𝑏𝑒𝑟 
𝑗 𝑗𝑜𝑏⁡𝑛𝑢𝑚𝑏𝑒𝑟 
𝐿𝑗  𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠⁡𝑜𝑓⁡𝑗𝑜𝑏⁡𝑗 
𝐿𝑇𝑗  𝑙𝑒𝑎𝑑⁡𝑡𝑖𝑚𝑒⁡𝑜𝑓⁡𝑗𝑜𝑏⁡𝑗 
𝑀𝑖  𝑚𝑎𝑐ℎ𝑖𝑛𝑒⁡𝑖 
𝑚 𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 
𝑛 𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑗𝑜𝑏𝑠 
𝑝𝑖𝑗  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔⁡𝑡𝑖𝑚𝑒⁡𝑜𝑓⁡𝑗𝑜𝑏⁡𝑗⁡𝑜𝑛⁡𝑚𝑎𝑐ℎ𝑖𝑛𝑒⁡𝑖 
𝑆𝑠 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑⁡𝑠𝑒𝑡⁡𝑎𝑡⁡𝑠𝑡𝑎𝑔𝑒⁡𝑠 
𝑠 𝑠𝑡𝑎𝑔𝑒⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛⁡𝑠𝑐ℎ𝑒𝑚𝑒 
𝑠𝑡𝑗𝑘  𝑠𝑒𝑡𝑢𝑝⁡𝑡𝑖𝑚𝑒⁡𝑏𝑒𝑡𝑤𝑒𝑒𝑛⁡𝑗𝑜𝑏⁡𝑗⁡𝑎𝑛𝑑⁡𝑘 
𝑇𝑗  𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠⁡𝑜𝑓⁡𝑗𝑜𝑏⁡𝑗 
𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡⁡𝑡𝑖𝑚𝑒 
𝑡𝑠 𝑡𝑖𝑚𝑒⁡𝑎𝑡⁡𝑠𝑡𝑎𝑔𝑒⁡𝑠 
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𝑈𝑗  1⁡𝑖𝑓⁡𝑗𝑜𝑏⁡𝑗⁡𝑖𝑠⁡𝑡𝑎𝑟𝑑𝑦, 0⁡𝑖𝑓⁡𝑗𝑜𝑏⁡𝑗⁡𝑖𝑠⁡𝑜𝑛⁡𝑡𝑖𝑚𝑒 
𝑤𝑗  𝑤𝑒𝑖𝑔ℎ𝑡⁡𝑜𝑓⁡𝑗𝑜𝑏⁡𝑗 

 

9. APPENDIX 

9.1. Experiment under regular circumstances 

Dispatching rule 
Average lead time 

(hours) 
Average in-process 
inventory (pieces) 

Due date performance 
(%) 

SPT 14,98 1200,90 82,6% 
EDD 14,75 1010,52 86,0% 
MS 15,44 993,52 91,8% 

WSPT 13,46 936,81 89,7% 
ATC 12,26 870,94 93,8% 

SPT/EDD 13,93 889,12 82,0% 
SPT/MS 12,13 837,60 93,7% 

Table 11: Results experiment under regular circumstances 

 

Figure 20: Machine utilization under regular circumstances 

9.2. Legend machines 
Number Type of machine 
1.1-1.5 Cutting 

2.1 Beveling 
3.1-3.2 Deburring 
4.1-4.2 Drilling/tapping 

5.1 Bending 
Table 12: Legend machines 

9.3. Experiments variability in processing times 
 0% 5% 10% 15% 

SPT 14,29 16,58 14,98 15,87 
EDD 16,21 15,94 14,75 18,77 
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WSPT 15,65 16,11 15,44 18,39 
MS 13,50 14,46 13,46 15,37 
ATC 12,08 13,50 12,26 13,92 

SPT/EDD 12,90 13,70 13,93 14,57 
SPT/MS 12,22 13,45 12,13 13,81 

Table 13: Average lead times in hours for different standard deviations of processing times 

 0% 5% 10% 15% 
SPT 1118,52 1389,14 1200,90 1276,13 
EDD 1141,20 1125,58 1010,52 1387,44 

WSPT 1029,48 1073,71 993,52 1272,62 
MS 911,66 1029,41 936,81 1101,22 
ATC 814,84 1008,29 870,94 1020,26 

SPT/EDD 796,11 884,88 889,12 952,25 
SPT/MS 817,87 985,20 837,60 999,90 

Table 14: Average in-process inventory in pieces for different standard deviations of processing times 

 0% 5% 10% 15% 
SPT 83,3% 82,7% 82,6% 83,1% 
EDD 84,6% 86,7% 86,0% 78,5% 

WSPT 91,0% 91,9% 91,8% 87,4% 
MS 89,9% 89,9% 89,7% 88,2% 
ATC 94,4% 93,7% 93,8% 93,3% 

SPT/EDD 82,3% 81,6% 82,0% 82,5% 
SPT/MS 93,9% 93,5% 93,7% 93,1% 

Table 15: Due date performance in % of jobs for different standard deviations of processing times 

 

Figure 21: Machine utilization for 0% standard deviation of processing times 
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Figure 22: Machine utilization for 5% standard deviation of processing times 

 

Figure 23: Machine utilization for 15% standard deviation of processing times 

9.4. Experiments over- and undercapacity 
 4940 5200 5460 

SPT 12,62 14,98 13,59 
EDD 11,07 14,75 17,80 

WSPT 11,62 15,44 18,20 
MS 11,75 13,46 12,39 
ATC 10,59 12,26 11,01 

SPT/EDD 10,95 13,93 12,59 
SPT/MS 10,59 12,13 11,17 

Table 16: Average lead time for different numbers of orders 

 4940 5200 5460 
SPT 885,08 1200,90 1091,60 
EDD 626,16 1010,52 1309,12 

WSPT 658,53 993,52 1091,93 
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MS 707,01 936,81 911,64 
ATC 614,31 870,94 780,69 

SPT/EDD 603,25 889,12 771,66 
SPT/MS 619,44 837,60 781,83 

Table 17: Average in-process inventory for different numbers of orders 

 4940 5200 5460 
SPT 84,3% 82,6% 83,3% 
EDD 94,8% 86,0% 33,9% 

WSPT 96,7% 91,8% 56,7% 
MS 94,2% 89,7% 79,9% 
ATC 96,9% 93,8% 92,3% 

SPT/EDD 82,3% 82,0% 84,8% 
SPT/MS 96,0% 93,7% 91,1% 

Table 18: Due date performance for different numbers of orders 

 

Figure 24: Machine utilization overcapacity 

 

Figure 25: Machine utilization undercapacity 
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9.5. Experiments with constant order pattern 

Dispatching rule 
Average lead time 

(hours) 
Average in-process 
inventory (pieces) 

Due date performance 
(%) 

SPT 14,98 1200,90 82,6% 
EDD 14,75 1010,52 86,0% 
MS 15,44 993,52 91,8% 

WSPT 13,46 936,81 89,7% 
ATC 12,26 870,94 93,8% 

SPT/EDD 13,93 889,12 82,0% 
SPT/MS 12,13 837,60 93,7% 

Table 19: Results experiment constant order pattern 

 

Figure 26: Machine utilization constant order pattern 

9.6. Python Code 
The Python code that was used in this thesis is confidential and has been omitted from this 
document. 
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