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ABSTRACT 

Accurate snow depth estimation is crucial for understanding hydrological cycles, predicting water resources, 
and assessing the impacts of climate change on snow-covered regions. Snow depth data provides vital 
insights for climate modeling, water management, and disaster risk reduction, especially in regions 
dependent on snowmelt for freshwater resources. Enhancing the precision of snow depth measurement 
techniques is, therefore, essential for both scientific research and practical applications. 
 
This thesis delves into the utilization of ICESat-2 LIDAR data as a reference for training machine learning 
models to predict snow depth using SAR data from SAOCOM 1B and Sentinel-1. A meticulously crafted 
methodology was employed, encompassing advanced preprocessing, coregistration techniques, absolute 
coherence calculation, and sophisticated machine learning-based prediction models. The study’s 
comprehensive approach revealed that SAOCOM 1B’s L-band SAR data significantly surpasses Sentinel-
1’s C-band SAR data in terms of snow depth prediction accuracy, primarily due to its superior penetration 
depth and more dependable coherence measurements. 
 
The Random Forest model was identified as the most effective machine learning algorithm, achieving an 
exceptional R-squared value of 0.8212 with the gt1r beam from ICESat-2, thereby underscoring the potential 
use of LIDAR-SAR data for snow-monitoring model generation. The feature importance analysis 
underscored the pivotal role of multi-polarization data (HH, HV, VH, VV) in augmenting the prediction 
accuracy, emphasizing the necessity of utilizing diverse polarization channels to capture the comprehensive 
range of snowpack characteristics. 
 
Despite the comparatively lower performance of Sentinel-1 data, this study highlighted potential avenues 
for enhancement in C-band SAR technology and data processing techniques. The findings elucidate the 
critical importance of selecting appropriate SAR datasets and leveraging robust machine learning models for 
accurate snow depth estimation. This research provides invaluable insights into the comparative strengths 
and limitations of different SAR datasets and different beams of ICESat-2, significantly contributing to the 
advancement of snow monitoring practices and a deeper understanding of snowpack dynamics within the 
broader context of climate change. 
 
Keywords: ICESat-2, SAOCOM 1B, Sentinel-1, Snow Depth Estimation, SAR data, LIDAR, Machine 
Learning, Random Forest, Absolute Interferometric Coherence, Multi-polarization. 
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1. INTRODUCTION 

1.1. Background 

Measuring snow depth is essential for comprehending global hydrological cycles, climate patterns, and 
ecological stability. Accurate snow depth data is vital for managing water resources, predicting avalanche 
risks, and studying climate change impacts (Enderlin et al., 2022). Traditional methods for measuring snow 
depth, such as ground-based observations and airborne LiDAR, provide high accuracy but are limited in 
spatial coverage and temporal frequency. Satellite-based remote sensing technologies, particularly Synthetic 
Aperture Radar (SAR) and Light Detection and Ranging (LiDAR), offer a promising solution for extensive 
and frequent snow depth monitoring. 

Optical remote sensing utilizes satellite sensors to provide high-resolution imagery for snow cover mapping 
by relying on visible and near-infrared wavelengths to distinguish snow from other surface features. 
However, optical remote sensing is limited by cloud cover and the inability to penetrate the snowpack, which 
restricts its use in cloudy conditions and only provides surface snow information (Tsang et al., 2022). 

Airborne and spaceborne LiDAR systems utilize laser pulses to calculate the distance from the sensor to the 
Earth's surface, enabling highly accurate elevation data collection. Airborne LiDAR can provide highly 
accurate snow depth data over specific areas, but it is expensive and logistically challenging to cover large 
regions frequently (Lu et al., 2022). Spaceborne LiDAR, like ICESat-2, offers global coverage but with 
limitations in spatial and temporal resolution due to its narrow swath width and sparse ground tracks (Kwok 
et al., 2020.). Equipped with the Advanced Topographic Laser Altimeter System (ATLAS), the ICESat-2 
satellite offers highly accurate surface elevation measurements and is widely employed in cryospheric studies. 
The ATL03 product from ICESat-2 delivers photon heights, while the ATL08 product provides terrain and 
canopy heights, facilitating the extraction of snow depth by comparing surface and ground elevations (Zhao 
et al., 2022). However, ICESat-2’s spatial coverage is limited due to its narrow swath width and sparse 
ground tracks. 

SAR sensors, such as those on SAOCOM 1B (L-band) and Sentinel-1 (C-band), emit microwaves and 
measure the backscattered signals, allowing for snow depth estimation under various weather conditions 
and independent of daylight. L-band SAR, with its longer wavelength, penetrates deeper into the snowpack, 
providing valuable information on snow volume and structure (Benedikter et al., 2022). In contrast, C-band 
SAR offers higher resolution surface scattering information, useful for capturing surface features and 
shallow snow depths (Patil et al., 2020). However, SAR data requires complex processing and interpretation. 
Terrestrial methods, such as ground-based measurements with snow stakes, ultrasonic sensors, and manual 
probes, provide direct and accurate snow depth data. However, these methods are labor-intensive and 
limited in spatial coverage, making them impractical for large-scale monitoring (Bernard, 2017). 

The limitations of each method highlight the need for an approach that leverages the strengths of multiple 
remote sensing technologies to achieve comprehensive and accurate snow depth estimation. This thesis 
focuses on using ICESat-2 LiDAR data as a reference for training machine learning models to predict snow 
depth using SAR data from SAOCOM 1B and Sentinel-1. By employing ICESat-2 LiDAR data, the gaps in 
spatial coverage and temporal frequency inherent in each individual dataset can be addressed. 
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The combined use of SAR and LiDAR data offers a robust framework for snow depth estimation across 
diverse terrains and weather conditions. This method enhances the precision of snow depth measurements 
and offers a scalable solution for monitoring extensive areas. The motivation behind this research is to 
enhance our understanding of snow dynamics, support water resource management, and contribute to 
climate change studies. 

1.2. Literature Review 

Recent research has extensively investigated the use of Synthetic Aperture Radar (SAR) and Light Detection 
and Ranging (LiDAR) data for snow depth estimation due to their complementary characteristics. SAR’s 
ability to penetrate snow and provide detailed information on surface roughness and structure, combined 
with the high-precision elevation data from LiDAR, enhances the accuracy and reliability of snow depth 
measurements. However, for my research, it is important to clarify that I will not integrate SAR and LiDAR 
directly. Instead, I will use LiDAR data as a reference to train machine learning models, which will then 
predict snow depth using SAR data. 

Leinss et al., (2014) utilized polarimetric SAR data from the TerraSAR-X satellite to determine snow height 
by analyzing the phase differences between the co-polarized channels. Their study revealed a strong 
correlation between the Co-Polar Phase Difference (CPD) of VV and HH polarizations and snow depth, 
suggesting a viable approach for snow depth retrieval across various snow conditions. However, their 
approach faced significant limitations related to the phase unwrapping process and the influence of surface 
roughness on phase measurements. These limitations can lead to inaccuracies in snow depth estimation, 
especially in areas with complex terrain. This highlights the need for methodologies that can account for 
these limitations and improve the robustness of snow depth retrievals. 

Further emphasizing the complementary nature of SAR and LiDAR, Kwok et al. (2020) investigated the use 
of ICESat-2 and CryoSat-2 data for estimating snow depth and sea ice thickness in the Arctic. Their research 
illustrated the synergy between LiDAR and radar altimetry, showing that combining these datasets can 
enhance the spatial and temporal resolution of snow depth measurements. However, the study also 
identified challenges related to the differing spatial resolutions and temporal coverages of the datasets, which 
can introduce errors in snow depth estimation and limit the method's applicability in regions with rapidly 
changing snow conditions. These findings emphasize the need for developing techniques that effectively 
integrate diverse datasets to improve the accuracy of snow depth estimation. 

Awasthi et al., (2021) applied pursuit-monostatic TanDEM-X datasets for snow depth retrieval in the North-
Western Himalayan region. Using polarimetric SAR interferometry (PolInSAR), the study retrieved snow 
depth by exploiting the phase information of SAR signals. This technique proved effective in mountainous 
regions, where traditional methods are challenging. However, the study faced challenges related to the 
decorrelation of SAR signals in heavily forested areas and steep terrains. Additionally, the accuracy of snow 
depth estimates was affected by the temporal gap between SAR acquisitions. These limitations suggest the 
need for continuous SAR acquisitions and improved decorrelation techniques to enhance the reliability of 
snow depth estimates in complex terrains. 

Tebaldini et al., (2016) took a different approach by using L-band airborne SAR tomography (TomoSAR) 
to image the internal structure of an alpine glacier. The study provided detailed 3-D maps of glacier 
subsurface structures, crucial for understanding glacier dynamics and mass balance. Although promising, 
this method requires multiple SAR acquisitions from different angles, which can be logistically challenging 
and costly. The high computational demand of TomoSAR also limits its practical application for large-scale 
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snow depth estimation. Consequently, creating cost-effective and computationally efficient methods for 
large-scale snow depth estimation continues to be a crucial research focus. 

Building on the need for deeper penetration capabilities, Benedikter et al., (2022) highlighted the advantages 
of L-band SAR from the ALOS-2 satellite for snow depth estimation. They emphasized its deeper 
penetration capability compared to C-band SAR from the Sentinel-1 satellite. Their findings indicated that 
L-band SAR provides more accurate snow volume and structure information, essential for regions with 
thick snow cover. However, the study faced limitations related to the influence of underlying terrain and 
vegetation on SAR signal penetration, which can introduce errors in snow depth estimates. This underscores 
the necessity of developing techniques to mitigate these influences and improve snow depth estimation 
accuracy. 

(Majumdar et al., 2019) further explored the application of polarimetric SAR data from the Radarsat-2 
satellite for snow depth estimation, underscoring the need for multi-frequency and multi-polarization 
approaches to capture the complex interactions between radar signals and snow. Their research 
demonstrated that combining data from different SAR frequencies (e.g., C-band and L-band) with LiDAR 
improves the robustness of snow depth estimates, particularly in heterogeneous snow conditions. However, 
the study highlighted challenges related to the calibration and validation of SAR data, which can impact the 
accuracy of snow depth retrievals. This calls for standardized calibration and validation protocols to enhance 
the reliability of snow depth estimates. 

Tsang et al., (2022) used polarimetric SAR data from the Sentinel-1 satellite to estimate snow depth and 
SWE in alpine regions, applying machine learning algorithms to integrate SAR data with ground-based 
measurements. This study demonstrated the potential of SAR data to capture the spatial variability of snow 
cover in complex terrains. However, the accuracy of the machine learning models was constrained by the 
limited availability of ground truth data for training and validation, underscoring the necessity of extensive 
field measurements. This highlights the importance of integrating machine learning with comprehensive 
ground truth data to enhance the accuracy of snow depth estimation. 

Recent studies have also explored the potential of using coherence information derived from SAR 
interferometry for snow depth estimation. For instance, (Kumar & Venkataraman, 2011) utilized coherence 
data from SAR to map snow depth variations in alpine regions. This approach leverages the phase stability 
of SAR signals to detect changes in snow cover, offering a high-resolution method for monitoring snow 
dynamics. However, coherence-based methods can be affected by temporal decorrelation and changes in 
surface roughness, which can introduce errors in snow depth estimates. This highlights the need for robust 
coherence-based methodologies that can account for these factors. 

Machine learning models have shown significant potential in remote sensing applications, including snow 
depth estimation. These models are capable of managing large datasets and capturing complex, non-linear 
relationships between input features (such as SAR coherence values) and snow depth. Random Forest (RF) 
and Gradient Boosting (GB) models are ensemble learning techniques that combine multiple decision trees 
to improve predictive performance. (Immerzeel et al., 2014) demonstrated the effectiveness of Random 
Forest in integrating multi-source remote sensing data for environmental monitoring. These models are 
robust to overfitting and can handle high-dimensional data, making them suitable for snow depth estimation 
using SAR and LiDAR data. However, the effectiveness of these models is highly dependent on the quality 
and quantity of the training data, and they can be vulnerable to noise and outliers in the input data. Support 
Vector Regression (SVR) is another robust machine learning technique used for regression tasks.  
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SVR is effective in high-dimensional spaces and performs well with limited data points, making it suitable 
for remote sensing applications where data availability may be limited. Studies have shown that SVR can 
achieve high accuracy in predicting snow depth by capturing the complex interactions between radar signals 
and snow properties (Li et al., 2021). However, SVR can be computationally demanding and often requires 
meticulous tuning of hyperparameters to achieve optimal performance. 

Recent advancements in deep learning have also been explored for snow depth estimation. Convolutional 
neural networks (CNNs) are being implemented to SAR data for snow depth prediction, demonstrating the 
potential of deep learning in capturing spatial patterns and improving estimation accuracy. However, the 
computational complexity and requirement for large training datasets pose challenges for the widespread 
application of deep learning methods in snow depth estimation. Additionally, deep learning models can be 
prone to overfitting, particularly when trained on limited datasets. 

A study by (Frey et al., 2015) utilized a combination of SAR and LiDAR data to improve snow depth 
estimation in forested areas. Their approach involved using LiDAR to map the forest canopy and SAR to 
detect the snow surface beneath the canopy. This integration provided a more accurate assessment of snow 
depth in complex environments, highlighting the potential of combining different remote sensing 
technologies for comprehensive snow monitoring. However, the study faced challenges related to the 
calibration of SAR and LiDAR data and the influence of forest canopy on SAR signal penetration. 

1.3. Research Gap & Problem Statement 

Despite significant advancements in utilizing SAR and LiDAR data for snow depth estimation, several 
critical gaps remain unaddressed. Current literature lacks comprehensive research on the optimal 
methodologies for feeding SAR coherence information into machine learning models for snow depth 
prediction. Existing studies often fail to systematically evaluate the impact of different SAR data 
preprocessing techniques and machine learning model configurations on the accuracy of snow depth 
estimates. Moreover, while various machine learning models have been employed, there is insufficient 
exploration of hybrid models and ensemble learning techniques that could leverage the strengths of different 
algorithms to enhance predictive performance. 

Another significant gap is the limited comparative analysis of SAR datasets from different satellites, such as 
SAOCOM 1B and Sentinel-1, in conjunction with ICESat-2 LiDAR data. There is a need for detailed 
evaluations of how different SAR polarizations and frequencies influence snow depth predictions. 
Additionally, existing studies often focus on specific geographic areas, limiting the generalizability of their 
findings. There is a pressing need for research that validates snow depth estimation methodologies across 
diverse snow-covered regions to ensure robustness and applicability in different climatic and topographic 
conditions. 

Furthermore, ICESat-2, despite providing high-precision elevation data, suffers from limited spatial 
coverage due to its narrow swath width and sparse ground tracks. This research seeks to explore the 
incorporation of SAR data to fill these information gaps, leveraging the extensive spatial coverage of SAR 
to derive continuous snow depth estimates across larger areas. Accurately estimating snow depth across 
diverse terrains and varying snow conditions remains a significant challenge in remote sensing. Traditional 
ground-based methods, although accurate, are limited by their spatial coverage and accessibility. Remote 
sensing technologies like LiDAR and SAR offer the potential for extensive and continuous monitoring but 
have their own limitations. LiDAR provides high-resolution elevation data but is constrained by its limited 
spatial coverage, whereas SAR offers extensive spatial coverage but faces challenges related to coherence 
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loss and noise. This research aims to tackle these challenges by developing a robust methodology that 
employs ICESat-2 LiDAR data as a reference for training machine learning models with SAR data from 
SAOCOM 1B and Sentinel-1 to estimate snow depth. By harnessing the unique strengths of both LiDAR 
and SAR, this study aims to improve the accuracy of snow depth predictions, assess the performance of 
various SAR datasets and polarizations, and identify the most reliable approach for snow depth estimation. 
The findings of this research will enhance the understanding and monitoring of snow dynamics, which is 
essential for managing water resources, predicting avalanche risks, and studying the impacts of climate 
change. 

1.4. Objectives 

1. Explore the Use of SAR Datasets to Fill Spatial Coverage Gaps across ICESat-2 Data beams 
ICESat-2, despite providing high-precision elevation data, suffers from limited spatial coverage due to its 
narrow swath width and sparse ground tracks. This research aims to leverage the extensive spatial coverage 
of SAR data from SAOCOM 1B and Sentinel-1 to derive continuous snow depth estimates across larger 
areas, thereby filling the information gaps in ICESat-2 data. 

2. Evaluate the Effectiveness of Different Machine Learning Models for Predicting Snow Depth 
This objective aims to apply and compare the performance of standard machine learning models, including 
Random Forest, Gradient Boosting, and Support Vector Regression, in predicting snow depth from SAR 
absolute coherence data. The focus is on identifying the most accurate model and concluding the reliability 
of machine learning for this task. 

3. Compare the Snow Depth Prediction Performance of SAOCOM 1B and Sentinel-1 Datasets 
This objective seeks to assess and compare the accuracy of snow depth predictions derived from SAOCOM 
1B’s L-band SAR data and Sentinel-1’s C-band SAR data. The comparison aims to highlight the advantages 
and limitations of each dataset in snow depth estimation, providing insights into their relative effectiveness. 

1.5. Research Questions 

This study aims to address the following research questions: 

1. How can the extensive spatial coverage of SAR data from SAOCOM 1B and Sentinel-1 be utilized to 
fill the spatial coverage gaps in ICESat-2 data for snow depth estimation? 

2. Which machine learning model, Random Forest, Gradient Boosting, or Support Vector Regression 
provides the most accurate predictions of snow depth from SAR absolute coherence data? 

3. What are the comparative strengths and limitations of SAOCOM 1B’s L-band SAR data and Sentinel-
1’s C-band SAR data in predicting snow depth? 

1.6. Significance of the Study 

This study significantly advances snow depth estimation techniques by utilizing ICESat-2 LiDAR data as a 
reference to train machine learning models with SAR data from SAOCOM 1B and Sentinel-1. The 
innovative use of different machine learning models enhances the accuracy and reliability of snow depth 
measurements across various terrains and snow conditions. Additionally, the study offers a comprehensive 
evaluation of interferometric coherence derived from L-band and C-band SAR data, highlighting their 
strengths and limitations for snow depth estimation. Accurate snow depth data is vital for understanding 
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the Earth’s hydrological cycle and its impact on climate change. This research enhances climate monitoring 
by providing improved snow depth estimates, which are essential for assessing the effects of climate 
variations on snow and ice-covered regions. The methodologies and findings of this study support water 
resource management, disaster risk reduction, and policy and decision-making efforts related to climate 
change adaptation, contributing to a deeper understanding of snowpack dynamics and fostering further 
research and innovation in remote sensing and cryospheric science. 

1.7. Thesis Structure 

This thesis is structured into six chapters, starting with the introduction. Chapter 2 discusses the study area, 
while Chapter 3 describes the datasets utilized in this research. Chapter 4 explains the proposed 
methodology, including preprocessing and coregistration of SAR datasets, extracting snow depth from 
ICESat-2 data, and applying machine learning models for snow depth prediction. Chapter 5 presents the 
results, evaluating the performance of the machine learning models and comparing snow depth predictions 
from SAOCOM 1B and Sentinel-1 datasets. This chapter also discusses the strengths and limitations of the 
proposed approach. Chapter 6 concludes the thesis by summarizing key findings, discussing the 
implications, and offering recommendations for future research. 
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2. STUDY AREA 

The study area for this research is in the Sermersooq province in Southern Greenland, characterized by its 
dynamic and ever-changing snowpack (Figure 1). Greenland is a critical area for studying snow depth and 
snowpack dynamics due to its significant contribution to global sea-level rise and unique climatic conditions. 
The Sermersooq region experiences substantial snowfall and snowpack variations due to its polar climate 
(Fischer et al., 2019). The region's challenging snow conditions make it an excellent location to test the 
capabilities of advanced snow depth estimation methods. The study area's latitudinal extent ranges from -
47.1846° to -47.2453°, and its longitudinal extent ranges from 61.5916° to 62.4779°. 
 
Sermersooq features diverse terrain, including glaciers, ice caps, fjords, and mountainous areas. These 
various topographic features present challenges in snow depth estimation, and the effectiveness of the 
research in such complex terrain can be a valuable demonstration of its capabilities. Greenland is highly 
susceptible to the effects of climate change, making it an important area for climate research (Fischer et al., 
2019). The study in Sermersooq is relevant for understanding how changes in snowpack and snow depth 
contribute to broader climate change research, including the impact on sea-level rise. The region aligns with 
many scientific priorities and initiatives focused on polar analysis, ice sheet dynamics, and the changing 
Arctic environment (Jouvet et al., 2019). 

 

Figure 1: The blue polygon in the right part of the figure indicates the study area located in the Sermersooq province of Southern Greenland 
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3. DATASETS USED 

In this chapter, we elaborate on the specific datasets utilized in this research, discussing the rationale behind 
selecting SAOCOM 1B, ICESat-2, and Sentinel-1 for snow depth estimation. Each dataset brings unique 
strengths that enhance the thorough analysis and accurate prediction of snow depth. 

3.1. SAR Data 

SAR data serve as the primary input for training the machine learning model, which is then used to predict 
and fill gaps in the ICESat-2 LiDAR data. This study utilizes two SAR datasets: SAOCOM 1B and Sentinel-
1. The simultaneous use of these datasets offers a comprehensive approach to snow depth estimation. 

3.1.1. SAOCOM 1B 

The SAOCOM 1B satellite, operated by the Argentine Space Agency (CONAE), functions in the L-band 
frequency, which is particularly advantageous for snow depth estimation due to its deep penetration 
capabilities. The specific data used in this study were acquired in Stripmap mode with Quad Polarization 
(HH, HV, VH, VV) on two dates: September 13, 2023, and September 29, 2023. This configuration enables 
detailed analysis of snow properties by examining the backscatter response in different polarizations. The 
dataset features a ground range resolution of 10 meters and an azimuth resolution of 6 meters, with a swath 
width ranging from 20 to 40 kilometers. 

 

Figure 2: SAOCOM 1B images representing intensity of HV polarisation from master (on left) and slave (on right) datasets 

The L-band radar waves can penetrate through dense vegetation and snow, providing valuable information 
about the subsurface characteristics (Cazcarra-Bes et al., 2020). This makes SAOCOM 1B ideal for 
monitoring snowpack in complex terrains where traditional methods may fall short. Additionally, the radar 
signals are highly sensitive to changes in snow characteristics, such as density and wetness, making it an 
effective tool for estimating snow water equivalent (SWE) (Rott et al., 2021). 
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Table 1: Parameters Associated with SAOCOM 1B 

 

The capability of L-band SAR to penetrate deeper into the snowpack allows for capturing more 
comprehensive data about the snow’s subsurface layers. This is particularly useful for regions with thick 
snow cover, where surface observations alone may not provide an accurate representation of snow depth. 
(Rekioua et al., 2017). Furthermore, the multi-polarization channels (VV, VH, HH, HV) enhance the ability 
to analyze the anisotropy of snow, which is crucial for accurate snow depth estimation.  

3.1.2. Sentinel-1 

The Sentinel-1 mission, a component of the European Space Agency’s (ESA) Copernicus program, includes 
two satellites, Sentinel-1A and Sentinel-1B, operating in the C-band frequency. Although the C-band does 
not penetrate as deeply as the L-band, it offers high spatial resolution and frequent revisit times, which are 
advantageous for temporal analysis of snow cover (Garg et al., 2022). The data used in this study were 
acquired from Sentinel-1A in dual polarization (HH, HV) mode on two dates: September 18, 2023, and 
September 30, 2023. These dates were chosen to ensure a consistent temporal framework as same as 
SAOCOM. Sentinel-1 provides detailed imagery essential for capturing fine-scale snow cover dynamics in 
open and less vegetated areas (Dahhani et al., 2022). With frequent revisit times, typically every 6-12 days, 
Sentinel-1 allows for continuous monitoring of snow cover changes over time. The use of Sentinel-1 data 
for snow depth prediction through machine learning integration with ICESat-2 is primarily exploratory and 
comparative in this study. 

 

Figure 3: Sentinel-1 images representing intensity of HV polarisation from master (on left) and slave (on right) datasets 
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Despite the shallower penetration of C-band SAR, its higher spatial resolution is advantageous for detecting 
surface characteristics and monitoring snow cover changes with high temporal resolution (Garg et al., 2022). 
Sentinel-1’s ability to capture fine-scale dynamics of snow cover in less vegetated areas makes it particularly 
useful for monitoring seasonal variations and short-term changes in snowpack. This feature is critical for 
understanding snowmelt patterns, predicting water availability, and managing water resources in regions 
where snow is a primary source of freshwater (Askne et al., 2017). 

Table 2: Parameters Associated with Sentinel-1 

 

Table 3 provides a summary of the acquisition dates for the datasets used in this research. These dates were 
strategically chosen to maximize data relevance and coherence across the different satellite missions and 
ensure temporal alignment between datasets for accurate comparative analysis.  

Table 3: Acquisition Dates for the Datasets used 

 

3.2. Space-based Lidar data (ICESat-2) 

ICESat-2 data will be considered as reference data when building the machine learning model. ICESat-2, 
launched by NASA, uses the Advanced Topographic Laser Altimeter System (ATLAS) to provide precise 
surface elevation measurements through LIDAR technology (Narine et al., 2020). This dataset serves as the 
ground truth for snow depth estimation in this study, offering highly accurate elevation data that can be 
directly related to snow depth. ICESat-2 provides elevation measurements with centimeter-level accuracy, 
making it a reliable source for validating snow depth estimates (Lu et al., 2022). The ICESat-2 mission 
produces several key data products relevant to this study: 

ATL03 (Photon Heights): This product contains geolocated photon data, which includes the precise 
height measurements of individual photons reflected off the Earth’s surface (Zhao et al., 2022). These 
photon heights are critical for determining the surface elevation, particularly during snow-covered periods. 
The ATL03 data is used to capture the snow surface height, which is essential for calculating the snow depth 
when compared to ground heights. 
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ATL08 (Terrain and Canopy Heights): This product provides data on terrain and canopy height, offering 
a detailed representation of the ground surface beneath the snow (Enderlin et al., 2022). The ATL08 data is 
instrumental in identifying the ground elevation, serving as a reference to determine the snow depth by 
subtracting this value from the snow surface height captured in the ATL03 product. 

The snow depth is not directly available as a product from ICESat-2 data; it requires pre-processing to 
extract snow depth. This pre-processing involves comparing the surface elevation measurements taken from 
ATL03 during snow-covered periods with the ground heights from ATL08. This methodology ensures that 
the extracted snow depth values are accurate and can be effectively used for validating and training machine 
learning models. The acquisition dates for both ATL03 and ATL08 is September 13, 2023. 

Table 4: Parameters Associated with ICESat-2 

 

ICESat-2 operates with six beams (see Figure 4), arranged in three pairs, with each pair consisting of a weak 
beam and a strong beam. These beams are spaced approximately 3.3 km apart, creating gaps in the data 
coverage. The gaps across the beams necessitate the integration of additional data sources to fill these spatial 
gaps, making SAR data a valuable complement. 

 

Figure 4: This graphic shows the six-beam pattern from the ATLAS instrument and how it measures ice thickness (Smith et al., 2019) 
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4. METHODOLOGY 

This chapter provides a comprehensive overview of the methodology employed in this research to estimate 
snow depth using SAR data from SAOCOM 1B and Sentinel-1, with ICESat-2 LIDAR data serving as a 
reference for training machine learning models. The primary goal is to leverage the extensive spatial coverage 
and high-resolution data from SAR alongside the precise elevation measurements from ICESat-2 to develop 
robust and accurate snow depth prediction models. The following flowchart outlines the key steps involved 
in the methodology, with each step discussed in detail below. 

 
Figure 5: Methodology Flowchart 
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4.1. Pre-processing of ICESat-2 Data to extract snow depth 

This section outlines the comprehensive methodology involved in pre-processing ICESat-2 data, specifically 
the ATL03 and ATL08 products, to derive accurate snow depth measurements. These measurements serve 
as a critical reference for training machine learning models with SAR data. 

4.1.1. Data Acquisition and Initial Filtering 

The ICESat-2 satellite, equipped with the Advanced Topographic Laser Altimeter System (ATLAS), 
provides high-precision elevation measurements crucial for snow depth estimation. This study utilizes two 
specific ICESat-2 products: ATL03, which provides photon heights, and ATL08, which delivers terrain and 
canopy heights. 

The first step involves extracting ground height data from the ATL08 product, including latitude 
(lat_ground), longitude (lon_ground), and terrain height (h_ground). Similarly, photon data is extracted from 
the ATL03 product, encompassing photon latitude (lat_ph), longitude (lon_ph), and height (h_ph). Only 
photons with heights greater than 0 are retained, ensuring that only measurements above the ground surface 
are considered. Additionally, the ICESat-2 ATL03 dataset includes signal confidence and quality flags, which 
are used to identify and filter out low-confidence signals. By retaining only high-confidence photons, the 
quality and reliability of the snow depth measurements are significantly improved. 

An overlay of ATL03 photon heights and ATL08 terrain heights is created to visualize alignment and 
consistency between these datasets. Figure 6 below shows this overlay, where photon data from ATL03 
(indicated in various colors representing different height ranges) is superimposed on terrain heights from 
ATL08. This visualization aids in understanding the spatial distribution and accuracy of the photon 
measurements in relation to the terrain data, confirming the datasets validity for snow depth estimation. 

 

 

Figure 6: ATL03 Photons and ATL08 surface height overlay (for gt1l beam) 

3D Vertical Photon Distribution and Land Ice Height Profile 
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4.1.2. Signal Confidence and Quality Flags 

The ICESat-2 ATL03 dataset includes signal confidence and quality flags for photons, which identify and 
filter out low-confidence signals. Figure 7 shows the distribution of photon heights with different signal 
confidence levels: low (red), medium (blue), and high (green). Retaining only high-confidence photons 
enhances the reliability of the snow depth measurements. This figure demonstrates the importance of using 
quality flags to ensure that only the most reliable photon returns are used in the analysis. 

 
Figure 7: Photon profile for gt1l beam: Signal Confidence (zoomed view) 

4.1.3. Smoothing and Interpolation 

A smoothing technique using a moving average filter is applied to the ground height data from ATL08. A 
moving average filter with a window size of 10 reduces noise and provides a more accurate representation 
of the terrain surface. This smoothed data is crucial for accurate interpolation (Kwok et al., 2019). 
Smoothing eliminates high-frequency noise that could interfere with the interpolation process, ensuring the 
ground height data represents the true terrain surface. An interpolant is created using the smoothed ground 
height data to estimate the ground surface height at each photon location. A scattered interpolation method 
constructs a surface passing through known ground height points, estimating the ground surface height at 
the photon locations. This process is critical for determining the reference ground height directly beneath 
each photon, necessary for calculating snow depth. Scatter plots verify the accuracy of the interpolated 
ground surface data, allowing for visual inspection of the interpolated values and identification of any 
anomalies or inconsistencies. Verification helps detect and correct potential errors in the interpolation 
process, ensuring the reliability of the subsequent snow depth calculations. 
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4.1.4. Calculation of Snow Depths 

Snow depths are calculated by subtracting the interpolated ground surface heights from the photon heights, 
providing an initial estimation of the snow depth at each photon location. This measures the vertical distance 
between the snow surface (indicated by the photon heights) and the underlying ground surface (provided 
by the interpolated ground heights). Additional filtering removes any physically implausible snow depth 
values. Snow depths below 0 meters are excluded, indicating errors in the photon or ground height data. 
Focusing on valid photon heights and utilizing quality flags ensures that the calculated snow depths are 
within a plausible range, thereby improving the reliability of the snow depth estimates. 

Figure 8 illustrates the variability in photon heights within a single pixel across latitude, longitude, and time. 
This detailed analysis of photon distribution is crucial for correlating with SAR coherence values. 
Understanding the precise spatial and temporal distribution of photon heights allows researchers to better 
match these LiDAR data points with SAR data, enhancing the robustness and accuracy of the snow depth 
models. 

 
Figure 8: Photon distribution within a single pixel from ICESat-2, illustrating variability in photon heights across latitude, longitude, and time. 
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Following these detailed pre-processing steps transforms the ICESat-2 data into a reliable reference dataset 
for snow depth estimation. The rigorous application of filtering based on photon heights, and quality flags, 
combined with smoothing and interpolation techniques, ensures the accuracy and reliability of the derived 
snow depth measurements. This pre-processed data is then ready to be used in conjunction with SAR data 
to train machine learning models and enhance the accuracy of snow depth predictions. This comprehensive 
approach leverages the high-precision elevation data from ICESat-2 while addressing the spatial coverage 
limitations, providing a robust framework for snow depth estimation. 
 

4.2. Preprocessing and Coregistration of SAOCOM Datasets 

The preprocessing of SAR data is crucial to ensure the accuracy and reliability of subsequent analyses, 
particularly for snow depth estimation. This section details the steps taken to preprocess SAOCOM 1B and 
Sentinel-1 SAR data, focusing on radiometric and geometric corrections, and coregistration. 
 

4.2.1. Radiometric and Geometric Correction 

Radiometric and geometric corrections are essential preprocessing steps for SAR data. Radiometric 
correction addresses sensor-specific distortions and standardizes backscatter values across different 
acquisitions. This ensures that the SAR data is consistent and comparable, which is vital for accurate analysis. 
In SNAP, the “Radiometric Calibration” module is used for this purpose. This module adjusts the SAR data 
based on the sensor characteristics and imaging geometry, converting raw SAR data into calibrated 
backscatter values that are reliable for further analysis. 
 
Geometric correction aligns the SAR data to a common geographic coordinate system, ensuring accurate 
spatial positioning on the Earth’s surface. This is particularly important when integrating SAR data with 
other spatial datasets such as optical imagery and digital elevation models (DEMs). In SNAP, the “Range-
Doppler Terrain Correction” module, which uses a Global Earth Topography and Sea Surface Elevation 
(GETASSE30) DEM, is employed to correct distortions caused by the imaging geometry and Earth’s 
curvature. These corrections ensure that the SAR data is geometrically consistent and accurate, laying a solid 
foundation for subsequent coherence analysis and snow depth estimation. 
 

4.2.2. Coregistration of Multitemporal SAR Datasets 

Coregistration involves aligning multiple SAR images of the same region captured at different times. This 
step is critical for generating coherence maps, which are used to analyze surface changes over time, including 
snow dynamics (Pardini et al., 2019). Accurate coregistration ensures that corresponding pixels in the SAR 
images represent the same ground location, facilitating reliable temporal analysis. 

For SAOCOM 1B data, DEM-assisted coregistration is employed using the SNAP software. This method 
leverages a digital elevation model (DEM) to accurately align the SAR images, correcting for any geometric 
distortions. The key parameters for this coregistration include the use of a high-resolution DEM 
(GETASSE30), nearest-neighbor resampling to preserve original data values, and setting the RMS threshold 
to 1.0 pixel for high-precision alignment. Additionally, the polynomial order for warping is set to 1, 
indicating a linear transformation, which is sufficient for most terrain types. The result of this meticulous 
coregistration process is the generation of six complex bands for each polarization channel (HH, HV, VH, 
VV) from SAOCOM 1B, corresponding to the real and imaginary parts, as well as intensity, leading to a 
total of 24 bands.  
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For Sentinel-1 data, a different approach is employed due to its unique data acquisition method. Initially, 
Sentinel-1 data is processed using the Sentinel-1 TOPS Split and Deburst modules in SNAP. These steps 
handle the burst mode acquisition of Sentinel-1, ensuring the data is split into consistent segments and 
debursted to remove redundant information. Subsequently, the Sentinel-1 TOPS Coregistration module 
aligns the Sentinel-1 datasets accurately. Each polarization channel (HH, HV) is coregistered separately, 
resulting in six complex bands for each polarization channel (real and imaginary parts, as well as intensity), 
leading to a total of 12 bands (6 bands per polarization * 2 polarizations). This precise coregistration is 
crucial for subsequent coherence analysis and accurate snow depth estimation. 

4.3. Generating Absolute Coherence from SAR Datasets 

Complex coherence is a critical measure that quantifies the similarity between two SAR images acquired at 
different times(Brolly et al., 2016). The process of generating absolute coherence from SAR datasets, 
specifically SAOCOM 1B and Sentinel-1, is based on the Random Volume over Ground (RVoG) model, 
which describes the volume scattering effects in interferometric SAR (InSAR) coherence (Olesk et al., 2016). 
The RVoG model assumes that a homogeneous layer of volume scatterers, such as a forest canopy, is located 
above a reflective ground layer (Olesk et al., 2016).  

The coherence γ is defined as the normalized complex cross-correlation between two SAR images, separated 
by a baseline (Olesk et al., 2016), and is given by: 

 

Eq. (1) 

In general, the measured coherence γ can be expressed as a product of several factors: 

 
Eq. (2) 

 
where γSystem accounts for system-related decorrelation, γSNR for signal-to-noise ratio effects, γTemp for 
temporal decorrelation, and γVol for volume scattering-induced decorrelation. In our study, the focus is on 
volumetric coherence (γVol), which can be linked to forest height using the RVoG model. The volumetric 
coherence is represented by: 

 
Eq. (3) 

where σ is the volume extinction coefficient, h is the height of the volume layer, and κz is the vertical 
wavenumber. According to the RVoG model, the total coherence can be written as: 

 

Eq. (4) 

where µ(ω) represents the ground reflection term and ϕ is the ground phase. 
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According to Equation 3, snow depth (parameter (h)) is embedded within the volumetric coherence. The 
presence of temporal decorrelation in the measured coherence complicates the direct retrieval of volume 
coherence for snow depth estimation. However, when SAR images are acquired simultaneously, such as 
with Tandem-X, which captures two images of the same area at the same time, the measured coherence is 
not affected by temporal decorrelation. By excluding noise and SNR decorrelation, the coherence measured 
by Tandem-X can be accurately modeled as in Equation 4, facilitating the recovery of volume coherence 
and subsequently the height (Olesk et al., 2016).  

Some studies have used simplified versions of the RVoG model, as seen in this paper (Olesk et al., 2016) 
which introduces Equation 11 and correlates the absolute value of coherence with the parameter h or snow 
depth. The study demonstrated a strong correlation between the absolute value of volume coherence and 
snow depth. To further illustrate, the left part of the image below from the same paper shows the 
relationship between the absolute value of coherence and height, supporting how the absolute value of 
coherence is related to snow depth.  

 
Figure 9: Coherence against Airborne LiDAR Scanned (ALS) forest height The colors represent how many coherence-stand height pairs fall 

into the value range. On the left (a), the coherence magnitude is compared to forest stand height, and on the right (b), the coherence 
magnitude is compered to ALS forest height divided by HoA (9) values (Olesk et al., 2016). 

However, coherence measurements from SAOCOM 1B and Sentinel-1 are influenced by various disturbing 
factors since the SAR images are obtained at different times, introducing temporal decorrelation. This makes 
it challenging to recover volumetric coherence (γVol) directly. Therefore, instead of directly recovering (γVol), 
the measured coherence is provided to a machine learning model that identifies relevant informative features 
and extracts snow depth. By feeding the measured coherence values into the machine learning model, the 
complexities of isolating volumetric coherence are bypassed. The model leverages the correlation between 
coherence values and snow depth to predict snow depth accurately, even when the measured coherence is 
influenced by various disturbing factors. 
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4.3.1. Absolute Coherence Calculation (SAOCOM 1B) 

The absolute coherence maps for the SAOCOM 1B dataset across four polarization channels (HH, HV, 
VH, VV) are presented in Figure 10. These maps visually represent coherence values, indicating the 
correlation level between SAR images from different acquisition dates. High coherence values suggest 
minimal surface changes, while low coherence values indicate significant changes or decorrelation. 

The coherence maps for HH and HV polarizations exhibit similar patterns, with high coherence areas 
indicating stable surface conditions and low coherence areas suggesting snow accumulation or melting. The 
VH and VV polarization maps show slight variations in spatial distribution, reflecting different sensitivities 
to surface features. These coherence values are crucial for understanding snow-covered region dynamics, 
providing insights into accumulation and melting areas. The absolute coherence values generated for 
SAOCOM 1B data are integral to predicting snow depth and are used for subsequent analysis and correlation 
with ICESat-2 snow depth measurements. 

 
Figure 10: Coherence maps across four SAOCOM 1B polarization channels 
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4.3.2. Absolute Coherence Calculation (Sentinel-1) 

The absolute coherence maps for the Sentinel-1 dataset across HH and HV polarization channels, presented 
in Figure 11 and 12 respectively, similarly indicate the correlation level between SAR images from different 
acquisition dates. High coherence values denote stable surface properties, while low coherence values point 
to significant changes or decorrelation. The HH and HV polarization maps of Sentinel-1 show variability in 
surface stability across the study area, with high coherence values indicating minimal surface changes and 
low values suggesting changes due to snow dynamics. These coherence values are essential for snow depth 
prediction, providing critical data for further analysis and integration with ICESat-2 snow depth 
measurements. 

 

 

Figure 11: Absolute Coherence Map for Sentinel-1 Polarization HH 

 
Figure 12: Absolute Coherence Map for Sentinel-1 Polarization HV 
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The clipped version of the Sentinel-1 coherence maps, shown in Figure 13, aligns with the extent of the 
SAOCOM 1B data. This clipping ensures a consistent spatial extent for comparing dataset-specific 
predictions. By examining these coherence maps, regions of interest can be identified for detailed analysis 
and correlation with snow depth measurements from ICESat-2. 

 
Figure 13: Clipped Absolute Coherence Maps for Sentinel-1 Polarization Channels (HH, HV) with the same extent as SAOCOM 1B 

In conclusion, the absolute coherence results for both SAOCOM 1B and Sentinel-1 datasets demonstrate 
spatial variability in surface stability and provide essential data for predicting snow depth. These results lay 
the groundwork for further analysis and incorporation with ICESat-2 LiDAR data, ultimately enhancing the 
accuracy and reliability of snow depth predictions. 
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4.4.  Matching ICESat-2 Snow Depths with SAR Interferometric Coherence Values 

Matching ICESat-2 snow depths with SAR coherence values is a critical step in leveraging high-resolution 
LiDAR data to train machine learning models for snow depth prediction.  

Grid Generation and Data Overlay 

The process begins with generating a grid for the SAR coherence data based on the latitude and longitude 
ranges of the ICESat-2 photon data. Both ICESat-2 data points and SAR image pixels have associated 
latitude and longitude coordinates, allowing for direct overlay. This alignment ensures that the spatial 
domains of both datasets are properly matched, facilitating subsequent analysis. By overlaying the ICESat-
2 photon data points onto the SAR coherence image, corresponding pixels in the SAR image can be 
identified and matched with ICESat-2 data points. 

KD-Tree Construction and Nearest Neighbor Search 

To efficiently match the snow depths with corresponding coherence values, a KD-tree data structure is 
employed. The KD-tree organizes points in a k-dimensional space (latitude and longitude in this case), 
significantly reducing the computational complexity of nearest neighbor searches. The KD-tree is 
constructed using the locations of the ICESat-2 photon data points. Each node in the KD-tree represents 
a photon data point, and the tree is built by recursively splitting the data along the latitude and longitude 
dimensions. Once constructed, the KD-tree allows efficient querying to find the nearest neighbor of any 
given point in the coherence data grid. For each point in the coherence grid, the KD-tree is queried to 
identify the nearest ICESat-2 photon data point, matching each grid point with the corresponding snow 
depth value from the ICESat-2 dataset. After identifying the nearest neighbors, snow depth values are 
assigned to the coherence grid. To account for spatial variability and ensure robust matching, a 3x3 window 
is applied around each matched pixel. This approach helps to smooth out potential mismatches and 
incorporates spatial context into the analysis. The 3x3 window method assigns the snow depth value not 
only to the central pixel but also to its immediate neighbors in a 3x3 grid around the matched point, ensuring 
that the central pixel and its surrounding pixels (a total of nine pixels) receive the snow depth value, thereby 
enhancing the data’s continuity. 

Rationale for Using a 3x3 Window 

The rationale for employing a 3x3 window includes several factors. First, ICESat-2 measures height using 
only six beams, resulting in data gaps between beams. Expanding the matched pixels into a 3x3 window 
helps fill these gaps, ensuring more continuous spatial coverage. Second, the 3x3 window helps mitigate 
issues of spatial misalignment by averaging out small positional errors between the ICESat-2 and SAR 
datasets. Third, incorporating spatial context through a 3x3 window reduces the impact of noise and 
measurement errors, capturing the local spatial variability of snow depth and leading to more reliable 
predictions. Finally, the 3x3 window approach enhances the spatial continuity and reliability of the matched 
data, making it more suitable for subsequent predictive modeling. Ensuring that each pixel and its immediate 
neighbors have consistent snow depth values allows the model to learn from a more coherent dataset. 

Both the single pixel approach and the 3x3 pixel neighborhood method will be performed and analysed 
using machine learning models with the SAR datasets, SAOCOM 1B and Sentinel-1. This comprehensive 
approach ensures accurate snow depth predictions and prepares the dataset for effective machine learning 
model training. 
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4.5. Predictive Modeling Using Machine Learning 

In this study, predictive modeling was employed to estimate snow depth using coherence values derived 
from SAR datasets (SAOCOM 1B and Sentinel-1) with ICESat-2 LIDAR data serving as the reference. The 
coherence values from the SAR datasets were used as features, and the snow depths from ICESat-2 were 
used as labels. To ensure the robustness of the prediction models, a comprehensive training, testing, and 
validation process was implemented. 

4.5.1. Training, Testing, and Validation 

To thoroughly assess the models, a 10-fold cross-validation method was utilized. This technique divides the 
dataset into 10 subsets, or folds. Each fold is used as a validation set once, while the remaining nine folds 
are employed for training. This cycle is repeated 10 times, allowing each fold to serve as the validation set 
once. This approach ensures that every data point is used for both training and validation, providing a 
comprehensive evaluation of the model's performance (Phinzi et al., 2021). Unlike a simple train-test split 
that separates the dataset into a single training and testing set, 10-fold cross-validation offers several benefits. 
It optimizes data usage, mitigates the risk of overfitting, and yields a stable and reliable estimate of the 
model's performance by averaging the results across multiple iterations. To evaluate the predictive 
capabilities of the models during each iteration, performance metrics such as R-squared (R²), Root Mean 
Square Error (RMSE), and Mean Absolute Error (MAE) were computed. 

The datasets used for the machine learning models included four different configurations based on the 
number of matched points (pixels): 

1. 1x1 Window (single pixel) for SAOCOM 1B 

2. 1x1 Window (single pixel) for Sentinel-1 

3. 3x3 Window for SAOCOM 1B 

4. 3x3 Window for Sentinel-1 

These configurations allowed for a thorough evaluation of the model’s performance, providing insights into 
how the inclusion of neighborhood information (3x3 window) affects the prediction accuracy. The 
normalization of features and the use of k-fold cross-validation ensured that the models were trained on a 
balanced and representative dataset, reducing the likelihood of overfitting and enhancing the generalizability 
of the models. The results from these various configurations are essential for comprehending the influence 
of spatial context on snow depth prediction and for optimizing the models accordingly. 

4.5.2. Random Forest 

Random Forest utilizes the principle of ensemble learning by constructing multiple decision trees and 
combining their predictions to achieve a more accurate and stable output. This method excels in handling 
large datasets with numerous variables without overfitting (Reinan Assis Conceição et al., 2021). To optimize 
the model, hyperparameters such as the number of trees and the minimum number of samples per leaf are 
fine-tuned using a grid search approach. Various configurations—50, 100, 200, and 300 trees with leaf sizes 
of 1, 5, 10, and 20—are assessed using k-fold cross-validation, evaluating their performance based on R-
squared values. The configuration with the highest average R-squared is selected, ensuring the model 
captures the maximum variance in the snow depth data. 
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Figure 14: Random Forest Illustration 

The Random Forest prediction is given by: 

 

Eq. (5) 

 
4.5.3. Gradient Boosting 

Gradient Boosting is another ensemble technique but differs from Random Forest by building trees 
sequentially, with each tree attempting to correct the errors of its predecessors (Musyimi et al., 2022). 
Gradient Boosting is known for its high predictive accuracy, particularly in regression tasks. By iteratively 
improving the model, it effectively minimizes the prediction error. Similar to Random Forests, Gradient 
Boosting is adept at identifying intricate, non-linear relationships between input features and the target 
variable. This capability is essential for accurately modeling snow depth variations based on coherence 
values. The tuning process for Gradient Boosting mirrors that of Random Forest, examining the same range 
of trees and leaf sizes. Gradient Boosting provides various parameters, such as the number of boosting 
stages, learning rate, and maximum tree depth, which can be tuned to optimize model performance 
(Tamiminia et al., 2022). This flexibility allows for fine-tuning the model to achieve the best possible 
predictions. 

The Gradient Boosting prediction is given by: 

 
Eq. (6) 

 

Where ŷ is the predicted snow depth, N is the number of trees in the forest, and Ti(x) is the prediction from 
the ith tree. Hyperparameters such as the number of trees (ntrees) and the minimum leaf size (min_leaf_size) 
were tuned using cross-validation to find the best model. 

 

Where ŷ is the prediction, N is the number of trees, αi	is the weight of the ith tree, and Ti(x) is the prediction 
of the ith tree. 
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4.5.4. Support Vector Regression 

Support Vector Regression (SVR) extends the capabilities of Support Vector Machines to regression 
problems, focusing on fitting data within a certain threshold of error, which is defined by the epsilon 
parameter (Mehravar et al., 2023). SVR is particularly adept at handling outliers and can model complex, 
non-linear relationships with high precision. For SVR, the critical hyperparameters—Box Constraint and 
Epsilon—are optimized through a rigorous search. A range of values for Box Constraint (0.1, 1, 10) and 
Epsilon (0.1, 0.5, 1) are tested in a nested loop, with each combination evaluated under k-fold cross-
validation settings to assess their effectiveness using the R-squared metric. The combination providing the 
highest R-squared is deemed the best, reflecting the model’s capacity to predict snow depths with maximum 
accuracy.  

 

 

Eq. (7) 

 

4.5.5. Hyperparameter Tuning 

Hyperparameter tuning is essential for optimizing machine learning models to ensure effective performance 
on SAR datasets for predicting snow depths. Each model: Random Forest, Support Vector Regression 
(SVR), and Gradient Boosting, requires careful adjustment of specific hyperparameters to enhance their 
accuracy and generalization capabilities. 

For the Random Forest model, crucial hyperparameters include the number of trees and the minimum leaf 
size. The number of trees impacts the model’s robustness and its ability to generalize, as having more trees 
reduces variance through aggregation of multiple decision trees. The minimum leaf size determines the 
granularity of the splits; smaller leaf sizes enable the model to capture finer details in the data. Optimizing 
these parameters requires a balance between having enough trees to enhance accuracy without overfitting 
and ensuring the leaf size is small enough to detect subtle patterns without becoming overly sensitive to 
noise (Reinan Assis Conceição et al., 2021). 

The performance of the Gradient Boosting model is significantly influenced by the number of trees, the 
learning rate, and the maximum depth of the trees. The number of trees indicates the number of boosting 
iterations, with more trees typically improving performance but increasing the risk of overfitting. The 
learning rate governs the contribution of each tree to the overall model, where lower learning rates 
necessitate more trees for better accuracy. The maximum depth of the trees determines the complexity of 

SVR constructs a function that has at most ϵ (epsilon) deviation from the actual observed targets y for all the 
training data, and at the same time, is as flat as possible: 

 

Where w is the weight vector, b is the bias, xi are the training samples, yi are the target values, ξi, ξi* are the 
slack variables, C is the penalty parameter, and ϵ	(epsilon) is the margin of tolerance. 
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each individual tree, with deeper trees capturing more intricate patterns but also raising the risk of overfitting 
(Tamiminia et al., 2022). Fine-tuning these parameters involves balancing these factors to achieve the 
optimal model performance. 

For the SVR model, key hyperparameters include the choice of kernel function, the box constraint (C), and 
the epsilon parameter. The kernel function determines how the input data is transformed, with the radial 
basis function (rbf) kernel often preferred for its ability to handle non-linear relationships. The box 
constraint parameter manages the trade-off between a low training error and a low testing error, effectively 
balancing the model’s complexity (Mehravar et al., 2023). The epsilon parameter defines a margin of 
tolerance where no penalty is applied to errors, aiding in managing the model’s sensitivity to noise. 
Optimizing these hyperparameters involves selecting the appropriate kernel and adjusting C and epsilon to 
balance the model’s fit and generalization ability (Mehravar et al., 2023). By systematically adjusting 
parameters for Random Forest, Gradient Boosting, and SVR models, it is possible to achieve high accuracy 
in snow depth estimation. 

4.6. Model Evaluation 

Model evaluations are performed using standard metrics such as Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), and R-squared (R²). These metrics provide insights into the accuracy, error 
magnitude, and explanatory power of each model. Cross-validation, which involves splitting the dataset into 
k subsets where each subset is used once as a test set while the others are used for training, ensures that the 
models are robust and generalize well to new data. This systematic approach to model selection and 
evaluation guarantees that the most effective predictive model is used, enhancing the reliability and 
applicability of snow depth estimations from satellite-derived SAR data. 

 
4.6.1. Root Mean Square Error (RMSE) 

RMSE is a widely used measure that quantifies the average magnitude of the prediction error, which is the 
differences between the values predicted by a model and the values observed from the environment that is 
being modelled (Zhang et al., 2018). It is calculated by taking the square root of the average of the square 
of all the error (Tamiminia et al., 2022). The formula is as follows: 

 

 

Eq. (8) 

Where yi = actual values, ŷi = predicted values, and n = total number of observations. 

The lower the RMSE, the better a model is able to fit the observed data. A lower RMSE value indicates that 
the model’s predictions are closely aligned with the actual data, reflecting higher accuracy and precision in 
the prediction of snow depths (Zhao et al., 2022). 

The model performance was evaluated using the R-squared (R2) score, calculated as: 
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4.6.2. Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is a critical metric in remote sensing for evaluating model performance. It 
calculates the average magnitude of prediction errors, without considering their direction. Specifically, MAE 
is derived by averaging the absolute differences between the predicted values and the actual observations, 
ensuring that all errors are equally weighted in the assessment of the model's predictive accuracy (Feng et 
al., 2023). The formula for MAE is given by: 

 

Eq. (9) 

 

MAE is predominantly valuable because it provides a direct indication of average error magnitudes and is 
less sensitive to outliers than RMSE. In the context of snow depth prediction, MAE helps assess the model’s 
practical utility by quantifying the average prediction error in the same units as the measurement (Qiao et 
al., 2023). 

4.6.3. R-squared (R²) 
 

R², or the coefficient of determination, is a statistical measure that represents the proportion of the variance 
for a dependent variable that’s explained by an independent variable or variables in a regression model (Yang 
et al., 2021). The formula to calculate R² is: 

 

Eq. (10) 

An R² of 1 indicates that the regression predictions perfectly fit the data. In snow depth prediction, a higher 
R² value would indicate that the model explains a large portion of the variance in observed snow depths, 
which is critical for understanding how well the model performs in terms of explaining the outcomes in 
relation to the variance observed in the actual data (Ahmadi et al., 2020). Together, these metrics provide a 
comprehensive framework for evaluating the performance of predictive models, guiding the selection of the 
most suitable model for accurately predicting snow depths. Each metric addresses different aspects of model 
accuracy and fit, ensuring a balanced and nuanced approach to model evaluation. 

 

 

 

 

Where yi and ŷi are the actual and predicted values respectively, n is the number of observations.  
 

Where ȳ	is the mean of the observed data yi; yi and ŷi are the actual and predicted values respectively, and n is 
the number of observations. 
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4.7. Model Evaluation Across ICESat-2 Beams 
 
Following the initial performance assessment of the machine learning models, the methodology progresses 
to apply the best-performing model across all six beams of the ICESat-2 satellite, see Figure 15. This phase 
is designed to examine how model predictions fluctuate across different ICESat-2 beams as each beam has 
a different topography, and to identify which beam provides the most precise snow depth estimates.  

 
Figure 15: Six different beams from ICESat-2 (ATL08) 

In addition to evaluating individual beams, a combined beam analysis was conducted by integrating data 
from multiple beams (gt1l, gt2l, gt3l). This combined dataset was used to train a Random Forest model, 
aiming to capture a broader range of spatial and environmental conditions. The combined analysis allowed 
for a comprehensive assessment of the model’s ability to generalize across different regions within the study 
area. Performance metrics for the combined dataset were calculated, and scatter plots were generated to 
compare the results with those from individual beams. This approach helped to understand the overall 
predictive capability of the model across larger spatial extents and diverse conditions, highlighting the 
potential benefits or loss of increased training data and diversity against the challenges of managing more 
complex and varied datasets. 
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5. RESULTS AND DISCUSSION 

This chapter presents the results of the snow depth estimation using the ICESat-2 and SAR datasets. The 
findings from the machine learning models are discussed in detail, highlighting the performance metrics and 
the comparative analysis between SAOCOM 1B and Sentinel-1 datasets. The results are further analysed to 
understand the strengths and limitations of each dataset and the overall effectiveness of the predictive 
models. 

5.1. Snow Depth Measurements from ICESat-2 Data 

The snow depth estimations derived from ICESat-2 photon data provide a detailed and high-resolution 
understanding of snow cover variability across the study area, as illustrated in figure 16. 

 
Figure 16: Snow depth measurements from ICESat-2 

Snow depth values range from 0 meters (dark blue) to approximately 18 meters (yellow), indicating 
substantial spatial variability. This variation reflects different snow accumulation patterns influenced by 
factors such as topography, vegetation, and local climatic conditions.  

Regions with high densities of lower snow depths (0-2 meters) are widespread, indicating that many areas 
within the study region have relatively shallow snow cover. These shallow snow depths could be due to 
lower elevations, open terrains, or areas experiencing higher temperatures and greater wind exposure, which 
lead to reduced snow accumulation. Additionally, the ATLAS instrument on ICESat-2, known for its precise 
surface elevation measurements, tends to capture backscatter signals more effectively from shallower snow 
depths. The instrument's sensitivity to snow surfaces results in a higher frequency of detected shallow snow 
depths, as deeper snow can attenuate the signal.  
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Conversely, regions with lower densities but significant snow depths (exceeding 10 meters) indicate 
substantial snow accumulation. These areas are likely located at higher elevations or within heavily vegetated 
regions, where snow accumulates and persists due to sheltering effects and lower temperatures. The 
extensive spatial coverage and uniform distribution of data points across latitude and longitude demonstrate 
the comprehensive reach achieved by ICESat-2. This ensures that the snow depth estimations are 
representative of the entire study area. The consistent patterns in snow depth measurements highlight the 
reliability and accuracy of the data collected by ICESat-2. 
 
These high-resolution snow depth measurements are vital for training and validating machine learning 
models designed to predict snow depth from SAR coherence values. The detailed spatial variability captured 
in the ICESat-2 data enables robust model training, thereby improving the accuracy of snow depth 
predictions in remote sensing and GIS applications. 
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5.2. Model Performance Using Single Pixel and 3x3 Pixel Neighborhood Approaches 

5.2.1. Results from SAOCOM 

The performance of snow depth prediction models using single pixel, and 3x3 pixel neighborhood 
approaches were evaluated using SAOCOM 1B data. The table below summarizes the metrics for each 
model type and pixel approach: 

Table 5: Performance Metrics for Machine Learning Models in Snow Depth Prediction for SAOCOM 1B 

 

Random Forest Model 

The Random Forest model with single pixel data achieved an RMSE of 1.0334, an MAE of 0.3299, and an 
R-squared value of 0.6238. The scatter plot (Figure 17 (a)) shows a moderate correlation between actual and 
predicted snow depths, but there is noticeable variability, especially at higher snow depths. Incorporating a 
3x3 pixel neighborhood significantly improved the model’s performance. The RMSE decreased to 0.8674, 
the MAE to 0.2613, and the R-squared value increased to 0.7063. The scatter plot (b) shows a tighter 
clustering of points around the 1:1 line, indicating better prediction accuracy. This improvement can be 
attributed to the additional spatial context provided by neighboring pixels, which helps the model capture 
local variability and structure of the snowpack more effectively. 

Gradient Boosting Model 

The Gradient Boosting model performed well with single pixel data, achieving an RMSE of 0.9596, an MAE 
of 0.4359, and the highest R-squared value (0.6756) among the single pixel models. The scatter plot (c) 
reveals a relatively good correlation but with some spread, particularly at higher snow depths. The 
performance declined with the 3x3 pixel approach, resulting in an RMSE of 1.2284, an MAE of 0.4509, and 
an R-squared of 0.4109. The scatter plot (d) shows a wider spread of predicted values, indicating reduced 
accuracy. This suggests that the Gradient Boosting model may be more sensitive to the specifics of individual 
pixel data rather than aggregated neighborhood data. 

Support Vector Regression (SVR) Model 

The SVR model exhibited poor performance with single pixel approach, with an RMSE of 1.7032, an MAE 
of 0.3957, and a negative R-squared value (-0.0220). The scatter plot (e) shows a large dispersion of points, 
particularly at lower snow depths, highlighting the model’s inadequacy. The 3x3 pixel approach did not 
significantly improve the SVR model’s performance, with an RMSE of 1.6130, an MAE of 0.3611, and an 
R-squared of -0.0157. The scatter plot (f) still shows a high level of dispersion, indicating that the SVR 
model struggles to capture snow depth variability. 
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The figure below presents scatter plots of actual vs. predicted snow depths for each model under both single 
pixel and 3x3 pixel neighborhood approaches for SAOCOM data. 

 
Figure 17: Scatter plots for snow depth predictions for single pixel and 3x3 pixel neighborhood methods for all three models using SAOCOM 

The results underscore the importance of spatial context in snow depth prediction models. The 3x3 pixel 
neighborhood approach generally enhances the model’s ability to capture local spatial variability and reduces 
prediction errors. This is most evident in the Random Forest model, where incorporating neighborhood 
information significantly improved performance metrics and prediction accuracy. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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5.2.2. Results from Sentinel-1  

The performance of snow depth prediction models using single pixel, and 3x3 pixel neighborhood 
approaches was evaluated using Sentinel-1 satellite data as well. The table below summarizes the metrics for 
each model type under both pixel-based approaches: 

The figure below presents scatter plots of actual vs. predicted snow depths for each model under both single 
pixel and 3x3 pixel neighborhood approaches for Sentinel-1 data. 

 
Figure 18: Scatter plots for snow depth predictions for single pixel and 3x3 pixel neighborhood methods for all three models using Sentinel-1 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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Table 6: Performance Metrics for Machine Learning Models in Snow Depth Prediction for Sentinel-1 

 

Random Forest Model 

The Random Forest model with single pixel data achieved an RMSE of 1.1357, an MAE of 0.3843, and an 
R-squared value of 0.6054. The scatter plot (Figure 18 (a)) for Sentinel-1 data shows a moderate correlation 
between actual and predicted snow depths, with some variability at higher snow depths. Incorporating a 3x3 
pixel neighborhood improved the model’s performance, with an RMSE of 1.0573, an MAE of 0.3448, and 
an R-squared value of 0.6314. The scatter plot (b) shows a tighter clustering of points around the 1:1 line, 
indicating better prediction accuracy. The additional spatial context from neighboring pixels likely enhances 
the model’s ability to capture local variability in the snowpack. 

Gradient Boosting Model 

The Gradient Boosting model performed well with single pixel data, achieving an RMSE of 0.9490, an MAE 
of 0.4186, and the highest R-squared value (0.7245) among the single pixel models. The scatter plot (c) 
reveals a relatively good correlation but with some spread, especially at higher snow depths. The 
performance declined with the 3x3 pixel approach, resulting in an RMSE of 1.3387, an MAE of 0.4989, and 
an R-squared of 0.4091. The scatter plot (d) shows a wider spread of predicted values, indicating reduced 
accuracy. This suggests that the Gradient Boosting model may be better suited for single pixel data from 
Sentinel-1. 

Support Vector Regression (SVR) Model 

The SVR model exhibited poor performance with single pixel data, with an RMSE of 1.8337, an MAE of 
0.4478, and a negative R-squared value (-0.0286). The scatter plot (e) shows a large dispersion of points, 
particularly at lower snow depths, highlighting the model’s inadequacy. The 3x3 pixel approach did not 
significantly improve the SVR model’s performance, with an RMSE of 1.7599, an MAE of 0.4149, and an 
R-squared of -0.0213. The scatter plot (f) still shows a high level of dispersion, indicating that the SVR 
model struggles to capture snow depth variability. 
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The results underscore the importance of spatial context in snow depth prediction models. The 3x3 pixel 
neighborhood approach generally enhances the model’s ability to capture local spatial variability and reduces 
prediction errors. This is most evident in the Random Forest model, where incorporating neighborhood 
information significantly improved performance metrics and prediction accuracy. The consistent patterns 
observed in the scatter plots for Sentinel-1 data reinforce the quantitative metrics, providing visual validation 
of the models’ performance. The Random Forest model, particularly with the 3x3 pixel neighborhood 
approach, demonstrates the most reliable performance, making it a preferred choice for snow depth 
prediction using Sentinel-1 data. 

5.3. Comparative Analysis of SAOCOM and Sentinel-1 Results 

The comparative analysis of model performance using SAOCOM and Sentinel-1 data highlights the 
variability in snow depth prediction accuracy based on different SAR data sources. The Random Forest 
model consistently outperformed other models in both datasets, particularly with the 3x3 pixel 
neighborhood approach. 

Random Forest Model 

The Random Forest model with the 3x3 pixel neighborhood approach achieves an RMSE of 0.8674, an 
MAE of 0.2613, and an R-squared value of 0.7063. These metrics indicate strong predictive accuracy and a 
high correlation between predicted and actual snow depths. The improvement over the single pixel approach 
demonstrates the importance of incorporating spatial context. For Sentinel-1 data, the Random Forest 
model with the 3x3 pixel neighborhood approach achieves an RMSE of 1.0573, an MAE of 0.3448, and an 
R-squared value of 0.6314. Although the performance is slightly lower than with SAOCOM data, it still 
shows significant improvement over the single pixel approach, highlighting the model’s robustness. 

Gradient Boosting Model 

The Gradient Boosting model shows moderate performance with the 3x3 pixel neighborhood approach, 
achieving an RMSE of 1.2284, an MAE of 0.4509, and an R-squared value of 0.4109. The decline in 
performance compared to the single pixel approach suggests sensitivity to neighborhood data. Similarly, for 
Sentinel-1 data, the Gradient Boosting model with the 3x3 pixel approach achieves an RMSE of 1.3387, an 
MAE of 0.4989, and an R-squared value of 0.4091. The model struggles with higher snow depths, indicating 
limitations in capturing variability. 

Support Vector Regression (SVR) Model 

The SVR model performs poorly with both single pixel and 3x3 pixel neighborhood approaches, with an 
RMSE of 1.6130, an MAE of 0.3611, and an R-squared value of -0.0157. The negative R-squared value 
indicates poor predictive performance. The SVR model shows similar poor performance with Sentinel-1 
data, achieving an RMSE of 1.7599, an MAE of 0.4149, and an R-squared value of -0.0213. This reinforces 
the model’s inadequacy in capturing snow depth variability. 

Overall, the Random Forest model consistently outperforms other models in both datasets, particularly with 
the 3x3 pixel neighborhood approach. This highlights the model’s robustness in handling spatial variability 
and its effectiveness in snow depth prediction. The Gradient Boosting model, while performing well with 
single pixel data, shows reduced accuracy with 3x3 pixel approach, indicating potential sensitivity to spatial 
context. The SVR model’s poor performance across all approaches suggests it may not be suitable for this 
application. 
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Several factors contribute to the differences in model performance between SAOCOM and Sentinel-1 data: 

Frequency Band Differences: SAOCOM 1B operates in the L-band, which has a longer wavelength 
compared to the C-band of Sentinel-1. This allows the L-band to penetrate deeper into the snowpack, 
capturing more detailed subsurface information which is crucial for accurate snow depth estimation. 

Signal-to-Noise Ratio: The L-band SAR data from SAOCOM 1B tends to have a higher signal-to-noise 
ratio when interacting with snow, leading to more reliable coherence measurements. In contrast, C-band 
signals are more susceptible to scattering and noise, which can degrade the accuracy of the coherence values 
used for snow depth prediction. 

Coherence Levels: The absolute coherence values obtained from SAOCOM 1B data generally exhibited 
higher correlation with snow depth, as seen in the scatter plots, compared to Sentinel-1. Higher coherence 
levels indicate better preservation of phase information, which is crucial for the integrity of snow depth 
predictions. 

Temporal Resolution: The temporal resolution and revisit frequency of Sentinel-1 might not align as well 
with the dynamics of snow cover changes, leading to less accurate temporal coherence measurements 
compared to SAOCOM 1B. 

Beam Configuration and Ground Tracks: The differences in beam configuration and ground tracks of 
ICESat-2 can influence the quality of the data collected. Beams that capture more consistent snowpack 
characteristics tend to perform better in predictive models. Variability in snow depth data across different 
beams could also affect the performance metrics, particularly for the less effective Sentinel-1 dataset. 

5.4. Model Comparison for Different ICESat-2 Beams 

The performance of the Random Forest model in predicting snow depth was also evaluated using different 
ICESat-2 beams for both SAOCOM 1B and Sentinel-1 datasets. The beams analysed include gt1l, gt2l, gt3l, 
gt1r, gt2r, and gt3r.  

5.4.1. Performance Analysis for SAOCOM 1B Data 

The evaluation metrics for different ICESat-2 beams using the Random Forest model with SAOCOM 1B 
data are presented in Table 7.  

Table 7: Performance metrics for all ICESat-2 Beams (SAOCOM 1B) 
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Figure 19: Predictions for different ICESat-2 Beams: SAOCOM 1B 

The Random Forest model exhibited strong performance across all ICESat-2 beams when using SAOCOM 
data. Notably, beam gt1r showed the highest predictive accuracy with an RMSE of 0.5817, an MAE of 
0.2246, and an R-squared value of 0.8212. This indicates a robust correlation between actual and predicted 
snow depths, with the scatter plot (Figure 19 (a)) showing a tight clustering of points around the 1:1 line. 

For beam gt2r, the model’s performance slightly declined, achieving an RMSE of 0.7150, an MAE of 0.2955, 
and an R-squared value of 0.7513. The scatter plot indicates a wider spread of points, suggesting variability 
in the predictions. Similarly, beam gt3r produced an RMSE of 0.7283, an MAE of 0.3109, and an R-squared 
value of 0.7719, with the scatter plot showing a comparable performance to gt2r. 

Beam gt1l demonstrated the best overall performance among all beams, with an RMSE of 0.3456, an MAE 
of 0.1058, and an R-squared value of 0.7657. The scatter plot shows a very tight clustering of points, 
indicating excellent predictive accuracy. Beams gt2l and gt3l also performed well, with RMSEs of 0.4335 
and 0.4387, MAEs of 0.1404 and 0.1439, and R-squared values of 0.7407 and 0.7746, respectively. The 
scatter plots for these beams illustrate consistent predictive performance. 

The results indicate that the SAOCOM 1B data consistently yielded higher R-squared values and lower 
RMSE and MAE across all beams, particularly for the beams on the left side (gt1l, gt2l, gt3l). The best 
performance was observed for beam gt1r, with an R-squared value of 0.8212 and an RMSE of 0.5817. This 
demonstrates the effectiveness of the L-band data from SAOCOM 1B in capturing snow depth variations. 

5.4.2. Performance Analysis for Sentinel-1 Data 

The performance of the Random Forest model was assessed across different ICESat-2 beams using 
Sentinel-1 data. The table below summarizes the RMSE, MAE, and R-squared values for each beam: 

   
     (a)     (b)   (c) 

   
    (d)      (e)    (f) 
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Table 8: Performance metrics for all ICESat-2 Beams (Sentinel-1) 

 

When using Sentinel-1 data, the Random Forest model showed lower performance metrics compared to 
SAOCOM data. For beam gt1r, the model achieved an RMSE of 0.8126, an MAE of 0.3462, and an R-
squared value of 0.6311. The scatter plot reveals a moderate correlation between actual and predicted snow 
depths, with more variability than observed with SAOCOM data. 

Beam gt2r exhibited further reduced performance, with an RMSE of 0.9556, an MAE of 0.4318, and an R-
squared value of 0.6064. The scatter plot shows a wider spread of points, indicating greater prediction errors. 
Beam gt3r had similar metrics, with an RMSE of 0.9879, an MAE of 0.4540, and an R-squared value of 
0.6054, as shown in the scatter plot. The model’s performance for beam gt1l was the best among Sentinel-
1 data beams, with an RMSE of 0.4136, an MAE of 0.1552, and an R-squared value of 0.6225. The scatter 
plot shows a tighter clustering of points, although still less accurate than SAOCOM data. Beams gt2l and 
gt3l had RMSEs of 0.5216 and 0.5436, MAEs of 0.1799 and 0.1877, and R-squared values of 0.6167 and 
0.6192, respectively, as illustrated in scatter plots. 

The scatter plots below illustrate the actual vs. predicted snow depths for each beam: 

 

Figure 20: Predictions for different ICESat-2 Beams: Sentinel-1 
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Analyzing snow depth predictions for each ICESat-2 beam is essential due to the spatial separation of beams, 
which are approximately 3.3 km apart, and their coverage of different areas. This spatial separation results 
in variations in terrain, vegetation cover, and snow conditions, significantly influencing prediction accuracy. 
Evaluating model performance across different beams provides insights into how regional variations affect 
predictive accuracy. 

For example, beams gt1r and gt1l demonstrated higher accuracy, likely due to traversing areas with more 
consistent snow cover or better data quality. Conversely, beams gt2r and gt3r showed lower accuracy, 
reflecting more heterogeneous or noisier conditions. Identifying specific beams with more reliable data helps 
optimize data collection and processing efforts, prioritizing high-accuracy beams in future studies. 

5.5. Combined Beam Analysis for SAOCOM and Sentinel-1 

The analysis of snow depth predictions using combined beam data from ICESat-2 for both SAOCOM 
and Sentinel-1 datasets revealed several critical insights. 

Table 9: Random Forest Model Performance Across Combined Beams 

 

For the combined SAOCOM-1B data, the Random Forest model achieved an RMSE of 1.1949, an MAE 
of 0.4636, and an R-squared value of 0.6645. In contrast, for the combined Sentinel-1 data, the model 
demonstrated better performance with an RMSE of 0.6070, an MAE of 0.2151, and an R-squared value of 
0.6188. These results indicate a noticeable decline in model accuracy and predictive capability when beams 
are combined compared to individual beam analyses. 

 

Figure 21: Combined Beam Prediction for SAOCOM and Sentinel-1 Data 

Several factors contribute to the decreased performance metrics in the combined beam analysis. One 
primary factor is the increased data variability. Each ICESat-2 beam covers distinct regions approximately 
3.3 km apart, leading to a wide range of snowpack conditions, terrain features, and vegetation cover. This 
added heterogeneity complicates the model's task of identifying consistent patterns and relationships, 
resulting in reduced accuracy. This complexity is particularly evident in the SAOCOM dataset, where the 

  
(a) (b) 
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scatter plot shows a broader spread of points and greater variability compared to Sentinel-1 data. 
Furthermore, the risk of overfitting is heightened with the increased number of training points from 
combined beams. Overfitting occurs when the model learns specific details and noise within the training 
data, diminishing its ability to generalize to new, unseen data. The scatter plots for combined SAOCOM 
data indicate higher variability, suggesting the model is capturing noise rather than true underlying patterns. 

Another crucial factor influencing model performance is the difference in signal-to-noise ratios and 
coherence levels between the datasets. SAOCOM's L-band data penetrates deeper into the snowpack and 
generally exhibits higher coherence values, which are beneficial for capturing detailed subsurface 
information. However, combining beams with varying coherence levels and noise characteristics introduces 
inconsistencies that challenge the model's ability to maintain high accuracy. Conversely, Sentinel-1's C-band 
data, while more susceptible to scattering and noise, provides more uniform characteristics across beams, 
potentially explaining its relatively better performance in the combined analysis. The increase in training data 
volume from combining beams can also introduce more noise and less relevant features, complicating the 
model's training process and highlighting the need for advanced preprocessing and regularization techniques 
to improve robustness and accuracy. 

5.6. Feature Importance & Final Predicted Snow Depth Using the Best Model 

The map generated from SAOCOM 1B data (Figure 23) exhibits detailed snow depth distribution across 
the study area. Among all beams, gt1l demonstrated the best overall performance, achieving an RMSE of 
0.3456, an MAE of 0.1058, and an R-squared value of 0.7657. This highlights the effectiveness of using 
specific beams for snow depth prediction. The feature importance analysis from the Random Forest model 
underscores the significance of using multiple polarization channels. For SAOCOM 1B, all polarizations 
(HH, HV, VH, VV) contributed substantially to snow depth prediction, with HV polarization showing 
slightly higher importance, as depicted in Figure 22. This indicates that integrating various polarization data 
can enhance the model’s predictive accuracy, as different polarizations provide complementary information 
about the snowpack’s structure and properties. 

 
Figure 22: Feature Importance 
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The reduced penetration depth and higher noise levels of C-band SAR data make it challenging to obtain 
accurate coherence measurements, resulting in less reliable snow depth predictions. The feature importance 
analysis further highlights the benefit of using multi-polarization data, which enhances the model’s ability 
to discern different snowpack characteristics. The results clearly demonstrate the superiority of the 
SAOCOM 1B dataset over Sentinel-1 for snow depth estimation. The higher resolution and better 
penetration capabilities of L-band SAR data in SAOCOM 1B result in more reliable and accurate coherence 
measurements, crucial for predicting snow depth. The Random Forest model effectively captures the 
variability in the snowpack, providing high-fidelity predictions. In contrast, the Sentinel-1 dataset’s lower 
performance can be linked to the inherent limitations of C-band SAR data. 

Figure 23: Predicted snow depth map from best model 

 
Overall, this study underscores the importance of selecting appropriate SAR datasets and leveraging robust 
machine learning models with ICESat-2 LiDAR measurements for accurate snow depth estimation. The 
findings provide valuable insights for future research and practical applications in snow monitoring and 
climate studies, emphasizing the use of SAR data in snow-covered regions. 
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6. CONCLUSION 

6.1. Conclusion 

This research demonstrates the effectiveness of utilizing ICESat-2 LIDAR data in conjunction with 
Interferometric Coherence values from SAOCOM 1B and Sentinel-1 to enhance snow depth estimation 
through various machine learning techniques. The comprehensive methodological approach adopted in this 
study, including preprocessing, coregistration, coherence analysis, and machine learning-based prediction 
models, offers a robust framework for utilizing satellite data in snow monitoring. 

The findings reveal that SAOCOM 1B’s L-band SAR data significantly outperforms Sentinel-1’s C-band 
SAR data in predicting snow depth. The deeper penetration of L-band SAR facilitates more accurate and 
reliable coherence measurements, which are essential for precise snow depth predictions. The Random 
Forest model was identified as the best-performing machine learning model, achieving a high R-squared 
value of 0.8212 with the gt1r beam from ICESat-2. This highlights the potential of using LIDAR and SAR 
data together for improved snow monitoring. 

A significant portion of this research focused on analyzing the performance of different ICESat-2 beams. 
Each beam, covering distinct regions approximately 3.3 km apart, provided unique insights into snowpack 
characteristics. The gt1l beam demonstrated the best overall performance among all beams, with an RMSE 
of 0.3456, an MAE of 0.1058, and an R-squared value of 0.7657. This detailed beam-level analysis 
highlighted the importance of considering regional differences and beam-specific characteristics in 
improving model accuracy. The combined beam analysis for both SAOCOM and Sentinel-1 datasets 
showed a decrease in performance metrics, likely due to increased data variability and potential overfitting. 
The larger dataset introduced by combining beams covered a wider range of snowpack conditions, adding 
complexity for the model to handle. Nevertheless, Sentinel-1 data demonstrated relatively better 
performance in the combined analysis, indicating that uniform data characteristics play a critical role in 
maintaining model accuracy. 

The feature importance analysis emphasized the significance of multi-polarization data in enhancing 
prediction accuracy. All four polarization channels (HH, HV, VH, VV) contributed significantly to the 
model’s performance, highlighting the necessity of using diverse polarization data to capture the full 
spectrum of snowpack properties. Despite the lower performance of Sentinel-1 data, the study identified 
areas for improvement, particularly in overcoming the challenges posed by C-band SAR’s limited 
penetration and higher noise levels. 

How can the extensive spatial coverage of SAR data from SAOCOM 1B and Sentinel-1 be utilized 
to fill the spatial coverage gaps in ICESat-2 data for snow depth estimation?  

The extensive spatial coverage of SAR data, particularly from SAOCOM 1B, can be effectively utilized to 
fill the spatial gaps in ICESat-2 data by providing continuous and comprehensive snow depth estimates. 
Despite the lack of strong correlation between coherence values and snow depth, robust machine learning 
models can predict snow depth over larger areas, addressing the limitations of ICESat-2’s narrow swath 
width and sparse ground tracks. 

Which machine learning model, Random Forest, Gradient Boosting, or Support Vector Regression 
provides the most accurate predictions of snow depth from SAR absolute coherence data?  
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The Random Forest model provided the most accurate predictions of snow depth from SAR absolute 
interferometric coherence data. It consistently outperformed Gradient Boosting and Support Vector 
Regression models, as evidenced by lower RMSE, lower MAE, and higher R-squared values. The model’s 
ability to handle complex interactions and its robustness in capturing snow depth variations contributed to 
its superior performance. 

What are the comparative strengths and limitations of SAOCOM 1B’s L-band SAR data and 
Sentinel-1’s C-band SAR data in predicting snow depth?  

SAOCOM 1B’s L-band SAR data demonstrated significant strengths in predicting snow depth due to its 
greater penetration depth and higher signal-to-noise ratio, which provided more reliable coherence 
measurements. In contrast, Sentinel-1’s C-band SAR data, while offering higher spatial resolution, exhibited 
lower predictive accuracy due to its lesser penetration depth and susceptibility to scattering and noise. This 
highlights the importance of selecting the appropriate SAR frequency band for specific snow depth 
estimation applications. 

6.2. Limitations 
Despite the promising results, this study has several limitations. The spatial and temporal coverage of 
ICESat-2 data, limited by its narrow swath width and sparse ground tracks, can affect the generalizability of 
the results. Although SAR data helps mitigate these gaps, the temporal alignment between datasets can pose 
challenges. The calculation of absolute coherence from SAR data is influenced by various factors, including 
environmental conditions and surface properties, which can introduce uncertainties in snow depth 
estimation. Additionally, the performance of machine learning models is greatly influenced by the quality 
and quantity of the training data. In this study, ICESat-2 data served as a high-accuracy benchmark, offering 
reliable reference points. However, its relatively sparse coverage could limit the model's applicability in 
regions with varying snow characteristics. 

6.3. Future Work and Recommendations 

Exploring additional machine learning models and ensemble learning techniques could enhance the 
robustness of snow depth predictions. Expanding the study to other snow-covered regions with diverse 
climatic and topographic conditions is essential to validate and refine the proposed methodology. Integrating 
additional remote sensing data sources, such as optical and thermal imagery, could provide complementary 
information to further improve snow depth estimation. Finally, developing real-time snow depth monitoring 
systems using SAR and LIDAR data would offer significant benefits for water resource management, 
avalanche risk prediction, and climate change studies. By addressing these areas, future research can build 
on the findings of this study and contribute to more accurate and reliable snow depth estimation methods. 
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7. DATA MANGEMENT & ETHICAL CONSIDERATIONS 

7.1. Data Management 
 
Effective data management was crucial for this study, involving extensive datasets from ICESat-2, 
SAOCOM 1B, and Sentinel-1. The data were systematically organized and stored to ensure easy access and 
efficient analysis throughout the research. To address potential data quality issues, comprehensive 
preprocessing steps such as filtering, radiometric calibration, and geometric correction were implemented. 
These steps were essential to maintain the accuracy and reliability of the data. Additionally, redundant data 
storage and regular backups on secure external storage devices were carried out to prevent data loss, ensuring 
the continuity and integrity of the research process. 
 

7.2. Ethical Considerations 
 
This research was conducted with a strong commitment to ethical guidelines and data usage agreements. 
The SAOCOM-1B dataset was obtained with explicit consent from the Comisión Nacional de Actividades 
Espaciales (CONAE) and used exclusively for the purposes of this study, as facilitated by the Faculty of 
Geo-information Science and Earth Observation (ITC) at the University of Twente. Publicly accessible 
datasets, such as ICESat-2 from NASA and Sentinel-1 from the European Space Agency (ESA), were also 
utilized responsibly, adhering strictly to research objectives. The research findings were presented with 
integrity, ensuring accuracy and transparency. 
 

7.3. Use of AI 

To enhance the quality of this thesis, AI tools were utilized for some tasks. OpenAI’s ChatGPT was used 
to help understand complex concepts, which were then extensively studied and validated using reputable 
academic sources. Grammarly was employed to proofread the text, ensuring grammatical correctness. 
Despite the support from these AI tools, the author carefully reviewed and revised all content, ensuring the 
final document’s accuracy and scholarly integrity. This approach balanced the efficiency of AI with rigorous 
academic standards, producing a polished and reliable thesis. 
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