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Abstract

Project Portfolio Management (PPM) is crucial for companies with many running projects.
It strategically determines project initiation timing and optimally allocates resources, en-
suring efficient project execution, maximizing organizational resources, and ultimately
achieving strategic objectives. This thesis investigates the optimization of PPM efficiency
through Genetic Algorithms (GAs) for the automated scheduling of projects within a
portfolio, as crafting comprehensive capacity plans remains labour-intensive. This thesis
describes a mapping from the Resource Constrained Project Scheduling Problem (RCPSP)
to portfolio scheduling. It extends the RCPSP to accommodate diverse objectives, time-
dependent resource capacities, and specific start/end time constraints to form the novel
Multi-Objective RCPSP with time-varying resource capacities and demands and set start/-
time constraints (MORCPSP/t-SE). To find optimal schedules that meet MORCPSP/t-SE
constraints, the Nondominated Sorting Genetic Algorithm II (NSGA2) is proposed for its
ability to optimize multiple objectives and offer a range of solutions. Moreover, the ap-
proach uses Swarm Particle and Bayesian optimization for hyperparameter optimization.
The algorithm is validated against benchmark problems and the results are compared and
analysed. Ultimately, this thesis seeks to contribute to an automated way of generating
multiple portfolio scenarios simultaneously that provide insight into the effects of possible
scheduling decisions.

Keywords: Project Portfolio Scheduling, Genetic Algorithm, NSGA2, Hyperparameter
Optimization
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Chapter 1

Introduction

1.1 Motivation

In the fast-moving and changing economy, Project Portfolio Management (PPM) is essen-
tial to maintain a clear overview of running and upcoming projects in an organization.
PPM aims to coordinate projects that compete for the same resources while contributing
to the same goals, for strategic benefits [50]. The goals of PPM can be distinguished as
maximising the portfolio’s value, seeking the right balance between projects, ensuring that
the portfolio is strategically aligned and ensuring not too many running projects simul-
taneously for limited resources [50]. PPM has become standard practice in companies’
management and has been a highly researched topic in management and product develop-
ment management research [42]. Moreover, it has been developed in global standards [51],
showing PPM’s importance and impact in organizations.

The actual practice of PPM in an organization’s context is often more difficult than the
easy-to-understand frameworks suggest [6][51]. As established by Blichfeldt and Pernille
[9], organizations often encounter resource-related challenges in their portfolio planning.
These challenges manifest in various forms, such as the simultaneous selection of too many
projects without adequate resources or the oversight of small projects consuming resources
without proper accounting in PPM frameworks. Related to such resource problems, En-
gwall and Jebrant [18] identified the resource allocation syndrome. In the researched
organizations, the management issues revolved around resources, and how they were allo-
cated and redistributed if projects lagged behind their schedules. They state that, often,
resource and schedule estimates are too strict. Lastly, one difficulty was handling changes
within projects, roles or responsibilities [17]. Overall, while PPM in theory is a perfect
solution for organizations with many running projects simultaneously, it is challenging to
use it in practice optimally.

There is an interest in automating project portfolio planning to bridge the gap between
theoretical ideals and practical challenges in PPM. Automating the portfolio planning pro-
cess provides a way to quickly create portfolio plannings that adhere to capacity, time and
other predefined constraints. It offers a compelling solution for a systematic and algorith-
mic approach to portfolio planning. By leveraging automation techniques, organizations
can address resource-related issues, optimize project selection, and ensure a balanced allo-
cation of resources in line with project demands much faster.

One promising approach to automate this process is using Genetic Algorithms (GAs).
GAs are a type of evolutionary algorithm, that mimics the process of natural selection to
get to near-optimal solutions. GAs iteratively select, mutate, and recombine solutions to
improve them. Their adaptability and efficiency in exploring large search spaces make them
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particularly suitable for complex scheduling tasks, such as scheduling in project portfolio
management. An important aspect of GAs is tuning hyperparameters, which influence
factors such as recombination and mutation rates. Properly setting these hyperparameters
is crucial for the algorithm’s efficiency and quality of solutions.

1.2 Research gap

While automated scheduling has been extensively researched for many years, with a par-
ticular focus on project scheduling problems, there remains a notable gap in research
regarding the automation of portfolio schedules. The gap lies specifically in the domain
of scheduling project portfolios with certain constraints such as set start or end times,
precedence relationships and resource constraints, while optimizing the schedule on mul-
tiple objectives [13][8][65]1. Although the fundamentals overlap with project planning,
the complexities introduced in a portfolio context justify dedicated research. Additionally,
existing research often simplifies scenarios, making them unsuitable for the complexity of
real-world situations. Therefore, there is a need to extend research efforts to incorporate
real-life cases, ensuring that automated portfolio planning solutions are applicable and
effective in practical organizational contexts.

1.3 Fortes Change Cloud

This research is in cooperation with Fortes2. Fortes is a Dutch company located in En-
schede. Fortes Change Cloud (FCC) is the standard tool for large public organizations like
the ministries of the Netherlands and is also used by large enterprises such as Vopak and
Friesland Campina. FCC is a software application, in which organizations manage their
entire change portfolio and maximize strategic value creation. One of their core features is
the multi-aspect capacity planning overview on skills, finance, and objectives, which visu-
alizes projects’ required skills and the capacity of skills. Also, it allows companies to move
projects around in time to create portfolio planning and identify possible bottlenecks.

Another important aspect of capacity planning is the scenario mode. Scenario mode
functions as a playground for portfolio managers to see the effect of certain choices. For
instance, it allows projects to be moved in time, automatically updating the required skills
in a certain time accordingly. Afterwards, the scenario can be adopted, saved or discarded.

At the moment, the capacity planning and scenario creation is a manual process. Au-
tomation is essential to manage growing portfolio complexity and maximize strategic value.
Fortes is interested in project portfolio schedule scenario automation and a way to generate
portfolio scenarios based on user input to fill this gap.

1.4 Research objectives

The goal of this thesis is to find an efficient method for automating project portfolio
scheduling, ensuring adherence to predefined constraints while optimizing multiple ob-
jectives. These objectives often include minimizing duration and cost and maximizing
resource utilization, which are crucial for achieving strategic alignment. This goal will be
achieved through several key steps. First, a comprehensive understanding of current prac-
tices in automated scheduling will be developed. Subsequently, a novel algorithm will be

1This gap was confirmed through casual conversations at the company Fortes
2www.fortesglobal.com
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designed for portfolio automation, considering real-world organizational scenarios. Lastly,
the algorithm’s effectiveness will be validated against benchmark problems and with man-
ual testing and validation. This leads to the following main research question:

How can genetic algorithms be effectively employed to generate diverse project
portfolio scenarios that comply with predefined constraints while optimizing
multiple objectives?

The main research question will be divided into two subquestions with additional sub-
questions. These are:

RQ1: How can a genetic algorithm solve the multi-objective Resource-
Constrained Project Scheduling Problem with set start/end time constraints
and capacity allocation to project categories constraints?

• RQ1.1: How can a project portfolio schedule be structured and encoded for use
within a genetic algorithm framework?

• RQ1.2: How can set start/end time constraints be formalized and included in the
GA?

• RQ1.3: How can additional capacity allocation to project categories constraints be
included in the GA and be solved?

• RQ1.4: What existing methods or frameworks are suitable for solving multi-objective
scheduling problems, and how can they be adapted or extended to solve the problem
at hand?

RQ2: What criteria and performance metrics can be used to assess the qual-
ity and effectiveness of the GA and the generated project portfolio scenarios?

• RQ2.1: How can optimal values for hyperparameters of the GA be determined?

• RQ2.2: How can a generated solution be validated without knowing the actual
optimal solution?

• RQ2.3: How will validation data with optimal solutions be gathered or created?

1.5 Thesis structure

This thesis is structured as follows. Chapter 2 provides fundamental background knowl-
edge, including methods and concepts. Chapter 3 highlights related works in the domain
of automating PPM and project scheduling. Chapter 4 gives a formal definition of the
problem and Chapter 5 explains the methods of solving the problem, optimizing the al-
gorithm and validating the algorithm. The results and an analysis thereof are stated in
Chapter 6, in the same structure as Chapter 5. Subsequently, a conclusion and future work
are provided in Chapter 7.
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Chapter 2

Background

This chapter describes the fundamental concepts and techniques utilized throughout the
thesis. It begins by examining the critical process of mapping portfolios to projects, which
sets the stage for applying established project scheduling methods to the broader domain
of portfolio management. Next, the chapter defines various project scheduling problems
and their associated terminology, followed by an explanation of GAs, which are employed
to solve these predefined problems. Subsequently, the concepts of Pareto optimization
are described, often used for multi-objective optimization, along with a GA approach
to optimize on multiple objectives. Then, the chapter describes methods to incorporate
constraint handling within a GA. Finally, techniques for hyperparameter tuning and ways
to assess the outcomes of multi-objective optimizers are discussed.

2.1 Mapping portfolios to projects for automated scheduling

Project scheduling has been a active research topic for many years. To enable the es-
tablished techniques originally designed for project scheduling, portfolios will be mapped
to projects. This mapping indicates the fundamental similarities between portfolios and
projects regarding resource-constrained scheduling.

Both projects and portfolios have a certain set of processes, namely activities and
projects respectively. Projects within a portfolio can be compared to activities within
a project, as both represent discrete units of work. Just as activities, projects must be
scheduled within certain precedence and resource constraints. This mapping can be made
since PPM does not consider the individual tasks within a project, instead, PPM aims at
strategic planning on a larger scale. Lastly, the optimization objectives are typically the
same when automating the scheduling process for both projects or portfolios. Often, the
duration, costs or resource usage are minimised.

With the mapping established, the techniques and definitions for project scheduling can
be extended to the domain of PPM. Section 2.2 will go more in-depth on the variations of
project scheduling.

Throughout this thesis, an example portfolio will be used to provide easy-to-understand
examples. The portfolio consists of eight projects, named: Alpha, Beta, Gamma, Delta,
Epsilon, Zeta, Eta, and Theta. The example organisation managing this portfolio is a
company with 6 employees able to work on the projects, equating to a capacity of 6 Full-
Time Equivalents (FTE). The company’s goal is to complete these projects as quickly as
possible while spreading its resources as evenly over time as possible. Each project in
the portfolio has varying durations, resource demands and dependencies on other projects,
adding complexity to the resource allocation and project scheduling processes. The next
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sections will continue with this example.

2.2 Resource constrained scheduling problems

In the past decade, substantial efforts have been invested in automating scheduling, primar-
ily through the application of neural networks, machine learning, and constraint program-
ming [41][8]. Many variations of the scheduling problem are described in the literature [45].
One fundamental variant is the Basic Project Scheduling Problem, in which activities are
scheduled with precedence constraints. This scheduling problem encompasses challenges
related to optimizing project duration, resource allocation, and estimating project costs,
among others [45].

Delving deeper into project scheduling literature, different problem variations have been
identified, each catering to specific dimensions of complexity:

• Resource Constrained Project Scheduling Problem (RCPSP) [35][30][49][67]:

– Objective: Schedule activities subject to both precedence and resource con-
straints.

• Resource-Constrained Project Scheduling Problem with Multiple Objec-
tives (Multi-Objective RCPSP) [23]:

– Extension of RCPSP: Incorporates multiple objectives such as costs and makespan.

• Resource Constrained Project Scheduling Problem with time-dependent
resource capacities and requests (RCPSP/t) [28] [29]

– Extension of RCPSP: Incorporates resource capacities and requests varying over
time.

• Multi-Mode Resource Constrained Project Scheduling Problem (MRCPSP)
[3][66]:

– Extension of RCPSP: Allows activities to be performed in multiple modes, in-
troducing flexibility in execution.

• Resource-Constrained Multiple Project Scheduling Problem (RCMPSP)
[57]:

– Extension of RCPSP: Involves scheduling multiple projects on the same re-
sources, navigating shared constraints.

• Multi-Mode Resource-Constrained Multiple Project Scheduling Problem
(MRCMPSP) [60][39][7]:

– Combination of MRCPSP and RCMPSP: Addresses scheduling complexities
arising from both multi-mode activities and interdependencies across multiple
projects.

• Time/Cost Trade-off Probem (TCTP) [20][39][7]:

– Objective: Seek an optimal solution that balances time and cost considerations
in scheduling.
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Figure 2.1: Example portfolio visualised by Alcaraz and Maroto [2]

Understanding the terminology associated with these scheduling problems is crucial.
Resource constraints impose limitations on project resources, such as machines or person-
nel. These constraints are dictated by the maximum hours the resources can work. In
this thesis, consumable resources such as building materials are not included, since portfo-
lio management generally operates at a higher level, not regarding consumable resources.
Precedence constraints establish a sequential order for activities, where the completion of
one activity is a prerequisite for starting another. Multi-objective optimization introduces
the challenge of optimizing various variables simultaneously, such as business value, cost
reduction, or project duration. Multi-mode scheduling accommodates activities associ-
ated with different modes, allowing for diverse execution methods or execution by different
resources. Lastly, multi-project scheduling deals with the simultaneous scheduling of multi-
ple projects within the same portfolio, necessitating the consideration of shared constraints
and interdependencies among projects and their activities.

Continuing with the example portfolio introduced in Section 2.1, the projects are la-
beled numerically, with Alfa being 1 and Theta being 8. Each project is assigned specific
durations, resource demands, and precedence relations, as depicted in Figure 2.1. Project
0 serves as the starting point, with arrows indicating the precedence relations between
projects. For example, project 2 must finish before starting project 5, due to some depen-
dency. The tuple associated with each node represents the duration and resource demand,
respectively. For example, project 1 demands a 5 FTE for each of its 4 timeslots. These
new constraints give the portfolio a structure similar to a RCPSP.

2.3 Genetic algorithm

A GA is a meta-heuristic strategy that is inspired by the process of evolution. In nature,
favorable traits for survival are inherited and accumulated over successive generations,
leading to the adaptation of species to survive their environment. Similarly, GAs iteratively
improve solutions by mimicking survival, genetic crossover, and mutation. This approach
offers an effective and efficient method for solving complex problems in a relatively short
time.

The following subsections explain the principles of GAs using the following scenario.
Consider the simple problem of finding the maximum value of the mathematical function
f(x) = −x2 + 14x with 0 ≤ x < 16.
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2.3.1 Genetic encoding

For the GA, the solutions must be represented as chromosomes with genes. Often, solutions
are encoded as binary digits, but can also be encoded as integers or complex structures.
Regarding the simple problem mentioned before, a solution, x, can be represented by a
4-bit binary string. The chromosome would look something like ’1100’, representing the
number 12, where a bit represents a gene in the chromosome.

2.3.2 Crossover

To generate new solutions, old solutions are combined, simulating the process of genetic
recombination. It involves two parents exchanging genes to create offspring. The goal is
to combine favorable traits to generate better solutions. There are multiple methods for
crossover, for instance, chromosomes can be swapped, or chromosomes can be sliced and
exchanged. Let us consider two parent solutions, ’1100’ and ’1010’ (see Section 2.3.1 for
the encoding explanation). The crossover operation is swapping the first half of genes.
This results in the offspring: ’1000’ and ’1110’

2.3.3 Mutation

Mutation introduces small, random changes to an individual’s genes, to generate more
variation in generations. This helps to explore new regions in the solution space that may
not be accessible by genetic crossover alone. In the example, a mutation operator might be
flipping a bit in the chromosome. therefore the individual with chromosome ’1110’ could
be mutated to ’1111’ by swapping the last bit.

2.3.4 Evaluation and selection

The process of evaluating and selection is a critical component in GAs. When a new
generation is formed, the fitness score of an individual is accessed with a fitness function.
The fitness function evaluates how well a solution performs concerning the optimization
criteria and the objective function of the problem. When the fitness of the individuals
in the population is assessed, the best-scoring individuals are selected to form the next
generation. Continuing with the example formula, f(x) = −x2 + 14x with 0 ≤ x < 16,
consider the following population [’0101’, ’0110’, ’1110’].

• Chromosome 1: f(5) = 45

• Chromosome 2: f(6) = 48

• Chromosome 3: f(14) = 0

Chromosomes 1 and 2 have the highest fitness, therefore they will be selected to become
part of the new generation.

This iterative process of evaluation, selection, and genetic operations continues across
generations, gradually refining the population and moving towards solutions that maximize
the objective function.

2.3.5 Applying genetic algorithms to portfolio scheduling

Continuing with the example introduced in the previous sections, a schedule for the port-
folio can be represented as an ordered list of projects. The initial population for the GA
consists of a set of randomly generated project schedules. For readability, the projects will
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Figure 2.2: Crossover and mutation visualization

be denoted by their numeric labels (see Section 2.2).
Initialization: The initial population is created by generating multiple permutations of
the project list. Each permutation represents a potential schedule. For instance, one indi-
vidual might be [1, 2, 3, 4, 5, 6, 7, 8], while another might be [2, 1, 4, 3, 5, 7, 6, 8].
Crossover: For crossover, the first half of one parent can be combined with the remaining
projects of the other. Applying the crossover operator to the individuals from the previous
step results in the children: [1, 2, 3, 4, 5, 7, 6, 8] and [2, 1, 4, 3, 5, 6, 7, 8]. See Figure 2.2 for
more detail.
Mutation: Two randomly chosen subsequent projects can be swapped to introduce di-
versity in the population. For example, assume the randomly chosen positions are 4 and
5. Applying this mutation operator to the individual [1, 2, 3, 4, 5, 6, 7, 8], the resulting mu-
tated individual would be [1, 2, 3, 5, 4, 6, 7, 8].
Evaluation and selection: A key metric for evaluating the schedules is their total dura-
tion, which should be minimized. For example, if schedule [1, 2, 3, 4, 5, 6, 7, 8] has a duration
of 14 time units, it would be selected over all other schedules with a longer total duration.

2.3.6 Hyperparameters

Hyperparameters in GAs are settings that influence the algorithm’s performance and be-
havior. These parameters include population size, generation number, mutation rate, and
crossover rate.

Each hyperparameter differently influences the algorithm’s behavior. For example, the
population size determines the number of individuals in each generation. Larger popula-
tions increase genetic diversity, which helps explore the solution space more thoroughly and
reduces the risk of premature convergence. However, larger populations also require more
computational resources. Therefore, proper tuning of the hyperparameters is essential for
the effective performance of a GA.

2.4 Pareto optimization

Pareto optimization provides a powerful framework for addressing problems involving mul-
tiple conflicting objectives, where improving one objective often worsens the other objec-
tives. The fundamental concept behind Pareto optimization is Pareto efficiency, a situation
in which no further improvements to the objectives can be made without sacrificing per-
formance in another objective. This means that a solution is considered Pareto optimal if
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it represents the best possible compromise between objectives, with no feasible alternative
offering improvement in one of the other objectives.

Central to the concept of Pareto optimization is the notion of dominance. In multi-
objective optimization, a solution is said to dominate another if it performs at least as
well as the other solution in all objectives and strictly better in at least one objective.
Conversely, a solution is considered non-dominated if no other solution in the feasible
space dominates it.

The set of all Pareto optimal solutions (non-dominated solutions) is called the Pareto
front. Visualized in the objective space, the Pareto front delineates the trade-off between
the different objectives, offering decision-makers valuable insights into the problem and
optimization process. Typically, in two-objective optimization, the Pareto front is a curve,
while in higher dimensions, it forms a surface (see Figure 2.3).

(a) Two objectives [14] (b) Three objectives [58]

Figure 2.3: Example visualizations of a Pareto front with multiple objectives

Understanding dominance and non-dominated solutions is essential in Pareto optimiza-
tion as it allows for the identification of solutions that represent the best possible com-
promises among competing objectives. By considering non-dominated solutions, decision-
makers can explore the trade-offs inherent in the problem and make informed decisions
that balance conflicting objectives effectively.

To illustrate the notion of Pareto optimization and the principle of dominance, consider
the portfolio example introduced in previous sections. The objectives are to minimize the
total duration and to minimize the variance in resource allocation. The following schedules
are considered:

• Schedule A:

– Duration: 20

– Resource variance: 3

• Schedule B:

– Duration: 18

– Resource variance: 5
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• Schedule C:

– Duration: 20
– Resource variance: 6

To begin with, Schedules A and B do not dominate one another, as each has one superior
objective. Schedule A dominates Schedule C, as it matches C in duration but is better in
resource variance. Schedule B also dominates Schedule C, as it is better in both objectives.
Consequently, Schedules A and B are on the Pareto front, since they are non-dominated
solutions.

2.5 Nondominated sorting genetic algorithm II

A popular algorithm to solve multi-objective problems is the Nondominated Sorting Ge-
netic Algorithm II (NSGA-II) [15]. NSGA-II provides an efficient way to maintain a diverse
population while still converging to optimal solutions. This is achieved through the process
of non-dominated sorting, which categorizes solutions into different fronts based on their
dominance relations with the other solutions. Solutions in the first front are non-dominated
solutions (the Pareto front). The subsequent fronts contain solutions that are dominated
by the earlier fronts.

To illustrate this, consider a scenario with two conflicting objectives: minimizing cost
and maximizing quality. Consider the solutions: A,B,C,D. If A is the cheapest solution
and of higher quality than B and C, it is non-dominated and placed in the first front. B
and C, which are dominated by A but not by each other, would be placed in the second
front. If D is of higher quality and cost than A, it is not dominating nor dominated by A,
resulting in a place in the Pareto front.

In addition to non-dominated sorting, NSGA-II enhances diversity within the popu-
lation by employing crowding distance. Crowding distance is a measure of the density of
solutions in the objective space. The algorithm encourages the preservation of solutions in
a less densely populated region.

Continuing the cost and quality example, suppose E,F and G are in the same front.
If solutions E and F are very close in terms of cost and quality, while solution G is further
apart, the crowding distance for G would be larger. NSGA-II would prefer solution H over
F and G to maintain diversity in the population.

The main procedure of NSGA-II is visualized in Figure 2.4 and starts with an ini-
tial population. The population is sorted based on the nondomination. Each solution is
assigned a fitness equal to its nondomination level. Then tournament selection, recombina-
tion and mutation are used to generate children. The algorithm utilizes elitism, meaning
that it compares the previously found best solutions with the current children. This ensures
that the best solutions are not lost during the evolution process and continue to contribute
to the next generations. The children and old population are combined and non-dominated
sorting is applied. The resulting first fronts are incorporated into the new generation until
reaching a point where the addition of the subsequent front would exceed the predefined
population size. Subsequently, this succeeding front undergoes sorting based on crowding
distance, after which its individuals are incrementally included until the population size
criterion is met.

To illustrate, consider the initial population H1, I1, J2,K3, L3,M3. The subscript in-
dicates the front to which each individual belongs after non-dominated sorting. Using
tournament selection, pairs like (H1, L3) and (M3,K3) are chosen at random. First, the
individual H1 is chosen over L3 since it belongs to a higher-ranked front. Second, M3 and
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Figure 2.4: Main procedure of NSGA-II [15]

K3 are in the same front, therefore, the individual with the largest crowding distance will
be chosen. For the example, let us assume that K3 has a larger crowding distance, meaning
that K3 and H1 proceed for recombination, creating new children. This recombination and
mutation process repeats until the desired number of new individuals is generated.

The combined population now consists of the initial population and the new children:
H1, I1, J2,K3, L3,M3, N,O, P,Q,R, S. Next, the algorithm performs non-dominated sort-
ing on this combined population. Assume the new sorting results in some children moving
to higher fronts due to better performance. For instance, if R and S are now in the first
front, the updated fronts might be: H1, I1, R1, S1, J2, P2, Q2,K3, L3,M3, N3, O3. Suppose
we need to select 6 individuals for the next generation. We start by selecting all individuals
in the highest fronts until we reach or exceed the population limit. Adding the individ-
uals from the first front H1, I1, R1, S1, provides four individuals. Moving to the second
front J2, P2, Q2 and adding them would exceed the population limit. Therefore, crowding
distance is used to select the most diverse individuals from the second front. Suppose J2
and P2 have larger crowding distances than Q2, so they are selected. This forms the new
population H1, I1, R1, S1, J2, P2 for the next iterations.

2.6 Activity list

Every GA approach needs a representation of an individual, to be able to apply crossover
and mutation operators. For RCPSP-like problems, the most common approach is a prece-
dence Activity List (AL) [35] or a derived version of it. The AL representation was de-
termined to perform the best to solve RCPSP [25]. In this representation, the solution
is encoded as a precedence feasible list of the activities. In this list, each activity can
appear in any position after its predecessors. A schedule is constructed by scheduling the
activities, one by one, in the order of the given list, so when an activity is scheduled, it
is automatically scheduled after its predecessor (forward scheduling). To visualise this ap-
proach, Alcaraz and Maroto [2] used the following example, depicted in Figures 2.1 and 2.5.
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Figure 2.5: Individuals and related schedules for the example project visualised by
Alcaraz and Maroto [2]

Figure 2.1 shows an example project, in which the cells are activities and the arrows show
the precedence. Figure 2.5 first shows three possible solutions in their AL representation
and underneath shows the schedules associated with the solutions.

2.7 Constraint handling

Handling constraints in GAs is crucial to ensure that solutions meet the required criteria.
Several techniques have been developed to handle constrained optimization problems ef-
fectively. Petridis et al. [47] introduced multiple methods for constraint handling. One
of these methods is restricting the search space to only contain feasible solutions, similar
to how a AL representation always adheres to precedence constraints. Other methods are
removing infeasible solutions from the population, adding a penalty to the fitness function
and repeating infeasible solutions.

For multi-objective evolutionary algorithms (MOEAs), [48] categorizes constraint han-
dling methods into the following four groups:

1. Penalty function
A penalty is provided to the objectives whenever a constraint is not met.

2. Separation of constraints and objectives
A separate value for constraint violations is used in the selection process.

3. Hybrid method
A combined technique of the other methods.

4. Retaining the infeasible solutions in the population
Adding the constraints violation value as an extra objective to optimize on

The next subsections describe the constraint handling methods used in this research.
The methods are based on the techniques described earlier and techniques described in
[33] as they were shown to be consistent and effective.
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2.7.1 Dynamic penalty

The dynamic penalty method involves penalizing solutions that violate constraints in the
objective functions, thus guiding the search toward feasible regions of the solution space.
The penalties are dynamically adjusted based on the degree of constraint violation and
the generation. Larger generation numbers lead to a larger penalty. This allows more
exploration in the early generations since the penalty is still small, but convergence towards
feasible regions in later generations.

One of the main advantages of this method is the great balance between exploration and
exploitation by the dynamically adjusting penalties. However, finding the right penalty
function to achieve this balance can be challenging. The penalty function must permit
marginally infeasible solutions, while effectively discouraging entirely infeasible solutions.

2.7.2 Constrained dominance principle

The constrained dominance principle extends the concept of dominance in traditional
NSGA-II to account for constraints. A solution dominates another solution if it not only
exhibits better objective values but also satisfies constraints more effectively. By prioritiz-
ing solutions that adhere to constraints, this principle ensures that feasible solutions are
favored during the selection process, ultimately leading to the generation of more practical
and viable schedules.

This technique is simple to implement in existing NSGA-II implementations. Due to
its simplicity, it lacks exploration in its early stages, since information within infeasible
solutions is not regarded.

2.7.3 Violation as extra objective

Incorporating violation as an additional objective entails treating constraint violations as
explicit objectives to be minimized alongside primary objectives. By formulating viola-
tion metrics as auxiliary objectives, the algorithm seeks to simultaneously optimize both
primary objectives and constraint satisfaction. This approach facilitates the exploration
of the trade-offs between conflicting objectives and constraint adherence, resulting in a
diverse set of solutions that strike an optimal balance between performance and feasibility.

Retaining information from infeasible solutions throughout the evolutionary process
brings both benefits and drawbacks. One advantage is the increased exploration by pre-
serving information. However, searching infeasible search space can lead to redundant
exploration, diverting resources that could have been used more effectively in searching
feasible space.

2.8 Hyperparameter optimization

Hyperparameters, such as population size, mutation rate, and crossover probability, gov-
ern the behavior and performance of GAs. Optimizing these parameters is crucial as they
each influence the algorithm’s convergence speed, solution quality, and precision differently.
In particular, selecting appropriate hyperparameters ensures efficient exploration and ex-
ploitation of the solution space, leading to improved outcomes in optimization tasks.

Hyperparameter Optimization (HPO) for GAs can be challenging due to the stochas-
tic nature of GAs. Guzman et al. [24] propose a heteroscedastic Bayesian optimization
for HPO in a stochastic system. Heteroscedasticity is the behaviour where the variance
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between points varies in different regions. Their research states that their suggested frame-
work for tuning stochastic models outperformed homoscedastic Bayesian optimization. A
Particle Swarm Optimization (PSO) approach was taken by Altarabichi et al. [4]. In their
research, HPO was used to determine how much randomness was optimal in a Deep Neural
Network. Other frequently used methods for HPO are Grid Search, Random Search, and
GAs.

2.8.1 Bayesian optimization

Bayesian Optimization (BO) is a powerful technique for optimizing black-box functions
that are expensive to evaluate and may contain noise and randomness. In the context of
HPO for GAs, BO provides a framework to iteratively build a probabilistic model of the ob-
jective function based on some initially observed evaluations. With this model, BO selects
hyperparameter configurations to explore, balancing exploration of promising regions with
exploitation of known high-performing areas. The probabilistic model is updated and new
configurations are explored. This enables efficient convergence to optimal or near-optimal
hyperparameter settings, even in the presence of noise and limited evaluation budgets.

2.8.2 Particle swarm optimization

PSO randomly initializes a swarm of particles, where each particle has a position in a d
dimensional space for d hyperparameters. The swarm searches the space through move-
ments guided by the current, globally best particle. PSO is a population-based stochastic
optimization algorithm inspired by the social behaviour of birds flocking. In PSO, a swarm
of particles moves through a d dimensional search space for d hyperparameters, where each
particle represents a potential solution characterized by a position and velocity. The parti-
cles adjust their positions based on their own experience and the best-performing particle
in the swarm. By iteratively updating the positions of particles based on their performance
and that of the swarm, PSO can efficiently explore the hyperparameter space and converge
to promising regions by gradually lowering the velocity per generation.

2.9 Assessment of multi-objective optimizers

When comparing Pareto fronts, determining which one is superior is not always straight-
forward. Two primary metrics measure the performance of a Pareto front. The first is a
Hypervolume (HV) indicator, which quantifies the volume of the objective space enclosed
by the front concerning a reference point (see Figure 2.6a). This indicator provides a com-
plete measure of the solution space covered by the front, capturing both the spread and
convergence of solutions.

To elaborate on the HV indicator, consider a reference point established in the multi-
dimensional objective space. Then, for each point in the Pareto front, the volume from
that point to the reference point is computed. The union of these volumes represents the
HV, offering a comprehensive view of the effectiveness of the Pareto front in encompassing
the desired objective space.

Another metric utilized for comparison is the Inverted Generational Distance (IGD)
(see Figure 2.6b). Unlike HV, which focuses on coverage within the Pareto front, the
IGD assesses the convergence of the front towards known optimal solutions. It quantifies
the average distance from points on the Pareto front to the nearest optimal solution. A
lower IGD value indicates better convergence towards the true Pareto front, aiding in the
evaluation of the front’s effectiveness in exploring the solution space.
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(a) HV (b) IGD

Figure 2.6: Example visualizations of Pareto front assessment techniques
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Chapter 3

Related work

PPM is a critical aspect of strategic decision-making in organizations, making it a well-
researched topic. PPM includes project selection, scheduling and resource allocation to
achieve optimal performance under various constraints and uncertainties. This chapter
provides insight into related research within these topics, highlighting contributions and
techniques. First, an overview of related works on portfolio selection and scheduling au-
tomation is presented. Subsequently, research on project scheduling is discussed. Although
project scheduling techniques can be applied to portfolio scheduling due to their analogous
nature (as explained in Section 2.1, a clear distinction is made between the related works
on project portfolio selection and scheduling and project scheduling to highlight the unique
aspects and contributions of each field.

3.1 Project portfolio selection and scheduling

Project Portfolio Selection and Scheduling (PPSS) is the activity of defining the best set
of projects to pursue the strategic objectives and finding the optimal time to start the
projects. To begin with, focusing solely on project selection, [56] provides a literature
overview of techniques applied for project selection considering project interdependencies.
They categorised the found approaches into five categories: multi-criteria, linear program-
ming, non-linear programming, metaheuristics and other approaches. Relevant to this re-
search are the multicriteria and metaheuristic approaches, as this study integrates aspects
of both. Wu et al. [61] integrated a fuzzy Analytic Hierarchy Process (AHP) technique and
the NSGA-II to create optimal project selection in portfolios with uncertainty, interdepen-
dencies and multiple strategic goals. Similarly, Gomede and de Barros [22] used NSGA-II
for optimization and AHP for post-optimization for project selection with multi-criteria.
Abassi et al. [1] also implemented the NSGA-II to maximize total outcome, minimize total
risk, and maximize strategic advantages. Moreover, they compared it to a multi-objective
PSO and found that NSGA-II outperformed the former. To continue on GA approaches,
Yu et al. [62] modelled multi-criteria project selection as a 0-1 nonlinear integer program-
ming model and used a GA-based optimization technique for solving. Recently, Hemici and
Zouache [32] proposed a new MOEA for portfolio selection. Their approach was based on
multi-population to explore the search space greatly and find an optimal trade-off between
risk and return. Similarly, Zhou et al. [64] introduced a new MOEA where optimization
is conducted in distinct regions of the objective space to mitigate premature convergence.
By dividing the objective space into multiple subregions and independently optimizing
each, they aimed to maintain population diversity and prevent premature convergence in
the evolutionary process. Additionally, they addressed the issue of constraints leading to
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infeasible solutions by implementing a greedy repair strategy.
Another metaheuristic approach was taken by Carazo et al. [11], using a Scatter Search

procedure for multi-objective PPSS. In their model, they assumed strong interdependence
between projects and considered multiple goals and constraints. A Strength Pareto Evo-
lutionary Algorithm (SPEA) was used by [16] for finance-based project scheduling. SPEA
is an algorithm that evolves a set of solutions to find the best trade-offs between multiple
conflicting objectives by prioritizing non-dominated solutions and maintaining an archive
of the best-found solutions to guide the search process. Another type of evolutionary al-
gorithm was used by [34]. They developed a differential evolution metaheuristic algorithm
to solve multi-skilled scheduling problems. The multi-skilled scheduling problem was also
handled by [12], focusing on IT project portfolios. They proposed a Pareto ant colony
optimization algorithm and found it more efficient than NSGA-II. Zhang et al. [63] incor-
porated fuzzy numbers into the model for the PPSS problem to account for the uncertainty.
A MOEA using a Gaussian Process was used to solve the problem. Ghodioosi et al. [21]
handled uncertainty in portfolio scheduling using three steps. They used a neural network
to estimate missing or uncertain parameter values (parameters such as project duration,
cost, demands, etc), a shuffle frog leap algorithm (a combination between a GA and PSO)
for optimization and K-means algorithm to cluster the candidate projects into a portfolio.

To conclude, various approaches have been taken to address the challenges of PPM.
The most popular methods include multi-criteria decision-making frameworks, such as the
fuzzy AHP, and evolutionary algorithms like NSGA-II and GAs. Moreover, advanced
metaheuristic techniques such as Scatter Search, SPEA, and differential evolution have
been widely utilized.

3.2 Project scheduling

Section 3.1 provided examples of literature in which the PPSS problem is addressed. This
section will examine the RCPSP variants, highlighting the evolutionary algorithms em-
ployed to solve these challenges.

One of the first explorations of GA for solving project scheduling problems was done by
Hartmann [25]. He showed how a permutation-based GA can be used for the RCPSP and
that it outperformed other GAs and other approaches at the time. The permutation-based
approach was compared to a priority value-based and a priority rule-based approach. This
is in line with the state-of-the-art research on heuristics for RCPSP [31]. However, they
also mention the successful implementation of Simulated Annealing (SA) by Bouleimen
and Lecocq [10]. SA is a probabilistic optimization technique that mimics the annealing
process by iteratively accepting new solutions while the temperature is decreasing, allowing
worse solutions to be accepted at high temperatures but not at low temperatures. The lat-
ter approach was for the MRCPSP. For this problem, also multiple approaches have been
taken. To begin with, Özdamar [46] proposes a Hybrid Genetic Algorithm (HGA) based on
a priority rule encoding. HGA implies that some form of additional optimization is added
to the GA to make it more efficient. The HGA proposed by Özdamar incorporates a certain
scheduling expertise into the GA. This improved the outcome but made the calculation
process slower. Another HGA for solving MRCPSP was proposed by Hartmann [26], in
which local search methods were introduced to improve the schedule related to an individ-
ual. Alcaraz [3] proposes a pure GA that produces similar results to previous heuristics
but does slightly worse compared to the GA with local search methods of Hartmann. In
an updated research on the state of the art on RCPSP by Hartmann and Kolisch [36], they
mention multiple different approaches that surpassed the former benchmark approaches
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that were mentioned. Valls [54] proposed an HGA that introduced a local improvement
operator, a new way to combine parents and a two-phase strategy. Hartmann [27] proposes
a heuristic called self-adapting GA. This heuristic contains an additional gene to represent
one of two decoding procedures for computing a schedule for an individual. This way, the
algorithm learns which of the two procedures works best, therefore also optimizing the al-
gorithm itself. Again, the state-of-the-art research shows that the most popular strategies
use GAs.

MRCPSP is a more difficult version of RCPSP, where activities can be performed
in multiple modes, meaning the activities can be executed using different resources or
methods. Lova [40] proposed a new heuristic approach to solve the problem. It is a HGA
that uses a local search method to improve the solutions provided by the GA. To improve
the project schedules, i.e., reduce the project completion time, a multimode backwards-
forward or forward-backwards method was applied, depending on the additional gene. This
approach resulted in drastic reductions in project duration time.

Continuing with MRCPSP, Ghoddousi [20] combined this problem with the discrete
time-cost trade-off problem and the resource allocation and resource levelling problem. To
solve this, they proposed a multi-objective-based GA that selects the best combination of
starting time and execution mode to optimize the time and cost.

Zoraghi [66] extends the MRCPSP with material ordering. In their research, they
compare three HGAs, from which the PSO-GA performs best. This algorithm uses particle
swarm optimisation to optimise the solution provided by the GA.

Building on RCPSP, Wauters [60] introduced MRCMPSP which has high practical
value but is also more complex and difficult to solve. In their research, various methods
were proposed with four approaches that stood out. Asta et al. [7] applied a combination of
Monte-Carlo Tree Search and hyper-heuristics, Geiger [19] used an iterated variable neigh-
bourhood search, Toffolo [53] applied integer programming and Artigues applied mixed
integer programming and large neighbourhood search.

Kuhn [39] applied GA with a simulation-based optimisation tool on MRCMPSP and
investigated the influence of parameters of the algorithm to figure out which affected the
result the most. Their results show that generation size and population size have the most
impact on the outcome.

In summary, evolutionary algorithms, particularly GAs, have emerged as pivotal tools
in addressing various challenges within project scheduling. Starting with Hartmann’s [25]
pioneering work on permutation-based GAs for RCPSP, subsequent research has consis-
tently integrated hybrid models and advanced optimization techniques to enhance efficiency
and solution quality. Similarly, for multi-mode and multi-objective variants of the problem,
HGA implementations have been successful.

3.3 Bridging literature and methodology

The insights from the preceding sections together form the methodology in this thesis. The
discussion on PPSS shows that multi-objective optimization is crucial in effective PPM au-
tomation. Balancing multiple objectives such as cost, risk, and strategic alignment is one
of the most important tasks in PPM. The NSGA-II is applied in many methodologies as
it is particularly effective in addressing such problems. However, a notable gap in cur-
rent research is the handling of various constraints such as dynamic capacities. Therefore,
existing approaches limit their applicability in real-world scenarios. Some of these addi-
tional constraints were handled by methods described in Section 3.2. This section provides
an overview of techniques for solving RCPSP-like problems. These problems integrated
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constraints missing in PPSS literature.
This thesis develops a comprehensive methodology for optimizing PPM by synthesising

the knowledge from both sections. The integration of multi-objective optimization princi-
ples and advanced GA techniques forms the core of this approach. Specifically, the research
extends the RCPSP framework to address gaps in PPM literature, making the model more
realistic and applicable to real-world scenarios.

24



Chapter 4

Formal problem definition

In practical applications, certain tasks need to be completed within specific time frames
to accommodate contractual agreements or regulations, necessitating precise start or end
times. Additionally, employing a multi-objective approach allows decision-makers to ex-
plore trade-offs between conflicting objectives, such as duration and costs, enabling them
to make informed decisions that balance these objectives. Furthermore, varying resource
capacities and requests over time provide a more realistic representation of scheduling sce-
narios. For example, in a software project, developers are needed at the start to write
code. At the same time, testers are required towards the end to perform testing, leading
to time-varying resource demands throughout the project.

To address these challenges, this research introduces a new variant of the RCPSP: the
multi-objective RCPSP/t with additional start/end time constraints (MORCPSP/t-SE).
This variant extends the traditional RCPSP by incorporating multiple objectives to op-
timize, time-dependent resource capacities and requests, and additional start/end time
constraints. Tasks are thus not only subject to resource limitations but can also be con-
strained by specific start or end times, adding an extra layer of complexity to the scheduling
problem. By addressing these additional constraints, MORCPSP/t-SE aims to provide a
more realistic representation of scheduling scenarios encountered in real-world applications.

Formalisation of the MORCPSP/t-SE

The MORCPSP/t-SE can be defined as follows. There are J − 2 activities to be scheduled
and activities 1 and J are virtual activities corresponding to the start and end, respectively.
The activities are constrained by precedence, resource or set start/end time constraints.

• Precedence constraints: Precedence constraints force activity j not to be started
before all its immediate predecessors have finished.

• Resource constraints: Each activity requires varying resources for each of the
timeslots in its duration. These required resources are drained from capacities that
vary over time and are shared by all activities.

• Start/end time constraints: Each activity can have a set start or end time con-
straint.

– Set start time: The activity must start in a specific time slot.

– Set end Time: The activity must finish before a specified time slot.
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Consider a project that consists of the activities (jobs) labelled (j = 1, 2, ..., J). The
precedence relations are given by the set Pj , indicating that activity j can not be started
until the activities in Pj have finished.

Each activity has a duration of dj time units. In each of the time units, an activity j
requires ljrt units of resource r. In timeslot t resource r has the limited capacity Lrt and
the sum of resource requests of activities scheduled in t can not exceed Lrt. Moreover, it is
assumed that preemption of activities is not allowed, meaning that once an activity starts,
it must be finished and cannot be paused. This decision was made because FCC also does
not allow preemption.

For the additional set start/end time constraints, two sets S and E are defined for the
start and end time constraints, respectively. The sets contain the tuples (j, t), implying
that activity j should start or end at timeslot t. S is a constraint set if:

S ⊆ {(j, t) | j ∈ J, t ∈ T} (4.1)

and

∀j. ∃!t. (j, t) ∈ S (4.2)

This means that the S only contains existing activities and each activity can appear once
in the set. Next to that, the binary variables indicating whether an activity starts or ends
in the specified time slot are defined as follows:

sjt =

{
1, if (j, t) ∈ S

0, otherwise
(4.3)

To ensure compliance with all constraints defined in the set S:

sjt = 1,∀(j, t) ∈ S (4.4)

Due to the nature of the problem where preemption is not allowed, the end times variables
ejt can be derived from the start time variables sjt.

∀j. ej,t+dj = sjt (4.5)

To ensure compliance with all constraints defined in the set E:

∀(j, t) ∈ E.
T∑

t′=t

ejt′ = 0 (4.6)

Multi-objective implies that multiple objectives are considered while optimizing. It can
be formulated as follows:

Minimize f(X) = {f1(X), f2(X), . . . , fm(X)} (4.7)
Subject to: X ∈ D where D represents all feasible solutions. (4.8)

where:

• f(X) is a vector of the objective functions.

• fn(X) is the n-th objective function to be minimized.
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• There are m objectives.

• X is a feasible schedule that adheres to the constraints listed above.

• D is the set of all feasible solutions, encompassing all constraints.

Initially, minimizing makespan and resource utilization smoothness will be considered
as objectives. Makespan is the eventual duration of the schedule and resource utilization
smoothness is the average deviation from the average resource usage. Eventually, other
objectives like costs or expected business value can also be considered.
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Chapter 5

Methodology

5.1 Genetic algorithm approach

To find solutions for the MORCPSP/t-SE, introduced in Chapter 4, the NSGA-II [15] will
be used. As explained in Section 2.5, NSGA-II is an efficient evolutionary algorithm based
on Pareto fronts and domination. It uses elitism and crowding distance operators to keep
its best solutions and diversity in the population. It was chosen for its proven ability to
effectively balance multiple conflicting objectives, its robustness in handling a wide range
of scheduling constraints, and its demonstrated performance in delivering high-quality
solutions across various domains [55]. Additionally, its solid theoretical foundation in the
literature regarding scheduling problems provides confidence in its applicability [20][59][44].

5.1.1 Non-dominated sorting

Non-dominated sorting serves as the foundational mechanism within NSGA-II. It entails
assigning a rank to each individual in the population based on its non-domination level.
The sorting algorithm operates as follows: initially, two characteristics are computed for
each individual, the domination count and the set of dominated solutions. The domination
count denotes the number of solutions that dominate the individual, the set of dominated
solutions contains all solutions that the individual dominates. Individuals with a domina-
tion count of zero are considered non-dominated and form the first front, denoted as F1.
To determine subsequent fronts, the domination count of individuals in the dominated set
of each member in F1 is decremented. Those whose domination count reaches zero are
added to F2, and this process iterates for subsequent fronts until all individuals have been
sorted accordingly. An overview of this process can be seen in algorithm 1. This algorithm
differs slightly from the proposed algorithm by [15], as duplicate dominance checks are
prevented. This is achieved by recognizing that the second loop (line 4) does not need to
loop over all individuals in the population. Specifically, once an individual i is compared
to individual j, there is no need to compare j to i again, as the dominance relationship is
symmetric and has already been established.

To illustrate the steps of non-dominated sorting, consider a simplified example with a
population of four schedules, each evaluated based on two objectives: total duration and
resource variance. The schedules for this example are detailed in Table 5.1.

First, the dominance relations among the schedules are calculated, as summarized in
Table 5.2. Next, the Pareto front is constructed, which consists of all non-dominated
solutions. In this example, Schedules B and C together form F1.

The second front, F2, includes solutions that are dominated only by individuals from
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F1. Here, Schedule A is included in F2 because it is dominated solely by Schedule B from
F1.

Finally, the third front, F3, comprises solutions that are dominated by individuals from
both F1 and F2. In this case, Schedule D is in F3, as it is dominated by Schedules A and
B. An overview of the fronts is given in Table 5.3

Schedule Duration Resource Variance
A 20 3
B 18 3
C 22 2
D 21 6

Table 5.1: Schedules with their respective durations and resource variances

Comparison Dominates Reason
A vs. B B dominates A B has a shorter duration
A vs. C Neither No dominance
A vs. D A dominates D A has shorter duration and lower variance
B vs. C Neither No dominance
B vs. D B dominates D B has shorter duration and lower variance
C vs. D Neither No dominance

Table 5.2: Dominance calculation between schedules

Front Schedules Dominance relation
F1 B, C Non-dominated
F2 A Dominated by B
F3 D Dominated by B and A

Table 5.3: Non-dominated fronts

5.1.2 Crowding distance

The crowding distance serves as a crucial metric for assessing solution density within a
Pareto front relative to a specific solution. It quantifies how tightly packed solutions are
around a given solution within the front. The crowding distance assigned to an individual
is computed as the sum of its crowding distances across all objectives. Mathematically,
this can be expressed as:

CDi =

O∑
o=1

cdi,o (5.1)

Here, i denotes the individual, O represents the total number of objectives, and cdio signifies
the crowding distance calculation for a particular objective o.

The computation of crowding distance for each objective involves several steps. Initially,
solutions are sorted based on their objective function values. Boundary solutions, i.e.
those with the smallest and largest values, are assigned an infinite distance. This ensures
the preservation of diversity within the population and encourages exploration across all
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Algorithm 1: Fast Non-dominated Sort
Input : Population
Output: Fronts with non-dominated individuals

1 fronts ← [[]]
2 i← 0
3 foreach individual A in population do
4 foreach other individual B in population[i:] do
5 Compare A and B to determine dominance
6 Update dominance counts and lists of A and B

7 end
8 i← i+ 1
9 If A has no dominators, assign rank 0 and add to fronts[0]

10 end
11 i← 0
12 while size of fronts[i] > 0 do
13 temp← []
14 foreach individual A in fronts[i] do
15 foreach other individual B in dominated set of A do
16 decrement domination count of B
17 If B domination count is 0, assign rank i+ 1 and add to temp

18 end
19 end
20 i← i+ 1
21 Add temp to fronts

22 end
23 return fronts
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objective dimensions. Furthermore, the boundary solutions’ values establish a scale for
normalizing crowding distances across multiple objectives.

For non-boundary solutions within a front, the crowding distance is determined by
calculating the difference between the objective function values of adjacent solutions in the
sorted front and dividing it by the established scale. This process can be represented by
the formula:

cdi,o =
|fo(xi+1)− fo(xi−1)|

fmax
o − fmin

o

(5.2)

Here, fo(xi+1) and fo(xi−1) are the objective function values of the adjacent solutions to i
and fmax

o and fmin
o represent the maximum and minimum values of the objective functions

across the entire front.

5.1.3 Individual representation

For the GA, the individual is represented as an Activity List (AL). An AL [35] is a prece-
dence feasible permutation of the activities, implying that for each activity their pre-
ceding activities are positioned somewhere earlier in the list. To formalize, given the
AL λ = (j1, j2, j3, ..., jJ), if i = jh, it implies that in position p(i) = h. A schedule
S = (s1, s2, ..., sJ), where sj is the start time for activity j, can be generated using a Serial
Generation Scheme (SGS), see Section 5.1.3.

Schedule generation

Using SGS, a schedule S(λ) is created from AL λ by taking the activities one by one, in the
order of the list, and scheduling them at the earliest time, still adhering to the precedence
and resource constraints. The pseudocode in 2 shows how a schedule can be generated from
an AL. The algorithm loops over all activities in the AL and tries to schedule it as early
as possible. First, it finds the start time, which is the latest end time of the predecessors.
Starting at the start time, it checks if the resource constraints are not violated for each
timestep in the duration of the activity. If the constraints are not violated, the activity is
scheduled, otherwise, the start time is incremented and the process repeats. This ensures
that the earliest possible start time for each activity is found, considering the AL.

5.1.4 Fitness functions

The MORCPSP/t-SE is a multi-objective problem, therefore, the fitness function is com-
prised of multiple functions. To begin with, one of the objectives is makespan. The
makespan of an individual is determined by the sum of the duration of the generated
schedule and the constraint penalty. An individual receives a penalty when the set start
or end time constraint is violated. The penalty is determined by how many timeslots the
activity is misplaced, further away leads to a higher penalty.

The second objective that will initially be considered is the resource utilization smooth-
ness score. This score will be calculated by taking the standard deviation of the resource
utilization per timeslot for each different resource and taking the average of the calculated
standard deviations.

5.1.5 Initial population

The initial population is created by repeating the following steps, starting with an empty
AL. Through an iterative process, activities are randomly chosen from the remaining set
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Algorithm 2: Schedule Activities
Input : Activity list
Output: Scheduled activities

1 schedule ← empty list
2 foreach activity A in the activity list do
3 starttime← max(predecessor activities endtime)
4 timeslot← starttime
5 while timeslot− starttime < duration do
6 if demand > resources in timeslot then
7 timeslot← starttime
8 starttime← starttime + 1

9 end
10 timeslot← timeslot + 1

11 end
12 schedule← schedule + starttime

13 end
14 return schedule

and added to the sequence. Before integration, the algorithm verifies that the selected
activities can be feasibly scheduled next by ensuring they adhere to precedence constraints.
This is done by checking if all preceding activities of the randomly chosen activity are
already selected, ensuring they are listed before. This iterative refinement continues until
a valid AL is formed. This is repeated until the satisfied population size is reached, fostering
diversity within the initial population and reducing the search space by eliminating invalid
schedules.

5.1.6 Crossover

For crossover, n-point crossover will be applied. N-point crossover is a technique in which n
crossover points are chosen randomly along the length of the parent chromosomes. For this,
two individuals will be selected as parents, a mother M and a father F . Then n random
integers q1, q2, ..., qn with 1 ≤ q1 ≤ q2 ≤ ... ≤ qn ≤ J are taken. Two new individuals,
daughter D and son S, are produced from the parents. First, D is created by taking all
activities from M with position i = 1, ..., q1 and filling the positions i = q1, ..., q2 with the
activities in F . When adding the activities from F , duplicate activities are not added. This
process is repeated for all q, ending by filling positions i = qn, ..., J with activities in F .
This method ensures that every activity appears in the list exactly once and precedence
constraints are met (proven by Hartmann [25]). The son is created by taking the first
activities from F instead of M and performing the same steps.

5.1.7 Mutation

Two mutation operators were initially considered. The first mutation operator, proposed
by Hartmann [25], involves exchanging activities ji and ji+1 for an individual λ at each
position i = 1, ..., J−1, with the probability of pmutation, provided that the new AL satisfies
the precedence constraints. The second operator is a right-shift mutation, where for each
position i = 1, ..., J − 1, the activity ji is moved randomly to a position between i and J
with the probability of pmutation also if the new AL satisfies the precedence constraints.
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Ultimately, only the right-shift mutation operator will be applied. It introduces more
significant changes to the schedule, thus adding more diversity to the population. In
contrast, swapping the positions of consecutive activities often resulted in minimal changes
to the individual’s phenotype, that is to say, visible changes in the generated schedule.

5.1.8 Selection

To create a new generation, first, 2-tournament selection will be used to find two parents.
In this technique, two different randomly chosen individuals compete for reproduction.
The individual with the lower rank is selected as the winner. If there is a tie in rank, the
individual with the higher crowding distance is chosen. The two chosen parents produce two
children with crossover and mutation operators. This process is repeated until the desired
population size is reached. This approach is chosen over truncation selection (selecting
the fittest individuals) to maintain a certain diversity within the population and prevent
premature conversion to local optima.

5.1.9 Overview of novelties

This thesis introduces several novel contributions to the application of the NSGA-II algo-
rithm for solving the MORCPSP/t-SE. These novelties include:

• Optimized Non-Dominated Sorting Algorithm: Modification of the traditional
non-dominated sorting process to prevent duplicate dominance checks, which reduces
computational complexity and enhances efficiency.

• Tailored Mutation Operators: Introduction of a right-shift mutation operator
that induces more significant changes to the schedule, thereby enhancing solution
diversity.

• Constraint Penalty in Fitness Function: Incorporation of a constraint penalty
in the fitness function to ensure strict adherence to start and end time constraints.

• Choice of N-Point Crossover: Application of the n-point crossover method, that
allows adaptability and optimization in the amount of crossover points.

• Minimise duplicate individuals: After crossover and mutation, the individual is
checked for duplication within the population. If a duplicate is found, the individual
undergoes an additional mutation.

5.2 Additional constraint handling

To improve the applicability of the scheduling algorithm to real-world scenarios, constraint
handling mechanisms must be incorporated. As previously stated, two primary additional
constraints are regarded. These are the temporal constraints dictating the start and end
times of projects, and the allocation of a specified percentage of capacity towards certain
project categories within the initial time horizon. Note that the regular capacity and
precedence constraints are not included here, as they are adhered to by the design of the
algorithm. Both constraints have a different handling mechanism as will be explained in
the following sections.
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5.2.1 Start and end time constraints

To adhere to the start and end time constraints, a dynamic penalty (see Section 2.7.1) will
be integrated into the objectives. The size of the penalty is determined by the extent of
the constraint violation. This is measured by calculating the number of timeslots between
the scheduled timeslot of the project and the timeslot specified by the constraint. If the
scheduled timeslot is too late or too early relative to the set start time or set end time,
respectively, the difference is considered a violation.

The difference in timeslots is converted to the violation using the principle of the
triangular number series. Specifically for the makespan objective, with n representing the
difference in timeslots, the violation penalty is calculated as:

Violation =
n(n+ 1)

2
(5.3)

It is crucial to apply a penalty to other objectives as well, to prevent an infeasible solution
from achieving high scores in these objectives and thus appearing in the Pareto front. While
the makespan uses the triangular number series for penalty calculation, other objectives
cannot and must employ different scoring metrics. To address this, the makespan constraint
penalty is converted into a percentage of the makespan objective. This percentage is then
applied as a penalty to the other objectives.

By incorporating dynamic penalties, the algorithm can navigate instances where strict
adherence to start/end time constraints may yield no feasible solutions. This approach
facilitates the discovery of optimal solutions while minimizing constraint violations. For
instance, when faced with a start time constraint conflicting with project predecessors’
scheduling constraints, the algorithm can explore alternatives effectively.

5.2.2 Capacity allocation constraints on project categories

This constraint entails that a certain amount of capacity is allocated for projects within a
certain category in a certain time horizon. For instance, projects can be categorized under
a cost reduction category. In such cases, a specific constraint could involve allocating
some percentage of the capacity to these projects in the upcoming year. These additional
constraints are valuable in aligning the scheduling process with strategic objectives, thereby
providing the generated schedules with greater real-world relevance and value.

For this constraint, a violation score is calculated as follows: First, for each project
category, the total allocated capacity within the specified time range is calculated. Next,
these totals are converted to percentages. With the percentages established, the Euclidean
distance between the percentage scores and the expected percentages is computed. The
Euclidean distance serves as a measure of dissimilarity between actual and expected per-
centages. To obtain an assessment of constraint violations across all project categories, the
average distance per category is derived. It is calculated by dividing the Euclidean distance
by the square root of the number of project categories. From this sequence of calculations,
a violation score is computed that represents the average distance per category from the
desired percentage distribution.

Since the percentages per project category are more like guidelines than strict con-
straints, a margin is defined to indicate acceptable deviations. For example, if the margin
is set to 10%, and the average distance per category falls within this margin, it is consid-
ered compliant and not a violation. This approach ensures that minor deviations from the
target percentages, which may be inevitable or even beneficial in practice, do not result in
unnecessary penalties.
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Figure 5.1: Plot of the function 5.4

As explained in Section 2.7, multiple constraint handling techniques can be used in
multi-objective optimization problems. For this constraint, two distinct approaches are
explored and employed (see Sections 5.2.2 and 5.2.2). The approaches will be compared by
running the algorithm on multiple identical problem instances with identical constraints.
The problem instances will be executed 100 times for each of the five different margin values.
Different margin values will be tested to observe how the different handling methods are
affected by the margin. Additionally, the average score of the solution and the standard
deviation of the runs are stored. The solution will be evaluated using the HV indicator (see
Section 5.3.1). Ultimately, this will show which method provides a better average score
and lower variance in the solutions.

Dynamic constrained dominance principle

To apply the Dynamic Constrained Dominance Principle (DCDP), the domination algo-
rithm in the NSGA-II was adapted to account for the constraints. A solution is feasible
if the constraint violation falls within the dynamic threshold margin or the overall mar-
gin. This threshold logarithmically decreases as the generation number linearly increases,
see Figure 5.1 for the threshold values for generation numbers. The threshold function is
defined as:

f(gen) =
0.5

1 +
(gen

3

)0.9 (5.4)

This threshold function was chosen since it allows for more exploration in the early genera-
tions and forces convergence toward a feasible solution in the later generations. The values
were commensurate with percentages and were determined through subjective intuition.
In DCDP, feasible solutions dominate infeasible ones. If both solutions are infeasible, the
solution with a lower constraint violation dominates. If both solutions are feasible, the
regular procedure for dominance is applied (see Section 2.4).

Violation as extra objective

In the approach of incorporating violation as an additional objective, the optimization
process extends beyond the original objectives to include the minimization of constraint
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violations as an objective. This introduces a trade-off between optimizing the primary
objectives and minimizing the constraint violations.

The additional objective value is the constraint violation, calculated as explained in
Section 5.2.

5.3 Hyperparameter optimization

The proposed NSGA-II implementation contains several hyperparameters that control the
behaviour of the algorithm. These include: the number of generations, population size,
mutation rate, crossover rate, and number of crossover points. All hyperparameters influ-
ence the convergence rate, solution quality, and efficient exploration and exploitation in
the search space.

To fine-tune these parameters, multiple HPO methods are applied. Initially, the indi-
vidual effects of the parameters are researched by plotting the algorithm’s outcome with
one adapted hyperparameter against the generations. However, it is important to notice
that the parameters might influence each other. For example, altering one parameter might
affect the effectiveness of another, thereby impacting the overall performance.

Since the search space of the optimal configuration is too large, HPO techniques are
applied. BO and PSO are selected for this problem as they can handle stochastic sys-
tems. The NSGA-II implementation is inherently stochastic due to the randomness in its
evolution steps.

5.3.1 Pareto front evaluation

Before optimizing parameters, a method to evaluate the quality of a Pareto front must
be selected. Section 2.9 discusses two such methods: the HV indicator and the IGD.
This research employs the HV indicator as it does not require a ground truth, unlike the
IGD method. Given that the scheduling problems addressed in this study lack a ground
truth, the HV indicator is more suitable. For the HV indicator, a reference point needs to
be provided. The reference point will be obtained by running the algorithm on a specific
problem, observing the outputted Pareto front, and choosing a reference point some degree
larger than the biggest values in the front. The reference point must be bigger than the
values of the Pareto front in the appropriate dimensions to be able to calculate a HV.
Throughout the subsequent sections, any mention of the algorithm’s output score refers to
the HV of the Pareto front produced by the algorithm.

5.3.2 Individual optimization

To find the individual influence of the hyperparameters, different values of a certain param-
eter are compared, while keeping the other parameters constant. First, an initial guess for
good parameter values has been made, see Table 5.4. This initial parameter value is based
on frequently used values in similar research [26][59][20]. The chosen values are also in
line with research on general GA parameter tuning [43][5] and RCPSP specific parameter
tuning [52]. [43] and [5] state that the relation between crossover and mutation rate does
not influence fitness a lot, as long as they are not both small. This is logical, as a GA
requires genetic alterations to improve solutions and avoid prolonged stagnation.

To prevent calculating every possible parameter value, a strategy of selecting multiple
test values for each parameter is opted, as outlined in Table 5.4. These values are strate-
gically chosen, with smaller increments around the initial value and larger increments as
the values move further away. Parameters such as generation number and population size
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Table 5.4: Initial and tested parameter values

Parameter Initial value Tested values

# generations 50 N/A
population size 50 N/A
mutation rate 0.05 [0.01, 0.05, 0.1, 0.2, 0.4, 0.7]
crossover rate 0.8 [0.1, 0.3, 0.5, 0.7, 1]

# crossover points 2 [1, 2, 3, 5, 10]

do not have predefined test values. Due to the intuitive relationship, increasing the values
generally leads to improved results but simultaneously increases computation time, the
values do not need testing values.

Instead, a different approach will be taken to find the most efficient values for population
size and number of generations. Multiple population sizes will be compared with a fixed
generation number, set at 200. Each population size will undergo 100 iterations. The
average score for the Pareto front will be plotted for each generation, creating a plot with
average scores per generation for each of the different population sizes. From this plot, the
convergence rates can be extracted, pinpointing the generation number beyond which the
algorithm’s average performance demonstrates diminishing improvements.

For the remaining hyperparameters, the following procedure will be implemented. Each
tested value will be run 100 times while keeping the other parameters fixed at their initial
constant values. Running each value 100 times minimizes the impact of randomness in
the algorithm. The average scores per generation for each parameter value will be plotted,
illustrating how the Pareto front scores evolve over generations for each parameter value.
This will help identify the most optimal parameter value, indicated by the highest final
average score. In addition to plotting the score per generation, the standard deviation of
the scores per generation will also be plotted. This will demonstrate the stability of the
results for each specific parameter value. A high deviation is undesirable as it suggests
that randomness significantly affects the outcomes, leading to greater uncertainty in the
algorithm’s performance.

5.3.3 Hyperparameter optimization

The previous section describes the methods to find the individual impact of the hyperpa-
rameters. However, the hyperparameters may also interact with each other or be optimal
only in specific configurations. To identify these optimal configurations, BO and PSO will
be applied. These two HPO techniques are chosen for several reasons. Firstly, both BO
and PSO are highly effective in stochastic systems, which is crucial given the randomness in
the evolutionary steps of the algorithm. Secondly, they are widely used in HPO, meaning
that there are libraries and practical applications to draw from. Thirdly, both methods are
great at finding global optima and reducing the risk of getting stuck in local optima due to
their effective balance of exploration and exploitation. By applying these methods, their
results can be compared to identify possible similarities, providing deeper insights into the
optimal hyperparameter configurations.

Before applying the optimization methods, search bounds must be set to prevent the
search space from becoming too large. To begin with, the population size and number of
generations will be constant throughout the optimization and set to their initial value, as
their influence on the outcome is trivial. For the remaining parameters, the bounds will
be the initial and final element of the tested values, depicted in Table 5.4. These values
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are chosen to give the optimization technique enough coverage for every parameter while
still having sufficient direction.

Bayesian optimization

BO will be implemented using the ’gp hedge’ acquisition function. An acquisition function
in BO determines the next set of hyperparameters to evaluate, by balancing exploration
(sampling in uncertain regions) and exploitation (sampling where high values are pre-
dicted). The ’gp hedge’ method combines the predictions of multiple acquisition functions,
leveraging the strength of different functions.

Particle Swarm optimization

PSO itself has some hyperparameters that influence the movement of each particle through
the search space. These hyperparameters are cognitive coefficient (set to 0.5), social co-
efficient (set to 0.3), inertia weight (set to 0.9) and number of particles (set to 10). The
cognitive coefficient controls how much a particle’s own best position influences its move-
ment, encouraging individual learning. The social coefficient controls how much the global
best position influences the particle, promoting social learning from the swarm. The iner-
tia weight influences the particle’s momentum, balancing exploration and exploitation by
controlling the impact of the previous velocity. The values of these parameters are default
and recommended values by the Pyswarms library.

5.4 Validation

The validation process is divided into two parts, both assessing different aspects of the
algorithm’s capabilities and effectiveness. First, a benchmark comparison will be done to
find the algorithm’s capability to find near-optimal solutions. Second, manual validation
will be done to verify the adherence to the specified constraints.

5.4.1 Dataset

To validate the algorithm’s ability to optimize makespan, the datasets created by Hartmann
[28] are used. These datasets are derived from the standard RCPSP benchmark set [38],
a well-established dataset in the RCPSP research community, available at PSPLIB [37]1.
Hartmann adapted these sets to include timed resource capacities and requests for the
RCPSP/t, enhancing the complexity and realism of the test instances.

Hartmann’s adaptation involved manipulating parameters that control resource alter-
ations within the problem instances. Specifically, two probabilities, PR and P r, determine
the likelihood of reducing resource capacities and resource availabilities and requests, re-
spectively. Higher values of these probabilities result in more frequent modifications to
the resources. Additionally, two factors, FR and F r, represent the magnitude of these
reductions, with smaller values indicating stronger reductions.

The probabilities were set to 0.05, 0.1, and 0.2. Importantly, the probabilities for
altering capacities and requests were kept equal, meaning PR = P r. The factors were set
to 0 and 0.5, with the same equality applied, i.e., FR = F r. This parameter configuration
led to six distinct instance types for each set size. The dataset included:

1www.om-db.wi.tum.de/psplib/main.html

38



• Six different instances derived from the set with n = 30 activities, resulting in 6 ×
480 = 2880 instances in total.

• Six different instances derived from the set with n = 120 activities, resulting in
6× 600 = 3600 instances in total.

These varied instances provided a robust basis for evaluating the algorithm’s performance
across different levels of complexity and resource constraints.

The dataset is labelled as follows: ’j30t’ denotes the set with 30 activities, where
’j’ stands for job or activity, ’30’ represents the number of jobs, and ’t’ indicates time
dependency. Within this set, subsets are labelled as j30t1 or j30t2, where the numbers
denote different parameter configurations used during data generation. Further granularity
is given by labels such as ’j30t1_2_3’, where ’1’ denotes the parameter configuration
(PR = 0.05 and FR = 0.5) and ’2’ and ’3’ together identify the problem instance within
that subset.

5.4.2 Benchmark comparison

To evaluate the performance of the proposed algorithm, each problem instance in the
dataset will be executed to determine if it can match the best-known schedule (obtained
by Hartmann2[29]) and to count the number of attempts required. The process involves
running each sub dataset (e.g., j30t1, j30t2, j120t1, etc.) independently to view the in-
fluence of the PR, P r, FR, F r and amount of activities. For each problem instance in a
sub dataset, the algorithm’s result will be compared to the best-known schedule. If the
result is worse, the algorithm will be rerun up to nine additional times. The number of
attempts needed to match the best-known makespan will be recorded for each instance.
For each problem instance, the algorithm’s best result will be compared to the best-known
makespan. This can either be a negative number, if the algorithm’s makespan was smaller,
indicating a better schedule, or a positive number if the best-known makespan was not
matched.

This procedure will be repeated for all instances in the dataset. The collected data will
include the number of attempts taken or the deviation from the best-known result for each
instance, allowing for an assessment of the algorithm’s ability to find the optimal solution
and its average deviation from the best-known schedule.

Since the algorithm is multi-objective and the dataset evaluates only the makespan,
validation will focus solely on this criterion. The algorithm produces a Pareto front with
multiple optimal solutions. The solution with the smallest makespan from the Pareto front
will be selected for comparison with the benchmark.

5.4.3 Manual validation

Since the benchmark dataset focuses solely on makespan, other aspects of the algorithm,
such as start and end time constraints, will be validated manually. To achieve this, two
problem instances will be randomly selected from each sub dataset. Additionally, start
and end time constraints and capacity allocation for project category constraints will also
be chosen at random.

First, all projects in the dataset will be assigned a category randomly, represented by
integers 1 to 3. A distribution for these categories will then be selected, for example, [0.5,
0.4, 0.1], along with a time horizon, say 20. This distribution implies that within the first

2The results of Hartmann were obtained through direct communication via email.
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20 time steps, 50% of the capacity must be allocated to projects within Category 1, 40%
to Category 2, and the remaining 10% to Category 3. Beyond these 20 time steps, the
distribution of capacity among the category becomes irrelevant.

In addition to the category constraints, start and end time constraints will also be
imposed. Specifically, one project will be assigned a start time constraint, and another
project will be assigned an end time constraint.

The algorithm will then be run on randomly chosen and created test cases from different
subsets. Random selection is used to prevent any bias and instances from different subsets
are used to represent different scenarios. The solutions will be manually evaluated to ensure
they adhere to the imposed constraints. This evaluation will be conducted by reviewing
visualizations of the schedules and capacity distributions. Moreover, these schedules will be
compared to the schedules created for the same problem instances without the constraints.
This comparison aims to highlight the impact of the constraints and to determine whether
the algorithm can still generate near-optimal solutions under the given constraints.
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Chapter 6

Results & analysis

6.1 Experimental setup

The proposed algorithm, optimization, validation and parsing scripts were all developed
in Python (version 3.12.3) due to its ease of prototyping, library availability, and personal
familiarity with the language. While languages like C++ offer faster execution speeds, the
complexity would have posed significant challenges. Therefore, Python’s flexibility and
libraries made it an ideal choice for rapid experimentation.

Several libraries were utilized to optimize or validate the algorithm:

• pymoo: This library was used for calculating the HV indicator, providing the quan-
titative measure of a Pareto front.

• scikit-optimize: This library provided the BO functionality.

• pyswarms: This library offered the implementation for the PSO.

These libraries were chosen because they are widely used, popular in the Python commu-
nity, and are well-documented and open source.

The test sets from PSPLIB (see section 5.4.1) were provided in text format. To use
the sets, a PSPLIB parser was developed based on the source code provided at GAMS1.
This parser enabled seamless integration of the benchmark datasets into the algorithm for
testing and validation.

6.2 Constraint handling comparison

A comparative analysis was conducted between the DCDP method and an additional ob-
jective constraint-handling approach. The algorithm was applied to four problem instances,
each running for 100 iterations. The constraint was set at 0.5 for Category 1, 0.3 for Cate-
gory 2, 0.2 for Category 3, and a time horizon of 20 timesteps. The mean HV and standard
deviations were observed for both methods, across five different margin values. Figure 6.1
illustrates the results of this comparison.

Particularly noteworthy are the values on the left side of the plot, where margins
of 0.05 and 0.1 are highlighted since these are the most realistic and applicable scenarios.
These results reveal that the DCDP method consistently achieves higher standard deviation
scores, especially at a margin value of 0.05. Despite this, the mean HVs of both methods

1www.gams.com/latest/gamslib_ml/libhtml/gamslib_rcpsp.html

41



are quite similar, with DCDP showing a slight improvement, suggesting that the quality
of the resulting Pareto fronts is comparable.

It is important to note that Figures 6.1c and 6.1d indicate a HV of 0 at a margin of 0.05
for the additional objective constraint handling method. This arises due to the reference
point being too small in one or both objectives, causing the objectives to exceed this point.
This can also be the cause of the lower standard deviation at a margin of 0.05.

The findings suggest that both methods are effective for constraint handling. The
DCDP method exhibits higher standard deviations but yields superior Pareto fronts. This
can be attributed to the fact that the DCDP method avoids dilution of the population
with infeasible individuals, unlike the additional objective method. This exclusion allows
for a more focused optimization of the other objectives.

(a) j30t1_10_4 (b) j30t2_11_1

(c) j30t3_15_8 (d) j30t4_20_10

Figure 6.1: Constraint handling method comparison with HV mean and standard
deviation (y-axis) and different margin values (x-axis)

6.3 Hyperparameter optimization

Initially, the individual impact of key hyperparameters was assessed to determine the
hyperparameter configuration for the NSGA-II algorithm that is the most effective and
efficient. This was accomplished by running the algorithm on three randomly selected
problem instances from the J120t1 dataset, each time varying one hyperparameter while
keeping the others constant and running each configuration 100 times. The primary metrics
for evaluation were the HV indicator and the standard deviation of the HV.

The plots for the individual parameter assessments (Figures 6.2, 6.3, 6.4) are organized
with the generation number on the x-axis and the HV or standard deviation on the y-
axis. Different colours represent the different parameter configurations. These plots allow
for a visual comparison of how various configurations perform over successive generations,
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highlighting trends and performance stability across the tested hyperparameters.
The following sections detail the results for mutation rate, crossover rate, and number

of crossover points, as well as the overall findings from automated HPO techniques.

6.3.1 Mutation rate

The results of the mutation rate optimization are illustrated in Figure 6.2. The HV plots
show lower mutation rates, specifically 0.01 and 0.05, yield the highest HV values, indicat-
ing superior performance. Conversely, higher mutation rates of 0.2, 0.4, and 0.7 result in
significantly lower HV scores after the fifth generation, suggesting suboptimal performance.
Next, the standard deviation plots reveal that higher mutation rates generally lead to lower
standard deviations, implying more consistent results. However, mutation rates of 0.05 and
0.1 also exhibit relatively low standard deviations, balancing both high performance and
stability. Notably, the mutation rate of 0.01 consistently achieves the highest standard de-
viation. Moreover, Figure 6.2d shows a clear deviation from the others, rising steeply while
the rest generally trends downward. This indicates that the results in later generations of
the runs with a mutation rate of 0.01 exhibited great variability. However, it is important
to note that such an outlier might be coincidental. Upon re-running, this deviation was
not replicated, suggesting that the observed difference might be due to random variations.

6.3.2 Crossover rate

The results of the crossover rate optimization are illustrated in Figure 6.3. The HV plots
show no distinguishable differences between the different rates at generation. Each of the
various rates shows a similar curve and end value with slight variations between the three
problem instances. This suggests that the crossover rate has a more subtle impact on
the overall performance when measured by HV alone. In contrast, the standard deviation
plots show more pronounced differences between the rates. Overall, a rate of 1 scored the
highest and rates of 0.5 and 0.7 scored the lowest.

6.3.3 Number of crossover points

The results of the optimization for the number of crossover points are illustrated in Figure
6.4. The HV plots demonstrate a clear pattern: configurations with 1 or 2 crossover points
consistently achieve the highest HV values. In contrast, configurations with 10 crossover
points consistently result in lower scores. The standard deviation plots reveal similar
trends. Configurations with higher numbers of crossover points lead to higher standard
deviations, indicating greater variability and less consistent outcomes. Conversely, using 1
or 2 crossover points results in lower standard deviations.

6.3.4 Bayesian and Particle Swarm Optimization

To determine the optimal hyperparameter configuration, HPO techniques were applied
to multiple problem instances. Both BO and PSO were executed with a total of 1000
iterations. For PSO, this total was divided into a population of 10 with 100 iterations
each, whereas BO had 1000 iterations directly. Each of the optimized problem instances
underwent optimization six times in total, three times using each optimization method.

The results are depicted in Figure 6.5. This figure illustrates the optimal configuration
obtained from each run. In Figure 6.5a, the differences between the outcomes of the BO
(represented by dots) and PSO (represented by crosses) are shown. Moreover, the difference
between different problem instances is shown, indicated by a different colour. Figure 6.5b
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(a) j120t1_1_10 (b) j120t1_1_10

(c) j120t1_2_3 (d) j120t1_2_3

(e) j120t1_5_10 (f) j120t1_5_10

Figure 6.2: Comparison of mutation rate values with HV (left) or the standard
deviation (right) on the y-axis and generation number on the x-axis.

44



(a) j120t1_1_10 (b) j120t1_1_10

(c) j120t1_2_3 (d) j120t1_2_3

(e) j120t1_5_10 (f) j120t1_5_10

Figure 6.3: Comparison of crossover rate values with HV (left) or the standard
deviation (right) on the y-axis and generation number on the x-axis.
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(a) j120t1_1_10 (b) j120t1_1_10

(c) j120t1_2_3 (d) j120t1_2_3

(e) j120t1_5_10 (f) j120t1_5_10

Figure 6.4: Comparison of crossover points values with HV (left) or the standard
deviation (right) on the y-axis and generation number on the x-axis.
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presents the same distribution of data points, however, the colour represents the number
of crossover points included in the optimal configuration.

The results demonstrate high variety in the plots. To begin with, there is considerable
diversity in the combinations of crossover and mutation rates, even for identical problem
instances. This implies that the HPO methods are still greatly affected by the stochastic
nature of the algorithm, with no single optimal combination of these hyperparameters
emerging. Notably, the majority of combinations have a mutation rate above 0.5 and
a crossover rate between 0.3 and 0.6. Also, there are no combinations in the lower-left
quadrant, [0, 0.4]×[0, 0.4] and only one on the border of the upper-right quadrant, [0.6, 1]×
[0.6, 1]. This indicates that at least one hyperparameter must be sufficiently high to ensure
population diversity, while both hyperparameters cannot be excessively high to preserve
valuable characteristics. This finding is also in line with other research on the effects of
the hyperparameters [43][5].

The results in Figure 6.5b indicate a preference towards four crossover points. There
is no clear correlation between the combination of crossover and mutation rates and the
number of crossover points. However, when examining the plot Figure 6.5a, it is revealed
that all but one of the outcomes of PSO have four crossover points. However, this may be
influenced by chance, given the small sample size.

(a) Grouped by problem instance
and optimization technique

(b) Grouped by amount of crossover
points

Figure 6.5: Visualisations HPO results

6.4 Benchmark comparison

To validate the capability of the algorithm to find solutions with an optimal value in an
objective, the algorithm was run on all problem instances in the j30t and j120t datasets
(see Section 5.4.1 for more detail) and compared with the results from Hartmann [28]. The
bar charts in Figures 6.6 and 6.7 illustrate the distribution of attempts required to find a
solution with an improved or identical makespan value, compared to Hartmann’s result.
The x-axis represents the number of tries, while the y-axis shows the number of successful
solutions on each attempt. A problem instance was run a maximum of ten times. If no
successful solution was found, the run was added to the ten number of tries bucket.

To begin with, the bar charts of the j30t datasets and Table 6.2 clearly show that most
of the best solutions are found in the initial try, with only a few problem instances failing
to get a successful solution. Next to that, there is a notable difference between the datasets
1, 2 and 3 and 4, 5 and 6. The latter datasets show more unsuccessful runs. These datasets
have capacity drops of 50% instead of 100% and the results indicate that the algorithm
encounters more difficulty with such configurations.
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The bar charts in Figure 6.7 show big differences in distribution compared to the j30t
data. Notably, there is a higher number of unsuccessful runs, leading to a larger bar at ten
tries. This trend is particularly evident in datasets 4, 5, and 6, which show more problem
instances requiring ten tries than those solved in one try. Interestingly, the j120t3 dataset
performs best, similar to how the j30t3 dataset performed best.

Next to the number of tries, the difference between the benchmark dataset solution and
the generated solution for each problem instance was recorded. Based on this, the average
error rate and the average improvement were calculated and presented in Table 6.3. The
average error rates are around 6.6% of the total makespan. Moreover, in approximately
366
3600 ∗ 100 ≈ 10.2% of the problem instances, an improved solution was found, with an
average improvement of 5 timesteps. This shows that there is still a lot of variability in
solving problem instances with a lot of projects.

Overall, the proposed algorithm performs slightly worse on the makespan objective
compared to the benchmark algorithm. This is most likely because the proposed algorithm
considers multiple objectives, which results in a less concentrated focus on optimizing the
makespan. Consequently, fewer solutions are specifically tailored to optimize this particular
objective, reducing the likelihood of finding the optimal project configuration.

# Tries

1 2 3 4 5 6 7 8 9 10

D
at

as
et

j30t1 392 42 13 2 7 6 1 2 1 14
j30t2 412 26 14 7 2 1 4 1 0 13
j30t3 450 15 7 2 1 1 2 0 0 2
j30t4 357 53 20 5 4 4 1 1 5 30
j30t5 356 49 11 12 5 1 2 2 5 37
j30t6 329 58 26 11 9 8 3 5 3 28

j30t 2296 243 91 39 28 21 13 11 14 124
j30t (%) 79.7 8.4 3.2 1.4 1 0.7 0.5 0.4 0.5 4.3

Table 6.1: Distribution of attempts to best solution by number of tries for J30t

# Tries

1 2 3 4 5 6 7 8 9 10

D
at

as
et

j120t1 265 49 28 19 18 12 8 13 9 179
j120t2 278 61 34 15 12 11 8 6 5 170
j120t3 373 63 22 10 11 6 9 2 4 100
j120t4 197 65 43 28 11 16 11 11 14 204
j120t5 129 59 48 25 21 9 14 18 7 270
j120t6 118 53 30 22 14 16 14 13 8 312

j120t 1360 350 205 119 87 70 64 63 47 1235
j120t (%) 37.8 9.7 5.7 3.3 2.4 1.9 1.8 1.8 1.3 34.3

Table 6.2: Distribution of attempts to best solution by number of tries for J120t
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(a) Dataset j30t1 (b) Dataset j30t2

(c) Dataset j30t3 (d) Dataset j30t4

(e) Dataset j30t5 (f) Dataset j30t6

Figure 6.6: Distributions of tries to achieve the best outcome for J30t dataset
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(a) Dataset j120t1 (b) Dataset j120t2

(c) Dataset j120t3 (d) Dataset j120t4

(e) Dataset j120t5 (f) Dataset j120t6

Figure 6.7: Distributions of tries to achieve the best outcome for J120t dataset
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Dataset Total Improved Avg Improvement Avg Error rate

j120t1 64 2.66 0.059
j120t2 44 3.95 0.076
j120t3 25 15.52 0.110
j120t4 101 2.23 0.043
j120t5 74 2.59 0.052
j120t6 58 3.03 0.058

j120t 366 5.00 0.066

Table 6.3: Improvement and Error Metrics by Dataset

6.5 Manual runs

The algorithm’s capacity to manage additional constraints was assessed using one problem
instance from the j30t1 dataset and three problem instances from j120t dataset (specifically
j120t1, j120t4 and j120t6). The selected subsets of data were carefully chosen to introduce
a variety of challenges for manual validation. A j30t1 problem instance was specifically
selected due to its suitability for clear visualization, given its relatively smaller size of 30
projects as opposed to 120. The j120t problem instances were incorporated to demonstrate
the algorithm’s capability to manage higher complexity levels, also with different levels of
varying capacity requests.

The validation process involved a manual review of the generated schedules and their
properties. Each problem instance was initially executed with No Additional Constraints
(NAC). Subsequently, runs were performed incorporating only the Project Category Con-
strained (PCC), followed by runs that included both the Project Category Start/End time
Constrained (PCSEC). The set start/end time constraints were determined by analyz-
ing the NAC run schedule and selecting constraints that necessitate adjustments in the
schedule.

For each execution, Pareto fronts across different generations were plotted. A schedule
containing the project’s resource requests per resource was also generated, along with a
plot depicting the capacity distribution across the project categories. It is important to
note that the solution with the lowest makespan in the Pareto front was chosen for the
visualization. This solution was chosen because it is the smallest and was most often the
easiest to visualize and analyze.

In the Pareto plots, the coloured dots represent solutions from specific generations,
with blue indicating the initial population and red indicating the final generation. The
Y-axis represents the resource utilization smoothness objective, while the X-axis represents
the makespan objective.

The schedule plots visualize project start times, durations, and resource requests per
resource. Each coloured block represents a project, with its position and width indicating
the timeslots during which the project is active. The height of the block corresponds to
the number of resources it uses. The schedule plots include four separate schedules, one
for each resource type. Each schedule also features a black line that marks the maximum
resource capacity for that resource across the timeslots. At certain points in the schedule,
the capacity drops to zero or 50%, as illustrated by the black line.
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Figure 6.8: Example schedule plot

Figure 6.8 provides an example schedule. In this case, there is a single resource that
varies over time. There are 8 activities scheduled, each with a duration and capacity
demand. Activity 1 (the dark blue block) has a varying capacity demand.

(a) Start of the block denotes the starting timeslot, 2, of activity 8 (the pink block).

(b) End of the block denotes the ending timeslot, 5, of activity 8.

(c) The height of the block denotes the capacity demand of activity 8.

(d) The black line visualizes the capacity that varies over time.

(e) Activity 1 (the dark blue block) shows varying capacity demands in its second times-
lot.

The capacity distribution plots illustrate the proportion of capacity allocated to projects
within a specific category over a certain number of timesteps, alongside the target allo-
cation. The solid lines indicate the actual allocation, while the dashed lines of the same
colour represent the target allocation. The proportion is calculated as the total utilized
capacity divided by the allocated capacity for the projects in each category. In the test
cases, three categories were created, and projects were randomly distributed among these
categories. The target capacity distribution is: Category 1 - 50%, Category 2 - 20%, and
Category 3 - 30%. Additionally, a time horizon of 20 timesteps was used.

6.5.1 Results of problem instance j30t1_5_4

Figures 6.9, 6.10, 6.11 present the outcomes of the manual validation for problem instance
j30t1_5_4. Starting with Figure 6.9, the plots illustrate the evolution of Pareto fronts
across generations. The NAC run emerges as the top performer in the final Pareto fronts,
followed by the PCC run. Although the PCC run yields comparable results for the ex-
treme solutions (those closest to the axes), it consistently performs worse on the other
objective. The PCSEC run exhibits the poorest performance across all objectives, also
showing significantly higher makespans.

The set start/end time constraints for the PCSEC run were set to: Project 4 starts at
timeslot 3 and Project 3 ends before timeslot 20. Examining Figure 6.10c, the schedule
adapts to the set start/end time constraints. In the upper schedule, Project 4 (the light
orange box) does not start in the initial timeslots as observed in the NAC run, but instead,
is delayed. Similarly, Project 3 (the dark orange box) is scheduled at the earliest possible
time due to the constraint requiring its completion by timeslot 20. However, the schedule
indicates it finishes at timeslot 23. This discrepancy arises because there was insufficient
capacity to execute the project in earlier timeslots, leading to penalties applied to the
objectives in the PCSEC run. This also accounts for the higher objective values observed
in the Pareto front for the PCSEC run.
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Figure 6.11 shows that the NAC run allocates approximately 55% of the utilized ca-
pacity to the Category 3 projects and 25% on Category 1, which is far from the targets.
The PCC and PCSEC runs are closer to the targets showing the impact of the constraint.

(a) No additional con-
straints

(b) Project category
constrained

(c) Category and
set start/end time
constrained

Figure 6.9: Pareto fronts for problem instance j30t1_5_4

(a) No additional con-
straints (enlarged A.1)

(b) Project category
constrained (enlarged
A.2)

(c) Category and
set start/end time
constrained (enlarged
A.6)

Figure 6.10: Schedule with capacity usage for problem instance j30t1_5_4

(a) No additional con-
straints

(b) Project category
constrained

(c) Category and
set start/end time
constrained

Figure 6.11: Capacity distribution on project category for problem instance
j30t1_5_4
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6.5.2 Results of problem instance j120t1_2_3

Figures 6.12, 6.13 and 6.14 illustrate the results of the manual validation for problem
instance j120t1_2_3. The Pareto fronts shown in Figure 6.12 demonstrate more significant
improvement over generations and contain a greater number of solutions compared to the
j30t1_5_4 results. The increased complexity of the problem instance likely provides more
options and project configurations, leading to richer solution sets. Consistent with the
j30t1_5_4 outcomes, the NAC run exhibits the best Pareto fronts, followed by the PCC
and PCSEC runs.

The start and end time constraints for the PCSEC run were defined as follows: Project
4 begins at timeslot 3, and Project 37 must finish before timeslot 40. Figure 6.13 displays
the schedules for each run. In the light orange box on the left of the schedule for the
second resource (second from the top), Project 4 can be observed. In the NAC and PCC
runs, Project 4 starts in the initial timeslot, whereas in the PCSEC run, it shifts to the
third timeslot to meet the constraint. Additionally, Project 37, represented by the yellow-
green block, starts around timeslot 40 in the first resource schedule for both the NAC and
PCC runs but is moved to start around timeslot 28 in the PCSEC run, thus satisfying the
constraint, leading to no additional penalties as seen in the Pareto front.

Lastly, the capacity plots in Figure 6.14 show a clear difference in the NAC run and
the PCC and PCSEC runs. The latter two runs show smaller deviations from the target
distribution, indicating the influence of the constraint.

6.5.3 Results of problem instance j120t4_5_6

Figures 6.15, 6.16, and 6.17 illustrate the outcomes of the manual validation for problem
instance j120t4_5_6.

The Pareto fronts depicted in Figure 6.15 reveal distinct differences among the three
runs. The NAC run significantly outperformed the others on the makespan objective.
Notably, the PCC run features two solutions in the top left corner of generations 0 and
5. Under normal circumstances, the solution from generation 5 would be included in the
Pareto front, as it is not dominated by any solutions in subsequent generations. However,
due to the DCDP constraint handling method, these solutions were permissible in early
generations but failed to pass when the dynamic threshold became more stringent. The
PCSEC run’s Pareto front contains only two solutions, which is relatively low, likely due
to the stringent constraints preventing other solutions from meeting the required criteria.

Figure 6.16 displays the generated schedules. This problem instance, being from the
j120t4 dataset, features a varying capacity that drops to 50%, as illustrated by the black
bar only descending to the 50% mark in the schedules. The start and end time constraints
for this instance were set such that Project 4 begins at timeslot 3, and Project 15 must end
before timeslot 20. In the NAC run in the schedule for the first resource, Project 15 (the
dark grey box) starts at timeslot 29 in the first resource schedule, and Project 4 (the light
orange box) starts in the initial timeslot. In the PCSEC run, Project 4 is shifted to the
right, and Project 15 now ends at timeslot 15, thereby fully adhering to the constraints.

Lastly, the capacity distribution plots in Figure 6.17 show a marked difference between
the NAC run and the other two runs, with the latter exhibiting distributions more closely
aligned with the target.

6.5.4 Results of problem instance j120t6_7_8

Figures 6.18, 6.19, and 6.20 present the outcomes of the manual validation for problem
instance j120t6_7_8.
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(a) No additional con-
straints

(b) Project category
constrained

(c) Category and
set start/end time
constrained

Figure 6.12: Pareto fronts for problem instance j120t1_2_3

(a) No additional con-
straints (enlarged A.4)

(b) Project category
constrained (enlarged
A.5)

(c) Category and
set start/end time
constrained (enlarged
A.6)

Figure 6.13: Schedule with capacity usage for problem instance j120t1_2_3

(a) No additional con-
straints

(b) Project category
constrained

(c) Category and
set start/end time
constrained

Figure 6.14: Capacity distribution on project category for problem instance
j120t1_2_3

The Pareto fronts shown in Figure 6.18 again show differences among the three runs.
However, this time the NAC run’s Pareto front does not scores better on objectives com-
pared to the PCC run. Nevertheless, the NAC run’s Pareto front does contain more options.
The PCSEC run’s Pareto front is also interesting, showing significantly worse scores on
the makespan objective. Next to that, some solutions from generations 0 and 5 do not get
dominated by solutions from generation 20, similar to the PCC run of problem instance
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(a) No additional con-
straints

(b) Project category
constrained

(c) Category and
set start/end time
constrained

Figure 6.15: Pareto fronts for problem instance j120t4_5_6

(a) No additional con-
straints (enlarged A.7)

(b) Project category
constrained (enlarged
A.8)

(c) Category and
set start/end time
constrained (enlarged
A.9)

Figure 6.16: Schedule with capacity usage for problem instance j120t4_5_6

(a) No additional con-
straints

(b) Project category
constrained

(c) Category and
set start/end time
constrained

Figure 6.17: Capacity distribution on project category for problem instance
j120t4_5_6

j120t4_5_6. Lastly, the run has some outliers on the makespan objective. This could be
caused by a violation of the start/end time constraint.

Figure 6.19 illustrates the generated schedules. In this instance, which comes from the
j120t6 dataset, variation in capacity requests occurs much more often. The start and end
time constraints for this instance are that Project 4 begins at timeslot 3, and Project 19
must conclude before timeslot 20. In the NAC run, Project 19, depicted in light blue,
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starts at timeslot 16 in the first resource schedule, while Project 4, shown in light orange,
starts in the initial timeslot. In the PCSEC run, Project 4 is shifted to the right, starting
at timeslot 3 as required, and Project 19 ends at timeslot 20, thereby fully complying with
the constraints.

Lastly, the capacity distribution plots in Figure 6.20 again show a difference between
the NAC run and the other two runs. The PCC and PCSEC runs show distributions that
are closer to the targets.

(a) No additional con-
straints

(b) Project category
constrained

(c) Category and
set start/end time
constrained

Figure 6.18: Pareto fronts for problem instance j120t6_7_8

(a) No additional con-
straints (enlarged A.10)

(b) Project category
constrained (enlarged
A.11)

(c) Category and
set start/end time
constrained (enlarged
A.12)

Figure 6.19: Schedule with capacity usage for problem instance j120t6_7_8

(a) No additional con-
straints

(b) Project category
constrained

(c) Category and
set start/end time
constrained

Figure 6.20: Capacity distribution on project category for problem instance
j120t6_7_8
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6.5.5 Summary of findings from manual runs

The manual runs across different problem instances reveal several consistent findings re-
garding the algorithm’s performance under varying constraints. The primary patterns
observed are as follows:

Pareto front analysis

Across all problem instances, the NAC runs consistently exhibited the best performance
in the Pareto fronts, particularly in the makespan objective. The NAC runs frequently
populated the Pareto front with a higher number of solutions and demonstrated lower
overall objective values compared to the PCC and PCSEC runs. While the PCC runs did
not perform as well overall as the NAC runs, they achieved similar extreme objective values
(those closest to the axes). The PCSEC runs generally exhibited the poorest performance
across both objectives, with higher makespans and less favourable resource utilization
smoothness. The additional start/end time constraints appear to introduce significant
challenges, resulting in fewer solutions in the final Pareto front and higher objective values.

Schedule analysis

The schedule plots for each problem instance reveal a consistent pattern where the NAC
run deviated from the similar PCC and PCSEC runs, and the introduced constraints were
adhered to as much as possible. This was especially evident in the PCSEC runs, which
adapted the schedules to meet start/end time constraints, often leading to delays in project
start times. In cases of limited capacity, extensions beyond desired end times appeared,
incurring penalties that were reflected in the higher objective values observed in the Pareto
fronts.

Capacity distribution analysis

The capacity distribution plots indicate that the PCC and PCSEC runs consistently
achieved distributions closer to the target allocations compared to the NAC runs. This
alignment underscores the effectiveness of incorporating constraints to manage capacity
allocations more effectively across project categories. The PCC and PCSEC runs showed
only minor differences in their capacity distributions, highlighting the small influence of
the start/end time constraints on the project category constraints.

58



Chapter 7

Conclusions

7.1 Main contributions

This thesis makes several key contributions to the field of PPM and optimization using
GAs.

• Firstly, the thesis demonstrated that project scheduling techniques can be effectively
applied to portfolio scheduling. This was achieved by adapting the RCPSP/t to
create the new MORCPSP/t-SE to fit portfolio requirements.

• Moreover, a formalization of the MORCPSP/t-SE is provided.

• In addition, a method to consider strategic goals within the problem framework was
integrated, employing multiple constraint-handling techniques to address these goals
and constraints.

• To solve the newly defined problem, the existing NSGA-II was adapted, incorporat-
ing new crossover and mutation operators, a duplicate solution mitigator, and an
improved main loop.

• Next, the thesis addressed the limited research on HPO for GAs in scheduling prob-
lems by employing two techniques for HPO: BO and PSO.

• Ultimately, this research provides a validated method for organizations to find an
optimized schedule for their complex portfolios with many constraints and strategic
objectives.

7.2 Genetic algorithm for project scheduling

RQ1: How can a genetic algorithm solve the multi-objective Resource-Constrained
Project Scheduling Problem with set start/end time constraints and capacity
allocation to project categories constraints?

RQ1.1: How can a project portfolio schedule be structured and encoded for
use within a genetic algorithm framework?

To adapt established techniques originally designed for project scheduling to fit project
portfolio scheduling, portfolios were analogously mapped to projects (Section 2.1). This
involved aligning projects with portfolios based on shared constraints and structures.
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In the proposed GA, a project portfolio schedule is represented as a precedence AL
(Section 5.1.3). This method is widely used in project scheduling problems due to its ef-
fectiveness and ease of use. The AL representation proved effective, facilitating a straight-
forward mechanism for mutation and crossover. Due to the design of the AL, projects
could be swapped for mutation and the crossover operation between two projects always
produces valid children that respect the precedence constraints. This ensured that the
genetic operations maintained the feasibility of the solutions throughout the evolutionary
process.

RQ1.2: How can set start/end time constraints be formalized and included
in the GA?

Set start/end time constraints were formalized as two sets containing tuples that define
a project and its start or end timeslot. Together with a multi-objective approach and
the RCPSP/t defined by Hartmann [28] a new RCPSP variant was created and named
the multi-objective RCPSP/t with additional start/end time constraints (MORCPSP/t-
SE). The set start/end time constraints were handled by the dynamic penalty constraint
handling method. The penalty worsened the objectives of a solution that violated the
constraints. A penalty was chosen to still allow infeasible solutions in the population since
the constraints could lead to no possible feasible schedules. Figure 6.10c shows such an
example where perfect adherence to the constraints was not possible due to capacity and
precedence constraints. Figure 6.16c illustrates an example of a feasible schedule with set
start/end time constraints.

RQ1.3: How can additional capacity allocation to project categories constraints
be included in the GA and be solved?

Capacity allocation to project categories constraints specifies the proportion of total
capacity to be allocated to various project categories within a defined time horizon. To
manage these constraints, two techniques were employed: DCDP and treating violations as
an additional objective. The violation penalty was determined by calculating the Euclidean
distance between the actual capacity distribution percentages and the target percentages.
If this distance exceeded a predefined threshold, a violation penalty was applied based on
the specific handling method used. The results from the example instances, illustrated in
the figures in Section 6.2, indicate minimal differences between the two handling methods.
The average HV of the runs for both techniques was nearly identical. However, the DCDP
method exhibited a higher standard deviation. Next to that, the manual runs in Section
6.5 clearly showed the effectiveness of the DCDP constraint handling method.

RQ1.4: What existing methods or frameworks are suitable for solving multi-
objective scheduling problems, and how can they be adapted or extended to
solve the problem at hand?

In portfolio management, developing a schedule that optimizes multiple objectives is crit-
ical for achieving strategic goals. Over the years, various multi-objective optimization
techniques have been applied, including PSO, SA, and GAs. A common element among
multi-objective optimization methods is the Pareto front, which identifies multiple optimal
solutions across different objectives.

60



This research applied the NSGA-II algorithm to tackle the MORCPSP/t-SE. The re-
sults demonstrated that NSGA-II could achieve comparable performance to GAs specif-
ically designed for single-objective optimization. To address the additional constraints,
the NSGA-II algorithm was enhanced with constraint-handling techniques, caching mech-
anisms, and tailored crossover and mutation strategies specific to scheduling problems.
These adaptations enabled NSGA-II to manage the complexities of multi-objective opti-
mization in project scheduling effectively.

7.3 Metrics for assessing quality

RQ2: What criteria and performance metrics can be used to assess the quality
and effectiveness of the GA and the generated project portfolio scenarios?

RQ2.1: How can optimal values for hyperparameters of the GA be determined?

In this research, two methods for determining optimal hyperparameter values for the al-
gorithm were employed. First, an assessment of the individual impact of the parameters
was conducted by running the algorithm on selected problem instances, varying one hy-
perparameter at a time while keeping others constant. The HV indicator and standard
deviation thereof were used as primary metrics for evaluation.

The results, illustrated in Figures 6.2, 6.3 and 6.4, indicate that a mutation rate of 0.05
or 0.1 performs best, crossover rates had little effect on the HV mean but rates of 0.5 and
0.7 scored the lowest standard deviation and two crossover points had the best outcomes
on both HV and standard deviation.

Second, to find an optimal configuration of hyperparameters with parameters that in-
fluence each other, two HPO methods, BO and PSO, were applied. These methods were
utilized to handle the stochastic nature of the algorithm. Figure 6.5 shows the results of the
HPO runs of both methods. The results indicate that there is not a single optimal config-
uration and that the optimization is heavily influenced by the randomness in the algorithm.

RQ2.2: How can a generated solution be validated without knowing the actual
optimal solution?

Validating solutions to NP-hard problems is inherently challenging due to the vast
number of possible solutions and the computational expense of evaluating each one. This
research addressed this challenge by validating the proposed algorithm against a benchmark
dataset. Each problem instance in the dataset was executed up to 10 times, or until the
benchmark solution was either found or improved upon.

The results demonstrated that for the j30t dataset, the proposed algorithm found a so-
lution with the same or an improved objective value, compared to the benchmark solution,
on the first attempt for 80% of the problem instances (see Table 6.2). Detailed results are
illustrated in Figure 6.6. Conversely, the j120t problem instances proved to be significantly
more challenging as shown in the plots in Figure 6.7. While the algorithm did not always
find the benchmark solution for these harder instances, the average error rate was a mere
0.066. This indicates that the solutions generated by the algorithm were, on average, very
close to the benchmark. Furthermore, in some instances, the algorithm even managed to
find improved solutions.

In addition to the benchmark validation, manual validation was conducted to assess the
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algorithm’s performance under multiple objectives and constraints. The figures in Section
6.5 present Pareto fronts, schedules with capacity usage, and capacity distribution across
project categories. During these manual runs, the algorithm consistently adhered to the
predefined constraints wherever possible and minimized violations where adherence was
not feasible. This was validated by a thorough analysis of various visualizations of the
generated schedules.

Overall, the combination of benchmark comparisons and manual validation provides
robust evidence of the algorithm’s efficacy in generating high-quality solutions, even in the
absence of a known optimal solution.

RQ2.3: How will validation data with optimal solutions be gathered or cre-
ated?

The validation data for the algorithm was gathered using problem instances provided
by Hartmann [28], which are adaptations of the standard RCPSP benchmark set. These
instances included timed resource capacities and requests and provided a robust basis for
evaluating the algorithm’s performance across various levels of complexity and resource
constraints. This dataset allowed for both benchmark comparisons and manual valida-
tion, ensuring a comprehensive assessment of the algorithm’s ability to find near-optimal
solutions and adhere to additional constraints.

7.4 Future work

This thesis provides a step towards optimizing PPM using the NSGA-II. Moving forward,
several areas can be expanded or explored to enhance the findings of this thesis. The first
area for future work involves performing case studies for the proposed algorithm. While
the current study provides multiple methods for validation, the methods were conducted
with project scheduling data. Portfolio scheduling might contain different challenges that
were not regarded. For example, quantifying the performance of portfolio planning is sig-
nificantly more complex due to the need to balance multiple objectives and constraints.
Additionally, factors such as strategic alignment and change management, add layers of
complexity that are not typically addressed in project-level scheduling. Therefore, includ-
ing case studies from diverse industries with varying project characteristics would enhance
the proposed approach’s generalizability and validate its effectiveness across different do-
mains.

To further address the limitations of the use of the project scheduling dataset, future
research should enhance it or create a new validation dataset to incorporate additional
metrics tailored to PPM. Such metrics could include costs, expected revenue, risk, etc., to
create more realistic objectives and constraints. Moreover, it can facilitate comparisons
with other approaches. Conducting comparative analysis with other evolutionary tech-
niques like PSO and SA would offer insights into the strengths and weaknesses of each
approach.

Before comparing the algorithm to other approaches, the algorithm should be written
in a language like C or C++. This enhancement would facilitate comparative studies
against existing benchmarks and alternative optimization techniques. Such comparisons
are important when evaluating performance in speed and scalability, which are essential
factors for practical application.

Finally, to improve the proposed algorithm, problem-specific crossover and mutation
operations that enhance the solution quality should be developed. Such customized op-
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erators could leverage domain-specific knowledge to improve the search process of the
algorithm. Similarly, the algorithm could be enhanced with a local search function to
improve the solutions.
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