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Summary

This thesis explores integrating machine learning, specifically deep reinforcement learning, into job
shop scheduling to improve production efficiency. The study assesses DRL models in both static
and dynamic settings, revealing that DRL can surpass traditional methods in well-defined scenarios.
However, it faces challenges with computational demands, scalability, and generalization. DRL shows
promise, especially with tailored environments and transfer learning, but its practical use is limited to
specific cases. Recommendations include continuing with traditional methods for now and exploring
advanced techniques that require more expertise to enhance performance and generalization, while
also speeding up the training process.
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1 Introduction

In today’s fast-paced world, efficiency is often a necessity. Over the past few decades, the global
manufacturing sector has been transformed by technological advancements, significantly enhancing
production processes. As the world’s population continues to grow, so does the demand for products,
highlighting the urgent need for innovative and efficient manufacturing solutions.

This thesis explores recent advancements in production planning, focusing particularly on the
potential integration of machine learning (ML) into the industry. The primary aim is to investigate
how machine learning techniques are applied to solve job shop scheduling problems (JSSP) and how
these techniques can be effectively integrated. This work examines current developments and potential
applications of machine learning, implementing a method to address job shop scheduling challenges.
By evaluating different approaches to deploying machine learning, this thesis seeks to assess both
its capabilities and limitations in solving these scheduling issues, with the goal of determining the
practical applicability of these advancements in real-world manufacturing environments. This research
was conducted under the guidance of the University of Twente.

1.1 The job shop scheduling problem

Job Shop Scheduling (JSSP) can be visualized as managing production processes within a company’s
production hall. In this context, jobs represent the products to be manufactured, and machines are the
resources or workstations where these jobs are processed. Each job must pass through a sequence of
machines, with each step called an operation, and the specific order of operations can vary from job to
job. Additionally, each machine can handle only one job at a time. The challenge is to schedule these
jobs on the machines in a way that optimizes the production process, considering various constraints
and objectives.

JSSP is a challenging problem in manufacturing, focused on the efficient allocation of resources
such as machines and operators, which is essential for optimizing production schedules. Without
additional constraints or variables, a job shop is considered static. However, when constraints such
as arrival times, machine breakdowns, and due dates are introduced, the job shop becomes dynamic,
more accurately reflecting real-world manufacturing environments. This dynamic nature introduces
significant complexity, making manual planning impractical and highlighting the need for advanced
algorithms and optimization techniques.

1.1.1 Static job shop scheduling

The static job shop scheduling problem is characterized by a fixed set of jobs, machines, and operation
times. To further elaborate, JSSP can be described as follows: a job shop environment contains several
machines M = {M1,M2, . . . ,Mm}, where m denotes the number of machines. It also contains
a number of jobs J = {J1, J2, . . . , Ji, . . . , Jn}, where n denotes the number of jobs. Each job,
represented by Ji, consists of a series of operations Oi = {Oi1, Oi2, . . . , Oij} processed in a predefined
sequence, represented by Oi, j where j denotes the number of operations. Each operation corresponds
to a machine in M , to be processed with a given processing time pi, j. The goal is to schedule these
operations to minimize the total completion time, known as the makespan C. Static JSSP does not
entail any dynamic variables, such as arrival times, machine breakdowns, and/or due dates, which
makes it a static problem.

The complexity of JSSP increases when the number of jobs, machines, and operations grows,
making manual planning impractical and inefficient. This has resulted in researchers and practitioners
developing various algorithms and optimization techniques to tackle JSSP, ranging from heuristic
methods and mathematical models to advanced scheduling algorithms based on artificial intelligence
(AI) using ML. By addressing JSSP effectively, manufacturing facilities can improve their productivity,
reduce lead times, and enhance overall efficiency. Hence the importance of understanding and solving
JSSP in research and application in the field.

1.1.2 Dynamic manufacturing environments in job shop scheduling

Dynamic Job Shop Scheduling (DJSP) introduces additional complexities by incorporating variables
such as demand fluctuations, machine breakdowns, and unexpected delays. Unlike static JSSP, DJSP
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must adapt to changes and uncertainties in real-time. The challenge lies in developing scheduling
algorithms and decision-making strategies that can effectively handle these dynamic changes while
optimizing production objectives, such as resource utilization and minimizing delays.

The DJSP tends to be a more realistic representation of real-world scheduling problems for schedul-
ing jobs. The focus on JSSP is mostly on minimizing makespan, with little to no variables taken into
account other than the machines, jobs, and their operations. DJSP focuses more on adapting the pro-
duction schedules in a time-based environment, while optimizing the objective, for example resource
utilization, delays, or customer demands.

The challenge of DJSP is in the development of scheduling algorithms and decision-making strate-
gies that can effectively handle the dynamic changes while maintaining efficiency and meeting produc-
tion objectives. Researchers have approached DJSP with AI, optimization algorithms, and heuristic
methods, like JSSP, to try and solve the complex problems. By addressing these dynamic natures of
the manufacturing environments, the solutions to DJSP can help to improve responsiveness and overall
performance in real-world job shops. Hence, understanding and solving DJSP remains a crucial area
of research and development in the field of production and planning scheduling.

1.1.3 General scheduling method and representation

In general, job scheduling involves assigning operations to machines, creating a schedule, and evaluating
it for bottlenecks and planning gaps. Traditional scheduling methods may include heuristic approaches
and algorithms to generate and refine solutions. As job shop sizes increase, human-like scheduling
methods become less feasible, underscoring the need for advanced algorithms. Tools such as Gantt
charts are commonly used to visually represent job sequences, machine assignments, and timelines,
facilitating communication and coordination.

An outline of the flow of scheduling and improving upon the schedule is given in Figure 1. The
inputs are the operation order of the jobs, in both the machine sequence and corresponding processing
times. When starting scheduling, the operations are assigned to machines, starting at time 0 and
planning each operation per job, creating a schedule. After the schedule is created, it is evaluated to
determine bottlenecks and planning gaps. If these are found, the schedule is adjusted. After reiterating,
if needed, and no more bottlenecks are found, the process is stopped, resulting in a best-found schedule.
As can be imagined, when the size of the job shop increases, such a method will not suffice as humans
might not be able to indicate the gaps or be able to reschedule over 1000 operations in an efficient
manner. Hence the need for improved methods such as algorithms.

Figure 1: Flowchart of general scheduling in job shops

After scheduling, the Gantt chart is a common tool to create a visual representation that shows the
sequence and timing of jobs on the different machines in the job shop, as shown in Figure 2. The Gantt
chart has several benefits. It shows a clear visualization of the job sequences, machine assignments,
and timeline, which is easy to understand. Also, the progress of each job is easily identified, showing
delays and understanding the machine utilization. Finally, the clear schedule overview facilitates clear
communication and coordination, for example, for team members.
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Figure 2: Example of Gantt chart. Ji,j depicts the job i with operation j

1.2 Machine learning for job shop scheduling

At the current time, ML has been applied multiple times to solving both static and dynamic job shop
scheduling problems with success. Research has shown that machine learning can indeed be applied to
these problems in similar ways that other methods can be applied. However, the focus is on training
the algorithm on a single problem at a time, thus creating a solver per problem. It is assumed that this
solver is not able to solve other problems with comparable performance to traditional and heuristic
methods. Hence it can already be concluded that in dynamic real-world environments these methods
are not applicable yet.

1.3 Research scope

This research explores the integration of reinforcement learning (RL) and deep learning (DL) techniques
in job shop scheduling, focusing on both static and dynamic environments. The objective is to evaluate
how these techniques can potentially be implemented in real-world settings. Unlike previous studies
that have addressed singular scheduling problems, this research aims to study how these methods
can improve general performance over solving a single job shop scheduling problem, to assess the
applicability in real-world settings.

1.4 Research goals

Solving these scheduling challenges can significantly enhance production efficiency, reduce costs through
minimized downtime, and improve overall productivity by reducing the need for manual adjustments.
This research seeks to answer the question: ”How can machine learning be applied in real-world
dynamic job shops?” The sub-questions guiding this research are:

1. Which machine learning methods are applicable to solve dynamic job shop scheduling?

2. How do machine learning methods compare to traditional methods?

3. How do machine learning methods scale with increasing job shop sizes?

4. How well do machine learning models generalize to new, unseen job shop scheduling scenarios?

5. In what way can these methods be applied to real-world problems?

6. What are potential drawbacks and benefits of applying machine learning to real-world problems?

To address these questions, this study proposes a deep reinforcement learning (DRL) model using
a deep Q-learning neural network (DQN) implemented in MATLAB, which is a combination of the
RL method Q-learning and DL’s neural networks. The model will be trained on both static and
dynamic job shop scheduling problems. The performance of the trained agents will be evaluated based
on metrics such as machine utilization, makespan, tardiness, and slack. Although the research will
not deploy these models in actual manufacturing environments, it will assess their feasibility through
extensive testing and evaluation.
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1.5 Thesis outline

The document is organized as follows: Chapter 2 defines ML techniques, specifically explaining RL
and DL. Chapter 3 reviews existing research and identifies gaps. Chapter 4 outlines the methodology,
including the chosen ML method, problem generation, data collection, and analysis. Chapter 5 de-
scribes the chosen machine learning technique. Chapter 6 explains the environment setup. Chapter 7
sets out the experimental setup, covering benchmarks, hyperparameter tuning, and testing. Chapter 8
presents experimental findings, Chapter 9 analyzes results and discusses implications and limitations,
and Chapter 10 concludes the research with a summary and recommendations.
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2 Analysis of Machine Learning Algorithms

Machine learning is a rapidly evolving field within AI, with big advancements in recent years. One
of the most well-known advancements is by Google’s company DeepMind, which created an AI that
could play the complex game of Go, eventually able to defeat the world champion [1]. Such an
achievement shows promise for other complex problems to be solved with machine learning. In this
chapter, the different subsets of machine learning are given, to determine the applicable subsets to job
shop scheduling. These applicable subsets are then elaborated on, explaining their general workings.

2.1 Subsets of machine learning

Machine learning encompasses different techniques and methodologies, each suited for different types
of problems and data. The main subsets of machine learning are [2] [3]:

• Supervised learning: Supervised learning uses labeled data, where each input is associated
with a corresponding target output. The goal is to learn a mapping from inputs to outputs based
on example input-output pairs, which allows the algorithm to make predictions on new, unseen
data. This is for example used to classify animal behavioural states from environmental features
[4].

• Unsupervised learning: Unsupervised learning uses structures from unlabeled data and learn-
ing patterns. The algorithm explores data to discover hidden patterns, clusters or relationships
without explicit guidance and supervision. This is for example used to solve jigsaw puzzles [5].

• Deep learning (DL): Deep Learning is a subset of machine learning which focuses on using
neural networks with multiple layers, also called deep architectures. These deep neural networks
are capable of learning complex patterns and representations directly from raw data, which
enables breakthroughs in areas such as image recognition, natural language processing and speech
recognition. DL is for example used in medical image analysis [6].

• Reinforcement learning (RL): Reinforcement Learning is a type of machine learning where
an agent is deployed, which learns to make decisions based on interacting with an environment
and receiving feedback in rewards and/or penalties. RL learns optimal policies that maximize
the cumulative reward over time, making it well-suited for sequential decision-making tasks. This
is for example used to compete with top-level players in different games, like StarCraft II [7].

This research will mainly focus on RL and DL, as these two subsets have demonstrated promises in
addressing the challenges of JSSP and DJSP. RL and DL methodologies are well-suited for scheduling
due to the ability to learn and adapt, without requiring explicit knowledge of optimal solutions. By
receiving inputs the correct inputs, RL and DL algorithms can effectively learn to navigate and optimize
scheduling decisions, which can result into a flexible and adaptive approach to solving JSSP and DJSP.

2.2 Training Neural Networks: Deep learning

The following information is based on the book ”Deep Learning” by Ian Goodfellow [3]. Deep learning
involves training neural networks to learn hierarchical representations of data through multiple layers.
Each layer in a deep neural network learns increasingly abstract features from the input data, making
deep learning particularly powerful for complex tasks.

Deep neural networks are termed ”deep” because they consist of multiple layers, depicted in Figure
3, that process and transform data. These layers work together to automatically learn hierarchical
representations of the data, enabling the network to identify intricate patterns and relationships.
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Figure 3: A general overview of a neural network

The key components of deep learning models are outlined in Table 3 and will be elaborated upon
in the following subsections.

Component Explanation
Neurons Basic units that process input and produce output through acti-

vation functions.
Layers Groups of neurons organized into input, hidden, and output layers.

Weights Parameters that adjust the strength of connections between neu-
rons.

Biases Parameters added to neuron inputs to allow the model to better
fit the data.

Activation Functions Functions that introduce non-linearity into the model.
Loss Functions Metrics that evaluate the model’s performance by comparing pre-

dictions to actual outcomes.
Backpropagation Algorithm for updating weights based on gradients to minimize

the loss function.
Optimization Algorithms Techniques used to adjust weights and minimize loss.
Regularization Techniques Methods used to prevent overfitting and improve generalization.

Table 3: Components of deep learning with brief explanation

2.2.1 Neurons, layers, weights and biases

In a neural network, the learning process begins with the input layer, where data enters the network.
Each subsequent layer in the network performs transformations on this data, and two fundamental
components facilitate these transformations: weights and biases. The weights are parameters that
modulate the strength of connections between neurons. They determine how the input data is trans-
formed as it moves through the network. Each connection between neurons has an associated weight
that scales the input received by the neuron. Biases are additional parameters added to the weighted
sum of inputs to help the model fit the data more effectively. They allow the neuron to shift, which
enhances the network’s capacity to model complex relationships. In Eq. 1 the total weighted sum, or
output of the neuron, z is given, where f the activation function applied to the sum of the weights and
bias, wi are the weights associated with each input x, xi are the inputs to the neuron, n is the number
of inputs to the neuron and b is the bias term.
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z = f(

n∑
i=1

wixi + b) (1)

As the data moves through the network, each layer between the input layer and output layer, called
hidden layers, process the inputs given. The initial hidden layer processes the raw inputs, to identify
low-level features, such as edges or colors. Subsequent hidden layers build on these features to detect
more complex patterns like shapes or textures. Finally, the output layer synthesizes these learned
features to produce predictions or classifications based on the high-level patterns identified.

Each layer’s learning process involves adjusting the weights and biases through backpropagation.
This iterative process allows the network to refine its feature representations and improve its perfor-
mance over time.

Overall, the interplay between weights and biases at each layer enables neural networks to learn
and represent intricate patterns in data, leading to accurate and effective predictions.

2.2.2 Activation Functions in Neural Networks

Activation functions are essential for deep learning models, as they are responsible for introducing
non-linearity into the neural network. While linear models can only represent linear relationships
between input and output, neural networks need to model non-linear relationships to understand
complex patterns. Activation functions allow neural networks to approximate and learn these non-
linear mappings.

In addition to enabling non-linearity, activation functions play a crucial role in the backpropagation
process, which is used to train the network. During training, the network needs to update its weights
to reduce prediction errors. This update process relies on gradients, which are numerical values that
indicate how much and in which direction to adjust the weights. Differentiable activation functions
produce smooth gradients, ensuring that these adjustments are effective and stable, which helps in
optimizing the network efficiently.

Common activation functions, such as Sigmoid, Hyperbolic Tangent, Rectified Linear Unit (ReLU),
Leaky ReLU and Softmax, are explained in Appendix B.1.

2.2.3 Measuring performance: loss functions

Loss functions, also known as cost functions, measure how well the network’s predictions match the
actual target values. They quantify the discrepancy, or error, between predictions and targets. This
error guides the model’s learning process.

During training, the neural network makes predictions based on its current weights and biases. The
loss function evaluates these predictions against the true target values, producing an error value that
reflects the difference between the predictions and the actual outcomes.

As the model iteratively minimizes this error, it progressively improves its predictions. The process
continues until the loss function reaches an acceptable level, indicating that the network has effectively
learned to approximate the target values.

Two common loss functions, Mean Squared Error (MSE) and the Binary Cross-Entropy Loss, are
given in Appendix B.2.

2.2.4 Improving model accuracy: understanding backpropagation

Backpropagation is a fundamental algorithm in deep learning designed to optimize the training of
neural networks. Its primary purpose is to update the network’s weights to minimize the difference
between predicted and actual outputs, as indicated by the loss function. This process is critical for
the network to learn from data and improve its performance over time.

Training a neural network using backpropagation involves two main phases: the forward pass and
the backward pass.

• Forward Pass: During this phase, input data is fed into the network and propagates through
each layer until it reaches the output layer. Each neuron processes the input and produces
an output. This series of computations results in the network’s predictions. The loss function
then evaluates these predictions by comparing them to the actual target values, calculating the
discrepancy or error.
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• Backward Pass: In this phase, backpropagation calculates the gradient of the loss function with
respect to each weight in the network. Using the chain rule of calculus, it determines how small
changes in each weight affect the loss. The error is propagated backward from the output layer
towards the input layer, and gradients are computed for each weight. These gradients indicate
the direction and magnitude of the required adjustments to reduce the loss. By adjusting the
weights based on these gradients, the network learns to minimize the error.

For example, if a neural network predicts ”cat” with a value of 0.2 but the correct label is ”dog”
(which should be 1), the error is 0.8. Backpropagation uses this error to adjust the network’s weights.
It calculates how each weight contributed to this error, propagates the error backward through the
network, and updates the weights accordingly. This iterative process enhances the network’s accuracy
and overall performance.

2.2.5 Fine-tuning neural networks: optimization algorithms

Optimization Algorithms are crucial in training neural networks as they are responsible for finding the
optimal set of weights that minimize the loss function, thereby enhancing the model’s performance.
These algorithms are mathematical techniques used to update the weights of the network during
training, with the aim of improving accuracy and efficiency.

Common optimization algorithms include Stochastic Gradient Descent, Adam, and RMSprop, each
of which has its own approach to handling weight updates:

• Stochastic Gradient Descent (SGD): SGD updates weights based on the gradients of the loss
function computed from individual or small batches of training samples. It is straightforward
and computationally efficient but can be sensitive to the choice of learning rate and may get
stuck in local minima. this means that the algorithm has converged to a point where the loss is
lower than in the surrounding area but not the lowest possible point overall. This can lead to
suboptimal model performance and reduced generalization.

• RMSprop (Root Mean Square Propagation): RMSprop addresses the issue of varying
learning rates by normalizing the gradient updates. It computes an exponentially weighted mov-
ing average of the squared gradients, which helps to adapt the learning rate for each parameter,
ensuring stable and efficient training.

• Adam (Adaptive Moment Estimation): Adam combines the advantages of two other ex-
tensions of SGD: Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation
(RMSprop). It maintains a moving average of both the gradients and their squared values,
which helps adjust the learning rate for each parameter dynamically. This typically leads to
faster convergence and better handling of noisy data.

The goal of these optimization algorithms is to accelerate convergence towards a minimum of
the loss function while avoiding local minima and improving training efficiency. Each algorithm has
unique strategies for adjusting the learning rate and handling different training conditions, making
them suitable for various types of neural networks and data distributions. Each of these algorithms
will be tested in this research. These methods are further elaborated on in Appendix B.3.

2.2.6 Preventing overfitting: regularization techniques

Regularization Techniques are essential for preventing overfitting in neural networks and ensuring that
the model generalizes effectively to new, unseen data. Overfitting occurs when a model performs well
on training data but poorly on new data, often due to the model being too complex or fitting noise in
the training data. Regularization methods help mitigate this by adding constraints or modifications
during training.

Common regularization techniques include:

• L1 Regularization: Adds a penalty proportional to the absolute values of the weights. This
encourages sparsity, meaning it drives some weights to exactly zero, effectively performing feature
selection and reducing model complexity.
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• L2 Regularization: Adds a penalty proportional to the squared values of the weights. This
discourages large weights and helps distribute the weight values more evenly, contributing to a
smoother, more generalized model.

• Dropout: Involves randomly ”dropping out” a subset of neurons during training. This prevents
neurons from co-adapting too closely, which helps the network learn more robust features and
reduces overfitting.

• Batch Normalization: Normalizes the inputs of each layer by adjusting and scaling activations.
This technique stabilizes and accelerates training by reducing sensitivity to initial weights and
improving convergence rates.

By incorporating these regularization techniques, neural networks become more robust and better
equipped to generalize to new data. This helps ensure that the model performs well not only on the
training set but also on unseen examples, ultimately leading to improved performance in real-world
applications. These techniques are further explained in Appendix B.4.

2.2.7 Flowchart of training neural networks

The training of neural networks is organized into epochs, with each epoch involving running the entire
dataset through the network. Typically, data is processed in smaller batches within each epoch. Using
mini-batches balances memory constraints, improves computational efficiency, accelerates convergence,
and can enhance generalization. Figure 4 illustrates the training process of a neural network for one
iteration.

Figure 4: Flowchart of training a neural network

This process is repeated for each batch of data across multiple epochs, iteratively improving the
network’s performance.

2.3 Reward-based learning: Reinforcement Learning

The information on RL is based on the book ”Reinforcement Learning: An Introduction” by Richard
Sutton and Andrew Barto [8]. Reinforcement Learning focuses on training an agent (learner or decision-
maker) to make decisions within an environment to maximize rewards. RL revolves around learning
from the consequences of actions by exploring and exploiting the environment to learn an optimal
policy. The general workings of RL are depicted in Figure 5.

Figure 5: The interaction between an agent and environment in RL

An important difference to note for RL is that it uses episodes, different from epochs in DL, which
refers to a complete sequence of states, actions, and rewards that ends in a terminal state. It starts
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from an initial state and continues until a predefined condition is met, such as reaching a goal state
or a time limit. Each episode represents one instance of the agent interacting with the environment.

2.3.1 The environment: enabling the exploration of the problem

At the core of RL is the environment, usually modeled through Markov Decision Processes (MDPs).
MDPs define the interaction between an agent and its surroundings, specifying states (S), actions (A),
and rewards (R). These elements are essential for formalizing the decision-making process and enabling
the agent to learn optimal policies to maximize rewards. They are represented by a tuple (S, A, R).

Balancing exploration and exploitation is crucial to ensure the agent experiences different states
without endlessly traversing the environment. Exploration involves trying new actions to discover
their effects and potential rewards, while exploitation uses known actions that yield high rewards. A
common approach to manage this balance is the ϵ-greedy method. Here, ϵ represents the probability of
choosing a random action, ensuring exploration, while (1-ϵ) represents the likelihood of exploiting the
agent’s current knowledge. High ϵ values encourage exploration, and as learning progresses, reducing
ϵ shifts the focus towards exploitation. An example is using linear decay of ϵ, which ensures a smooth
transition from exploration to exploitation as the agent refines its policy based on gained experiences.

2.3.2 Model-based and model-free approaches

RL methods can be categorized into two types: model-based and model-free approaches.
Model-based methods use a model of the environment to simulate and plan actions. The agent
creates a model of transition probabilities and rewards, allowing it to predict outcomes and make
decisions. Examples include Dynamic Programming (DP) methods like value iteration and policy it-
eration, which rely on an accurate model to compute optimal policies. For instance, navigating a car
to a candy shop involves creating a map (model) of the town (environment), and then deciding the
best route to reach the shop.
Model-Free methods learn value functions or policies directly from interactions with the environ-
ment without requiring a model. These methods learn from experiences via trial and error. Examples
include Q-learning and SARSA (State-Action-Reward-State-Action). Model-free methods are more
flexible since they don’t need an environment model, making them widely applicable. Imagine driving
a car to a candy shop without a map, relying solely on memory and past experiences to find the way.

2.3.3 The learned policy and value functions

In RL, a policy (π) is a strategy that the agent uses to determine the next action based on the current
state. Policies can be deterministic or stochastic:

• Deterministic Policy (π(s) = a): Chooses the best action for a state with certainty.

• Stochastic Policy π(a | s) = P (At = a | St = s): Selects an action based on a probability
distribution over actions for each state.

To make informed decisions, RL methods use value functions, which estimate the expected cumu-
lative reward:

• State Value Functions (V(s): Estimates the expected cumulative reward starting from state
s following a certain policy.

• Action Value Function (Q(s, a)): Estimates the expected cumulative reward starting from
state s, taking action a, and following a certain policy.

Value functions help RL agents evaluate the long-term benefits of different actions and states,
enabling informed decision-making to maximize cumulative rewards. Examples of RL algorithms that
use value functions include Q-learning, SARSA, and policy iteration.

Value predictions are refined using loss functions, which measure the difference between predicted
and actual rewards. Common loss functions used are Mean Squared Error (MSE) for value prediction
and Cross-Entropy Loss for classification tasks. Optimization algorithms like Stochastic Gradient
Descent (SGD), Adam, and RMSprop update the weights during training, ensuring efficient learning
and convergence. The loss function and optimization algorithms are detailed earlier in Chapter 2.2.
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2.4 The hybrid approach: Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) combines the strengths of Reinforcement Learning and Deep
Learning, creating a framework for solving complex, high-dimensional problems. This synergy leverages
RL’s ability to learn optimal policies through interactions with the environment and DL’s capacity to
handle raw, high-dimensional input data.

Combining RL and DL is useful, as learning from raw data can be useful as traditional RL methods
often struggle with high-dimensional input spaces, like images. DL’s deep neural networks are able to
extract meaningful features from raw data, allowing DRL models to learn effective representations of
states, actions and rewards without manual feature engineering. Secondly, DL models can generalize
across different tasks and environments due to the capacity to learn complex patterns and representa-
tions. Hence the combination is very flexible. Finally, DRL models can approximate value functions
and policies more effectively than traditional RL methods, enhancing the decision-making process and
enabling the agent to handle more sophisticated tasks.

DRL applies deep neural networks as function approximators for value functions, policies, or both.
The process involves:

• State Representation:

– The environment provides the agent with raw data (e.g., images, sensor readings).

– A deep neural network processes this data to extract meaningful features, creating a high-
dimensional representation of the current state.

• Action Selection:

– Based on the state representation, the agent selects an action using a policy network.

– The policy can be deterministic or stochastic, depending on the algorithm used.

• Reward Processing:

– After taking an action, the agent receives a reward from the environment.

– This reward signals how well the action performed concerning achieving the goal.

• Learning and Updating:

– The agent uses the reward to update its policy or value function through backpropagation.

– Optimization algorithms such as Stochastic Gradient Descent (SGD), Adam, or RMSprop
are used to adjust the neural network weights.

By combining RL’s interaction-based learning with DL’s capability to handle complex data, DRL
provides a robust framework for developing intelligent agents capable of solving intricate decision-
making problems.

2.5 Summary

As job shop scheduling is a complex problem, methods such as deep learning, reinforcement learning,
and a hybrid approach of deep reinforcement learning are well-suited to tackle these challenges. Deep
learning is adept at learning from datasets, extracting complex relationships and patterns through
neural networks with multiple layers. This capability allows DL to automatically discern intricate
features from raw data, making it effective in understanding and predicting scheduling requirements.
Reinforcement learning could frame the scheduling problem as an environment where an agent
learns iteratively from its interactions. By making decisions, such as planning an operation, and
learning from the consequences (rewards and penalties), RL develops an optimal policy over time.
The hybrid method of deep reinforcement learning combines the strengths of DL and RL. DRL
uses deep neural networks to process high-dimensional data and extract meaningful features, while
simultaneously leveraging RL’s framework to traverse and learn from the environment. This synergy
enables the agent to efficiently learn policies or value functions, making DRL a robust approach for
solving job shop scheduling problems. In summary, DL, RL, and DRL show significant promise in
addressing complexities similar to that of job shop scheduling. DL’s ability to extract patterns from
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data, RL’s iterative learning in environments, and DRL’s combined strengths make these methods
powerful tools for exploring and solving job shop scheduling challenges. The next chapter will conduct
a literature review to assess current research and identify research gaps, guiding future studies in this
domain.
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3 Literature Review

Job shop scheduling is a problem widely researched for many years. Currently, more and more of
this research transitions to using machine learning to try and solve and/or optimize the job shop
scheduling. Over the last couple of years, a spike in articles and papers published about reinforcement
learning is seen, with papers about dynamic scheduling of multiple deadline constrained tasks in a
serving system [9], dynamic scheduling for multi-level air defense with contingency situations [10],
Scheduling for the Flexible Job-Shop Problem with a Dynamic Number of Machines [11] and Dynamic
Resource Allocation in Wireless MEC Networks [12] just to name a few recently published researches.
All these papers have the same focus: solve a scheduling problem with machine learning. In this
chapter, standardized problems will be discussed, different approaches to solving job shop scheduling
problems will be looked at, being traditional methods, heuristic approaches and reinforcement learning
methods.

3.1 Standardized problems

For static job shop scheduling problems, well-known problems, called instances, have been created
over time. These instances all have the same layout, creating jobs with an equal amount of operations
to the number of machines and having a processing time per operation. These instances known are
created by Adams, Balas and Zawack [13], Demirkol, Mehta, and Uzsoy [14], Fisher and Thompson
[15], Lawrence [16], Applegate and Cook [17], Storer, Wu and Vaccari [18], Taillard [19] and Yamada
and Nakano [20]. Together, they create a strong library of 242 job shop scheduling problems, with a big
range of different numbers of jobs and machines as well as having different ranges of processing times.
These are widely used in the research mentioned in the upcoming parts of the chapter. To elaborate
on how these instances are created, the research by Taillard is examined. First, the instances created
by Lawrence and by Fisher and Thompson are mentioned. Based on these instances and found results
at that time, it is concluded that instances up to ten machines can be solved satisfactory. Hence,
Taillard proposes instances with at least 15 machines and 15 jobs, up to 20 machines and 100 jobs.
The problems are created with a uniform distribution for the processing times, between 1 and 99, like
the instances by Lawrence. By using random number generation (RNG), these problems are generated
and can be reproduced. Finally, using Tabu Search the instances are tested to create a lower and
upper bound for the found makespan. These are created with the goal to create a comparison base
for future resolution methods. A representation of the job shop problems is given in Table 4, where
the rows are the jobs, the uneven columns depict the machine of the specific operation and the even
columns the processing time of that operation on that machine.

2 1 0 3 1 6 3 7 5 3 4 6

1 8 2 5 4 10 5 10 0 10 3 4

2 5 3 4 5 8 0 9 1 1 4 7

1 5 0 5 2 5 3 3 4 8 5 9

2 9 1 3 4 5 5 4 0 3 3 1

1 3 3 3 5 9 0 10 4 4 2 1

Table 4: Example of job shop instance (6 jobs, 6 machines) from Fisher and Thompson [15]

3.2 Traditional methods

At the start of the research into scheduling problems, traditional methods have been developed and
proposed as solutions. In the context of job shop scheduling, traditional methods are the classical
approach to solving scheduling problems. Traditional methods typically are algorithmic, naturally
relying on mathematical optimization principles or heuristic rules to find (near-)optimal schedules for
manufacturing processes. These traditional methods for JSSP can be split into two groups, exact
algorithms and dispatching rules. Well-known exact algorithms are branch and bound, mixed-integer
linear programming (MILP) and constraint programming (CP).

Exact algorithms in the context of job shop scheduling are designed in such a way that all possible
solutions are systematically explored within the solution space, to find the optimal solution [21]. Unlike
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heuristic or approximation methods, which aim to find good solutions within a reasonable time frame,
exact algorithms guarantee that the found solution provides the best possible solution, according to
the defined criteria. These methods are often computationally intensive and may become impractical
for very large or complex problems.

Exact algorithms

Branch and bound is an algorithm which is well-explored in job shop scheduling. The method explores
branches of a decision tree and prunes those that do not lead to feasible solutions [22]. From different
researches it is found that branch and bound is a commonly explored algorithm in (flexible) job shop
scheduling [23] [24] [17] [25] as well as being used for scheduling trains in a railway network [26]. For
the job shop scheduling, it is seen that the exact algorithms improve upon other methods, within
a reasonable computational time of about 19 minutes for a 10 jobs by 10 machines job shop, for
example. However, it is found that for bigger job shops the methods processing time increases and the
effectiveness decreases. This shows that this method is well suited for solving smaller problems, while
not being effective for bigger job shop scheduling problems.

MILP makes the scheduling problem as a set of linear equations and inequalities, solving them
to find optimal schedules [27]. The method is a robust and precise method, making it a suitable
method for different scheduling contexts, while being impractical for very large problems. Surgical
case scheduling [28], flexible job shop scheduling [29] [30] [31] and scheduling in a container terminal
[32] are usage examples from research. From these papers about flexible job shop scheduling, it is
found that small flexible job shops (starting from 2 jobs, 2 machines and 2 operations per job) can
be solved with an optimal solution within seconds. However, the computational time increases from
seconds to nearly an hour, with sometimes not even finding an optimal solution, when the size of is
increased (starting from 8 machines, 4 jobs and 7 operations per job). It is seen that overtime better
models are developed that decrease the computational time while increasing the performance. CP is
mainly found to be used for flexible job shops.

CP is a method using constraints to reduce the search space, focusing on the feasible solutions.
This method is effective for handling complex constraints and has been applied in numerous scheduling
applications to enhance efficiency and feasibility [33]. The models specify the constraints that need to
be satisfied rather than being an objective function to be optimized, making it a flexible and powerful
tool for solving combinatorial problems. CP is for example used to solve vehicle routing problems
[34] and (flexible) job shop scheduling [30] [35]. From [35] it is found that benchmark instances from
Taillard [19] can be solved with a combinatorial approach of using local search with CP. This method
finds six new best makespan results. The maximum computational time for each experiment done,
solving a single problem, in this research is set to 3600 seconds, or one hour. Other hybrid approaches
are used for static job shop scheduling, for example, using supervised learning to improve CP [36].

Dispatching rules

Dispatching rules are used to make real-time decisions within scheduling environments. These rules,
also known as sequencing rules, are heuristic approaches aimed at determining the order in which jobs
are processed on machines [37]. Unlike exact algorithms, which aim to find an optimal solution by
exploring all options, dispatching rules provide quick and often effective scheduling decisions based on
predefined criteria. Some examples of dispatching rules are:

• First in, first out (FIFO): This rules is used to prioritize jobs based on their arrival time,
where the job that entered first is processed first. FIFO is easy to implement and simple in use,
making it suitable for scenarios where job arrival times play an important role.

• Shortest processing time (SPT): SPT prioritizes jobs with the shortest processing times,
aiming to minimize the total processing time of jobs in the system. By selecting jobs with
shorter processing times, SPT can help reduce job waiting times while enhancing overall system
efficiency.

• Earliest due date (EDD): EDD selects jobs based on the due date, prioritizing jobs with
the earliest deadlines. The rule is particularly useful for situations where meeting deadlines is
critical, as it ensures timely completion of high-priority tasks.
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Dispatching rules offer simplicity and efficiency in scheduling decisions. Thus, research is done into
exploring and defining new dispatching rules with the availability of computational power [38]. Next
to creating new rules, rules are combined to create multiple priorities into singular rules as well as
getting different results with those rules [39]. Most importantly for this research, the dispatching rules
are widely used in research involving machine learning [40] [41]. These machine learning approaches
use multiple dispatching rules, so that the model can use different rules, defined as actions, at different
moments, or states, thus being able to be flexible with the way the jobs are being scheduled, while
maintaining a simple way of scheduling.

3.3 Heuristic methods

Heuristic methods, unlike exact algorithms, are focused on finding good, not necessarily perfect, solu-
tions within a set timeframe. These methods prioritize getting things done efficiently on a large scale,
rather than finding the optimal solution without considering time. Some of the well-known techniques
include Genetic Algorithm (GA), Simulated Annealing (SA), Tabu Search, Ant Colony Optimization
(ACO), Particle Swarm Optimization (PSO) and simple greedy algorithms.

Genetic algorithms solve problems by mimicking the process of evolution. GA starts by creating
a population of potential solutions, called chromosomes. Through the process of selecting the best
suited solutions, using crossover, which mixes parts of good solutions, as well as mutation, which
randomly changes solutions to maintain exploration, GA aims to find better solutions over time [42].
Genetic algorithms have been used to solve both flexible job shop problems [43] [44] as well as job
shop scheduling problems [45] [46] [47]. Older research [45] shows that these genetic algorithms can
solve Muth-Thompson problems (in this paper known as Fisher-Thompson [15]) of 10 by 10 in in 135
seconds, while a 20 by 5 problem is solved in 147 seconds, measured on a Sun10 workstation, which is
a very old desktop. Slightly more recent research [47] shows comparison to different researches on both
Fisher-Thompson [15] as Lawrence [16] instances. The computational results show that the algorithm
is able to find optimal or near-optimal solutions for every of the 43 tested instances, with a range of
about a minute of computational time for smaller problems (10 by 5), while taking about an hour to
solve bigger problems (30 by 10).

SA is based on annealing found in metallurgy. The process involves heating and cooling to make
metal stronger. SA applies an idea similar to that process for problem-solving. It starts of with a so-
lution, allows for some ”heating”, meaning it accepts worse solutions early on. Over time, the cooling
down starts, where the defects of the metal are removed, where the method becomes more selective
to avoid getting stuck in local optima [48]. Different researches use SA for job shop scheduling [49]
[50] [51] [52]. The second mentioned research [50] uses both Fisher-Thompson [15] as well as Lawrence
[16] instances to test the proposed SA method. As this research is older, it only shows that the SA is
promising in terms of found solutions in comparison to other research [13] [49], it does not compete in
terms of computational time in comparison to Adams [13]. For example, the 6 by 6 instance is solved
in 52 seconds by Van Laarhoven [50] but in 1 second by Adams [13]. More recent research [52] shows
improvements upon the earlier proposed SA method of Van Laarhoven [50]. However, it does not state
computational times.

Tabu search is a method that equals exploring a maze, while keeping track of where you have al-
ready been. This memory structure is used to avoid revisiting the same solutions. By using this
tabu list of forbidden moves, it efficiently guides through complex solution spaces, finding high-quality
solutions [53]. In [54] [55] [56] Tabu search is researched to solve job shop scheduling problems.

ACO mimics behavior of ant, which needs to find the shortest path to food by leaving pheromone
trails. ACO creates artificial ants which build solutions by following pheromone trails. These trails are
updated based on the quality of the found solutions. ACO is especially useful for problems involving
finding optimal routes, like scheduling problems [57]. Different researches of job shop scheduling using
[58] [59] [60] have been done. Earlier research [58] shows that GA performs better than ACO. Only [60]
discuss the ACO for JSSP problems, testing on known instances. The paper shows that the proposed
ACO method solves different instances within smaller timeframe in comparison to other methods, like
GA and PSO, while also outperforming them. For example, the FT10 instance is solved optimally,
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within 14.5 seconds.

PSO mimics the behavior of groups of particles, moving through a solution space, each particle adjust-
ing its position based on its own experience as well as their neighbors. PSO optimizes found solutions
by simulating this movement, with particles adjusting their positions until a satisfactory solution is
found [61]. Different researches into using PSO for job shop scheduling have been executed [62] [63]
[64]. First, [62] shows three different PSO approaches, where two are different PSO methods and one
is a hybrid PSO with Tabu search. Based on 43 different benchmark instances of Fisher-Thompson
[15] and Lawrence [16], the hybrid approach finds 41 of the 43 best known solutions, showing promise
for PSO as a solver for JSSP. With this, it also shows that this method needs little time to solve these
problems, for example needing 157 seconds to solve FT10. Another research [63] shows another ap-
proach, focusing on both minimizing makespan and minimizing tardiness, called multi-objective PSO.
However, due to the addition of tardiness there is no real comparison to other research. Finally, Lin
[64] shows another improvement using a hybrid PSO to solve benchmark instances, without mentioning
the computational time per problem.

Finally, simple greedy algorithms make decisions based on immediate benefits without considering
the future consequences. The best option at each step is chosen, hoping for it to lead to a satisfactory
solution overall. While simple, it does not always find the best solution for certain types of problems
[65]. Only two researches [66] [67] have been found that focus on using greedy algorithms to solve job
shop scheduling. Only [66] shows real comparable data using the known benchmark instances. The
research shows that the proposed population-based iterated greedy method (PBIG) has low compu-
tational time, with the highest found of 540 seconds for a 30 by 10 instance, while also being able to
solve them finding values near the best known solution.

To summarize, these methods all show promise in solving benchmark instances. However, the
focus is on solving static job shop scheduling problems, with little to no research about dynamic job
shop scheduling. A comparison of the methods found that show both the best found makespan and
computational time for certain instances is given in Table 43 in Appendix C.

3.4 Reinforcement and deep learning methods

There is significant less research into using AI, mainly reinforcement learning and deep learning, to
solve job shop scheduling. This shows that AI is a newer approach to the job shop scheduling problem.
Methods used are both RL and DL techniques, as well as combinations of traditional or heuristic
methods with RL/DL. RL and DL techniques used to solve static as well as dynamic job shop schedul-
ing are (deep) Multi-Agent Reinforcement Learning (MARL) [68] [69] [70], Deep Q-learning Neural
network (DQN) [71] [72], double dueling Q-network with prioritized experience replay (D3QPN) [73],
PPO with deep learning [74] [75], MARL combined with PPO [76], self-learning discrete salp swarm
algorithm based on DRL [77], spatial pyramid pooling-based DRL [78], combining RL with GNN [79]
[80] and graph reinforcement learning with auxiliary strategy (GRL-AS) [81].

It is found that a lot of different methods are used in RL and DL to solve JSSP and DJSP.
These methods are deployed for both static as dynamic job shop scheduling problems. Like the
aforementioned methods, the approach is on solving one problem at a time with the specific technique.
It shows that RL and DL methods offer potential to learn scheduling policies directly from the data, can
adapt to changing environments learning from experience and can handle high-dimensional state and
action spaces efficiently. This is shown by some proposed methods being able to find optimal solutions
for many of the standardized problems from Chapter 3.1. However, due to the complexity of DL
and RL methods, they may require more computational resources and time, and need a well designed
environment to be able to work effectively, while ensuring robustness and the ability to generalize of
learned policies on different problems.

For this research the most important part is using a method that is relatively simple to implement,
while being able to assess the scalability and limitations of RL and DL for JSSP. Hence, the focus of
this part of the literature review will be about the definitions of DJSP as well as the approach and
build-up of the models and the problems.
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3.4.1 Definitions of dynamic job shop scheduling

To understand the way these methods are deployed, the definition of the dynamic job shop scheduling
problem is important. Three different definitions can be found. The first uses (random) arrival times
and due dates, among others, to define the environment as dynamic. Second, the environment itself
adds events that occur, such as machine breakdowns and material shortage, to define a dynamic job
shop. The third representation found is a combination of the first two representations. The first
definition is a simpler representation of DJSP, as these attributes can be predefined in a job shop
scheduling problem. The second one can not be predefined and is an environment specific attribute,
creating randomness in the job shop scheduling problem. Both of these are considered dynamic, and
occur in real-world problems.

3.4.2 Processing the problems: representation, scheduling and performance metrics

In job shop scheduling, different representations are used to provide input for solving the problems.
While more complex methods, such as multi-agent reinforcement learning, involve multiple agents
processing data simultaneously, the focus is on more straightforward input representations. Generally,
there are two main types of state representations, the first being custom vectors or matrices to facilitate
data to the agents, relevant for their decision-making, usually depicting information about the jobs
and machines. Here, the data is both relevant and manageable, allowing the agents to make informed
decisions based on job and machine information.

The other representation of inputs is a disjunctive graph, depicted in Figure 6. Disjunctive graphs
visualize the order of tasks and dependencies in a job shop scheduling problem. The dashed lines
in Figure 6 show the dependency, where the arrows represent conjuctive edges and the dashed lines
represent disjunctive edges. The arrows are used to show operations that need to be planned in that
order, while the dashed lines represent tasks that can be done in any order. To use the disjunctive graph
in RL, transformers are used to transform the disjunctive graph into input data for the environment
and agent, being the state. Hence, it is a clear representation but complex in use.

Figure 6: Representation of a disjunctive graph [73]

To schedule the jobs, different types of actions are defined. The first method is simply choosing the
next job to plan based on the state, which is common when using a disjunctive graph. This is done by
selecting a job from the pool of pending jobs and determining its sequence in the schedule. Second,
dispatching rules are used to give the agent options to plan different jobs. The agent learns to mimic
or improve upon the dispatching rules to make informed decisions.

Finally, the performance metrics used also differ to that of static job shop scheduling, as well as
per research. Mostly used in dynamic job shop scheduling is the lateness of a job, or tardiness (Ti),
given in Eq. 2, where Ci is the completion time of job i and di is the due date of job i.

Ti = max(0, Ci − di) (2)

Next to tardiness, a common metric is earliness, or slack (Sj) given in Eq. 3, where S represents
the total slack of job j, d the due date of job j and C the makespan of job j.

Sj = max(0, dj − Cj) (3)

Other used metrics are the makespan, machine utilization rate and idle time.
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3.5 Conclusions and research gap

It is found that from the traditional methods, the exact algorithms work well for small problems.
However, when increasing the size of a job shop, the performance decreases. Dispatching rules tackle
the scalability problem by suggesting simple and effective rules which can be applied for all sorts of job
shops. While being very efficient, the performance can be low, not finding optimal solutions. Heuristic
methods find better performance in both finding optimal solutions as well as scalability. They are not
always as efficient as dispatching rules, but can outperform them. Finally, RL and DL methods are
used to solve both static and dynamic JSSP problems. Creating these methods is more complex than
others methods to solve job shop scheduling. However, they offer promising solutions for dynamic job
shop scheduling problems, with possibilities such as real-time adaptation on changing circumstances.
However, further research is needed to assess the scalability, robustness and generalization of such
models to deploy them in industrial settings. Often, retraining or further training is needed to adapt
to new problems.
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4 Methodology

As the research gap is identified, the goal of this study is to use machine learning to solve job shop
scheduling problems and test different approaches to assess their applicability to real-world environ-
ments. This chapter details the methodology to achieve this goal. First, in section 4.1 the practical
considerations for scheduling in real-world environments are outlined, highlighting key assumptions
and constraints. Next, the research design is described in section 4.3, followed by the selection of the
machine learning method in section 4.2. The process of collecting and generating job shop scheduling
problems is detailed in section 4.4, and ethical considerations are addressed in section 4.5. Section
4.6 gives the validity and reliability of this research methodology and finally, the limitations of the
research are discussed in section 4.7.

4.1 Practical considerations for scheduling

To address the job shop scheduling problem effectively, several practical considerations and assumptions
are outlined below.

General Assumptions

1. Machine availability and maintenance: Machine downtimes and maintenance are included
within job processing times, simplifying the scheduling process.

2. Size of job shops: The research focuses on job shops with 5 to 20 machines, a range common
in the literature (see Chapter 4).

3. Comparison with established methods: Scheduling methods will be benchmarked against
standard practices like dispatching rules to evaluate their effectiveness.

4. Categorization by AI expertise: Recommendations are tailored to companies based on their
AI expertise (None, Basic, Expert) to ensure practical applicability.

Dynamic Job Shop Scheduling Assumptions

1. Daily scheduling: The scheduling algorithm must produce solutions that fit within daily plan-
ning cycles, reflecting real-world operational constraints.

2. Dynamic job arrivals: Jobs start arriving at t = 0 with more jobs added over time, requiring
the scheduling agent to handle ongoing arrivals and adjust schedules in real time.

3. Job priorities and due dates: Jobs have varied priorities and due dates, necessitating effective
prioritization to meet deadlines and manage job importance.

4. Predetermined arrival times: Arrival times are based on an arrival probability to control the
simulation environment and avoid randomness.

4.2 Choice of machine learning method

o select the most suitable machine learning method, we compare several approaches, including Proximal
Policy Optimization (PPO), Multi-Agent Reinforcement Learning (MARL), Graph Neural Networks
(GNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) & Long Short-
Term Memory networks (LSTM), and Deep Q-Learning Neural Networks (DQN). This comparison
is based on three main criteria: complexity, generalization capabilities, and computational resource
requirements.

• Complexity: This encompasses the sophistication of algorithms, learning challenges, and data
requirements. Complexity also involves trade-offs such as exploration versus exploitation in
reinforcement learning (RL) and depth versus computational cost in deep learning (DL).

• Generalization Capabilities: These depend on the algorithms, network architectures, and
regularization techniques used. Effective generalization allows a model to perform well on new,
unseen data.
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• Computational Resource Needs: These are influenced by model complexity, data volume,
and training efficiency, often necessitating advanced hardware.

A detailed comparison of these methods, as summarized in Table 5, is presented in Appendix E.

Method Complexity Generalization Computational Time
PPO [82] High Good Moderate to High

MARL [83] Very High Excellent Very High
GNN [84] High Excellent Moderate to High
CNN [85] Moderate Moderate Moderate

RNN & LSTM [86] High Good High
DQN [40] Moderate Good Moderate

Table 5: Comparison of different possible DL and RL methods

Based on the comparison in Table 5, CNN and DQN are the most suitable in terms of balancing
complexity and computational time. While CNNs are effective for visual recognition tasks, they are
less versatile for other tasks. Therefore, DQN is selected as the preferred method for this model due
to its overall balance between complexity, generalization, and computational efficiency.

4.3 Research Design

The research design is developed based on the goals, assumptions, and the selected DQN method. The
focus is on both static and dynamic job shop scheduling using a quantitative approach. MATLAB has
been chosen for implementing the DQN due to its comprehensive toolboxes for reinforcement learning
and deep learning, which facilitate the development and training of complex models with extensive
documentation.

To establish a proof of concept and set a benchmark for the research, the following steps are
outlined:

• DQN Implementation: The DQN method will first be implemented and tested to ensure its
functionality. This involves creating a simulation environment that accurately represents the job
shop scenario, allowing the DQN to interact with and navigate through it effectively.

• Benchmarking: The performance of the DQN, integrated with the simulation environment, will
be evaluated to establish a performance benchmark. This benchmark will serve as a reference
for comparing the effectiveness of other scheduling agents.

To further analyze the DQN’s effectiveness and its applicability to real-world environments, the
following tests will be conducted:

• Hyperparameter Tuning: To enhance the DQN’s performance beyond the benchmark, hy-
perparameters and the neural network architecture will be tuned using random hyperparameter
optimization. Detailed procedures are discussed in Chapter 7.

• Problem Size Evaluation: Agents will be trained on problems of varying sizes, as described
in the standardized problems outlined in Chapter 3.1. This aims to assess the applicability of
the tuned hyperparameters across different problem scales.

• Generalization Assessment: Agents will be trained on specific job shop problems with varying
amounts of training data to evaluate their ability to generalize and perform effectively with
different data volumes.

• Transfer Learning: Transfer learning will be investigated as a method to leverage previously
acquired knowledge to improve performance on new, related problems. This involves training a
pre-trained neural network on a new problem, rather than training a new network from scratch.
The effectiveness of this approach will be examined by applying pre-trained agents from the
generalization assessment to new, singular problems. This test will evaluate the benefits of
transfer learning and its potential for enhancing real-world applicability.

Additional details on these tests and methodologies are provided in Chapter 7.
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4.4 Data Collection and Problem Generation

The data for this research is sourced from both standardized static job shop scheduling problems and
newly generated problems. The aim is to cover a broad range of job shop configurations while also
assessing performance in comparison to other literature.

4.4.1 Generating Static Job Shop Scheduling Problems

Static job shop scheduling problems are created using a method adapted from Taillard [19]. The
process involves:

• Specification: Define the number of jobs, machines, and the range of processing times.

• Generation: Create matrices for job sequences and processing times using uniform distributions.

• Output: Produce a set of problems characterized by job sequences and processing times.

A more detailed explanation on generating static job shop scheduling problems as well as pseudo-
code is given in Appendix D.1.

4.4.2 Transforming Static to Dynamic Problems

To ensure consistency, standardized and generated problems are transformed, instead of generating
new dynamic ones. To transform these, the following characteristics need to be defined:

• Arrival Times: Each job is assigned an arrival time based on a predefined arrival rate (change
of a job arriving per time unit), indicating when it becomes available for processing.

• Priority Values: Jobs are assigned priority weights to influence scheduling decisions, with
higher priority jobs receiving more urgent attention.

• Due Dates: Due dates are calculated based on the job’s arrival time, processing times, and a
slack time that allows for scheduling flexibility.

These characteristics are explained in greater detail in Appendix D.2.
The transformation from static to dynamic problems is represented in Table 6. This figure depicts

how arrival times, due dates, and priorities are integrated into the static problem matrix to create a
dynamic scheduling environment, where in Table 6b the first digit represents arrival time, second is
the due date and third the priority value, or weight.

2 1 0 3 1 6 3 7 5 3 4 6
1 8 2 5 4 10 5 10 0 10 3 4
2 5 3 4 5 8 0 9 1 1 4 7
1 5 0 5 2 5 3 3 4 8 5 9
2 9 1 3 4 5 5 4 0 3 3 1
1 3 3 3 5 9 0 10 4 4 2 1

(a) ft06 matrix

0 34 1 2 1 0 3 1 6 3 7 5 3 4 6
2 57 1 1 8 2 5 4 10 5 10 0 10 3 4
4 62 3 2 5 3 4 5 8 0 9 1 1 4 7
8 51 1 1 5 0 5 2 5 3 3 4 8 5 9
10 43 1 2 9 1 3 4 5 5 4 0 3 3 1
11 65 3 1 3 3 3 5 9 0 10 4 4 2 1

(b) Dynamic ft06 matrix

Table 6: Transformation from static to dynamic matrix

For detailed methodologies and pseudo-code used for problem generation and transformation, refer
to Appendix D.2.
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4.4.3 Sampling Strategy

The sampling strategy involves:

• Static Problems: Utilize the 242 predefined static problems, found in Chapter 3.1, and newly
generated instances.

• Dynamic Problems: Extend static problems by adding arrival times, due dates, and priority
values.

• Sampling Units: Each problem instance, whether generated or predefined, is treated as an
individual sampling unit.

• Sample Size: Includes both the predefined and newly generated problem instances. The exact
number used for training and testing will be specified based on experimental needs.

This approach ensures a comprehensive evaluation of the proposed machine learning models across
various job shop scenarios.

4.5 Ethical Considerations

No ethical considerations arise in this research. The study only involves simulation-based research and
data analysis in job shop scheduling using machine learning techniques. No human participants are
involved, and the data used for training and evaluation are generated through MATLAB or obtained
through open-source libraries.

4.6 Validity and Reliability

To ensure that the experiment is designed to produce accurate and reliable results, validity and relia-
bility are defined in this research.

4.6.1 Validity

The validity ensures that the experiment will be set up in a way that there is confidence in our results.
This is done by:

• Randomization: To ensure that no bias is created towards certain variables, mainly in terms
of hyperparameters, these are randomly chosen.

• Balanced design: The experiments are designed in a way to ensure that each configuration
of the RL agent is tested on an equal number of job shop instances. If the experiment requires
varying complexities and characteristics, that will be included and equal per agent as well. This
balanced approach helps to ensure that there is less influence of external factors on the results.

• Controlling variables: As much external factors and variables as possible are tracked, to
ensure that any changes in our results can be determined based on these. By controlling these
variables, the effects of the reinforcement learning agent on the job shop scheduling performance
can be isolated.

4.6.2 Reliability

The reliability is about ensuring that the results are consistent and trustworthy. This is done by:

• Multitude of trials and analyses: When testing the eventually created agent(s), multiple
agents with the same parameters and variables are trained on the exact same data, to ensure
that the training of the agent is stable and consistent.

• Validation procedures: The performance of the agent is validated by comparing results across
different training iterations or agents. This helps verify the generalisation of the findings across
different experimental settings.
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• Transparency and reproducibility: Documentation of the experimental procedures will be
made, including data of the preprocessing steps, hyperparameter settings and evaluation met-
rics. This transparency enables independent verification and replication of the results by other
researchers.

4.7 Limitations

The potential limitations in this research can be found in model and data assumptions and simplifi-
cations, simulation vs. real-world scenarios, algorithm constraints, performance metrics and computa-
tional resources.

The simplification and assumptions are found in the environment and data. The environment to
emulate the job shop scheduling problems is simplified due to the complexity of the problem already
being substantial. As there is no information on real-world problems available at this point, it is
assumed that the defined dynamic manufacturing environment is sufficient enough to represent real-
world environments.

RL and DL algorithms have issues in convergence problems and sensitivity to hyperparameters.
These models require significant hyperparameter tuning, which requires significant computational re-
sources and time, especially using neural networks. This computational complexity also means that
training and testing of these models necessitates substantial computational resources. As the size and
complexity of the problems grow, the computational resources required grow exponentially.

Interpretation of these models can be hard due to the ”black box nature”, especially for neural
networks. While they produce outputs from the given inputs, understanding internal decision-making
processes is difficult. This lack of transparency makes it hard to diagnose the issues of suboptimal
performance.

Complex reward structures found in RL and DRL can make it hard to understand the reward signal.
While makespan is a good performance metric, it may not always indicate the best-performing model.
Considering additional metrics such as the average utilization rate of machines might indicate that one
agent makes better use of the resources despite a higher makespan, depending on the definition of the
average utilization rate. Hence, it is important to use multiple performance metrics to fully assess the
effectiveness of created models.

By acknowledging these limitations, the research recognizes the constraints and potential areas for
improvement while highlighting the robustness of the current findings withing these constraints.
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5 Defining and explaining DQN

In this chapter, the DQN method is explained, elucidating its foundational principles, defining its key
components, and outlining its implementation. DQN uses episodes, explained in Chapter 2.3, rather
than epochs, explained in Chapter 2.2.

5.1 The DQN method explained

DQN is a hybrid method combining both DL and RL. DQN is a combination of Q-learning and neural
networks. Q-learning is a model-free RL method, which learns the quality of possible actions in a
given state. The Q-value, thus representing the quality, of taking action a in state s is denoted by
Q(s,a). This method is able to learn an optimal policy which maximizes the cumulative reward by
updating Q-values based on the Bellman optimality equation, given in Eq. 4. DQN can be combined
with different neural networks, like CNN and GNN. However, in this research a general neural network
is used.

Q(s, a)← Q(s, a) + α
[
Rt+1 + γ max

a′
Q(s′, a′)−Q(s, a)

]
(4)

5.1.1 Neural networks: Target and Q-network

The DL part of DQN is found in the use of deep neural networks. In DQN, the neural network is used
to approximate the Q-values. The neural network takes the state as an input and outputs the Q-values
for all possible actions. This network is trained to minimize the temporal difference error between the
predicted Q-values and target Q-values obtained from the Bellman equation.
A DQN utilizes two different neural networks, a value network and a target network. The value
network, also referred to as the Q-network, estimates the Q-values for each state-action pair. Instead
of using the Bellman equation, the network itself estimates the Q-values, based on the inputs, that go
through the layers to the outputs, which represent the Q-values, of the network. Thus, the layers and
the connection between the layers, being controlled by the weights and biases, work together to make
the Q-value estimations. The target network is a separate network, estimating the target Q-values. It
has an equal architecture as the Q-network, with frozen parameters that are updated less frequently.
The purpose of this target network is to stabilize the training by providing consistent target Q-values
during update of the Q-network.
The interaction between these is based on the Q-network estimating the Q-value Q(st, at) for given
state st and action at. The target Q-value is computed using the gained reward rt, received from
taking action at in state st, plus the discounted maximum Q-value of the next state, predicted by the
target network, given by Eq. 5.

yt = rt + γ max
a′

Qtarget(st+1, a
′) (5)

Here, γ is the discount factor, Qtarget(st+1, a′) are the Q-values estimated by the target network
for the next state st+1 and possible action a′ and yt is the target Q-value.

The Q-network is updated by training it to minimize the difference, also known as error, between
predicted Q-values and target Q-values. This is the TD error. The loss function for the Q-network
is given in Eq. 6. Here, θ represents the parameters of the Q-network and D is the replay buffer
containing past experiences.

L(θ) = E(st,at,rt,st+1)∼D

[
(yt −Q(st, at; θ))

2
]

(6)

To conclude, this dual neural network model is used to improve upon the stability of the learning
process as well as avoiding divergence. The parameters of the target network are updated periodically
by copying the parameters from the Q-network. Hence, the target network parameters θ’ are updated
to match the parameters of the Q-network θ after a fixed number of steps:

θ′ ← θ
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5.1.2 Creating a memory: Experience replay

The experience replay, also known as a replay buffer, is a technique used to improve the stability
and efficiency of learning. Experience replay involves storing past experiences (state, action, reward,
next state) in a replay buffer. Instead of updating the Q-network parameters using the most recent
experience, DQN samples mini-batches of experiences from the replay buffer during training. By
sampling experiences randomly from the replay buffer, experience replay breaks correlations in the
data, to prevent the network from being biased by the sequential nature of the data. Reusing these
past experiences allows the agent to learn from each experience, which leads to improved data efficiency
and faster learning. The experience replay also helps stabilize training by providing a diverse set of
experiences for the network to learn from, which can prevent the network form overfitting to recent
experiences.

The replay buffer has a fixed capacity, and the new experiences replace the oldest experiences once
the buffer is at max capacity. Experiences are stored as tuples (state, action, reward, next state) in
the replay buffer.

5.1.3 Minimizing loss function: Optimization algorithms

Optimizer algorithms are used to update the weights of the Q-network, which is a critical component
of training a DQN. The choice of optimization algorithm affects the performance and convergence of
the model. SGD, Adam and RMSprop, as discussed and explained in Appendix B.3. The optimizer
minimizes the loss function, given in Eq. 6, by adjusting the network parameters. The performance
of these three algorithms will be tested during the experimental research.

5.1.4 Combining all components

The interaction of all the aforementioned components is depicted in Figure 7. Here, the replay memory
stores the experiences gained by the agent. These experiences are used to feed the value and target
network, as well as the optimizer. First, the mini-batch of N number of experiences is randomly chosen
from the replay memory. From this batch, the states are used as input for the value network. This
value network calculates the Q-values of these states for all the actions, which are then used in the
optimizer. The future states of the batches are used in the target network, to compute the future Q-
values. Finally, the chosen action and reward from the batch are used as input to the optimizer. This
optimizer finally updates the network parameter based on these Q-values and interactions with the
loss function from Eq. 6. Finally, every n episodes the parameters of the value network are transferred
to the target network.

Figure 7: Interaction between components in DQN
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5.2 Other definitions for implementing DQN

In this subsection, the important parts of a DQN in general is given and further defined. In Table 7
the components needed to define DQN are given. In this section, the neural network architecture will
be elaborated on, and finally the other parameters such as hyperparameters will be defined.

Component Description
Neural Network Architecture Structure of the DQN’s neural network, including input, hidden,

and output layers as well as activation functions are defined
Loss Function Function to measure error between predicted and target Q-values

Regularization Function Techniques such as L2 regularization or dropout to prevent over-
fitting are used

Hyperparameters Parameters controlling the training process, such as the learning
rate and discount factor.

Table 7: Components needed to define and deploy a DQN agent

5.2.1 Creating Neural Network Architecture

To define the neural network for the DQN, several components must be specified, as outlined in Table
8.

Component Description
Number of Layers Total number of layers in the neural network, including input,

hidden, and output layers
Number of Neurons Number of neurons in each layer, determining the capacity and

complexity of the network
Activation Functions Functions applied to the output of each neuron, such as ReLU,

sigmoid, or tanh, to introduce non-linearity
Input layer The features or state representations fed into the input layer of

the neural network
Output layer The predicted Q-values for each possible action, produced by the

output layer of the network

Table 8: Components that define the architecture of a neural network within DQN

The number of layers and neurons cannot be predefined as they significantly influence the perfor-
mance and must be tuned according to the specific task and dataset. Inputs and outputs are closely
tied to the environment, depicting the state for the inputs and the actions for the output, which will
be defined in the next chapter. At this point, the activation functions between hidden layers are
considered based on the problem requirements.

For job shop scheduling, the activation function ReLU (Rectified Linear Unit) is preferred due to
its computational efficiency and ability to mitigate the vanishing gradient problem. The vanishing
gradient problem occurs when gradients become very small, effectively stopping the network from
learning. ReLU addresses this by allowing gradients to pass through unchanged for positive values, thus
maintaining gradient flow and improving training efficiency. Further explanation and considerations
for this choice are given in Appendix F, where multiple activation functions are explained, including
ReLU in greater detail.

As ”dying ReLU” is a common problem, where neurons effectively become inactive by constantly
outputting zero due to receiving negative inputs, this issue can be tackled in multiple ways. For this
research, the dying ReLU problem is addressed by using He-initialization. He-initialization sets the
initial weights of the neurons using a Gaussian distribution with a mean of zero and a variance of
2

nin
, where nin is the number of input units in the layer. This initialization method ensures that the

variance of the activations remains consistent across layers, reducing the likelihood that the neurons
will output zero and thus become inactive. A more detailed explanation and other solutions to the
dying ReLU problem can be found in Appendix F.1.

With this neural network, both the target and value network for the DQN are defined.
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5.2.2 Other definitions for DQN

To finalize the definitions for the DQN, and thus enable deployment in MATLAB, yet undefined key
components and their specifications are outlined in Table 9.

Variable/Component Definition
Batch Size The batch size determines the number of past experiences sam-

pled during each training step. A larger batch size can increase
computational time significantly, while a smaller size may reduce
performance due to less diverse experiences.

Replay Buffer Size The size of the experience replay buffer, which stores past expe-
riences (state, action, reward, next state). A larger buffer allows
the agent to store more experiences, potentially leading to better
learning but requires more memory. A smaller buffer might not
capture the diversity of experiences.

Learning Rate (α) The learning rate (α) controls the step size during gradient de-
scent. This crucial hyperparameter influences the convergence
speed and stability of the training process.

Discount Factor (γ) The discount factor determines the importance of future rewards
in the Q-value estimation.

Exploration Rate (ϵ) The exploration rate usually starts high to encourage exploration
of the action space and decays over time to favor exploitation of
learned policies.

Exploration Decay Rate The rate at which the exploration rate (ϵ) decays over time. It
affects how quickly the agent shifts from exploration to exploita-
tion.

Minimum Exploration
Rate

The lower bound for the exploration rate (ϵ) after decay. Ensures
that the agent continues to explore to some extent even after the
exploration rate has decayed.

Target Network Update
Frequency

How often the target network parameters are updated to match
the Q-network parameters. Frequent updates can destabilize
training, while infrequent updates might slow down learning.

Table 9: Key components and definitions for deploying the DQN in MATLAB

For this research the batch size, replay buffer size and target network update frequency are not
changed. Specific values will be given in Chapter 7. To deploy DQN in MATLAB, a brief step by
step explanation is given in Appendix G. As the DQN method is now defined, in the next chapter the
environment to explore will be defined.

27



6 Defining the job shop: the environment

In this chapter, the environment for the DQN agent to explore is proposed. First, the general scheduling
is presented. Next, the components of the environment are identified and their purposes are explained,
and then the detailed definitions of these components are given to show how they are implemented.

Pseudo-code of the general outline for an environment is given in H.1. The environment is imple-
mented using the reinforcement learning toolbox of MATLAB to create a custom environment using
the rlCreateEnvTemplate function [87].

6.1 Definitions of the environment

MDP is used to describe the environment. In Table 10 the necessary components to define the envi-
ronment are given, as well as a brief explanation with regards to job shop scheduling. Next the state,
action space and reward are further elaborated on. The step function will be elaborated on in the next
section, as this entails the whole scheduling process. The reset function resets the whole environment,
meaning the created schedule is cleared and the environment starts at the beginning of a job shop
scheduling problem. A more detailed explanation about the reset function is given in Appendix H.3

Component Description
State Represents the current status of the job shop, including job and machine sta-

tuses
Action Decision made by the agent, such as selecting the next job or operation to

schedule
Reward Feedback signal indicating the quality of the action, aiming to optimize schedul-

ing performance
Step Function Updates the state based on the chosen action, returns new state, reward, and

if the episode is completed
Reset Function Resets the environment to the initial state at the start of each episode

Observation Space Defines the format and bounds of the state observed by the agent
Action Space Defines the possible actions the agent can take

Table 10: Necessary components to define the job shop scheduling environment

6.1.1 Inputs for the agent: defining the state

In this research, the observation space and state represent the same data. Hence, the agent has full
availability to the state. Hence, the state is essential for guiding the agent’s decision-making process
based on available data. It ensures the agent can make informed decisions by providing comprehensive
insight into both jobs and machines within the job shop environment. Given the distinct requirements
of static and dynamic job shop scheduling problems, two distinct state spaces are defined for each.

The state space is structured as matrices, with each row representing a single input node for the
neural network used in DQN.

Static JSSP inputs

For the static JSSP, the job information is represented in the following matrix:

Job 1 s1 m1 t1 o1 c1 f1
2 s2 m2 t2 o2 c2 f2
...

...
...

...
...

...
...

Job i si mi ti oi ci fi

Here, i represents the job ID, s indicates job status (0 for non-existing/finished, 1 for active), m
specifies the machine for the next operation, t denotes the processing time on the next machine, o
shows the number of operations left to complete the job, c represents remaining time to complete the
job, and f indicates finished status (0 for not finished, 1 for finished).
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The machine state matrix for static JSSP is represented as:

Machine 1 s1 p1 u1 0 0 0
2 s2 pm2 u2 0 0 0
...

...
...

...
...

...
...

Machine j sj pj uj 0 0 0

Here, j represents the machine ID, s indicates machine status (similar to job status), p specifies the
number of operations completed, and u represents utilization rate.

In the matrix, the zeros are placeholders to ensure the job and machine state matrices are the same
size, as the DQN agent requires a single matrix input.

Dynamic JSSP inputs

Dynamic job shop scheduling (DJSP) incorporates additional data such as arrival time a, due date
d, and priority weight w into the state space matrix. The state space matrix for DJSP is defined as
follows:

Job 1 s1 w1 a1 d1 m1 t1 o1 c1 f1
2 s2 w2 a2 d2 m2 t2 o2 c2 f2
...

...
...

...
...

...
...

...
...

...
Job i si wi ai di mi ti oi ci fi

To accommodate these variables, the machine state matrix for DJSP includes additional placehold-
ers.

These matrices provide the agent with comprehensive information necessary for effective decision-
making in dynamic job shop scheduling scenarios.

6.1.2 Scheduling of operations: defining the action space

When defining the action space, several considerations must be taken into account. Notably, DQNs
are constrained to discrete action spaces. In this case, dispatching rules are utilized for their efficiency
in conjunction with the complex learning capabilities of DQNs, a combination discussed in Chapter 3.
In Table 11 the chosen dispatching rules as depicted.

Action Definition
SPT Selects the job with the shortest processing time for the next operation.
LPT Selects the job with the longest processing time for the next operation.

SRPT Selects the job with the shortest remaining total processing time.
LRPT Selects the job with the longest remaining total processing time.
STPT Selects the job with the shortest total processing time.
LTPT Selects the job with the longest total processing time.
FIFO Selects the job that arrived first in the queue.
LIFO Selects the job that arrived last in the queue.
LOR Selects the job with the least number of remaining operations.
MOR Selects the job with the most number of remaining operations.

Table 11: Chosen actions: Dispatching Rules

Based on the Q-values estimated from the current state by the agent, an action is given based on
the highest Q-value, determining which operation to schedule next according to the chosen dispatching
rule.

6.1.3 Incentive to optimize performance: defining the reward structures

The reward structure is crucial for guiding the agent’s behavior by providing feedback on its actions.
In static job shop scheduling, where minimizing makespan is the primary objective, the reward struc-
ture focuses on maximizing the utilization rate. In dynamic job shop scheduling, multiple objectives
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are considered, such as minimizing makespan, maximizing utilization rate, minimizing tardiness, and
managing slack.

To address these objectives, a reward structure is proposed for maximizing utilization rate. Detailed
mathematical equations for four distinct just-in-time reward structures, as well as a structure for
maximizing slack, are provided in Appendix H.2. Here, ”just-in-time” refers to minimizing both slack
and tardiness to deliver jobs as close to their due dates as possible, thus reducing storage time.

Reward for maximizing utilization rate

The proposed reward for maximizing the utilization rate is determined based on the change in the
utilization rate resulting from scheduling a job on a specific machine at a given time. Since the
utilization rate affects the makespan, this approach indirectly minimizes the makespan. Equation
7 represents the reward represents the reward r gained per step, where u is the utilization rate for
machine j. Subsequently, Equation 8 provides the accumulated reward R, where n is the total number
of machines. As the reward is calculated based on the change in utilization per machine and does not
directly account for the total completion time at each step, the makespan is only indirectly influenced by
the reward. Therefore, a higher received reward does not necessarily correspond to a lower makespan.

r = ∆uj (7)

R =

n∑
j=1

uj (8)

6.2 Defining the scheduling for the environment

With the environment now defined in terms of an MDP, the job shop scheduling needs to be speci-
fied. This involves detailing the functionality of the step function, enabling the agent to navigate the
environment based on its chosen actions.

6.2.1 Flowchart of basic scheduling

To illustrate the basics of creating a job shop scheduling environment, a flowchart is presented in
Figure 8. The input data is a job shop scheduling problem, structured as described in Table 6 from
Chapter 4.4.2. The job shop is initialized with an empty schedule. Operations of jobs are scheduled
sequentially until all jobs are scheduled, resulting in a feasible schedule for the job shop scheduling
problem.

Figure 8: Flowchart of general job shop scheduling process

6.2.2 Algorithm for scheduling: static job shop

Algorithm 1 provides the pseudo-code for solving a general static job shop scheduling problem for a
single episode. An episode, in this context, is the sequence of interactions between the agent and the
environment, starting from the initial state and concluding when all operations are scheduled.
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Algorithm 1 General workings of a job shop

Input: General job shop problem
Output: Scheduled jobs of job shop problem
while not all jobs have been processed do

Choose an action
Based on the action, determine the job and its operation to schedule
Determine the start and end time:
if starting time of the job ≥ starting time machine then

Starting time of operation = starting time of the job
else

Starting time of operation = starting time machine
end if
End time = starting time + processing time of operation
Schedule the job

end while

During the later stages of this study, an inefficiency was identified in Algorithm 1. The dispatching
rules produced different makespan results for the same problems compared to Liu [81]. The issue was
that operations were not being planned before other operations, thus not filling planning gaps. Due to
time constraints, this research continues to use Algorithm 1. The issue and an updated algorithm are
detailed in Appendix H.4, where the revised algorithm is given in Algorithm 6. This update is applied
to the dynamic job shop scheduling algorithm described next.

6.2.3 Algorithm for scheduling: dynamic job shop

In Algorithm 2, the workings of dynamic job shop scheduling is given. The changes from static,
Algorithm 1, to dynamic are as follows:

• Initializing a current time at t = 0 to simulate real-time scheduling.

• The scheduling of jobs checks for gaps in the schedule, identifying if the planning gaps are suitable
for the next operation to be scheduled at that time while keeping the operation sequence in mind,
ensuring efficient resource allocation.

• To simulate real-time scheduling, if no more operations can be planned for that time, the current
time is incremented. During this time increment, the algorithm checks if new job can e added
based on the arrival times.

By handling gaps and new job arrivals, this algorithm adapts to the dynamic nature of the job shop
scheduling problem, aiming to optimize the schedule continuously.
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Algorithm 2 Job shop scheduling algorithm for dynamic job shop

Input: General dynamic job shop problem
Output: Scheduled jobs of dynamic job shop problem
Initialize the current time at t = 0
while not all jobs have been processed do

Choose an action
Based on the action, determine the job and its operation to schedule and which machine to
schedule on
Determine if there are gaps in the planning for the machine
if there are gaps in the planning for the machine then

Determine where the gaps in the planning are
Determine how big the gaps in the planning are
Determine if the processing time of the operation fits in the gap(s)
if processing time fits in one of the gaps then

Find the earliest possible gap to plan the job in based on arrival rate, starting time and
processing time
Schedule the job in the gap

else
Determine the start and end time:
if starting time of the job ≥ starting time machine then

Starting time of operation = starting time of the job
else

Starting time of operation = starting time machine
end if
End time = starting time + processing time of operation
Schedule the job
while Current Time is smaller than each of the last planned time of all jobs do

Current time +1
check if the current time is smaller than each of the last planned time of all jobs
check if jobs can be added based on the arrival time in comparison to current time

end while
end if

end if
end while

With the definitions of the DQN and the job shop scheduling environment now established, the
groundwork has been done for implementing and testing our approach. The next chapter will detail the
experimental setup, including how the environment and learning algorithm will be tested, evaluated,
and validated to ensure their effectiveness in solving job shop scheduling problems.
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7 Experimental setup

This chapter details the experimental setup used to investigate capabilities and limitations of the
proposed method in solving job shop scheduling problems. The experiments are designed to validate
the effectiveness of the proposed model, given in Chapter 5, in both static and dynamic job shop
scheduling environments. The primary goal is to assess the usefulness of the method under various
conditions and identify the limitations.

7.1 Setting a benchmark

Each experiment starts by creating a benchmark agent with standard values provided by MATLAB.
The agent’s learning behavior is evaluated using the training graph, which displays its performance
over time. Following the training phase, a Gantt chart is generated when testing the created agent, to
assess the interaction between the environment and the agent as well as the performance and statistics
in terms of the found makespan and utilization rate, as well as rewards. This benchmark serves as a
reference point for further experiments.

To elaborate, the standard settings for hyperparameters and other values are given in Table 12.
Here, α represents the learning rate, γ denotes the discount factor, ϵinit is the initial exploration rate,
ϵmin is the minimum exploration rate, and ϵdecay refers to the rate at which exploration decreases. D
indicates the size of the experience replay buffer, B represents the number of experiences used in each
training step, L specifies the number of layers in the neural network, N denotes the number of neurons
per layer in the network, Ufreq indicates how often the neural network parameters are updated and E
represents the total number of episodes.

Other options to change can be found in documentation from MATLAB on options for DQN agents
[88].

Parameter α γ ϵinit ϵmin ϵdecay D B L N Ufreq E
Value 0.001 0.99 1.0 0.01 0.005 1e5 64 1 64 10,000 steps 8000

Table 12: Standard hyperparameter values for DQN in MATLAB

Other values are for the maximum steps per episode, which is set to a really big number, as the
steps per episode should depend on completing the job shop scheduling problem, as well the number of
future rewards used to estimate the value of the policy, specified as a positive integer, which is default
set to 1. Finally, a reward scaling factor is introduced to change the size of the reward signal given to
the agent. This influences how the values of the agents are changed.

7.2 Hyperparameter tuning

To improve upon a created benchmark agent, the objective is to identify hyperparameter settings
that enhance agent performance while exhibiting desired training behaviors. To find fitting results in
comparison to literature, hyperparameter tuning is done by solving one specific problem.

The hyperparameter tuning process involves the following steps:

1. Define the hyperparameters and other relevant variables for the agent and neural network.

2. Initialize a set of agents, each with a unique configuration of the defined hyperparameters.

3. Evaluate the agents’ learning behavior by analyzing training performance graphs.

4. Assess agent performance using various metrics such as makespan, utilization rate, reward gained,
and in the case of dynamic environments, slack and tardiness.

5. Identify the agents that exhibit the best performance and desired learning behavior.

6. Adjust the hyperparameters and variables based on the performance and learning behavior of
the agents.
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This iterative process continues until an optimal set of hyperparameters is identified, resulting in
desired learning behavior and performance that is competitive with other methods. Desired learning
behavior is characterized by the agent’s reward converging to the Q0 estimate.

The Q0 estimate is calculated by performing inference on the critic at the beginning of each episode.
It represents the expected long-term reward based on the current observation. Ideally this estimate
would match the actual total reward collected during the episode. However, in practice, it is not always
necessary for the Q0 estimate to align perfectly with the actual reward, as the actor may converge
before the critic. Further elaboration on data analysis is given at the end of the chapter.

7.3 Training per standardized problem

With the optimized hyperparameters established, an agent is trained on each problem from a set of
standardized job shop scheduling problems, creating multiple agents to each solve one specific problem.
The performance is then compared to results found by Liu [81]. This approach helps to evaluate the
performance of DQN with hyperparameters optimized for one specific problem across various other
problems.

This evaluation aims to determine if the hyperparameters are effective across different problems
when the inputs of the neural network are changed. As the number of jobs and machines vary, the state,
as defined in Chapter 6.1.1, changes and serves as the input for the neural network. Consequently,
the architecture of the neural network adapts accordingly. Given that hyperparameter tuning can be
intensive and time-consuming, it is crucial to assess their transferability to other problems, resulting
in different neural network architectures.

In practical terms, understanding whether hyperparameters need to be tuned for each specific
problem or job shop type, rather than for job shop scheduling in general, significantly impacts the
labor and time required to implement machine learning, specifically DQN in this research. If the
hyperparameters are transferable, it simplifies the application of machine learning techniques, making
them more feasible and efficient for diverse job shop scheduling scenarios.

7.4 Training on multiple problems

After evaluating the performance and transferability of the hyperparameters, the next step is to test
the generalization capability by training on multiple problems. Depending on the results from the
standardized problems, hyperparameters may be further tuned, and the neural network architecture
might be adjusted if necessary.

Categories are created based on the number of jobs and machines. For each category, a multitude
of problems is generated, forming a comprehensive dataset. Within each category, multiple agents are
trained on varying amounts of samples from the dataset, such as 2, 5, or 10 different problems. This
step aims to assess whether training on a diverse set of problems enhances the agents’ performance
and robustness compared to standardized methods.

Evaluating generalization helps determine whether the developed model and hyperparameters are
universally applicable or require customization for specific problem types. Demonstrating that an
agent can perform comparably to dispatching rules indicates the method’s potential for real-world
deployment. As machine learning techniques are capable of understanding complex environments,
there is potential for these methods to surpass traditional dispatching rules with continued research
and development.

7.4.1 Testing of the agents on different problems

To evaluate generalization capability, the trained agents are tested on several problem sets:

• Problems they were specifically trained on.

• Problems with the same number of jobs, machines, and processing time distributions, but not
seen during training.

• Problems with different processing time distributions, with the same number of jobs and ma-
chines.
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This testing phase evaluates the agents’ ability to solve similar job shop type problems that are
not exactly the same, as well as unseen problems with different processing times.

In practical terms, if an agent is unable to solve problems with a different range of processing
times, it indicates the need for training on a broader variety of problems to handle unexpected data
in job shop scenarios. Ensuring the agent can tackle diverse and unforeseen issues is important for its
effective deployment in real-world environments.

7.5 Transfer learning

Transfer learning is a technique where knowledge gained from training an agent on one or more related
problems is applied to a new, related one. This approach leverages pre-existing knowledge to enhance
the efficiency and effectiveness of training on new tasks.

In the context of job shop scheduling, transfer learning involves two main phases. First, agents
are pre-trained on a set of job shop scheduling problems to develop a more broad understanding of
various scenarios. Once this pre-training is complete, the agents are further trained, or fine-tuned,
on a specific problem. The objective of this fine-tuning phase is to determine whether the general
knowledge acquired from the more diverse training can improve performance and reduce training time
for the new, specific problem.

The practical application of transfer learning can reduce the time required to train an agent com-
pared to starting from scratch for a new problem. If an agent trained on general job shop scenarios
can be adapted to specific scheduling tasks, this could lead to time savings. For example, instead
of requiring several hours to train from scratch, the training time might be be reduced with transfer
learning which would enhance the efficiency of production operations.

This method could facilitate less time-consuming deployment of effective solutions, thereby im-
proving operational efficiency in production settings. Due to time constraints, this study only assesses
the transfer learning capabilities within the same type of job shop but with different problems.

7.6 Data Analysis

Data analysis is done for evaluating the performance of the trained agents. Several methods are
employed to analyze the gathered data and assess the agents’ effectiveness in solving job shop scheduling
problems.

The first part of data analysis involves examining the training behavior of the agents. This is
visualized through training graphs, given in Figure 9, which illustrate key metrics over the course of
training. During training, several elements are monitored:

• Reward per Episode: This shows the reward received by the agent at each episode, reflecting
the agent’s immediate performance.

• Average Reward: The average reward calculated over a specified number of episodes provides
a smoother view of performance trends, helping to identify overall learning progress.

• Q0-Value: The Q0-value represents the critic’s estimate of the expected long-term reward based
on the current observation at the beginning of each episode.

Together, these components reveal how rewards evolve, the stability of learning, and the agent’s
convergence towards optimal behavior. Desired learning behavior can be inferred from these graphs:

• Convergence of Q0-Value: The Q0-value should converge towards the average reward, indi-
cating that the critic’s estimates are becoming more accurate and consistent with the agent’s
performance.

• Stable Average Reward: A stable average reward with minimal fluctuations suggests that
the agent has effectively learned the task and is consistently performing well.

• Reduced Oscillations: As training progresses, the reward per episode should show reduced
oscillations, signaling that exploration is decreasing and the agent is focusing more on exploiting
its learned knowledge.
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Figure 9 illustrates a learning behavior, demonstrating how the reward trends and Q0-values help
assess whether the agent has achieved the desired learning behavior.

Figure 9: Example training graph for an agent

In addition to training behavior, agents are tested in the environment to gather various performance
metrics. The primary metrics include makespan, utilization rate per machine and reward, as well as
slack and tardiness for dynamic environments.

Next to these performance metrics, analyzing the actions taken by the agents provides valuable
insights. The frequency and types of actions (e.g., specific dispatching rules) reveal how the agent’s
learned policy differs from standard methods and whether certain actions dominate. This analysis
can highlight whether the agent is favoring particular strategies or whether it has developed a more
nuanced approach to problem-solving.

To further evaluate and compare the performance, statistical methods are applied. Descriptive
statistics such as mean, standard deviation, and variance are calculated to assess the consistency
of the results, as mean values indicate the central tendency of performance metrics, while standard
deviation and variance measure the variability and consistency across different problems and training
runs.

These data analysis techniques ensure a thorough assessment of the agent’s performance, high-
lighting both strengths and areas for improvement. By analyzing training behavior and performance
metrics, a detailed understanding can be gained of how well the agents learn and generalize across
various job shop scheduling scenarios.

With the experimental setup detailed, the next chapter will present the execution of these ex-
periments and discuss the results obtained, to provide insights into the effectiveness of the training
approaches and the practical implications of the findings.
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8 Results

In this chapter, the experiments described in Chapter 7 are executed and the results are discussed.
First, an initial testing is done of the whole model in a static job shop environment, with testing on
standardized problems. After that, a second iteration is done to change according to the results of
the first iteration, with training on multiple problems as well as transfer learning. Finally, the DQN
method is assessed in a dynamic environment where agents are trained on multiple problems as well.

8.1 Initial testing of proposed method: Static job shop scheduling

In this section the initial testing of the proposed method is executed to assess the performance of
the proposed method as well as learning from interacting with deep reinforcement learning. Here, the
method proposed uses a neural network where the size of the inputs is based on the number of jobs and
machines in a job shop, thus changing the architecture of the neural network based on the problem to
give as much information on the problem as possible.

8.1.1 Testing of optimization algorithms and creating a benchmark agent

Three benchmark agents are created, with different optimization algorithms to assess which of the
three to use. In this section, the agents are trained on the ft06 problem defined in Chapter 3.1. As
this is a smaller problem (6 jobs, 6 machines) computational time can be kept to a minimum. First,
the comparison is made between the optimization algorithms. All three agents trained with different
optimizers use default settings as defined in Table 12 in Chapter 7.1. After choosing the optimization
algorithm, the chosen agent will be assessed on performance as well the functioning of the environment.

To assess the difference for the optimization algorithms, Figure 10 shows a comparison in learning
behavior. From these graphs, it is found that RMSprop shows unstable and unwanted learning behav-
ior, with no actual learning. Both SGDM and Adam show promising and stable learning behavior,
although the Q0 estimations of Adam are more stable. Due to the fact that Adam is a more commonly
used optimizer and shows stable Q0 estimations, Adam will be used as optimizer algorithm.

To create a benchmark, the agent is tested on the ft06 problem it was trained on. In Table 13 some
statistical data is shown, where it is found that the reward found is consistent over multiple runs of
the same problem. In this table, UL (upper limit) represents the highest value found, LL (lower limit)
represents the lowest value found, var is the variance found and StD the standard deviation. The
found makespan is only 79, which in comparison to other solutions found in Chapter 3 underperforms
in comparison to other methods. Although the agent does not perform in comparison to other methods,
it is able to learn an optimal policy and find consistent results. The agent is able to find this solution
in 3071.8 seconds, or 51 minutes and 12 seconds.

Variable C R
UL 79 4.6851
LL 79 4.6851
Mean 79 4.6851
Var 0 0
StD 0 0

Table 13: Found statistics for makespan and rewards

In Figure 11 the Gantt chart is shown, depicting the found solution by the agent. From this Gantt
chart it can be concluded that the agent schedules the jobs and their operations in the correct order,
when looking at the ft06 problem in Table 4 from Chapter 3.1.
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(a) RMSprop

(b) SGDM

(c) Adam

Figure 10: Behavior of different optimizer algorithms

38



Figure 11: Gantt Chart illustrating the best schedule and makespan achieved by the benchmark agent.

In the pie chart given in 12 it can be seen that the approach mostly uses MOR, as well as SPT and
LPT, while the other 7 defined actions are not used. An important note, looking at the specifics, the
agent uses SPT and LPT for the first 16 actions, and afterwards only uses MOR. As per this data, it
can be concluded that the agent does not balance the dispatching rules to find an optimal policy.

Figure 12: Pie chart of the different actions taken by the agent

It can be concluded that although performance is not yet up to standard, the environment works
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correctly and the agent can be trained and tested on its performance. The agent does not balance
certain actions, but prefers three specific actions. The next focus is on fine-tuning the hyperparam-
eters to improve learning behavior and performance of the agent. New agents will be created by
iteratively testing different sets of parameters and changing the range of parameters, while analysing
their effectiveness, consistency and generalisation capabilities.

8.1.2 Hyperparameter tuning

As the benchmark is trained on the ft06 problem, the hyperparameter tuning will be performed on ft06
as well. For the hyperparameter tuning, the goal is to converge from a wide range of hyperparameters
to a small set. Hence, multiple iterations are done to converge to a set with the best found performance
and desired learning behavior. To compare performance, a bar graph is made, depicted in Figure 13.
From this graphs data, three agents are found which show good performance, with agent 18 finding a
reward of 6.22 and a makespan of 70, agent 26 finds 5.73 and 72, and finally agent 29 finds 5.73 and
67. Although not finding a low makespan, the performance is already improved in comparison to the
benchmark agent.

Figure 13: Comparison of agents from the second iteration

Next to performance, the learning behavior is assessed based on the training graphs, shown in
Figure 14. In this figure, the y-axis of the sub figures are not equal. Here it is found that although
they show comparable performance, the learning behavior of agent 18 seems to show the most desired
behavior, as defined in Chapter 7.6. Hence, the hyperparameters of agent 18 are focused on for the
next iteration. The values of all three agents are given in Table 14, where RS is the reward scaling
factor and CT is the computational time during training.

Agent α γ ϵinit ϵdecay D N L CT (s)
18 1e-3 1 1E-3 1e-6 10 128 5 1765.6
26 1e-4 1 0.5 1e-10 10 128 4 1435.4
29 1e-3 1 0.5 0.01 10 64 2 1061.3

Table 14: Parameters of agents of second iteration

This method, as defined in Chapter 7.2, is used for each iteration. For hyperparameter tuning in
this initial test, five iterations have been done, which are described in Appendix I. In Table 15 the
range of hyperparameters are given for each iteration.
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(a) Learning behavior agent 18

(b) Learning behavior agent 26

(c) Learning behavior agent 29

Figure 14: Comparison of learning behavior from agents of second iteration
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It. α γ ϵinit ϵdecay N L D E
1 1e-1, 1e-4, 1e-7 1e-3, 0.5, 1 1e-3, 0.5, 1 1e-2, 1e-6, 1e-10 64, 128, 256 1, 2, 3, 4, 5 1, 10, 100 4000
2 1e-3, 1e-4, 1e-5 1e-3, 0.5, 1 1e-3, 0.5, 1 1e-2, 1e-6, 1e-10 64, 128, 256 2, 3, 4, 5 10, 100 4000
3 1e-3, 1e-4, 1e-5 0.5, 0.75, 1 1e-5, 0.1, 0.25, 0.5 1e-2, 1e-6, 1e-10 64, 128, 256, 512 4, 5, 6 10 4000
4 1e-3, 1e-4, 1e-5, 1e-6 1 1e-5, 0.1, 0.2, 0.3 1e-2, 1e-6, 1e-10 64, 128, 256 4, 5, 6 10 4000
5 1e-4, 1e-5 1 0.1, 0.2, 0.3, 0.4 1e-2, 1e-6, 1e-10 128, 256 5, 6, 7 10 8000

Table 15: Hyperparameter settings for each iteration

For the final iteration, it was found that agent 13 performs best in terms of rewards, with a reward
of 6.64 and a makespan of 61 time units, with desired learning behavior depicted in Figure 15. The
settings for the agent are given in Table 16, which enables the agent to find an improved solution in
52 minutes and 49 seconds. Hence, the computational time is comparable while being able to improve
upon the found makespan.

Figure 15: Training graph of best found agent

α γ ϵinit ϵdecay D N L CT (s)
1.0000e-03 1 0.25 1.0e-10 10 128 5 1674.8

Table 16: Parameters of best found agent

To analyze the found results, statistical data is presented in Table 17. Here it is found that the
agent is consistent in found makespan and reward, based on the both the standard deviation and
variance.

Variable C R
UL 61 6.648
LL 61 6.648
Mean 61 6.648
Var 0 3.22e-30
StD 0 1.79-15

Table 17: Found statistics for makespan and rewards for agent 13 of the fifth iteration

Based on the result found by this agent, a Gantt chart is produced in Figure 16. This Gantt chart
again shows a feasible solution in terms of job sequences. Although some improvements might still be
possible, the performance has already increased by reducing the makespan by 18 time units. Another
consideration here is that the lower bound, which is a makespan of 55, might not be a solution possible
to be found with the combinatorial use of the dispatching rules.
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Figure 16: Gantt chart of found solution by agent 13 of the fifth iteration

In Figure 17 a pie chart is presented, where it shows that the agent now uses 9 of the 10 defined
actions, leaving out LOR. Although some actions are more preferred than others, it shows the agent
learns to balance the action to improve the result of the benchmark agent.

Figure 17: distribution of action taken by final agent

An agent has been found that can solve the ft06 problem, with an increased performance compared
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to the benchmark agent while balancing the given actions. The performance now also aligns more with
the found methods in literature, given in Chapter 3. Hence, the chosen hyperparameters together with
the proposed method will be tested on other standardized problems next.

8.1.3 Testing the hyperparameters on standardized problems

The found hyperparameters with the proposed method are used to train multiple agents, each on a
different benchmark problem, to compare the performance with research by Liu [81]. In Table 18 the
results of the created agents are given in terms of reward, makespan and computational time. Further
details, such as training graphs, are given in Appendix J.

agent instance R C machines jobs CT (h)
1 abz8 5.014 1010 15 20 5.8
2 ft06 6.661 61 6 6 0.76
3 la04 6.473 853 5 10 0.92
4 la09 8.761 1021 5 15 1.38
5 la15 7.582 1636 5 20 1.91
6 la25 5.511 1427 10 15 2.81
7 la35 6.099 3756 10 30 5.60
8 svw01 5.224 3013 10 20 3.79
9 svw15 4.978 8104 10 50 13.16
10 ta01 4.827 1990 15 15 4.26
11 ta31 5.418 3122 15 30 9.71
12 ta41 4.595 3603 20 30 16.66

Table 18: Agents created for standardized problems

To further elaborate on the computational time increase, the input size is set out against the
computational time in Figure 18. From this it can be concluded that superlinear growth is seen for
the computational time as the input size increase. This is both due to the increase of inputs, creating
more connection to the first hidden layer, as well as the increase in total operations, thus steps, needed
to solve a job shop when the number of machines and/or jobs grows. When comparing the graph with
the data from Table 18 it is found that problems with a higher number of machines also take more
computational time with the same number of inputs.
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Figure 18: Computational time per input size for training on different problem sizes

From these results it is concluded that with the proposed hyperparameters the ft06 problem can be
solved to a reasonable degree as this is the problem the hyperparameters were tuned on. However, for
the other problems this is not the case. The bigger the problem, the greater the computational time
increases as well the performance decreases. Hence, the agents are not able to solve the problems to a
reasonable degree when comparing to other research, given in Table 19. Finally, based on the training
graphs given in Appendix J, the bigger the problem becomes, the less compatible the hyperparameters
become for the learning process. Hence, such difference in problems, changing the architecture of the
neural network, needs change in hyperparameters to accommodate for this change.

Dispatching rules DRL methods Ours
Instance Size SPT LPT FIFO LIFO SWT LWT MWKR LWKR GA D3QPN L2D P3OR DQN

ft06 6 × 6 84 73 65 70 83 62 59 68 55 59 64 57 61
orb07 10 × 10 504 520 502 500 512 487 482 519 426 438 470 415
la04 10 × 5 711 832 758 741 864 712 706 885 617 635 736 624 853
la09 15 × 5 1045 1183 997 1073 1135 1012 973 1149 954 978 1015 952 1021
la15 20 × 5 1339 1612 1282 1345 1587 1312 1258 1598 1128 1241 1295 1235 1636
la25 15 × 10 1297 1374 1283 1352 1471 1336 1172 1425 1160 1153 1204 1148 1427
la35 30 × 10 2133 2324 2004 2215 2368 2274 1962 2287 2019 1994 2085 1927 3756
abz8 20 × 15 929 949 879 938 957 936 810 992 744 778 861 736 1010
yn1 20 × 20 1196 1115 1123 1177 1214 1163 1045 1205 926 1053 1121 997

swv01 20 × 10 1737 2145 1889 2123 2005 1923 1971 1838 1732 1712 1845 1645 3013
swv15 50 × 10 3501 4404 3603 3573 4133 4026 4905 3919 3422 3431 3516 3328 8104
ta01 15 × 15 1462 1701 1830 1627 1712 1523 1438 1737 1457 1405 1521 1412 1990
ta31 30 × 15 2335 2417 2436 2417 2754 2218 2143 2962 2237 2116 2231 2044 3122
ta41 30 × 20 2499 2925 2973 2760 2814 2609 2538 2976 2739 2475 2613 2387 3603
ta51 50 × 15 3856 3880 3717 3391 3702 3624 3567 3596 3250 3151 3224 3018
ta61 50 × 20 3606 3989 4046 3870 3827 3568 3376 4073 3658 3365 3441 3256
ta71 100 × 20 6232 7038 6704 6767 6735 6524 5938 6993 6524 5938 6993 5624

Table 19: Table comparing proposed DQN with other methods from Liu [81]
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8.1.4 Conclusion of the first experiment

To summarize, the goal of these tests was to assess if the DQN method with proposed environment
work, as well as assessing the transferability of the hyperparameters to other problems with a neural
network that changes based on the number of machines and jobs per problem.

As per the DQN working with the environment, it is concluded that these work as expected. The
DQN is able to learn as well as the environment processing the taking actions by the DQN correctly,
resulting in feasible schedules.

From hyperparameter tuning it was found that the performance can be increased, while maintaining
a comparable computational time, of below one hour to solve the ft06 problem. Also it was learned
that a lot of data needs to kept track of. This all needs to be stored, for losing it will take a lot of time
to redo each test. Finally, a lot of behavior for hyperparameter tuning can be assessed in the earlier
stages of training, around 500 to 1000 episodes. Afterwards, agents mostly stabilize their training
behavior. Hence, earlier hyperparameter tuning can be done on less episodes, reducing the time for
hyperparameter tuning and/or increasing the number of hyperparameter combinations that are tested.

Finally, training different agents per problem with the found hyperparameters gave unwanted re-
sults. The performance was below expectation, as well as taking more time (up to 16 hours) for
problems with a higher number of jobs and machines. Hence it is assumed that changing the archi-
tecture of neural network, in this case the size of the input matrix, greatly influences applicability of
hyperparameters as well as the computational time needed. Hence the input size of the neural network
should be fixed on a set number, to possibly improve applicability of hyperparameters to problems of
different sizes.

For the next test, the hyperparameter tuning is redone, fixing the input size on 10 jobs and 20
machines to be able to assess multiple sizes of job shops. For the hyperparameter tuning, the first 500
episodes of training are done for the early stages of tuning, thus saving time per set of hyperparameters.

8.2 Second iteration: static job shop scheduling

In this second iteration, the recommended changes are used to redo hyperparameter tuning and execute
further experiments. The goal is to assess the generalization capabilities when agents are trained on
multiple problems, as well as using transfer learning to improve performance and reduce training time,
utilizing gained knowledge of pre-trained agents.

8.2.1 Benchmark of second iteration

Again, an agent is created to compare the performance to. Here, the only change in comparison to
Chapter 8.1.1 is the number of inputs, from 6 jobs and machines to 10 jobs and 20 machines.

In Figure 19 the training graph is shown. When compared to the benchmark in Chapter 8.1.1, a
big difference found is that at the start of training the agent already performs quite well. However,
over time this performance reduces. Although this reduction, the agent does seem to learn an optimal
policy as the Q0 value and average found reward become somewhat in line with one another, much
like the first benchmark agent.
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Figure 19: Training graph of benchmark agent for second iteration

In terms of actual performance, the statistical results have been given in 20. Here it is found that
in comparison to the previous benchmark, the performance is greatly reduced as expected from the
change in learning behavior. Although the agents performance is reduced, the agent is able to perform
consistently, thus learning an optimal policy. The agent is able to be trained in 3407.5 seconds, or
56 minutes and 47 seconds, keeping a comparable computational time comparable to earlier found
solutions.

metric R C
UL 3.31 123
LL 3.31 123
Mean 3.31 123
Var 0 0
StD 0 0

Table 20: statistical results of benchmark agent of second iteration

The Gantt chart of the best found solution is given in Figure 20. As expected based on the found
makespan, a lot of gaps can be identified which should be easily solvable, even manually.
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Figure 20: Gantt chart of benchmark agent of second iteration

Finally, the distribution of chosen actions is given in Figure 21. Here it is found that the benchmark
agent does not balance the possible actions to come to a feasible solution, only using LRPT and MOR.

Figure 21: Distribution of chosen actions by benchmark agent

As the benchmark is now defined, random hyperparameter tuning is done.

8.2.2 Random hyperparameter tuning

The hyperparameter tuning method is adjusted according to recommendations from the previous
iteration, again tuning for the ft06 problem. Here, the training graphs found are categorized on
behavior and based on the hyperparameters found for each category, the hyperparameters are adjusted
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per iteration. With this adjusted approach, more hyperparameters can be tested and assessed in less
time. All these steps are further defined and executed in Appendix K. The hyperparameter ranges for
each iteration are given in Table 21. Here, the reward scaling factor is fixed to be 10.

It. α γ ϵinit ϵmin ϵdecay N L E
1 1e-1, 1e-4, 1e-7 0.1, 0.5, 0.99 1e-7, 1e-4, 1 1e-13, 1e-7, 0.01 1e-10 1e-6 1e-2 64 512 2048 1 4 7 500
2 1e-3, 1e-4, 1e-5 1e-4, 0.5, 0.99 1e-7, 1e-4, 1 1e-13, 1e-7, 0.01 1e-10 1e-6 1e-2 64 128 256 1 to 5 1000
3 1e-3, 1e-4, 1e-5 0.75 0.875 0.99 1e-7, 1e-4, 1 1e-13, 1e-7, 0.01 1e-10 1e-6 1e-2 64 128 256 1 to 5 1000
4 1e-3 1e-4 1e-5 0.75 0.875 0.99 0.1 0.5 1 1e-13, 1e-7, 0.01 1e-3 5e-4 1e-4 64 128 256 3 to 5 1000
5 1e-4, 1e-5 0.99 0.1 0.5 1 1e-13, 1e-7, 0.01 5e-4 1e-4 64 128 256 3 to 5 1000
6 1e-4, 1e-5 0.99 0.5 0.75 1 1e-13, 1e-7, 0.01 1e-4 64 128 256 3 to 5 8000
7 1e-5 0.99 0.75 1 1e-13, 1e-7 1e-4 64 128 256 3 to 5 8000

Table 21: Hyperparameter settings for each iteration per the second iteration test

From the results of the eventual chosen agent given in Table 79 it is found that this agent improves
greatly on the both the benchmark agents. Although the reward is slightly lower to the other agent
found by hyperparameter tuning, the makespan is reduced by 2. Hence it could be said that perfor-
mance is found to be comparable. With these changes in hyperparameters, the computational time
changes to 6394.1 seconds, or one hour, 46 minutes and 34 seconds. This is almost double of earlier
found solutions, which is to be expected as the number of inputs is more than doubled (from 12 to 30).

metric R C
UL 6.625664 59
LL 6.625664 59
Mean 6.625664 59
Var 0 0
StD 0 0

Table 22: statistical results agent 6 iteration 7

In Figure 22 the Gantt chart is given depicting the feasible schedule found by the agent. From this
Gantt chart it is hard to find any big gaps in scheduling as well as direct improvements. The agent
finds a comparable performing solution to found results in literature, given in Chapter 3.

Figure 22: Gantt chart of solution found by agent 6 of seventh iteration

In Figure 23 a pie chart is shown of the chosen actions. From this pie chart it can again be concluded
that the agent uses more of the given actions in comparison to the benchmark agent, thus exploring
possible actions and finding a feasible solution combining the given actions. This agent ops to only use
seven of the 10 optional actions, showing that while balancing is needed, not all actions are necessary
to use.
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Figure 23: Pie chart of chosen actions by best found agent

With the hyperparameters, agents will now be trained on multiple problems, assessing the gener-
alization of the DQN method as well as the transferability of hyperparameters on other problems with
a fixed neural network architecture.

8.2.3 Training on multiple problems

In this section, agents are trained on a different number of problems, as well as different job shops.
Three job shops are defined with 5 jobs, while differing in having 10, 15 or 20 machines respectively.
Per job shop type, 50 problems are generated. For each job shop type, agents are trained on 1, 5, 10, 25
and 50 of the generated problems, in numerical order. Thus, no randomization for choosing problems
is done. Using this method, the performance of the created agents is assessed on generalization,
comparing the agents in overall performance as well as comparing them to the agent trained on a
single problem.

As the proposed experimental method, the created agents are tested on the problems they were
trained to solve, problems with the same parameters which they have not been trained on, as well
as problems with a different processing time distribution, in this case being a uniform distribution
between 20 and 99 instead of between 1 and 10. All of the results of these tests are given in Appendix
L. A summary of the results is given in Table 23. Here, the results are expressed a percentage, being
the difference of the found makespan by the solver in comparison to the actual lower bound of the
problem found. The percentages are an average of the overall found difference per problem set. The
agents here are defined by the number of problems they were trained on, and per job shop type a
different agent was trained for the same number of problems.

From the table it is found that training agents on multiple problems does increase overall perfor-
mance for each job shop type. A difference is found in the 10 and 15 machines where the agent trained
on 25 problems performs better compared to 20 machines, where the agents trained on 50 problems
generalizes better. However, it is seen that dispatching rules defined, mainly LRPT and MOR, still
are able to outperform the created agents.
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10 by 5 15 by 5 20 by 5
solver trained untrained U[20,99] trained untrained U[20,99] trained untrained U[20,99]
SRPT -246% -246% -258% -262% -256% -274% -268% -271% -281%
LRPT -35% -36% -33% -25% -26% -23% -18% -20% -17%
SPT -172% -156% -177% -186% -185% -185% -197% -198% -186%
LPT -181% -183% -187% -201% -202% -201% -212% -215% -201%
LTPT -250% -240% -264% -267% -260% -276% -268% -278% -278%
STPT -246% -246% -258% -262% -256% -274% -268% -271% -281%
FIFO -249% -252% -262% -262% -259% -271% -272% -275% -283%
LIFO -242% -243% -254% -266% -256% -275% -270% -276% -281%
LOR -249% -252% -262% -262% -259% -271% -272% -275% -283%
MOR -29% -33% -28% -24% -25% -22% -18% -21% -16%
1 problem -140% -125% -159% -97% -97% -151% -171% -174% -23%
5 problems -129% -118% -176% -113% -112% -147% -154% -157% -213%
10 problems -79% -95% -194% -123% -129% -124% -86% -102% -190%
25 problems -57% -65% -189% -55% -57% -237% -145% -152% -26%
50 problems -91% -87% -64% -121% -117% -140% -71% -73% -80%

Table 23: Overview of performance per dispatching rule and agents, in comparison to the found lower
bound

As per the training graphs, partly shown in Figure 24, further given in Appendix L, it is found
that as the number of machines increases, the difference between Q0 estimation and found average
reward becomes bigger, thus the hyperparameters being less suitable for problems different to the 6
by 6 problem. Hence, a second iteration is done on problems with 6 jobs and 6 machines, to further
assess performance of training on multiple problems.

The training time of these agents are given in Table 24. Here it is found that per job shop type
some differences in computational time are found when trained on a different number of problems, but
is not significant. Secondly, as expected due to the increase of steps per episode, the computational
time increases as the number of machines increases.

Trained on 10 machines 15 machines 20 machines
1 problem 9005 13789 16682
5 problems 8748 10935 14727
10 problems 7499 9563 14696
25 problems 7791 9709 12642
50 problems 7483 13064 14675

Table 24: Comparison of computational time (in seconds) per agent
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(a) Learning behavior with 1 problem and 10 machines

(b) Learning behavior with 1 problem and 15 machines

(c) Learning behavior with 1 problem and 20 machines

Figure 24: Learning behavior of agents trained on 1 problem with different machines
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Second iteration: 6 by 6 problems

From the found results, explained in more detail in Appendix L.2, it was found that these agents
perform comparably to what was found for the other sizes of problems. However, as expected the
training graphs show better cohesion to the hyperparameters than of the previous trained on problems,
as depicted in Figure 25. Here, the Q0 value lies closer to the found average reward, showing better
applicability of hyperparameters.

Figure 25: Training graph of agent trained on 1 problem on a 6 by 6 problem

In Table 25 the same comparison has been made as in the previous section. Here, the found
results are comparable to the ones found for the 10 and 15 machine problems. Although reduced in
performance, the LRPT and MOR dispatching rule still are able to outperform each of the agents. Next
to that, it can now be concluded that data outside of the training scope, being a changed distribution
of processing times, greatly influences the performance. Hence it can be concluded that it is necessary
for the agent to be trained on specific job shop data they eventually have to solve.

solver trained untrained U[20,99]
SRPT -251% -247% -270%
LRPT -59% -60% -63%
SPT -165% -173% -182%
LPT -200% -198% -207%
LTPT -259% -245% -282%
STPT -251% -247% -270%
FIFO -255% -259% -276%
LIFO -253% -257% -274%
LOR -255% -259% -276%
MOR -49% -50% -54%
1 problem -143% -143% -95%
5 problems -104% -102% -80%
10 problems -106% -129% -180%
25 problems -77% -76% -229%
50 problems -84% -91% -203%

Table 25: Overview of performance per dispatching rule and agents, in comparison to the found lower
bound for 6 by 6 problems

For these tests the computational time found is comparable per agent, given in Table 26, and is
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about equal to that of the hyperparameter tuned agent. Hence it is concluded that the computational
time does not change when comparable job shop problems are solved.

# problems 1 5 10 25 50
CT (s) 6641 6113 5815 5503 5663

Table 26: Computational time per trained agent

At this point of the research, the issue mentioned in Chapter 6.2.2 has been found, and is taken
into account for comparing the results from the dispatching rules with the results found by the agent
for the ft06 problem. For consistency, the environment is not updated. To compare the agents created
with both the benchmark agent as well as the agent found with hyperparameter tuning, the agents and
dispatching rules are tested on solving the ft06 problem with an optimal makespan of 55. In Table 27
the results per dispatching rule as well as agent is given, with both the used environment as well as the
updated one. Looking at the used environment results, it is found that again only LRPT and MOR
outperform the created agents. Although these agents improve upon the benchmark agent, the agent
found by hyperparameter tuning as well as other standard methods outperform these agents. Next, the
updated environment shows that both the dispatching rules and generalized agents are able to improve
their performance due to the more efficient scheduling, resulting in comparable and sometimes better
performance than the dispatching rules. Although no real conclusion can be drawn from those results,
it might be possible to further improve general performance when hyperparameter tuning is done for
the new environment with improved scheduling efficiency.

Used environment Updated environment
action C % of lowest possible C C % of lowest possible C
SRPT 154 -180% 94 -71%
LRPT 74 -35% 67 -22%
SPT 109 -98% 83 -51%
LPT 129 -135% 79 -44%
LTPT 160 -191% 67 -22%
STPT 154 -180% 94 -71%
FIFO 152 -176% 71 -29%
LIFO 170 -209% 86 -56%
LOR 152 -176% 71 -29%
MOR 60 -9% 60 -9%
1 problem 92 -67% 68 -23%
5 problems 89 61% 68 -23%
10 problems 105 -91% 79 -43%
25 problems 119 -116% 69 -25%
50 problems 83 -51% 76 -38%

Table 27: Results of dispatching rules on ft06 problem in two different static environments

Concluding from these results, it can be said that although general performance can be improved
in this way, the actual specific problem solving does leave to be desired. Simple and fast dispatching
rules can outperform the created agents. However, as the scheduling of these agents was inefficient, it
might be possible to further improve general performance as found with deploying the trained agents
in a more efficient environment, by hyperparameter tuning for a new environment.

8.2.4 Transfer learning

As now the conclusion can be made that these agents can generalize problems to a certain point,
transfer learning is proposed to see how these agents can be retrained on a new specific problem, using
the ft06 problem to be able to compare results with the benchmark and hyperparameter tuned agents.
Here, the goal is to see how the agents can increase performance on the ft06 problem as well as the
found result by the hyperparameter tuned agent for this section.
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The tests are divided into three different parts. The first is deploying the agents instantly into
new training, without adjusting any parameters. Secondly, the experience buffer used for the training
is emptied, making sure the neural network is only updated with states, rewards and actions from
the specific problem that is being trained on. Finally, the experience buffer is emptied as well as the
hyperparameters defined by hyperparameter tuning are reset, as they can be changed for example by
optimization algorithms during training, or the decay of ϵ. With these three tests, it can be determined
in what way the learning behavior changes for the pre-trained agents with transfer learning. A more
detailed analysis on this transfer learning section is given in Appendix M.

Test one: instantly deploying agents

For this test, the agents are instantly deployed to retrain. Hence no parameters are changed and the
agent will also still update the neural network with old experiences as well as new ones found in the
experience replay buffer. As per Table 25 of Chapter 8.2.3, the agents trained on 5, 25 and 50 problems
are expected to give the best results based on the generalization capabilities, which are represented by
agent 2, 4 and 5. The statistical results of transfer learning are given in Table 28, where it is found
that each agent is able to find consistent results, although with different levels of performance. The
general knowledge gained by the agents ensured that they are able to further explore a single problem
and all are able to improve upon their performance in comparison to Table 27 in Chapter 8.2.3.

Agent Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
metric R C R C R C R C R C
UB 5.71 66 6.24 60 4.90 76 6.76 60 6.31 60
LB 5.71 66 6.24 60 4.90 76 6.76 60 6.31 60
Mean 5.71 66 6.24 60 4.90 76 6.76 60 6.315 60
Var 0 0 0 0 8.05E-31 0 3.22E-30 0 8.05E-31 0
StDev 0 0 0 0 8.97E-16 0 1.79E-15 0 8.97E-16 0

Table 28: Statistical results of 50 runs on ft06 from transfer learning agents

In Figure 26 the training graphs of agents 2, 4 and 5 are given, as these are the best performing
agents. Here it is found that although agent 4 looks less stable in terms of found rewards, it is able to
find the highest possible reward consistently as per this training. Also, little exploration is seen in all
graphs due to the epsilon already having been decayed and has not been reset.

Finally, the computational time of these agents are given in Table 29 where it is found that this
method actually increases the training time in this setup. As the settings currently are unknown, not
being able to determine them from MATLAB, no real conclusion can be drawn here other than the
increase in exploitation also increases computational time. Although this increase, it can be seen that
agent 2 becomes stable between 2000 and 3000 episodes, hence a decrease in episodes might be feasible.
This will be assessed after the other two tests are completed.

Agent 1 2 3 4 5
CT (s) 10162 9760 9402 8996 10267

Table 29: Computational time per trained agent with transfer learning
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(a) Learning behavior of agent 2 (5 problems)

(b) Learning behavior of agent 4 (25 problems)

(c) Learning behavior of agent 5 (50 problems)

Figure 26: Learning behavior of agents 2, 4 and 5 with transfer learning
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Test two: emptying experience buffer

As the experience buffer is used to train the neural network, adjusting the weights and biases, in this
test the experience buffer is emptied to ensure only learning of scenarios found in the new problem.
Here, unexpected results are found, comparing the previous results to the results found in Table 30.
Here it is seen that agents 2, 3 and 4 are able to improve upon their found reward, while the performance
of agents 1 and 5 are reduced. It could be said that the general knowledge gained from training on
5, 10 and 25 problems is enough to improve without changing any other hyperparameters, while the
specific knowledge of 1 problem as well as the general knowledge of 50 problems is not enough to learn
a good policy without adjusting any hyperparameters.

Agent Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
metric R C R C R C R C R C
UB 5.15 75 6.46 60 5.45 68 6.77 60 4.53 80
LB 5.15 75 6.46 60 5.45 68 6.77 60 4.53 80
Mean 5.15 75 6.46 60 5.45 68 6.77 60 4.53 80
Var 0 0 7.24E-30 0 0 0 3.22E-30 0 3.22E-30 0
StDev 0 0 2.69E-15 0 0 0 1.79E-15 0 1.79E-15 0

Table 30: Statistical results of 50 runs on ft06 from transfer learning agents with emptied experience
buffer

Looking at the change in learning behavior, training graphs for agents 2, 4 and 5 are given in
Figure 27. Here it is found that agents 2 and 4 shows quite comparable behavior to before, with agent
2 able to find a slight increase in reward. Agent 5 however shows real different behavior in the Q0 not
aligning and the found reward greatly reduced by 2 points.

Finally, computational time for each agent is given in Table 31. Here it is found that although
slightly lower, probably due to the memory management being less in need of resources, the change in
time is not significant.

Agent 1 2 3 4 5
CT (s) 9788 9277 9253 8408 9846

Table 31: Computational time per trained agent with transfer learning with emptied experience buffer

From this second test it is concluded that agents that are trained on 5 to 25 problems are able to
improve upon the gained knowledge, while an agent with 1 problem trained on might have too specific
knowledge and the agent with 50 problems might have too general knowledge for this method too be
applicable. Hence, the next test will assess the difference a pre-trained neural network makes when all
other variables and hyperparameters are reset.
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(a) Learning behavior of agent 2 (5 problems)

(b) Learning behavior of agent 4 (25 problems)

(c) Learning behavior of agent 5 (50 problems)

Figure 27: Learning behavior of agents 2, 4 and 5 with transfer learning and emptied experience buffer
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Test three: resetting all but the neural network

Finally, the agents hyperparameters are all reset and the experience buffer is emptied, while maintaining
knowledge gained by the neural network from pre-training. In Table 32 the statistical data shows
consistency in found results, and overall each agent is able to perform in comparable manner to each
other. However, the performance of agents 2 and 4 decrease with this method, while agents 1, 3 and
5 improve upon the earlier test.

Agent Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
metric R C R C R C R C R C
UB 6.57 59 6.35 60 6.50 61 6.60 60 6.56 61
LB 6.57 59 6.35 60 6.50 61 6.60 60 6.56 61
Mean 6.57 59 6.35 60 6.50 61 6.60 60 6.56 61
Var 0 0 3.22E-30 0 3.22E-30 0 0.00E+00 0 3.22E-30 0
StDev 0 0 1.79E-15 0 1.79E-15 0 0.00E+00 0 1.79E-15 0

Table 32: Statistical results of 50 runs on ft06 from transfer learning agents with cleared hyperparam-
eters and emptied experience buffer

The training graphs are given in Figure 36, where the agents 2, 4 and 5 are depicted again. Due
to the change in hyperparameters and the emptied experience buffer, the agents show quite similar
behavior. From this it can be concluded that quite similar results can be found when retraining with
only the neural network being different.

In Table 33 the computational time per agent is given. Again, a small reduction in computational
time is found, except for agent 1.

Agent 1 2 3 4 5
CT (s) 9837 8827 7484 7524 8694

Table 33: Computational time per trained agent with transfer learning, emptied experience buffer and
reset hyperparameters

From this third test, it can be concluded that resetting all values changes the behavior of transfer
learning to show behavior comparable to the hyperparameter tuned agent, which is to be expected.
From this it can be concluded that although not necessary, hyperparameter tuning for transfer learning
could possibly further improve the performance and learning behavior.
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(a) Learning behavior of agent 2 (5 problems)

(b) Learning behavior of agent 4 (25 problems)

(c) Learning behavior of agent 5 (50 problems)

Figure 28: Learning behavior of agents 2, 4 and 5 with transfer learning, emptied experience buffer
and reset hyperparameters
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Assessing computational time reduction

As determined in previous tests, the agent trained on 25 problems performs best in each test. Also, the
training result of test 2 shows the highest found reward. Based on the training graph from Figure 27b
it is found that at around 3000 episodes, the agent does not change its policy much. Hence, to assess if
this method can indeed lower the computational time, the agent will be retrained on 1000, 2000, 3000
and 4000 of episodes instead of 8000, to determine if the performance is equal while lowering episodes,
thus lowering computational time. In Figure 29 the training graph is shown, showing equal behavior
to the earlier found training behavior of this agent.

Figure 29: Shortened training graph with 4000 episodes of agent 4 of transfer learning with emptied
experience buffer

To compare each 1000 steps in terms of performance, this is represented in Table 34. Here it is
found that after 4000 episodes, the agent is able to perform the same as after 8000 episodes assessed
previously.

# episodes 1000 2000 3000 4000
metric R C R C R C R C
UL 5.92 66 5.24 80 5.93 64 6.77 60
LL 5.92 66 5.24 80 5.93 64 6.77 60

Mean 5.92 66 5.24 80 5.93 64 6.77 60
Var 3.22E-30 0 8.05E-31 0 0 0 3.22E-30 0
StD 1.79E-15 0 8.97E-16 0 0 0 1.79E-15 0

Table 34: Results of different number of episodes trained on for agent 4

To compare the computational time for each number of episodes, this is represented in Table 35.
Here it is found that with training on 4000 episodes, which increases performance, also reduces the
computational time necessary. Hence, transfer learning could be used as a tool to speed up training
time while also improving performance.

# Episodes 1000 2000 3000 4000
CT (s) 858 1774 2990 4530

Table 35: Computational time for agent 4 with different number of episodes

From the found results it is given that in general, transfer learning using a pre-trained agent on a
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new problem improves the performance of the agent on a new problem. However, comparing to the
hyperparameter tuned agent, only the agent trained on 25 problems is able to improve upon the found
rewards for the first two tests, while only slightly improving. Based on the fact that this agent showed
best generalization capabilities, this outcome seems logical.

Looking at computational time, transfer learning actually increases it. However, it is also shown
that the number of episodes can be reduced to further improve computational time. Hence, trans-
fer learning is a powerful tool in DRL to reduce computational time for problem solving as well as
improving performance.

8.2.5 Conclusion on second iteration

From these tests it is found that extensive hyperparameter tuning can be done in less time by only
using the first 1000 episodes, in this case, to be able to assess more hyperparameter combinations in
less or equal amount of time. The benchmark showed a decrease in performance when the input size
of the neural network was increased from 6 jobs and 6 machines (12 total) to 10 jobs and 20 machines
(30 total). This is to be expected, as the agent now needs to learn from more inputs, thus making the
learning process more complex. By hyperparameter tuning, the agent is able to find similar results to
the previous hyperparameter tuned agent, although showing an increase in computational time.

Secondly, the training on multiple problems showed promise in the fact that agents are able to
increase the generalization capability on multiple problems. However, using DQN, this method is not
able to compete with different scheduling methods. As discussed, this might be due to the inefficiency
of scheduling in the environment, and as shown the agents are able to be deployed in the efficient
scheduling environment and greatly improve. Hence, the conclusion can be made that the generaliza-
tion capability does improve and that with an efficient environment, the possibility might be there to
even outperform the best suited dispatching rules on these set of problems.

Finally, transfer learning was applied to pre-trained agents. Three different methods showed dif-
ferences in performance for each agent. Overall, the best performing agent was also the one which was
able to generalize the best in pre-training, which seems a logical outcome. Although the performance
of the hyperparameter tuned agent can be improved in finding better rewards with this method, the
computational time also increases. However, the computational time can be reduced by lowering the
number of episodes to train on, as the agent is able to complete the learning in less episodes, reducing
the computational time in comparison to the hyperparameter tuned agent.
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8.3 Third iteration: the dynamic job shops

To finally assess applicability on dynamic job shop environments, better comparable to real-world
environments, agents are created with different reward structures to accommodate for different needs
for a different environment. These rewards as proposed in Chapter 6.1.3 as well as in the Appendix
N are assessed to determine the best performing reward structure. After the rewards are chosen,
the hyperparameter tuning will be done. Equal to the static job shop scheduling problems, when
hyperparameters are defined, agents are trained on multiple problems to assess if the complexity
increases from static to dynamic, the agents can still increase overall performance on multiple problems
by training on more problems.

8.3.1 Reward structure testing and the benchmark

To assess the performance of the reward structures as well the benchmark, nine reward structures were
tested with different hyperparameters, as well as normalizing the rewards. This is further explained
in Appendix N. In Table ?? an overview is given of the results, where three different iterations were
done. First, the agents were trained with the reward structures. Secondly, the reward structures
are normalized, to give a reward signal between -1 and 1, by dividing the tardiness and slack by the
maximum amount found. Finally, some hyperparameters were adjusted, being the number of neurons
and layers to 256 and 3 respectively, as well as the learning rate to 1E-4 and the minimum epsilon to
1E-5. For the standard settings, refer to Chapter 12.

From the results, it was determined that reward structure 1, using the utilization rate only, similar
to static job shop scheduling, was the best performing. Hence, this structure is used for dynamic job
shop scheduling.

Another conclusion can be made from these results looking at reward structures 6 to 9, as these
agents focus on minimizing both slack and tardiness. Although maybe not possible to do both, the
agents are able to minimize the slack if the reward signal tells it to. Hence reward signals are a powerful
tool to change the objective for the agent, as shown.
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Reward structure Tavg Savg Uavg C R
First iteration

1 - Eq. 8 7.7 5.8 0.59 69 3.5
2 - Eq. 37 14.8 3.2 0.45 89 -269.0
3 - Eq. 38 10.3 6.2 0.57 85 -295.0
4 - Eq. 39 9.7 6.2 0.58 68 -247.5
5 - Eq. 40 9.7 6.2 0.58 68 -247.5
6 - Eq. 41 14.8 3.2 0.45 89 -302.0
7 - Eq. 42 6.5 5.5 0.63 63 -368.0
8 - Eq. 43 13.0 0.0 0.52 72 -293.9
9 - Eq. 44 14.8 3.2 0.45 89 -303.3

Normalized rewards
1 7.7 5.8 0.59 69 3.5
2 5.7 6.0 0.60 68 1.0
3 13.3 3.5 0.54 91 -1.4
4 11.2 4.8 0.59 71 3.9
5 9.8 5.3 0.54 84 3.5
6 9.8 1.3 0.51 77 -3.0
7 10.5 1.3 0.50 75 -2.7
8 4.0 3.2 0.55 78 -1.4
9 9.5 1.3 0.48 86 0.1
Normalized rewards and changed hyperparameters
1 4.0 3.8 0.61 61 3.7
2 5.7 6.0 0.60 68 2.1
3 7.7 5.8 0.59 69 1.7
4 5.7 6.0 0.60 68 5.6
5 9.7 5.7 0.61 66 5.9
6 10.5 1.3 0.50 75 -2.6
7 10.5 1.3 0.50 75 -2.6
8 7.3 1.8 0.59 68 0.2
9 7.3 1.8 0.59 68 0.2

Table 36: Results from each iteration with different reward structures

The training graph for the final iteration for the reward structure is given in Figure 30, showing
desired behavior already.
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Figure 30: Training graph of best found agent with reward focused on utilization rate

The chosen actions are given in Figure 31 showing that it already combines some of the actions
to find a feasible solution. Statistical results are given in Table ?? and the resulting Gantt chart is
depicted in Figure 32, showing the ability to combine actions to find a feasible solution.

R C Tavg Savg Uavg

UL 3.65 61 4 3.83 0.61
LL 3.65 61 4 3.83 0.61
mean 3.65 61 4 3.83 0.61
Var 8.05E-31 0 0 2.01E-31 0
StD 8.97E-16 0 0 4.49E-16 0

Table 37: Statistical results of benchmark agent
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Figure 31: Pie chart of taken actions of the benchmark agent

Figure 32: Gantt Chart of benchmark agent in dynamic environment
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8.3.2 Hyperparameter testing

For hyperparameter tuning, as some hyperparameters where changed in the previous section, the
range of is smaller than before. The gained knowledge of the hyperparameters should ensure faster
hyperparameter tuning. In this section, only two iterations of hyperparameter testing where needed,
each iteration given in Table 38. Further details of this section are in Appendix O.

It. α γ ϵinit ϵmin ϵdecay N L E
1 1e-4 1e-5 1e-6 0.75 0.99 0.75 1 1e-8 1e-7 1e-6 1e-4 1e-5 1e-6 64 128 256 1 to 5 8000
2 1e-4 1e-5 0.99 1 1e-6 1e-3 5e-4 1e-4 5e-5 128 256 3 to 5 8000

Table 38: Hyperparameter settings for each iteration per the second iteration test

For the hyperparameter tuned agent, the settings found are given in Table 39 and the resulting
training graph in Figure 33. From the learning behavior, as formulated in Chapter 7.6, it can be
assessed that the agent shows desired behavior. Based on the combination on its performance, depicted
in Table 40, as well as learning behavior this agent was chosen. From the performance it is found that
the reward is increased, decreasing the makespan, slack and tardiness altogether. Hence, the agent is
able perform up to a considerable level further improving upon the benchmark agent.

α γ ϵinit ϵmin ϵdecay N L
1E-05 0.99 1 1E-06 5E-05 256 5

Table 39: Hyperparameter settings for final chosen agent

Figure 33: Training graph of chosen agent from hyperparameter tuning
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R C Tavg Savg Uavg

UL 3.99 60 6.83 6 0.66
LL 3.99 60 6.83 6 0.66
mean 3.99 60 6.83 6 0.66
Var 1.81E-30 0 8.05E-31 0 5.03E-32
StD 1.35E-15 0 8.97E-16 0 2.24E-16

Table 40: Statistical results of chosen agent

The computational time came down to 8532 seconds, or 2 hours, 22 minutes and 12 seconds. Here,
the chosen actions are given in Figure 34, which again indicates learning better balancing of the given
actions.

Figure 34: Pie chart of chosen actions by the hyperparameter tuned agent for dynamic environment

Finally, the Gantt chart is given in Figure 35. Here it is found that in comparison to the benchmark
agent, a different feasible solution is found. As per the chosen actions, these are also quite different,
hence the change in scheduling.
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Figure 35: Gantt chart of chosen hyperparameter tuned agent for dynamic environment

8.3.3 Training on multiple problems

The training on multiple problems is done on the same problems of the previous 6 by 6 ones, changed
to fit in the dynamic environment. The results are given in Table 41. From these it is found that
for the dynamic environment, the generalization is less possible for these problem, as the dispatching
rules do not outperform the agents and there is no real better or worse solver. For similar problems
not trained on as well as with different time distribution of U[20, 99] the same solutions are found.
The exact results are given in Appendix P.

Problems trained on
C Uavg Savg Tavg

SRPT 77.16 0.53 6.2 5.1
LRPT 75.12 0.55 6.8 4.4
SPT 78.1 0.52 6.2 3.8
LPT 75.34 0.54 7.8 7.0
LTPT 75.34 0.54 7.8 7.0
STPT 78.1 0.52 6.2 3.8
FIFO 77.7 0.53 6.9 5.1
LIFO 74.56 0.55 6.6 6.1
LOR 76.96 0.53 6.0 4.3
MOR 78.38 0.53 8.1 6.0
agent 1 77.66 0.53 6.8 5.3
agent 2 76.9 0.53 7.0 5.1
agent 3 76.72 0.53 7.2 5.2
agent 4 77.02 0.53 7.0 5.8
agent 5 76.48 0.55 6.7 5.1

Table 41: Results of dispatching rules and agents of problems trained on

When comparing the agents to dispatching rules on the created dynamic variant of the ft06 problem,
better results are found given in Table 42. Here it is found that LRPT is able to solve the problem the
best of the dispatching rules. However, agent 4 (trained on 25 problems) is able to perform comparably,
giving a lower makespan, with higher slack but also higher tardiness. Hence, the agents are able to
solve some of the problems better than the dispatching rules, but generalization of the problems is less
possible. This is probably due to the real-time scheduling in the environment, giving less freedom of
choice as the first job is always the same one, thus the actions having less influence.
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Dynamic ft06
C Uavg Savg Tavg

SRPT 84 0.49 0.0 12.5
LRPT 63 0.63 5.5 6.5
SPT 86 0.48 1.3 9.8
LPT 68 0.58 6.2 9.7
LTPT 68 0.58 6.2 9.7
STPT 86 0.48 1.3 9.8
FIFO 93 0.45 3.2 13.0
LIFO 85 0.57 6.2 10.3
LOR 86 0.48 1.3 9.5
MOR 89 0.45 3.2 14.8
agent 1 76 0.59 6.2 10.0
agent 2 71 0.58 5.3 7.5
agent 3 71 0.58 5.3 7.5
agent 4 62 0.62 5.8 8.3
agent 5 68 0.60 3.2 5.8

Table 42: Results of dispatching rules and agents for dynamic ft06 problem

Finally, to compare learning behavior of these agents, the agents 1, 3 and 5 are chosen to show
differences in learning behavior. From this it can be concluded by the consistent Q0 estimates that
the dynamic environment shows less unpredictable behavior, when comparing to the training graphs
found for the static environment. This again confirms that the real-time scheduling for the dynamic
environment might reduce complexity instead of increasing it for the setup of the DQN and the
environment.

It can be concluded that the difference between the static and dynamic environment in terms of
both the efficiency in scheduling as well as simulating in real-time influences the solutions that can be
found. As the agent has to schedule in real-time, less influences can be made based on the actions at the
start of a job shop, as at time t = 0 there is only one job to choose, hence each action giving the same
result. Daily or weekly scheduling might be a better method to use for dynamic environments, giving
the agent the option to schedule all possible jobs immediately, creating more influence of scheduling
actions. Further details of the results found are described in Appendix P.

8.3.4 Conclusion on dynamic scheduling

It can be concluded here that different reward structures can lead into different results, as expected.
Hence, the possibility to adjust for specific needs of a company is there. The chosen reward structure
based on utilization rate showed the most promising result, probably due to being less complex and
better defined than using an expected tardiness and slack.

Finally, the generalization capabilities are less than for static job shop scheduling, which is most
likely due to the main difference in real-time scheduling versus all jobs at the same time. Hence, instead
of using real-time, a daily or weekly scheduling simulation might be better, while adding actions such
as the dispatching rule earliest due date (EDD), to accommodate for the dynamic nature. If these
adjustments are made, the generalization capabilities are likely to improve and also might be more
suitable for companies over real-time scheduling.
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(a) Learning behavior of agent 1 (1 problem)

(b) Learning behavior of agent 3 (10 problems)

(c) Learning behavior of agent 5 (50 problems)

Figure 36: Learning behavior of agents 1, 3 and 5 in dynamic environment
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8.4 Conclusion

To conclude the research done in this chapter, the static job shop environment shows that the first
setup, having the inputs based on the number of machines and jobs, does not work well when wanting
to solve problems with different dimensions. The computational time increases in a superlinear way,
thus showing the need for more consistency in the architecture of the neural network for using the
same hyperparameters.

For the second iteration of the static job shop tests, the neural networks architecture was made
consistent, of 10 jobs and 20 machines. After hyperparameter tuning again, the agents were trained on
multiple problems. Here it was found that although increasing the difference in training data increases
generalization capabilities, the dispatching rules were still able to outperform them. However, if the
environment is adjusted to more efficient scheduling, as proposed, the performance of the generalization
might also increase, thus improving the change of outperforming the dispatching rules.

Using these pre-trained agents, they were redeployed for transfer learning. Using different setups
it was found that transfer learning can indeed improve performance, as expected. Also, the episodes
necessary for training could be reduced, to reduce training time by about 2000 seconds for this specific
case, or 30%.

Finally, a dynamic environment was creating with real-time scheduling simulation. From this it
was concluded that the possibility is there to deploy agents for dynamic environments, outperforming
the dispatching rules when comparing the hyperparameter tuned agent to the dispatching rules results.
However, training on multiple problems showed that the generalization capabilities are less applicable,
as the difference in both dispatching rules as well as the agents are small. This is most likely due to
the real-time scheduling, constraining the agent into scheduling the first job on the first action at all
times, no matter what action is chosen. Hence, less freedom for the agent is created.
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9 Discussion

Throughout this research, various experiments were conducted to evaluate the performance of DRL-
based models in static and dynamic job shop scheduling scenarios. Several insights emerged regarding
the models’ adaptability and efficiency, but also some important limitations were identified.

For static job shop scheduling, different methods were found to be applicable. Although the scheduling
environment was not optimally defined for efficiency, the performance of the DRL agents was compa-
rable to traditional methods such as dispatching rules. It was noted that the performance of agents
could potentially improve if the environment was better defined for scheduling efficiency. In the context
of the efficient environment used in the study, the DRL model outperformed 7 out of 10 dispatching
rules. This suggests that with proper training in a well-defined environment, the performance of DRL
agents could be significantly enhanced.

Generalization capabilities of the DRL models showed improvement when agents were trained on
multiple problems. However, despite this improvement, the performance did not exceed that of dis-
patching rules. The specific environment used for training might have influenced these results. For
instance, when deployed in an efficient environment, DRL models demonstrated better performance,
indicating that tailored training environments can lead to better outcomes.

Transfer learning was found to be beneficial, reducing computational time by 30% for specific cases.
While pre-training is necessary, it can be conducted beforehand, allowing for reduced training time
and increased performance on the specific tasks at hand.

In dynamic scheduling environments, hyperparameter tuning was effective in improving performance.
Different reward structures were tested, with machine utilization rate-based rewards yielding the best
results for static job shop scheduling. However, generalization across multiple problems remained a
challenge. The agents’ performance was comparable to dispatching rules, with little variation likely
due to the real-time nature of dynamic scheduling. In this setting, where only a few jobs are available
at each time increment, the agents had less flexibility in job scheduling, limiting the impact of their
decisions. A more comprehensive approach, akin to static job shop scheduling where all jobs are con-
sidered simultaneously, might offer better results.

The computational demands of DRL models were found to be significant. DRL methods required
longer computational times compared to traditional methods like dispatching rules, without a sub-
stantial improvement in performance. Scalability remains an issue, as computational time increases
superlinearly with the size of the job shop. To address this, using multiple GPUs or other advanced
computational resources could help, though this introduces a trade-off between resource costs and
scheduling improvement. The research predominantly focused on 6x6 job shop problems due to com-
patibility with hyperparameters, which limits scalability to larger problems with more machines and
jobs.

In summary, while DRL models show potential, particularly when trained in well-defined environ-
ments, their practical application is constrained by high computational demands, sensitivity to hyper-
parameters, and scalability issues. These limitations must be addressed to fully realize the benefits of
DRL in job shop scheduling scenarios.
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10 Conclusion

The primary research question addressed in this thesis was: “How can machine learning be applied in
real-world dynamic job shops?” To answer this, several sub-questions were explored, given in Chapter
1.4. Firstly, we examined which machine learning methods are suitable for dynamic job shop schedul-
ing. Chapter 4.2 provided an overview of various methods including PPO, MARL, GNN, CNN, RNN,
LSTM, and DQN. It was determined that DQN was the most appropriate choice for this research due
to its balance between generalization capabilities and computational resource requirements, as well as
lower deployment complexity compared to methods like MARL and PPO.

The second question investigated how machine learning methods compare to traditional methods.
It was found that while some machine learning methods can outperform traditional ones in terms
of performance metrics, they often require significantly more time. For instance, DQN took between
one and two hours to achieve performance comparable to dispatching rules, which only require seconds.

The third question focused on the scalability of machine learning methods with increasing job shop
sizes. The research assessed neural network performance with varying job shop sizes and found that
performance was influenced by input size and hyperparameters. By fixing input sizes, the performance
was more transferable, and agents trained on specific problem sizes were able to solve other job shops
within those limits.

The fourth question examined the generalization capabilities of machine learning models to new, un-
seen job shop scenarios. Agents trained on multiple problems showed improved generalization, though
still not as effective as dispatching rules in dynamic environments. Generalization was better with
increased problem diversity but remained limited.

The final question explored the application of these methods to real-world problems. For compa-
nies with minimal AI experience, traditional methods may be more practical due to their simplicity
and effectiveness. For companies with moderate AI expertise, DQN could be deployed using transfer
learning, particularly for smaller job shops with fewer than 20 inputs. For companies with extensive
AI resources, exploring methods like MARL or PPO could yield better performance and efficiency.

In summary, while DQN shows promise, its practical application in real-world job shops is currently
limited by its computational demands and generalization issues. As AI technology evolves, its appli-
cation in job shop scheduling may become more viable.

10.1 Recommendations

Based on the research findings, it is advisable not to deploy machine learning solutions in real-world
environments at this stage, given that traditional methods offer comparable performance with signif-
icantly lower time and resource requirements. For future research, it is crucial to gather real-world
data to better understand the practical application of machine learning in job shops. Investigating
how job shops actually schedule jobs, manage operations, and handle due dates could provide valuable
insights. A larger and more representative dataset would allow for longer training periods, potentially
improving agent performance. Increasing the experience buffer could also enhance performance but
will require additional computational resources, which has not been thoroughly explored in this study.

The research also revealed that hyperparameter tuning and training are time-consuming. To ad-
dress this, increasing computational resources, such as using multiple laptops, PCs, or GPUs, would
accelerate hyperparameter tuning and training processes. This would provide a more comprehen-
sive understanding of machine learning applications in job shops. Lastly, exploring other advanced
methods, such as MARL and PPO, is recommended. These methods have demonstrated better perfor-
mance in static job shop scheduling scenarios according to the literature. If these methods can improve
generalization and problem-specific performance, they could make machine learning more feasible for
real-world applications.

Concluding, how can machine learning be deployed in real-world environments? This can be done
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in multiple ways as mentioned in this section before. However, at this point, it is recommended to
continue using traditional methods such as dispatching rules due to their ability to perform in a com-
parable manner while solving problems in a matter of seconds. As technology develops and further
knowledge is gained on deploying AI, the performance and practicality of machine learning methods
for job shop scheduling are likely to improve.

75



References

[1] Chris J. Maddison David Silver, Aja Huang et al. Mastering the game of go with deep neural
networks and tree search. Nature 2016 529:7587, 529:484–489, 1 2016.

[2] Christopher M. Bishop. Pattern recognition and machine learning. Pattern Recognition and
Machine Learning, 12 2006.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[4] Adam E. Duerr Silas Bergen, Manuela M. Huso et al. A review of supervised learning methods
for classifying animal behavioural states from environmental features. Methods in Ecology and
Evolution, 14:189–202, 1 2023.

[5] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving
jigsaw puzzles. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 9910:69 – 84, 1 2016.

[6] Babak Ehteshami Bejnordi Geert Litjens, Thijs Kooi et al. A survey on deep learning in medical
image analysis. Medical Image Analysis, 42:60 – 88, 12 2017.

[7] Wojciech M. Czarnecki Oriol Vinyals, Igor Babuschkin et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575:350 – 354, 11 2019.

[8] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018.

[9] Jiangliang Jin and Yunjian Xu. Optimal differentiated threshold characterization for multi-task
stochastic deadline scheduling with queuing. Automatica, 163:111545, 5 2024.

[10] Rugang Tang, Xin Ning, Zheng Wang, Jiaqi Fan, and Shichao Ma. Dynamic scheduling for
multi-level air defense with contingency situations based on human-intelligence collaboration.
Engineering Applications of Artificial Intelligence, 132:107893, 6 2024.

[11] Yu Hung Chang, Chien Hung Liu, and Shingchern D. You. Scheduling for the flexible job-shop
problem with a dynamic number of machines using deep reinforcement learning. Information
(Switzerland), 15:82, 2 2024.

[12] Xin Hao, Phee Lep Yeoh, Changyang She, Branka Vucetic, and Yonghui Li. Secure deep rein-
forcement learning for dynamic resource allocation in wireless mec networks. IEEE Transactions
on Communications, 72:1414 – 1427, 3 2024.

[13] Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job shop
scheduling. https://doi.org/10.1287/mnsc.34.3.391, 34:391–401, 3 1988.

[14] Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. Benchmarks for shop scheduling problems.
European Journal of Operational Research, 109:137–141, 8 1998.

[15] H. Fisher and G.L. Thompson. Probabilistic learning combinations of local job-shop scheduling
rules. Prentice-Hall, Englewood Cliffs, 225-251. Scientific Research Publishing, 1963.

[16] Lawrence S. Resouce constrained project scheduling : an experimental investigation of heuristic
scheduling techniques (supplement). Graduate School of Industrial Administration, Carnegie-
Mellon University, 1984.

[17] David Applegate and William Cook. A computational study of the job-shop scheduling problem.
https://doi.org/10.1287/ijoc.3.2.149, 3:149–156, 5 1991.

[18] Robert H. Storer, S. David Wu, and Renzo Vaccari. New search spaces for sequencing problems
with application to job shop scheduling. https://doi.org/10.1287/mnsc.38.10.1495, 38:1495–1509,
10 1992.

76

http://www.deeplearningbook.org
http://www.deeplearningbook.org


[19] E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research,
64:278–285, 1 1993.

[20] Takeshi Yamada and Ryohei Nakano. A genetic algorithm applicable to large-scale job-shop
problems. Parallel Problem Solving from Nature, 2:283–292, 01 1992.

[21] Michael L. Pinedo. Scheduling: Theory, algorithms, and systems, sixth edition. Scheduling:
Theory, Algorithms, and Systems, Sixth Edition, pages 1–698, 1 2022.

[22] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey.
https://doi.org/10.1287/opre.14.4.699, 14:699–719, 8 1966.

[23] Christian Artigues and Dominique Feillet. A branch and bound method for the job-shop problem
with sequence-dependent setup times. Annals of Operations Research, 159:135 – 159, 3 2008.

[24] Mitsuru Kuroda and Zeng Wang. Fuzzy job shop scheduling. International Journal of Production
Economics, 44:45 – 51, 6 1996.

[25] Peter Brucker, Bernd Jurisch, and Bernd Sievers. A branch and bound algorithm for the job-shop
scheduling problem. Discrete Applied Mathematics, 49:107 – 127, 3 1994.

[26] Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. A branch and bound algorithm for
scheduling trains in a railway network. European Journal of Operational Research, 183:643 – 657,
12 2007.

[27] George Nemhauser and Laurence Wolsey. Integer and combinatorial optimization. Integer and
Combinatorial Optimization, pages 1–766, 1 2014.

[28] Dinh Nguyen Pham and Andreas Klinkert. Surgical case scheduling as a generalized job shop
scheduling problem. European Journal of Operational Research, 185:1011 – 1025, 3 2008.
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A Usage of AI tools

As per the document ”Use of AI in Education at the University of Twente” by the University Twente,
the following statement about the usage of AI tools is made: During the preparation of this work the
author used ChatGPT and DeepL in order to improve readability and language of the work. After using
this tool/service, the author reviewed and edited the content as needed and takes full responsibility
for the content of the work.
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B Further explained concepts of deep- and reinforcement learn-
ing

In this Appendix section, some concepts of deep learning and reinforcement learning are further elab-
orated in. This is done to ensure that more information on certain concepts is available.

B.1 Activation functions

There are a couple of common activation functions. First, Sigmoid is a function that squashes the
input to a value between 0 and 1, making it suitable for binary classification tasks, where outputs
need to be between [0, 1]. The function is shown in Eq. 9, where x represents the weighted sum given
in Eq. ??. It introduces non-linearity and smooth gradients but suffers from the vanishing gradient
problem for extreme values of x. This vanishing gradient problem could hinder the learning process of
the neural network.

σ(x) =
1

1 + e−x
(9)

Secondly, Hyperbolic Tangent (tanh) transforms the input x to a value between -1 and 1, centered
at 0, depicted in Eq. 10. It has similarity to the sigmoid function, while providing stronger gradients
making it more effective in training deep neural networks.

Tanh(x) =
ex − e−x

ex + e−x
(10)

Next, Rectified Linear Unit, or ReLU, sets all negative values to zero, while leaving positive values
unchanged, as shown in Eq. 11. ReLU is computationally efficient and helps counter the vanishing
gradient problem, which leads to faster convergence during training.

ReLU(x) = max(0, x) (11)

To counter for a common issue with ReLU, called ”dying ReLU”, various other ReLU functions
have been developed, such as Leaky ReLU. Leaky ReLU allows a small gradient for negative values of
the input, as shown in Eq. 12, where the parameter α controls the slope of the negative part. This
addresses the ”dying ReLU” problem, which occurs when a neuron always outputs a negative value,
making it effectively a ”dead” neuron.

Leaky ReLU(x) =

{
x if x > 0

αx otherwise
(12)

Finally, softmax is often used. The softmax function is commonly used in the output layer of neural
networks for multi-class classification tasks. It converts raw scores into probabilities, as shown in Eq.
13, which ensures that the sum of the output probabilities adds up to 1, which makes it suitable for
multi-class classification.

Softmax(xi) =
exi∑n
j=1 e

xj
(13)

B.2 Common loss functions

Common loss functions include Mean Squared Error (MSE) used for regression tasks and Cross-Entropy
Loss for classification tasks. MSE measures the average squared between predicted and actual values,
given in Eq. 14 where n is the number of samples, yi is the actual target value and ŷi is the predicted
value.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (14)

The Cross-Entropy Loss measures the difference between predicted probability distribution and the
actual distribution, the Binary Cross-Entropy Loss equation is given in Eq. 15, where n is the number
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of samples, yi is the actual binary label (0 or 1) and ŷi is the predicted probability for the positive
class. In some cases, custom loss functions are used, tailored to specific objectives.

Binary Cross-Entropy Loss = − 1

n

n∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (15)

B.3 Optimization algorithms

In this subsection optimization algorithms are elaborated on.
SDG updates the model parameters in the opposite direction of the gradient of the loss function,

in relation to the parameters. SDG is computationally efficient, although it may suffer from slow
convergence and oscillations in the loss landscape. The mathematical equation is given in Eq. 16,
where θt is the parameter vector at time step t, η is the learning rate and ∇J(θt) is the gradient of
the loss function with respect to the parameters.

θt+1 = θt − η∇J(θt) (16)

Adam combines the benefits of adaptive learning rates and momentum to accelerate convergence
and handle sparse gradients effectively. At the start of the training process, Adam initializes the
parameters (θ), the time step (t = 0) and the first (m = 0) and second (v = 0) moment variables,
setting the stage for the subsequent updates and computations during the optimization process. For
each time step t in training, the first moment estimation (m) and second moment estimation (v) are
computed. The first moment estimation is calculated by Eq. 17 where β1 is the exponential decay
rate for the first moment estimate (mt+1) and ∇J(θt) is the gradient of the loss function in relation
with the parameters at time step t. The second moment estimate (vt+1) is given in Eq. 18, where
β2 is the exponential decay rate for the second moment estimate and (∇J(θt))

2 represents element-
wise squaring of the gradient. Thus, the first moment estimate represent the exponentially decaying
average of past gradients, including the momentum into the optimization process. The second moment
estimate computes the exponentially decaying average of the squared gradients, providing information
about the variance of the gradients.

mt+1 = β1mt + (1− β1)∇J(θt) (17)

vt+1 = β2vt + (1− β2)(∇J(θt))
2 (18)

After computing these values, Adam applies a bias correction to both the first and second moment
estimates, to adjust for the initialization bias at the start of training. These help in making the moment
estimates more accurate and reliable as the training progresses. m̂t+1 represents the first moment with
bias correction and v̂t+1 the second moment with bias correction. Eq. 19 shows the first moment
correction and Eq. 20 the second moment correction.

m̂t+1 =
mt+1

1− βt+1
1

(19)

v̂t+1 =
vt+1

1− βt+1
2

(20)

Finally, the parameters are updated, shown in Eq. 21. Here, η is the learning rate and ϵ represents a
small constant to prevent division by zero. The bias-corrected first and second moment estimates are
used by Adam, to update the model parameters (θ) at each time step. The update rule adjusts the
parameters based on the adaptive learning rate, scaled by the ratio of the first moment estimate to
the square root of the second estimate. The learning rate controls the size of the parameter updates,
ensuring that the optimization process converges effectively.

θt+1 = θt − η
m̂t+1√
v̂t+1 + ϵ

(21)

RMSprop (Root Mean Square Propagation) is an optimization algorithm widely used in the
training of deep neural networks. RMSprop is designed to adapt the learning rate for each parameter
individually, based on the magnitude of the recent gradients, improving efficiency and stability of
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the training process. RMSprop computes the exponentially weighted moving average of the squared
gradients at each time step, given in Eq. 22, where r is the accumulated squared gradient, ρ is the
decay rate, ∇θ represents the gradient of the parameters (the same as ∇J(θt of Eq. 17) and ⊙ denotes
element-wise multiplication.

r = ρr + (1− ρ)∇θ ⊙∇θ (22)

Next, the velocity update is calculated. The velocity update combines the gradient of parameters with
the normalized accumulated squared gradient to adjust the step size of the parameter updates during
optimization. This is given in Eq. 23, where v is the velocity update, α is the global learning rate,
and ϵ is a small constant to prevent division by zero. The term

√
r + ϵ normalizes the gradient by the

root mean square of the accumulated squared gradients.

v =
α√
r + ϵ

∇θ (23)

Finally, the algorithm updates the parameters with the velocity update, shown by Eq. 24.

θ = θ − v (24)

B.4 Regularization techniques

In this appendix, we provide a detailed explanation of several regularization techniques used in neural
networks. These techniques are designed to improve the generalization ability of the model by adding
constraints or modifications during training.

L1 Regularization

L1 Regularization, also known as Lasso (Least Absolute Shrinkage and Selection Operator) regular-
ization, encourages sparsity in the weight matrix. It adds a penalty proportional to the absolute value
of the weights to the loss function. The regularization term is given by:

L1 Regularization = λ
∑
i

|wi| (25)

where λ is the regularization parameter that controls the strength of the penalty, and wi represents
each weight in the model. L1 regularization tends to drive some weights to exactly zero, which can
simplify the model and help with feature selection.

L2 Regularization

L2 Regularization, also known as Ridge regularization, adds a penalty proportional to the square of
the weights. This technique discourages large weights by including a term in the loss function that is
proportional to the sum of the squared weights:

L2 Regularization = λ
∑
i

w2
i (26)

where λ is the regularization parameter, and wi represents each weight in the network. L2 regu-
larization helps in smoothing the learned function and prevents overfitting by shrinking the weights
towards zero, though not exactly zero as in L1 regularization.

Dropout

Dropout is a regularization method that helps prevent overfitting by randomly dropping a fraction p of
the neurons during each training iteration. This means that during each forward pass, a proportion of
neurons are ignored (i.e., their activations are set to zero). The dropout rate p is typically set between
0.2 and 0.5. The dropout mechanism is applied as follows:

Dropout Rate = p (27)
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During training, each neuron is kept with a probability of 1 − p and dropped with probability p.
During testing, dropout is not applied, and the weights are scaled by the dropout rate to maintain the
expected activation values.

Batch Normalization

Batch Normalization normalizes the inputs to each layer to have zero mean and unit variance. This
technique accelerates training and improves model stability. The normalized output of a layer is given
by:

BN(x) = γ
x− µ

σ
+ β (28)

where x is the input to the layer, µ is the mean of the batch, σ is the standard deviation of the
batch, and γ and β are learnable parameters that allow the network to scale and shift the normalized
output. This normalization helps reduce internal covariate shift and makes the network less sensitive
to the initial weights.

By incorporating these regularization techniques, neural networks become more robust and better
at generalizing to new, unseen data, thus improving their performance and reducing overfitting.

B.5 Algorithms in reinforcement learning

Different algorithms are deployed for RL to learn optimal policies or value functions. Dynamic pro-
gramming (DP) uses a pre-defined model of the environment to identify the optimal policy through
iterative methods such as value iteration or policy iteration. DP works well with small discrete state
and action spaces but is computationally expensive and requires a model of the environment.

Monte Carlo methods use value functions to learn from sample episodes without needing a model of
the environment. The estimated value functions are based on average returns observed from multiple
episodes. Monte Carlo methods are model-free and suitable for episodic tasks. However, they may
require a large number of episodes to converge.

Temporal-Difference (TD) learning is a model-free method that updates value estimates based
on observed transitions. TD combines ideas from DP and Monte Carlo methods by using bootstrap-
ping—updating the value estimate for a state based on an estimate of the value of future state(s). This
makes TD suitable for real-time learning. An example of TD is Q-learning, which learns the action-
value (Q-value) directly from experience. The Q-values are iteratively updated based on observed
transitions. Q-learning learns a value function using a policy different from the one being improved.
The Q-learning update equation is a form of the Bellman equation, as given in Eq. 29. Here, Q(s, a)
represents the action-value function, Rt+1 is the immediate reward received after taking action a in
state s, γ is the discount factor, α is the learning rate, s′ represents the next state after taking action
a and maxa′ Q(s′, a′) represents the maximum Q-value among all possible actions in state s′.

Q(s, a)← Q(s, a) + α
[
Rt+1 + γ max

a′
Q(s′, a′)−Q(s, a)

]
(29)
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C Comparison of heuristic methods

In Table 43 a comparison is made between different heuristics methods, in terms of found makespan
(C) in time units and computational time (t) in seconds per instance. The size of an instance is in
jobs x machines.

Paper [47] [45] [48] [60]
Method GA GA SA ACO

Instance size C t C t C t C t
ft06 6x6 55 13 55 52 55 3,25
ft10 10x10 930 292 936 135 1006 5945 930 14,5
ft20 20x5 1165 204 1181 147 1319 6841 1165 25
La01 10x5 666 37 666 6 666 1,45
La02 10x5 655 51 655 24
La03 10x5 597 39 606 129
La04 10x5 590 42 590 121
La05 10x5 593 32 593 5
La06 15x5 926 99 926 16 926 1,1
La07 15x5 890 86 890 66
La08 15x5 863 99 863 16
La09 15x5 951 94 951 13
La10 15x5 958 91 958 14
La11 20x5 1222 197 1222 32
La12 20x5 1039 201 1039 34 1043 2,24
La13 20x5 1150 189 1150 32
La14 20x5 1292 187 1292 27
La15 20x5 1207 187 1207 34
La16 10x10 945 232 956 686 947 2,4
La17 10x10 784 216 784 112
La18 10x10 848 219 861 112
La19 10x10 842 235 848 830
La20 10x10 902 235 902 667
La21 15x10 1046 602 1063 1991
La22 15x10 927 629 938 2163 927 5,98
La23 15x10 1032 594 1032 275
La24 15x10 935 578 952 2098
La25 15x10 977 609 992 2133
La26 20x10 1218 1388 1232 492 1218 4342 1218 1045
La27 20x10 1235 1251 1269 502 1269 4535
La28 20x10 1216 1267 1256 495 1224 4354
La29 20x10 1157 1350 1233 501 1203 581
La30 20x10 1355 1260 1355 499 1355 3956
La31 30x10 1784 3745 1784 1517
La32 30x10 1850 3741 1850 1752
La33 30x10 1719 3637 1719 1880
La34 30x10 1721 3615 1721 1886
La35 30x10 1888 3716 1888 434
La36 15x15 1268 1826 1297 573 1293 5346
La37 15x15 1397 1860 1447 578 1433 5287
La38 15x15 1196 1859 1251 570 1215 5480
La39 15x15 1233 1869 1251 567 1248 5766
La40 15x15 1222 2185 1252 555 1234 5573

Table 43: Comparison of heuristic methods on instances

VI





D Generating job shop scheduling problems

In this chapter, the method of generating job shop scheduling problems is described. First, static job
shop scheduling problem generation is explained, based on Taillard [19]. Next, the adjustment of these
problems is explained to create dynamic job shop scheduling problems based on the usage of static job
shop problems.

D.1 Generating static problems

Generating static job shop scheduling problems can be done with a simple algorithm, given in Algorithm
3. Here, N is the number of problems to create, J the total number of jobs, M the total number of
machines, tl the lowest possible processing time, tu the highest possible processing time and S the
seed number. The processing time is determined with a uniform distribution, as per Taillard [19].
Algorithm 3 uses inputs that describe the job shop in terms of number of jobs, machines and the
range for the processing times for the operations. With this job shop data, the algorithm creates two
distinct matrices, one storing information on the machine order to go through for each job, and the
other one to store the corresponding processing times, together becoming the set of operations. Next,
the algorithm runs through each job, using a random permutation to create an order of machines, after
which the algorithm adds a processing time per machine. Afterwards, these matrices are combined to
create a job shop scheduling problem similar to Figure 4 in Chapter 3.1. From line 15 onward, the
processing time for each job as well as each machine are calculated, to determine the lowest possible
makespan for the created job shop scheduling problem, also given in Eq. 30. When the algorithm is
completed, using a seed (usually 0) for the random number generator (RNG) to ensure the problems
are reproducible, the algorithm has created N number of job shop scheduling problems.

Algorithm 3 Data Generation for Generalization Testing

1: Inputs: (N, J,M, tl, tu, S)
2: Set random number generator seed to S
3: Instances← []
4: for n = 1 to N do
5: Initialize matrices
6: MachineOrder[J,M ], P rocessingT imes[J,M ]← empty matrices
7: for j = 1 to J do
8: MachineOrder[j]← random permutation of M
9: for m = 1 to M do

10: ProcessingT imes[j,m]← random processing time between tl and tu
11: end for
12: end for
13: Combine machine order and processing times into Matrix
14: Matrix← combine(MachineOrder, ProcessingT imes)
15: Calculate job and machine processing times
16: jobProcessingT imes[J ],machineProcessingT imes[M ]← [], []
17: for j = 1 to J do
18: jobProcessingT imes[j]← sum of processing times for job j in Matrix
19: end for
20: for m = 1 to M do
21: ProcessingT imesOnMachine← find all occurrences of machine m in Matrix
22: machineProcessingT imes[m]← sum of ProcessingT imesOnMachine
23: end for
24: Compute lower bound (LB)
25: LB ← max(max(jobProcessingT imes), max(machineProcessingT imes))
26: Store Matrix and LB for current instance
27: Instances.append((Matrix, LB))
28: end for
29: return Instances
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To calculate the lower bound of the makespan found per problem, Eq. 30 is given. Here, d[i, j] is
the processing time for operation i of job j, n is the number of jobs, m is the number of machines,∑m

i=1 d[i, j] is the total processing time required by job j and
∑n

j=1 d[i, j] is the total processing time
required on machine i.

LB = max

max
j

(
m∑
i=1

d[i, j]

)
,max

i

 n∑
j=1

d[i, j]

 (30)

With Algorithm 3 problems can be created and defined to train and test the agents on, with the
ability to compare the performance with the help of Eq. 30. Lastly, Taillard uses Tabu Search to find
solutions and assess the complexity of the generated problems. However, for this study no Tabu search
will be used after generating these problems.

D.2 Creating dynamic problems from static JSSP

To transition from static JSSP to dynamic JSSP, arrival times, due dates and priority values are
defined. After these are defined, pseudo-code is given to describe the generation process in Algorithm
4. Here, no lower bound will be calculated and no minimal slack and tardiness are determined.

D.2.1 Generating arrival times

In dynamic job shop scheduling, arrival times are generated using an arrival rate λ, representing the
average number of jobs arriving per time unit. An arrival rate λ = 0.3 indicates a probability of 30
percent for a job arriving at each time unit. Based on the size and capacity of the job shop, λ should
be adjusted to prevent overloading the system and ensure solvable job shop scheduling problems.

D.2.2 Assigning priority values

The priority values are defined as weights. The weights are given in a distribution of 1 to 3, where the
distribution changes dependent on the definition of the job shop. A weight of 1 means a high priority,
while a weight of 3 means a low priority. These are thus used to adjust the due dates. These could
also be used for actions defined for choosing jobs with the highest priority.

D.2.3 Defining due dates

Due dates defined in job shop scheduling can be done with the use of the arrival time of the job and
the total processing time for the job to finish production. Pinedo [21] uses disjunctive graphs and with
that, taking the longest route for each job, subtracting the total processing time and adding a value
called the slack time. The slack time is a variable used to give the job more slack, which is before the
due date that the job is finished. Pinedo uses a slack time of 24 with small job shops. This value is
very dependent on both the processing times in the job shop as well as the size of the job shop. Having
a high slack time in comparison to the processing times results in having no tardiness, while having
a relatively low slack time results in not being able to process any jobs without tardiness. As in this
research no disjunctive graph is used, the method to determine the due dates is based on using slack
time, with an equations for the shortest route a job can take as well as its priority.

The priority values, or weights, are used to determine a different due date per priority. The weight
is determined with a range of 1 to 3. Here, 1 is the highest priority and 3 the lowest. Hence, for the
dynamic job shop scheduling problems, the due date is determined by Eq. 31. Here, dj is the due date
of the job j, n is the number of operations, i the value for the operation,ta the arrival time, ts the
slack time and wj the weight. The weight is divided by 2 to accommodate for the priority, increasing
the due date for low priority and decreasing the due date for high priority.

dj = ta +

n∑
i=1

pi,j + ts
wj

2
(31)
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D.2.4 Algorithm for generating dynamic problems

In Algorithm 4 the method on how dynamic job shop problems are generated is given. Here, the inputs
are the static job shop scheduling problem, for example the problem ft06, where for each job an arrival
time, due date and weight is added, in that order, to the static job shop problem to make it a dynamic
job shop scheduling problem. Again, RNG is used to ensure the problems can be reproduced.

Algorithm 4 Transform Static Job Shop Scheduling to Dynamic Job Shop Scheduling

1: Inputs: (StaticData,ArrivalRate, SlackT ime, S)
2: Set random number generator seed S
3: DynamicData← empty matrix
4: for each Instance in StaticData do
5: ArrivalT ime← 0
6: for each Job in Instance do
7: if Job is the first job then
8: ArrivalT imeJob← ArrivalT ime
9: else

10: ArrivalT imeFound← false
11: while not ArrivalT imeFound do
12: RandomNumber ← generate random number between 0 and 1
13: if RandomNumber ≤ ArrivalRate then
14: ArrivalT imeJob← ArrivalT ime
15: ArrivalT imeFound← true
16: end if
17: Increment ArrivalT ime by 1
18: end while
19: end if
20: WeightFound← false
21: while not WeightFound do
22: RandomNumber ← generate random number between 0 and 1
23: ChangeOfNextWeight← find change of next weight
24: if RandomNumber ≤ ChangeOfNextWeight then
25: Determine and add weight for the Job
26: WeightFound← true
27: end if
28: end while
29: Calculate due date based on Equation 31
30: DueDate← calculate due date using SlackT ime and other parameters
31: Update Job with computed arrival time, weight, and due date
32: Job.update(ArrivalT imeJob, Weight, DueDate)
33: end for
34: Save transformed dynamic job shop problem instance
35: DynamicData.append(Instance)
36: end for
37: return DynamicData

In this chapter detailed methodologies for generating both static and dynamic job shop scheduling
problems have been proposed.The algorithms for creating these problems have been discussed and
highlighted the considerations necessary for ensuring consistency between static and dynamic setups.
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E Requirements and considerations for machine learning method
choice

E.1 Requirements for the model

A set of requirements is created, which are used to determine what the needs are and what methods
can be applied to meet these requirements. The set of requirements are:

1. The technique has the capability to address and solve a diverse range of job shop scheduling
problems, ensuring flexibility and adaptability across various scenarios within a defined range of
machines, jobs, and processing times, representing general data of a single job shop.

2. The model should be applicable to both static and dynamic job shop environments, separately.

3. The technique should be relatively straightforward to deploy within custom environments, min-
imizing the need for specialized expertise.

4. The computational time required to solve the scheduling problems should be minimized to ensure
timely solutions in real-world manufacturing contexts. This is crucial for maintaining operational
efficiency and responsiveness in dynamic environments.

5. The method should possess the capability to learn (near-)optimal scheduling policies without re-
quiring predefined solutions. This includes the ability to adapt and improve performance through
interactions with the scheduling environment, leveraging reinforcement learning principles to re-
fine decision-making over time.

Given these requirements, the goal is to create a model that is able to solve multiple job shop
scheduling problems, even without explicitly being trained on a certain problem, within a reasonable
time frame. Hence, the created model needs to be able to understand patterns from data, instead of
plainly learning steps that lead to a good solution for a specific problem without being a complex and
time-consuming method.

E.2 Possible RL and DL methods for the model

Different RL and DL methods are considered for the model, varying in complexity, generalization ca-
pabilities, and computational resources required. The complexity of these methods is influenced by the
sophistication of their algorithms, learning challenges, data requirements, and the balance of trade-offs
(e.g., exploration vs. exploitation in RL, depth vs. computational cost in DL). Generalization capabil-
ities depend on the algorithms, network architectures, and regularization techniques. Computational
resource needs are dictated by model complexity, data volume, and training efficiency, often requiring
advanced hardware. Based on these characteristics, the methods will be judged.

Proximal Policy Optimization is a policy gradient method for reinforcement learning. It simplifies
the process of training stable policies by performing multiple updates on a single set of data, maintain-
ing a balance between exploration and exploitation. The complexity of PPO is high due to the intricate
optimization steps involved. This complexity allows PPO to generalize well across various tasks, as it
can learn robust policies. However, these benefits come with moderate to high computational demands,
owing to the iterative nature of policy updates and the need for extensive data processing.

Multi-Agent Reinforcement Learning extends traditional RL to environments with multiple inter-
acting agents. Each agent learns to optimize its own policy while coordinating with others, which
significantly increases the overall complexity. The coordination and synchronization of multiple agents
require sophisticated algorithms and substantial computational resources, leading to very high com-
putational time. MARL excels in generalization, as it can adapt to a wide range of tasks involving
multiple agents, making it suitable for complex, dynamic environments.

Graph Neural Networks are designed to process graph-structured data, making them highly ef-
fective in applications where relationships between entities are crucial. The complexity of GNNs is
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high because they involve operations on nodes and edges of graphs, requiring advanced computa-
tional techniques. GNNs exhibit excellent generalization capabilities due to their ability to capture
the dependencies and structures within data. However, this comes at the cost of moderate to high
computational time, as processing graphs can be resource-intensive.

Convolutional Neural Networks are widely used for image and video processing tasks. They utilize
convolutional layers to detect patterns and features in data, making them moderately complex com-
pared to other DL methods. CNNs offer moderate generalization, performing well in visual recognition
tasks but less so in others. The computational time for CNNs is moderate, as the convolution opera-
tions are relatively efficient, but deeper networks can increase computational requirements.

RNNs and LSTMs are specialized for sequential data, such as time series or natural language
processing. They maintain internal states that capture temporal dependencies, which increases their
complexity. Both RNNs and LSTMs provide good generalization in tasks involving sequences but
require high computational resources due to their sequential nature and the need to process long se-
quences of data.

Deep Q-learning Neural Network combines Q-learning with deep neural networks to approximate
value functions. This approach balances the simplicity of Q-learning with the powerful function ap-
proximation capabilities of neural networks, resulting in moderate complexity. DQN generalizes well
across different environments by learning policies that can be transferred to similar tasks. The com-
putational time for DQN is moderate, as it involves training neural networks, but it is more efficient
than methods like PPO or MARL.

Method Complexity Generalization Computational Time
PPO [82] High Good Moderate to High

MARL [83] Very High Excellent Very High
GNN [84] High Excellent Moderate to High
CNN [85] Moderate Moderate Moderate

RNN & LSTM [86] High Good High
DQN [40] Moderate Good Moderate

Table 44: Comparison of different possible DL and RL methods

Based on the findings shown in Table 44, CNN and DQN appear to be the best in terms of
complexity and computational time, which are required to be as low as possible. However, CNN
performs worse in tasks other than visual recognition tasks. Hence, DQN is chosen as the method for
the model.
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F Activation functions for DQN

To choose the activation layer, the initialization of the fully connected layers needs to be understood.
The weights of the layers are initialized by a Gaussian distribution, given in Eq. 32, where x is the
variable, µ is the mean, σ is the standard deviation, exp denotes the exponential function and π is the
constant pi. At initialization, the mean µ is zero. The standard deviation σ can be arbitrary, chosen
based on empirical evidence or network requirements.

f(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(32)

In Table 45 a list of possible activation functions that are well suited for the DQN to solve JSSP
is given. This is used to base the choice of activation layer on.

Activation Function Properties
Sigmoid Output range: (0, 1)

Smooth gradient
Suitable for binary classification
Suffers from vanishing gradient problem

tanh Output range: (−1, 1)
Stronger gradients than sigmoid
Effective in training deep neural networks

ReLU Output range: [0,∞)
Computationally efficient
Addresses vanishing gradient problem

Softmax Converts raw scores into probabilities
Suitable for multi-class classification
Ensures sum of output probabilities adds up to 1

Table 45: Common Activation Functions and Their Properties

In the context of the JSSP using DQN, the choice of activation function is best to be ReLU. ReLU
shows the highest computational efficiency, compared to tanh and sigmoid. Hence, it is suitable for
training neural networks efficiently, crucial for both RL dealing with complex networks as well as for
the goal to balance the computational time and performance for the model.

ReLU helps address the vanishing gradient problem by avoiding saturation in the positive range,
occurring in sigmoid and tanh. Therefore, faster convergence is possible during training, beneficial
for the stability and effectiveness of the DQN. Finally, ReLU sets all negative values to zero, which
leads to sparse activations. The sparsity can help in learning more robust and efficient representa-
tions, especially for high-dimensional input spaces, encountered in JSSP. Leaky ReLU is also a good
alternative, addressing the ”dying ReLU” problem by allowing small gradients for negative inputs.
However, traditional ReLU performs well in many cases and is simpler to implement. Hence, ReLU is
best fitting for the specific problem and method.

F.1 Solving Dying ReLU problem

The ”dying ReLU” problem in neural networks occurs when a significant number of ReLU neurons
become inactive, by constantly outputting a value of zero during training. As ReLU outputs a value
between zero for negative values, this occurs when the weighted input to a ReLU neuron is negative.
This leads to zero gradients which ”kills” the neurons, no longer contributing to the learning process.
This can degrade the performance of the network, especially in deep architectures.

To accommodate for the dying ReLU problem, the weight initialization given in Eq. 32 can be
adjusted. Some methods are using different weight initialization techniques, being:

• Zero Initialization: Setting all weights to zero can lead to symmetry breaking issues where
all neurons in a layer behave identically. This can hinder the learning process as neurons fail to
learn unique features. Therefore, zero initialization is generally avoided.
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• Random Initialization: Initializing weights randomly from a small Gaussian or uniform dis-
tribution helps break symmetry and introduces diversity in the network. Common approaches
include Xavier/Glorot initialization and He initialization.

• Xavier/Glorot Initialization: This method initializes weights from a Gaussian distribution
with zero mean and variance calculated based on the number of input and output units of the
layer. It helps in keeping the activations and gradients within a reasonable range during training.

• He Initialization: Similar to Xavier initialization, He initialization sets the variance of the
Gaussian distribution based on the number of input units. It is commonly used with activation
functions like ReLU to address the dying ReLU problem.

• LeCun Initialization: This method initializes weights using a Gaussian distribution with a
mean of zero and a variance that scales with the number of input units. It is particularly
effective for networks with sigmoid or hyperbolic tangent activation functions.

• Orthogonal Initialization: Initializing weight matrices with orthogonal matrices helps in ensuring
that the activations and gradients do not shrink or explode during training. This technique can
be particularly beneficial for deep networks.

. For the DQN implementation, He initialization is a suitable choice to solve the dying ReLU problem.
This method is designed to keep the variance of the activations consistent across layers, thereby
addressing the dying ReLU problem.

He initialization sets the initial weights of a layer using a Gaussian distribution with zero mean
and a variance of 2

nin
, where nin is the number of input units in the layer. This is mathematically

represented in Eq. 33.

W ∼ N
(

0,
2

nin

)
(33)

Using He initialization, we ensure that the weights are set to appropriate values, preventing neurons
from becoming inactive and maintaining effective training of the neural network.
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G Steps to Deploy the DQN Method in MATLAB

To deploy a DQN agent in MATLAB, these steps are taken:

1. Define Observation and Action Spaces: Specify the dimensions of the observation and
action spaces based on your environment.

2. Initialize the Environment: Set up the simulation environment for the agent.

3. Define Neural Network Architecture:

• Set the number of neurons and layers.

• Input Layer: Matches the observation space.

• Hidden Layers: As defined in the architecture.

• Output Layer: Represents the action space, providing Q-values.

4. Initialize the Network:

• Construct the network using the defined layers.

• Convert the network with the dlnetwork function for agent use.

5. Create the DQN Agent:

• Use the rlDQNAgent function to set up the agent with the neural network, observation, and
action spaces.

• Configure agent options such as exploration strategy, learning rate, and discount factor.

6. Train the Agent: Use the train function to train the agent within the defined environment.

7. Save and Test the Agent: Save the trained agent and test its performance.
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H Defining the environment

In this Appendix, definitions are given to the general outline of an environment. Next, variables are
defined to create new reward structures, tested in a dynamic environment. Finally, an inefficiency in
the scheduling of the environment is addressed.

H.1 General coding structure of an environment

A general outline for creating a working environment is presented in Algorithm 5.

Algorithm 5 General environment pseudo-code in RL

1: Initialize environment parameters
2: Define state representation
3: Define reward function
4: Define action representation
5: Function step(action):
6: perform action(action)
7: next state ← get next state()
8: reward ← calculate reward()
9: done ← check termination condition()

10: return next state, reward, done
11:

12: Function perform action(action):
13: Execute the action in the environment
14:

15: Function get next state():
16: Obtain the next state of the environment after the action is performed
17:

18: Function calculate reward():
19: Calculate the reward based on the current state and next state
20:

21: Function check termination condition():
22: Check if the termination condition of an episode is met

This pseudo-code can be implemented in combination with the reinforcement learning toolbox of
MATLAB to create a custom environment using the rlCreateEnvTemplate function [87]. As the action
and state space and the reward signal have already been defined, the remaining components to define
are the reset function and the step function to determine interactions between the state and action
space.

H.2 Creating reward structures for dynamic job shops

Each reward structure leverages a different signal, thus creating a different incentive for the agent to
learn. First, definitions are given to introduced variables. Hereafter reward structures for just-in-time
as well as maximizing slack are proposed.

H.2.1 Definitions used for the rewards

To define rewards, a couple of definitions are introduced for the dynamic environment. In adapting
to the dynamic environment, the problem is approached as a multi-objective task. Two primary
objectives are distinguished: Just-In-Time (JIT), which aims to minimize makespan and tardiness
while maximizing slack, and another approach that focuses on slack minimization.

Tardiness and slack are defined in Chapter 3.4.2 and are expressed by Eq. 2 ad Eq. 3 respectively.
To provide the agent with a learning incentive for each step taken, the expected completion time

(ECT) is defined. ECT considers the utilization rates of machines Mi,k, processing times Pj,k, and the
earliest starting time tj for the next operation, depicted in Eq. 34.
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ECTj =
∑
k

Pj,k ·
1

µik

+ tj (34)

From ECTj , an expected tardiness ETj , given by Eq. 36, and expected slack ESj , given by Eq.
35, can be derived.

ESj = max(0, dj − ECTj) (35)

ETj = max(0, ECTj − dj) (36)

H.2.2 Just-in-time rewards

Specific reward structures are formulated for JIT training, aimed at minimizing both tardiness and
slack to optimize scheduling efficiency. Four distinct reward formulas are proposed, each designed to
incentivize reductions in slack and tardiness deviations. Eq. 37 penalizes deviations in both expected
slack (ES) and expected tardiness (ET) when a job is not finished. Upon job completion, rewards are
based on the actual differences in slack (S) and tardiness (T).

rt =

{
−∆ES−∆ET if job not finished

−(Sj − ESj)− (Tj − ETj) if job finished after action
(37)

Eq. 38 is similar to Eq. 37, but penalizes only the actual slack and tardiness when a job is finished,
without considering expected values.

rt =

{
−∆ES−∆ET if job not finished

−Sj − Tj if job finished after action
(38)

Eq. 39 includes the utilization rate (∆ujk) as an additional incentive to reduce slack and tardiness
deviations when a job is not finished. Upon job completion, rewards consider both deviations and
utilization rate effects.

rt =

{
−∆ES−∆ET + (∆ujk) if job not finished

−(Sj − ESj)− (Tj − ETj) + (∆ujk) if job finished after action
(39)

Eq. 40 is similar to Eq. 39 but penalizes only the actual slack and tardiness, along with the
utilization rate effect, when a job is finished.

rt =

{
−∆ES−∆ET + (∆ujk) if job not finished

−Sj − Tj + (∆ujk) if job finished after action
(40)

These reward structures will be evaluated in a dynamic job shop scheduling environment to deter-
mine their effectiveness in achieving JIT objectives.

H.2.3 Rewards for maximizing slack

To maximize slack in job shop scheduling, reward structures are formulated similarly to those for JIT
but with a focus on rewarding slack increases rather than penalizing deviations.

Eq. 41 gives rewards based on the differences in expected slack (ES) and expected tardiness (ET)
when a job is not finished. Upon job completion, rewards are based on the actual differences in slack
(S) and tardiness (T).

rt =

{
∆ES−∆ET if job not finished

(Sj − ESj)− (Tj − ETj) if job finished after action
(41)

Eq. 42 is similar to Eq. 41 but rewards only the actual slack and tardiness when a job is finished,
without considering expected values.

rt =

{
∆ES−∆ET if job not finished

Sj − Tj if job finished after action
(42)
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Eq. 43 includes the utilization rate (∆ujk) as an additional incentive to increase slack when a job
is not finished. Upon job completion, rewards consider both slack and tardiness deviations along with
utilization rate effects.

rt =

{
∆ES−∆ET + (∆ujk) if job not finished

(Sj − ESj) + (Tj − ETj) + (∆ujk) if job finished after action
(43)

Eq. 44 is similar to Eq. 43 but rewards only the actual slack and tardiness, along with the
utilization rate effect, when a job is finished.

rt =

{
∆ES−∆ET + (∆ujk) if job not finished

Sj − Tj + (∆ujk) if job finished after action
(44)

Each of these reward structures will undergo testing in a dynamic job shop scheduling environment
to evaluate their effectiveness and suitability.

The machine learning technique, Deep Q-Network, and the environment, defined as a Markov
Decision Process, have been discussed. In the next chapter, DQN will be implemented in MATLAB
to explore this environment further, with additional details on both the DQN and environment.

H.3 Initializing the environment: reset function

The reset function is used to reset the whole environment. This is done to initialize and re-initialize
the environment for the start of each episode. Important parts of the initialization, and thus for the
reset function, are:

• Determine the number of jobs and machines in the job shop.

• Based on the number of jobs and machines, pre-allocate a matrix for scheduling jobs.

• Based on the job shop problem data given, create the initial current state.

• Initialize other variables needed to plan jobs and their operations.

As these have been defined, the basics of the reset function are defined.

H.4 Addressing scheduling inefficiency for static job shop scheduling

Based on tests done on the dispatching rules, it is found that they do not work very well in the created
environment. When comparing the outcomes of the dispatching rules on the problem ft06 found in our
environment in comparison with the outcome found in research by Liu [81], the performance differs.
This is shown in Table 46.

dispatching rule SPT LPT FIFO LIFO
found makespan [81] 84 73 65 70

Makespan environment 109 129 152 170

Table 46: Makespan comparison of Liu [81] and the created environment on ft06

When analyzing the Gantt chart depicted in Figure 37 together with the problem ft06, given in
Chapter 3.1 in Table 4, it is found that there is a possibility of improving upon the Algorithm 1, given
in Chapter H.1. The problem is found in the fact that, looking at this specific problem, job 3, needing
to start at machine 3, could be planned earlier. However, currently these idle times in between jobs is
not taken into account when planning jobs. Hence, the environment needs to be adjusted.
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Figure 37: Gantt chart of FIFO on ft06

Algorithm 6 Updated workings of a job shop

Input: General job shop problem
Output: Scheduled jobs of job shop problem
while not all jobs have been processed do

Choose an action
Based on the action, determine the job and its operation to schedule and which machine to
schedule on
Determine if there are gaps in the planning for the machine
if there are gaps in the planning for the machine then

Determine where the gaps in the planning are
Determine how big the gaps in the planning are
Determine if the processing time of the operation fits in the gap(s)
if processing time fits in one of the gaps then

Find the earliest possible gap to plan the job in
Schedule the job in the gap

else
Determine the start and end time:
if starting time of the job ≥ starting time machine then

Starting time of operation = starting time of the job
else

Starting time of operation = starting time machine
end if
End time = starting time + processing time of operation
Schedule the job

end if
end if

end while

With this updated Algorithm 6, in Figure 38 the change in planning is depicted, where in sub-
figure 38a the jobs are always planned after jobs that are already planned, subfigure 38b shows the
improvement of Algorithm 6 where the jobs are planned in the earliest possible time available in the
schedule.

With this change it is found that the found makespan per dispatching rule improves, given in Table
47, while maintaining the correct order of machines the jobs need to planned on, with the updated
Gantt chart for the FIFO dispatching rule given in Figure 39.
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(a) Situation after planning job 3 for Alg. 1 with makespan of 83

(b) Situation after planning job 3 for Alg. 6 with makespan of 60

Figure 38: Change of planning algorithms for the job shop scheduling
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dispatching rule SPT LPT FIFO LIFO
found makespan [81] 84 73 65 70

Makespan environment 109 129 152 170
Makespan environment updated 83 79 71 86

Table 47: Makespan comparison of Liu [81] and the updated environment on ft06

Figure 39: Gantt chart using FIFO with updated environment

When comparing the training with the same hyperparameters but change in scheduling, thus actions
having different influences, it is found that the hyperparameters do not work for this change, shown
in Figure 40. It is found that the training behavior is less stable, which is due to the difference in how
the actions work, thus different rewards signals will be gained which influences the learning. hence,
for the remainder of the experiments on static job shop scheduling problems, the environment will
not be changed. However, for the dynamic job shop scheduling, this change will be made as the
hyperparameters will need to be changed as well to accommodate for the dynamic changes in the
environment.
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(a) Training graph with old scheduling

(b) Training graph with new scheduling

Figure 40: Change of training graph with same hyperparameters for different scheduling
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I Results of first hyperparameter tuning: static job shop schedul-
ing

In this appendix, the steps taken for hyperparameter tuning are described. To determine the best
hyperparameters, the learning rate, discount factor, ϵ, ϵ decay, number of neurons, number of hidden
layers, number of episodes and a reward scaling factor are changed. The reward scaling factor is
introduced to see if a different size of reward signal changes the performance of learning for the model.

Each iteration is described and finally the performance of the chosen hyperparameters is given.
The used hyperparameters and variables are also given in Chapter 8.1.2 in Table ?? and Table 15.

I.1 First iteration

For the first iteration, the set of hyperparameters is given in Table 48. Here, a wide range of hyper-
parameters is taken to assess which individual as well as combinations of hyperparameters give better
results in terms of performance and learning behavior.

It. LR DF ϵ ϵd N HL RS E
1 1e-1, 1e-4, 1e-7 1e-3, 0.5, 1 1e-3, 0.5, 1 1e-2, 1e-6, 1e-10 64, 128, 256 1, 2, 3, 4, 5 1, 10, 100 4000

Table 48: Hyperparameter settings for first iteration

In Figure 41 the first comparison of agents is shown, looking at found makespan, gained reward
and average utilization rate of the machines. As can be seen, the performance of the agent greatly
differs from one another.

Figure 41: First comparison of created agents

Looking at the performances, the agents 4, 9 and 14 perform best. Hence, the behavior is compared
in Figure 42. It can be seen that agent 4’s Q0-values are badly estimated with a big overshoot at around
2200 episodes, while agent 9 shows no sign of learning from it’s experiences. Lastly, agent 14, while
unstable, shows improvement in terms of the reward and the Q0-value estimates become somewhat
equal to the gained reward, which shows that the agent learns.
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(a) Learning behavior agent 4

(b) Learning behavior agent 9

(c) Learning behavior agent 14

Figure 42: Comparison of learning behavior of agent 4 (a), 9 (b) and 14 (c)
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Now looking at their different hyperparameters, given in Table 49, agent 14 should be focused
on here. The agent shows the most promising results in both performance as well as training be-
havior. Hence, the chosen hyperparameters for the next test should be more focused towards the
hyperparameters of agent 14.

Agent Discount factor Learning rate ϵ
4 0.0001 0.1 1
9 0.5 0.1 0.001
14 1 1e-4 0.001

Table 49: Data of best agents of the hyperparameter tuning

I.2 Second iteration

For the second iteration, specific data for the agents is tracked, given in Table 50, where ϵd represents
the decay of epsilon and CT depicts the computational time in seconds.

Agent LR DF ϵ ϵd Neurons Hidden layers CT (s)
1 1e-4 1e-3 0.5 1e-6 64 2 990.7478
2 1e-5 0.5 0.5 1e-10 128 4 1505.1
3 1e-3 1e-3 1e-3 1e-6 64 4 1223
4 1e-3 1e-3 1e-3 1e-6 128 5 1461.8
5 1e-5 1 1e-3 0.01 256 4 3267.7
6 1e-4 1 1e-3 1e-10 64 5 1396.1
7 1e-4 1e-3 0.5 1e-6 256 3 1714
8 1e-3 1e-3 1e-3 1e-6 64 4 1164.6
9 1e-4 1e-3 1e-3 1e-6 256 2 1461.4
10 1e-4 0.5 1e-3 1e-6 128 2 1170
11 1e-4 0.5 1e-3 1e-10 128 4 1329.1
12 1e-3 1e-3 1 0.01 256 5 2805.9
13 1e-3 0.5 0.5 1e-10 64 4 1138.3
14 1e-5 1e-3 0.5 1e-10 128 3 1249.2
15 1e-3 1e-3 1 1e-6 128 2 1135.8
16 1e-3 1e-3 1e-3 1e-10 256 3 2113.8
17 1e-4 1e-3 0.5 1e-6 256 3 1570.1
18 1e-3 1 1e-3 1e-6 128 2 1820.7
19 1e-5 0.5 1 1e-10 256 5 1765.6
20 1e-4 1 0.5 1e-6 128 2 1464
21 1e-3 1e-3 1 0.01 64 5 1626.8
22 1e-3 0.5 1 1e-10 64 4 1154.4
23 1e-4 1e-3 1e-3 0.01 64 2 1034.2
24 1e-3 1e-3 0.5 1e-6 256 4 2300
25 1e-3 1e-3 1e-3 1e-6 256 2 1581.3
26 1e-4 1 0.5 1e-10 128 4 1435.4
27 1e-4 1e-3 0.5 1e-6 128 3 1283.5
28 1e-5 0.5 0.5 0.01 64 2 1024.5
29 1e-3 0.5 1 0.01 64 2 1061.3
30 1e-4 0.5 0.5 0.01 256 5 4061.6

Table 50: Values of agents in second hyperparameter tuning test

From these agents, the results of testing is given in Figure 43. Based on this comparison it is found
that they have a lot of difference in performance, while also some agents have a high computational
time (in seconds) in comparison to the other agents.
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Figure 43: Comparison of performance of agents in test 2

From this figure, the agents 5, 6, 18, 26 and 29 are chosen as being the best performers, finding
a makespan of 59, 60, 70, 72 and 67 respectively, with a reward of 6.61, 6.59, 6.22, 5.47 and 5.73
respectively. All of these agents are trained within an hour, which is seen as a reasonable training
time. In Figure 44 and 45, the training behavior of these tests are compared. The scales of the graphs
are not equal. However, the behavior is not influenced by this scale, as the agents 5, 6 and 18 show
wanted behavior in increasing their found reward while also finding overlap in the Q0-values with the
found average reward, hence showing that it has learned. Hence, the next iteration will focus more
towards the hyperparameters of the agents 5, 6 and 18.
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(a) Training graph of agent 5 from test 2

(b) Training graph of agent 6 from test 2

(c) Training graph of agent 18 from test 2

Figure 44: Comparison of training behavior of agents 5, 6, and 18 from test 2
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(a) Training graph of agent 26 from test 2

(b) Training graph of agent 29 from test 2

Figure 45: Comparison of training behavior of agents 26 and 29 from test 2

I.3 Third iteration

For this test, the comparison is given in Figure 46.
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Figure 46: Comparison of performance of agents in third iteration

From these results it was found that overall the agents performed better, but no agent actually
performed better than the latter test. From these results the focus in on the agents 7, 26, 27 and
29, which had a makespan lower than 65. Based on those founding the agents with a higher discount
factor perform better, with a lower epsilon value, with the agent hyperparameters given in Table 51.
Also, 512 neurons greatly increase the computational time. Hence, the choices for the next iterations
are based on these findings.
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Agent LR DF ϵ ϵd Neurons Hidden Layers CT (s)
1 1E-4 0.5 0.25 1E-6 128 4 1330.94
2 1E-3 0.75 0.1 1E-6 64 4 1169.93
3 1E-3 1 1E-5 1E-10 256 4 2384.79
4 1E-4 0.75 1E-5 1E-10 128 6 2065.79
5 1E-5 0.75 0.1 1E-10 64 6 1256.10
6 1E-5 0.5 0.1 1E-2 512 4 10636.01
7 1E-3 1 0.1 1E-10 64 5 1259.75
8 1E-5 1 0.25 1E-6 512 6 13120.60
9 1E-5 0.5 0.5 1E-10 64 4 1088.11
10 1E-4 1 0.25 1E-6 128 5 1501.83
11 1E-3 0.5 0.25 1E-6 256 5 2711.98
12 1E-5 0.5 0.25 1E-6 256 4 2909.71
13 1E-3 1 0.25 1E-10 128 5 1674.79
14 1E-3 0.5 0.1 1E-6 128 5 1674.89
15 1E-3 1 0.25 1E-6 512 6 7866.81
16 1E-5 0.75 1E-5 1E-10 64 5 1240.58
17 1E-4 0.5 1E-5 1E-10 64 6 1287.47
18 1E-4 0.5 0.1 1E-10 512 4 7478.97
19 1E-5 0.5 0.1 1E-6 64 6 1289.92
20 1E-3 0.5 0.1 1E-2 64 5 1270.89
21 1E-4 0.75 0.1 1E-6 512 5 10198.45
22 1E-4 0.5 0.1 1E-2 256 5 3859.49
23 1E-3 1 0.25 1E-2 64 4 1177.79
24 1E-3 0.5 0.25 1E-2 256 5 2649.49
25 1E-3 0.75 1E-5 1E-10 256 6 3119.70
26 1E-5 1 0.1 1E-6 512 6 13971.34
27 1E-5 1 1E-5 1E-6 128 6 1786.05
28 1E-4 0.75 0.5 1E-2 128 5 1805.29
29 1E-3 1 0.1 1E-2 128 5 1635.33
30 1E-5 0.5 0.1 1E-10 256 4 2993.36

Table 51: Values of agents in third hyperparameter tuning iteration

I.4 Fourth iteration

For the fourth iteration, the comparison of agents is given in Figure 47. From this comparison it is
concluded that agents 9 and 10 perform best, finding a reward above 6.6 and a makespan of 61.
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Figure 47: Comparison of performance of agents fourth iteration

In Figure 48, the training graph of these agents is given. It is found that for the 4000 episodes,
there still might be some learning to be done after those 4000 episodes, based on the two graphs.
Hence, after these tests, the episodes done is scaled up to 8000. In Table 52 the parameters for the
agents in this test have been given.
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(a) Training graph of agent 9 from test 4

(b) Training graph of agent 10 from test 4

Figure 48: Comparison of training behavior of 2 best performing agents
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Agent LR DF ϵ ϵd Neurons Hidden Layers CT (s)
1 1E-4 1 0.2 1E-6 64 4 1316.77
2 1E-4 1 0.2 1E-10 256 6 4759.11
3 1E-4 1 1E-5 1E-6 64 4 1371.21
4 1E-6 1 1E-5 1E-2 64 6 1470.96
5 1E-3 1 1E-5 1E-2 256 5 3124.45
6 1E-3 1 1E-5 1E-6 128 6 2066.07
7 1E-6 1 1E-5 1E-10 256 4 2766.70
8 1E-6 1 0.2 1E-10 64 6 1365.82
9 1E-4 1 0.2 1E-6 128 4 1462.81
10 1E-4 1 1E-5 1E-10 128 5 1987.91

Table 52: Values of agents in fourth hyperparameter tuning test

As from these values in combination with the given training graphs no real conclusions can be
made yet, in Figure 49. Here, the training graph of agents 4, 7 and 8 are given. When looking at their
learning rate, these are the only agents with a learning rate of 1E-6. Hence, it is concluded that the
learning rate 1E-6 is not beneficial for the learning behavior of the agents, as these agents show no
actual learning and all are unstable. Hence, the learning rate of 1e-6 is removed from the range for
the next iteration.
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(a) Training graph of agent 4 from test 4

(b) Training graph of agent 7 from test 4

(c) Training graph of agent 8 from test 4

Figure 49: Comparison of training behavior of bad performers
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Again the learning behavior is checked, for agent 5 and 6 in Figure 50. Here, the agents have a
learning rate of 1e-3, and it is concluded that this learning rate is to big as the agent seems to heavily
change the neural network thus they do seem to learn an optimal policy, while not consistently gaining
the same rewards and the Q0 also being unstable. Hence, learning rate of 1e-3 is also removed for the
next iteration.

(a) Training graph of agent 5 from test 4

(b) Training graph of agent 6 from test 4

Figure 50: Comparison of training behavior of bad performers
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I.5 Fifth iteration

In this final test, 15 agents were trained. In Figure 51 these agents have been compared on the
performance metrics.

Figure 51: Comparison of agents on performance metrics of test 5

From these agents in Figure 51, agents 1, 5, 8, 10, 13 and 15 are the ones with the best performances.
In Figure 52 and 53 the learning behavior is depicted in their training graphs.
From these it is found that agent 13 shows the best learning behavior, as the Q0-values are about
equal to the average received reward, showing that it has learned an optimal policy. Hence, the values
of agent 13 are used for the future experiments, given in Table 53.
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(a) Training graph of agent 1 from test 5

(b) Training graph of agent 5 from test 5

(c) Training graph of agent 8 from test 5

Figure 52: Comparison of training behavior of best performing agents
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(a) Training graph of agent 10 from test 5

(b) Training graph of agent 13 from test 5

(c) Training graph of agent 15 from test 5

Figure 53: Comparison of training behavior of best performing agents

XXXVII



Agent LR DF ϵ ϵd Neurons Hidden Layers CT (s)
1 1E-4 1 0.2 1E-6 128 4 2906.60
2 1E-4 1 0.01 1E-10 128 5 3775.23
3 1E-5 1 1E-01 1E-6 128 5 4021.75
4 1E-4 1 1E-02 1E-6 128 5 4017.49
5 1E-4 1 1E-01 1E-6 128 5 3565.92
6 1E-4 1 3E-01 1E-2 128 6 4378.41
7 1E-4 1 3E-01 1E-10 128 5 3021.26
8 1E-5 1 0.1 1E-6 128 5 3359.47
9 1E-5 1 0.2 1E-10 128 6 4228.14
10 1E-5 1 1.00E-01 1E-10 128 5 3757.96
11 1E-5 1 0.3 1E-2 128 5 3900.31
12 1E-5 1 0.3 1E-10 128 5 3817.84
13 1E-5 1 0.01 1E-2 128 4 3168.59
14 1E-5 1 0.01 1E-10 128 6 4712.36
15 1E-5 1 0.1 1E-10 128 4 3132.68

Table 53: Values of agents in fifth hyperparameter tuning test

To compare the chosen agent, in Figure 54 the Gantt chart of the results of agent 13 are given while
in Table 54 the statistical results of the agent are given. When comparing to the benchmark agent, it
is found that the learning behavior is improved, as the agent shows that the average gained rewards
becomes more over time as well as statistically showing that it can find a result more consistent. Hence
it is concluded that the found hyperparameters improve upon the benchmark agent.

Figure 54: Gantt chart of chosen agent

R C Uavg

UB 6.65 61 0.665
LB 6.65 61 0.665
mean 6.65 61 0.665
var 3.22E-30 0 1.26E-32
StD 1.79E-15 0 1.12E-16

Table 54: Statistical values of agent 13 from first iteration
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J Results of training per standardized problem

With the defined values of the hyperparameters from the previous hyperparameter tuning, the proposed
method was tested, where the inputs for the neural networks are equal to the size of the job shop
problem, being M + N , where M is the number of machines and N the number of jobs. In Figure
55 together with Table 55, it is shown that the results of these tests show that when increasing the
number of jobs and machines, the computational time greatly increases with them.

Figure 55: Comparison of agents on benchmark tests

agent instance reward makespan machines jobs
1 abz8 5.014 1010 15 20
2 ft06 6.661 61 6 6
3 la04 6.473 853 5 10
4 la09 8.761 1021 5 15
5 la15 7.582 1636 5 20
6 la25 5.511 1427 10 15
7 la35 6.099 3756 10 30
8 svw01 5.224 3013 10 20
9 svw15 4.978 8104 10 50
10 ta01 4.827 1990 15 15
11 ta31 5.418 3122 15 30
12 ta41 4.595 3603 20 30

Table 55: Agents test on benchmark problems

Comparing these results with the results found by Liu [81] depicted in Table 56, it is found the
bigger the problem becomes, the less effective the created agents are, comparing to both the dispatching
rules as well as the DRL methods proposed in terms of makespan.
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Dispatching rules DRL methods Ours
Instance Size SPT LPT FIFO LIFO SWT LWT MWKR LWKR GA D3QPN L2D P3OR DQN

ft06 6 × 6 84 73 65 70 83 62 59 68 55 59 64 57 61
orb07 10 × 10 504 520 502 500 512 487 482 519 426 438 470 415
la04 10 × 5 711 832 758 741 864 712 706 885 617 635 736 624 853
la09 15 × 5 1045 1183 997 1073 1135 1012 973 1149 954 978 1015 952 1021
la15 20 × 5 1339 1612 1282 1345 1587 1312 1258 1598 1128 1241 1295 1235 1636
la25 15 × 10 1297 1374 1283 1352 1471 1336 1172 1425 1160 1153 1204 1148 1427
la35 30 × 10 2133 2324 2004 2215 2368 2274 1962 2287 2019 1994 2085 1927 3756
abz8 20 × 15 929 949 879 938 957 936 810 992 744 778 861 736 1010
yn1 20 × 20 1196 1115 1123 1177 1214 1163 1045 1205 926 1053 1121 997

swv01 20 × 10 1737 2145 1889 2123 2005 1923 1971 1838 1732 1712 1845 1645 3013
swv15 50 × 10 3501 4404 3603 3573 4133 4026 4905 3919 3422 3431 3516 3328 8104
ta01 15 × 15 1462 1701 1830 1627 1712 1523 1438 1737 1457 1405 1521 1412 1990
ta31 30 × 15 2335 2417 2436 2417 2754 2218 2143 2962 2237 2116 2231 2044 3122
ta41 30 × 20 2499 2925 2973 2760 2814 2609 2538 2976 2739 2475 2613 2387 3603
ta51 50 × 15 3856 3880 3717 3391 3702 3624 3567 3596 3250 3151 3224 3018
ta61 50 × 20 3606 3989 4046 3870 3827 3568 3376 4073 3658 3365 3441 3256
ta71 100 × 20 6232 7038 6704 6767 6735 6524 5938 6993 6524 5938 6993 5624

Table 56: Table comparing proposed DQN with other methods from Liu [81]

Looking at each training graph in Figures 56, 57, 58 and 59, it is also seen that the bigger the
problem becomes, the less stable the training is. The Q0-value is highly overestimated when the
problem becomes bigger. This is probably due to the fact that the change of the architecture of
the neural network while maintaining the same hyperparameters. These hyperparameters do not
accommodate for the change in input size, which makes them less compatible for these changes in
architecture. It is important to note that for the figures in Figure ?? are not equally scaled to show
each agents behavior individually.
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(a) Agent 1: abz8 (15 jobs, 20 machines)

(b) Agent 2: ft06 (6 jobs, 6 machines)

(c) Agent 3: la04 (5 jobs, 10 machines)

Figure 56: Comparison of training graphs of the benchmark trained agents
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(a) Agent 4: la09 (5 jobs, 15 machines)

(b) Agent 5: la15 (5 jobs, 20 machines)

(c) Agent 6: la25 (10 jobs, 15 machines)

Figure 57: Comparison of training graphs of the benchmark trained agents
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(a) Agent 7: la35 (15 jobs, 20 machines)

(b) Agent 8: svw01 (10 jobs, 20 machines)

(c) Agent 9: swv15 (10 jobs, 50 machines)

Figure 58: Comparison of training graphs of the benchmark trained agents
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(a) Agent 10: ta01 (15 jobs, 15 machines))

(b) Agent 11: ta31 (15 jobs, 30 machines)

(c) Agent 12: ta41 (20 jobs, 30 machines)

Figure 59: Comparison of training graphs of the benchmark trained agents
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K Results of second hyperparameter tuning: static job shop
scheduling

To ensure the creation of the best performing DQN agent, random hyperparameter tuning is used
again. The learning rate, discount factor, epsilon, epsilon decay and minimum epsilon for each trained
agent are varied randomly. The reward scaling has been set to 10 for these tests. Additionally,
the neural network’s architecture is modified by adjusting the number of hidden layers and neurons
corresponding to those hidden layers.

Based on earlier research, it can be concluded that a lot of the learning process of the agents can be
assessed early in the training sequence. With this knowledge, initial testing is done with a wide range
of variables with 500 episodes, still using problem ft06, to assess the effectiveness of the combinations
early on in the learning process, while maintaining low computational time.

K.1 First iteration: initialization testing

The agents for the first test are trained on 500 episodes, assessing their training graphs to determine
which hyperparameters show wanted learning behavior. In Table 57 the range of the hyperparameters
are given for this test.

LR DF ϵ ϵm ϵd Neurons Hidden layers
1e-1 1e-4 1e-7 0.1, 0.5, 0.99 1e-7 1e-4 1 1e-13 1e-7 0.01 1e-10 1e-6 1e-2 64 512 2048 1 4 7

Table 57: Range of values for first initialization hyperparameter test

75 different agents have been trained, and the learning behavior is categorized in 4 different cate-
gories, based on the training graphs. These categories are initial overshoot, spikes, almost no change
in Q0 (flat) and finally others, depicting behavior which can not really be categorized. In Figure 60 the
different categories are depicted in different figures, while in Table 58 the different agents per group
are given, and in Table 59 the specific settings per agent are given.
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(a) Initial overshoot Q0 (b) Spikes in Q0

(c) no change in Q0 (d) Others category

Figure 60: Representation of different categories

Category Agents
Overshoot 8 16 18 21 22 26 35 43 44 46 61 73 74 75

spikes 3 9 11 14 15 17 27 38 40 42 45 47 48 53 55 56 58 59 62 66 69
Flat 2 4 7 10 19 23 30 31 32 33 36 37 39 51 70

others 1 5 6 12 13 20 24 25 28 29 34 41 49 50 52 54 57 60 63 64 65 67 68 71 72

Table 58: Overview of different categories and agents

From the parameters of the different categories, the spikes category is found to all have a learning
rate of 0.1, which shows that the heavy changes of weights and biases results in unstable behavior
in terms of Q0 estimations. The overshoot category shows consistency in the learning rate all being
1e-4, while also having a discount factor of 0.5 or 0.99, and also most of them having a epsilon of 1.
From earlier results, it is found that this overshoot will most likely result in wanted learning behavior.
Hence, the hyperparameters need to be tuned more into the direction of these agents hyperparameters.

Finally, the computational time is assessed in Figure 61, where it shows that the higher number
of neurons show longer computational times, as expected, thus the reduction of layers and neurons is
needed for the next hyperparameter tuning.
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Figure 61: Comparison of computational time for different combinations of layers and neurons

Agent LR DF ϵ ϵd ϵm Neurons HL CT
1 1.0E-07 9.9E-01 1.0E-07 1.0E-10 1.0E-13 6.4E+01 4.0E+00 1.4E+02
2 1.0E-07 1.0E-04 1.0E-04 1.0E-06 1.0E-01 5.1E+02 7.0E+00 7.3E+02
3 1.0E-01 1.0E-04 1.0E+00 1.0E-10 1.0E-13 2.0E+03 7.0E+00 8.5E+03
4 1.0E-04 1.0E-04 1.0E-04 1.0E-06 1.0E-07 2.0E+03 1.0E+00 3.7E+02
5 1.0E-07 5.0E-01 1.0E-04 1.0E-02 1.0E-01 2.0E+03 1.0E+00 2.7E+02
6 1.0E-07 1.0E-04 1.0E+00 1.0E-10 1.0E-13 6.4E+01 4.0E+00 1.2E+02
7 1.0E-07 9.9E-01 1.0E+00 1.0E-06 1.0E-07 6.4E+01 1.0E+00 1.1E+02
8 1.0E-04 5.0E-01 1.0E+00 1.0E-06 1.0E-07 6.4E+01 7.0E+00 1.6E+02
9 1.0E-01 1.0E-04 1.0E+00 1.0E-10 1.0E-07 2.0E+03 4.0E+00 4.0E+03
10 1.0E-07 9.9E-01 1.0E-04 1.0E-10 1.0E-07 5.1E+02 1.0E+00 1.4E+02
11 1.0E-01 5.0E-01 1.0E-04 1.0E-02 1.0E-13 5.1E+02 7.0E+00 9.5E+02
12 1.0E-04 5.0E-01 1.0E-07 1.0E-02 1.0E-13 6.4E+01 7.0E+00 2.0E+02
13 1.0E-07 1.0E-04 1.0E-04 1.0E-06 1.0E-07 5.1E+02 4.0E+00 4.8E+02
14 1.0E-01 5.0E-01 1.0E-07 1.0E-06 1.0E-07 5.1E+02 1.0E+00 2.0E+02
15 1.0E-01 1.0E-04 1.0E-04 1.0E-02 1.0E-07 5.1E+02 7.0E+00 8.3E+02
16 1.0E-04 5.0E-01 1.0E+00 1.0E-10 1.0E-07 5.1E+02 7.0E+00 1.4E+03
17 1.0E-01 1.0E-04 1.0E+00 1.0E-10 1.0E-13 5.1E+02 7.0E+00 9.2E+02
18 1.0E-04 9.9E-01 1.0E+00 1.0E-02 1.0E-01 2.0E+03 4.0E+00 6.6E+03
19 1.0E-04 1.0E-04 1.0E-04 1.0E-06 1.0E-01 6.4E+01 4.0E+00 1.4E+02
20 1.0E-04 5.0E-01 1.0E-04 1.0E-02 1.0E-13 6.4E+01 1.0E+00 1.2E+02
21 1.0E-04 5.0E-01 1.0E-04 1.0E-02 1.0E-07 2.0E+03 7.0E+00 1.8E+04
22 1.0E-04 5.0E-01 1.0E+00 1.0E-06 1.0E-13 2.0E+03 7.0E+00 1.5E+04
23 1.0E-07 9.9E-01 1.0E-04 1.0E-10 1.0E-01 6.4E+01 1.0E+00 1.1E+02
24 1.0E-04 5.0E-01 1.0E-07 1.0E-10 1.0E-07 5.1E+02 1.0E+00 1.9E+02
25 1.0E-04 1.0E-04 1.0E+00 1.0E-10 1.0E-07 2.0E+03 1.0E+00 3.9E+02
26 1.0E-04 9.9E-01 1.0E-07 1.0E-06 1.0E-13 2.0E+03 7.0E+00 1.6E+04
27 1.0E-01 1.0E-04 1.0E-07 1.0E-02 1.0E-07 2.0E+03 4.0E+00 4.4E+03
28 1.0E-04 5.0E-01 1.0E-04 1.0E-10 1.0E-01 6.4E+01 7.0E+00 1.7E+02
29 1.0E-07 9.9E-01 1.0E-07 1.0E-06 1.0E-01 5.1E+02 4.0E+00 4.4E+02
30 1.0E-07 1.0E-04 1.0E+00 1.0E-10 1.0E-07 2.0E+03 4.0E+00 3.4E+03
31 1.0E-04 1.0E-04 1.0E-07 1.0E-06 1.0E-13 2.0E+03 7.0E+00 1.7E+04
32 1.0E-04 1.0E-04 1.0E-07 1.0E-10 1.0E-07 5.1E+02 4.0E+00 8.6E+02
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33 1.0E-04 1.0E-04 1.0E-07 1.0E-02 1.0E-01 2.0E+03 1.0E+00 3.7E+02
34 1.0E-04 5.0E-01 1.0E-04 1.0E-06 1.0E-07 6.4E+01 1.0E+00 1.2E+02
35 1.0E-04 9.9E-01 1.0E+00 1.0E-06 1.0E-07 2.0E+03 1.0E+00 3.5E+02
36 1.0E-04 1.0E-04 1.0E-04 1.0E-10 1.0E-13 2.0E+03 7.0E+00 1.7E+04
37 1.0E-07 1.0E-04 1.0E+00 1.0E-06 1.0E-01 2.0E+03 4.0E+00 3.4E+03
38 1.0E-01 9.9E-01 1.0E-04 1.0E-06 1.0E-07 6.4E+01 7.0E+00 1.6E+02
39 1.0E-04 5.0E-01 1.0E-07 1.0E-06 1.0E-01 2.0E+03 1.0E+00 3.5E+02
40 1.0E-01 5.0E-01 1.0E-04 1.0E-06 1.0E-01 6.4E+01 7.0E+00 1.7E+02
41 1.0E-07 1.0E-04 1.0E-07 1.0E-10 1.0E-07 6.4E+01 4.0E+00 1.4E+02
42 1.0E-01 1.0E-04 1.0E-04 1.0E-02 1.0E-01 6.4E+01 7.0E+00 1.6E+02
43 1.0E-04 9.9E-01 1.0E-04 1.0E-10 1.0E-13 2.0E+03 7.0E+00 1.6E+04
44 1.0E-04 9.9E-01 1.0E-07 1.0E-10 1.0E-13 6.4E+01 4.0E+00 1.5E+02
45 1.0E-01 1.0E-04 1.0E-07 1.0E-02 1.0E-01 5.1E+02 4.0E+00 5.6E+02
46 1.0E-04 1.0E-04 1.0E+00 1.0E-06 1.0E-01 6.4E+01 7.0E+00 1.6E+02
47 1.0E-01 1.0E-04 1.0E-07 1.0E-10 1.0E-01 2.0E+03 4.0E+00 5.1E+03
48 1.0E-01 1.0E-04 1.0E-07 1.0E-02 1.0E-01 2.0E+03 7.0E+00 7.0E+03
49 1.0E-07 1.0E-04 1.0E-04 1.0E-06 1.0E-01 6.4E+01 4.0E+00 1.3E+02
50 1.0E-07 9.9E-01 1.0E-04 1.0E-10 1.0E-01 6.4E+01 7.0E+00 1.5E+02
51 1.0E-04 1.0E-04 1.0E-07 1.0E-10 1.0E-13 6.4E+01 1.0E+00 1.2E+02
52 1.0E-07 5.0E-01 1.0E-04 1.0E-06 1.0E-13 6.4E+01 1.0E+00 1.1E+02
53 1.0E-01 9.9E-01 1.0E-04 1.0E-10 1.0E-13 5.1E+02 1.0E+00 1.8E+02
54 1.0E-07 5.0E-01 1.0E-04 1.0E-10 1.0E-07 6.4E+01 1.0E+00 1.1E+02
55 1.0E-01 9.9E-01 1.0E+00 1.0E-06 1.0E-13 5.1E+02 1.0E+00 1.8E+02
56 1.0E-01 9.9E-01 1.0E-07 1.0E-06 1.0E-07 2.0E+03 7.0E+00 8.0E+03
57 1.0E-04 5.0E-01 1.0E+00 1.0E-06 1.0E-07 6.4E+01 4.0E+00 1.4E+02
58 1.0E-01 1.0E-04 1.0E-07 1.0E-02 1.0E-01 2.0E+03 1.0E+00 3.8E+02
59 1.0E-01 9.9E-01 1.0E-07 1.0E-06 1.0E-01 2.0E+03 1.0E+00 3.7E+02
60 1.0E-01 9.9E-01 1.0E+00 1.0E-02 1.0E-01 6.4E+01 4.0E+00 1.4E+02
61 1.0E-04 9.9E-01 1.0E-07 1.0E-06 1.0E-01 2.0E+03 1.0E+00 3.8E+02
62 1.0E-01 9.9E-01 1.0E-04 1.0E-02 1.0E-01 6.4E+01 7.0E+00 1.9E+02
63 1.0E-07 5.0E-01 1.0E+00 1.0E-10 1.0E-07 2.0E+03 1.0E+00 2.9E+02
64 1.0E-04 1.0E-04 1.0E+00 1.0E-10 1.0E-01 6.4E+01 1.0E+00 1.3E+02
65 1.0E-07 9.9E-01 1.0E-07 1.0E-02 1.0E-01 2.0E+03 4.0E+00 3.5E+03
66 1.0E-01 5.0E-01 1.0E-04 1.0E-10 1.0E-07 2.0E+03 7.0E+00 1.1E+04
67 1.0E-04 9.9E-01 1.0E+00 1.0E-10 1.0E-07 6.4E+01 1.0E+00 1.1E+02
68 1.0E-07 1.0E-04 1.0E-04 1.0E-02 1.0E-01 5.1E+02 1.0E+00 1.4E+02
69 1.0E-01 5.0E-01 1.0E-07 1.0E-02 1.0E-07 6.4E+01 7.0E+00 1.7E+02
70 1.0E-04 1.0E-04 1.0E-07 1.0E-10 1.0E-07 5.1E+02 1.0E+00 1.7E+02
71 1.0E-01 9.9E-01 1.0E-07 1.0E-10 1.0E-13 6.4E+01 4.0E+00 1.4E+02
72 1.0E-07 1.0E-04 1.0E-07 1.0E-02 1.0E-07 5.1E+02 7.0E+00 7.4E+02
73 1.0E-04 9.9E-01 1.0E-07 1.0E-10 1.0E-13 2.0E+03 4.0E+00 8.4E+03
74 1.0E-04 5.0E-01 1.0E+00 1.0E-06 1.0E-01 5.1E+02 7.0E+00 1.5E+03
75 1.0E-04 5.0E-01 1.0E+00 1.0E-02 1.0E-07 6.4E+01 7.0E+00 1.8E+02

Table 59: All settings for the created agents of test 1
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K.2 Second iteration

A new set of variables will be set based on the previous results, shown in Table 60. The goal will be
to assess the data based on 100 created agents, over 1000 episodes. The increase in episodes is due to
the benchmark agent showing a change in behavior around 750 episodes as well as the importance of
assessing how the initial overshoot changing after 500 episodes.

LR DF ϵ ϵm ϵd Neurons Hidden layers
1e-3 1e-4 1e5 1e-4 0.5 0.99 1e-7 1e-4 1 1e-13 1e-7 0.01 1e-10 1e-6 1e-2 64 128 256 1 to 5

Table 60: Possible values second initialization hyperparameter test

Due to a checking error, the highest learning rate became 1e5 instead of 1e-5. However, the
results are still useful. From these 100 agents, 7 different categories of learning trajectories have been
determined. These are a low and flat Q0, high and flat Q0, initial overshoot, no Q0, overshoot below
gained rewards, spikes and undershoot (or instantly decreasing Q0). The different categories are shown
in Figure 62 and the categorization of the agents is given in Table 61.

Category Agents
Low & flat Q0 10 13 14 16 20 24 27 30 35 36 39 41 46 50 55 56 69 77 79 81 90 98
High & flat Q0 5 11 17 21 32 42 49 65 71 73 83 88

Overshoot 4 6 8 12 15 22 33 34 52 57 61 63 64 76 78 80 82 85 87 94 95 96
No Q0 found 40 48 51 62 84 86 92

Overshoot (2) below reward 2 25 29 59 67 68 70 93 97 99 100
Spikes 1 3 5 7 18 19 26 28 37 43 44 45 53 54 60 66 72 74 91

Undershoot/instant decrease 9 23 31 38 47 58 89

Table 61: Overview of different categories and agents in test 2
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(a) Low & flat Q0 (b) High & flat Q0

(c) Overshoot (d) No Q0 found

(e) Overshoot 2 (f) Spikes

(g) Undershoot

Figure 62: Representation of different categories in test 2
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Agent LR DF ϵ ϵd ϵm Neurons HL CT
1 1.0E+05 0.99 1.0E-07 1.0E-10 1.0E-13 64 3 268.89
2 1.0E-03 0.5 1 1.0E-02 1.0E-07 128 5 438.67
3 1.0E+05 1.0E-04 1.0E-04 1.0E-10 1.0E-07 256 5 448.88
4 1.0E-04 0.99 1 1.0E-10 1.0E-07 64 2 247.36
5 1.0E+05 0.5 1 1.0E-10 1.0E-13 256 2 338.28
6 1.0E-03 0.99 1.0E-04 1.0E-06 1.0E-13 256 4 619.20
7 1.0E+05 0.5 1.0E-04 1.0E-06 1.0E-13 64 1 271.71
8 1.0E-04 0.99 1 1.0E-06 1.0E-01 64 4 360.90
9 1.0E-03 0.5 1.0E-07 1.0E-06 1.0E-07 64 2 277.50
10 1.0E-03 1.0E-04 1.0E-07 1.0E-06 1.0E-07 128 4 395.32
11 1.0E+05 1.0E-04 1.0E-07 1.0E-06 1.0E-07 64 2 243.87
12 1.0E-03 0.99 1.0E-07 1.0E-10 1.0E-01 64 3 275.13
13 1.0E-04 0.5 1 1.0E-02 1.0E-01 64 3 276.71
14 1.0E-03 1.0E-04 1.0E-04 1.0E-06 1.0E-01 128 3 342.92
15 1.0E-03 0.99 1 1.0E-02 1.0E-01 256 2 399.20
16 1.0E-03 1.0E-04 1 1.0E-10 1.0E-07 128 1 250.94
17 1.0E+05 1.0E-04 1 1.0E-06 1.0E-13 128 2 251.86
18 1.0E+05 0.5 1.0E-04 1.0E-06 1.0E-13 256 1 259.80
19 1.0E+05 0.99 1.0E-04 1.0E-02 1.0E-13 256 3 357.24
20 1.0E-04 1.0E-04 1.0E-04 1.0E-10 1.0E-07 256 5 889.58
21 1.0E+05 0.99 1.0E-04 1.0E-10 1.0E-13 256 2 311.78
22 1.0E-03 0.99 1.0E-04 1.0E-02 1.0E-13 128 5 429.66
23 1.0E-04 0.5 1.0E-04 1.0E-10 1.0E-01 128 2 304.99
24 1.0E-04 1.0E-04 1.0E-04 1.0E-10 1.0E-07 128 2 314.39
25 1.0E-03 0.5 1 1.0E-02 1.0E-07 128 3 345.27
26 1.0E+05 0.99 1.0E-04 1.0E-06 1.0E-13 256 5 446.13
27 1.0E-04 1.0E-04 1 1.0E-02 1.0E-01 64 1 230.63
28 1.0E+05 1.0E-04 1.0E-04 1.0E-06 1.0E-13 64 3 256.04
29 1.0E-04 0.5 1.0E+00 1.0E-10 1.0E-07 64 4 280.12
30 1.0E-03 0.5 1.0E-04 1.0E-06 1.0E-01 128 1 262.55
31 1.0E-03 0.5 1.0E-04 1.0E-02 1.0E-07 64 3 277.88
32 1.0E+05 0.5 1.0E-04 1.0E-10 1.0E-13 128 2 265.72
33 1.0E-04 0.99 1.0E-07 1.0E-06 1.0E-13 256 5 918.14
34 1.0E-04 0.99 1.0E-07 1.0E-06 1.0E-13 256 2 478.71
35 1.0E-04 1.0E-04 1.0E-04 1.0E-10 1.0E-13 128 3 388.71
36 1.0E-04 1.0E-04 1.0E-04 1.0E-02 1.0E-13 256 3 594.42
37 1.0E+05 0.5 1.0E-07 1.0E-10 1.0E-13 64 3 256.06
38 1.0E-04 0.5 1.0E-04 1.0E-10 1.0E-13 128 4 422.87
39 1.0E-03 1.0E-04 1 1.0E-02 1.0E-01 128 3 336.96
40 1.0E+05 0.5 1 1.0E-06 1.0E-01 128 4 295.60
41 1.0E-04 0.5 1.0E-07 1.0E-06 1.0E-13 64 5 320.94
42 1.0E+05 0.5 1.0E-07 1.0E-06 1.0E-01 64 1 228.68
43 1.0E+05 1.0E-04 1.0E-04 1.0E-02 1.0E-07 256 4 389.49
44 1.0E+05 0.5 1.0E-07 1.0E-02 1.0E-01 128 5 330.92
45 1.0E+05 0.5 1 1.0E-02 1.0E-07 128 5 327.84
46 1.0E-04 1.0E-04 1.0E-07 1.0E-06 1.0E-07 64 3 279.91
47 1.0E-04 0.5 1.0E-07 1.0E-06 1.0E-07 128 3 362.59
48 1.0E+05 0.99 1 1.0E-06 1.0E-13 256 4 374.45
49 1.0E+05 1.0E-04 1.0E-04 1.0E-02 1.0E-07 256 1 255.21
50 1.0E-03 0.5 1.0E-07 1.0E-10 1.0E-07 256 4 569.80
51 1.0E+05 0.99 1.0E+00 1.0E-06 1.0E-07 256 5 415.46
52 1.0E-04 0.99 1.0E-07 1.0E-10 1.0E-07 64 1 241.66
53 1.0E+05 0.99 1.0E-07 1.0E-10 1.0E-07 256 5 431.50
54 1.0E+05 0.99 1.0E-04 1.0E-10 1.0E-13 256 5 440.89
55 1.0E-03 1.0E-04 1.0E-07 1.0E-10 1.0E-13 64 5 324.31
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56 1.0E-03 0.5 1.0E-04 1.0E-06 1.0E-07 128 5 431.41
57 1.0E-03 0.99 1 1.0E-10 1.0E-13 256 5 642.59
58 1.0E-03 0.5 1.0E-07 1.0E-10 1.0E-13 128 3 344.66
59 1.0E-03 0.5 1 1.0E-10 1.0E-07 128 3 322.63
60 1.0E+05 0.5 1.0E-07 1.0E-10 1.0E-07 128 3 284.52
61 1.0E-04 0.99 1 1.0E-02 1.0E-13 128 2 303.47
62 1.0E+05 0.99 1 1.0E-06 1.0E-07 128 3 274.47
63 1.0E-03 0.99 1 1.0E-02 1.0E-13 64 2 255.34
64 1.0E-03 0.99 1 1.0E-10 1.0E-13 64 4 283.37
65 1.0E+05 0.5 1.0E-04 1.0E-06 1.0E-01 64 1 224.47
66 1.0E+05 0.99 1 1.0E-10 1.0E-07 128 1 229.44
67 1.0E-03 0.5 1 1.0E-10 1.0E-01 64 5 296.20
68 1.0E-03 0.5 1.0E-04 1.0E-02 1.0E-01 128 1 265.39
69 1.0E-03 1.0E-04 1.0E-07 1.0E-02 1.0E-07 256 4 598.76
70 1.0E-03 0.5 1.0E-07 1.0E-02 1.0E-07 128 3 389.15
71 1.0E+05 1.0E-04 1.0E-04 1.0E-06 1.0E-07 64 2 284.83
72 1.0E+05 0.5 1.0E-04 1.0E-02 1.0E-07 64 4 320.17
73 1.0E+05 0.99 1.0E-04 1.0E-10 1.0E-07 128 2 306.29
74 1.0E+05 1.0E-04 1.0E-04 1.0E-02 1.0E-01 64 5 326.76
75 1.0E+05 0.99 1.0E-07 1.0E-02 1.0E-01 128 3 287.73
76 1.0E-03 0.99 1.0E-07 1.0E-10 1.0E-07 128 1 268.00
77 1.0E-04 1.0E-04 1.0E-04 1.0E-02 1.0E-07 64 5 333.20
78 1.0E-03 0.99 1.0E-04 1.0E-06 1.0E-13 64 2 260.62
79 1.0E-03 1.0E-04 1.0E-07 1.0E-10 1.0E-01 256 5 687.39
80 1.0E-03 0.99 1 1.0E-02 1.0E-01 128 3 336.08
81 1.0E-04 1.0E-04 1.0E-07 1.0E-06 1.0E-07 256 1 293.95
82 1.0E-03 0.99 1.0E-07 1.0E-10 1.0E-13 128 5 431.61
83 1.0E+05 0.99 1.0E-04 1.0E-06 1.0E-07 256 2 304.53
84 1.0E+05 1.0E-04 1 1.0E-02 1.0E-01 128 4 305.69
85 1.0E-03 0.99 1.0E-04 1.0E-06 1.0E-13 64 5 320.58
86 1.0E+05 0.99 1 1.0E-10 1.0E-07 128 5 313.68
87 1.0E-03 0.99 1.0E-07 1.0E-02 1.0E-01 64 2 254.19
88 1.0E+05 0.99 1 1.0E-02 1.0E-13 256 2 304.71
89 1.0E-04 0.5 1.0E-07 1.0E-02 1.0E-07 128 4 414.69
90 1.0E-03 0.5 1.0E-04 1.0E-10 1.0E-13 256 3 482.77
91 1.0E+05 0.99 1.0E-04 1.0E-02 1.0E-01 256 4 388.31
92 1.0E+05 0.5 1 1.0E-06 1.0E-01 64 3 245.65
93 1.0E-04 0.5 1 1.0E-10 1.0E-01 128 3 335.43
94 1.0E-04 0.99 1.0E-04 1.0E-10 1.0E-13 256 2 483.30
95 1.0E-04 0.99 1.0E-04 1.0E-02 1.0E-01 64 2 254.03
96 1.0E-03 0.99 1.0E-07 1.0E-10 1.0E-01 64 5 315.10
97 1.0E-04 1.0E-04 1 1.0E-02 1.0E-13 128 2 312.03
98 1.0E-03 1.0E-04 1.0E-04 1.0E-10 1.0E-07 256 3 492.36
99 1.0E-04 1.0E-04 1.0E-07 1.0E-06 1.0E-01 256 1 288.41
100 1.0E-03 0.5 1.0E-07 1.0E-10 1.0E-13 64 4 301.22

Table 62: All settings for the agents created in test 2

From the figures it can be concluded that the overshoot figures overall show a greater reward gained
in comparison to the other categories, ensuring that the focus should be on the overshoot figures. From
these values and the figures, it is determined that low and flat Q0 as well as the overshoot below rewards
category agents contains no discount factor of 0.99. The high and flat Q0 as well as the no Q0 categories
all have the accidental learning rate of 1e5. The undershoot category all have a discount factor of 0.5.
Finally, the overshoot agents all have a discount factor of 0.99. Hence, it is determined that, with the
knowledge of focusing on overshoot still, the discount factor should be higher. No other conclusions
are made from these tests.
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K.3 Third iteration

From the previous test, new settings have been defined in Table 63. Due to the shorter time these
tests take and the useful results, the number of agents will also be increased to 250 agents.

LR DF ϵ ϵm ϵd Neurons Hidden layers
1e-3 1e-4 1e-5 0.75, 0.875, 0.99 1e-7 1e-4 1 1e-13 1e-7 0.01 1e-10 1e-6 1e-2 64 128 256 1 to 5

Table 63: Range of values for second initialization hyperparameter test

In Table 66, the settings for these 250 agents are given. Based on the resulting graphs from
the training, being stable learning processes, in combination with the goal get a reward as high as
possible, the focus is on categorizing the behavior based on the average received rewards. Hence,
categories created are an increasing average reward, decreasing average reward and no increase, or flat,
average reward. Next to these three, graphs with higher fluctuations are put into a separate category,
called the others category. These are described in Figure 63.

(a) Increasing (b) Decreasing

(c) Flat (d) Others

Figure 63: Representation of different categories in test 3

Also, due to the high number of graphs that have an increase in average reward, subcategories are
created. The first subcategory is a the volatility in in the gained reward, where the wanted behavior
is having a high volatility, i.e. exploration, at the start of the learning process, while being lower at
the end. Secondly, a subcategory is defined to be based on the stabilized learning, based on Q0 and
the average received reward. The differences are shown in Figure 64.
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(a) high & stable (b) High & unstable

(c) Medium & stable (d) Medium & unstable

(e) Low & stable (f) Low & unstable

Figure 64: Representation of subcategories for increasing reward category
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Category Agents
Increasing reward 1 7 9 10 12 14 18 20 24 25 27 28 33 34 37 38 40

41 42 44 45 46 48 51 52 53 57 58 59 62 65 67 68
69 72 73 75 76 80 81 83 84 88 89 90 91 93 94 95
97 101 102 103 105 107 110 111 115 116 117 118
121 122 125 126 128 130 131 133 134 135 139 140
142 145 149 150 151 152 154 155 156 157 158 161
162 163 164 165 166 169 170 172 173 174 179 180
181 182 184 187 190 192 194 197 200 204 205 209
210 212 215 218 221 223 224 226 227 228 229 230
231 232 233 235 236 241 242 243 245 247 250

Decreasing reward 23 31 79 123 136
Flat 2 3 6 8 11 13 15 17 19 21 26 29 30 32 36 39 49

50 54 55 61 66 70 71 74 78 85 86 87 92 96 98 100
104 106 109 113 114 127 129 137 138 141 144 146
148 159 160 168 171 177 178 183 185 188 189 191
193 199 201 202 203 207 208 211 213 214 216 220
222 225 237 238 239 244 246 248 249

Others 4 5 16 22 35 43 47 56 60 63 77 82 99 108 112 119
120 124 132 143 147 153 167 175 176 186 195 196
198 206 217 219 234 240

Table 64: Overview of different categories and agents in test 3

The agents for the subcategories are defined in Table 65.

Category Agents
High & stable 12 14 25 33 37 72 73 75 88 111 115 133 155 163

184 215 236 241 250
High & unstable 28 40 64 89 101 131 145 161 192 197 245
Medium & stable 9 10 27 38 45 51 52 62 65 67 68 69 76 81 83 84

91 93 94 102 105 107 116 118 126 134 135 150
151 154 156 157 162 170 172 173 180 187 194 204
209 223 226 230 232 233 235 242

Medium & unstable 7 20 24 42 44 46 53 57 58 80 95 103 110 117 122
125 128 149 164 165 166 169 179 182 205 212 218
221 228 229 231

Low & stable 18 34 41 48 59 97 121 130 174 181 200 247
Low & unstable 1 90 139 140 142 152 158 190 210 224 227 243

Table 65: Overview of different categories and agents in test 3

It is concluded from this test that the agents with a single hidden layer do not perform up to
standard, as they show unwanted behavior such as slow increase in reward as well as receiving low
rewards. Also, due to the fact of keeping exploration high at the early stages, the epsilon should be
increased, should always be higher than the minimum epsilon, and at the end the minimum epsilon
should be reached. Hence, minimum epsilon should be decreased for it’s upper limit. Based on the
epsilon, new values for epsilon decay are calculated to ensure the epsilon is not lowered too fast or too
slow, in just a couple of episodes nearing 0 or always staying high around its own value. With these
new values, better results are expected.

Agent LR DF ϵ ϵd ϵm Neurons HL CT
1 1.0E-05 0.99 1.0E-07 1.0E-10 1.0E-13 64 3 271.21
2 1.0E-04 0.75 1 1.0E-06 1.0E-13 128 2 272.05
3 1.0E-05 0.99 1.0E-07 1.0E-02 1.0E-13 64 5 280.23
4 1.0E-05 0.875 1.0E-04 1.0E-10 1.0E-13 256 5 861.62
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5 1.0E-03 0.875 1.0E-07 1.0E-06 1.0E-13 64 4 293.39
6 1.0E-03 0.75 1.0E-07 1.0E-10 1.0E-13 64 3 286.62
7 1.0E-05 0.875 1.0E-07 1.0E-10 1.0E-01 256 2 419.34
8 1.0E-05 0.99 1 1.0E-10 1.0E-07 128 3 341.50
9 1.0E-04 0.99 1.0E-07 1.0E-06 1.0E-13 128 5 464.20
10 1.0E-04 0.875 1.0E-07 1.0E-06 1.0E-01 256 2 426.49
11 1.0E-04 0.99 1.0E-07 1.0E-06 1.0E-07 128 1 257.95
12 1.0E-05 0.875 1 1.0E-02 1.0E-01 64 4 297.95
13 1.0E-05 0.875 1 1.0E-10 1.0E-07 256 1 262.72
14 1.0E-05 0.875 1.0E-04 1.0E-02 1.0E-01 256 3 512.23
15 1.0E-05 0.875 1.0E-07 1.0E-06 1.0E-13 256 3 587.09
16 1.0E-03 0.75 1.0E-04 1.0E-02 1.0E-07 256 2 398.53
17 1.0E-05 0.99 1 1.0E-10 1.0E-01 256 4 703.72
18 1.0E-03 0.75 1 1.0E-02 1.0E-13 64 1 252.23
19 1.0E-05 0.99 1.0E-04 1.0E-06 1.0E-07 256 1 293.05
20 1.0E-04 0.75 1 1.0E-02 1.0E-01 128 1 251.87
21 1.0E-05 0.875 1.0E-04 1.0E-02 1.0E-13 128 1 254.04
22 1.0E-03 0.75 1.0E-07 1.0E-02 1.0E-13 128 3 337.55
23 1.0E-05 0.75 1.0E-04 1.0E-06 1.0E-13 64 2 253.31
24 1.0E-04 0.875 1.0E-07 1.0E-02 1.0E-13 256 4 797.21
25 1.0E-04 0.875 1 1.0E-02 1.0E-13 128 2 305.38
26 1.0E-05 0.75 1 1.0E-06 1.0E-01 128 4 372.94
27 1.0E-03 0.875 1.0E-04 1.0E-10 1.0E-01 256 3 471.35
28 1.0E-05 0.875 1.0E-07 1.0E-06 1.0E-01 128 4 383.49
29 1.0E-03 0.875 1.0E-07 1.0E-06 1.0E-13 64 4 296.11
30 1.0E-04 0.875 1 1.0E-10 1.0E-01 256 4 633.54
31 1.0E-05 0.75 1.0E-07 1.0E-10 1.0E-13 256 1 304.25
32 1.0E-04 0.75 1 1.0E-06 1.0E-13 256 1 277.23
33 1.0E-04 0.875 1.0E-07 1.0E-02 1.0E-07 64 4 310.58
34 1.0E-03 0.875 1.0E-07 1.0E-06 1.0E-01 128 1 262.53
35 1.0E-04 0.99 1.0E-04 1.0E-06 1.0E-13 64 4 314.04
36 1.0E-04 0.875 1.0E-04 1.0E-10 1.0E-07 64 3 279.28
37 1.0E-05 0.875 1.0E-07 1.0E-02 1.0E-13 64 5 327.09
38 1.0E-05 0.75 1.0E-04 1.0E-10 1.0E-13 256 2 484.78
39 1.0E-03 0.875 1 1.0E-06 1.0E-07 128 1 250.67
40 1.0E-04 0.99 1.0E-07 1.0E-02 1.0E-01 256 1 289.37
41 1.0E-05 0.75 1.0E-07 1.0E-10 1.0E-07 256 2 472.32
42 1.0E-03 0.99 1.0E-04 1.0E-02 1.0E-01 256 2 397.73
43 1.0E-05 0.75 1.0E-07 1.0E-06 1.0E-13 64 2 294.83
44 1.0E-04 0.875 1 1.0E-02 1.0E-07 256 1 334.71
45 1.0E-04 0.75 1 1.0E-02 1.0E-07 256 3 622.65
46 1.0E-05 0.875 1 1.0E-02 1.0E-01 256 5 910.81
47 1.0E-03 0.99 1.0E-04 1.0E-06 1.0E-07 64 4 301.57
48 1.0E-05 0.875 1.0E-07 1.0E-10 1.0E-13 128 3 359.64
49 1.0E-05 0.99 1.0E-07 1.0E-06 1.0E-01 128 1 246.41
50 1.0E-05 0.75 1.0E-04 1.0E-10 1.0E-13 128 4 387.34
51 1.0E-03 0.875 1.0E-07 1.0E-10 1.0E-01 256 4 573.83
52 1.0E-03 0.75 1.0E-07 1.0E-06 1.0E-07 64 5 327.02
53 1.0E-05 0.99 1 1.0E-02 1.0E-07 256 4 656.49
54 1.0E-04 0.875 1.0E-04 1.0E-02 1.0E-13 64 3 280.35
55 1.0E-05 0.875 1 1.0E-10 1.0E-13 128 1 235.55
56 1.0E-04 0.75 1.0E-07 1.0E-02 1.0E-13 256 3 637.95
57 1.0E-04 0.99 1.0E-04 1.0E-06 1.0E-07 128 5 474.38
58 1.0E-05 0.99 1.0E-04 1.0E-06 1.0E-01 256 5 790.79
59 1.0E-04 0.875 1.0E-04 1.0E-02 1.0E-13 128 2 316.88
60 1.0E-03 0.875 1.0E-07 1.0E-10 1.0E-07 64 2 258.73
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61 1.0E-03 0.99 1 1.0E-10 1.0E-13 64 1 230.87
62 1.0E-04 0.75 1.0E-04 1.0E-10 1.0E-07 256 4 769.78
63 1.0E-03 0.99 1.0E-04 1.0E-02 1.0E-07 256 4 573.54
64 1.0E-04 0.99 1.0E-07 1.0E-02 1.0E-07 64 5 332.82
65 1.0E-03 0.875 1.0E-07 1.0E-06 1.0E-07 256 2 393.66
66 1.0E-04 0.75 1 1.0E-10 1.0E-07 64 5 308.62
67 1.0E-05 0.75 1.0E-04 1.0E-02 1.0E-01 128 2 294.21
68 1.0E-03 0.75 1.0E-04 1.0E-02 1.0E-01 128 5 415.71
69 1.0E-03 0.875 1 1.0E-02 1.0E-13 128 3 332.45
70 1.0E-03 0.875 1 1.0E-06 1.0E-13 64 3 262.32
71 1.0E-04 0.99 1 1.0E-10 1.0E-13 64 1 223.21
72 1.0E-04 0.875 1 1.0E-02 1.0E-13 64 3 281.38
73 1.0E-04 0.75 1.0E-04 1.0E-06 1.0E-01 64 4 293.41
74 1.0E-03 0.99 1 1.0E-06 1.0E-01 256 2 373.42
75 1.0E-04 0.75 1.0E-04 1.0E-06 1.0E-01 256 2 436.15
76 1.0E-03 0.75 1.0E-04 1.0E-02 1.0E-01 64 3 276.35
77 1.0E-03 0.75 1.0E-07 1.0E-02 1.0E-01 64 1 239.14
78 1.0E-03 0.75 1.0E-07 1.0E-02 1.0E-07 256 1 314.53
79 1.0E-05 0.75 1 1.0E-06 1.0E-01 64 2 244.85
80 1.0E-03 0.99 1.0E-04 1.0E-02 1.0E-13 128 1 265.12
81 1.0E-03 0.75 1.0E-04 1.0E-06 1.0E-01 128 1 261.08
82 1.0E-04 0.99 1.0E-04 1.0E-06 1.0E-07 256 4 772.02
83 1.0E-03 0.875 1 1.0E-02 1.0E-01 256 5 654.99
84 1.0E-03 0.875 1.0E-04 1.0E-02 1.0E-13 64 5 322.35
85 1.0E-04 0.99 1 1.0E-06 1.0E-07 64 5 300.83
86 1.0E-05 0.875 1 1.0E-10 1.0E-13 64 4 286.59
87 1.0E-03 0.875 1 1.0E-06 1.0E-01 256 1 293.48
88 1.0E-04 0.875 1.0E-04 1.0E-06 1.0E-01 128 5 422.82
89 1.0E-05 0.875 1 1.0E-02 1.0E-01 128 3 335.82
90 1.0E-04 0.99 1.0E-07 1.0E-10 1.0E-13 256 1 298.31
91 1.0E-04 0.875 1.0E-07 1.0E-02 1.0E-13 64 5 324.47
92 1.0E-03 0.875 1 1.0E-10 1.0E-07 128 2 276.25
93 1.0E-05 0.75 1 1.0E-02 1.0E-07 64 4 290.45
94 1.0E-03 0.875 1 1.0E-02 1.0E-07 64 3 275.21
95 1.0E-04 0.875 1.0E-04 1.0E-02 1.0E-07 256 4 761.86
96 1.0E-05 0.99 1 1.0E-06 1.0E-13 128 4 381.03
97 1.0E-04 0.75 1.0E-04 1.0E-02 1.0E-07 128 1 255.25
98 1.0E-03 0.99 1 1.0E-10 1.0E-07 64 4 277.80
99 1.0E-03 0.99 1.0E-07 1.0E-06 1.0E-13 256 5 661.38
100 1.0E-03 0.875 1 1.0E-06 1.0E-01 64 5 297.91
101 1.0E-04 0.99 1 1.0E-02 1.0E-01 256 5 807.25
102 1.0E-05 0.75 1.0E-04 1.0E-02 1.0E-07 128 4 458.26
103 1.0E-03 0.99 1.0E-04 1.0E-06 1.0E-07 128 5 465.36
104 1.0E-04 0.875 1 1.0E-06 1.0E-13 64 3 307.96
105 1.0E-04 0.75 1.0E-07 1.0E-06 1.0E-01 128 5 407.99
106 1.0E-03 0.875 1 1.0E-06 1.0E-01 64 4 278.15
107 1.0E-03 0.875 1.0E-07 1.0E-02 1.0E-13 128 5 423.35
108 1.0E-03 0.875 1.0E-07 1.0E-02 1.0E-07 256 5 657.58
109 1.0E-03 0.875 1 1.0E-10 1.0E-07 256 5 619.60
110 1.0E-05 0.875 1.0E-04 1.0E-06 1.0E-07 256 2 413.64
111 1.0E-04 0.875 1.0E-04 1.0E-10 1.0E-01 64 2 250.10
112 1.0E-05 0.875 1.0E-07 1.0E-06 1.0E-07 128 2 305.74
113 1.0E-03 0.75 1 1.0E-10 1.0E-01 64 1 225.55
114 1.0E-05 0.75 1.0E-04 1.0E-06 1.0E-07 256 1 287.71
115 1.0E-04 0.875 1.0E-04 1.0E-02 1.0E-01 64 5 310.62
116 1.0E-03 0.75 1 1.0E-02 1.0E-13 128 2 297.11
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117 1.0E-04 0.75 1.0E-07 1.0E-02 1.0E-13 128 2 299.68
118 1.0E-05 0.75 1.0E-04 1.0E-06 1.0E-07 128 5 436.91
119 1.0E-05 0.99 1.0E-07 1.0E-10 1.0E-13 256 1 289.44
120 1.0E-04 0.875 1.0E-07 1.0E-02 1.0E-13 256 2 476.18
121 1.0E-04 0.75 1.0E-07 1.0E-10 1.0E-07 256 2 486.54
122 1.0E-04 0.875 1.0E-04 1.0E-10 1.0E-13 64 2 253.78
123 1.0E-04 0.75 1.0E-07 1.0E-06 1.0E-13 256 1 297.12
124 1.0E-05 0.99 1.0E-04 1.0E-06 1.0E-01 128 4 395.89
125 1.0E-04 0.875 1.0E-07 1.0E-02 1.0E-01 128 3 339.91
126 1.0E-05 0.875 1.0E-07 1.0E-06 1.0E-07 256 4 790.78
127 1.0E-03 0.99 1.0E-07 1.0E-02 1.0E-07 128 4 379.73
128 1.0E-03 0.99 1.0E-07 1.0E-02 1.0E-13 128 4 374.58
129 1.0E-05 0.875 1.0E-04 1.0E-10 1.0E-13 64 1 237.63
130 1.0E-04 0.875 1.0E-04 1.0E-02 1.0E-13 256 5 1036.75
131 1.0E-04 0.875 1.0E-04 1.0E-10 1.0E-07 64 5 325.25
132 1.0E-03 0.875 1.0E-07 1.0E-02 1.0E-13 64 5 325.73
133 1.0E-05 0.75 1.0E-07 1.0E-06 1.0E-07 256 3 616.15
134 1.0E-04 0.75 1 1.0E-02 1.0E-01 256 1 281.51
135 1.0E-03 0.75 1 1.0E-02 1.0E-07 64 2 261.24
136 1.0E-04 0.75 1.0E-07 1.0E-06 1.0E-01 64 1 239.55
137 1.0E-04 0.875 1 1.0E-06 1.0E-13 256 2 416.47
138 1.0E-04 0.875 1 1.0E-10 1.0E-01 64 2 244.80
139 1.0E-04 0.875 1.0E-04 1.0E-02 1.0E-01 64 1 236.37
140 1.0E-04 0.99 1.0E-04 1.0E-06 1.0E-13 64 2 255.60
141 1.0E-05 0.75 1 1.0E-06 1.0E-13 128 1 238.06
142 1.0E-05 0.99 1.0E-04 1.0E-10 1.0E-13 64 4 311.06
143 1.0E-04 0.75 1.0E-04 1.0E-10 1.0E-07 128 4 443.99
144 1.0E-03 0.99 1 1.0E-06 1.0E-13 256 5 634.18
145 1.0E-04 0.875 1.0E-04 1.0E-10 1.0E-01 64 1 231.14
146 1.0E-04 0.99 1 1.0E-06 1.0E-01 64 3 264.91
147 1.0E-05 0.99 1.0E-04 1.0E-06 1.0E-13 128 1 269.53
148 1.0E-03 0.75 1 1.0E-06 1.0E-01 256 4 538.12
149 1.0E-04 0.99 1 1.0E-02 1.0E-07 64 4 302.75
150 1.0E-04 0.75 1.0E-07 1.0E-02 1.0E-07 128 2 310.00
151 1.0E-03 0.75 1.0E-04 1.0E-06 1.0E-07 128 1 265.96
152 1.0E-05 0.99 1.0E-04 1.0E-06 1.0E-13 256 2 503.47
153 1.0E-05 0.75 1.0E-07 1.0E-06 1.0E-13 64 4 298.03
154 1.0E-03 0.75 1 1.0E-02 1.0E-07 256 4 573.69
155 1.0E-03 0.99 1.0E-04 1.0E-06 1.0E-07 64 5 322.68
156 1.0E-04 0.75 1.0E-04 1.0E-02 1.0E-01 256 2 420.75
157 1.0E-03 0.875 1.0E-07 1.0E-02 1.0E-13 256 2 401.28
158 1.0E-04 0.99 1.0E-04 1.0E-02 1.0E-13 64 4 320.67
159 1.0E-04 0.75 1.0E-07 1.0E-06 1.0E-13 64 3 294.98
160 1.0E-03 0.875 1 1.0E-06 1.0E-07 64 5 305.05
161 1.0E-05 0.75 1.0E-04 1.0E-02 1.0E-13 128 5 425.14
162 1.0E-04 0.75 1 1.0E-02 1.0E-01 64 5 352.25
163 1.0E-05 0.75 1.0E-04 1.0E-02 1.0E-01 256 3 593.94
164 1.0E-03 0.75 1.0E-07 1.0E-10 1.0E-13 64 5 377.02
165 1.0E-03 0.99 1.0E-04 1.0E-10 1.0E-07 256 5 697.00
166 1.0E-04 0.875 1.0E-07 1.0E-02 1.0E-07 128 3 362.86
167 1.0E-05 0.75 1.0E-04 1.0E-10 1.0E-01 128 2 306.49
168 1.0E-05 0.875 1.0E-07 1.0E-10 1.0E-01 256 2 420.97
169 1.0E-04 0.99 1.0E-04 1.0E-06 1.0E-01 256 3 520.48
170 1.0E-03 0.875 1.0E-04 1.0E-02 1.0E-01 256 4 556.01
171 1.0E-05 0.875 1.0E-04 1.0E-06 1.0E-13 128 1 253.96
172 1.0E-03 0.75 1.0E-07 1.0E-02 1.0E-07 256 1 313.94
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173 1.0E-03 0.875 1.0E-04 1.0E-02 1.0E-13 128 2 304.61
174 1.0E-03 0.875 1.0E-07 1.0E-02 1.0E-01 64 1 245.58
175 1.0E-04 0.99 1 1.0E-02 1.0E-13 64 2 258.71
176 1.0E-05 0.75 1.0E-04 1.0E-10 1.0E-13 64 5 326.66
177 1.0E-04 0.99 1.0E-04 1.0E-02 1.0E-07 128 1 264.59
178 1.0E-05 0.99 1.0E-07 1.0E-10 1.0E-07 64 1 234.92
179 1.0E-04 0.99 1.0E-04 1.0E-10 1.0E-13 128 5 455.25
180 1.0E-03 0.875 1 1.0E-02 1.0E-01 128 4 372.76
181 1.0E-04 0.875 1.0E-07 1.0E-02 1.0E-13 256 2 447.19
182 1.0E-04 0.99 1.0E-04 1.0E-06 1.0E-07 64 2 265.72
183 1.0E-03 0.99 1 1.0E-10 1.0E-07 256 2 369.75
184 1.0E-04 0.75 1.0E-04 1.0E-10 1.0E-01 128 4 375.65
185 1.0E-05 0.875 1 1.0E-06 1.0E-01 256 1 271.29
186 1.0E-04 0.75 1.0E-04 1.0E-02 1.0E-07 128 4 423.68
187 1.0E-03 0.75 1.0E-07 1.0E-06 1.0E-13 64 5 338.72
188 1.0E-05 0.75 1 1.0E-06 1.0E-07 128 3 334.96
189 1.0E-05 0.99 1.0E-04 1.0E-06 1.0E-01 64 3 280.59
190 1.0E-04 0.875 1.0E-04 1.0E-06 1.0E-07 256 2 465.34
191 1.0E-03 0.875 1 1.0E-10 1.0E-13 256 5 637.43
192 1.0E-04 0.99 1 1.0E-02 1.0E-13 256 2 439.62
193 1.0E-03 0.99 1 1.0E-06 1.0E-13 256 1 305.00
194 1.0E-03 0.875 1.0E-04 1.0E-06 1.0E-07 256 3 483.77
195 1.0E-04 0.75 1.0E-07 1.0E-02 1.0E-07 64 4 307.60
196 1.0E-03 0.75 1.0E-04 1.0E-02 1.0E-07 64 4 305.25
197 1.0E-05 0.875 1.0E-04 1.0E-06 1.0E-01 256 2 386.88
198 1.0E-05 0.875 1.0E-04 1.0E-06 1.0E-13 128 1 260.71
199 1.0E-03 0.75 1 1.0E-10 1.0E-13 256 1 300.81
200 1.0E-04 0.75 1.0E-07 1.0E-06 1.0E-01 128 1 261.81
201 1.0E-05 0.99 1.0E-04 1.0E-06 1.0E-01 128 2 293.98
202 1.0E-04 0.875 1.0E-04 1.0E-06 1.0E-07 128 1 264.58
203 1.0E-04 0.99 1 1.0E-02 1.0E-07 64 1 236.87
204 1.0E-05 0.75 1.0E-04 1.0E-10 1.0E-07 256 4 776.13
205 1.0E-03 0.875 1.0E-07 1.0E-06 1.0E-07 64 5 336.20
206 1.0E-05 0.99 1.0E-07 1.0E-02 1.0E-01 256 1 284.99
207 1.0E-03 0.75 1 1.0E-06 1.0E-13 256 4 544.60
208 1.0E-05 0.75 1 1.0E-06 1.0E-01 256 3 531.06
209 1.0E-04 0.99 1 1.0E-02 1.0E-07 256 4 649.17
210 1.0E-05 0.99 1.0E-07 1.0E-02 1.0E-13 256 5 1135.86
211 1.0E-03 0.75 1 1.0E-06 1.0E-13 64 3 270.21
212 1.0E-03 0.99 1.0E-07 1.0E-02 1.0E-07 64 4 307.23
213 1.0E-05 0.75 1 1.0E-06 1.0E-13 128 4 384.97
214 1.0E-03 0.875 1 1.0E-10 1.0E-01 128 1 270.56
215 1.0E-03 0.875 1.0E-07 1.0E-10 1.0E-07 256 4 575.55
216 1.0E-04 0.875 1 1.0E-10 1.0E-07 256 3 530.46
217 1.0E-05 0.99 1.0E-07 1.0E-02 1.0E-13 128 3 369.04
218 1.0E-05 0.99 1 1.0E-02 1.0E-01 128 3 338.27
219 1.0E-05 0.99 1.0E-04 1.0E-02 1.0E-01 64 5 330.10
220 1.0E-03 0.875 1 1.0E-10 1.0E-01 128 2 293.13
221 1.0E-03 0.99 1.0E-04 1.0E-10 1.0E-07 256 2 446.53
222 1.0E-03 0.99 1 1.0E-10 1.0E-01 64 1 275.27
223 1.0E-03 0.875 1.0E-04 1.0E-06 1.0E-13 128 2 355.96
224 1.0E-04 0.99 1.0E-07 1.0E-10 1.0E-13 256 3 696.67
225 1.0E-03 0.99 1 1.0E-06 1.0E-01 64 1 236.15
226 1.0E-04 0.875 1 1.0E-02 1.0E-01 256 1 285.11
227 1.0E-04 0.75 1.0E-07 1.0E-06 1.0E-07 64 4 317.13
228 1.0E-03 0.875 1.0E-04 1.0E-06 1.0E-13 64 1 247.62
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229 1.0E-04 0.99 1 1.0E-02 1.0E-07 256 2 441.71
230 1.0E-03 0.875 1.0E-04 1.0E-10 1.0E-01 256 2 383.40
231 1.0E-04 0.99 1.0E-04 1.0E-06 1.0E-01 256 4 663.00
232 1.0E-03 0.75 1.0E-04 1.0E-10 1.0E-01 256 2 395.33
233 1.0E-04 0.875 1.0E-07 1.0E-10 1.0E-01 128 1 257.58
234 1.0E-03 0.99 1.0E-04 1.0E-06 1.0E-13 64 1 250.32
235 1.0E-04 0.875 1.0E-04 1.0E-06 1.0E-01 128 2 297.33
236 1.0E-04 0.875 1.0E-07 1.0E-06 1.0E-01 64 5 310.79
237 1.0E-05 0.75 1 1.0E-06 1.0E-01 64 5 307.36
238 1.0E-04 0.99 1 1.0E-06 1.0E-01 128 2 290.46
239 1.0E-05 0.75 1.0E-07 1.0E-02 1.0E-13 256 2 516.44
240 1.0E-05 0.875 1.0E-07 1.0E-02 1.0E-01 128 1 255.69
241 1.0E-03 0.75 1.0E-07 1.0E-02 1.0E-07 64 5 321.81
242 1.0E-03 0.75 1 1.0E-02 1.0E-13 64 5 314.74
243 1.0E-03 0.875 1.0E-04 1.0E-10 1.0E-13 256 1 324.15
244 1.0E-05 0.99 1 1.0E-06 1.0E-13 128 1 239.38
245 1.0E-04 0.99 1.0E-07 1.0E-10 1.0E-01 256 5 768.07
246 1.0E-05 0.875 1 1.0E-06 1.0E-07 256 1 272.28
247 1.0E-05 0.875 1.0E-07 1.0E-10 1.0E-13 256 5 1068.44
248 1.0E-05 0.99 1.0E-07 1.0E-10 1.0E-07 64 2 268.14
249 1.0E-05 0.75 1.0E-07 1.0E-02 1.0E-01 256 1 283.13
250 1.0E-03 0.875 1.0E-04 1.0E-10 1.0E-13 256 4 588.08

Table 66: All settings for the agents created in test 3

K.4 Fourth iteration

the new settings are shown in Table 67.

LR DF ϵ ϵm ϵd Neurons Hidden layers
1e-3 1e-4 1e-5 0.75, 0.875, 0.99 0.1 0.5 1 1e-13 1e-7 0.01 1e-3 5e-4 1e-4 64 128 256 3 to 5

Table 67: Possible values fourth initialization hyperparameter test

With these settings a lot more consistency is found. Again categorizing the graphs, into 5 categories
this time. The categories are done learning (meaning flat Q0 on same level as average reward gained),
a flat Q0 above the gained rewards, a flat Q0 below the gained rewards, Q0 that is still high with
increasing rewards and others. Figure 65 shows a training graph per category.
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(a) done (b) flat Q0 ≻ reward (c) flat Q0 ≺ reward

(d) Q0 high (e) Others

Figure 65: Representation of different categories in test 4

When categorizing and looking at the different parameters, given in Table 69 and the categorized
agents in Table 68, the first category shows that most of these graphs have a ϵd of 0.1, indicating
little exploration, hence not learning. The second category is found to have a discount factor of 0.99
with a learning rate of 1e-3, considering the category, that means that it learns to quickly and is
overestimating the Q0 values. The third category shows a discount factor of 0.75, which is the lowest.
The category means that the the agent is underestimating the Q0 values. The fourth category shows
that a high discount factor, being 0.99, shows that the agent is able to estimate the rewards better as
well as still increasing the average reward. The others category shows lower learning rates with lower
discount factors, making the learning behavior unpredictable, thus not being able to really place them
into a category.
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Category Agents
Low & flat Q0 10 13 14 16 20 24 27 30 35 36 39 41 46 50 55 56 69 77 79 81 90 98
High & flat Q0 5 11 17 21 32 42 49 65 71 73 83 88

Overshoot 4 6 8 12 15 22 33 34 52 57 61 63 64 76 78 80 82 85 87 94 95 96
No Q0 found 40 48 51 62 84 86 92

Overshoot (2) below reward 2 25 29 59 67 68 70 93 97 99 100
Spikes 1 3 5 7 18 19 26 28 37 43 44 45 53 54 60 66 72 74 91

Undershoot/instant decrease 9 23 31 38 47 58 89

Table 68: Overview of different categories and agents in test 2

Agent LR DF ϵ ϵd ϵm Neurons HL CT
1 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 64 4 260.17
2 1.0E-05 0.99 1 1.0E-04 1.0E-13 256 4 583.30
3 1.0E-04 0.875 1 5.0E-04 1.0E-02 256 5 746.72
4 1.0E-04 0.75 1 1.0E-04 1.0E-02 64 3 263.03
5 1.0E-03 0.75 1 5.0E-04 1.0E-13 256 5 663.70
6 1.0E-04 0.75 0.1 1.0E-03 1.0E-07 64 3 257.79
7 1.0E-05 0.99 1 5.0E-04 1.0E-07 64 3 257.64
8 1.0E-03 0.75 0.5 1.0E-04 1.0E-02 256 4 540.61
9 1.0E-03 0.75 0.1 1.0E-03 1.0E-13 256 5 662.32
10 1.0E-05 0.75 1 1.0E-03 1.0E-13 256 5 983.54
11 1.0E-05 0.75 0.1 1.0E-03 1.0E-02 256 3 562.19
12 1.0E-03 0.875 0.1 1.0E-03 1.0E-02 256 3 461.01
13 1.0E-03 0.875 1 5.0E-04 1.0E-02 128 4 363.32
14 1.0E-04 0.99 0.1 1.0E-04 1.0E-02 64 5 293.11
15 1.0E-05 0.875 0.1 1.0E-03 1.0E-13 256 5 892.80
16 1.0E-03 0.99 0.5 1.0E-03 1.0E-02 256 3 449.66
17 1.0E-04 0.75 0.1 1.0E-04 1.0E-02 64 4 277.11
18 1.0E-04 0.875 1 5.0E-04 1.0E-02 256 5 786.16
19 1.0E-04 0.875 0.1 5.0E-04 1.0E-07 128 3 327.76
20 1.0E-03 0.75 0.1 1.0E-03 1.0E-13 256 3 458.55
21 1.0E-03 0.75 1 1.0E-03 1.0E-13 128 3 324.59
22 1.0E-04 0.99 1 5.0E-04 1.0E-13 256 3 542.60
23 1.0E-05 0.875 0.5 1.0E-03 1.0E-13 128 4 372.59
24 1.0E-04 0.875 1 1.0E-03 1.0E-13 256 3 514.57
25 1.0E-05 0.99 1 1.0E-03 1.0E-07 64 5 303.48
26 1.0E-04 0.99 0.5 1.0E-03 1.0E-02 256 3 523.42
27 1.0E-05 0.875 0.1 1.0E-03 1.0E-13 64 4 279.97
28 1.0E-04 0.75 1 1.0E-04 1.0E-13 64 4 282.35
29 1.0E-04 0.875 1 1.0E-04 1.0E-13 64 4 282.15
30 1.0E-05 0.99 1 1.0E-03 1.0E-02 64 5 303.15
31 1.0E-04 0.875 1 1.0E-03 1.0E-02 256 3 525.19
32 1.0E-04 0.99 0.1 1.0E-03 1.0E-02 256 3 512.28
33 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 128 3 345.44
34 1.0E-03 0.875 0.5 5.0E-04 1.0E-07 128 3 321.96
35 1.0E-04 0.99 0.5 5.0E-04 1.0E-02 128 5 422.29
36 1.0E-05 0.75 1 1.0E-03 1.0E-13 256 5 833.08
37 1.0E-03 0.99 0.5 1.0E-03 1.0E-02 64 4 282.32
38 1.0E-03 0.75 0.1 1.0E-03 1.0E-13 128 5 400.20
39 1.0E-04 0.75 0.5 1.0E-03 1.0E-02 128 3 327.14
40 1.0E-03 0.875 0.5 5.0E-04 1.0E-13 256 5 641.49
41 1.0E-03 0.75 0.5 5.0E-04 1.0E-13 64 3 264.73
42 1.0E-05 0.99 0.1 5.0E-04 1.0E-02 256 3 533.83
43 1.0E-03 0.875 0.5 1.0E-03 1.0E-07 64 5 303.96
44 1.0E-05 0.75 0.5 1.0E-04 1.0E-07 256 4 715.71
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45 1.0E-05 0.99 1 1.0E-04 1.0E-13 128 5 424.06
46 1.0E-04 0.875 1 1.0E-04 1.0E-02 128 5 430.39
47 1.0E-03 0.99 0.1 5.0E-04 1.0E-13 64 4 284.63
48 1.0E-03 0.875 0.5 5.0E-04 1.0E-13 128 4 387.91
49 1.0E-04 0.875 0.5 1.0E-04 1.0E-13 64 4 282.37
50 1.0E-04 0.75 0.5 1.0E-04 1.0E-07 128 4 363.44
51 1.0E-03 0.875 0.1 1.0E-03 1.0E-13 128 3 324.23
52 1.0E-05 0.875 0.1 1.0E-04 1.0E-13 128 3 325.02
53 1.0E-04 0.99 1 1.0E-03 1.0E-02 64 5 298.15
54 1.0E-04 0.875 0.1 1.0E-04 1.0E-02 256 3 520.92
55 1.0E-05 0.75 0.1 5.0E-04 1.0E-13 128 4 369.55
56 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 128 4 368.61
57 1.0E-04 0.75 1 5.0E-04 1.0E-02 256 3 536.03
58 1.0E-03 0.99 1 1.0E-03 1.0E-13 256 3 459.69
59 1.0E-03 0.75 0.1 1.0E-04 1.0E-13 128 4 370.61
60 1.0E-05 0.99 1 1.0E-04 1.0E-02 128 3 324.33
61 1.0E-03 0.875 1 1.0E-03 1.0E-07 64 4 285.81
62 1.0E-04 0.99 1 1.0E-04 1.0E-02 128 3 328.71
63 1.0E-05 0.875 0.1 5.0E-04 1.0E-13 128 4 415.57
64 1.0E-05 0.75 1 1.0E-03 1.0E-13 128 4 424.55
65 1.0E-05 0.75 1 5.0E-04 1.0E-07 256 4 797.84
66 1.0E-05 0.99 0.1 1.0E-03 1.0E-13 128 3 338.12
67 1.0E-05 0.75 1 5.0E-04 1.0E-07 256 5 821.77
68 1.0E-05 0.99 1 1.0E-03 1.0E-13 128 3 329.06
69 1.0E-04 0.99 0.1 1.0E-03 1.0E-02 256 5 791.45
70 1.0E-04 0.875 1 1.0E-03 1.0E-02 64 5 312.69
71 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 64 5 314.16
72 1.0E-04 0.75 0.1 1.0E-03 1.0E-13 64 3 266.23
73 1.0E-03 0.99 0.1 1.0E-03 1.0E-02 256 5 629.46
74 1.0E-05 0.875 1 1.0E-03 1.0E-13 128 5 424.75
75 1.0E-05 0.75 0.1 5.0E-04 1.0E-02 256 4 741.87
76 1.0E-03 0.75 0.5 5.0E-04 1.0E-13 64 3 266.68
77 1.0E-05 0.75 1 5.0E-04 1.0E-07 128 5 416.65
78 1.0E-05 0.99 1 1.0E-04 1.0E-07 256 3 512.75
79 1.0E-04 0.75 0.1 1.0E-04 1.0E-13 256 4 607.30
80 1.0E-03 0.75 0.5 1.0E-03 1.0E-02 64 5 308.08
81 1.0E-03 0.75 0.5 1.0E-04 1.0E-13 64 4 284.28
82 1.0E-04 0.75 0.1 1.0E-04 1.0E-07 64 5 309.91
83 1.0E-03 0.875 1 5.0E-04 1.0E-13 64 5 303.25
84 1.0E-04 0.75 0.5 1.0E-03 1.0E-07 256 3 534.46
85 1.0E-05 0.75 0.5 1.0E-04 1.0E-13 256 3 519.87
86 1.0E-05 0.75 0.1 1.0E-04 1.0E-13 256 3 546.22
87 1.0E-03 0.75 0.1 1.0E-04 1.0E-02 64 4 284.51
88 1.0E-05 0.75 0.1 1.0E-03 1.0E-07 64 5 311.72
89 1.0E-04 0.75 1 1.0E-03 1.0E-13 128 5 421.91
90 1.0E-04 0.99 0.5 1.0E-04 1.0E-07 256 5 682.32
91 1.0E-05 0.99 0.1 1.0E-03 1.0E-07 128 4 384.14
92 1.0E-04 0.875 1 1.0E-03 1.0E-07 64 5 307.44
93 1.0E-04 0.99 0.1 1.0E-04 1.0E-02 128 3 336.62
94 1.0E-05 0.99 0.1 1.0E-04 1.0E-07 128 4 387.65
95 1.0E-04 0.99 0.5 1.0E-03 1.0E-07 64 3 260.96
96 1.0E-04 0.875 0.1 1.0E-04 1.0E-02 128 3 324.52
97 1.0E-03 0.99 1 1.0E-04 1.0E-02 256 5 632.16
98 1.0E-04 0.875 1 1.0E-03 1.0E-13 256 4 686.43
99 1.0E-04 0.75 1 1.0E-04 1.0E-02 256 4 631.40
100 1.0E-04 0.875 0.1 1.0E-03 1.0E-07 64 4 289.00
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101 1.0E-03 0.99 0.1 1.0E-03 1.0E-07 256 4 545.23
102 1.0E-04 0.99 0.5 1.0E-04 1.0E-02 128 5 421.98
103 1.0E-03 0.99 0.1 1.0E-03 1.0E-07 256 4 534.01
104 1.0E-05 0.99 0.5 5.0E-04 1.0E-13 128 4 381.64
105 1.0E-05 0.875 0.1 1.0E-04 1.0E-07 64 3 267.17
106 1.0E-05 0.75 1 1.0E-04 1.0E-13 256 3 544.75
107 1.0E-04 0.99 0.5 1.0E-03 1.0E-02 256 5 784.59
108 1.0E-05 0.99 0.5 1.0E-03 1.0E-02 64 4 282.71
109 1.0E-04 0.875 0.5 1.0E-04 1.0E-02 256 4 603.84
110 1.0E-03 0.75 0.1 1.0E-03 1.0E-02 256 3 473.43
111 1.0E-04 0.875 0.1 1.0E-04 1.0E-13 64 4 293.25
112 1.0E-04 0.75 0.5 5.0E-04 1.0E-13 64 4 285.66
113 1.0E-03 0.75 0.1 5.0E-04 1.0E-13 64 4 291.09
114 1.0E-04 0.75 0.5 1.0E-03 1.0E-02 128 4 405.15
115 1.0E-05 0.75 0.1 1.0E-04 1.0E-07 256 4 768.17
116 1.0E-03 0.875 0.5 1.0E-03 1.0E-02 64 4 330.94
117 1.0E-04 0.75 0.5 1.0E-04 1.0E-07 64 4 320.23
118 1.0E-03 0.875 0.1 1.0E-03 1.0E-07 64 4 291.22
119 1.0E-03 0.875 0.5 1.0E-03 1.0E-07 256 4 543.75
120 1.0E-04 0.75 0.1 5.0E-04 1.0E-07 64 4 287.60
121 1.0E-05 0.75 1 1.0E-04 1.0E-07 256 3 544.81
122 1.0E-04 0.75 0.1 5.0E-04 1.0E-02 256 4 639.79
123 1.0E-03 0.75 0.5 1.0E-03 1.0E-13 256 3 469.77
124 1.0E-05 0.875 0.5 5.0E-04 1.0E-07 128 4 372.99
125 1.0E-04 0.875 0.1 1.0E-04 1.0E-07 128 3 338.70
126 1.0E-03 0.99 1 1.0E-03 1.0E-13 128 5 405.66
127 1.0E-04 0.75 1 1.0E-03 1.0E-13 128 3 337.72
128 1.0E-05 0.75 0.1 1.0E-04 1.0E-13 128 3 332.93
129 1.0E-04 0.99 0.5 1.0E-03 1.0E-02 128 3 331.52
130 1.0E-04 0.875 0.5 1.0E-04 1.0E-07 128 5 428.26
131 1.0E-03 0.75 1 1.0E-03 1.0E-13 256 5 660.70
132 1.0E-05 0.75 1 1.0E-03 1.0E-07 256 4 730.45
133 1.0E-04 0.75 0.1 1.0E-03 1.0E-02 256 4 644.99
134 1.0E-03 0.875 1 1.0E-04 1.0E-07 256 3 460.47
135 1.0E-05 0.99 0.5 5.0E-04 1.0E-13 64 5 313.71
136 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 128 3 339.05
137 1.0E-05 0.875 0.1 1.0E-04 1.0E-07 256 5 829.90
138 1.0E-05 0.875 0.1 1.0E-03 1.0E-07 64 3 267.05
139 1.0E-04 0.875 1 5.0E-04 1.0E-02 128 4 383.96
140 1.0E-05 0.75 1 5.0E-04 1.0E-13 128 3 334.26
141 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 256 3 503.19
142 1.0E-05 0.875 0.1 1.0E-03 1.0E-07 128 4 369.96
143 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 256 3 554.04
144 1.0E-03 0.99 0.5 1.0E-03 1.0E-13 256 5 636.49
145 1.0E-05 0.99 0.5 1.0E-04 1.0E-13 256 5 880.30
146 1.0E-05 0.875 0.1 1.0E-04 1.0E-13 128 5 440.52
147 1.0E-05 0.75 1 1.0E-03 1.0E-02 256 4 729.13
148 1.0E-03 0.75 0.1 1.0E-04 1.0E-02 64 4 288.47
149 1.0E-03 0.875 0.1 1.0E-04 1.0E-07 128 5 411.96
150 1.0E-04 0.875 0.5 1.0E-03 1.0E-13 64 4 289.38
151 1.0E-05 0.99 1 1.0E-04 1.0E-02 128 3 335.17
152 1.0E-04 0.875 1 5.0E-04 1.0E-13 256 4 671.41
153 1.0E-04 0.75 1 1.0E-04 1.0E-13 128 3 346.97
154 1.0E-04 0.875 1 1.0E-04 1.0E-02 256 3 513.59
155 1.0E-05 0.75 0.5 1.0E-04 1.0E-02 128 5 444.69
156 1.0E-04 0.99 0.1 5.0E-04 1.0E-13 64 5 307.73
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157 1.0E-04 0.75 0.5 1.0E-03 1.0E-07 64 3 268.17
158 1.0E-03 0.875 1 5.0E-04 1.0E-07 256 4 560.04
159 1.0E-05 0.875 1 5.0E-04 1.0E-02 256 4 674.09
160 1.0E-03 0.99 1 1.0E-03 1.0E-13 64 5 310.34
161 1.0E-03 0.875 1 5.0E-04 1.0E-07 256 3 483.51
162 1.0E-04 0.99 1 5.0E-04 1.0E-13 128 4 394.89
163 1.0E-05 0.875 1 5.0E-04 1.0E-07 256 3 559.72
164 1.0E-03 0.75 0.1 1.0E-03 1.0E-07 128 5 451.64
165 1.0E-03 0.875 1 5.0E-04 1.0E-02 128 3 378.45
166 1.0E-05 0.99 0.5 5.0E-04 1.0E-13 256 5 996.24
167 1.0E-05 0.875 0.1 1.0E-03 1.0E-07 256 3 538.31
168 1.0E-03 0.99 0.5 1.0E-03 1.0E-07 128 4 370.59
169 1.0E-03 0.99 1 5.0E-04 1.0E-02 64 5 304.21
170 1.0E-04 0.75 1 1.0E-03 1.0E-02 64 5 310.60
171 1.0E-04 0.75 1 5.0E-04 1.0E-13 128 4 395.54
172 1.0E-05 0.75 1 1.0E-04 1.0E-13 64 4 290.54
173 1.0E-05 0.875 0.5 1.0E-03 1.0E-07 256 5 802.67
174 1.0E-03 0.99 1 5.0E-04 1.0E-07 64 3 274.59
175 1.0E-05 0.875 0.1 5.0E-04 1.0E-02 128 5 424.70
176 1.0E-04 0.99 0.1 1.0E-03 1.0E-02 64 5 322.50
177 1.0E-03 0.75 0.1 5.0E-04 1.0E-07 256 3 482.50
178 1.0E-05 0.75 1 1.0E-04 1.0E-02 256 3 587.41
179 1.0E-03 0.875 0.1 1.0E-04 1.0E-02 64 3 275.45
180 1.0E-03 0.99 0.1 1.0E-04 1.0E-02 128 3 335.23
181 1.0E-03 0.75 0.5 1.0E-04 1.0E-07 128 3 330.99
182 1.0E-03 0.99 1 1.0E-03 1.0E-13 64 4 290.07
183 1.0E-03 0.875 0.5 1.0E-04 1.0E-07 128 3 328.61
184 1.0E-03 0.875 0.1 1.0E-04 1.0E-13 64 3 273.81
185 1.0E-05 0.75 0.1 1.0E-04 1.0E-07 128 3 349.75
186 1.0E-03 0.99 1 1.0E-04 1.0E-13 64 3 269.58
187 1.0E-05 0.75 0.5 1.0E-03 1.0E-07 64 5 320.96
188 1.0E-05 0.99 0.1 1.0E-03 1.0E-02 128 4 402.10
189 1.0E-05 0.75 0.1 5.0E-04 1.0E-07 256 4 767.26
190 1.0E-05 0.875 0.5 1.0E-03 1.0E-02 256 3 606.15
191 1.0E-04 0.99 0.5 1.0E-04 1.0E-07 256 3 555.26
192 1.0E-03 0.875 0.5 1.0E-03 1.0E-13 64 5 321.58
193 1.0E-04 0.99 0.1 1.0E-04 1.0E-07 64 5 318.34
194 1.0E-04 0.75 1 5.0E-04 1.0E-13 64 4 290.46
195 1.0E-05 0.875 1 1.0E-04 1.0E-07 128 5 464.11
196 1.0E-05 0.99 0.5 1.0E-03 1.0E-13 64 5 310.88
197 1.0E-03 0.75 1 1.0E-04 1.0E-07 64 5 305.59
198 1.0E-05 0.99 1 1.0E-03 1.0E-13 128 4 406.50
199 1.0E-03 0.75 0.1 5.0E-04 1.0E-02 256 4 578.96
200 1.0E-03 0.99 0.1 1.0E-04 1.0E-13 128 5 428.04
201 1.0E-04 0.99 0.5 1.0E-03 1.0E-02 64 5 310.88
202 1.0E-04 0.99 0.5 1.0E-04 1.0E-02 64 5 308.77
203 1.0E-04 0.875 0.5 5.0E-04 1.0E-02 64 5 305.85
204 1.0E-04 0.75 1 1.0E-04 1.0E-07 256 4 707.49
205 1.0E-03 0.75 0.5 1.0E-04 1.0E-02 128 5 425.98
206 1.0E-03 0.75 1 5.0E-04 1.0E-07 256 5 681.94
207 1.0E-04 0.99 0.1 1.0E-04 1.0E-07 256 5 777.83
208 1.0E-04 0.75 0.5 1.0E-03 1.0E-13 256 3 572.76
209 1.0E-04 0.875 0.5 5.0E-04 1.0E-02 64 3 270.04
210 1.0E-05 0.875 0.1 5.0E-04 1.0E-13 64 4 283.88
211 1.0E-04 0.75 0.5 1.0E-04 1.0E-02 128 5 451.48
212 1.0E-04 0.99 1 1.0E-04 1.0E-13 256 4 680.08
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213 1.0E-04 0.75 0.1 1.0E-03 1.0E-02 256 3 530.31
214 1.0E-05 0.99 0.1 1.0E-03 1.0E-02 64 3 277.73
215 1.0E-05 0.75 1 1.0E-04 1.0E-02 128 5 450.31
216 1.0E-05 0.875 0.5 1.0E-03 1.0E-13 256 3 570.63
217 1.0E-05 0.75 1 1.0E-03 1.0E-02 256 5 892.16
218 1.0E-03 0.75 1 1.0E-03 1.0E-02 64 3 325.64
219 1.0E-05 0.75 0.5 1.0E-03 1.0E-13 64 3 318.56
220 1.0E-03 0.99 0.5 1.0E-04 1.0E-13 128 5 453.51
221 1.0E-04 0.99 0.1 1.0E-03 1.0E-02 64 4 288.39
222 1.0E-04 0.75 0.5 5.0E-04 1.0E-07 64 5 328.56
223 1.0E-05 0.99 1 1.0E-04 1.0E-07 64 3 272.50
224 1.0E-05 0.99 1 1.0E-04 1.0E-13 64 3 277.99
225 1.0E-04 0.99 1 5.0E-04 1.0E-02 256 4 696.82
226 1.0E-03 0.75 1 1.0E-04 1.0E-02 256 4 563.93
227 1.0E-05 0.875 1 1.0E-04 1.0E-07 256 4 710.89
228 1.0E-04 0.875 0.1 5.0E-04 1.0E-13 64 3 272.83
229 1.0E-03 0.75 0.5 1.0E-04 1.0E-13 64 3 272.12
230 1.0E-05 0.875 0.1 5.0E-04 1.0E-02 64 4 287.60
231 1.0E-05 0.75 0.5 1.0E-04 1.0E-13 64 4 293.08
232 1.0E-05 0.75 1 1.0E-04 1.0E-02 128 3 359.79
233 1.0E-05 0.75 1 1.0E-03 1.0E-07 128 4 403.45
234 1.0E-04 0.875 1 1.0E-03 1.0E-02 64 5 309.00
235 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 64 3 277.21
236 1.0E-03 0.75 0.1 5.0E-04 1.0E-13 256 3 494.33
237 1.0E-05 0.75 0.5 5.0E-04 1.0E-02 64 4 293.83
238 1.0E-05 0.875 0.1 5.0E-04 1.0E-02 256 5 924.44
239 1.0E-04 0.875 1 5.0E-04 1.0E-07 64 5 321.40
240 1.0E-05 0.875 0.1 1.0E-03 1.0E-02 128 3 360.94
241 1.0E-03 0.875 0.5 5.0E-04 1.0E-07 256 4 574.62
242 1.0E-03 0.75 0.5 1.0E-04 1.0E-02 64 5 311.10
243 1.0E-04 0.875 1 1.0E-03 1.0E-02 128 4 409.63
244 1.0E-04 0.75 0.5 5.0E-04 1.0E-13 256 5 910.58
245 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 128 3 361.25
246 1.0E-05 0.75 0.5 1.0E-04 1.0E-07 64 3 275.54
247 1.0E-03 0.99 0.1 1.0E-04 1.0E-13 256 4 577.54
248 1.0E-04 0.99 0.1 1.0E-04 1.0E-02 128 3 366.20
249 1.0E-04 0.875 0.1 5.0E-04 1.0E-13 256 5 809.21
250 1.0E-05 0.75 1 1.0E-04 1.0E-02 128 4 410.73

Table 69: All settings for the agents created in test 4
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K.5 fifth iteration

Again new settings are defined in Table 70. Due to the converge, now only 324 possible combinations
are left. Hence, this is the final iteration that only uses the initialization phase.

LR DF ϵ ϵm ϵd Neurons Hidden layers
1e-4 1e-5 0.99 0.1 0.5 1 1e-13 1e-7 0.01 5e-4 1e-4 64 128 256 3 to 5

Table 70: Possible values fifth initialization hyperparameter test

For this iteration, again five categories were defined, depicted in Figure 66. The categories are
agents that are less stable but have an increasing reward, little exploration, no increase in average
reward, stable and and unstable. From the figures it is found that they can be categorized. However,
it can be seen that the categories become closer together and less recognizable. Hence, for the next
test the full training will be done.

(a) Less stable (b) Little exploration (c) No increase

(d) Stable (e) Unstable

Figure 66: Representation of different categories in test 5

The categorized agents are given in Table 71 and the specific values for the agents are given in
Table 53. The agents with a less stable increase in reward have a higher learning rate, with low ϵ, while
the agents with little exploration have a low learning rate with a higher ϵ decay rate. Although some
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conclusions can be made out of these tests, it is hard to really define what works and what doesn’t.
A lower epsilon decay is chosen to increase the exploration early on, which is the only change for the
next test, while increasing the number of episodes.

Category Agents
Less stable 8 10 14 15 16 18 19 21 22 23 26 36 39 42 44 48 50 51 54 59 67 69 72 74 76 77

81 82 86 89 91 92 94 95 96 97 99 101 102 105 107 114 119 120 121 126 135
137 153 157 166 172 184 187 199 205 212 214 218 221 222 229 230 233 235
238 245 248

Little exploration 9 100 103 106 111 124 127 136 158 183 198 202 224 237 247
No increase 411 12 13 24 28 33 34 35 40 49 52 56 58 60 64 68 70 71 78 90 104 109 110

112 113 116 117 118 122 123 125 128 131 138 139 140 142 143 150 156 159
160 161 165 171 175 177 178 180 182 185 186 190 193 196 201 203 204 210
211 217 225 228 232 236 244 246 249

Stable 3 5 6 7 17 25 27 37 38 41 46 47 65 84 108 132 146 149 151 152 155 168 174
176 179 181 191 200 207 219 223 239

Unstable 1 2 4 20 29 30 31 32 43 45 53 55 57 61 62 63 66 73 75 79 80 83 85 87 88 93 98
115 129 130 133 134 141 144 145 147 148 154 162 163 164 167 169 170 173
188 189 192 194 195 197 206 208 209 213 215 216 220 226 227 231 234 240
241 242 243 250

Table 71: Overview of different categories and agents in test 2

Agent LR DF ϵ ϵd ϵm Neurons HL CT
1 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 64 4 290.82
2 1.0E-05 0.99 0.5 1.0E-04 1.0E-13 128 3 347.41
3 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 128 4 402.14
4 1.0E-05 0.99 0.1 5.0E-04 1.0E-07 64 5 316.36
5 1.0E-05 0.99 0.5 5.0E-04 1.0E-13 64 5 295.87
6 1.0E-04 0.99 1 5.0E-04 1.0E-13 256 5 737.68
7 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 128 4 390.70
8 1.0E-04 0.99 0.1 5.0E-04 1.0E-13 128 4 370.15
9 1.0E-05 0.99 1 5.0E-04 1.0E-13 128 4 388.46
10 1.0E-04 0.99 0.1 1.0E-04 1.0E-02 256 4 618.11
11 1.0E-04 0.99 0.5 1.0E-04 1.0E-02 64 3 265.26
12 1.0E-05 0.99 1 5.0E-04 1.0E-13 128 3 359.49
13 1.0E-04 0.99 0.5 5.0E-04 1.0E-02 64 4 280.56
14 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 128 3 337.01
15 1.0E-04 0.99 0.1 1.0E-04 1.0E-13 64 5 300.25
16 1.0E-04 0.99 1 5.0E-04 1.0E-02 64 5 306.63
17 1.0E-05 0.99 1 5.0E-04 1.0E-07 256 5 822.30
18 1.0E-04 0.99 0.1 5.0E-04 1.0E-07 256 4 681.41
19 1.0E-05 0.99 0.5 5.0E-04 1.0E-02 256 4 664.38
20 1.0E-04 0.99 0.1 5.0E-04 1.0E-13 64 5 302.16
21 1.0E-04 0.99 0.1 5.0E-04 1.0E-07 256 5 669.17
22 1.0E-05 0.99 0.1 1.0E-04 1.0E-07 64 3 271.67
23 1.0E-04 0.99 0.1 1.0E-04 1.0E-13 256 3 564.23
24 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 64 3 273.33
25 1.0E-04 0.99 0.1 5.0E-04 1.0E-07 128 4 368.29
26 1.0E-04 0.99 1 5.0E-04 1.0E-07 64 5 317.84
27 1.0E-04 0.99 1 1.0E-04 1.0E-13 256 5 799.12
28 1.0E-05 0.99 1 5.0E-04 1.0E-02 128 5 432.37
29 1.0E-04 0.99 0.1 1.0E-04 1.0E-13 128 5 408.58
30 1.0E-04 0.99 1 5.0E-04 1.0E-07 128 4 385.12
31 1.0E-05 0.99 0.5 5.0E-04 1.0E-02 64 3 272.69
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32 1.0E-04 0.99 1 5.0E-04 1.0E-13 128 3 339.67
33 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 64 4 287.61
34 1.0E-05 0.99 1 1.0E-04 1.0E-02 64 5 302.24
35 1.0E-05 0.99 1 1.0E-04 1.0E-07 256 3 574.88
36 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 128 3 352.58
37 1.0E-05 0.99 0.5 1.0E-04 1.0E-02 256 4 707.72
38 1.0E-04 0.99 0.5 1.0E-04 1.0E-07 128 3 348.81
39 1.0E-04 0.99 0.5 5.0E-04 1.0E-13 128 5 413.97
40 1.0E-05 0.99 1 1.0E-04 1.0E-13 256 5 838.24
41 1.0E-04 0.99 1 1.0E-04 1.0E-07 256 5 774.17
42 1.0E-04 0.99 0.5 1.0E-04 1.0E-07 128 5 425.73
43 1.0E-04 0.99 0.1 1.0E-04 1.0E-13 256 3 512.74
44 1.0E-04 0.99 0.5 1.0E-04 1.0E-02 64 5 311.96
45 1.0E-05 0.99 0.1 5.0E-04 1.0E-07 128 4 403.07
46 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 64 3 269.30
47 1.0E-04 0.99 0.5 1.0E-04 1.0E-07 256 3 508.27
48 1.0E-04 0.99 1 5.0E-04 1.0E-07 256 5 735.48
49 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 128 4 390.49
50 1.0E-04 0.99 0.1 5.0E-04 1.0E-07 256 3 541.66
51 1.0E-04 0.99 0.1 5.0E-04 1.0E-13 64 5 305.85
52 1.0E-05 0.99 1 5.0E-04 1.0E-02 64 3 271.55
53 1.0E-05 0.99 1 5.0E-04 1.0E-02 64 4 285.67
54 1.0E-04 0.99 1 5.0E-04 1.0E-07 64 3 268.20
55 1.0E-04 0.99 0.5 1.0E-04 1.0E-07 128 3 335.08
56 1.0E-05 0.99 1 1.0E-04 1.0E-02 128 4 386.28
57 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 64 5 310.95
58 1.0E-04 0.99 1 1.0E-04 1.0E-02 256 5 687.75
59 1.0E-04 0.99 0.1 1.0E-04 1.0E-07 128 3 338.23
60 1.0E-05 0.99 0.1 5.0E-04 1.0E-02 128 3 334.25
61 1.0E-05 0.99 0.1 1.0E-04 1.0E-07 64 4 293.99
62 1.0E-04 0.99 0.5 5.0E-04 1.0E-13 128 3 340.43
63 1.0E-05 0.99 1 5.0E-04 1.0E-07 128 3 347.66
64 1.0E-05 0.99 1 1.0E-04 1.0E-07 256 4 683.15
65 1.0E-05 0.99 0.5 1.0E-04 1.0E-13 256 5 875.87
66 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 128 3 343.65
67 1.0E-04 0.99 1 1.0E-04 1.0E-13 64 4 287.20
68 1.0E-04 0.99 1 1.0E-04 1.0E-07 128 3 339.29
69 1.0E-04 0.99 0.5 1.0E-04 1.0E-07 256 4 614.51
70 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 64 3 272.18
71 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 128 3 341.56
72 1.0E-05 0.99 0.5 5.0E-04 1.0E-13 256 4 674.91
73 1.0E-04 0.99 1 1.0E-04 1.0E-13 64 3 265.39
74 1.0E-04 0.99 0.5 1.0E-04 1.0E-07 128 4 374.09
75 1.0E-05 0.99 0.1 5.0E-04 1.0E-13 64 4 288.40
76 1.0E-04 0.99 1 5.0E-04 1.0E-13 128 4 390.59
77 1.0E-04 0.99 1 1.0E-04 1.0E-13 128 5 427.57
78 1.0E-04 0.99 1 1.0E-04 1.0E-13 64 3 263.81
79 1.0E-05 0.99 0.5 5.0E-04 1.0E-02 64 5 304.18
80 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 256 5 845.92
81 1.0E-04 0.99 1 1.0E-04 1.0E-13 128 4 368.25
82 1.0E-04 0.99 0.1 1.0E-04 1.0E-02 256 4 605.80
83 1.0E-04 0.99 1 5.0E-04 1.0E-02 256 4 654.13
84 1.0E-04 0.99 0.5 1.0E-04 1.0E-02 128 5 411.53
85 1.0E-05 0.99 1 5.0E-04 1.0E-13 128 5 437.92
86 1.0E-05 0.99 0.5 5.0E-04 1.0E-13 256 4 634.42
87 1.0E-04 0.99 1 5.0E-04 1.0E-02 128 5 421.68
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88 1.0E-04 0.99 0.1 1.0E-04 1.0E-13 128 4 375.97
89 1.0E-04 0.99 1 1.0E-04 1.0E-07 64 5 299.37
90 1.0E-05 0.99 1 1.0E-04 1.0E-07 128 3 342.56
91 1.0E-04 0.99 0.1 5.0E-04 1.0E-07 64 5 303.51
92 1.0E-04 0.99 0.1 1.0E-04 1.0E-07 128 5 390.12
93 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 64 5 363.68
94 1.0E-04 0.99 0.1 5.0E-04 1.0E-07 256 3 594.72
95 1.0E-04 0.99 0.1 5.0E-04 1.0E-02 128 5 463.36
96 1.0E-04 0.99 1 1.0E-04 1.0E-07 64 4 332.20
97 1.0E-04 0.99 0.1 1.0E-04 1.0E-07 128 4 386.22
98 1.0E-05 0.99 0.1 5.0E-04 1.0E-13 128 3 351.53
99 1.0E-04 0.99 0.5 1.0E-04 1.0E-02 256 3 512.41
100 1.0E-04 0.99 0.5 5.0E-04 1.0E-13 64 5 308.23
101 1.0E-04 0.99 0.1 5.0E-04 1.0E-02 64 3 263.67
102 1.0E-04 0.99 0.1 1.0E-04 1.0E-13 256 4 567.09
103 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 128 3 335.02
104 1.0E-05 0.99 1 1.0E-04 1.0E-13 128 4 392.35
105 1.0E-04 0.99 1 5.0E-04 1.0E-13 64 5 304.99
106 1.0E-04 0.99 0.5 5.0E-04 1.0E-02 64 3 271.82
107 1.0E-05 0.99 0.5 5.0E-04 1.0E-02 128 4 380.19
108 1.0E-05 0.99 0.1 1.0E-04 1.0E-07 256 3 593.63
109 1.0E-05 0.99 0.1 5.0E-04 1.0E-13 128 5 418.46
110 1.0E-05 0.99 0.5 1.0E-04 1.0E-02 128 4 398.25
111 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 256 3 590.73
112 1.0E-04 0.99 0.1 5.0E-04 1.0E-13 128 3 341.16
113 1.0E-05 0.99 0.5 1.0E-04 1.0E-13 64 5 301.44
114 1.0E-04 0.99 0.1 1.0E-04 1.0E-07 128 5 444.09
115 1.0E-04 0.99 1 1.0E-04 1.0E-07 128 5 403.53
116 1.0E-05 0.99 0.1 5.0E-04 1.0E-07 256 5 801.86
117 1.0E-05 0.99 0.1 1.0E-04 1.0E-02 128 3 346.21
118 1.0E-04 0.99 0.5 1.0E-04 1.0E-13 64 5 307.96
119 1.0E-05 0.99 0.1 5.0E-04 1.0E-02 256 5 849.45
120 1.0E-04 0.99 0.1 1.0E-04 1.0E-07 128 4 363.33
121 1.0E-04 0.99 0.1 5.0E-04 1.0E-07 128 5 385.05
122 1.0E-05 0.99 0.1 5.0E-04 1.0E-07 256 5 734.79
123 1.0E-05 0.99 0.1 1.0E-04 1.0E-02 256 4 712.00
124 1.0E-05 0.99 1 1.0E-04 1.0E-02 64 5 302.38
125 1.0E-05 0.99 1 1.0E-04 1.0E-07 128 3 345.99
126 1.0E-04 0.99 0.5 5.0E-04 1.0E-02 256 5 711.03
127 1.0E-05 0.99 0.5 5.0E-04 1.0E-02 256 3 567.80
128 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 256 5 825.78
129 1.0E-05 0.99 0.1 5.0E-04 1.0E-02 256 3 575.69
130 1.0E-05 0.99 1 5.0E-04 1.0E-13 128 3 341.65
131 1.0E-05 0.99 0.1 1.0E-04 1.0E-07 64 5 310.66
132 1.0E-04 0.99 0.1 1.0E-04 1.0E-07 256 3 524.57
133 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 128 4 399.25
134 1.0E-05 0.99 0.1 1.0E-04 1.0E-02 256 5 804.56
135 1.0E-04 0.99 0.1 5.0E-04 1.0E-02 256 5 716.08
136 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 128 4 392.85
137 1.0E-04 0.99 0.5 1.0E-04 1.0E-13 256 5 756.97
138 1.0E-05 0.99 0.1 1.0E-04 1.0E-07 64 4 297.10
139 1.0E-05 0.99 1 1.0E-04 1.0E-13 64 4 294.27
140 1.0E-05 0.99 1 1.0E-04 1.0E-02 64 3 267.98
141 1.0E-05 0.99 0.1 5.0E-04 1.0E-07 256 3 559.33
142 1.0E-04 0.99 0.5 5.0E-04 1.0E-02 128 3 333.99
143 1.0E-05 0.99 0.5 1.0E-04 1.0E-13 128 5 469.28
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144 1.0E-05 0.99 0.1 5.0E-04 1.0E-07 64 3 321.15
145 1.0E-04 0.99 0.1 1.0E-04 1.0E-13 64 4 337.46
146 1.0E-05 0.99 0.1 5.0E-04 1.0E-02 256 5 815.15
147 1.0E-04 0.99 1 5.0E-04 1.0E-07 64 3 316.63
148 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 256 3 566.66
149 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 256 4 639.13
150 1.0E-04 0.99 1 5.0E-04 1.0E-02 128 3 336.59
151 1.0E-04 0.99 0.1 5.0E-04 1.0E-07 256 3 549.12
152 1.0E-04 0.99 0.5 5.0E-04 1.0E-02 256 3 487.84
153 1.0E-04 0.99 0.5 1.0E-04 1.0E-02 128 4 380.64
154 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 64 4 295.37
155 1.0E-04 0.99 0.1 1.0E-04 1.0E-07 64 5 306.17
156 1.0E-05 0.99 0.1 1.0E-04 1.0E-02 256 4 697.21
157 1.0E-04 0.99 0.5 1.0E-04 1.0E-13 256 3 540.62
158 1.0E-05 0.99 0.5 5.0E-04 1.0E-13 256 5 713.87
159 1.0E-05 0.99 1 5.0E-04 1.0E-07 256 4 680.94
160 1.0E-05 0.99 0.5 1.0E-04 1.0E-02 64 5 302.71
161 1.0E-04 0.99 1 5.0E-04 1.0E-13 64 3 274.16
162 1.0E-05 0.99 1 5.0E-04 1.0E-07 64 3 274.91
163 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 128 4 387.93
164 1.0E-05 0.99 0.1 5.0E-04 1.0E-02 256 4 714.24
165 1.0E-05 0.99 0.1 5.0E-04 1.0E-13 128 5 471.93
166 1.0E-04 0.99 0.5 5.0E-04 1.0E-13 128 4 390.99
167 1.0E-05 0.99 0.5 5.0E-04 1.0E-02 128 5 474.63
168 1.0E-04 0.99 0.1 5.0E-04 1.0E-02 128 3 338.63
169 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 128 4 416.74
170 1.0E-04 0.99 1 5.0E-04 1.0E-02 128 4 379.37
171 1.0E-04 0.99 1 1.0E-04 1.0E-07 64 4 294.01
172 1.0E-04 0.99 1 5.0E-04 1.0E-02 64 3 273.92
173 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 128 3 357.53
174 1.0E-04 0.99 0.5 1.0E-04 1.0E-02 128 3 337.68
175 1.0E-05 0.99 0.1 5.0E-04 1.0E-07 128 3 357.21
176 1.0E-05 0.99 1 1.0E-04 1.0E-07 64 4 288.94
177 1.0E-04 0.99 0.5 1.0E-04 1.0E-13 64 3 272.95
178 1.0E-05 0.99 0.1 5.0E-04 1.0E-02 128 4 375.31
179 1.0E-04 0.99 0.5 1.0E-04 1.0E-13 256 5 726.97
180 1.0E-05 0.99 0.5 1.0E-04 1.0E-02 64 5 310.23
181 1.0E-04 0.99 0.1 5.0E-04 1.0E-02 64 4 294.91
182 1.0E-05 0.99 1 5.0E-04 1.0E-02 64 5 316.39
183 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 64 4 302.59
184 1.0E-04 0.99 0.1 1.0E-04 1.0E-07 64 3 272.39
185 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 128 5 438.87
186 1.0E-04 0.99 1 1.0E-04 1.0E-13 128 3 347.31
187 1.0E-04 0.99 0.5 1.0E-04 1.0E-13 256 5 761.92
188 1.0E-04 0.99 0.5 5.0E-04 1.0E-02 64 4 308.73
189 1.0E-04 0.99 0.1 1.0E-04 1.0E-02 256 5 772.97
190 1.0E-04 0.99 1 1.0E-04 1.0E-02 64 3 270.25
191 1.0E-04 0.99 0.5 1.0E-04 1.0E-07 128 3 352.18
192 1.0E-05 0.99 0.5 5.0E-04 1.0E-02 256 3 558.50
193 1.0E-04 0.99 1 1.0E-04 1.0E-13 64 3 270.36
194 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 256 4 629.06
195 1.0E-04 0.99 1 1.0E-04 1.0E-13 256 3 494.57
196 1.0E-05 0.99 1 1.0E-04 1.0E-02 64 4 299.14
197 1.0E-04 0.99 0.5 5.0E-04 1.0E-02 128 5 436.41
198 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 64 4 313.84
199 1.0E-04 0.99 0.5 5.0E-04 1.0E-13 256 4 640.59
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200 1.0E-04 0.99 0.5 1.0E-04 1.0E-02 64 4 331.96
201 1.0E-04 0.99 0.5 5.0E-04 1.0E-13 128 4 417.84
202 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 64 4 301.84
203 1.0E-05 0.99 1 1.0E-04 1.0E-07 128 3 350.52
204 1.0E-04 0.99 1 1.0E-04 1.0E-02 64 5 306.81
205 1.0E-04 0.99 1 1.0E-04 1.0E-07 64 3 267.32
206 1.0E-05 0.99 1 5.0E-04 1.0E-07 256 5 797.46
207 1.0E-04 0.99 0.1 5.0E-04 1.0E-13 256 3 513.48
208 1.0E-05 0.99 0.1 1.0E-04 1.0E-02 128 3 350.67
209 1.0E-04 0.99 0.1 1.0E-04 1.0E-13 256 3 530.47
210 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 128 3 343.56
211 1.0E-04 0.99 0.5 5.0E-04 1.0E-02 128 4 375.72
212 1.0E-04 0.99 0.1 1.0E-04 1.0E-02 256 5 640.01
213 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 64 4 302.16
214 1.0E-05 0.99 0.1 1.0E-04 1.0E-02 256 5 864.52
215 1.0E-05 0.99 1 5.0E-04 1.0E-13 64 4 298.01
216 1.0E-05 0.99 0.5 5.0E-04 1.0E-02 64 4 298.50
217 1.0E-05 0.99 1 5.0E-04 1.0E-13 64 3 272.46
218 1.0E-05 0.99 0.1 5.0E-04 1.0E-02 128 3 349.64
219 1.0E-04 0.99 1 1.0E-04 1.0E-02 256 5 721.89
220 1.0E-05 0.99 1 5.0E-04 1.0E-02 64 5 314.43
221 1.0E-04 0.99 1 1.0E-04 1.0E-02 128 4 378.24
222 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 256 5 768.06
223 1.0E-05 0.99 0.1 1.0E-04 1.0E-13 256 4 708.24
224 1.0E-05 0.99 0.5 5.0E-04 1.0E-07 256 3 587.69
225 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 64 5 309.38
226 1.0E-04 0.99 1 5.0E-04 1.0E-02 64 4 295.31
227 1.0E-05 0.99 0.1 1.0E-04 1.0E-02 128 3 347.92
228 1.0E-05 0.99 0.5 5.0E-04 1.0E-02 128 3 352.06
229 1.0E-05 0.99 0.1 1.0E-04 1.0E-02 256 4 683.27
230 1.0E-04 0.99 1 1.0E-04 1.0E-02 128 4 399.64
231 1.0E-05 0.99 0.5 5.0E-04 1.0E-13 128 4 400.80
232 1.0E-05 0.99 1 5.0E-04 1.0E-02 128 3 362.39
233 1.0E-04 0.99 1 5.0E-04 1.0E-07 128 5 445.40
234 1.0E-05 0.99 0.5 1.0E-04 1.0E-02 64 5 314.67
235 1.0E-04 0.99 0.5 1.0E-04 1.0E-07 128 3 347.39
236 1.0E-05 0.99 1 1.0E-04 1.0E-13 128 5 425.34
237 1.0E-05 0.99 0.1 5.0E-04 1.0E-07 256 5 895.66
238 1.0E-04 0.99 1 1.0E-04 1.0E-07 64 3 271.35
239 1.0E-04 0.99 0.1 1.0E-04 1.0E-02 128 3 347.46
240 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 64 5 312.75
241 1.0E-05 0.99 0.5 5.0E-04 1.0E-13 128 4 381.87
242 1.0E-04 0.99 0.5 5.0E-04 1.0E-07 256 4 668.36
243 1.0E-04 0.99 0.1 5.0E-04 1.0E-02 256 3 549.43
244 1.0E-05 0.99 1 5.0E-04 1.0E-13 256 3 570.20
245 1.0E-04 0.99 1 5.0E-04 1.0E-02 64 3 276.19
246 1.0E-04 0.99 0.1 1.0E-04 1.0E-13 64 3 278.63
247 1.0E-05 0.99 0.1 5.0E-04 1.0E-13 64 3 274.31
248 1.0E-05 0.99 0.1 5.0E-04 1.0E-07 256 4 681.39
249 1.0E-05 0.99 1 1.0E-04 1.0E-07 64 5 309.67
250 1.0E-05 0.99 0.1 1.0E-04 1.0E-02 256 4 700.64

Table 72: All settings for the agents created in test 5
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K.6 sixth iteration: full training

Now, the runs will become full training sessions. in Table 73 the possible values are shown. 162
possible combinations can be made, so 40 iterations are chosen to be done to cover 25 percent of the
possibilities, while also being able to assess the performance instead of only looking at the initialization
phase of the training.

LR DF ϵ ϵm ϵd Neurons Hidden layers
1e-4 1e-5 0.99 0.5 0.75 1 1e-13 1e-7 0.01 1e-4 64 128 256 3 to 5

Table 73: Possible values sixth initialization hyperparameter test

From this, three categories are made from the training results, depicted in Figure 67. The categories
being graphs showing exploration at the end of the training episodes, graphs with unstable rewards
and finally showing stable training with mainly exploitation at the end of training.
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(a) Exploration

(b) Unstable

(c) Exploitation

Figure 67: Representation of different categories in test 6

In Table 74 the category per agent is given, and in Table 75 the agents settings are given. Also,
Figure 68 shows a comparison of agents in terms of performance. Here, the stable agents found are
3, 8, 9, 10, 18, 23, and 24 in terms of makespan. These are in all three categories. When combining
results from the stable ones in combination with the stable training ones, new settings can be chosen
for the seventh and final iteration.

LXXIV



Figure 68: Performance comparison training iteration 6

Category Agents
Exploration 1 9 11 14 15 17 20 32 36 38 39

Unstable 2 3 4 5 7 10 13 16 18 19 21 22 23 24 25 26 28 29 31 34 35 37
Exploitation 6 8 12 27 30 33 40

Table 74: Overview of different categories and agents in test 6

Agent LR DF ϵ ϵd ϵm Neurons HL CT
1 1.0E-05 0.99 0.5 1.0E-04 1.0E-13 64 4 2778.22
2 1.0E-04 0.99 1 1.0E-04 1.0E-07 128 4 3724.97
3 1.0E-05 0.99 0.5 1.0E-04 1.0E-13 64 3 2526.79
4 1.0E-05 0.99 1 1.0E-04 1.0E-13 128 4 4234.48
5 1.0E-05 0.99 1 1.0E-04 1.0E-02 128 4 4111.20
6 1.0E-04 0.99 0.75 1.0E-04 1.0E-13 64 3 2308.14
7 1.0E-04 0.99 1 1.0E-04 1.0E-07 128 4 3606.20
8 1.0E-05 0.99 1 1.0E-04 1.0E-07 256 4 9646.26
9 1.0E-05 0.99 0.75 1.0E-04 1.0E-02 128 5 4907.46
10 1.0E-05 0.99 0.5 1.0E-04 1.0E-13 256 5 11474.52
11 1.0E-05 0.99 1 1.0E-04 1.0E-13 64 3 2593.60
12 1.0E-05 0.99 0.5 1.0E-04 1.0E-13 256 5 11741.57
13 1.0E-04 0.99 1 1.0E-04 1.0E-02 128 4 3622.98
14 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 64 5 3038.69
15 1.0E-05 0.99 0.75 1.0E-04 1.0E-02 64 3 2668.57
16 1.0E-04 0.99 1 1.0E-04 1.0E-02 64 5 2834.22
17 1.0E-05 0.99 1 1.0E-04 1.0E-07 256 4 8400.16
18 1.0E-05 0.99 0.75 1.0E-04 1.0E-07 64 5 3071.95
19 1.0E-04 0.99 1 1.0E-04 1.0E-02 128 3 3127.29
20 1.0E-05 0.99 1 1.0E-04 1.0E-02 64 3 2421.49
21 1.0E-04 0.99 0.75 1.0E-04 1.0E-02 256 3 5269.88
22 1.0E-04 0.99 0.5 1.0E-04 1.0E-13 64 5 2783.81
23 1.0E-04 0.99 0.75 1.0E-04 1.0E-07 64 3 2381.85
24 1.0E-04 0.99 1 1.0E-04 1.0E-07 256 4 6494.44
25 1.0E-04 0.99 0.75 1.0E-04 1.0E-02 256 5 7922.19
26 1.0E-04 0.99 1 1.0E-04 1.0E-13 64 5 3073.58
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27 1.0E-04 0.99 1 1.0E-04 1.0E-02 64 3 2353.94
28 1.0E-05 0.99 0.75 1.0E-04 1.0E-02 64 5 2805.84
29 1.0E-04 0.99 0.75 1.0E-04 1.0E-02 256 4 6533.90
30 1.0E-05 0.99 1 1.0E-04 1.0E-13 128 4 4353.42
31 1.0E-04 0.99 1 1.0E-04 1.0E-13 64 4 2568.41
32 1.0E-05 0.99 0.5 1.0E-04 1.0E-02 256 3 6489.63
33 1.0E-05 0.99 1 1.0E-04 1.0E-13 128 5 4919.18
34 1.0E-04 0.99 0.5 1.0E-04 1.0E-13 128 5 4067.48
35 1.0E-04 0.99 1 1.0E-04 1.0E-13 64 4 2570.96
36 1.0E-05 0.99 0.5 1.0E-04 1.0E-07 64 4 2733.36
37 1.0E-04 0.99 1 1.0E-04 1.0E-07 64 4 2626.14
38 1.0E-05 0.99 1 1.0E-04 1.0E-02 64 4 2740.69
39 1.0E-05 0.99 0.75 1.0E-04 1.0E-02 256 4 9182.09
40 1.0E-05 0.99 0.5 1.0E-04 1.0E-13 128 4 4087.77

Table 75: All settings for the agents created in test 6

K.7 Seventh iteration

In Table 76, the values are given for the final iteration test. The possible combinations given are 36.
20 of the possible combinations are trained through random hyperparameter tuning, to cover more
than 50 percent.

LR DF ϵ ϵm ϵd Neurons Hidden layers
1e-5 0.99 0.75 1 1e-13 1e-7 1e-4 64 128 256 3 to 5

Table 76: Possible values seventh initialization hyperparameter test

In Figure 69 the results based on testing on the trained problem for 50 times per agent is given. It
is found that the agents that have a longer computational time also perform better. Based on found
rewards, agents 6, 7, 10, 16, 17 and 18 find the highest rewards, with most consistency. All these
agents take over 6000 seconds, or nearly 2 hours, to complete their training.

Figure 69: Comparison of performs on trained problem seventh iteration

Now looking at performance on similar, but not identical, problems. We find that there is no
agent really able to complete all problems on a significant level. Some agents perform well on some
problems, and perform really bad on other problems. Hence, the focus is on using the agent with the
best computational time, to be able to compare the agents with not much

LXXVI



The values are defined by agent 6, given in Table 77, and the training graph given in Figure 70.

LR DF ϵ ϵm ϵd Neurons Hidden layers
1e-5 0.99 0.75 1e-7 1e-4 256 3

Table 77: Determined optimal hyperparameters

Figure 70: Training graph agent 6 test 7

Agent LR DF ϵ ϵd ϵm Neurons HL CT
1 1E-05 0.99 0.75 1E-13 1E-04 64 4 2484.51
2 1E-05 0.99 1 1E-07 1E-04 256 5 9739.89
3 1E-05 0.99 0.75 1E-07 1E-04 64 5 3073.82
4 1E-05 0.99 1 1E-13 1E-04 256 5 10543.04
5 1E-05 0.99 1 1E-07 1E-04 64 3 2148.82
6 1E-05 0.99 0.75 1E-07 1E-04 256 3 6394.07
7 1E-05 0.99 0.75 1E-13 1E-04 256 5 11938.24
8 1E-05 0.99 0.75 1E-07 1E-04 128 4 3965.65
9 1E-05 0.99 1 1E-13 1E-04 64 4 2553.69
10 1E-05 0.99 1 1E-07 1E-04 256 4 8186.35
11 1E-05 0.99 0.75 1E-13 1E-04 64 4 2607.94
12 1E-05 0.99 0.75 1E-07 1E-04 256 4 8384.92
13 1E-05 0.99 1 1E-13 1E-04 256 4 8246.96
14 1E-05 0.99 0.75 1E-13 1E-04 64 3 2440.28
15 1E-05 0.99 0.75 1E-07 1E-04 256 4 8712.42
16 1E-05 0.99 1 1E-07 1E-04 256 3 6230.01
17 1E-05 0.99 0.75 1E-13 1E-04 256 3 7232.91
18 1E-05 0.99 0.75 1E-13 1E-04 256 4 8444.50
19 1E-05 0.99 0.75 1E-07 1E-04 256 5 11034.15
20 1E-05 0.99 1 1E-13 1E-04 256 3 6654.72

Table 78: All settings for the agents created in test 7
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Agent Agent 6
metric Reward Makespan Ut

UB 6.625664 59 0.662566
LB 6.625664 59 0.662566
Mean 6.625664 59 0.662566
Var 0 0 0
StDev 0 0 0

Table 79: statistical results agent 6 iteration 7

Figure 71: Gantt chart of solution found by agent 6 of seventh iteration
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L Training on multiple problems for static job shop

In this section, the tests on multiple problems are set out. First, agents have been trained, using the
found hyperparameters from the section before, to train on problems with 10, 15 and 20 problems,
all with 5 jobs. Here, five different agents are created per number of machines, where an agent is
trained on 1, 5, 10, 25 or 50 different problems. For example, if an agent is trained on 5 problems,
the order would be problem 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, etc. etc. Following the findings from these
tests, the same tests are done on problems with 6 jobs and 6 machines, similar to problem ft06 where
the hyperparameters where found for. These tests are done to assess what the capabilities are, and if
a general solver can be created using this method to solve multiple problems on a considerable level.
After training, each agent is tested on the problems they are trained on, problems they have not been
trained on but with the same number of machines, jobs and processing time distribution, and finally
tested on problems with a different processing time distribution.

L.1 Test on 10, 15 and 20 machine problems

First, the agents created for 10 machine problems are assessed. The training graphs for each agent is
given in Figure 72 and 73. Here, it can be seen that the Q0 becomes higher the more problems an
agent is trained on, as well as an increase in oscillation. This is to be expected as each problem has
its own highest and lowest possible reward to gain.
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(a) 1 problem

(b) 5 problems

(c) 10 problem

Figure 72: Different training behaviors for agents trained on 10 machines by 5 jobs problems
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(a) 25 problems

(b) 50 problems

Figure 73: Different training behaviors for agents trained on 10 machines by 5 jobs problems

The rewards for the problems the agents are trained on are given in Table 80. It is found that the
agent trained on 25 different problems, is able to perform the best overall for the agents. However, the
agent specifically trained on a single problem, being instance 1, is able to outperform the dispatching
rules.
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instance LB LRPT HRPT LPT HPT HTPT LTPT FIFO LIFO LOR MOR A1 A2 A3 A4 A5
1 64 240 74 141 202 240 240 217 218 217 86 72 87 91 102 156
2 66 211 73 159 205 250 211 220 206 220 72 164 126 90 81 120
3 68 252 92 145 223 226 252 272 292 272 86 113 105 109 108 165
4 55 247 79 150 179 223 247 221 214 221 83 173 86 79 96 123
5 64 210 83 185 179 198 210 228 193 228 91 120 109 112 109 127
6 72 214 117 245 170 239 214 212 238 212 92 180 100 107 105 123
7 67 200 78 185 206 223 200 220 197 220 89 213 156 110 90 114
8 57 200 78 155 185 198 200 202 182 202 80 166 200 88 86 110
9 49 196 68 145 162 198 196 193 186 193 72 104 134 73 73 74
10 68 278 99 169 217 258 278 243 272 243 83 221 141 107 100 141
11 68 227 90 202 169 241 227 217 252 217 86 226 105 103 95 162
12 67 224 121 197 165 229 224 266 251 266 93 191 159 139 93 110
13 67 250 81 177 210 252 250 247 227 247 76 134 118 173 114 134
14 68 221 74 153 197 217 221 225 222 225 83 147 129 129 103 122
15 63 266 100 200 211 241 266 263 224 263 83 105 158 116 103 134
16 66 224 86 194 183 220 224 223 206 223 71 198 87 107 85 174
17 68 269 97 217 189 266 269 265 240 265 97 118 225 126 123 111
18 70 235 92 192 218 242 235 203 233 203 80 111 152 132 120 132
19 65 261 107 186 216 248 261 220 228 220 97 181 207 123 105 129
20 68 232 81 180 151 224 232 248 243 248 92 193 160 112 100 147
21 66 263 93 203 212 245 263 254 239 254 98 230 174 109 113 135
22 61 220 86 160 182 229 220 217 221 217 80 113 182 87 81 154
23 63 216 93 132 177 200 216 153 170 153 92 200 121 137 85 133
24 64 207 91 138 179 211 207 216 189 216 84 154 153 121 90 108
25 61 198 81 185 167 210 198 199 220 199 79 142 129 101 85 105
26 71 239 111 149 182 229 239 206 192 206 87 138 208 129 109 125
27 78 247 111 253 170 254 247 261 260 261 96 117 183 121 118 148
28 66 221 84 155 202 207 221 235 191 235 86 158 81 87 87 87
29 64 209 77 213 138 233 209 233 224 233 77 108 145 94 115 117
30 63 200 79 191 142 206 200 234 254 234 77 199 120 147 101 121
31 62 228 84 170 182 249 228 233 193 233 77 212 130 107 115 94
32 63 205 97 200 191 212 205 228 234 228 95 166 136 105 104 132
33 68 239 79 163 158 271 239 259 233 259 82 230 151 194 97 93
34 67 224 84 160 155 214 224 213 229 213 83 117 224 116 134 106
35 65 230 77 156 211 232 230 237 227 237 73 111 230 100 82 101
36 66 224 81 218 149 266 224 260 210 260 93 230 108 106 115 133
37 60 230 85 156 157 213 230 208 223 208 77 106 123 127 97 100
38 59 216 74 161 191 193 216 213 221 213 78 95 154 138 109 152
39 59 216 84 208 147 219 216 226 221 226 75 202 109 108 125 101
40 68 228 81 220 184 214 228 253 243 253 85 184 147 132 94 123
41 63 187 87 178 158 209 187 204 198 204 78 108 126 100 90 150
42 64 196 79 189 170 229 196 219 222 219 90 156 170 140 102 116
43 72 269 97 237 192 224 269 276 220 276 95 186 269 116 92 132
44 62 152 77 172 145 200 152 158 181 158 75 121 92 106 89 160
45 72 242 94 167 228 220 242 250 227 250 87 132 228 116 102 120
46 76 253 94 165 197 263 253 236 228 236 86 198 137 137 126 103
47 62 253 102 171 202 253 253 243 265 243 103 109 133 112 120 146
48 70 220 105 166 205 235 220 239 241 239 84 129 150 183 107 148
49 61 217 77 147 172 215 217 211 210 211 79 139 175 148 121 99
50 75 225 100 147 205 258 225 253 269 253 79 217 252 113 139 92
Average 65.42 226.62 88.28 178.14 183.74 228.92 226.62 228.64 223.58 228.64 84.44 156.74 149.68 117.26 102.7 124.84

Table 80: Results for agents and dispatching rules on trained instances

Now, the agents and dispatching rules are tested on problems that they are not trained on, but
have the same machines, jobs and distribution of processing times to assess if problems in the scope
changes the performance or not. These results are given in Table 81. Here, it is found that the results
are similar in performance for both the actions as well as the agents, in comparison to the problems
the agents were trained on.
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instance LB LRPT HRPT LPT HPT HTPT LTPT FIFO LIFO LOR MOR A1 A2 A3 A4 A5
1 57 235 73 166 186 213 235 240 214 240 81 198 227 85 119 97
2 61 196 93 134 196 184 196 220 219 220 94 86 120 104 92 115
3 67 238 93 190 200 230 238 221 243 221 85 204 164 131 113 120
4 61 210 88 106 159 217 210 210 206 210 73 197 134 101 90 94
5 71 249 104 115 202 246 249 255 236 255 100 200 154 134 115 171
6 70 238 90 160 188 208 238 224 236 224 74 158 72 133 117 89
7 72 231 86 220 188 213 231 235 227 235 87 117 191 148 91 93
8 70 258 109 222 185 241 258 242 256 242 106 137 184 182 152 161
9 70 259 95 147 196 184 259 236 244 236 101 141 173 139 103 120
10 48 163 72 134 132 171 163 169 141 169 84 90 93 78 84 89
11 65 253 84 157 217 241 253 268 244 268 76 89 133 234 85 120
12 61 240 85 155 223 234 240 269 241 269 104 129 129 113 143 120
13 70 265 121 157 179 222 265 233 249 233 93 166 157 140 168 171
14 67 217 95 153 183 220 217 228 231 228 91 143 175 148 119 145
15 72 252 92 161 182 241 252 238 224 238 85 202 144 126 101 134
16 72 227 88 192 195 238 227 242 246 242 81 183 94 126 98 162
17 60 193 94 182 183 202 193 226 204 226 83 211 105 122 94 108
18 76 234 104 186 193 211 234 253 237 253 93 161 171 171 92 187
19 72 245 88 203 189 245 245 252 212 252 84 106 150 167 140 153
20 59 229 75 165 202 242 229 222 236 222 78 158 109 123 100 109
21 63 228 90 164 153 196 228 245 202 245 83 219 171 104 84 126
22 64 206 84 131 153 196 206 186 209 186 92 164 134 118 117 134
23 59 232 73 139 179 206 232 221 201 221 83 158 121 107 81 124
24 60 235 77 131 158 196 235 208 203 208 80 141 130 123 77 89
25 64 240 86 129 185 211 240 201 242 201 76 98 125 99 105 108
26 59 207 71 173 182 206 207 221 237 221 88 112 136 91 99 147
27 68 242 85 152 182 216 242 227 223 227 83 141 102 135 121 93
28 61 186 80 159 181 213 186 215 209 215 72 165 103 83 79 80
29 61 191 88 197 165 185 191 204 179 204 82 137 99 123 93 138
30 58 171 100 174 124 161 171 173 158 173 93 159 140 150 111 110
31 67 193 91 190 146 195 193 206 203 206 85 112 107 100 109 105
32 67 242 92 178 242 291 242 260 280 260 93 94 135 136 117 161
33 65 219 90 203 183 261 219 277 253 277 85 105 134 121 128 158
34 60 230 94 131 222 239 230 239 229 239 83 90 143 129 114 160
35 63 201 84 156 177 219 201 228 203 228 90 134 99 123 114 94
36 64 236 93 149 188 239 236 228 238 228 98 98 116 80 100 134
37 78 228 90 187 198 222 228 232 228 232 88 184 163 136 95 110
38 60 230 84 168 184 248 230 241 214 241 72 115 108 138 101 107
39 65 258 76 164 229 238 258 223 246 223 83 185 250 83 128 100
40 64 218 93 182 174 226 218 213 183 213 86 171 159 128 119 88
41 66 208 76 142 185 211 208 231 236 231 81 163 106 127 95 120
42 62 168 78 158 137 198 168 210 194 210 74 190 180 174 74 124
43 60 199 96 138 147 194 199 216 215 216 92 105 150 116 129 111
44 63 220 83 188 197 234 220 221 225 221 88 84 202 87 117 84
45 61 241 86 205 170 250 241 241 250 241 96 107 178 235 114 122
46 65 219 93 171 197 246 219 229 201 229 96 133 109 99 97 127
47 56 229 71 178 139 194 229 211 200 211 70 149 115 99 87 86
48 67 230 81 209 209 212 230 206 233 206 80 141 121 102 88 122
49 61 193 77 132 152 240 193 236 200 236 78 162 124 103 78 79
50 61 189 72 136 175 181 189 187 188 187 77 135 169 110 112 116
Average 64.26 222.42 87.26 164.38 181.82 218.54 222.42 226.38 220.56 226.38 85.6 144.54 140.16 125.28 105.98 120.3

Table 81: Results for agents and dispatching rules on instances with same jobs, machines and processing
times

Finally the agents are tested on problems where the processing time distribution is changed from
U[1,10] to U[20, 99] to assess how such a change in observations will influence the performance. The
results are given in Table 82. Here, the performance of the agent with 50 problems trained on performs
better than the agent with 25 problems. It is assumed that this is due to the number of different
problems seen, being able to generalize better for different types of problems. It is also seen that the
agents overall performance is greatly reduced, while the agent with 50 problems trained on is able to
perform slightly better. The same tests are done on the agents trained on 15 and 20 machine problems.
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instance LB LRPT HRPT LPT HPT HTPT LTPT FIFO LIFO LOR MOR A1 A2 A3 A4 A5
1 673 2633 780 1657 2261 2594 2633 2352 2369 2352 906 1028 1931 1639 2339 1055
2 675 2297 901 1881 1915 2682 2297 2386 2211 2386 769 2400 2159 1901 2060 1092
3 686 2650 958 1687 2517 2387 2650 2877 3082 2877 881 1361 1872 2042 1803 1362
4 607 2456 809 1673 2124 2380 2456 2464 2331 2464 895 1906 1909 2283 2253 1093
5 664 2269 745 2000 1939 2105 2269 2416 2098 2416 939 1568 1527 1458 2000 858
6 739 2363 959 2363 1616 2602 2363 2319 2628 2319 927 1037 1643 2265 2203 1373
7 700 2216 818 2013 2009 2421 2216 2412 2189 2412 882 1452 2010 1760 1922 1506
8 627 2179 886 1607 1645 2151 2179 2200 1998 2200 825 1915 1769 1348 1764 1296
9 540 2179 759 1900 1467 2210 2179 2162 2105 2162 780 1999 1864 1444 1844 971
10 695 2947 950 1845 2345 2719 2947 2575 2869 2575 855 2054 2290 2448 2106 971
11 709 2453 912 2063 1684 2554 2453 2323 2711 2323 875 1920 1680 1947 2146 955
12 682 2265 1222 2039 2314 2309 2265 2796 2634 2796 956 1680 2143 1580 1890 1374
13 696 2627 801 2183 2079 2653 2627 2616 2362 2616 801 1818 1700 2271 2348 932
14 708 2437 725 2070 1794 2365 2437 2473 2399 2473 857 1467 2079 1826 1823 824
15 664 2790 1061 1899 2055 2619 2790 2776 2348 2776 860 1687 1493 2030 1956 1031
16 667 2406 823 2074 2091 2348 2406 2426 2227 2426 752 1885 1783 1912 2329 823
17 693 2798 1007 1916 1872 2805 2798 2795 2529 2795 999 2374 1510 1695 1958 1017
18 718 2360 961 1957 2113 2582 2360 2154 2492 2154 807 1369 1441 2363 1942 1808
19 681 2641 1120 1929 2224 2484 2641 2292 2427 2292 972 2196 1976 1751 1768 1344
20 700 2428 877 1945 1839 2346 2428 2623 2562 2623 933 2236 2239 2510 2106 1057
21 690 2762 1012 2120 2460 2537 2762 2640 2515 2640 1003 2730 1947 2102 2174 976
22 641 2364 890 1871 2109 2471 2364 2336 2350 2336 825 1968 1845 1987 1645 1427
23 663 2396 1045 1400 2014 2221 2396 1696 1888 1696 963 1035 1384 1726 1711 1252
24 651 2270 939 1516 1976 2313 2270 2295 2039 2295 834 1399 1593 2200 1868 1030
25 646 2165 834 1705 1744 2295 2165 2162 2383 2162 846 1742 1598 1922 1806 902
26 728 2591 1088 1835 1667 2606 2591 2172 2097 2172 892 2056 1619 1926 2100 1306
27 776 2556 1190 2509 1781 2711 2556 2731 2700 2731 953 2201 2651 2420 2052 1336
28 696 2354 945 1687 2197 2297 2354 2487 2066 2487 892 1174 1758 2487 2242 960
29 667 2540 786 2220 1418 2659 2540 2500 2413 2500 825 1956 1474 2264 2032 856
30 664 2164 813 2435 1866 2290 2164 2536 2720 2536 785 2254 2084 1906 1578 813
31 648 2422 802 1613 1865 2371 2422 2560 2095 2560 803 1650 1573 2426 1970 900
32 659 2293 1021 1916 1756 2332 2293 2496 2502 2496 955 1501 1320 2419 2294 1085
33 700 2514 848 1562 1727 2895 2514 2748 2465 2748 831 1423 2134 2201 2187 1048
34 682 2265 877 1762 1606 2589 2265 2293 2444 2293 882 2062 2265 1594 1575 1336
35 678 2489 780 1241 2087 2420 2489 2558 2460 2558 748 2377 1866 2055 1938 1181
36 680 2400 824 2150 1752 2862 2400 2746 2269 2746 948 2163 2400 1981 1519 1025
37 632 2425 867 1717 1799 2204 2425 2230 2414 2230 812 1433 1836 2270 1750 867
38 618 2323 786 1729 1763 2092 2323 2265 2399 2265 817 1245 1991 2246 1615 1019
39 630 2340 779 2283 1789 2409 2340 2464 2392 2464 775 1944 1609 1579 1584 1092
40 706 2465 802 1937 1858 2335 2465 2716 2617 2716 889 2239 2141 1861 1896 971
41 648 2020 910 2150 2130 2285 2020 2261 2155 2261 785 1840 1647 1928 1933 1216
42 670 2120 872 1913 2039 2461 2120 2341 2401 2341 943 2069 1793 1823 1782 1227
43 735 2760 836 1982 2134 2803 2760 2914 2328 2914 945 1584 2341 2317 1682 929
44 647 1709 817 1729 1584 2185 1709 1793 1998 1793 760 1359 1553 1507 2091 915
45 723 2575 995 2001 2396 2559 2575 2621 2417 2621 880 1955 1527 1753 1741 1329
46 764 2678 1009 1710 1970 2824 2678 2531 2442 2531 867 1765 2606 1809 2247 1199
47 654 2926 986 1561 2288 2671 2926 2580 2786 2580 1062 1347 1919 2146 2671 1136
48 711 2343 925 1805 2128 2503 2343 2519 2556 2519 847 1465 2099 2266 2168 1281
49 644 2271 896 1454 1617 2423 2271 2323 2309 2323 842 1036 2038 2427 1876 1113
50 745 2589 951 1602 1857 2697 2589 2688 2863 2688 827 1413 1875 1726 1797 1212
Average 678.4 2429.66 903.98 1876.32 1945.6 2472.72 2429.66 2452.78 2401.08 2452.78 870.14 1754.74 1870.08 1994.94 1961.68 1113.62

Table 82: Results for agents and dispatching rules on instances with same jobs, machines with a
processing time distribution of U[20, 99]

For the other agents, the same analysis will be done. In Figure 74 and 75 as well as Figure 76 and
77 the training graphs are given of the agents trained on 15 and 20 machines respectively. Here, it
is seen that the more machines, the bigger the difference between the Q0 and found average reward.
Hence, it is assumed that even though no changes in architecture of the neural network are done, the
increase in steps and different states still needs different hyperparameters to perform optimally.
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(a) 1 problem

(b) 5 problems

(c) 10 problem

Figure 74: Different training behaviors for agents trained on 15 machines by 5 jobs problems
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(a) 25 problems

(b) 50 problems

Figure 75: Different training behaviors for agents trained on 15 machines by 5 jobs problems
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(a) 1 problem

(b) 5 problems

(c) 10 problem

Figure 76: Different training behaviors for agents trained on 20 machines by 5 jobs problems
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(a) 25 problems

(b) 50 problems

Figure 77: Different training behaviors for agents trained on 20 machines by 5 jobs problems

In Table 83 the comparison of performance of the agents in terms of found makespan compared
to the found lower bound of the problems is shown. From this table it can be found that like the 10
machine problems, the 15 machine problems show the same results in terms of performance. For the
problems with 20 machines, the performance is better for the agent trained on 50 problems. When
looking at the problems with a changed time distribution, the agents trained on 20 machine problems,
show real different results in terms of performance in comparison to 10 and 15 machines. This could
be because of the hyperparameters not being compatible to ensure correct learning behavior or just
being randomly well suited neural networks for the agent to solve such problems.
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10 by 5 15 by 5 20 by 5
solver trained untrained U[20,99] trained untrained U[20,99] trained untrained U[20,99]
LRPT -246% -246% -258% -262% -256% -274% -268% -271% -281%
HRPT -35% -36% -33% -25% -26% -23% -18% -20% -17%
LPT -172% -156% -177% -186% -185% -185% -197% -198% -186%
HPT -181% -183% -187% -201% -202% -201% -212% -215% -201%
HTPT -250% -240% -264% -267% -260% -276% -268% -278% -278%
LTPT -246% -246% -258% -262% -256% -274% -268% -271% -281%
FIFO -249% -252% -262% -262% -259% -271% -272% -275% -283%
LIFO -242% -243% -254% -266% -256% -275% -270% -276% -281%
LOR -249% -252% -262% -262% -259% -271% -272% -275% -283%
MOR -29% -33% -28% -24% -25% -22% -18% -21% -16%
1 problem -140% -125% -159% -97% -97% -151% -171% -174% -23%
5 problems -129% -118% -176% -113% -112% -147% -154% -157% -213%
10 problems -79% -95% -194% -123% -129% -124% -86% -102% -190%
25 problems -57% -65% -189% -55% -57% -237% -145% -152% -26%
50 problems -91% -87% -64% -121% -117% -140% -71% -73% -80%

Table 83: Overview of performance per dispatching rule and agents, in comparison to the found lower
bound

As the training graphs show that the bigger the problem becomes, the less compatible the hyper-
parameters are, another test is done for agents trained on problems of 6 jobs and 6 machines, similar
to the ft06 problem to better assess the performance.

L.2 Test on 6 by 6 problems

As it was found that from these tests the hyperparameters do not transfer optimally if the problems
to solve themselves change, although not changing the size of the inputs, the agents are trained on
problems of 6 machines and 6 jobs as the hyperparameters were found for such a problem. In Figures
78 and 79 the different training graphs are shown. Here, it can be seen that these hyperparameters
are more suited to solve these kind of problems as expected.
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(a) 1 problem

(b) 5 problems

(c) 10 problems

Figure 78: Different training behaviors for agents trained on 6 machines by 6 jobs problems
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(a) 25 problems

(b) 50 problem

Figure 79: Different training behaviors for agents trained on 6 machines by 6 jobs problems
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M Transfer Learning for static job shops

As now there are pre-trained agents, these agents might be able to perform better than using creating
an agent from scratch and training it on such a problem. Hence, the pre-trained agents are defined as
the agents that are trained on the multiple problems. These are tested again on training with 8000
episodes. Here, three different approaches are taken, being instantly deploying without changing any
parameters, only emptying the experience buffer and with the changing of hyperparameters as well as
emptying the experience buffer to assess differences between these methods.

M.1 Transfer learning without changing parameters

First, the pre-trained agents are deployed directly without changing any settings. Hence, the epsilon is
already decayed, the experience buffer is full and other hyperparameters might be changed. In Figures
80 and 81 the training graphs are given. As expected, these training graphs show little exploration as
the epsilon value has already decayed. A difference can be seen at the speed of learning an optimal
policy as well as the initial estimate Q0. Agent 1, trained on a single and different problem, shows
the biggest Q0 thus initially being able to estimate the reward the worse. However, it also shows that
it is able to learn an optimal policy the earliest, at around 2000 episodes. The higher the number of
problems trained on, the later it seems that the agent learns an optimal policy, with agent 5 in Figure
81b being around 7000 episodes.
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(a) 1 problem

(b) 5 problems

(c) 10 problems

Figure 80: Training graphs of transfer learning agents
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(a) 25 problems

(b) 50 problems

Figure 81: Training graphs of transfer learning agents

Looking at the value of the reward, the third agent seems to find a reward around 5, and agent 1,
2 and 5 around 6. Agent 4 seems to find really high rewards around 7 with also rewards which are
much lower, around 5. To assess the actual performance, in Table 84 the comparison of each agent
is given, tested on the specific problem ft06. Hence it is clear that agent 4 performs best in terms of
rewards, which was also the agent able to perform the best in general terms, found in Appendix L.2.

Agent N problems Ut Makespan Reward
1 1 0.599 60 5.99
2 5 0.624 60 6.24
3 10 0.595 65 5.95
4 25 0.676 60 6.76
5 50 0.631 60 6.31

Table 84: Results of transfer learning agents trained on ft06

Finally, looking at the statistics found from testing the agents on ft06 for 50 times, given in Table 85
(where R is the reward, C the makespan and Ut the average utilization rate), it is found that all agents
have learned an optimal policy, as each of them consistently finds the same reward and the variance
and standard deviation are really small, thus showing consistency in found rewards, utilization rate
and makespan. Hence the results show that each agent has found an optimal policy.
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Agent Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
metric R C R C R C R C R C
UB 5.71 66 6.24 60 4.90 76 6.76 60 6.31 60
LB 5.71 66 6.24 60 4.90 76 6.76 60 6.31 60
Mean 5.71 66 6.24 60 4.90 76 6.76 60 6.315 60
Var 0.00E+00 0 0 0 8.05E-31 0 3.22E-30 0 8.05E-31 0
StDev 0.00E+00 0 0.00E+00 0 8.97E-16 0 1.79E-15 0 8.97E-16

Table 85: Statistical results of 50 runs on ft06 from transfer learning agents

To finally compare the learning, in Figures ?? and 83 Gantt charts for each agents found solution
are given. From these figures it can be seen that although equal in found makespan, the agents do find
different methods to solve the problem.
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(a) 1 problem

(b) 5 problems

(c) 10 problems

Figure 82: Gantt charts of transfer learning agents
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(a) 25 problems

(b) 50 problems

Figure 83: Gantt charts of transfer learning agents

M.2 Transfer learning with emptying experience buffer

To assess what changes when the experience buffer is emptied, thus only learning from new experiences
gained instead of old experiences, again the 5 pre-trained agents are retrained on the ft06 problem. In
Figures ?? and 85 the different training graphs per agent are shown. The first 4 agents show similar
behavior found in the earlier test, only the fifth agent showing that it is less able to learn.
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(a) 1 problem

(b) 5 problems

(c) 10 problems

Figure 84: Training graphs of transfer learning agents with experience buffer emptied
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(a) 25 problems

(b) 50 problems

Figure 85: Training graphs of transfer learning agents with experience buffer emptied

To completely assess how this changes the performance, the statistics are given in Table 86. Here,
it can be seen that for the first four agents a slight increase in performance, given the rewards, is found.
However, the performance of the fifth agent drastically decreases, which is probably a result from the
difference in learning behavior. As the learning behavior is not what is found from the benchmark
agent, in the final test the hyperparameters of the learning rate, ϵ and ϵ decay are adjusted to be as
they were before the training of the agent, to assess a difference in performance.

Agent Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
metric R C Ut R C Ut R C Ut R C Ut R C Ut

UB 6.00 60 0.600 6.46 60 0.646 6.25 61 0.625 6.77 60 0.677 4.73 77 0.473
LB 6.00 60 0.600 6.46 60 0.646 6.25 61 0.625 6.77 60 0.677 4.73 77 0.473
Mean 6.00 60 0.600 6.46 60 0.646 6.25 61 0.625 6.77 60 0.677 4.73 77 0.473
Var 8.05E-31 0 1.26E-32 7.24E-30 0 0 8.05E-31 0 5.03E-32 3.22E-30 0 1.26E-32 8.05E-31 0 2.83E-32
StDev 8.97E-16 0 1.12E-16 2.69E-15 0 0 8.97E-16 0 2.24E-16 1.79E-15 0 1.12E-16 8.97E-16 0 1.68E-16

Table 86: Statistical results of 50 runs on ft06 from transfer learning agents with emptied experience
buffer

Finally, to show the differences between agents, in Figures 86 and 87 a Gantt chart per agent
is given. As can be seen in Figures 86a, 86b and 87a each of the agents find a different approach to
reaching the makespan of 60, showing difference in learned policy while receiving a comparable reward.
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(a) 1 problem

(b) 5 problems

(c) 10 problems

Figure 86: Gantt charts of transfer learning agents with experience buffer emptied
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(a) 25 problems

(b) 50 problems

Figure 87: Gantt charts of transfer learning agents with experience buffer emptied

M.3 Transfer learning with changing parameters and emptying experience
buffer

In this section, the agents are trained with both an emptied experience buffer and some of the hyper-
parameters are reset. In Figure 88 and 89 the training graphs are shown. Here, it can be seen that
they are comparable to what is expected from the learning behavior, as it is the same behavior the
final hyperparameter tuned agent shows in Figure 70 in Appendix K.7.
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(a) 1 problem

(b) 5 problems

(c) 10 problems

Figure 88: Training graphs of transfer learning agents with values reset
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(a) 25 problems

(b) 50 problems

Figure 89: Training graphs of transfer learning agents with values reset

When assessing the performance, the training graphs show comparable behavior and rewards found.
Hence, in Table 87 the statistical performances are given. It is found that by changing the hyperparam-
eters the agents overall show better performance each, which is to be expected as this is equal learning
to the finalized hyperparameter tuned agent. However, in terms of reward they do not improve upon
that agent, only gaining a comparable reward.

Agent Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
metric R C Ut R C Ut R C Ut R C Ut R C Ut

UB 6.58 59 0.658 6.35 60 0.635 6.50 61 0.650 6.60 60 0.660 6.60 60 0.660
LB 6.58 59 0.658 6.35 60 0.635 6.50 61 0.650 6.60 60 0.660 6.60 60 0.660
Mean 6.58 59 0.658 6.35 60 0.635 6.50 61 0.650 6.60 60 0.660 6.60 60 0.660
Var 8.05E-31 0 1.26E-32 3.22E-30 0 0 3.22E-30 0 1.26E-32 0 0 1.26E-32 0 0 1.26E-32
StDev 8.97E-16 0 1.12E-16 1.79E-15 0 0 1.79E-15 0 1.12E-16 0 0 1.12E-16 0 0 1.12E-16

Table 87: Statistical results of 50 runs on ft06 from transfer learning agents

In Figure 90 and 91 Gantt charts are shown for each agent. Although earlier the agents found
different results, here agent 4 and 5 create the same schedule for the jobs as they found the same
reward and makespan. From the Gantt charts it can also be seen that these agents are way more
comparable to each other, probably due to the comparable learning behavior.
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(a) 1 problem

(b) 5 problems

(c) 10 problems

Figure 90: Gantt charts of transfer learning agents with reset hyperparameters
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(a) 25 problems

(b) 50 problems

Figure 91: Gantt charts of transfer learning agents with reset hyperparameters

From these results, the transfer learning emptying the experience buffer without changing the
hyperparameters seem to work best, increasing the reward slightly over the chosen hyperparameter
tuned agent.
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N Dynamic job shop scheduling: reward structures

The reward structures are proposed and tested in this Appendix. First, each reward structure is
deployed in the created environment for DJSP. Next, the agents rewards are normalized. Finally,
the normalized rewards are deployed with different hyperparameters, for better found rewards and
are assessed on the performance and balancing of the objective, to minimize tardiness, maximize the
utilization rate and minimize the makespan. Depending on the reward structure, the slack is minimized
or maximized.

N.1 First reward structure test

For the first test, standard hyperparameter values of Matlab have been used as given in Chapter 8.1,
with 3 layers and 256 neurons. The created training graphs are given in Figure 92.
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(a) Reward 1 (b) Reward 2

(c) Reward 3 (d) Reward 4

(e) Reward 5 (f) Reward 6

(g) Reward 7 (h) Reward 8

(i) Reward 9

Figure 92: Training graphs of different reward structures
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From these figures it is found that they are not yet quite comparable. Hence, the figures are
normalized, to ensure that the reward signals given to the agents do not change the neural networks
weights and biases too much. Also, the reward structures where the utilization is added to them, the
utilization rate probably has little to no influence due to the big difference between the reward gained
for the slack and tardiness in comparison to utilization rate.

N.2 Second reward structure test: normalization

For the normalization, the average utilization reward does not have to be normalized as this is already
a reward between 0 and 1. The other eight proposed rewards have been normalized by determining the
maximum values of the expected slack, expected tardiness, actual slack and actual tardiness found.
Each reward is normalized with these values, to always give a reward between 0 and 1. The new
training graphs are given in Figure 93.
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(a) Reward 1 (b) Reward 2

(c) Reward 3 (d) Reward 4

(e) Reward 5 (f) Reward 6

(g) Reward 7 (h) Reward 8

(i) Reward 9

Figure 93: Training graphs of different normalized reward structures
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From the graphs it is found that in comparison to the graphs without the normalization, the
Q0 estimation improves when normalized. However, the graphs show no real improvement upon the
reward gained over training. Hence, a final test will be done where the hyperparameters are changed,
to hopefully improve the learning behavior. It is found that each of them create a big oscillation in
rewards gained. This is likely due to the relatively high learning rate the standard settings of MATLAB
uses. Hence, the learning rate is reduced from 0.01 to 1E-4, to reduce the size of the changes to the
weights made for the neural network, hence being more constant in gained rewards and being able to
better assess how well each reward performs. Also, the epsilon values are changed to encourage more
exploration, with the decay rate changed from 0.01 to 0.0001. When using these values, the episodes
needed to converge to the minimum value of 0.005 takes a longer time, hence having more exploration
instead of exploitation.

N.3 Final reward structure test: assessing performance

The final test for the reward structure has been done, which shows some promise. The training graphs
are given in Figure 94. From these figures, it is found that the training behavior is still not perfect,
which is to be expected. However, for most of them, the Q0 value aligns with the found reward and
they all show improvement upon the initial reward found.
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(a) Reward 1 (b) Reward 2

(c) Reward 3 (d) Reward 4

(e) Reward 5 (f) Reward 6

(g) Reward 7 (h) Reward 8

(i) Reward 9

Figure 94: Training graphs of different normalized reward structures final test
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Looking at the found results from these different reward structures, the performance assessment
is done based on the found utilization rate, makespan, average slack and average tardiness. First,
the assessment is made on how the dispatching rules used perform, these results are given in Table
88. Here, it is found that the best performing dispatching rule is HRPT, which is quite capable of
balancing the average tardiness and average slack, while having a low makespan and high utilization
rate.

LRPT HRPT SPT LPT HTPT LTPT FIFO LIFO LOR MOR
makespan 84 63 86 68 68 86 93 85 86 89

utilization rate 0.49 0.63 0.48 0.58 0.58 0.48 0.45 0.57 0.48 0.45
average slack 0.00 5.50 1.33 6.17 6.17 1.33 3.17 6.17 1.33 3.17

average tardiness 12.50 6.50 9.83 9.67 9.67 9.83 13.00 10.33 9.50 14.83

Table 88: Performance of dispatching rules on dynamic job shop scheduling problems

Secondly, the reward structures are assessed on performance in Table 89. Here, it is found that
the reward using only the utilization rate still performs best in terms of minimizing both makespan
and average tardiness, while having a high utilization rate. While the last 4 reward structures, which
are penalized for having slack to achieve just-in-time delivery show that they are indeed capable of
minimizing slack, the overall performance leaves to be desired.

Reward structure 1 2 3 4 5 6 7 8 9
makespan 61 68 69 68 66 75 75 68 68

utilization rate 0.61 0.60 0.59 0.60 0.61 0.50 0.50 0.59 0.59
average slack 3.83 6.00 5.83 6.00 5.67 1.33 1.33 1.83 1.83

average tardiness 4.00 5.67 7.67 5.67 9.67 10.50 10.50 7.33 7.33

Table 89: Performance of agents with different reward structures on dynamic job shop scheduling
problems

Concluding, it is found that the best performing reward structure would be the first one, focusing
on the change in utilization rate per action. This reward outperforms the dispatching rules, without
optimizing the hyperparameters to the best standard. Hence, this reward structure is chosen for the
tests in the next Chapter.
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O Dynamic job shop scheduling: Hyperparameter tuning

In this appendix chapter, the hyperparameter tuning for the dynamic job shop scheduling is set out.
Based on findings in this research, the range for hyperparameters is already converged to some more
specific values, to speed up the process.

O.1 First hyperparameter test

For the first hyperparameter test, the values used are given in Table 90. These are based on both
earlier tests as well as the reward structure tests, hence the range of values is kept low.

LR DF ϵ ϵm ϵd Neurons Hidden layers
1e-4 1e-5 1e-6 0.75 0.99 0.75 1 1e-8 1e-7 1e-6 1e-4 1e-5 1e-6 64 128 256 3 to 5

Table 90: Possible values first hyperparameter test for dynamic job shop

Again, the agents are divided into subcategories based on their learning graph. The categories
being Q0 below the found reward, expected, or stable, behavior and Q0 higher than 30. The latter is
chosen due to the Q0 being significantly higher than the found reward, which is between 3 and 4. In
Figure 95 these three different categories are shown.
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(a) low Q0

(b) Stable

(c) Q0 ¿ 30

Figure 95: Representation of different categories in hyperparameter test 1 for dynamic job shop schedul-
ing
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From these, the categorized agents are given in Table 91, with the agent values given in Table 92.

Category Agents
Low Q0 2 3 5 7 12 17 21 23 24 27 29 31 33 34 35 36 37 39 41 44 45 47 48 49 51 52
Stable 9 10 14 16 18 20 22 25 28 32 42 46 50

Q0 ¿ 30 1 4 6 8 11 13 15 19 26 30 38 40 43 54

Table 91: Overview of different categories and agents in test 1 for DJSP

Agent LR DF ϵ ϵd ϵm Neurons HL
1 1E-06 0.99 0.75 1E-07 1E-06 64 3
2 1E-05 0.75 1 1E-07 1E-05 128 5
3 1E-06 0.75 1 1E-06 1E-06 128 3
4 1E-06 0.99 0.75 1E-06 1E-05 256 3
5 1E-04 0.75 0.75 1E-07 1E-04 256 3
6 1E-04 0.99 1 1E-07 1E-06 128 5
7 1E-05 0.75 0.75 1E-07 1E-04 256 5
8 1E-04 0.99 1 1E-08 1E-06 64 4
9 1E-04 0.99 1 1E-06 1E-05 256 5
10 1E-06 0.99 1 1E-07 1E-04 64 3
11 1E-05 0.99 1 1E-07 1E-05 64 4
12 1E-06 0.75 1 1E-08 1E-06 64 4
13 1E-06 0.99 0.75 1E-06 1E-06 64 3
14 1E-04 0.99 1 1E-06 1E-06 64 5
15 1E-06 0.99 1 1E-07 1E-05 64 5
16 1E-05 0.99 1 1E-08 1E-04 64 3
17 1E-05 0.75 1 1E-06 1E-05 128 5
18 1E-05 0.99 1 1E-06 1E-05 128 3
19 1E-06 0.99 1 1E-06 1E-05 64 4
20 1E-04 0.99 0.75 1E-06 1E-06 256 5
21 1E-04 0.75 1 1E-08 1E-05 256 3
22 1E-04 0.99 0.75 1E-06 1E-06 64 4
23 1E-06 0.75 0.75 1E-08 1E-06 64 3
24 1E-05 0.75 0.75 1E-07 1E-06 64 5
25 1E-05 0.99 1 1E-06 1E-05 64 5
26 1E-06 0.99 1 1E-06 1E-05 256 3
27 1E-05 0.75 1 1E-07 1E-06 64 4
28 1E-04 0.99 1 1E-07 1E-05 256 3
29 1E-05 0.75 0.75 1E-08 1E-05 256 5
30 1E-04 0.99 1 1E-07 1E-06 128 3
31 1E-04 0.75 1 1E-08 1E-06 128 4
32 1E-04 0.99 0.75 1E-08 1E-04 128 3
33 1E-05 0.75 1 1E-08 1E-05 256 5
34 1E-06 0.75 0.75 1E-06 1E-06 128 3
35 1E-05 0.75 0.75 1E-08 1E-06 64 5
36 1E-06 0.75 0.75 1E-06 1E-05 256 4
37 1E-06 0.75 1 1E-06 1E-06 256 4
38 1E-06 0.99 1 1E-08 1E-05 64 4
39 1E-04 0.75 1 1E-08 1E-06 64 3
40 1E-06 0.99 0.75 1E-08 1E-06 256 4
41 1E-06 0.75 0.75 1E-07 1E-06 64 4
42 1E-04 0.99 0.75 1E-06 1E-04 256 4
43 1E-04 0.99 1 1E-07 1E-05 64 3
44 1E-06 0.75 0.75 1E-08 1E-04 64 4
45 1E-06 0.75 1 1E-08 1E-06 256 3
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46 1E-04 0.99 0.75 1E-06 1E-05 128 5
47 1E-06 0.75 1 1E-07 1E-05 64 3
48 1E-04 0.75 0.75 1E-06 1E-04 128 3
49 1E-05 0.75 1 1E-07 1E-05 64 5
50 1E-04 0.99 0.75 1E-08 1E-05 64 5
51 1E-05 0.75 0.75 1E-06 1E-05 256 5
52 1E-06 0.75 1 1E-06 1E-04 128 5
53 1E-04 0.75 0.75 1E-07 1E-05 256 5
54 1E-06 0.99 1 1E-08 1E-06 256 5

Table 92: All settings for the agents created in test 1 for DJSP

From the categorization of these agents, it is found that the discount factor of 0.75 results in the
Q0 always being below the average found reward. Also, the high Q0 values are a result of the learning
rate being 1E-6. Further assessing the learning behaviors it is also found that there are no agents
showing a good balance between exploration and exploitation, thus the decay values for ϵ have been
changed. The ϵ value is set to 1 to ensure exploration early on. Finally, the agents with 64 neurons
show worse results in terms of behavior than those with 128 and 256.

O.2 Second hyperparameter test

From the previous findings, the new hyperparameters are chosen and given in Table 93. These combi-
nations give us 48 possibilities, which will all be tested in this hyperparameter test.

LR DF ϵ ϵm ϵd Neurons Hidden layers
1e-4 1e-5 0.99 1 1e-6 1e-3 5e-4 1e-4 5e-5 128 256 3 to 5

Table 93: Possible values second hyperparameter test for dynamic job shop

The combination of hyperparameters are given in Table 94.

agent LR DF ϵ ϵm ϵd neurons layers
1 1E-05 0.99 1 1E-06 5E-05 128 3
2 1E-04 0.99 1 1E-06 1E-03 256 4
3 1E-04 0.99 1 1E-06 5E-05 256 4
4 1E-05 0.99 1 1E-06 5E-04 256 5
5 1E-04 0.99 1 1E-06 5E-04 128 5
6 1E-05 0.99 1 1E-06 1E-04 128 4
7 1E-04 0.99 1 1E-06 1E-04 256 5
8 1E-04 0.99 1 1E-06 1E-04 128 3
9 1E-05 0.99 1 1E-06 1E-03 256 3
10 1E-05 0.99 1 1E-06 5E-05 256 4
11 1E-05 0.99 1 1E-06 1E-03 128 5
12 1E-05 0.99 1 1E-06 1E-03 256 4
13 1E-04 0.99 1 1E-06 1E-03 128 3
14 1E-05 0.99 1 1E-06 5E-04 128 4
15 1E-05 0.99 1 1E-06 1E-04 128 3
16 1E-05 0.99 1 1E-06 1E-03 256 5
17 1E-04 0.99 1 1E-06 1E-03 128 5
18 1E-05 0.99 1 1E-06 5E-04 128 3
19 1E-04 0.99 1 1E-06 5E-04 256 4
20 1E-05 0.99 1 1E-06 1E-04 256 3
21 1E-04 0.99 1 1E-06 1E-04 128 4
22 1E-04 0.99 1 1E-06 5E-05 128 3
23 1E-05 0.99 1 1E-06 5E-04 256 3
24 1E-04 0.99 1 1E-06 1E-03 128 4
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25 1E-04 0.99 1 1E-06 5E-05 256 3
26 1E-04 0.99 1 1E-06 1E-04 128 5
27 1E-04 0.99 1 1E-06 5E-04 256 3
28 1E-04 0.99 1 1E-06 5E-04 128 4
29 1E-04 0.99 1 1E-06 5E-05 128 5
30 1E-04 0.99 1 1E-06 1E-03 256 5
31 1E-05 0.99 1 1E-06 5E-04 128 5
32 1E-04 0.99 1 1E-06 1E-04 256 3
33 1E-05 0.99 1 1E-06 1E-03 128 3
34 1E-04 0.99 1 1E-06 1E-03 256 3
35 1E-04 0.99 1 1E-06 5E-05 256 5
36 1E-05 0.99 1 1E-06 5E-05 128 5
37 1E-05 0.99 1 1E-06 1E-04 256 4
38 1E-04 0.99 1 1E-06 5E-05 128 4
39 1E-05 0.99 1 1E-06 1E-03 128 4
40 1E-04 0.99 1 1E-06 1E-04 256 4
41 1E-05 0.99 1 1E-06 5E-05 256 3
42 1E-05 0.99 1 1E-06 1E-04 256 5
43 1E-04 0.99 1 1E-06 5E-04 128 3
44 1E-05 0.99 1 1E-06 5E-04 256 4
45 1E-05 0.99 1 1E-06 1E-04 128 5
46 1E-04 0.99 1 1E-06 5E-04 256 5
47 1E-05 0.99 1 1E-06 5E-05 256 5
48 1E-05 0.99 1 1E-06 5E-05 128 4

Table 94: Hyperparameter settings per agent

For this iteration of the hyperparameter tests, each agent will be tested in terms of performance.
After finding the best performers, the learning behavior is assessed as well. In Figure 96 this comparison
made. Also, in Table 95 values are also shown.

Figure 96: Comparison of agents in bar graphs

Agent max S max T avg S avg T Ut rate makespan reward
1 7 17 2.166667 5.166667 0.612072 67 3.672434
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2 10 13 3.166667 4 0.545893 78 3.275355
3 24 34 6.166667 9.666667 0.577031 68 3.462187
4 23 16 7.666667 7.333333 0.661553 67 3.969317
5 24 31 6.166667 9.666667 0.573948 66 3.443687
6 23 17 6 4.5 0.621723 61 3.730337
7 24 34 6.166667 9.666667 0.577031 68 3.462187
8 11 17 2.5 5.666667 0.599446 68 3.596673
9 2 26 0.333333 7.833333 0.554955 69 3.329733
10 24 18 5.833333 7.166667 0.58417 66 3.50502
11 8 18 1.833333 7.333333 0.585073 68 3.51044
12 23 17 6 4.5 0.621723 61 3.730337
13 24 34 6.166667 9.666667 0.577031 68 3.462187
14 24 34 6.166667 9.666667 0.599699 68 3.598194
15 24 26 5.833333 7.666667 0.588467 69 3.530804
16 10 17 3.833333 4 0.608385 61 3.650311
17 13 23 3.833333 6.5 0.631752 63 3.79051
18 10 13 2 3.166667 0.537215 78 3.223293
19 20 10 3.833333 3.666667 0.651755 62 3.910532
20 18 10 4.5 3 0.618803 65 3.712821
21 15 33 4.666667 9.5 0.573572 76 3.441431
22 24 31 6.166667 9.666667 0.573948 66 3.443687
23 24 31 6.166667 9.333333 0.619438 65 3.716631
24 24 31 6.166667 9.333333 0.619438 65 3.716631
25 24 23 5.333333 10.83333 0.528382 83 3.170292
26 24 34 6.166667 9.666667 0.577031 68 3.462187
27 13 23 3.833333 6.5 0.631752 63 3.79051
28 24 34 6.166667 9.666667 0.577031 68 3.462187
29 23 23 5.5 6.5 0.631752 63 3.79051
30 23 23 5.5 6.5 0.631752 63 3.79051
31 24 18 5.833333 7.166667 0.606838 66 3.641027
32 24 31 6.166667 9.333333 0.619438 65 3.716631
33 24 18 5.833333 7.166667 0.606838 66 3.641027
34 8 10 1.833333 4.666667 0.615691 66 3.694144
35 24 26 5.833333 7.666667 0.588467 69 3.530804
36 23 31 6 9.333333 0.619438 65 3.716631
37 24 26 4.5 7.833333 0.588467 69 3.530804
38 20 10 3.833333 5.5 0.643373 65 3.860237
39 24 31 6.166667 9.5 0.605461 65 3.632765
40 24 34 6.166667 9.666667 0.577031 68 3.462187
41 11 18 3.333333 7.5 0.578324 68 3.469943
42 12 6 2.5 3 0.643788 62 3.862725
43 24 34 6.166667 9.666667 0.577031 68 3.462187
44 10 17 3.833333 4 0.608385 61 3.650311
45 10 17 3.833333 4 0.608385 61 3.650311
46 8 10 1.833333 4.666667 0.615691 66 3.694144
47 20 24 6 6.833333 0.664217 60 3.985299
48 8 10 1.833333 4.666667 0.596276 66 3.577657

Table 95: Performance of each agent

To completely compare the agents, the best found agents are compared to the benchmark found
in the previous appendix in Table 96. Here, it is found that while all agents perform comparable or
better to the benchmark, agent 47 performs best and together with agent 19 finds the highest reward.
Hence, agent 47 is chosen for the hyperparameters.
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makespan ut rate avg S avg T
benchmark 61 0.61 3.83 4.00
6 61 0.62 6.00 4.50
12 61 0.62 6.00 4.50
16 61 0.61 3.83 4.00
17 63 0.63 3.83 6.50
19 62 0.65 3.83 3.67
20 65 0.62 4.50 3.00
27 63 0.63 3.83 6.50
29 63 0.63 5.50 6.50
30 63 0.63 5.50 6.50
38 65 0.64 3.83 5.50
42 62 0.64 2.50 3.00
44 61 0.61 3.83 4.00
45 61 0.61 3.83 4.00
47 60 0.66 6.00 6.83

Table 96: Best agents found for second iteration of hyperparameter tuning
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P Training on multiple instances: dynamic job shop schedul-
ing

As the hyperparameters have been chosen, now multiple agents are trained on a different number of
problems. These are trained on 1, 5, 10, 25 and 50 problems respectively. The training graphs are
given in Figure 97 and 98.

(a) 1 problem

(b) 5 problems

(c) 10 problems

Figure 97: Training graph of agents 1, 2 and 3
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(a) 25 problem

(b) 50 problems

Figure 98: Training graph of agents 4 and 5

In Table 97 the results are shown per agent for the problems they were trained on. From these
values, it is found that the agents show comparable results on all aspects.
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dynamic
problem

agent 1 agent 2 agent 3 agent 4 agent 5
C U S T C U S T C U S T C U S T C U S T

1 67 0.65 5.83 1.00 82 0.60 5.00 4.83 76 0.58 4.50 2.17 72 0.62 6.33 3.67 68 0.62 4.00 3.67
2 84 0.49 5.83 3.33 84 0.50 6.67 7.33 83 0.53 5.83 6.00 83 0.52 4.50 6.67 68 0.60 5.50 1.17
3 81 0.54 4.33 2.83 63 0.59 4.83 4.00 66 0.59 2.17 3.17 80 0.52 4.83 7.83 64 0.63 6.67 4.33
4 73 0.63 7.33 4.17 84 0.57 2.67 10.17 87 0.54 5.17 6.67 77 0.62 2.67 9.00 82 0.59 5.00 9.33
5 80 0.52 6.33 12.00 77 0.54 6.67 6.50 81 0.52 6.33 10.33 86 0.52 6.33 12.33 85 0.56 6.67 10.83
6 91 0.49 11.67 3.33 81 0.52 12.17 1.83 78 0.54 12.83 1.17 100 0.45 8.50 7.50 85 0.51 12.17 2.33
7 86 0.50 4.33 10.67 93 0.56 6.50 8.33 84 0.50 6.33 10.50 73 0.58 7.00 7.83 93 0.56 6.50 8.33
8 76 0.51 6.67 10.50 78 0.54 6.17 6.50 81 0.51 4.00 6.50 72 0.55 9.17 9.33 78 0.54 5.67 6.50
9 79 0.52 5.83 8.83 72 0.57 8.50 7.00 79 0.51 6.17 11.17 78 0.54 5.83 6.67 84 0.58 8.33 5.50
10 85 0.49 4.67 4.00 87 0.49 6.00 10.00 87 0.52 6.50 7.33 87 0.49 5.17 7.33 81 0.50 6.17 9.17
11 63 0.60 6.50 3.50 66 0.58 7.00 4.17 66 0.59 7.50 2.83 69 0.58 7.50 6.00 66 0.58 7.00 4.17
12 75 0.51 9.50 5.00 67 0.56 10.50 3.17 67 0.56 10.50 3.17 79 0.54 9.17 5.17 68 0.56 10.50 3.50
13 58 0.55 9.67 3.67 71 0.51 7.67 5.50 58 0.57 6.17 2.17 66 0.53 7.83 3.00 64 0.52 5.33 2.33
14 97 0.44 4.00 8.67 87 0.48 3.67 8.67 82 0.54 8.33 9.67 88 0.48 5.33 10.33 93 0.49 2.83 12.50
15 86 0.56 7.17 2.17 86 0.56 6.00 1.83 82 0.61 7.50 4.17 82 0.61 7.50 4.17 81 0.56 7.50 4.17
16 78 0.49 5.83 1.17 78 0.49 6.67 1.50 79 0.48 8.00 2.83 72 0.53 9.33 6.17 79 0.48 8.00 2.83
17 68 0.54 9.00 4.00 75 0.54 9.83 2.83 81 0.47 9.00 7.83 75 0.54 9.83 2.83 75 0.54 9.83 2.83
18 76 0.56 7.83 2.50 76 0.56 7.83 2.50 76 0.55 8.00 4.17 68 0.62 12.00 3.00 78 0.59 9.00 2.00
19 89 0.45 6.17 6.00 82 0.48 4.67 5.00 82 0.48 4.50 4.50 82 0.48 5.17 7.17 77 0.51 4.17 2.83
20 85 0.49 2.67 7.50 80 0.53 2.00 6.00 66 0.64 6.83 2.17 81 0.52 6.50 8.50 66 0.64 6.83 2.17
21 71 0.52 2.50 3.50 77 0.51 8.83 6.33 88 0.49 9.50 6.67 67 0.51 5.67 2.33 70 0.53 4.67 3.17
22 75 0.60 7.50 2.67 75 0.54 5.50 5.50 69 0.54 5.67 7.17 89 0.49 6.83 7.00 76 0.56 9.67 10.33
23 89 0.45 5.33 8.67 66 0.52 6.17 7.17 72 0.51 5.83 8.00 89 0.46 5.33 8.67 80 0.47 5.67 8.17
24 74 0.54 9.00 5.17 64 0.56 5.00 3.33 69 0.53 10.83 5.33 75 0.51 11.33 6.83 71 0.53 2.33 3.17
25 68 0.58 8.50 4.33 63 0.61 7.50 2.83 70 0.57 7.67 4.50 66 0.59 7.33 4.50 82 0.58 10.17 1.83
26 78 0.51 4.67 4.33 68 0.57 6.00 2.67 81 0.48 4.83 6.17 81 0.49 4.83 5.67 69 0.57 6.33 9.17
27 68 0.64 10.00 2.83 61 0.64 9.00 0.50 63 0.64 11.00 3.17 64 0.61 8.33 1.33 73 0.60 8.83 1.83
28 89 0.46 3.83 8.00 88 0.46 4.33 7.33 77 0.51 4.00 3.67 80 0.48 4.17 6.00 81 0.56 8.83 5.00
29 86 0.46 5.83 9.50 81 0.47 5.83 9.33 87 0.47 5.83 9.00 78 0.48 5.50 11.00 85 0.46 2.67 9.00
30 78 0.48 7.50 3.67 84 0.47 8.67 4.67 79 0.52 4.33 6.17 71 0.52 1.83 6.00 72 0.58 3.33 4.17
31 77 0.57 3.50 8.67 80 0.63 7.00 4.83 83 0.61 5.33 7.67 94 0.55 3.50 11.83 93 0.58 4.50 9.50
32 62 0.57 6.83 2.17 64 0.52 6.00 2.00 64 0.54 9.67 1.83 64 0.59 7.83 4.00 62 0.56 6.67 5.67
33 72 0.54 8.17 5.67 70 0.54 6.67 5.17 72 0.54 8.50 6.00 69 0.57 7.33 4.67 64 0.56 5.50 1.50
34 81 0.52 7.17 11.17 83 0.51 4.83 10.17 73 0.54 7.33 8.33 73 0.54 8.00 8.33 90 0.49 4.00 14.17
35 65 0.59 10.67 0.33 60 0.64 12.00 0.00 70 0.57 9.67 0.33 67 0.57 9.83 0.33 64 0.62 9.17 0.00
36 77 0.48 3.67 6.83 90 0.42 5.50 8.00 85 0.45 8.50 5.83 81 0.43 5.67 7.17 68 0.58 10.50 2.50
37 67 0.64 8.83 3.83 67 0.54 9.00 4.33 74 0.57 8.83 4.67 71 0.60 7.33 4.50 64 0.63 7.67 4.50
38 70 0.54 2.67 5.67 70 0.53 9.33 4.83 67 0.54 8.83 2.33 85 0.43 6.83 5.00 75 0.50 3.83 7.83
39 74 0.52 10.00 1.17 72 0.52 10.00 3.00 74 0.52 10.00 1.17 74 0.52 10.00 1.17 69 0.53 10.17 0.50
40 73 0.48 8.17 3.83 75 0.47 6.83 4.17 75 0.47 7.67 4.17 75 0.47 6.83 4.17 74 0.50 3.33 4.83
41 93 0.48 5.33 7.17 98 0.45 9.17 9.83 92 0.49 5.50 6.67 80 0.51 4.50 5.67 92 0.48 9.17 8.00
42 69 0.51 4.67 3.33 76 0.53 4.50 5.17 68 0.51 4.67 3.50 73 0.50 7.00 5.50 71 0.53 5.33 3.67
43 87 0.49 8.67 5.83 81 0.53 10.67 2.83 79 0.44 10.00 4.17 75 0.49 7.83 3.00 73 0.51 10.50 1.50
44 80 0.45 6.33 9.83 85 0.46 5.17 5.00 82 0.48 4.33 3.00 85 0.46 5.17 5.00 89 0.45 5.17 4.67
45 77 0.60 8.33 7.50 73 0.62 6.00 6.17 72 0.64 8.17 6.00 77 0.61 7.50 5.83 69 0.63 5.17 4.17
46 92 0.56 6.67 5.33 94 0.59 5.83 4.00 98 0.57 10.67 6.00 80 0.59 9.33 1.50 78 0.60 7.83 4.83
47 66 0.48 7.83 4.17 66 0.53 8.67 4.00 66 0.53 8.67 4.00 66 0.53 8.67 4.00 66 0.50 5.83 3.17
48 64 0.53 9.00 3.67 64 0.53 9.00 3.67 75 0.51 7.83 4.00 66 0.52 8.50 5.50 85 0.45 8.00 7.67
49 96 0.47 11.50 3.00 98 0.46 11.17 2.33 90 0.47 5.50 2.33 83 0.53 10.83 1.67 98 0.48 10.67 2.67
50 88 0.49 7.33 7.83 83 0.50 4.00 7.00 81 0.51 4.17 8.67 83 0.52 4.00 7.00 86 0.53 2.83 4.83
Average 77.66 0.53 6.82 5.29 76.9 0.53 6.98 5.08 76.72 0.53 7.19 5.18 77.02 0.53 6.96 5.79 76.48 0.55 6.72 5.05

Table 97: results of agents on generated problems

Next, problems with the same values but not specifically trained on were tested. Results are given
in Table 98.
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dynamic
problem

agent 1 agent 2 agent 3 agent 4 agent 5
C U S T C U S T C U S T C U S T C U S T

1 71 0.48 4.83 5.67 58 0.61 6.00 4.83 82 0.48 4.67 6.50 73 0.48 5.33 7.83 76 0.53 3.83 6.83
2 76 0.47 5.50 3.50 76 0.47 5.50 3.50 76 0.52 5.00 0.00 80 0.45 5.50 1.00 76 0.52 5.00 0.00
3 80 0.52 3.50 4.17 79 0.51 3.67 4.83 79 0.51 3.67 4.83 79 0.51 3.67 4.83 82 0.50 3.00 5.17
4 84 0.51 6.17 6.17 88 0.50 7.67 16.00 84 0.50 7.67 12.17 87 0.48 8.17 12.50 85 0.51 6.67 9.83
5 91 0.52 4.50 11.17 85 0.53 4.50 8.50 91 0.51 5.83 10.83 90 0.52 6.33 9.00 80 0.52 6.17 10.67
6 89 0.55 9.50 4.50 96 0.49 9.33 6.17 82 0.56 9.50 3.83 82 0.53 9.33 8.33 88 0.53 6.00 4.67
7 60 0.57 5.67 8.00 60 0.59 5.67 8.33 59 0.58 6.17 6.17 69 0.51 6.83 10.17 74 0.55 3.83 3.50
8 58 0.56 6.33 2.83 63 0.52 6.00 5.17 61 0.54 6.67 4.00 61 0.54 6.67 4.00 60 0.55 7.17 3.83
9 69 0.52 8.17 5.50 70 0.50 8.17 4.83 84 0.46 8.00 8.17 74 0.51 8.67 5.67 74 0.47 6.83 5.83
10 93 0.50 2.33 8.00 80 0.54 3.83 7.33 76 0.55 4.33 8.33 82 0.52 4.33 7.00 95 0.46 3.83 15.33
11 79 0.58 8.17 5.00 79 0.59 5.67 4.67 79 0.58 8.17 5.00 79 0.58 8.17 5.00 82 0.57 8.33 2.00
12 88 0.51 11.33 4.50 81 0.57 12.50 2.33 86 0.53 9.67 3.17 76 0.55 8.50 2.83 70 0.62 6.17 2.50
13 91 0.47 5.50 9.83 72 0.57 2.50 3.67 72 0.54 3.33 4.67 63 0.62 5.50 1.17 63 0.60 3.67 1.67
14 66 0.50 11.50 6.17 56 0.56 10.33 2.00 64 0.51 8.17 2.50 57 0.51 5.50 4.17 55 0.53 5.33 1.00
15 91 0.48 5.33 6.67 79 0.57 8.67 3.17 72 0.58 8.83 3.17 79 0.50 5.33 5.83 85 0.53 7.00 2.50
16 64 0.58 12.67 0.50 64 0.58 12.67 0.50 73 0.49 9.00 4.67 61 0.61 12.00 5.67 66 0.57 12.50 0.83
17 77 0.54 12.00 9.83 90 0.46 7.00 6.50 77 0.55 12.00 7.33 73 0.52 8.67 2.00 88 0.44 8.17 7.17
18 82 0.48 8.17 9.33 89 0.41 9.33 14.83 82 0.48 8.17 9.67 74 0.52 6.83 5.17 78 0.55 2.83 7.83
19 82 0.53 11.83 4.17 86 0.49 9.17 1.67 65 0.60 11.83 1.33 75 0.55 12.67 7.00 74 0.53 4.67 0.50
20 66 0.64 6.83 2.67 68 0.62 5.50 2.33 68 0.62 5.33 4.67 73 0.57 6.33 7.83 68 0.62 5.33 4.67
21 78 0.50 7.67 2.00 82 0.49 5.67 2.67 79 0.48 7.33 3.33 78 0.50 7.67 2.00 85 0.46 8.67 2.83
22 64 0.52 8.83 3.17 56 0.56 10.00 4.33 70 0.56 8.33 0.67 61 0.53 8.00 6.00 62 0.59 10.33 1.17
23 77 0.47 4.17 11.17 77 0.47 4.17 11.17 75 0.47 4.17 10.17 81 0.47 4.17 11.50 72 0.56 5.17 4.00
24 63 0.50 11.33 2.17 68 0.47 12.17 4.67 77 0.47 9.33 2.17 70 0.46 11.83 4.33 62 0.50 11.33 3.67
25 77 0.59 7.33 3.67 91 0.53 3.17 10.00 92 0.53 6.50 8.00 85 0.53 5.33 10.33 99 0.50 4.83 12.67
26 76 0.51 5.17 3.50 70 0.56 5.50 6.00 71 0.53 5.17 2.33 75 0.48 3.67 5.67 71 0.59 5.83 1.67
27 78 0.48 10.50 6.83 71 0.51 9.17 6.00 79 0.49 10.33 6.00 78 0.47 10.67 6.83 73 0.54 7.67 3.00
28 84 0.50 5.67 3.17 83 0.49 5.67 3.17 79 0.54 7.00 2.33 78 0.50 6.50 4.17 75 0.56 6.00 2.00
29 70 0.53 4.17 4.17 74 0.50 3.83 2.67 84 0.45 4.33 4.33 74 0.48 5.00 4.67 73 0.50 5.50 3.00
30 76 0.47 5.17 1.67 59 0.54 5.67 0.33 59 0.54 5.67 0.33 59 0.52 4.83 6.33 58 0.58 4.00 4.17
31 67 0.54 8.83 2.83 77 0.49 5.83 5.00 65 0.54 7.67 0.67 67 0.54 8.33 4.17 71 0.54 6.83 6.00
32 59 0.60 5.83 1.00 59 0.60 5.83 1.00 71 0.54 7.67 3.00 77 0.53 9.83 4.67 53 0.65 7.33 1.17
33 87 0.50 4.00 7.17 75 0.52 5.83 7.17 99 0.47 4.67 5.00 85 0.47 8.00 10.33 77 0.50 2.83 6.17
34 76 0.50 4.00 6.00 73 0.50 7.83 9.50 87 0.44 2.17 9.17 88 0.44 5.83 11.50 79 0.49 4.17 6.83
35 89 0.49 4.67 3.33 78 0.52 5.00 4.17 86 0.51 6.33 1.50 95 0.44 6.00 8.33 81 0.57 9.50 6.83
36 88 0.48 7.00 5.17 75 0.51 6.17 5.83 86 0.50 6.00 6.33 75 0.51 6.17 5.83 81 0.50 8.67 4.67
37 82 0.50 4.83 5.67 67 0.58 9.50 0.67 70 0.53 10.50 4.50 81 0.52 9.33 4.67 85 0.49 9.00 5.83
38 81 0.50 10.67 8.83 84 0.46 8.33 9.67 84 0.53 9.17 4.67 73 0.56 8.83 2.50 81 0.48 7.67 6.83
39 82 0.46 10.17 7.00 89 0.43 10.17 7.67 70 0.58 10.83 2.00 88 0.43 10.17 7.33 74 0.56 8.17 4.33
40 79 0.48 6.17 5.00 74 0.49 7.67 2.67 77 0.48 6.17 3.17 74 0.49 7.67 2.67 74 0.49 6.33 2.67
41 81 0.46 5.50 7.83 93 0.48 7.83 7.33 78 0.52 5.67 6.67 93 0.47 5.33 8.50 84 0.50 5.83 3.67
42 71 0.51 8.00 2.67 63 0.63 6.33 0.33 62 0.56 7.67 1.00 71 0.53 9.00 2.67 60 0.65 7.50 0.00
43 76 0.44 13.17 1.67 77 0.46 12.83 2.50 76 0.44 10.50 1.67 76 0.44 13.17 1.67 71 0.47 11.83 0.83
44 100 0.51 2.33 6.17 92 0.55 4.33 11.50 96 0.52 7.83 4.67 90 0.53 4.50 6.83 105 0.50 1.33 8.33
45 50 0.51 10.83 2.67 50 0.52 10.33 1.83 54 0.49 8.17 1.17 52 0.49 8.50 2.00 60 0.47 9.33 2.67
46 73 0.56 8.33 3.67 77 0.56 10.83 0.50 75 0.56 6.33 3.83 72 0.56 8.50 5.00 77 0.54 4.67 4.33
47 88 0.47 4.50 11.83 82 0.43 5.67 14.50 90 0.42 5.67 14.00 82 0.44 4.50 12.83 95 0.42 4.17 18.33
48 70 0.61 14.17 2.33 82 0.59 10.67 6.33 71 0.64 12.17 1.50 70 0.60 12.67 3.83 75 0.60 10.83 4.33
49 80 0.56 9.17 0.00 91 0.47 6.83 5.50 72 0.52 7.50 6.67 65 0.56 11.50 3.17 86 0.53 11.00 0.83
50 78 0.51 4.00 7.17 76 0.46 4.50 8.67 81 0.52 4.67 6.33 84 0.44 2.67 7.00 78 0.57 1.33 5.17
Average 77.14 0.52 7.32 5.15 75.68 0.52 7.22 5.49 76.54 0.52 7.23 4.76 75.68 0.51 7.45 5.89 75.92 0.53 6.48 4.69

Table 98: Results of similar problems not trained on

Finally, problems with different processing times, again U[20,99] were tested. Results are given in
Table 99.
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dynamic
problem

agent 1 agent 2 agent 3 agent 4 agent 5
C U S T C U S T C U S T C U S T C U S T

1 661 0.62 1.33 167.00 683 0.66 1.33 145.50 823 0.57 1.33 172.50 799 0.65 7.50 175.00 656 0.68 1.33 136.00
2 906 0.48 13.17 201.33 928 0.52 13.17 223.33 675 0.63 1.17 162.00 722 0.53 13.17 214.00 675 0.62 1.33 191.83
3 597 0.72 1.83 58.17 697 0.64 1.67 144.17 670 0.64 5.17 123.17 699 0.65 11.33 129.33 607 0.68 7.50 89.83
4 842 0.54 14.67 219.50 680 0.76 2.67 173.17 788 0.68 4.00 152.50 984 0.49 14.67 247.00 838 0.58 0.00 163.17
5 721 0.63 11.67 137.67 685 0.63 11.67 144.17 893 0.55 11.67 189.00 747 0.60 11.67 173.50 685 0.60 0.00 201.50
6 819 0.58 4.00 197.17 671 0.63 4.00 136.17 764 0.61 4.00 153.83 890 0.53 15.00 172.33 693 0.61 4.00 133.00
7 935 0.47 9.50 221.67 926 0.58 2.67 201.33 823 0.50 9.50 225.50 792 0.58 9.50 167.17 783 0.56 0.00 261.50
8 822 0.52 6.50 165.33 845 0.49 12.83 158.67 824 0.51 12.83 166.50 824 0.51 12.83 166.50 845 0.49 12.83 158.67
9 832 0.55 13.83 246.00 713 0.60 5.33 200.83 904 0.52 13.83 241.17 847 0.54 13.83 241.83 897 0.55 4.00 214.17
10 827 0.54 17.00 172.33 827 0.54 17.00 188.67 618 0.65 0.00 131.67 812 0.52 17.00 186.17 838 0.50 12.17 207.83
11 680 0.61 6.67 151.50 732 0.60 1.33 185.83 814 0.56 6.67 198.33 794 0.54 10.33 179.50 758 0.59 1.33 195.33
12 710 0.59 9.83 158.67 708 0.59 9.83 138.17 825 0.56 9.83 148.67 708 0.59 9.83 138.17 759 0.57 4.00 146.83
13 653 0.58 18.83 159.83 643 0.58 13.33 132.83 820 0.51 18.83 227.83 759 0.52 18.83 181.50 720 0.56 2.67 197.00
14 796 0.55 13.83 228.83 877 0.55 13.83 210.50 902 0.49 4.00 229.17 809 0.54 13.83 220.83 882 0.51 13.83 264.17
15 796 0.64 1.33 224.00 885 0.53 0.00 222.00 808 0.62 1.33 204.17 843 0.62 17.67 199.50 714 0.65 0.00 204.33
16 693 0.58 6.00 122.50 737 0.54 6.00 150.33 815 0.54 4.00 190.17 701 0.58 6.00 146.67 670 0.59 6.00 139.33
17 697 0.58 12.67 164.83 697 0.57 12.67 161.67 697 0.55 12.67 192.00 803 0.51 14.17 184.33 760 0.56 1.33 186.17
18 894 0.55 4.00 165.83 777 0.61 5.67 135.33 790 0.60 4.00 165.50 777 0.61 5.67 135.33 843 0.59 5.67 145.83
19 864 0.51 10.50 253.00 860 0.50 10.50 250.17 680 0.66 10.50 165.50 863 0.51 10.50 247.83 797 0.52 10.50 241.50
20 917 0.50 6.67 233.67 837 0.51 6.67 236.00 791 0.55 4.00 192.50 917 0.50 6.67 224.33 717 0.59 1.33 146.50
21 639 0.60 6.17 171.83 639 0.59 6.17 176.50 745 0.56 0.00 185.00 659 0.58 6.17 169.50 690 0.56 6.17 187.50
22 759 0.64 16.33 158.50 759 0.63 16.33 176.17 703 0.58 13.83 188.67 798 0.60 16.33 167.00 759 0.61 16.33 176.17
23 793 0.58 16.67 168.67 623 0.62 16.67 149.00 638 0.61 16.67 178.67 663 0.63 16.67 142.17 674 0.65 16.67 159.33
24 707 0.62 14.50 141.67 652 0.60 14.50 141.17 752 0.60 4.00 149.00 712 0.61 4.50 169.17 707 0.62 14.50 141.67
25 756 0.55 15.83 198.50 771 0.52 11.83 245.33 752 0.57 11.00 203.17 870 0.52 11.83 229.17 840 0.55 6.33 174.33
26 651 0.57 4.00 139.33 598 0.59 2.67 149.83 773 0.50 0.00 234.83 671 0.57 5.33 145.17 645 0.57 2.67 137.83
27 719 0.66 7.67 149.83 691 0.64 8.00 189.50 629 0.68 7.67 135.83 697 0.60 17.67 211.83 713 0.64 0.00 198.17
28 814 0.56 15.67 193.00 763 0.57 15.67 211.67 802 0.58 1.33 180.33 747 0.58 15.67 179.67 680 0.68 0.33 131.67
29 649 0.62 10.33 158.17 775 0.57 2.67 179.50 747 0.60 10.33 131.83 657 0.61 10.33 162.17 657 0.61 10.33 162.17
30 820 0.55 16.50 243.50 704 0.56 19.17 154.50 696 0.58 2.67 142.83 751 0.57 2.67 156.00 688 0.62 0.00 248.17
31 851 0.59 0.00 273.50 830 0.62 0.00 268.33 913 0.55 4.00 264.17 924 0.57 13.00 211.33 824 0.65 4.17 239.17
32 655 0.59 19.17 158.50 655 0.59 19.17 150.50 652 0.60 21.83 159.50 667 0.61 19.33 129.50 655 0.59 19.17 150.50
33 672 0.64 18.83 164.33 698 0.60 18.67 163.83 674 0.62 16.83 152.17 675 0.64 18.83 158.83 701 0.62 17.67 190.17
34 738 0.59 2.17 171.83 831 0.56 2.17 216.33 738 0.59 2.17 168.67 895 0.54 9.00 268.33 814 0.57 0.00 207.17
35 931 0.47 1.83 213.33 802 0.54 4.00 182.50 880 0.51 1.83 187.83 772 0.55 14.67 171.83 669 0.61 1.83 140.50
36 835 0.47 7.00 250.33 837 0.49 7.00 236.50 918 0.47 4.00 207.33 906 0.45 4.00 235.33 750 0.55 2.00 164.33
37 649 0.63 16.00 151.67 749 0.64 16.00 134.33 719 0.56 4.00 161.50 749 0.64 16.00 134.33 593 0.68 8.67 112.83
38 676 0.63 0.00 171.83 632 0.64 0.00 147.33 689 0.62 0.00 184.17 824 0.52 16.33 209.33 637 0.64 0.00 147.50
39 677 0.63 21.00 114.00 714 0.58 21.00 113.50 714 0.56 18.33 167.67 714 0.56 21.00 144.33 631 0.65 6.67 121.83
40 632 0.59 12.83 142.17 594 0.61 12.83 168.50 643 0.56 0.00 183.00 697 0.53 14.17 174.33 674 0.62 1.33 146.67
41 777 0.54 17.17 195.33 935 0.49 17.17 217.83 897 0.49 4.00 208.67 807 0.53 17.17 237.00 855 0.60 4.00 165.83
42 817 0.51 11.17 218.67 765 0.53 11.17 190.33 811 0.51 11.17 204.50 794 0.52 4.00 184.17 704 0.55 11.17 204.83
43 791 0.57 14.33 182.17 682 0.63 4.00 161.00 616 0.59 14.33 150.50 687 0.62 14.33 144.33 723 0.52 0.00 213.33
44 781 0.54 0.00 172.83 805 0.54 1.33 177.17 752 0.55 1.33 172.33 802 0.53 7.00 158.17 762 0.57 0.00 161.83
45 737 0.62 17.33 203.00 752 0.64 17.50 159.83 752 0.64 17.50 173.33 690 0.67 17.50 149.33 786 0.64 0.83 183.00
46 886 0.62 4.00 174.67 850 0.63 4.00 204.50 816 0.66 20.33 181.83 793 0.67 20.33 169.67 861 0.65 4.00 188.83
47 676 0.53 9.83 163.83 763 0.52 9.83 209.50 765 0.53 9.83 168.83 770 0.50 9.83 187.83 649 0.55 1.33 151.50
48 708 0.57 4.00 156.83 773 0.51 4.00 204.50 708 0.57 4.00 156.83 752 0.53 8.50 196.83 646 0.57 4.00 184.50
49 965 0.51 18.33 218.33 830 0.48 18.33 216.00 696 0.59 18.33 153.50 903 0.54 18.33 160.17 696 0.63 18.33 152.33
50 675 0.64 9.67 132.00 748 0.57 4.00 247.33 833 0.54 4.00 286.83 712 0.64 9.67 164.00 737 0.62 0.00 225.17
Average 761.96 0.58 10.24 180.02 752.56 0.58 9.16 181.63 762.94 0.57 7.69 181.10 776.96 0.57 12.40 181.03 731.14 0.60 5.37 175.87

Table 99: Results of similar problems with processing time distribution U[20,99]
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