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Abstract

Emergency department overcrowding is a significant issue impacting healthcare systems
globally, influencing patient care and resource allocation. This study investigates whether
predictive process mining offers an improvement over traditional machine learning methods
for classifying emergency department admissions using sequential medical data. By lever-
aging the MIMIC-IV dataset, which includes laboratory tests conducted during hospital
admissions and captures dynamic changes in test results over time, the research compares
the performance of predictive process mining and machine learning models. Results show
that the standalone machine learning model, which differs from predictive process mining
models primarily in the data itself and its format, has a performance comparable to the
predictive process mining model with event-level features. However, it outperforms the
predictive process mining model with case-level features in terms of accuracy, precision
and recall. The study also identifies limitations, such as the exclusion of general practi-
tioner visits and pre-hospitalisation tests from the dataset and challenges related to class
imbalance, which impact model training and generalisability.

Keywords: classification, deep learning, emergency department, machine learning, medical
laboratory tests, predictive process mining, time-series analysis



Chapter 1

Introduction

The healthcare industry is undergoing a transformative shift towards data-driven decision-
making, driven by technological advancements and the increasing availability of electronic
health records (EHRs). In this evolving landscape, machine learning (ML) and process
mining (PM) have emerged as powerful tools for enhancing patient care and operational
efficiency [36, 49].

ML involves training algorithms to recognise patterns and make decisions with minimal
human intervention [1]. It has shown effectiveness in disease diagnosis, risk assessment and
outcome prediction [2, 26, 37, 41]. PM, on the other hand, focuses on analysing business
processes based on event logs extracted from information systems [44]. This approach pro-
vides insights into process flows and deviations, helping to optimise operations, especially
in complex environments like healthcare [7, 27, 34].

Predictive process mining (PPM) extends traditional PM into the realm of predictive
analytics by applying data mining and ML techniques to forecast future process states
based on historical data [9]. PPM offers a detailed view of patient histories and anticipates
future events, enabling proactive decision-making.

This study compares PPM with traditional ML methods for predicting emergency
department (ED) admissions using medical laboratory test data. The primary aim is to
forecast whether a patient will be admitted to the ED based on a six-month history of
laboratory tests. Both ML and PPM methods utilise deep learning models to predict ED
admissions, but they differ primarily in the data itself and its format. This difference in how
data is processed influences each approach’s ability to leverage information for enhancing
prediction accuracy.

Predicting ED admissions is crucial for healthcare facilities as it enables early interven-
tion and effective resource allocation. Accurate predictions allow healthcare providers to
anticipate patient demand surges, facilitating proactive adjustments in staffing, resources
and treatment protocols [5]. This not only enhances patient care by reducing waiting
times and overcrowding but also improves operational efficiency by ensuring that resources
are allocated adequately. Furthermore, predictive modelling supports strategic health-
care management by forecasting patient surges, which helps minimise ED overcrowding
risks and associated compromises in patient care and costs [4]. Ultimately, this proactive
approach enhances emergency responsiveness, optimises workflows and improves overall
patient outcomes.

In this context, the study aims to determine whether PPM significantly outperforms
traditional ML methods in predicting ED admissions. To achieve this, it leverages a
comprehensive dataset of medical laboratory test results spanning six months. The data is
pre-processed and the models are evaluated to compare the effectiveness of both ML and
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PPM approaches.
The main research question guiding this study, along with three sub-research questions,

is as follows:

To what extent can predictive process mining improve the classification of
emergency department admissions using medical laboratory test data com-
pared to standalone machine learning methods?

1. What are the specific data requirements and format differences between
predictive process mining techniques and standalone machine learning
methods?

2. How do the learning curves of predictive process mining techniques com-
pare to those of the standalone machine learning model?

3. How does the predictive performance of predictive process mining tech-
niques compare to standalone machine learning models?

The remainder of this paper is structured as follows: Section 2 gives the background
information required for this research. Section 3 outlines the methodology adopted, while
Section 4 provides an in-depth analysis of it. Section 5 presents and discusses the findings
from the analysis. Section 6 explores the broader implications and significance of these
results. Finally, Section 7 summarises the research outcomes and suggests directions for
future research.
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Chapter 2

Background

This chapter provides a comprehensive overview of the foundational concepts relevant to
this research. It begins with an examination of neural networks in Section 2.1, including
deep learning in Section 2.1.1 and specific architectures such as recurrent neural networks,
long short-term memory networks and gated recurrent units in Section 2.1.2. The principles
of process mining are then introduced in Section 2.2, leading to a discussion on predictive
process mining techniques in Section 2.2.1. This background information establishes the
foundation for the comparative analysis presented in this study.

2.1 Neural networks (NNs)

NNs are computational models inspired by early theories on how the human brain processes
information [24]. They consist of interconnected layers of neurons working together to solve
specific problems. Typically, a NN comprises three types of layers: the input layer, the
hidden layer(s) and the output layer.

The input layer receives raw data, which is then processed by the hidden layer. The
hidden layer extracts and learns patterns from the input data. Finally, the output layer
generates the network’s prediction or classification based on the patterns learned in the
hidden layer.

Each connection between neurons in a NN is assigned a weight, determining the strength
of influence one neuron has on another. Each neuron applies an activation function to its
inputs, transforming them into outputs that contribute to the network’s overall prediction
or classification.

NN models offer several advantages that make them appealing for various applications
[42]. One significant advantage is that they require less formal statistical training compared
to traditional statistical models. NNs can implicitly detect complex non-linear relationships
between independent and dependent variables, capturing interactions that might be missed
by other models. They can identify all possible interactions between predictor variables,
providing a comprehensive understanding of the data. Additionally, NNs offer flexibility
in training, as they can be developed using various training algorithms.

However, NNs also have notable disadvantages. They often operate as a "black box",
offering limited ability to explicitly identify causal relationships [28]. This lack of trans-
parency can be a challenge when interpretability is crucial. NN models can be more difficult
to use in practical applications due to their complexity and require significant computa-
tional resources, especially for large datasets. Overfitting is another concern, as NNs can
easily fit noise in the training data, leading to poor generalisation [42]. Finally, the de-
velopment of NN models is largely empirical, with many methodological issues, such as

7



choosing the right architecture and avoiding overfitting, still unresolved [42].

2.1.1 Deep learning (DL)

DL architectures are characterised by their deep neural networks (DNNs), which consist of
numerous layers of interconnected neurons [25]. These networks vary in depth, ranging from
tens to hundreds of layers, enabling them to discern intricate patterns and representations
from complex datasets. The depth of these networks facilitates the capture of hierarchical
features corresponding to different levels of abstraction within the data.

A key distinction between DNNs and traditional NNs is the presence of multiple hidden
layers, as illustrated in Figure 2.1. Traditional NNs typically consist of a few hidden layers,
whereas DNNs incorporate many hidden layers [30, 31]. This multi-layered architecture
allows DNNs to learn increasingly complex and abstract features directly from raw data,
enhancing their capability to make accurate predictions or classifications.

Neural Network Deep Neural Network

Figure 2.1: Difference between NN and DNN architectures

DL systems generally fall into two primary categories based on their architectures:
convolutional neural networks (CNNs) and recurrent neural networks (RNNs). CNNs are
designed to process data that is structured as multiple arrays. For example, coloured im-
ages are typically represented by three 2D arrays, each corresponding to a different colour
channel (red, green and blue) [25]. CNNs are built on key concepts including local con-
nections, shared weights, pooling and multiple layers. The architecture typically includes
convolutional layers that detect local features using shared filters across different parts
of the input array and pooling layers that merge similar features to create invariance to
small shifts and distortions. This hierarchical approach enables CNNs to capture complex
patterns and compositional hierarchies, such as edges forming motifs and motifs combining
into objects. Inspired by visual neuroscience, CNNs mimic the processing pathways of the
human visual system and have been successfully applied to tasks such as image and speech
recognition, optical character recognition and object detection.

RNNs, on the other hand, are specialised DL architectures designed for sequential data
processing, allowing information from previous steps to influence current predictions [32].
Unlike traditional NNs, which treat inputs and outputs independently, RNNs maintain
internal memory to handle sequences effectively, with outputs from previous time steps fed
back into the network [38]. This feedback allows RNNs to maintain and update a state
vector that captures information about past inputs, which is crucial for understanding tem-
poral dynamics and dependencies in sequential data [25]. However, RNNs face challenges
such as the vanishing gradient problem, which limits their ability to learn from long-term
dependencies [40]. Specifically, gradients can either grow excessively or diminish as they
are back-propagated through each time step, often leading to problems where they explode
or vanish over many time steps [25]. To address this, gated recurrent units and long short
term memory networks integrate specialised gating mechanisms, which are described in
detail in Section 2.1.2.
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2.1.2 Recurrent neural networks (RNNs), long short term memory (LSTM)
and gated recurrent units (GRUs)

Advancements like LSTM and GRU networks have significantly enhanced RNNs’ ability to
remember long-term dependencies and handle complex tasks by addressing the vanishing
gradient problem [25]. LSTM networks manage long-term dependencies by incorporating
mechanisms that regulate the flow of information through the network, allowing them
to retain important data over long sequences. GRUs simplify this approach with a more
streamlined architecture that effectively manages state updates and reduces gradient issues.

In GRUs, the reset gate rt controls how much of the previous hidden state h(t−1)

should be reset or forgotten when processing the current input xt, while the update gate
zt determines how much of the new candidate activation ĥt should be added to the current
hidden state h(t−1) [13]. The final hidden state ht at time-step t is then computed, balancing
between retaining previous information and integrating new inputs (Equations 2.1, 2.2, 2.3
and 2.4).

rt = σ(Wr[h(t−1), xt]) (2.1)

zt = σ(Wz[h(t−1), xt]) (2.2)

h̃t = tanh(Wh[rt ∗ h(t−1), xt]) (2.3)

ht = (1− zt) ∗ h(t−1) + zt ∗ h̃t (2.4)

In contrast, LSTM networks employ three primary gates — input gate it, forget gate ft
and output gate ot — to regulate information flow through the memory cell Ct [23]. The
input gate it controls which information from the current input xt and previous hidden
state h(t−1) should be stored in Ct, while the forget gate ft determines how much of the
previous memory cell content C(t−1) should be retained or discarded. The new candidate
cell state C̃t is computed based on the current input and previous hidden state and the
updated memory cell state Ct integrates these components. The output gate ot then
governs which information from Ct should be propagated to the next time-step or used as
the network’s output, influencing the final hidden state ht (Equations 2.5, 2.6, 2.7, 2.8, 2.9
and 2.10).

it = σ(Wi[h(t−1), xt]) (2.5)

ft = σ(Wf [h(t−1), xt]) (2.6)

C̃t = tanh(WC [h(t−1), xt]) (2.7)

Ct = ft ∗ C(t−1) + it ∗ C̃t (2.8)

ot = σ(Wo[h(t−1), xt]) (2.9)

ht = ot ∗ tanh(Ct) (2.10)

These gating mechanisms collectively enhance the ability of GRU and LSTM to manage
and process sequential data effectively. Figure 2.2 visually compares the architectural dif-
ferences between RNN, LSTM and GRU, highlighting their distinct approaches to handling
sequential information.
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Figure 2.2: Architectural comparison of RNN, LSTM and GRU

2.2 Process mining (PM)

PM, a relatively recent field of research, bridges business process modelling with data
mining to uncover insights into process variants, bottlenecks and opportunities for en-
hancement [45]. Central to PM is the use of event logs, which typically consist of case IDs,
timestamps and event identifiers, forming sequences where each case contains a series of
events identified by event names and timestamps [47]. A case represents a process instance
or the subject that undergoes the events/activities. The activities are recorded in the
event log, detailing the order in which they occur through timestamps [18]. Additionally,
the event log can include attributes at each timestamp, such as resources used and other
relevant details.

PM encompasses three primary dimensions: process discovery, conformance checking
and process enhancement [44]. Process discovery involves constructing models of actual
processes from event logs, which serve as the primary input for PM techniques. Con-
formance checking ensures alignment between these models and the recorded event logs.
Process enhancement focuses on refining models based on insights derived from the process
discovery and conformance checking phases.

2.2.1 Predictive process mining (PPM)

PPM leverages event log data generated by information systems during business process
executions to predict various business outcomes [8]. Predictive goals can range from pre-
dicting the next activity and remaining cycle time to forecasting outcomes. The required
features, such as timestamps, resource identifiers, event types and case attributes, are ex-
tracted from event logs and used as input for ML algorithms for predictions. These features
can be categorised into two types: event-level features and case-level features.

Event-level features are attributes derived from the unique characteristics associated
with a specific event within a process. These features are created by extracting event-
specific details that offer a comprehensive description of the event itself [47]. Examples of
event-level features include the activity and resource labels.

Case-level features, on the other hand, are generated by integrating event-specific and
case-specific attributes to deliver a thorough understanding of the corresponding case [47].
Examples of case-level features include the count of occurrence, representing the number
of times a particular activity has occurred or a particular role was involved in the process,
the time elapsed to the point of prediction and the mean value of numerical features such
as the average task duration.

Figure 2.3 illustrates the overall process of PPM, from the initial event log extrac-
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tion to the final evaluation of the predictive model. This diagram outlines the key steps
involved, including feature extraction, the definition of predictive goals, model building,
model training and evaluation.

Event log Define predictive goalsFeature extraction Model building Evaluation

Case ID
Event Name
Timestamp

 Event Attributes

Case-level features
Event-level features

Next activity
Remaining cycle time

Outcome

Model training

Model type
Inputs

Outputs

Training process 
Parameter tuning

Performance metrics

Figure 2.3: PPM workflow

2.3 Summary

This chapter establishes a foundational understanding of key concepts necessary for evalu-
ating the comparative effectiveness of PPM and traditional ML methods in predicting ED
admissions.

The exploration begins with NNs and their evolution into DL architectures, including
RNNs, LSTM networks and GRUs. This foundational knowledge is essential for under-
standing how DL models, central to both PPM and ML approaches, process and interpret
complex datasets.

PM principles are introduced next, highlighting its role in analysing business processes
through event logs to uncover inefficiencies and deviations. This sets the stage for under-
standing PPM, which extends traditional PM by applying predictive analytics to forecast
future process states, a critical capability in enhancing healthcare decision-making.

PPM leverages event log data to predict various business outcomes, such as predicting
the next activity, remaining cycle time and other outcomes relevant to healthcare settings.
By defining predictive goals and extracting relevant features, PPM aims to offer insights
that can lead to proactive interventions and improved resource allocation in healthcare
environments.

In summary, this chapter provides a comprehensive overview of NNs, DL architectures
and PPM techniques, setting a robust foundation for understanding the comparative anal-
ysis of PPM and ML methods. This background is crucial for addressing the research
question related to enhancing predictive accuracy and operational efficiency in healthcare
through advanced data analytics.
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Chapter 3

Methodology

The methodology adopted for this research follows the CRoss Industry Standard Process for
Data Mining (CRISP-DM) framework [48], illustrated in Figure 3.1. CRISP-DM provides a
structured framework comprising six stages: business understanding, data understanding,
data preparation, modelling, evaluation and deployment. Each stage is intricately linked
to the research objective of mitigating ED overcrowding through the application of ML
and PPM techniques:

Deployment

Evaluation

Modelling

Data preparation

Business
understanding

Data
understanding

Data

Figure 3.1: CRISP-DM framework

1. Business understanding: This initial phase involves defining project objectives
from a healthcare perspective, particularly focusing on understanding factors con-
tributing to ED overcrowding and how these relate to laboratory test results. This
step aligns the research direction with the goal of leveraging ML and PPM for effec-
tive prediction and management.

2. Data understanding: Here, the emphasis is on exploring the MIMIC-IV dataset,
understanding its structure and assessing data quality. This phase ensures that
subsequent analyses are based on a comprehensive understanding of the dataset’s
specifics and healthcare-specific data challenges.

3. Data preparation: In this crucial phase, data is selected, cleaned and transformed
to facilitate effective modelling. Specific considerations include handling temporal
data from sequential medical records to capture dynamic patient conditions related
to ED visits.
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4. Modelling: DL techniques are applied to the prepared dataset, aiming to develop
robust predictive models for ED admission status. Methods such as LSTM are ex-
plored to capture patterns which are critical in healthcare predictions.

5. Evaluation: Model performance is rigorously evaluated against pre-defined metrics
to ensure alignment with healthcare objectives, such as accuracy in predicting ED
admissions.

6. Deployment: In this research, findings are validated with healthcare experts to
ensure practical applicability and relevance in clinical settings. Additionally, sugges-
tions are provided on how to integrate the solution into operational workflows.

This structured approach ensures reproducibility throughout each CRISP-DM phase,
addressing specific challenges in healthcare data analytics and contributing to effective
ED management strategies. The following chapter will delve into these phases in detail,
particularly focusing on the data preparation stage across three distinct pipelines: ML,
PPM with case-level features and PPM with event-level features. These pipelines will be
compared to evaluate their effectiveness in predicting and managing ED overcrowding.
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Chapter 4

In-depth analysis of CRISP-DM

This chapter provides a comprehensive analysis of the CRISP-DM methodology, with a
specific focus on its application to healthcare data analytics. It details each of the six
CRISP-DM phases, illustrating how these phases guide the data mining process and address
the unique challenges of healthcare data.

In addition to following the CRISP-DM framework, this research implements three
distinct pipelines: ML, PPM with event-level features and PPM with case-level features.
These pipelines differ primarily in their approaches to the data preparation stage, tailored
to address the complexities of temporal healthcare data and the specific objectives of
predicting and managing ED overcrowding.

In particular, this chapter explains how the CRISP-DM methodology is applied to
compare the performance of ML and PPM techniques. By examining how each phase of
CRISP-DM is utilised, the chapter highlights the steps taken to evaluate and contrast the
effectiveness of ML and PPM approaches in classifying ED admissions.

4.1 Business understanding

Understanding the connection between laboratory test results and ED overcrowding is
crucial for improving patient care and resource management in healthcare settings. This
section delves into the significance of laboratory medical tests and their role in ED over-
crowding.

Laboratory medical tests are indispensable tools in modern healthcare, playing a pivotal
role in clinical decision-making, patient care and medical research [43]. These tests provide
objective data derived from biological samples such as blood, urine and tissue, enabling
healthcare providers to confirm diagnoses, monitor disease progression and assess treatment
effectiveness based on specific biomarkers or physiological markers present in the samples.

Beyond diagnosis, laboratory tests are critical for continuous disease monitoring and
prompt treatment adjustment, particularly in chronic conditions where on-going manage-
ment relies on precise clinical data [46]. Screening tests facilitate early disease detection,
identifying illnesses before symptoms manifest and allowing timely intervention to enhance
patient outcomes.

Abnormal or critical values in laboratory tests often signal acute medical conditions
or worsening health issues, prompting patient admission to the ED [35]. Immediate moni-
toring and intervention are essential in such cases to manage patient care effectively. The
availability of adequate resources and trained personnel in EDs is crucial to meeting these
urgent healthcare needs.
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ED overcrowding poses significant challenges, including potential staff shortages and
delayed treatment for patients [39]. Predicting ED visits using historical laboratory test
data is vital for proactive ED management. Predictive analytics analyse trends and pat-
terns in laboratory test results to forecast patient admissions, facilitating optimal resource
allocation, staffing decisions and ED readiness to meet the healthcare demands of emer-
gency patients.

4.2 Data understanding

A thorough understanding of the dataset is crucial for any research project, as it lays the
foundation for effective analysis and interpretation. This section provides an overview of
the Medical Information Mart for Intensive Care IV (MIMIC-IV) dataset, highlighting its
scope, content and significance for research in critical care medicine.

The MIMIC-IV dataset is a comprehensive and freely accessible EHR database designed
to support research in critical care medicine and related fields [11, 20, 21]. Developed by
researchers at the Massachusetts Institute of Technology (MIT) and Beth Israel Deaconess
Medical Center (BIDMC), MIMIC-IV represents a significant advancement in the avail-
ability of clinical data for scientific inquiry.

MIMIC-IV contains de-identified health data of around 300 000 patient admissions at
BIDMC between 2008 and 2019. It encompasses a wide range of information, including
demographics, vital signs, laboratory measurements, medications, procedures, diagnos-
tic codes and clinical notes. The dataset also includes physiological waveforms, such as
electrocardiograms (ECGs), arterial blood pressure waveforms and respiratory waveforms,
providing rich insights into patients’ physiological states.

One of the distinguishing features of MIMIC-IV is its longitudinal nature, allowing
researchers to track patients’ trajectories over time and investigate complex patterns in
their healthcare journeys. Furthermore, MIMIC-IV incorporates data from diverse patient
populations, encompassing a variety of medical conditions and treatments, thus facilitating
studies across different clinical domains.

4.3 Data preparation

Effective data preparation is a critical step in building reliable predictive models. In this
study, the data preparation process is tailored to suit the specific requirements of each
pipeline, ensuring that the data is in the optimal format for the chosen algorithms. This
section outlines the procedures applied in each pipeline, detailing how the data was pro-
cessed to enhance the accuracy and robustness of the predictions. The following subsections
describe the data preparation steps for each of the three pipelines used in the study: ML,
PPM with case-level features and PPM with event-level features.

4.3.1 Pipeline I: ML

Pipeline I refers to the application of traditional ML methods for classifying ED admissions
based on a patient’s six-month medical test history. Unlike pipelines II and III, which
incorporate PPM techniques with case-level and event-level features, respectively, pipeline
I focuses solely on conventional data preparation techniques without any PM conventions.
The data extraction, data preparation and modeling stages for pipeline I are summarised
in Figure 4.1.
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SQL queries written using Google
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Figure 4.1: Data preparation and modelling workflow for pipeline I

Data extraction

Building upon the introduction to the MIMIC-IV dataset in Section 4.2, the analysis
focuses on specific data components relevant to the classification of ED admissions using
medical laboratory test data. Three tables from the MIMIC-IV dataset were utilised:
labevents, d_labitems and admissions, all of which belong to the hosp module. The
attributes used from each table are summarised in Table 4.1, with detailed descriptions
provided in Table 4.2.

Table 4.1: Attributes used from MIMIC-IV tables [11, 20, 21]

labevents d_labitems admissions
subject_id itemid subject_id
hadm_id label hadm_id
charttime edregtime

itemid edouttime
valuenum
valueuom

ref_range_lower
ref_range_upper

Data extraction from the MIMIC-IV dataset using Google Cloud BigQuery followed
several steps, conducted through SQL queries. Initially, laboratory test information was
extracted from the labevents and d_labitems tables, linking both tables using the itemid
attribute. This process involved retrieving the following attributes: subject_id, hadm_id,
charttime, valuenum, valueuom, ref_range_lower, ref_range_upper and label. It was
ensured that none of the attributes, except for valueuom, contained null values. Only the
28 laboratory tests listed in Table A.1 were included, as recommended by a domain expert.
These tests were chosen because they are commonly requested by general practitioners in
the Netherlands and are most indicative of organ functionality.

The earliest and latest laboratory test times for each patient were then identified using
the subject_id and charttime attributes, ensuring retrieval of patients with a six-month
history of laboratory tests.

Finally, using the admissions table, it was determined whether each patient was ad-
mitted to the ED during each hospital admission, indicated by non-null edregtime and
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Table 4.2: Description of attributes from MIMIC-IV dataset [11, 20, 21]

Attribute Table Description
charttime labevents It represents the times-

tamp when the laboratory
measurement was recorded,
typically corresponding to
the time the specimen was
collected.

edouttime admissions It represents the time that
the patient was discharged
from the ED.

edregtime admissions It represents the time that
the patient was admitted to
the ED.

hadm_id admissions, labevents It is a unique ID signalling
a patient’s admission to the
hospital.

itemid labevents, d_labitems It is a unique identifier for a
specific laboratory concept.

label d_labitems It is a description of the lab-
oratory concept indicated
by itemid.

ref_range_lower labevents It is the lowest value in the
range of normal values for
a specific laboratory mea-
surement.

ref_range_upper labevents It is the highest value in the
range of normal values for
a specific laboratory mea-
surement.

subject_id labevents, admissionss It is a unique ID identifying
a patient.

valuenum labevents It represents the numerical
value of a laboratory mea-
surement.

valueuom labevents It represents the unit of
measurement for the labo-
ratory concept.

edouttime values. This information was linked to the laboratory test data using the
subject_id and hadm_id attributes.

Target variable definition

After extracting the relevant data using Google Cloud BigQuery, it was loaded into a
Pandas DataFrame in Python, where several procedures were conducted. Firstly, the
target variable — a boolean indicating whether a patient was admitted to the ED after six
months of laboratory tests — was created. This involved adding a corresponding column,
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latest_admitted_to_ed, by sorting the DataFrame by subject_id and charttime. For
each subject_id, the value of admitted_to_ed was extracted from the row with the most
recent charttime to ensure accuracy in representing the latest admission status.

Feature engineering

Next, a time domain feature, time_diff_hours, was added by calculating the time differ-
ence in hours between the charttime of the last laboratory test and each prior laboratory
test per subject_id. This resulted in a time_diff_hours value of zero for the last labora-
tory test and positive values for earlier tests. Incorporating this feature is crucial for captur-
ing the temporal context of the laboratory tests, as it helps the model differentiate between
recent and older results. Recent tests are often more indicative of a patient’s immediate
health status, which is critical for predicting ED admissions. By adding time_diff_hours,
the model can identify patterns of rapid deterioration or improvement, enhancing its ability
to forecast acute events and improve prediction accuracy. This temporal feature enriches
the dataset by adding context, allowing the model to detect clinically significant changes
that may signal an impending emergency, thereby enhancing overall model performance.

Dataset transformation

For multivariate laboratory test analysis, the DataFrame was transformed to aggregate
test results taken at the same time, aligning with the clinical reality where ED admission
decisions depend on the combination of laboratory test results. This involved first retriev-
ing unique laboratory test labels into a list. Two columns were created for each laboratory
test: one for the numerical result (valuenum) and the other a boolean variable indicating
whether the value was within the required range (within_range).

Finally, a pivot table was created by transposing the DataFrame, aggregating all tests
performed at the same time into a single row per patient. The label column was removed
and the valuenum and within_range values were added to their respective columns. Each
row now contained all the laboratory tests performed per charttime and per subject_id.
In cases where a test was not performed, the values were filled with -1 to indicate their
absence, as this value was not previously used in the DataFrame. This reduced the bias in
the data, as other values could significantly affect the distribution of medical laboratory
test results. Additionally, the valueuom variable was no longer needed, as all values in
each valuenum column now shared the same unit of measurement.

The transformed features and target variable used are summarised in Table 4.3. This
table provides an overview of the features incorporated into the model and their descrip-
tions, which are critical for understanding the input and output data used for training and
evaluation.

The DataFrame transformation is exemplified in Table 4.4, visually representing the
restructuring and organisation of data for further analysis. For better readability, some
columns have been omitted. The tables primarily illustrate the transformation concerning
the valuenum, valueuom, label and within_range columns, with one row per distinct
value of time_diff_hours for each subject_id.

Data preparation for LSTM processing

To prepare the DataFrame for LSTM processing, several steps were undertaken. Firstly, the
boolean variables within_range for every laboratory test label, latest_admitted_to_ed
and admitted_to_ed were converted to integers. Secondly, the valuenum values for each

18



Table 4.3: Summary of features and target variable used in pipeline I

Feature Description
time_diff_hours This numerical variable represents the time

difference in hours between the chart time
of the last laboratory test and each preced-
ing test for each subject_id, with a value
of zero for the last test and positive values
for earlier tests.

valuenum This numerical variable represents the
value of medical laboratory test results,
with one column for each of the 28 lab-
oratory tests.

within_range This boolean variable serves as an indica-
tor of whether the valuenum is within the
required range, with one column for each
of the 28 laboratory tests.

admitted_to_ed This boolean variable indicates whether
the patient was admitted to the ED dur-
ing the hospital admission corresponding
to the laboratory tests.

Target variable Description
latest_admitted_to_ed This boolean variable represents whether

the patient was admitted to the ED based
on the six-month history of medical labo-
ratory tests.

Table 4.4: Table transformation process

(a) Table structure before transformation

subject_id label time_diff_hours valuenum valueuom within_range
13015616 Glucose 4163.45 77.0 mg/dL True
13015616 Potassium 0.0 3.8 mEq/L True

(b) Table structure after transformation
subject_id time_diff_hours Glucose_valuenum Glucose_within_range Potassium_valuenum Potassium_within_range
13015616 4163.45 77.0 True -1 -1
13015616 0.0 -1 -1 3.8 True

laboratory test were normalised using Min-Max Scaler based on their respective column val-
ues, excluding the -1 placeholder. The minimum and maximum values for each laboratory
test across all patients were used for this normalisation. Thirdly, the time_diff_hours
attribute was also normalised using the Min-Max Scaler. This normalisation ensured that
the features had a uniform scale. The data distribution after these transformations was
then analysed and summarised in Table 4.5.

To facilitate LSTM processing, sequences were constructed, where the data was con-
verted into tensors and arranged in descending order of time_diff_hours per subject_id.
Pre-padding was applied with a padding value of -2, chosen because it did not appear in the
DataFrame. The sequence length was set to the maximum length observed across patients,
which was 368. Pre-padding was preferred over post-padding due to its compatibility with
LSTM’s efficiency [10]. Each patient’s sequence included the valuenum and within_range
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Table 4.5: Distribution of rows and patients based on the value of the target
variable

Value of target variable Number of patients Number of rows
True 876 26 026
False 519 16 580

for all laboratory tests conducted, time_diff_hours and admitted_to_ed, with the tar-
get variable latest_admitted_to_ed in its own NumPy array. These sequences were then
padded to a uniform length of 368, resulting in a final sequence size of (1395, 368, 58),
where 1395 represents the number of patients, 368 indicates the sequence length and 58
denotes the number of features included in each sequence.

Model training and evaluation

For training and evaluating the model aimed at classifying ED admissions, the dataset
was divided into training (60%), validation (20%) and test sets (20%), with dimensions
detailed in Table 4.6. This partitioning strategy ensured that the model was trained on
a majority of the data while validating and testing on independent subsets to assess its
generalisation capability.

Table 4.6: Dimensions of train, validation and test sets

Dataset Number of samples Dimensions
Train 837 (837, 368, 58)
Validation 279 (279, 368, 58)
Test 279 (279, 368, 58)

4.3.2 Pipeline II: PPM with case-level features

Pipeline II employs PM techniques combined with traditional ML methods, specifically
using case-level features for the classification of ED admissions. In this approach, the
six-month medical test history of a patient is analysed at the case level, where each case
corresponds to a complete sequence of events (laboratory tests) leading up to an ED
admission. This pipeline leverages the aggregated information from these sequences to
predict whether a patient will be admitted to the ED. Figure 4.2 provides a summary of
the data extraction, preparation and modelling stages for pipeline II.

Data extraction

The data extraction from the MIMIC-IV dataset was performed using Google Cloud Big-
Query, following the approach detailed in pipeline I, outlined in Section 4.3.1.

Target variable definition

After extracting the suitable data using Google Cloud BigQuery, it was loaded into a Pan-
das DataFrame in Python for further processing. Firstly, the target variable — a boolean
indicating whether a patient was admitted to the ED after six months of laboratory tests
— was created. This involved adding a corresponding column, latest_admitted_to_ed,
by sorting the DataFrame by subject_id and charttime. For each subject_id, the value
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Figure 4.2: Data preparation and modelling workflow for pipeline II

of admitted_to_ed was extracted from the row with the most recent charttime to ensure
accuracy in representing the latest admission status.

Feature engineering

Next, a time domain feature, duration_hours, was added by calculating the time difference
in hours between the charttime of the last laboratory test and the first laboratory test
per subject_id. This feature helps evaluate how the timing and frequency of tests relate
to health outcomes, which could enhance the prediction accuracy for ED admissions.

To prepare the data for LSTM processing, several steps were taken under the feature
engineering process. 86 case-level features were created for each patient identified by
subject_id and the target variable was set to latest_admitted_to_ed. The features and
the target variable are detailed in Table 4.7.

Data preparation for LSTM processing

Since some patients did not undergo all tests, there were a significant number of null val-
ues in the minimum and maximum values for each laboratory test. Firstly, -1 was used as a
placeholder value for these null items. Secondly, the boolean variables latest_admitted_to_ed
and within_range were converted to integers to ensure compatibility with the LSTM
model. Thirdly, the duration_hours, max_valuenum and min_valuenum values were nor-
malised using the Min-Max Scaler, with the -1 placeholder excluded from this normalisation
process. This step was crucial to ensure that all variables had a uniform scale. The data
distribution following these transformations is shown in Table 4.8, which reflects a 3:2 ratio
between classes, indicating that for every two non-ED patients, there are approximately
three ED patients.

To facilitate LSTM processing, sequences were constructed by converting the data
into tensors. The sequence length was set to one, as there were only aggregated features
per subject_id and no padding was required. Each sequence contained the 86 case-level
features, resulting in a final sequence size of (1395, 1, 86), where 1395 represents the number
of patients, 1 indicates the sequence length and 86 denotes the number of features included
in each sequence. The target variable latest_admitted_to_ed for each subject_id was
stored in a separate NumPy array.
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Table 4.7: Summary of features and target variable used in pipeline II

Feature Description
duration_hours This numerical variable represents the time

difference in hours between the charttime
of the first and last laboratory tests for
each subject_id, indicating the time span
over which the tests were conducted.

max_valuenum This numerical variable represents the
maximum value of each laboratory test for
each subject_id. There is one column for
each of the 28 laboratory tests.

min_valuenum This numerical variable represents the
minimum value of each laboratory test for
each subject_id. There is one column for
each of the 28 laboratory tests.

fraction_test_occurrence This numerical variable represents the pro-
portion of times each specific laboratory
test was conducted relative to the to-
tal number of tests performed for each
subject_id. There is one column for each
of the 28 laboratory tests.

proportion_within_range_false This boolean variable indicates the propor-
tion of times the within_range variable
had a false value for each subject_id.

Target variable Description
latest_admitted_to_ed This boolean variable represents whether

the patient was admitted to the ED based
on the six-month history of medical labo-
ratory tests.

Table 4.8: Distribution of rows and patients based on the value of the target
variable

Value of target variable Number of patients Number of rows
True 876 876
False 519 519

Model training and evaluation

The data was then split for training and evaluation: 60% of the data was allocated to the
training set, 20% to the validation set and 20% to the test set, ensuring consistency with
the other pipelines. The train, validation and test sets have the dimensions outlined in
Table 4.9.

4.3.3 Pipeline III: PPM with event-level features

Pipeline III further extends the PPM approach by focusing on event-level features for
classification. Instead of aggregating data at the case level, this pipeline examines the
individual events (laboratory tests) within the six-month medical history, capturing the

22



Table 4.9: Dimensions of train, validation and test sets

Dataset Number of samples Dimensions
Train 837 (837, 1, 86)
Validation 279 (279, 1, 86)
Test 279 (279, 1, 86)

temporal dynamics and detailed characteristics of each event. By incorporating these
granular features into the ML model, pipeline III aims to improve the accuracy of predicting
ED admissions. A summary of the data extraction, preparation and modelling phases for
pipeline III is depicted in Figure 4.3.
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Figure 4.3: Data preparation and modelling workflow for pipeline III

Data extraction

Again, the data extraction from the MIMIC-IV dataset was performed using Google Cloud
BigQuery, following the approach detailed in pipeline I, outlined in Section 4.3.1.

Target variable definition

After extracting the required data using Google Cloud BigQuery, it was loaded into a
Pandas DataFrame in Python and several procedures were conducted. Firstly, the target
variable — a boolean indicating whether a patient was admitted to the ED after six
months of laboratory tests — was created. This involved adding a corresponding column,
latest_admitted_to_ed, by sorting the DataFrame by subject_id and charttime. For
each subject_id, the value of admitted_to_ed was extracted from the row with the most
recent charttime to ensure accuracy in representing the latest admission status.

Feature engineering

Next, a time domain feature, time_diff_hours was added by calculating the time differ-
ence in hours between the charttime of the last laboratory test and each prior laboratory
test per subject_id. This resulted in a time_diff_hours value of zero for the last labora-
tory test and positive values for earlier tests. Again, incorporating the time_diff_hours
feature is vital for capturing the temporal context of laboratory tests. It helps the model
distinguish between recent and older results, which is crucial for assessing immediate health
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status and predicting ED admissions. This feature allows the model to detect patterns of
rapid change, improving its ability to forecast acute events and overall prediction accuracy.

Structuring data according to PM conventions

The columns were then labelled to follow PM conventions as follows: subject_id as
case:concept:name, charttime as time:timestamp and label as concept:name. In this
context, case:concept:name represents the unique case identifier, time:timestamp repre-
sents the time at which the event took place and concept:name represents the event that
occurs. The dataset then contains the columns: case:concept:name, time:timestamp,
concept:name, time_diff_hours, valuenum, valueuom, within_range, admitted_to_ed
and latest_admitted_to_ed. Here, time_diff_hours, valuenum, valueuom, within_range
and admitted_to_ed are the additional attributes andlatest_admitted_to_ed is the tar-
get variable. The features and the target variable are described in detail in Table 4.10.

Table 4.10: Summary of features and target variable used in pipeline III

Feature Description
concept:name This categorical variable represents the

medical laboratory test taken, indicating
the event in an event log.

time_diff_hours This numerical variable represents the time
difference in hours between the chart time
of the last laboratory test and each preced-
ing test for each subject_id, with a value
of zero for the last test and positive values
for earlier tests

valuenum This numerical variable represents the
value of medical laboratory test result.

valueuom This categorical variable represents the
unit of measurement for the medical lab-
oratory test.

within_range This boolean variable serves as an indica-
tor of whether the valuenum is within the
required range.

admitted_to_ed This boolean variable indicates whether
the patient was admitted to the ED dur-
ing the hospital admission corresponding
to the laboratory tests.

Target variable Description
latest_admitted_to_ed This boolean variable represents whether

the patient was admitted to the ED based
on the six-month history of medical labo-
ratory tests.

Data preparation for LSTM processing

To prepare the DataFrame for LSTM processing, several steps were undertaken. Firstly,
the boolean variables within_range, latest_admitted_to_ed and admitted_to_ed were
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converted to integers. Secondly, the valuenum and time_diff_hours values were scaled
using the Min-Max Scaler to ensure they were within the range between zero and one.
Thirdly, the concept:name and valueuom were encoded using the Label Encoder to ensure
proper processing by LSTM. The data distribution was then analysed and summarised in
Table 4.11.

Table 4.11: Distribution of rows and patients based on the value of the target
variable

Value of target variable Number of patients Number of rows
True 876 227 572
False 519 146 822

To facilitate LSTM processing, sequences were constructed, where the data was trans-
formed into tensors and arranged in descending order of time_diff_hours per subject_id.
Pre-padding was applied with a padding value of -1, chosen because it did not appear in the
DataFrame. The sequence length was set to the maximum length observed across patients,
which was 3253. Pre-padding was preferred over post-padding due to its compatibility with
LSTM’s efficiency [10]. These sequences were then padded to a uniform length of 3253,
resulting in a final sequence size of (1395, 3253, 6), where 1395 represents the number of
patients, 3253 indicates the sequence length and 6 denotes the number of features included
in each sequence. The target variable latest_admitted_to_ed for each subject_id was
stored in a separate NumPy array.

Model training and evaluation

For training and evaluating the model aimed at classifying ED admissions, the dataset
was divided into training (60%), validation (20%) and test sets (20%), with dimensions
detailed in Table 4.12. This partitioning strategy ensured that the model was trained on
a majority of the data while validating and testing on independent subsets to assess its
generalisation capability. The strategy was carefully designed to match the approach used
in the other pipelines, maintaining consistency across different methodologies and ensuring
that comparisons of model performance are valid and reliable.

Table 4.12: Dimensions of train, validation and test sets

Dataset Number of samples Dimensions
Train 837 (837, 3253, 6)
Validation 279 (279, 3253, 6)
Test 279 (279, 3253, 6)

4.4 Modelling

To ensure a fair comparison, the same model architecture was applied across all three
pipelines. The design was carefully crafted to optimise performance for the classification
task. The model began with a masking layer to ignore padded values in the sequences
(applied only to pipelines I and III, where the sequence length was greater than one). This
was followed by an LSTM layer with 16 hidden units, tailored to efficiently handle the
sequential nature of the input data. The choice of LSTM over GRU was made based on
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its proven effectiveness in retaining long-term memory, as LSTM networks generally per-
form better with complex sequential data and long-term dependencies [17]. Additionally,
increasing the number of hidden units or LSTM layers introduced fluctuations in the losses
and widened the gap between validation and training losses, suggesting overfitting. This
aligns with findings from previous studies, which have shown that adding more hidden
units or layers can lead to overfitting, as the model begins to memorise the training data
at the expense of generalising to new data [3, 16]. The final layer was a dense layer with a
sigmoid activation function, appropriate for binary classification tasks, where the output
represents the probability of an ED admission.

Hyper-parameter tuning involved extensive experimentation with the model’s architec-
ture, learning rate, optimiser, loss function, number of epochs, batch size and early stopping
patience. The details of the hyper-parameters tuned are summarised in Table 4.13. The
ADAM optimiser with a fine-tuned learning rate of 0.0001 and binary cross-entropy loss
function were selected as optimal choices for the task.

Training proceeded over 350 epochs with a batch size of 16, leveraging early stopping
with a patience of 10 epochs to monitor validation loss and prevent overfitting. Throughout
training, the model’s performance was continuously evaluated using the selected metrics
(Table 4.14), with close monitoring of training and validation losses to ensure effective
learning progress and model robustness.

4.5 Evaluation

The evaluation metrics selected to measure the performance of the models are detailed
in Table 4.14. These metrics were chosen specifically to assess the models’ ability to
predict ED admissions based on the input features. True positives, false positives, true
negatives and false negatives are specifically shown in confusion matrices, providing a
detailed breakdown of the model’s classification performance. For precision, recall and
F1-score, the weighted average is used to account for class imbalance.

In addition to these metrics, learning curves are employed to analyse the model’s per-
formance across different stages of training, providing insights into potential overfitting or
underfitting issues. The confusion matrices offer a comprehensive view of the model’s clas-
sification accuracy and are key to understanding how well the models distinguish between
the different classes.

The primary goal is to determine whether PPM outperforms standalone ML models in
predicting ED admissions. The detailed evaluation results, including the learning curves
and confusion matrices, are presented in Chapter 5.

4.6 Deployment

The deployment phase focuses on validating the model’s findings with healthcare experts
and developing a practical implementation strategy for real-world application. This begins
with adapting data from the healthcare system — such as test timestamps, test results,
patient admission statuses and compliance with acceptable ranges — into a format that
optimises the model’s performance based on pre-defined metrics. This ensures the model
integrates effectively into clinical settings and that the data is actionable for both real-time
and batch processing.

Subsequently, the model will be integrated into existing healthcare systems using ap-
propriate tools and technologies, potentially as a web service or within healthcare applica-
tions. This integration includes ensuring that the model’s outputs are useful and actionable
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Table 4.13: Parameters tuned

Parameter Value Description
rnn_layer_type LSTM It specifies the type of RNN

layer used.
units 16 It specifies the number

of hidden units in the
rnn_layer_type.

learning_rate 0.0001 It specifies the size of the
steps taken during the op-
timisation process to min-
imise the loss function.
It controls how much to
change the model in re-
sponse to the estimated er-
ror each time the model
weights are updated.

num_epochs 350 It specifies the number of
complete passes through
the entire training dataset.
Each epoch means that the
model has seen every train-
ing sample once.

batch_size 16 It specifies the number of
training samples used to
calculate each update to
the model’s parameters.

patience 10 This is a hyper-parameter
used with early stopping,
which defines the number
of epochs with no improve-
ment in the monitored met-
ric, in this case the valida-
tion loss, after which train-
ing will be stopped.

within clinical workflows. Practical recommendations for implementation involve develop-
ing user-friendly interfaces, integrating with EHR systems and establishing protocols for
utilising model predictions in decision-making. A training program will also be provided
to ensure healthcare staff can effectively use the system and interpret its outputs.

Ongoing performance monitoring is crucial, with regular assessments of the model’s
accuracy and impact. Feedback from stakeholders will guide necessary adjustments to
enhance relevance and effectiveness, while continuous maintenance will involve updating
the model with new data and adapting to evolving healthcare practices to ensure long-term
value.
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Table 4.14: Evaluation metrics for model performance [14]

Metric Description
True positives It represents the number of correctly pre-

dicted positive instances.
False positives It represents the number of incorrectly pre-

dicted positive instances.
True negatives It represents the number of correctly pre-

dicted negative instances.
False negatives It represents the number of incorrectly pre-

dicted negative instances.
Accuracy It is the proportion of correctly classified

instances.
Precision It is the proportion of true positive pre-

dictions among all positive predictions.
Weighted average precision considers pre-
cision values for each class, weighted by the
number of true instances for each class.

Recall It is the proportion of true positive predic-
tions among all actual positive instances.
Weighted average recall takes into account
recall values for each class, weighted by the
number of true instances for each class.

F1-score It is the harmonic mean of precision and re-
call. Weighted average F1-score computes
F1-score values for each class, weighted by
the number of true instances for each class.

Sensitivity It is the proportion of true positive predic-
tions among all actual positive instances.

Specificity It is the proportion of true negative predic-
tions among all actual negative instances.

Balanced accuracy Balanced accuracy is the average of sensi-
tivity and specificity.
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Chapter 5

Results

This chapter presents the evaluation results of the predictive models for forecasting ED ad-
missions based on medical laboratory test data. It compares the performance of standalone
ML and PPM models, highlighting key insights from their data requirements, learning
curves, evaluation metrics and confusion matrices.

Section 5.1 addresses the first sub-research question, discussing the specific data re-
quirements and format differences between the three pipelines. Section 5.2 focuses on the
second sub-research question, examining the learning abilities of the DL models. Section
5.3 and Section 5.4 explore the predictive performance differences in terms of pre-defined
metrics to answer the third sub-research question. Finally, Section 5.5 answers the main
research question.

5.1 Data requirements and format differences

The models in this study process sequences of laboratory tests taken by each patient, yet
they differ significantly in how these tests are represented and utilised:

1. ML model: Each row in the DataFrame aggregates all laboratory tests taken at a
single timestamp, enabling the model to train on the combination of laboratory tests
at each point in time.

2. PPM model with case-level features: This model aggregates features at the
case level but does not capture temporal changes in laboratory test results.

3. PPM model with event-level features: Here, each row in the DataFrame repre-
sents a single laboratory test without considering other tests taken simultaneously.

The ML model mirrors clinical practice, where patient admissions often rely on the
collective insight provided by multiple tests rather than individual values. However, in
the PPM model with case-level features, valuable information about trends and fluctua-
tions over time is excluded, which is critical for making precise clinical decisions based on
evolving patient conditions. Similarly, the PPM model with event-level features overlooks
the combined effect of multiple tests at the same timestamp, which can be crucial for
accurately predicting ED admissions based on comprehensive patient profiles.

5.2 Learning curves

Figure 5.1 presents the learning curves for the standalone ML model, the PPM model
with case-level features and the PPM model with event-level features. The ML model and
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the PPM model with event-level features effectively integrate comprehensive datasets and
account for temporal considerations, capturing the complexities of the data. In contrast,
the PPM model with case-level features, which aggregates data at the case level, operates
on a reduced dataset size. Despite the smaller dataset, this model provides valuable insights
into the impact of case-level aggregation on learning dynamics. The learning curves for all
three models highlight their respective performances and demonstrate how each approach
navigates the temporal and data complexities involved in predicting ED admissions.

(a) ML

(b) PPM: case-level (c) PPM: event-level

Figure 5.1: Comparison of learning curves for pipelines I, II and III

• The standalone ML model (Figure 5.1a) begins with both training and validation
losses around 0.70. Both losses decrease steadily over 300 epochs, exhibiting a smooth
and consistent downward trend. The training and validation losses closely follow each
other throughout the training period, with minimal fluctuations and both losses
stabilise near zero. This close alignment between the training and validation losses
suggests effective training without significant overfitting or underfitting.

• The PPM model with case-level features (Figure 5.1b) starts with both training and
validation losses around 0.68. The training loss steadily decreases over approximately
300 epochs, following a smooth and consistent downward trend before stabilising
at a lower value. In contrast, the validation loss also decreases but at a slower
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rate, eventually flattening out. As the epochs progress, the widening gap between
the training and validation losses suggests potential overfitting, where the model is
learning the training data too well but not generalising as effectively to the validation
data. Despite this, the continuous decrease in validation loss indicates that the model
is still learning, albeit at a slower pace than the training set.

• The PPM model with event-level features (Figure 5.1c) starts similarly with train-
ing and validation losses around 0.70 and shows a rapid decrease in the first 50
epochs. The losses continue to decrease gradually and stabilise near zero at around
250 epochs. There are minor fluctuations in the training loss curve, particularly
after 50 epochs. Despite these fluctuations, the training and validation losses ex-
hibit good convergence, indicating effective training. However, the presence of minor
fluctuations suggests slightly less stability compared to the standalone ML model.

While all models demonstrate effective learning capabilities, they reveal distinct dif-
ferences in stability and generalisation. The standalone ML model exhibits smooth and
consistent training dynamics with minimal fluctuations and a close alignment between
training and validation losses, indicating excellent generalisation and minimal overfitting.
In contrast, the event-level PPM model, while converging effectively, shows minor fluctua-
tions in training loss, suggesting slightly less stability, potentially due to the complexities
of handling temporal features. The PPM model with case-level features, on the other
hand, shows a steady decrease in training loss but a widening gap between training and
validation losses. This indicates potential overfitting, likely due to its reduced dataset size,
which impacts its ability to generalise well to new, unseen data. This raises concerns about
its reliability in real-world applications, especially when data is limited.

5.3 Evaluation metrics

Table 5.1 summarises key evaluation metrics including precision, recall and F1-score, com-
puted using weighted averages to account for class imbalances. These metrics provide
insights into each model’s performance in accurately classifying patient admissions into
ED and non-ED categories.

Table 5.1: Comparison of performance metrics for pipelines I, II and III

Metric ML PPM: case-level PPM: event-level
Accuracy 99.3% 60.6% 99.6%
Precision 99.3% 58.0% 99.6%
Recall 99.3% 60.6% 99.6%

F1-Score 99.3% 56.3% 99.6%
Sensitivity 99.4% 85.1% 99.4%
Specificity 99.1% 23.4% 100.0%

Balanced accuracy 99.3% 54.3% 99.7%

The table highlights that the PPM model with event-level features outperforms the
other models across most metrics, achieving near-perfect scores. The standalone ML model
shows comparable performance, with only a 0.3% to 0.9% lower value in most metrics. In
contrast, the PPM model with case-level features demonstrates significantly lower perfor-
mance, suggesting that there is substantial room for improvement in handling imbalanced
data and capturing complex patterns.
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5.4 Confusion matrices

To further explain model performance, Figure 5.2 presents the confusion matrices, provid-
ing a detailed breakdown of the predictions made by the models compared to the actual
ground truth labels across the two classes.

(a) ML

(b) PPM: case-level (c) PPM: event-level

Figure 5.2: Comparison of confusion matrices for pipelines I, II and III

The confusion matrices reveal the following:

• Sensitivity: The models exhibit high sensitivity or recall rates of 99.4%, 85.1% and
99.4% for the ML, PPM case-level and PPM event-level models, respectively.

• False negatives and false positives:

– The PPM model with case-level features captures 85.1% of positive instances
accurately, with 14.9% classified as false negatives. In contrast, the PPM model
with event-level features demonstrates a sensitivity of 99.4%, correctly identi-
fying 99.4% of positive instances and missing only 0.6% (false negatives). Sim-
ilarly, the standalone ML model achieves a recall rate of 99.4%, with 0.6% of
positive instances being incorrectly classified as negative.
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– The ML model has one false negative, indicating that one positive instance is
incorrectly classified as negative; the same applies for the PPM model with
event-level features. The PPM model with case-level features shows 25 false
negatives out of 168 positive instances, along with 85 false positives out of
111 negative instances. In contrast, the PPM model with event-level features
exhibits a low false positive rate, with none of the negative instances incorrectly
predicted as positive.

5.5 Classifying ED admissions with ML and PPM

The results highlight the effectiveness of both the standalone ML model and the PPM
model with event-level features in identifying cases requiring urgent attention or admission
to the ED based on medical laboratory tests. With sensitivities of 99.4% and specificities
of 99.1% and 100% respectively, these models ensure that nearly all true positive cases
are identified while maintaining nearly perfect accuracy in identifying true negative cases.
However, the PPM model with case-level features exhibits a high false positive rate of
76.6%, suggesting a potential risk of ED overcrowding due to over-prediction of positive
cases. This underscores the importance of balancing sensitivity and specificity to optimise
the overall utility of predictive models in clinical settings.

The comparative analysis reveals that the PPM model with event-level features offers
comparable performance to the standalone ML model in predicting ED overcrowding us-
ing medical laboratory test data. Specifically, the PPM model with event-level features
does not significantly improve performance over the standalone ML model, as indicated
by the minimal difference in false positives. Both models demonstrate high sensitivity
and specificity, highlighting their effectiveness in predicting ED admissions. However, the
standalone ML model significantly outperforms the PPM model with case-level features in
terms of accuracy, precision and recall, indicating that while PPM with event-level features
can achieve performance comparable with traditional ML methods, PPM with case-level
features does not meet the same level of effectiveness.

In summary, while the standalone ML model and PPM model with event-level features
both demonstrate strong predictive capabilities, the choice of model should consider the
specific clinical context and data availability. The higher susceptibility to overfitting in
the PPM model with case-level features highlights the challenges of working with smaller
datasets and the need for more robust methods to manage class imbalance.
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Chapter 6

Discussion

Existing literature predominantly integrated laboratory tests with other clinical factors
rather than relying solely on laboratory tests or extensive patient histories, underscoring
the complexity of predictive modelling in clinical settings. For example, [19] utilised the
first routinely collected tests during hospital stays, while [22] focused on the latest labora-
tory tests within the preceding 72 hours, combined with vital signs, to predict unplanned
ICU transfers. [15] incorporated clinical and venous biochemical measurements over mul-
tiple periods to predict hospital mortality, indicating the use of more than just laboratory
tests. [29] identified the first blood test around ED admission to predict in-hospital mor-
tality, incorporating personal information like age and National Early Warning Scores. [33]
utilised initial haematology and biochemistry tests, patient demographics and hospital out-
comes to predict in-hospital mortality. These studies collectively highlight the challenges
and importance of considering temporal changes in clinical data for accurate predictive
modelling, as solely extensive laboratory test medical histories were not used.

Figure 6.1 illustrates the dynamic changes in laboratory test values over time for a
patient, highlighting the significance of these temporal changes in predictive modelling.
It demonstrates that different combinations of laboratory tests are conducted at each
timestamp, underscoring the variability in data availability over time.

Figure 6.1: Illustration of temporal changes in laboratory tests for a patient
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The standalone ML model and the PPM model with event-level features exhibit similar
performance, primarily because both approaches leverage the same underlying data, but
in different formats. In the standalone ML model, each row aggregates all laboratory
tests taken at a single timestamp, providing a combined view of multiple test results
which reflects real clinical practice. Similarly, the event-level PPM model represents each
laboratory test result individually but maintains the temporal component of the data,
which contributes to its comparable performance.

Notably, the PPM model with event-level features had just one less false positive than
the standalone ML model. In the context of medical decision-making, this difference is
not particularly significant. False positives in this scenario refer to instances where the
model predicts that a patient should be admitted to the ED when it might not be strictly
necessary. However, considering the critical nature of healthcare, it is usually wiser to take
a cautious approach. Admitting a patient to the ED when it might not be necessary (a
false positive) is less risky than failing to admit a patient who truly needs urgent care (a
false negative). False negatives can lead to serious consequences, such as the worsening
of a patient’s condition due to lack of timely intervention. Therefore, the slightly higher
number of false positives in the standalone ML model is acceptable and even favourable,
as it prioritises patient safety by reducing the risk of missing critical ED admissions. This
implies that the PPM model with event-level features does not necessarily outperform the
standalone ML model, as the difference in false positives does not significantly affect the
overall effectiveness in the context of patient safety and care.

In contrast, the PPM model with case-level features aggregates all test results per
patient, which fails to capture the temporal variations and fluctuations of individual tests
over time. This aggregation limits the model’s ability to reflect the dynamic nature of real-
world data, resulting in a noticeable performance drop compared to the ML and event-level
PPM approaches. The similar performance of the standalone ML model and the event-
level PPM model underscores the importance of preserving temporal details in the data,
while the case-level approach’s aggregation of data highlights its limitation in capturing
essential temporal changes, leading to less effective predictive modelling.

Additionally, performing multiple tests on a specimen of blood taken at one point
in time can be advantageous. Detecting an abnormality in one test result allows other
tests to either confirm or exclude the presence of certain diseases, potentially reducing the
necessity for follow-up investigations [6]. This underscores the importance of considering
combinations of laboratory tests, highlighting the effectiveness of the standalone ML model
in leveraging such combined information. By accurately diagnosing conditions through
comprehensive testing, the need for repeat visits and prolonged ED stays can be minimised,
thereby contributing to alleviating ED overcrowding.

Furthermore, a comprehensive six-month patient history proves crucial for advanced
prediction capabilities, enabling proactive preparation of ED resources and efficient patient
volume management. The primary objective remains optimising ED utilisation by min-
imising both false positives and false negatives. Patients with multiple hospital admissions
offer a richer historical context, aiding in more accurate predictions regarding the necessity
of ED care. However, the dataset primarily includes medical data collected during hospital
admissions, excluding information from general practitioner visits and pre-hospitalisation
tests. This exclusion limits the model’s ability to capture a comprehensive patient medical
history, potentially missing crucial health indicators and trends that could affect predictive
accuracy.

Additionally, the dataset exhibits inherent class imbalance, with 60% of patients ad-
mitted to the ED and the remaining 40% not admitted. This imbalance poses challenges
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in effectively training the models, impacting their ability to generalise well across both ED
and non-ED cases and influencing performance metrics such as sensitivity and specificity.
Specifically, the variation in the number of records between ED and non-ED cases (see
Table 4.5, Table 4.8 and Table 4.11) complicates model training. ED patients typically
have more tests conducted than non-ED patients, leading to a higher volume of data for
those admitted to the ED. This discrepancy means that models trained on such data may
become biased towards patterns specific to the ED patients due to the sheer volume of test
results they generate.

For instance, ED patients often undergo a broader range of diagnostic tests and more
frequent testing compared to non-ED patients, as the nature of emergency care requires
rapid and thorough assessment to address acute or uncertain clinical situations [12]. This
results in a larger and potentially more complex dataset for the ED group, including various
laboratory test results, imaging studies and clinical observations. This increased volume of
data can introduce variability in model performance, as models may become overfitted to
the more extensive dataset of ED patients or underperform on the smaller dataset of non-
ED patients. Balancing techniques were considered to address this imbalance; however,
these approaches either risk significant information loss or introduce bias into the data.

This issue is especially pronounced for the PPM model with case-level features. The
case-level approach aggregates all test results per patient, leading to a dataset with sig-
nificantly fewer rows compared to the standalone ML and event-level PPM approaches.
This reduction in data volume contributes to a bias in the model’s predictions, with a
tendency to classify most instances as positive due to the disproportionate representation
of data between the two classes. Furthermore, LSTM models are prone to overfitting in
small datasets [40]. Consequently, the model is more inclined to classify patients as being
admitted to the ED even when it may not be necessary, resulting in an increased number
of false positives. In contrast, the standalone ML model and the PPM model with event-
level features manage the data in ways that better address class imbalance and maintain
performance, even with a maintained 3:2 ratio between ED and non-ED patients.

In conclusion, the standalone ML model and the PPM model with event-level features
demonstrate comparable performance and better stability in predicting ED admissions,
owing to their effective handling of temporal data and mitigation of class imbalance issues.
However, the PPM model with case-level features shows reduced predictive accuracy due to
its inability to capture temporal changes, highlighting its limitations in accurately reflecting
real-world clinical scenarios and leading to less effective predictive modelling in the ED
context.
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Chapter 7

Conclusions and future work

The study aims to evaluate the predictive capabilities of both standalone ML and PPM
models for classifying ED admissions using a comprehensive six-month history of labora-
tory tests. By focusing on sequential medical data, the goal is to determine whether PPM
models can outperform traditional ML models in classifying ED admissions and thereby
help mitigate ED overcrowding. Effective prediction would enable medical practitioners
to anticipate admissions better and prepare the ED more efficiently, optimally allocating
resources in advance. The research uses the MIMIC-IV dataset, concentrating on labora-
tory tests conducted during hospital admissions and analysing dynamic changes over time
as well as combinations of tests at specific timestamps.

The study begins by examining the distinct data requirements and format differences
between PPM techniques and standalone ML methods in Section 7.1, highlighting how
these factors impact the applicability and performance of each approach. Section 7.2
focuses on comparing the learning curves of the two methods, evaluating their training
dynamics and convergence behavior. The predictive performance of the models is then
assessed in Section 7.3, where the accuracy and generalisation capabilities of PPM tech-
niques are compared with those of standalone ML models. Finally, Section 7.4 addresses
the main research question by evaluating the overall effectiveness of PPM models relative
to traditional ML models, discussing their relative advantages and potential for improving
ED admissions prediction. The discussion concludes with an overview of limitations and
future directions for advancing predictive modeling in emergency medicine in Section 7.5.

7.1 Data requirements and format differences

It was observed that the standalone ML model employs each row to encompass all tests
conducted at a single timestamp per patient. This allows the model to consider com-
binations of laboratory tests associated with ED admissions, thereby capturing nuanced
relationships crucial for accurate predictions. Similarly, the PPM model with event-level
features represents each laboratory test individually but retains the temporal sequence of
tests, which results in comparable performance to the ML model. On the other hand, the
PPM model with case-level features condenses all test results into a single row per patient,
potentially missing the critical temporal dynamics necessary for precise forecasting. This
comparison underscores that both the standalone ML model and the event-level PPM
model effectively leverage temporal and combined test information, while the case-level
approach does not fully capture the dynamic nature of the data.
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7.2 Learning curves

An analysis of learning curves reveals slight differences in performance between the PPM
techniques and standalone ML model (see Figure 5.1). The standalone ML model demon-
strates a steady decrease in both training and validation losses from around 0.70, with
minimal fluctuations and losses stabilising near zero by 300 epochs. This close alignment
suggests effective training with minimal overfitting or underfitting. In contrast, the PPM
model with event-level features also starts with losses around 0.70 and shows a rapid de-
cline in the first 50 epochs, stabilising near zero by around 250 epochs. However, this
model exhibits minor fluctuations in the training loss curve after 50 epochs, indicating
slightly less stability. The PPM model with case-level features starts with losses around
0.68 and shows a steady decrease in training loss, but the validation loss decreases more
slowly and eventually flattens out, leading to a widening gap between the two over 300
epochs. This growing divergence suggests potential overfitting, as the model may be learn-
ing the training data too well but struggles to generalise as effectively to the validation
set. While both the ML and PPM event-level models effectively learn and converge, the
standalone ML model is notably more robust and stable, with smoother performance and
better generalisation compared to both the PPM models.

7.3 Predictive performance

Predictive performance analysis consistently favours the standalone ML and PPM models
with event-level features over the PPM model with case-level features in the accuracy, pre-
cision and recall metrics (see Table 5.1). The standalone ML and PPM with event-level
features models achieve near-perfect classification accuracy, reflecting robustness in distin-
guishing between ED and non-ED cases. Overall, the standalone ML model demonstrates
performance comparable to the PPM model with event-level features, with minor metric
differences ranging from 0.3% to 0.9%, primarily due to the standalone ML model having
one more false positive. In contrast, the case-level PPM model exhibits lower performance
levels, facing challenges such as misclassification and difficulty in handling class imbalances.

7.4 Classifying ED admissions with ML and PPM

The findings demonstrate that both the standalone ML model and PPM model with event-
level features achieve similar performance in predicting ED admissions. Standalone ML
model excels by leveraging complex data relationships, processing aggregated test data at
specific timestamps and capturing the combined effects of multiple tests. Similarly, PPM
model with event-level features effectively tracks individual test results while preserving
temporal information, leading to comparable predictive accuracy.

While the event-level PPM model and standalone ML model offer valuable insights
into patient processes over time, the PPM model with case-level features struggles with
capturing temporal changes and addressing class imbalances. Both approaches, especially
when enhanced with advanced techniques and comprehensive datasets, show considerable
potential for improving predictions related to ED overcrowding and resource management.

Overall, the standalone ML model’s performance is comparable to the PPM model
with event-level features, with the main difference being a single additional false positive
in the ML model. In a medical context, this single additional false positive is relatively
inconsequential, as it is generally preferable to be cautious by admitting a patient who
might not need urgent care rather than risking a missed critical case.
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However, the standalone ML model significantly outperforms the PPM model with case-
level features in terms of accuracy, precision and recall. This suggests that while PPM with
event-level features can achieve similar performance to traditional ML methods, PPM with
case-level features is less effective.

7.5 Limitations and future work

The study faces several limitations. Primarily, the dataset includes only hospital admission
data, excluding information from general practitioner visits and pre-hospitalisation tests,
which limits the model’s ability to capture a full patient medical history. Future research
could integrate additional clinical variables such as demographic information, coexisting
medical conditions and severity scores to provide a more comprehensive patient profile for
prediction. This expansion would enable models, including those based on DL architec-
tures, to capture a broader range of factors influencing ED admissions and improve overall
predictive accuracy. Furthermore, acquiring a dataset that includes information from gen-
eral practitioner visits and pre-hospitalisation tests would enrich the model’s understanding
of patient health trajectories. This comprehensive dataset could potentially enhance the
models’ ability to predict ED admissions with greater precision and reliability. Therefore,
future efforts should focus on acquiring and integrating such comprehensive datasets to
advance predictive modelling in emergency medicine effectively.

Another limitation is the inherent class imbalance in the dataset, with 60% of patients
admitted to the ED and 40% not admitted. This imbalance complicates model training
and generalisation, particularly impacting the PPM model with case-level features. The re-
search highlights the superior performance of standalone ML and event-level PPM models
in predictive tasks and suggests that future work should focus on refining PPM techniques,
especially those involving case-level features. Exploring advanced DL techniques or ensem-
ble methods could offer performance improvements by better capturing complex temporal
and sequential dependencies in clinical data.

To address class imbalance, future research could explore strategies such as using gen-
erative adversarial networks (GANs) to generate synthetic data, which might help balance
the dataset and improve model robustness. Additionally, mitigating overfitting in the PPM
model with case-level features could involve techniques such as regularisation or increasing
the size of the validation set. Further tuning of hyper-parameters, like the learning rate or
model architecture, might also help in reducing overfitting and improving generalisation.
Conducting external validation studies across diverse healthcare settings and populations is
essential to assess the generalisability and effectiveness of the models in real-world clinical
environments. Future work should also focus on both model interpretability and explain-
ability, as these aspects are crucial for establishing understanding and trust within the
medical domain.
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Appendix A

Laboratory tests and descriptions

Table A.1: Laboratory tests and their corresponding descriptions

Laboratory Tests Description

Alanine Aminotransferase
(ALT)

ALT is an enzyme predominantly found in the liver.
An ALT blood test is used to evaluate liver health as
elevated ALT levels in the blood may indicate liver
damage or a liver condition.

Albumin

An albumin blood test measures protein levels in blood
plasma. Low levels can indicate kidney or liver disease,
inflammation or infections, while high levels may result
from dehydration or severe diarrhea.

Aspartate Aminotransferase
(AST)

AST is an enzyme present in various tissues like the
liver, heart, pancreas and muscles. An AST blood test
aids healthcare providers in evaluating liver function.

Bands

Also called band neutrophils, these are immature white
blood cells produced in response to infection or inflam-
mation. They are identified in a blood test to assess
the body’s immune response, where high levels indi-
cate increased production to fight infection or inflam-
mation.

Bilirubin, Total
A bilirubin test measures the level of bilirubin in the
blood, a yellow pigment found in bile. Elevated levels
may indicate liver dysfunction or blocked bile ducts.

C-Reactive Protein

A c-reactive protein (CRP) test measures the level of
CRP in the blood, which is released by the liver in
response to inflammation. This test helps diagnose
and monitor conditions like infections and autoimmune
diseases.

Calcium, Total
Calcium, an essential mineral, is monitored through
blood tests to ensure healthy levels. Abnormal calcium
levels can signal medical conditions.
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Cholesterol, HDL

High-density lipoprotein (HDL) cholesterol, known as
"good cholesterol," aids in removing excess cholesterol
by transporting it to the liver for elimination through
feces. Adequate levels of HDL help prevent artery
plaque buildup, lowering the risk of heart disease and
stroke.

Cholesterol, LDL, Measured

Low-density lipoprotein (LDL), a type of lipoprotein
in the blood, carries cholesterol and fats throughout
the bloodstream. High levels of LDL, often referred
to as "bad cholesterol," increase the risk of stroke and
heart disease due to their cholesterol-rich composition.

Cholesterol, Total

Total cholesterol measures the combined amount of
cholesterol in the blood, encompassing both LDL and
HDL. This total value helps gauge the risk of heart
disease.

Creatine Kinase (CK)
CK is an enzyme present in skeletal muscle, heart mus-
cle and brain. Increased CK levels in the bloodstream
can signal damage or disease in these tissues.

Creatinine

The creatinine test assesses kidney function by measur-
ing creatinine levels in the blood. Creatinine, a waste
product filtered by the kidneys, may indicate kidney
disease if levels are abnormal.

Glucose

A blood glucose test measures the amount of sugar in
the blood, commonly used to screen for Type 2 dia-
betes. It can be done through a finger prick or a blood
draw from a vein.

Granulocyte Count

Granulocytes, the most prevalent white blood cells, re-
lease enzymes from their granules to combat immune
system threats like infections, allergies or asthma. Pro-
duced in the bone marrow from stem cells, granulo-
cytes have a short lifespan of a few days.

Hematocrit

A hematocrit test measures the percentage of red
blood cells in the blood, crucial for oxygen transport.
Abnormal results can indicate blood disorders or other
medical issues.

Hemoglobin
A hemoglobin test measures the levels of hemoglobin,
the primary component of red blood cells. It is pri-
marily used to detect anemia.

Lymphocytes

Lymphocytes are white blood cells that help fight can-
cer and infections. Their levels can be measured in a
routine blood test and may vary based on factors like
age, race and lifestyle.

NTproBNP

N-terminal pro b-type natriuretic peptide (NT-
proBNP) is a protein used to make the BNP hormone.
Like BNP, the heart makes larger amounts of NT-
proBNP when it has to work harder to pump blood,
potentially indicating heart failure.
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Platelet Count

A platelet count measures the number of platelets in
the blood, which are cells that help with clotting. Low
platelet levels can indicate cancer, infections or other
health issues, while high levels can increase the risk of
blood clots or stroke.

Potassium

A potassium blood test measures the amount of potas-
sium, an electrolyte, in the blood. Potassium is essen-
tial for proper cell, nerve, heart and muscle function.
Abnormal potassium levels can indicate medical prob-
lems.

Protein, Total

A total protein blood test measures the amount of all
proteins in the blood, primarily albumin and globulin.
This test helps assess the overall health and can indi-
cate issues with the liver, kidneys or other conditions
affecting protein levels in the body.

Sodium

A sodium blood test measures the amount of sodium,
an essential electrolyte, in the blood. Sodium helps
regulate fluid balance, pH levels and nerve and muscle
function. Abnormal sodium levels can indicate kidney
issues, dehydration or other medical conditions.

Thyroid Stimulating Hormone

Thyroid-stimulating hormone (TSH) prompts the thy-
roid to release hormones affecting metabolism. High
TSH typically indicates hypothyroidism, while low
TSH indicates hyperthyroidism.

Thyroxine (T4), Free
A T4 test diagnoses thyroid conditions by measuring
the thyroid hormone T4. Abnormal levels suggest thy-
roid issues.

Triglycerides
Triglycerides are common fats found in food and stored
in the body. High levels increase the risk of heart at-
tacks and strokes.

Troponin T

A troponin T blood test measures the levels of tro-
ponin T, a protein released into the bloodstream dur-
ing a heart attack or heart muscle damage. Elevated
levels of troponin T indicate heart injury and help di-
agnose conditions such as myocardial infarction.

Urea Nitrogen
The blood urea nitrogen test measures urea nitrogen in
the blood to assess kidney function. Abnormal levels
can indicate kidney damage or other health conditions.

White Blood Cells
White blood cells are part of the immune system, pro-
tecting the body from infection by attacking unknown
organisms that enter the bloodstream and tissues.
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