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Automatic EMG envelope detection for leg muscles
using deep learning from a multi-electrode

embedded garment
Rispens, O.C.
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Abstract—Surface electromyography (sEMG) can be used to
determine the activity of a muscle. However, applying electrodes
in the right positions is time-consuming and requires extensive
anatomical knowledge. A multi-electrode embedded garment
was created by Simonetti et al. for the lower leg, to speed
up electrode placement. Muscle-specific EMG envelopes were
extracted using a non-negative matrix factorization (NNMF)-
based clustering method for lower leg muscles. In the present
study, the garment and the NNMF-based clustering method were
adapted to the upper leg. Additionally, two new approaches were
created to extract muscle-specific EMG envelopes: one using a
convolutional neural network (CNN), and the other an encoder-
decoder network (EDN). Validation was performed using two
datasets: for the upper leg EMG recordings of 8 subjects were
made, and for the lower leg three subjects. Before recordings,
two electrodes of the garment for five lower or upper leg muscles
were manually selected based on the SENIAM guidelines. The
identified EMG envelopes by manual selection, NNMF-based
clustering, the CNN, and the EDN were gait-cycle averaged. The
performance of NNMF-based clustering and the CNN and EDN
were compared by calculating the R2 value between each and
manual selection. The median overall R2 value of both CNN (0.9)
and EDN (0.9) for the lower leg was significantly larger (p<0.01)
than that of NNMF (0.8), indicating that the EMG envelopes
created by CNN and EDN more closely resembled those made
through manual selection. For the upper leg, no significant results
could be reported due to the small number of subjects, but the
NNMF-based method had more R2 values in the ’very weak’
(<0.2) and ’weak’ (0.2-0.39) categories and less in the ’very
strong’ (>0.8) than CNN and EDN. NNMF-based clustering,
CNN, and EDN generally found muscle-specific EMG envelopes
that resembled those found by manual selection. To conclude, the
newly created CNN and EDN-based methods outperformed the
previously created NNMF-based methods and all methods found
satisfactory EMG envelope results. These methods could play a
great role in accelerating the electrode placement process.

II. INTRODUCTION

Surface electromyography (sEMG) has many applications,
including diagnosing gait disorders, supporting rehabilitation
techniques, and health monitoring systems [1]. For instance,
lower limb exoskeletons used in rehabilitation can aid in
relearning to walk by performing repetitive movements [2, 3].
To control exoskeletons, obtaining information about intended
movements is essential. This can be derived from sEMG
signals, which measure motor unit action potentials (MUAPs)

at the skin surface, indicating muscle activity about 10 mil-
liseconds before movement starts. The number and intensity
of MUAPs correlate with muscle contraction intensity, thus
reflecting the level of muscle activity [4]. By preprocessing
the EMG signals with filtering and rectification steps, an EMG
envelope is created; the greater the muscle force, the higher
the EMG envelope reaches [5].

The measurement of sEMG follows guidelines established
by the SENIAM project [6]. However, this process requires
extensive anatomical knowledge and precise electrode place-
ment, making it a time-consuming process [7]. These draw-
backs pose challenges for patients using exoskeletons for
daily physical therapy or as permanent mobility solutions.
Therefore, to effectively use EMG measurements in diagnos-
tic and therapeutic contexts, electrode placement should be
accelerated and simplified.

One solution to accelerate electrode placement is the Myo
armband, designed for the lower arm. This device consists of
eight electrodes embedded in an easy-to-use bracelet that is
worn on the lower arm. This design allows for rapid donning
and doffing. It has been extensively used in research on
hand gesture classification: features are extracted from the
measured EMG signals, which are used as input for various
machine-learning methods [8–10]. However, while the bracelet
is effective for the upper limb, it may slide down the leg during
walking due to repetitive muscle contractions.

To overcome this challenge, Farina et al. [11] proposed an
alternative approach, which involved using a garment embed-
ded with four 5x5 high-density (HD) EMG grids. This garment
can additionally be used to classify gestures, through the use of
linear discriminant analysis. A garment could be better suited
for lower limb use since it would not slide down the lower
limb. Both the Myo armband and the garment successfully
expedite electrode placement, potentially making them useful
in exoskeleton applications. However, research on both devices
focused on classifying trained gestures rather than extracting
muscle-specific sEMG signals. These muscle-specific signals,
appearing 10 ms before movement, are useful for exoskeletons
to provide timely support [12].

Ohiri et al. [13] created a garment using embedded elec-



trodes at known muscle locations to extract EMG envelopes.
However, a manual check was needed to ensure the electrodes
were on the muscles, after which placement on some calf
muscles was still not sufficiently precise, causing inaccurate
sEMG readings [13]. Generally, garments can shift during
wear or after donning and doffing, causing electrodes and
muscles to misalign, thereby reducing sEMG quality. Addi-
tionally, anatomical differences between subjects complicate
the design of a garment that fits all subjects. This could
lower sEMG quality for some subjects [14] One attempt to
address these issues involved drawing the electrodes directly
on the skin, eliminating shifting and conforming to individual
muscle shapes [15]. However, this method is even more time-
consuming than using the SENIAM guidelines for electrode
placement.

To solve the issues regarding variety in muscle location, Si-
monetti et al. [16] developed an electrode-embedded garment,
covering the entire lower leg. This electrode-embedded gar-
ment was comfortable and easy-to-wear. Instead of targeting
specific muscles, electrodes were distributed uniformly around
the lower leg. Non-negative matrix factorization (NNMF), a
clustering method that enforces positive results only, identified
clusters of electrodes with similar activation patterns. The
clusters were assigned to muscles using a lower leg-specific
algorithm. This method produced consistent muscle-specific
EMG envelopes, across various movement tasks, without tar-
geting specific muscles with electrode placement. However, a
disadvantage lies in the algorithm used to assign clusters to
muscles. It was created for lower leg muscles; a new algorithm
would have to be created for different sets of muscles. This
requires time and effort from researchers. Furthermore, when
the garment is worn on a new day, electrodes may be in
a slightly different position relative to the muscles, causing
incorrect readings.

The EMG signals measured using the electrode-embedded
garment need different processing methods to address elec-
trode shift issues and to facilitate adaptations to multiple
muscle sets. Analyzing signals from numerous uniformly
distributed electrodes is already achieved in HD-EMG, which
uses multiple closely spaced electrodes on a specific muscle
[17]. Methods used to analyze HD-EMG may also apply to
the analysis of EMG measurements made from an electrode-
embedded garment such as the one from Simonetti et al.,
as both comprise many EMG electrodes. Analysis of HD-
EMG was done by Yu et al. [18] using a convolutional neural
network (CNN), which employs convolutional layers to extract
features, and pooling layers to retain the most important ones
[19]. They used this CNN to determine wrist torques [18].
Similarly, Simpetru et al. [20] used convolutional layers on
three HD-EMG electrode grid recordings to determine hand
joint angles.

Yu et al. and Simpetru et al. both demonstrated a deep
learning network consisting of convolutional layers that suc-
cessfully analyzed HD-EMG signals. Such networks may also
work for large numbers of electrodes that are spaced further
apart. Both studies used a regression network, which provides

numerical outputs [21]. A regression network is also needed to
find muscle-specific envelopes, as the envelopes are numerical
values. Regression deep learning networks, comprising convo-
lutional layers, have not previously been used to find muscle-
specific EMG envelopes, but the works on HD-EMG signals
show its potential, which will be explored in this research.

To summarize, there is a need for accelerated EMG elec-
trode placement. Current solutions do address the placement of
electrodes by using electrode-embedded garments. However,
the possibility of issues caused by electrode shifts is still
present and the used methods are not yet easily adaptable to
multiple muscle sets. Considering these needs and research
gaps, the central research question considered here is: How
can a deep learning network with convolutional layers extract
muscle-specific EMG envelopes for lower leg muscles from
a garment with uniformly distributed electrodes and how can
such a network be easily adapted to function for other muscle
sets?

To answer this question, two types of networks were devel-
oped to test the feasibility of using deep learning networks for
more widely spaced electrode grids to identify muscle-specific
EMG envelopes: a regression CNN and an encoder-decoder
network (EDN). Both use the same input and output, namely
the measurements from numerous electrodes and the muscle-
specific EMG envelopes. The EDN comprises an encoder,
which uses convolutional and pooling layers to scale down
the input while retaining key features, and a decoder, which
uses transposed convolutional layers to scale the image size
back up. In between is a bridge, where only the key features
necessary to create the output remain [21].

Two datasets will be used to test these networks. The
first dataset, recorded by Simonetti et al. [16], consists of
recordings from seven movement tasks from eight subjects.
The second was recorded for this research using a newly
designed electrode-embedded garment for the upper leg, in-
volving measurements with three subjects. The recorded EMG
signals from both datasets will be analyzed using the NNMF-
based method obtained from Simonetti et al. in addition to the
newly created deep learning networks. Afterward, the quality
of the resulting muscle-specific EMG envelopes of all three
methods will be compared.

III. METHODS

In this section, firstly, the three methods used to extract
muscle envelopes; CNN (III-A), EDN (III-B), and NNMF
(III-C) will be explained. Secondly, the two datasets (one for
the lower leg (III-D), the other for the upper leg (III-E)) on
which the analysis took place are explained: used subjects
and the tasks each subject had to perform. Also, the created
garment for the upper leg will be presented (III-E1). Thirdly,
the preprocessing of the acquired data (III-E4), and then the
analysis using CNN, EDN, and NNMF is explained (III-F).
Lastly, the analysis to determine the best method is explained
(III-G).

As mentioned, EMG envelopes are estimated using a CNN,
an EDN, and NNMF-based clustering. Each method follows
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a similar process: data is collected from a healthy individual
using an electrode-embedded garment on either the upper or
lower leg. After collection, the data is preprocessed into EMG
envelopes and split into ”training” and validation data. The
training of the networks and the NNMF clustering takes place
on the training data. Finally, the trained networks or identified
clusters (in the case of NNMF) are applied to the validation
data to assess the quality. The entire process is graphically
shown in the flowchart in Fig. 1.

A. Convolutional Neural Network

A CNN consists of convolutional layers that extract features
and pooling layers that only keep the most important features.
The architecture of the CNN used in this study is shown in Fig.
2. It starts with an image of a certain size, each pixel in this
image represents the value of the EMG envelope measured
by one of the electrodes at a certain point in time. In the
present study, the image size is 8x8, but this could easily be
changed to a higher number. The network further consists of
the following layers:

• Convolutional layer, filter size 2x2 with padding, filter
amount of 40

• Batch normalization layer and Sigmoid activation layer
• Max-pooling layer with size 2x2 and stride 1x1
• Convolutional layer, filter size 2x2 with padding, filter

amount of 40
• Batch normalization layer and Sigmoid activation layer
• Max-pooling layer with size 2x2 and stride 2x2
• 2 Fully connected layers of 1x1x16
• Fully connected layer of 1x1x5

The training input was provided by the measured EMG signal
from the garment, while the training output was provided by
manually selected electrodes from upper/lower leg muscles.

B. Encoder-Decoder Network

Similarly to the CNN, the EDN consists of convolutional
and pooling layers. However, EDN also uses transposed con-
volutional layers, enabling sizing up. The architecture of the
EDN used in this study is shown in Fig. 3. The input is
again an image of size 8x8. All layers are shown below: all
(transposed) convolutional layers followed by a rectified linear
unit activation layer:

• Encoder
– Convolutional layer, filter size 2x2 with padding,

filter amount of 40
– Max-pooling layer with size 2x2 and stride 2x2
– Convolutional layer, filter size 2x2 with padding,

filter amount of 40
– Max-pooling layer with size 2x2 and stride 2x2
– Convolutional layer, filter size 2x2 with padding,

filter amount of 40
– Max-pooling layer with size 2x1 and stride 1x1

• Bridge
– 2 convolutional layers, filter size 2x2 with padding,

filter amount of 40

• Decoder

– 3 consecutive transposed convolutional layers, filter
size 1x2 with padding, filter amount of 40

– Fully connected layer of 1x1x5

The training output and input were the same as those of the
CNN.

C. EMG clustering using NNMF

The process of EMG clustering using NNMF consists of
the following four steps.

1) A similarity map is created for each electrode using
k-nearest neighbor clustering and Euclidean distances.
This indicates the resemblance of the sEMG signal
between electrodes.

2) Two filters are applied to the similarity map of each
electrode to retain exclusively the values for electrodes
with spatial proximity to the electrode in question,
setting the rest to zero. One filter is based on how close
electrodes were to the electrode in question, which had
to be no more than two electrodes apart; the other filter
ensures that the electrodes had to be adjacent to each
other, for them to be on top of the same muscle.

3) All similarity maps are combined into one large matrix,
to which NNMF is applied to find clusters of closely
related electrodes.

4) These clusters are assigned to specific muscles using a
designated algorithm.

D. Experimental data lower leg

Measurements made by Simonetti et al. [16] were used as
the dataset for the lower leg. The methods used to record
this data are explained in the article by Simonetti et al. (2022)
[16]. Measurements are used from eight healthy subjects, with
recorded movement tasks detailed in table I. During each
movement task, 64 electrodes continually measured sEMG
signals. Additionally, two electrodes were manually selected
according to the SENIAM guidelines on top of each of the
following muscles:

• Tibialis anterior (TA)
• Peroneus longus (PL)
• Gastrocnemius medialis (GM)
• Gastrocnemius lateralis (GL)
• Soleus (SO)

Preprocessing of the recorded EMG signals and the man-
ually selected electrodes was performed as described by Si-
monetti et al. (2022) [16].

E. Experimental data upper leg

For the upper leg, new data was recorded. A description
of the electrode-embedded garment is given below, followed
by an explanation of the experimental procedures, the manual
selection method, and the preprocessing steps.
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Fig. 1: Flowchart of the general method used to process all data. Box 1) A simplified diagram of data collection. The circles
represent electrodes, with yellow circles indicating manually selected electromyography (EMG) electrodes. The manual selection
process is explained in detail in section III-E3. Box 2) The preprocessing steps consist of filtering the EMG data until 64 EMG
envelopes remain. This occurs separately for the manually selected EMG channels, after the filtering steps 5 EMG envelopes
remain. Box 3) The ’training’: for the convolutional neural network (CNN) and encoder-decoder network (EDN) this consists
of training the deep learning network. For the NNMF training consists of finding the muscle clusters. Box 4) For validation,
the EMG envelopes found by the CNN, EDN, or NNMF-based clustering were averaged over gait cycles and compared with
manually selected EMG envelopes.

Fig. 2: Architecture of the convolutional neural network. All
filters are set to 1 for visual simplicity. In reality, 40 filters
were present. Conv stands for convolutional layer, Max-Pool
for max-pooling layers.

TABLE I: List of the recorded movement tasks that are part
of the lower leg dataset.

Task Acronym Recording time (s)
Forward locomotion
1 km/h FW1 35
3 km/h FW3 30
5 km/h FW5 25
Backward locomotion
1 km/h BW1 30
3 km/h BW3 25
Running at 7 km/h RN 25
Sidestep SS 40

1) Electrode embedded wearable garment: An electrode-
embedded garment was created to simplify the placement of
the 64 electrodes on the leg. It consists of two main parts.
Firstly, eight grids of eight electrodes (10 mm in diameter)
were screen-printed from Ag/AgCl. These grids were made of
a 26 cm long flexible printed circuit board (PCB material).
Custom cables were created to connect these electrode grids
to the SAGA manufactured by TMSi [22]. Secondly, a pair
of thermal leggings (Thermobroek voor skiën Dames BL 100

TABLE II: List of the recorded tasks for the upper leg. SD
stands for ’same day’, and ND for ’new day’. All recordings
lasted 30 seconds. FW3 was recorded twice: once for training,
and the other for validation.

Day 1
Session 1
Forward locomotion
1.8 km/h FW1.8
3 km/h (twice) FW3
4.2 km/h FW4.2
3 km/h: stiff knee gait SK3
Backward locomotion
1.8 km/h BW1.8
Side lunge SL
Session 2
Forward locomotion
3 km/h SD1
Session 3
Forward locomotion
3 km/h SD2

Day 2
Forward locomotion
3 km/h ND

zwart, Decathlon, The Netherlands) was used. The electrodes
were attached to these, using small Velcro stickers and, by
making small cuts electrode grids were weaved through the
leggings. The electrode-embedded wearable garment is shown
in Fig. 4.

2) Experimental procedures: Data was recorded from 3
healthy subjects (age = 24± 2 years, height = 179 ± 4 cm,
weight = 80±10 kg, 1 male, 2 female). Recordings were
performed on two separate days, see table II for all recordings.
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Fig. 3: Architecture of the encoder-decoder network. All filters are set to 1 for visual simplicity. In reality, 40 filters were
present. Conv stands for convolutional layer, Max-Pool for max-pooling layers, and Transp. Conv. for transposed convolutional
layers.

Fig. 4: The wearable electrode-embedded garment. Only the
backside is shown, but electrodes are also present at the front.
The leggings are cut short to increase subject comfort.

This research was approved by the Natural Sciences & En-
gineering Sciences (NES) Ethics Committee of the University
of Twente with reference number 240046. Each subject signed
an informed consent form. Firstly, the right upper leg of the
subject was prepared for wearing the garment: NuPrep gel
was used to scrub the right upper leg and salt water was
applied to wet the leg to improve the electrode impedance. The
created 8x8 electrode grid-embedded garment was donned, and
electrode locations for specific muscles were noted according
to the SENIAM guidelines. The patella was also prepared with
NuPrep gel and a gel electrode was attached, functioning as
a ground electrode. Reflective markers were placed on both
shoes of the subject at the heel and the first toe. Marker
data was recorded at 100 Hz using optical motion capture
cameras (Qualisys Oqus, Sweden). EMGs were recorded at
2048 Hz using a multi-channel amplifier (SAGA, TMSi, The
Netherlands).

3) Manual selection of muscle electrodes: Real muscle
EMG envelopes were needed to train the deep learning net-
works and to validate the results of the deep learning networks
and the NNMF-based clustering method. Two electrodes on
top of each muscle according to the SENIAM guidelines were
selected, from which muscle-specific EMG envelopes were
created as described in section III-E4 [6]. The locations of
muscles for subject 1 are shown in figure 5.

The following muscles were manually selected:

• Semitendinosus (ST)
• Biceps femoris (BF)
• Vastus lateralis (VL)
• Rectus femoris (RF)
• Vastus medialis (VM)

These specific upper leg muscles were selected as they are
all present in the SENIAM guidelines, in addition to having a
large influence on knee torque [6].

4) Data processing: All data processing was performed
using MATLAB (Matlab2022b, MathWorks, Natick (MA),
USA) software.

Kinematic data: The data collected from the reflective mark-
ers was low-pass filtered at 6 Hz with a second-order Butter-
worth filter. Amplification of EMG data: Raw EMG data was
amplified with a gain of 23 (SAGA 64+, TMSi, The Nether-
lands). Re-referencing: The means of the electrodes in columns
1-4 and 5-8 were calculated, excluding noisy electrodes (with
standard deviation larger than 5 times the median standard de-
viation of all electrodes), or silent electrodes (with standard de-
viation smaller than 0.001 mV). The mean in columns 1-4 was
subtracted from all electrode measurements in these columns,
and the same was done in columns 5-8. Manual selection:
Following the re-referencing step, the two manually selected
electrodes from each muscle were subtracted. EMG envelopes:
All EMG signals (re-referenced signals of the 64 EMG
electrodes and the 5 resulting signals after subtracting the
manually selected electrodes) were high-pass filtered at 20 Hz
using a second-order Butterworth filter. Afterward, the signals
were full-wave rectified and low-pass filtered at 6 Hz using
a fourth-order Butterworth filter. Normalization: The EMG
envelopes of each session were normalized separately. The
maximum value across all tasks per session was determined
for each electrode/ muscle and normalization was performed

5



using these values. Reconstruction of missing electrodes: Six
electrode recordings were constantly equal to zero, potentially
due to a faulty cable. Bilinear interpolation was performed us-
ing the four neighboring electrodes to reconstruct the electrode
recordings.

F. Training of networks and performing NNMF clustering

For the lower leg, FW1 was used to train the CNN and EDN
and to perform NNMF-based clustering. FW1 was chosen as
Simonetti et al. used this because it worked best for lower
leg clustering. It was used for CNN and EDN as well to be
consistent. For the upper leg, FW3 was used. This movement
task was chosen because this was the most comfortable
walking speed, so this would be the most suitable for future
use.

1) CNN and EDN: The deep learning networks were
trained using the 64 EMG envelopes, restructured to an 8x8
grid, as input and the 5 muscle-specific EMG envelopes from
the manual selections as output. Both the upper and lower leg
networks were trained in the same way. The trained networks
were then used to predict the output for all other tasks and
the other recordings of FW3 or FW1. The training was done
with 1 epoch, mini-batch size 32, and an Adam optimizer.

Only the encoder part was also run for the EDN to find
muscle synergies as key components from which to build the
muscle-specific EMGs. This is explained in more detail in
appendix C

The electrodes that were the most important for each muscle
output were determined by calculating the gradient of each
muscle output for each electrode input. This was done by
adding a value of 1e-6 to each electrode one by one for
each point in time during a gait cycle and then recording how
much change this added value to each electrode caused in each
muscle output. The larger the change, the more important the
electrode was for that muscle output: the two electrodes that
invoked the largest change were selected for each muscle.

2) Clustering using NNMF: The NNMF clustering was
performed using three gait cycles (right heel strike to the next
right heel strike) of the 64 EMG envelopes of the same tasks
used for deep learning training. The steps referred to below
are explained in section III-C. There were some differences
between the upper and lower leg in the second and fourth
steps of the process.

In the second step, filters were applied to the similarity
maps to retain electrode values close to each electrode. This
filter included all eight closest neighbors for the lower leg,
while only the two electrodes above and the two below were
included for the upper leg. Figure D.1 in appendix D shows the
upper leg mask. This distinction was made, as the surface area
of the upper leg was larger, causing a larger space between
electrodes; electrodes from different columns were never on
the same muscles.

For the fourth step, which consisted of an algorithm to
appoint identified clusters to muscles, the lower leg algorithm
was copied from Simonetti et al. (2023) [22]. For the upper
leg, a new version was created. The electrodes with numbers 1

Fig. 5: Locations of muscles in the 8x8 electrode grid. ST =
semitendinosus, BF = biceps femoris, VL = vastus lateralis,
RF = rectus femoris and VM = vastus medialis

through 32 were always on the back of the leg, with number 1
being on the medial side. This ensured that the ST muscle was
always associated with the cluster with the lowest electrode
numbers. The rest of the sequence follows the anatomy of the
upper leg muscles: ST, BF, VL, RF, and VM. Fig. 5 shows
the typical locations of muscles in the electrode grid.

The clusters that result from NNMF include a few electrodes
per muscle and their corresponding weights. These electrode
EMG envelopes, multiplied by their associated weight, were
added, resulting in muscle-specific EMG envelopes. This pro-
cess was repeated for all other tasks and the other recordings
of FW3 or FW1.

G. Validation procedures

The manual, CNN, EDN and NNMF-based clustering EMG
envelopes of all tasks and muscles were gait-cycle averaged
using gait cycles ranging from heel strike to heel strike. For
the upper and lower leg results, R2 values were calculated for
all tasks between the averaged EMG envelopes derived from
manually selected electrodes and those derived using CNN,
EDN, or NNMF-based clustering. Using these R2 values,
box plots were created to compare performance, after which
statistical analyses were performed to determine whether there
were significant differences in performance. Specifically, for
the lower leg, the following comparisons of performance are
made:

• Between CNN, EDN and NNMF overall
• Between methods on muscles
• Between methods on tasks
• Between tasks within methods

For the upper leg, the following comparisons are made:
• Between methods overall
• Between methods on muscles
• Between methods and within methods on tasks of the

same session
• Between methods and within a method on tasks of new

sessions
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Additionally, for the upper leg, the percentage of R2 values
across all muscles and tasks above 0.7 is calculated for each
method.

Lastly, the Euclidean distances between the average location
of the manually selected electrodes and the electrodes identi-
fied for each muscle using NNMF-based clustering and CNN
and EDN (the top two electrodes according to the gradients)
were calculated and compared.

IV. RESULTS

A. Lower leg

All gait cycle-averaged EMG envelopes for Subject 1 are
shown in Fig. 6. Generally, the estimated EMG envelopes
remain within the manually selected EMG envelopes. Some
exceptions include the PL muscle for BW3 where all methods
skip the peaks and the underestimation of GM envelope peaks
for the FW trials. Detailed statistical comparisons are provided
in Appendix B. All statistical comparisons were performed
using a Kruskal-Wallis test, followed by a multiple comparison
test with Dunn-Sidák critical value, to account for the non-
normality of the data. A summary of key results is described
below, comparing the used methods overall. A comparison of
performance between muscles and methods is given and lastly,
the performance between tasks and methods is compared.

Firstly, Fig. 7a shows the R2 value comparisons for meth-
ods, taking the median of tasks and muscles for all subjects.
The median R2 of CNN (0.90) and EDN (0.90) are similar
(p=0.99), while the median R2 of NNMF (0.80) significantly
differs from those of CNN (p<0.01) and EDN (p<0.01).

Secondly, Fig. 7b compares the performance of the methods
across different muscles, combining R2 values from all tasks
and subjects. The following observations were made regarding
the performance of different methods on the muscles:

• The medians R2 values were higher for plantar flexor
(PF) muscles than for dorsiflexor (DF) muscles for CNN
(PF median=0.93, DF median=0.86, p<0.01) and EDN
(PF median=0.92, DF median=0.81, p=0.05).

• For the GL muscle, the median R2 value of NNMF (0.64)
is significantly lower than those of CNN (0.92, p<0.01)
and EDN (0.93, p<0.01).

• For the GM muscle, the median of R2 values of NNMF
(0.96) is significantly higher than that of EDN (0.90,
p=0.03).

• No significant differences exist for the TA, PL, and SO
muscles.

Thirdly, Fig. 7c compares the performance of the methods
across different tasks, combining R2 values from all muscles
and subjects. Differences can be observed in two ways: within
a task or a method. Firstly, there was no significant difference
in how well NNMF, CNN, and EDN performed on all tasks,
for example, NNMF did not perform better on FW1 than on
RN or SS tasks. There were some differences when comparing
how well each task was performed by the methods. Significant
differences were observed for FW3: NNMF (0.79) scores
significantly lower than CNN (0.90, p=0.03), FW5: NNMF

(0.67) scores significantly lower than CNN (0.88, p<0.01), and
for BW3: the NNMF median (0.81) was significantly lower
than that of CNN (0.90, p=0.02) and EDN(0.90, p=0.03).

Lastly, the Euclidean distances between the manually se-
lected electrodes and those identified by NNMF-based cluster-
ing, CNN, and EDN are compared in figure E.1 for muscles
in Appendix E and figure 8 for subjects. The only significant
difference was found for subject 1, where CNN (2.69) has sig-
nificantly larger median distances than NNMF (1.58, p=0.050)
and EDN (1.50, p=0.01). It can be seen that the distances
vary greatly. The locations of muscles in the electrode grid
are shown in figure E.2 in Appendix E.

Fig. 8: A box plot is shown of Euclidean distances in pixels
(with one pixel representing the distance between two elec-
trodes) on the y-axis, calculated between the manually selected
electrodes of lower leg muscles and those selected by non-
negative matrix factorization clustering, convolutional neural
network, and encoder-decoder network. The numbers shown
on the x-axis indicate subjects. The horizontal lines indicate
median values, calculated between all muscles. The bottom
and top edges indicate the 25th and 75th percentiles and the
whiskers extend to the most extreme values not considered
outliers. Circles indicate outliers. *indicates that p<0.05.

B. Upper leg
Due to the low number of test subjects (n=3), no significant

results can be reported. However, repeatability was assessed
by using data from more than one subject. Gait cycle-averaged
EMG envelopes for Subject 1, containing all tasks and mus-
cles, are shown in Fig. 9.

In Fig. 10 all values of R2 from all subjects, movement tasks
except sessions, and muscles, are divided into the following
categories [23]:

• <0.2: very weak
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Fig. 6: Gait cycle-averaged electromyography (EMG) envelopes for five lower leg muscles across all tasks for subject 1. Gait
cycles were defined as right heel strike to the next right heel strike. EMG envelopes were created using manual selection,
the convolutional neural network (CNN), encoder-decoder network (EDN), and non-negative matrix factorization (NNMF)
clustering. The manually selected EMG envelope plus and minus the standard deviation is shown in light gray. The standard
deviation of CNN, EDN, and NNMF are shown in dashed lines of the same colors.

• 0.2-0.39: weak
• 0.4-0.59: moderate
• 0.6-0.79: strong
• >0.8: very strong

It can be seen that EDN has the most R2 values in the ’very
strong’ category, while NNMF has the least. NNMF has the
most R2 values in the ’very weak’ category. Table B.5 in
appendix B2 shows the median R2 values taken per subject
for each movement task and muscle.

Fig. 10: R2 values are divided up into categories: very weak
(<0.2), weak (0.2-0.39), moderate (0.4-0.59), strong (0.6-
0.79), and very strong (>0.8). R2 values were taken from
movement tasks FW1.8, FW3, FW4.2, SK, and SL, all muscles,
and all subjects for the upper leg.
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Fig. 7: In all subfigures box plots are shown of R2 values calculated between the gait-cycle averaged manually selected
electromyography envelopes of lower leg muscles and non-negative matrix factorization clustering, convolutional neural
network, and encoder-decoder network. The y-axis represents the R2 values. The horizontal lines indicate median values,
the bottom, and top edges indicate the 25th and 75th percentiles, and the whiskers extend to the most extreme values not
considered outliers. Circles indicate outliers. *indicates that p<0.05. In (a) the performance of the methods is compared
overall. The median is taken for all tasks and muscles, and the resulting values per subject are shown. In (b) the performance
of the methods on muscles is compared. The median across all tasks is taken, and the resulting values per subject are shown.
In (c) the performance of the methods on the tasks is compared. The median across all muscles is taken, and the resulting
values per subject are shown.

Fig. 11 shows similar categories, however here the perfor-
mance on sessions is compared between the methods. It can be
seen that all methods perform best on FW3, but performance
on SD and ND is not clearly different. For CNN and EDN the
percentage in the ’very strong’ category is similar between
SD and ND, for NNMF the amount in the ’very strong’
category goes down from 60% to 40%. However, all methods
see an increase of values in the ’very weak’ category for SD
compared to ND. For CNN and EDN, 80% of R2 values for
ND are in either the ’very strong’ or ’strong’ category, for
NNMF this is 60%.

Fig. 11: R2 values are divided up into categories: very weak
(<0.2), weak (0.2-0.39), moderate (0.4-0.59), strong (0.6-
0.79), and very strong (>0.8). Each subplot shows R2 values
taken from one of the sessions: FW3, SD, and ND, which
are mentioned at the top of each subplot. All muscles and all
subjects are combined for each session.

Fig. 12 shows the performance of the methods on each

subject separately. All movement tasks excluding sessions are
used. It can be seen that performance of CNN and EDN is
comparable for subjects 1 and 3, but less for subject 2. NNMF
performance differs for each subject, with performance on 1
being best and 3 being worst.

Fig. 12: R2 values are divided up into categories: very weak
(<0.2), weak (0.2-0.39), moderate (0.4-0.59), strong (0.6-
0.79), and very strong (>0.8). Each subplot shows percentages
of R2 values from one of the subjects, which are mentioned at
the top of each subplot. All muscles and the movement tasks
FW1.8, FW3, FW4.2, SK, and SL are combined per subject.

Lastly, the Euclidean distances between the manually se-
lected electrodes and those identified by NNMF-based cluster-
ing, CNN, and EDN are compared in figure E.3 for muscles
and in figure E.4 for subjects, both in Appendix E. No
significant differences can be reported, but the distances do
vary greatly. The locations of muscles in the electrode grid
are shown in figure E.5 in Appendix E.
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Fig. 9: Gait cycle-averaged electromyography (EMG) envelopes for five upper leg muscles across all tasks for subject 1. Gait
cycles were defined as right heel strike to the next right heel strike. EMG envelopes were created using manual selection,
the convolutional neural network (CNN), the encoder-decoder network (EDN), and non-negative matrix factorization (NNMF)
clustering. The manually selected EMG envelope plus and minus the standard deviation is shown in light gray. The standard
deviation of CNN, EDN, and NNMF are shown in dashed lines of the same colors.

V. DISCUSSION

Two methods, a CNN and an EDN, were developed to
extract muscle EMG envelopes for the lower leg, using a gar-
ment previously created by Simonetti et al. (2023) [22]. These
methods, along with NNMF-based clustering, were adapted for
the upper leg, using a newly developed garment consisting of
thermal leggings with an embedded 8x8 electrode grid. The
CNN and an EDN could be adapted without altering their
architecture, while NNMF-based clustering needed changes in
the cluster to muscle algorithm and in the locality masks.

For the lower leg, CNN and EDN outperformed NNMF,
indicating their potential for producing ankle torques, as previ-
ously demonstrated with NNMF [16]. Furthermore, extraction
of EMG envelopes for the dorsiflexor (TA) was less successful

than for plantar flexors. Simonetti et al. [16] hypothesized this
was due to the smaller surface area of TA and that increasing
electrode density might address this issue. Surprisingly, very
few significant differences were observed between R2 values
of tasks. Maybe training on one training epoch successfully
prevented overfitting the EDN and CNN. For NNMF it may
be because the garment did not move in between tasks, so
clusters also remained roughly in the same position relative to
the muscles.

For the upper leg, Fig. 9 shows that CNN and EDN
EMG envelopes generally matched manually selected EMG
envelopes and over 80% of R2 values for CNN and EDN
were in the ’very strong’ category, suggesting that CNN and
EDN can accurately identify muscle-specific EMG envelopes.
NNMF had about 20% fewer ’very strong’ R2 values, indi-
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cating CNN and EDN may outperform NNMF, though more
subjects are needed to confirm this. Performance was lower in
new sessions (SD and ND), highlighting a need for solutions to
improve inter-session performance. consistency. This will be
further elaborated on in section V-A. Testing on three subjects
revealed that even with more noise (found present in Subject
2), over 70% of R2 values for Subject 2 were in the ’strong’
or ’very strong’ categories.

For both the upper and lower leg a large variance in distance
exists between the manually selected electrodes and those
selected by NNMF-based clustering, CNN, and EDN. Despite
this large spread in distances, the resulting EMG envelopes
represent the manually selected EMG envelopes well. This
might be caused by the fact that the surface area of muscles is
usually larger than just the locations indicated by the SENIAM
guidelines. So despite the distance between the electrodes, the
measured signals might be similar.

When comparing CNN and EDN with the NNMF frame-
work created by Simonetti et al. [22], adapting the former
to a new set of muscles is easier as no changes to the
architecture of the networks are required. In contrast, the
NNMF method required a new algorithm to assign clusters to
muscles. Additionally, NNMF-based clustering needs precise
garment positioning for these algorithms to function. On the
other hand, CNN and EDN require labeled training data,
also necessitating knowledge of garment orientation during
training. The need for training data will be further elaborated
on in section V-A.

The garment created for the upper leg was easy and quick to
don, offering advantages over methods like Ershad et al.’s [15]
ink-drawing electrodes, which are time-consuming to apply
and require extensive anatomical knowledge. A comparison
can also be made to the Myo bracelet, even though it was
designed for the upper limb. The Myo bracelet is arguably
easier to put on, but for the lower leg such a bracelet would
not be feasible due to the different heights of locations of
muscles. Additionally, it has a risk of sliding down during
walking, while the thermal leggings and the lower-leg garment
do not have this issue.

A. Limitations and future perspective

The primary limitation is the need to create labeled training
data, which is time-consuming and requires professionals to
follow the SENIAM guidelines to perform manual selection.
To mitigate this, transfer learning can be used, which involves
training a machine learning model on several tasks or samples
and then adapting it to a specific task or sample [24]. This
approach can be applied by training the networks on a large
number of subjects to create a generic network, which can
then be fine-tuned for specific subjects. Transfer learning
has been successfully used by Zhang et al. [25] for inter-
subject prediction of ankle joint torque from surface EMG
signals using an NMS solver-informed ANN. The network
was trained on nine subjects, after which transfer learning was
performed to fit the model to a new subject. Also, Liu et al.
[26] demonstrated its potential by predicting 3D hand poses

through measurements using the Myo bracelet and recurrent
neural networks. The network was trained on just one subject,
after which minimal training data was used to transfer it to a
new subject.

A second option is exploring unsupervised machine learning
techniques, such as autoencoders, which use the same input
as output and are typically used for dimensionality reduction
or learning features [27]. Autoencoders have been used to
find muscle synergies from sEMG signals, but the identified
signals still need to be assigned to synergies based on known
shapes [28–30]. Applying this to the current problem would
require knowledge of typical EMG envelope shapes for proper
assignment. Furthermore, the EMG envelopes of VL, RF, and
VM muscles might look very similar, making it difficult for an
autoencoder to separate all underlying muscle EMG envelopes.

Performance of all methods was lower for new sessions (ND
and SD) than for FW3. Two methods could be considered
to improve inter-session quality. Firstly, transfer learning can
address this issue, as demonstrated by Ameri et al. [31], who
improved inter-subject CNN classification accuracy by fine-
tuning the network, which was trained with normal HD-EMG
data, with 2,5 cm shifted HD-EMG signals. Similarly, Lee et
al. [32] used transfer learning in hand gesture classification
using a domain adversarial neural network. They used labeled
data from a previous day and needed only unlabeled data
from the target day to update the network. This way they
eliminated the need for labeled training data for a new session
and increased classification accuracy during a new session.

Another solution is using data augmentation, which is
when a deep learning network is trained on input data with
added noise or shifted input data [21]. Data augmentation
has successfully been used in HD-EMG research. Firstly, Sun
et al. [33] used a CNN to classify hand gestures, increasing
classification accuracy from 20% (trained on the original HD-
EMG data) to 84.6% (trained on augmented HD-EMG data).
Secondly, Chamberland et al. [34] used augmented HD-EMG
data to train their CNN to increase hand gesture classification
accuracy by 25.67%. Both studies demonstrate how useful
augmented training data is in classification tasks with HD-
EMG, it must be researched whether this also applies to
regression tasks with more widely spaced EMG electrodes.

When using the current garment, the legs must be shaved,
scrubbed, and wetted with salt water to reduce impedance.
Dry electrodes or advanced noise filtering could eliminate this
requirement. Additionally, six electrodes showed zero readings
during upper leg measurements, causing the need for recon-
struction. This reconstruction may have had some influence
on the results. The reason for the zeroed measurements must
be found and the underlying problem must be addressed. A
combined garment for the upper and lower leg should be
created, as donning and attaching two separate garments is not
practical. This new garment should include the gluteal muscles
to extract hip torque. Lastly, electrodes in the garments do not
provide adequate density at the TA muscle. Also, on the upper
leg, the SENIAM locations of muscles are quite low, which
means that electrode density must be increased in the lower
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part of the upper leg, and decreased in the upper part.
The manual selection procedure was never validated against

electrode placement performed as described by the SENIAM
guidelines. Validation should be conducted. The categories
used for R2 values of the upper leg are not specific for gait-
cycle averaged EMG envelopes, but just a general way to
assess correlation, meaning that the practical applicability is
uncertain.

VI. CONCLUSION

Two new methods to extract muscle EMG envelopes for the
upper and lower leg were developed: one based on a CNN,
the other on an EDN. An NNMF-based clustering method,
previously created for the lower leg, was adapted to the upper
leg. The newly created CNN and EDN methods significantly
outperformed the NNMF-based method for the lower leg. Due
to low subject amounts, the results of the upper leg were
not significant, but NNMF-based clustering did have more
measurements in the weaker categories.

The distance between the locations of muscles found by
manual selection and those found by NNMF-based cluster,
CNN, and EDN, varied greatly, but resulting EMG envelopes
generally resembled those found by manual selection.

For the upper leg, a new multi-electrode-embedded garment
was created. Together with the previously created lower leg
garment, this provides a good basis from which to make a full
lower limb garment.

Future studies should focus on validating the manual se-
lection method used and on eliminating the need for training
data.
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APPENDIX

A. Use of AI

During the preparation of this work the author used ChatGPT by OpenAI in order to review the grammar, spelling and use
of signal words of all sections. After using this tool/service, the author reviewed and edited the content as needed and takes
full responsibility for the content of the work.

During the preparation of this work the author used Grammarly in order to review the grammar, spelling and use of signal
words of all sections. After using this tool/service, the author reviewed and edited the content as needed and takes full
responsibility for the content of the work.
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B. Results

1) Statistics of lower leg: The statistical methods used on the results of the lower leg are further elaborated in this section.

Firstly, it should be noted that all R2 values were not normally distributed, as determined by performing a Kolmogorov-
Smirnov test. Due to non-normality, a non-parametric test was selected for the statistical analysis. The Kruskal-Wallis test
was chosen, where the null hypothesis is that each data group comes from the same distribution. A p-value lower than 0.05
indicates that the null hypothesis can be rejected, suggesting that the groups come from different distributions.

It was claimed that the overall median R2 values of CNN and EDN are comparable, while the median of NNMF is lower.
The following median R2 values were found:

• NNMF = 0.80
• CNN = 0.90
• EDN = 0.90

A Kruskal-Wallis test was performed, followed by a multiple comparison test to determine the specific p-values for each
method. The following p-values were found:

• NNMF vs CNN = 0.0018: significant difference, CNN > NNMF
• NNMF vs EDN = 0.0049: significant difference, EDN > NNMF
• CNN vs EDN = 0.99: no significant difference

For muscles, it was claimed that dorsiflexors (DF) have lower R2 values than plantar flexors (PF). The following medians
were reported for each group:

• NNMF, DF = 0.69
• NNMF, PF = 0.88
• CNN, DF = 0.81
• CNN, PF = 0.95
• EDN, DF = 0.70
• EDN, PF = 0.94

The p-values resulting from Kruskal-Wallis tests are:

• NNMF = 0.0012: significant difference, PF>DF
• CNN = 0.0016: significant difference, PF>DF
• EDN = 0.0011: significant difference, PF>DF

Further claims were made about individual muscles. Table B.1 shows the median values for each method, for all muscles. A
Kruskal-Wallis test was performed, followed by a multiple comparison test, resulting in the p-values shown. The significance
of the results and which method scored significantly higher are indicated.
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TABLE B.1: In this table the median R2 values of all muscles for all methods are shown. Per muscle also the p-values between
all methods are shown with the added conclusion on whether the result is significant and what this means.

Tibialis Anterior
Method Median Between p-value significant?
NNMF 0,66 NNMF vs CNN 0,14 no
CNN 0,86 NNMF vs EDN 0,71 no
EDN 0,81 CNN vs EDN 0,68 no

Peroneus Longus
Method Median Between p significant?
NNMF 0,64 NNMF vs CNN 0,13 no
CNN 0,82 NNMF vs EDN 0,74 no
EDN 0,68 CNN vs EDN 0,58 no

Gastrocnemius Medialis
Method Median Between p significant?
NNMF 0,96 NNMF vs CNN 0,48 no
CNN 0,94 NNMF vs EDN 0,03 yes: NNMF>EDN
EDN 0,90 CNN vs EDN 0,42 no

Gastrocnemius Lateralis
Method Median Between p significant?
NNMF 0,64 NNMF vs CNN 0,00 yes: CNN >NNMF
CNN 0,92 NNMF vs EDN 0,01 yes: EDN>NNMF
EDN 0,93 CNN vs EDN 1,00 no

Soleus
Method Median Between p significant?
NNMF 0,95 NNMF vs CNN 1,00 no
CNN 0,94 NNMF vs EDN 0,96 no
EDN 0,96 CNN vs EDN 0,97 no

Lastly, comparisons between tasks were made by combining R2 values of all muscles and subjects. There were few significant
differences between performance on tasks. Comparisons were made in two ways: firstly, between tasks within one method
(results shown in table B.2), and secondly, between methods within each task (results shown in table B.3).
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TABLE B.2: In this table the medians are shown of all tasks for all methods. Within each method, the performance on the
tasks is compared: a p-value is calculated to identify whether there is a significant difference between the two tasks. If there
is a difference, it is indicated which of the two is larger.

NNMF
Task Median Comparison between p-value significant
BW1 0,68 BW1 BW3 1,00 no
BW3 0,72 BW1 FW1 1,00 no
FW1 0,80 BW1 FW3 1,00 no
FW3 0,64 BW1 FW5 0,61 no
FW5 0,61 BW1 RN 1,00 no
RN 0,78 BW1 SS 1,00 no
SS 0,76 BW3 FW1 1,00 no

BW3 FW3 1,00 no
BW3 FW5 0,88 no
BW3 RN 1,00 no
BW3 SS 1,00 no
FW1 FW3 1,00 no
FW1 FW5 0,61 no
FW1 RN 1,00 no
FW1 SS 1,00 no
FW3 FW5 0,95 no
FW3 RN 1,00 no
FW3 SS 1,00 no
FW5 RN 0,19 no
FW5 SS 0,59 no
RN SS 1,00 no

CNN
Task Median Comparison between p-value significant
BW1 0,71 BW1 BW3 0,98 no
BW3 0,78 BW1 FW1 0,99 no
FW1 0,82 BW1 FW3 0,97 no
FW3 0,82 BW1 FW5 1,00 no
FW5 0,74 BW1 RN 0,74 no
RN 0,84 BW1 SS 0,15 no
SS 0,85 BW3 FW1 1,00 no

BW3 FW3 1,00 no
BW3 FW5 1,00 no
BW3 RN 1,00 no
BW3 SS 0,99 no
FW1 FW3 1,00 no
FW1 FW5 1,00 no
FW1 RN 1,00 no
FW1 SS 0,98 no
FW3 FW5 1,00 no
FW3 RN 1,00 no
FW3 SS 0,99 no
FW5 RN 1,00 no
FW5 SS 0,70 no
RN SS 1,00 no

EDN
Task Median Comparison between p-value significant
BW1 0,70 BW1 BW3 0,82 no
BW3 0,79 BW1 FW1 0,48 no
FW1 0,82 BW1 FW3 1,00 no
FW3 0,80 BW1 FW5 1,00 no
FW5 0,74 BW1 RN 0,50 no
RN 0,83 BW1 SS 0,88 no
SS 0,84 BW3 FW1 1,00 no

BW3 FW3 1,00 no
BW3 FW5 0,50 no
BW3 RN 1,00 no
BW3 SS 1,00 no
FW1 FW3 0,93 no
FW1 FW5 0,21 no
FW1 RN 1,00 no
FW1 SS 1,00 no
FW3 FW5 1,00 no
FW3 RN 0,94 no
FW3 SS 1,00 no
FW5 RN 0,22 no
FW5 SS 0,60 no
RN SS 1,00 no
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TABLE B.3: In this table the medians are shown of all tasks for all methods. Within each task, the performance of the methods
is compared: a p-value is calculated to find out whether there is a significant difference between the two methods for that task.
If there is a difference, it is indicated which of the two is larger.

BW1
Method Median Comparison between p-value significant
NNMF 0,83 NNMF vs CNN 0,86 no
CNN 0,87 NNMF vs EDN 0,99 no
EDN 0,85 CNN vs EDN 0,96 no

BW3
Method Median Comparison between p-value significant
NNMF 0,81 NNMF vs CNN 0,02 yes, CNN>NNMF
CNN 0,90 NNMF vs EDN 0,03 yes, EDN>NNMF
EDN 0,90 CNN vs EDN 1,00 no

FW1
Method Median Comparison between p-value significant
NNMF 0,81 NNMF vs CNN 0,71 no
CNN 0,91 NNMF vs EDN 0,49 no
EDN 0,92 CNN vs EDN 0,98 no

FW3
Method Median Comparison between p-value significant
NNMF 0,79 NNMF vs CNN 0,03 yes, CNN>NNMF
CNN 0,90 NNMF vs EDN 0,47 no
EDN 0,88 CNN vs EDN 0,47 no

FW5
Method Median Comparison between p-value significant
NNMF 0,67 NNMF vs CNN 0,00 yes: CNN>NNMF
CNN 0,88 NNMF vs EDN 0,08 no
EDN 0,81 CNN vs EDN 0,30 no

RN
Method Median Comparison between p-value significant
NNMF 0,85 NNMF vs CNN 0,36 no
CNN 0,92 NNMF vs EDN 0,33 no
EDN 0,91 CNN vs EDN 1,00 no

SS
Method Median Comparison between p-value significant
NNMF 0,78 NNMF vs CNN 0,05 no
CNN 0,94 NNMF vs EDN 0,49 no
EDN 0,92 CNN vs EDN 0,60 no
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Table B.4 shows the pixel distances found by all methods for the lower leg muscles.

TABLE B.4: This table shows the pixel distances for all muscles and subjects between manually selected electrodes and
those found by non-negative matrix factorization-based clustering, the convolutional neural network, and the encoder-decoder
network.

Method Subject
NNMF TA PL GM GL SO

1 2,06 1,58 0,71 1,58 2,55
2 2,55 2,83 0,50 1,00 2,06
3 1,12 2,24 2,83 1,00 5,38
4 2,24 1,31 1,12 2,12 2,24
5 0,50 1,00 4,00 2,92 1,00
6 1,58 1,58 1,12 5,00 2,92
7 1,58 1,00 2,12 2,83 1,58
8 0,71 2,24 0,71 2,24 2,24

CNN TA PL GM GL SO
1 2,69 4,53 2,55 2,69 3,61
2 2,00 1,00 3,54 1,58 2,50
3 2,69 0,71 2,50 3,81 2,12
4 3,35 2,55 2,92 0,50 2,69
5 0,00 2,69 1,00 1,00 2,06
6 1,00 2,55 3,64 1,80 3,54
7 1,12 0,71 0,71 3,54 2,06
8 1,50 1,12 1,00 1,41 0,50

EDN TA PL GM GL SO
1 1,00 2,06 1,12 1,50 2,06
2 1,58 1,80 2,50 1,41 1,00
3 1,58 1,12 2,06 4,47 1,00
4 2,24 2,55 1,41 0,50 2,55
5 0,00 1,58 0,71 0,71 3,00
6 1,00 2,24 1,00 1,00 2,82
7 0,50 0,00 1,41 0,50 1,00
8 1,12 1,50 0,71 1,00 1,00
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2) Results upper leg: Table B.5 shows median values from the three subjects for each muscle during each task, resulting
in 45 R2 values per method. Table B.6 shows the pixel distances for all methods, muscles, and subjects.

TABLE B.5: This table shows median R2 values of the three subjects for each task and muscle for each method.

Method Task
NNMF VL RF VM BF ST

FW3 0,87 0,99 0,99 0,87 0,88
FW1.8 0,73 0,97 0,99 0,68 0,95
FW4.2 0,78 0,94 0,99 0,91 0,92
BW1.8 0,28 0,91 0,99 0,35 0,20
SK3 0,63 0,74 0,96 0,08 0,03
SL 0,92 0,94 1,00 0,96 0,93
SD1 0,49 0,95 0,94 0,83 0,72
SD2 0,52 0,95 0,98 0,77 0,85
ND 0,36 0,92 0,88 0,66 0,32

CNN VL RF VM BF ST
FW3 0,97 0,97 0,96 0,99 0,96
FW1.8 0,88 0,83 0,93 0,94 0,87
FW4.2 0,94 0,97 0,88 0,99 0,96
BW1.8 0,91 0,97 0,95 0,90 0,60
SK3 0,92 0,83 0,92 0,86 0,47
SL 0,95 0,97 0,98 0,89 0,97
SD1 0,15 0,49 0,67 0,92 0,87
SD2 0,94 0,91 0,95 0,96 0,37
ND 0,95 0,85 0,78 0,78 0,70

EDN VL RF VM BF ST
FW3 0,94 0,93 0,97 0,94 0,97
FW1.8 0,90 0,96 0,98 0,87 0,95
FW4.2 0,97 0,98 0,99 0,96 0,96
BW1.8 0,94 0,97 0,99 0,65 0,80
SK3 0,97 0,86 0,96 0,84 0,83
SL 0,96 0,99 1,00 0,97 0,99
SD1 0,52 0,96 0,98 0,95 0,55
SD2 0,95 0,99 0,96 0,95 0,61
ND 0,95 0,95 0,81 0,67 0,44

TABLE B.6: This table shows the pixel distances for all upper leg muscles and subjects between manually selected electrodes and
those found by non-negative matrix factorization-based clustering, the convolutional neural network, and the encoder-decoder
network.

Method Subject
NNMF VL RF VM RF ST

1 2,83 2,00 3,00 1,00 1,41
2 3,00 3,00 2,00 2,00 0,00
3 3,61 2,24 1,41 2,24 2,24

CNN VL RF VM RF ST
1 0,00 0,00 1,12 1,50 1,50
2 1,12 1,50 1,58 4,00 5,00
3 2,55 0,71 0,00 0,71 4,12

EDN VL RF VM RF ST
1 0,00 1,00 0,00 0,71 1,41
2 0,00 0,71 1,58 0,50 0,50
3 1,12 0,00 0,00 0,00 1,41
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C. Muscle synergies of the lower leg by NNMF and EDN

1) Introduction: Many different muscles contribute to movements such as walking and balancing. Controlling all of these
muscles simultaneously would require great computational power. To alleviate this, it is thought that muscles can be divided
into modules, which work together to achieve certain movements. These modules are known as muscle synergies [35, 36]. For
the lower leg, these synergies are divided into plantar flexion (PF) and dorsiflexion (DF) groups. They have been previously
extracted by Clark et al., Ivanenko et al., and Gonzalez-Vargas et al. Simonetti et al., [16] demonstrated that muscle synergies
could be extracted using NNMF-based clustering on a uniformly distributed electrode grid around the lower leg. Since in this
research NNMF-based clustering similar to the method of Simonetti et al. is performed, it is hypothesized that the clusters
also represent muscle synergies.

An EDN, such as the one created in this research, consists of an encoder and a decoder part. At the bridge in between, only
the most important key features remain, from which the output can be created. These key features are hypothesized to reflect
muscle synergies, as it should be possible to recreate the muscle-specific EMG envelopes from these synergies.

2) Methods: To demonstrate that the key features reflect muscle synergies, the encoder part of the EDN is used as a separate
network. As input to this network, recordings from movement task FW1 are given. The output, a 2x40xN (with N representing
the number of points in time included) array, is averaged over the second dimension to leave a 2xN array. This array is
gait-cycle averaged, with gait-cycles ranging from heel-strike to heel-strike. The resulting synergies are visually inspected to
appoint them to the PF or DF group. Additionally, two clusters were extracted from three gait cycles of the FW1 task using
NNMF. The clusters were also gait cycle averaged over the three gait cycles. These clusters were automatically sorted into
either the PF or DF groups. The mean and standard deviation are taken across all subjects of the resulting synergies for NNMF
and the encoder. The R2 is calculated between both averaged synergies and the previously extracted synergies from Clark et
al., Ivanenko et al., and Gonzalez-Vargas et al to compare the shapes.

3) Results: In Fig. C.1 the resulting PF and dorsiflexion synergies from EDN and NNMF are shown with those extracted
by Clark et al., Ivanenko et al., and Gonzalez-Vargas et al. Table C.1 shows the R2 values, and table C.2 shows RMSE values,
both calculated between the synergies by Clark et al., Ivanenko et al., and Gonzalez-Vargas et al. and those from NNMF
clustering and the encoder part of the EDN. It is evident that for R2, NNMF scores higher for all reference synergies. For
RMSE, all values are higher for EDN than NNMF, except for the PF synergy from Ivanenko. In Fig. C.2 the synergies from
EDN and NNMF are plotted, accompanied by their associated standard deviations.

Fig. C.1: Muscle synergies of plantar flexion and dorsiflexion from Clark et al., Ivanenko et al., and Gonzalez-Vargas et al.
compared with muscle synergies extracted using non-negative matrix factorization and the encoder-decoder network.
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TABLE C.1: R2 values calculated between the synergies by Clark et al., Ivanenko et al., and Gonzalez-Vargas et al. and those
from non-negative matrix factorization clustering and the encoder part of the encoder-decoder network.

EDN PF NNMF PF EDN DF NNMF DF
Clark et al. 0,47 0,90 0,10 0,55
Gonzalez-Vargas et al. 0,22 0,57 0,17 0,19
Ivanenko et al. 0,57 0,67 0,01 0,31

TABLE C.2: Root mean square error values calculated between the synergies by Clark et al., Ivanenko et al., and Gonzalez-
Vargas et al. and those from non-negative matrix factorization clustering and the encoder part of the encoder-decoder network.

EDN PF NNMF PF EDN DF NNMF DF
Clark et al. 0,36 0,21 0,33 0,31
Gonzalez-Vargas et al. 0,30 0,23 0,50 0,32
Ivanenko et al. 0,21 0,27 0,48 0,30

Fig. C.2: Muscle synergies of plantar flexion and dorsiflexion extracted using non-negative matrix factorization and the encoder-
decoder network, including the standard deviations.

4) Discussion and conclusion: From the resulting R2 and RMSE values, it can be concluded that the EDN synergies
resemble previously extracted synergies much less than the NNMF synergies.

The EDN synergies do not show a sharp distinction between DF and PF synergies, while the others all do. This is shown
by the following:

• For the PF synergy, a small peak exists at around 80% of the gait cycle. A similar (larger) peak exists at 80% of the DF
synergy gait cycle.

• For the DF synergy a large peak exists at about 50% of the gait cycle, which has similar timing to the peak at 50% of
the PF synergy.

It can not be said with certainty why such a distinction is not very present. It could be because the EDN has 40 filters, and
maybe there is a distinction between filters that give more PF-centered or DF-centered results. In future research, an EDN
with a bridge consisting of one filter should be considered.

The standard deviation of both NNMF and EDN is quite large, indicating that large differences exist between subjects.
This means that the resulting muscle synergies are not always the same. This could be due to natural differences between
individuals, but also, in the case of the EDN, it might be caused by differences caused by network training.

Another thing to note is that large differences can also be seen between the previously reported synergies. The exact reason
for these differences is unclear. Maybe the synergy extraction method partially determines the shape, or the groups used were
not large enough to find the same synergy.
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To conclude, the synergies extracted by EDN do not fully resemble the separate synergies, while the synergies extracted by
NNMF largely do. However, the synergies extracted by the EDN show peaks with similar timing as the reference synergies,
but they are not split into DF and PF synergies as distinctly.
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D. Locality mask upper leg

Fig. D.1: The mask used to ensure locality of electrodes, the whole figure represents an 8x8 electrode grid, with the numbers
representing the electrode numbers. The red squares are considered ”close enough” to the green one to potentially form a
cluster
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E. Euclidean distances

In this appendix, some figures are shown which are related to the euclidean distances that were calculated between the
manually selected electrodes and those selected by NNMF-based clustering, the CNN, and the EDN.

Fig. E.1: In this figure a box plot is shown of Euclidean distances in pixels (with one pixel representing the distance between
two electrodes) calculated between the manually selected electrodes of lower leg muscles and those selected by non-negative
matrix factorization clustering, convolutional neural network, and encoder-decoder network. The y-axis represents the Euclidean
distances in pixels. The x-axis represents the muscles. The horizontal lines indicate median values, calculated between all
muscles. The bottom and top edges indicate the 25th and 75th percentiles and the whiskers extend to the most extreme values
not considered outliers. Circles indicate outliers. *indicates that p<0.05.

Fig. E.2: In this figure three subplots are shown, each showing the average location of the manually selected electrodes and
the average location of the electrodes selected by either non-negative matrix factorization-based clustering, the convolutional
neural network, or the encoder-decoder network for each lower leg muscle. The locations are shown in an 8x8 grid, with each
number on the y-axis representing a row and each on the x-axis representing a column of electrodes. The locations are shown
for just subject 1.
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Fig. E.3: In this figure a box plot is shown of Euclidean distances in pixels (with one pixel representing the distance between
two electrodes) calculated between the manually selected electrodes of upper leg muscles and those selected by non-negative
matrix factorization clustering, convolutional neural network, and encoder-decoder network. The y-axis represents the Euclidean
distances in pixels. The x-axis represents the muscles. The horizontal lines indicate median values, calculated between all
muscles. The bottom and top edges indicate the 25th and 75th percentiles and the whiskers extend to the most extreme values
not considered outliers. Circles indicate outliers. *indicates that p<0.05.

Fig. E.4: In this figure a box plot is shown of Euclidean distances in pixels (with one pixel representing the distance between
two electrodes) calculated between the manually selected electrodes of upper leg muscles and those selected by non-negative
matrix factorization clustering, convolutional neural network, and encoder-decoder network. The y-axis represents the Euclidean
distances in pixels. The numbers on the x-axis represent the subjects. The horizontal lines indicate median values, calculated
between all muscles. The bottom and top edges indicate the 25th and 75th percentiles and the whiskers extend to the most
extreme values not considered outliers. Circles indicate outliers. *indicates that p<0.05.
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Fig. E.5: In this figure three subplots are shown, each showing the average location of the manually selected electrodes and
the average location of the electrodes selected by either non-negative matrix factorization-based clustering, the convolutional
neural network, or the encoder-decoder network for each upper leg muscle. The locations are shown in an 8x8 grid, with each
number on the y-axis representing a row and each on the x-axis representing a column of electrodes. The locations are shown
for just subject 1.
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