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Dear reader, 

You are about to read the bachelor thesis Music Sequencing using the Traveling Salesman Problem. 

This research has been conducted on behalf of Awaves BV in Enschede as the final assignment for my 

bachelor Industrial Engineering and Management at the University of Twente.  
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Management Summary 
 

Awaves B.V., a student startup at the University of Twente, has developed an AI DJ to improve music 

quality at student house parties. Despite implementing features such as automatic transitions and live 

user feedback, the average streaming time remains under 8 minutes, indicating a mismatch between 

the product and users' needs. The audible errors mentioned by users, contributing to this 

dissatisfaction, include inconsistent genre, limited genres, inconsistent music, inconsistent energy 

levels, unpopular and low-quality music, and poor transitions. Awaves assumes that the errors are 

caused by the steps involved in creating a digital DJ mixtape: downloading music (recommendation), 

storing annotations and metadata (classification), deciding the playlist direction (sequencing), and 

adapting mixing techniques (mixing). Here, the unsystematic sequencing process was identified as the 

most important core problem and improving this process is expected to increase the coherence and 

flow of the music playlist. Therefore, the main research question of this thesis is formulated as follows: 

What is the optimal way to increase music satisfaction by improving the sequential flow through 

automated playlist sequencing? 

To investigate how the sequencing process should be optimised, the whole process of creating a digital 

mixtape is mapped out, the relationships between the causes and effects are documented, and earlier 

solutions are summarised. Using this information we can select an optimisation approach, a Traveling 

Salesman Problem Heuristic. The TSP involves finding the shortest possible route to visit each city once. 

In the context of this research, TSP is adapted to optimise the sequence of songs in a playlist, where 

songs are treated as points in a Euclidean space and transitions between songs are used as distances. 

The created model considers multiple audio features as variables influencing musical flow, such as 

tempo, energy, danceability, valence and key. However, due to the practical and computational scope 

of this research, valence and key have yet to be selected for the validation.  

With this model, three solution methods are implemented and evaluated. The brute force algorithm, 

the nearest neighbour heuristic and the evolutionary algorithm (Excel Solver). With brute force, the 

optimal distance was found, and with the heuristic and evolutionary method, a sub and near-optimal 

sequence were found. Running this experiment for multiple scenarios showed promising potential in 

improving music sequencing. Here, all the solution methods were able to decrease the total distance 

with nearly fifty percent. Nevertheless, validations are still in the preliminary stages, requiring more 

repetitions, varied playlists, and diverse scenarios with different quantities of songs to assess the 

method's effectiveness robustly. The solution methods also been practically validated by creating four 

anonymous mixtapes, which were ranked by volunteers. The data of the assessment showed us that 

the shortest distance was ranked as the most preferred. Given the subjective nature of this research, 

several challenges were faced in executing this assessment. For instance, the length of the mixtape, 

the setting where the mixtapes where listened and the focus levels of the volunteers. Therefore, more 

validation is recommended based on the feedback. 

In general, we conclude that automating the music sequencing process using optimisation models like 

the Traveling Salesman Problem can significantly improve the distance between audio features and 

therefore, musical flow and user satisfaction. While the technical validation of the solution methods is 

promising, further research and validation are necessary to realise the potential of this approach.  
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1. Introduction to the problem 
The first chapter introduces the reader to the research conducted at Awaves BV. The structure of this 

chapter is done according to phases one and two of the (MPSM)(Heerkens, 2017). In this method, the 

action problem is defined as the problem that has to be solved. Then, the core problem is found by 

creating a problem cluster. Solving this core problem influences the action problem by closing the gap 

between the norm and reality of the company. By knowing the action and core problem, the research 

cycle is constructed. Hence,  Section 1.1 gives a brief description of the company. Section 1.2 

introduces the company’s problem and provides the action problem. In Section 1.3,  the problem is 

defined, and a core problem is chosen. Last, in Section 1.4, the research questions of the research cycle 

are formulated. 

1.1 Company 
Awaves BV is a student startup founded at the University of Twente. With the consistent need for 

music at parties, the founders of Awaves have noticed that the quality of the music played could be 

improved. Being aware that hiring a DJ comes with expensive equipment and musical knowledge, the 

founders wanted to develop a cheaper solution that aligns with the newest technology. The mission 

behind the company is to develop an automated DJ to improve the quality of music at student house 

parties. Its operations are based on building an AI-driven algorithm that can automatically make 

transitions and implement live user feedback to create a DJ effect. One of the concepts that the 

company has developed is Awaves Play, a music streaming application. The goal behind this concept 

is to experience a live digital DJ at student house parties. At the start of this research, the web 

application Awaves Play has successfully launched, and has been live for over 11 months (since 

September 2022), and strives to grow users and receive investments to grow their operations.  

1.2 Problem introduction 
After nearly one year, the average streaming time per Awaves Play user remains below 8 minutes, 

equivalent to a maximum of three songs. This trend indicates that the features of automatic transitions 

and live feedback are not significantly enhancing user engagement. Based on these insights, Awaves 

BV thinks there is a potential mismatch between the product and the user’s needs. To solve this 

problem, the company tried some improvements. They implemented a voting system to choose a 

certain mood and added user preferences, such as specific songs and mashups. On top of that, they 

tried some variations within music occasions, such as business events and gym locations. However, the 

improvement in overall streaming time has been minimal.  

➔ Therefore, the action problem is the low average streaming time per user. 

Although users are enthusiastic about the functionality and the design of the web application, they are 

not satisfied enough to use the web application more often. During direct feedback sessions, the 

standout aspect of the problem was that the dissatisfaction and reluctance to use the web application 

did not come from the functionality or the design but from its main feature, the music selection. Here, 

the lack of satisfaction was summed up by the following audible errors: inconsistent genre, limited 

genres, inconsistent music energy level, unpopular music, low-quality music, no flow, no build-up and 

poorly executed transitions.  

To facilitate music streaming for Awaves Play, the company downloads the music files/tracks from a 

record pool into its database. A record pool is a platform where music is downloaded for commercial 

uses, allowing the company to play music at lower costs and with minimal copyright issues. In creating 



7 
 

a digital DJ mixtape, the music curators and mixing programmers typically follow these steps: 1. 

download the music, 2. store annotations and metadata, 3. decide a logical music playlist, and 4. adapt 

a mixing technique. After the company tested the application for functionality and execution of the 

mixing techniques, the music was played correctly. Which indicates that the action problem is most 

likely caused by the other three steps. 

1.3 Problem definition 
Now that we understand the company well, we can start to define the underlying problems. According 

to (Heerkens, 2017), when the action problem is found, the core problems must be identified. First, to 

determine the core problems, a problem identification is executed. This step explains why this problem 

exists. Second, the causes and effects are connected, and possible core problems are stated while 

creating a problem cluster. Last, out of the core problems, the most important core problem is chosen 

to be solved, and the gap between the norm and reality is stated.  

1.3.1 Problem identification  

To define the problem and find the core problems, it is essential first to understand why this scenario 

stands out. From the concept of Awaves Play, we may assume that it shifted the responsibility in music 

playing from the DJ to the consumer. Where a live DJ has full responsibility over the music, a competing 

streaming platform, e.g. Spotify, gives full responsibility to the user. By combining these concepts, a 

new division of responsibility has to be determined. The steps of creating a digital mixtape, which 

involves downloading, storing, playlisting and mixing, fall to Awaves BV's programmers and curators. 

These steps make them responsible for determining the target audience, analysing the songs, setting 

a musical direction and ensuring the accuracy of the mix. What makes it challenging is that the 

programmers and curators have to know in advance which complaints they have to prevent, while live 

DJ can adjust feedback live. So, currently, when the mix has audible errors, as mentioned in the 

problem introduction, Awaves cannot take live responsibility to correct the music. This leads to users 

hearing music that does not fit their taste, with their only choice to exit the application. Moreover, 

giving the responsibility to the user by providing, for instance, a skip button is not allowed by legal 

issues of having a radio streaming license. That is why the company can only focus on improving its 

music quality. 

1.3.2 Problem Cluster 
To provide an insight into connections between causes and effects of the problem, a problem cluster 

is created. We already know from the problem introduction that the action problem is caused by 

dissatisfaction with the played music. This dissatisfaction is described by specific audible errors 

mentioned in the problem introduction, highlighting the quality loss of the digital DJ of Awaves Play. 

In order to construct the problem cluster, the three steps of creating a mixtape and audible errors are 

connected. Then, the possible causes and solutions are added in search of their respective core 

problems. An overview of this process is given in the following table: 
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Awaves step                  → Audible errors          →  Possible cause    → Possible solution 

Downloading music       Limited genres,         
unpopular music, low-
quality music 

Unknown                 
preferences 

Survey or case study 
music preferences 

Store annotations and 
metadata 

Inconsistent genre,   
poorly executed 
transitions 

Incomplete music    
database 

Custom classification 
system 

Decide direction           
playlist 

No flow, no build-up, 
inconsistent energy 
level 

Incoherent music 
playlist 

Automatic sequencing 
algorithm 

 

Table 1: Problem identification 

Downloading the music is the step in which all the music is collected. If there are some user complaints 

about a missing genre or the unpopularity or quality of a song, this is likely related to the decisions 

made during this step. A possible cause of the problems during this step is that the user’s preferences 

need to be discovered. The reason why these preferences have yet to be discovered is that Awaves 

Play has a broad target audience. The group of students they are targeting has yet to be defined within 

specific genres or styles. As they have experienced within the process of implementing song 

preferences, the requests were quite broad. Usually, the intention is to solve the problem by direct 

user feedback. User feedback is an effective way to adjust specific preferences to increase user 

satisfaction. However, with an average streaming time below 8 minutes, minimal or no feedback is 

received.  

Following the download step, the songs are classified using specific annotations and metadata. If this 

step is not perfectly executed, some songs may be played at inappropriate times. This leads to issues 

such as an inconsistent genres or transitions that sound offbeat. At the moment, Awaves is using a 

custom classification system, which is responsible for music annotation and adding extra metadata, 

such as if it is a local song or playable for everyone. A possible reason for these problems is that the 

classification database still needs to be completed. One of the causes of an incomplete database is the 

reliability of external data. Although a large amount of musical data is collected from record pools, it 

is sometimes accurate. As well, not every song is available; for instance, a lot of Dutch songs cannot be 

found in the record pools. That is why the curators and programmers must spend extra time identifying 

and correcting missing data. When the company is more experienced with conducting those 

corrections, some corrections are done faster.  

When the previous steps are finished, the direction of the playlist is decided. When no flow, build-up 

or inconsistent energy level is experienced, the cause is likely to be found within the logic of the music 

played. A possible cause is the incoherence of the playlist. An incoherent playlist can originate from 

the fact that as well as the downloading problem, there needs to be more focus on a specific target 

audience. Having a database with random songs makes it hard to decide which song to play when 

automatically. As discussed in the problem introduction, some solutions were implemented where the 

audience could vote for a particular mood or a specific occasion was targeted. The outcome of the 

solutions was that the demand for music was not incoherent, but the music within these situations. 

Besides defining the target audience, the sequencing process of the playlist can also be improved. 

Currently, the music is sorted by metadata as genre, tempo and key to create a harmonic flow between 
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the songs. The approach within this process is relatively primitive and unsystematic. Primarily because 

incorporating two variables at the same time introduces a new complexity in maintaining a coherent 

harmony. 

After identifying all possible causes, build the problem cluster. In the problem cluster, we can see how 

all the causes and effects are connected. Therefore, the core problems of the incoherent music playlist 

are the unsystematic sequencing process and the need for a target audience. The core problems of the 

unknown preferences are the need for a target audience and the minimal audience limit. Finally, the 

core problems of the incomplete music database are the limited knowledge about classification and 

the restricted availability of music and correct data. Resulting in the following problem cluster: 

 

 

   

     Figure 1: Problem Cluster 

1.3.3 Choosing the core problem  
Based on the methodology of the MPSM (Heerkens, 2017), only one problem is chosen as the problem 

that is solved. The most important problem, with the most minor restrictions due to unmanageable 

factors. For instance, solving the music availability includes some legal boundaries and deciding the 

target audience interferes with the founders’ decisions. Nevertheless, there are still enough solutions 

to solve in order to increase the average streaming time: 

• To tackle the issue of minimal feedback, a possible solution is to start an external survey or 

case study about the students’ music preferences. Understanding audience preferences guides 

inclusion or exclusion criteria for specific groups from the target audience, thereby fitting the 

music more precisely to the user’s taste. 
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• A custom classification system can be built to reduce the musical knowledge needed to 

increase the completeness of the music database. This system is independent of the external 

databases and gives Awaves control over the input and output of the annotations and 

metadata. The independence is achieved by an in-depth literature review about music 

classifications. 

• A possible solution for systemising the sequencing process to improve coherence within the 

music playlist is to build an automatic sequencing algorithm. This algorithm deals with the 

complexity of multiple variables while maintaining a coherent harmony. An example of a 

problem that deals with these kinds of complexity is the traveling salesman problem, where 

the shortest route is determined by calculating the minimal distance between a certain 

number of locations. 

The unsystematic sequencing process is chosen as the most important core problem in this research. 

Conducting a survey or case study would probably result in some interesting insights, but it needs more 

effectiveness on the dynamic and broad requests of the users. A custom classification system would 

provide the company with a solid foundation to control the consistency of the music database. The 

drawback is that this is a time-consuming procedure and requires external supervision for computer-

related technical knowledge. However, constructing a sequencing algorithm is an achievable solution 

within the requirements. That is why it is chosen as the problem that is solved, and therefore 

highlighted in green. 

 

Knowing the most important core problem enables us to define the gap between the norm and reality 

in more detail. Hence, as defined in the introduction, the reality is the 8-minute average streaming 

time. The streaming time is so low that minimal DJ mixing is executed before the user closes the 

application, and minimal streaming data is collected. The norm is that there must be at least some 

flow, achieved by decreasing the audible errors so that the users are satisfied enough to stay.  

1.4 Research questions 
According to the managerial problem solving method (Heerkens, 2017), after the problem definition 

the research approach is formulated. The approach requires the use of the research cycle, which 

describes the activities and knowledge that are needed to solve the problem. First, a research goal is 

stated. Next, the main research question and sub-research questions are formulated. At the end of 

this section, the scope and limitations are clarified.  

1.4.1 Research goal 
This research aims to find a way to optimise automatic playlist sequencing. This goal is achieved by 

exploring what kind of problem we face and how these problems have been solved. Followed by 

investigating how known knowledge might contribute to resolving this challenge. Ultimately, the 

research seeks to determine the feasibility of applying automation to this problem. The research is 

explanatory because relationships are researched, and no facts are established. Which is because we 

can already receive musical data and evidence about the low streaming time. Now, we want to know 

how these musical data can influence the streaming time. In order to provide an overview of all the 

relationships in a sequencing process, the following relationship model was used. The independent 

variable represents the core problem, and the dependent variables are the variables that are affected 

by the increase in the streaming time potentially.  
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     Independent                           Dependent 

 

  

 

 

 

Figure 3: Relationship model 

 

1.4.2 Research questions  
The main research question is based on the research goal and how the variables are connected. The 

sub-research questions are created according to the remaining phases of the MPSM. Phase three 

focusses on analysing the problem. In phase four and five solutions are formulated, and a solution is 

chosen. In phase six the solution is implemented to the case of the company, and phase seven is based 

on evaluating the implementation. The main research question is defined as:  

What is the optimal way to increase music satisfaction by improving the sequential flow through 

automated playlist sequencing? 

With the corresponding sub-research questions: 

• How are digital mixtapes currently made?  

To create general awareness of the subject, exploratory research is done. Within this research, basic 

concepts and constructs about the subject are gathered. Here, the selected parts of the problem 

identification and cluster are re-examined. (Phase three) 

• How are digital mixtapes defined regarding playlist sequencing, flow and user satisfaction? 

In this research question, we zoom in on the sequencing part of creating a digital mixtape. While doing 

so, the relation with the other variables is researched. Causes are investigated, and the relationships 

between the problem and causes are documented. (Phase three) 

• Which models or methods exist in the literature for automatic music sequencing? 

A literature review is done to find what theory exists about automatic playlist sequencing. In order to 

select an appropriate theoretical perspective and theoretical framework, also, earlier solutions are 

investigated. (Phase three) 

• Which optimisation approaches are applicable to solve the problem? 

In this phase, approaches from within the scope are compared to earlier solutions of the theoretical 

framework. The solutions are described, followed by a decision-making process. Based on criteria the 

most applicable solution is selected. Then, the solution is explained in detail, including extra literature 

regarding this subject.  (Phase four) (Phase five) 

• How is the solution constructed?  

Flow Playlist sequencing  Music satisfaction 
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Based on the chosen solution, the model is constructed, the data input is defined, and solution 

methods are explained. In addition, the implementation plan is drafted with a brief description of the 

needed activities. (Phase six) 

• How is the solution evaluated? 

Here, the chosen solution is evaluated. This is executed by comparing the affected situation to the 

desired situation. First, the technical validation is done by giving an example of the performance of all 

solution methods. Second, a brief sensitivity analysis is implemented with different data inputs. Last, 

the solution is practically validated by testing one of the scenarios with volunteers. (Phase seven) 

1.4.3 Scope 
The main scope of the research is to find out if there is an automated solution for playlist sequencing. 

As this is an Industrial Engineering and Management thesis, all solutions are within the theoretical 

perspective of this course. That means that in-depth information about artificial intelligence, machine 

learning and user data analysis is out of scope. Furthermore, this is a subjective concept and varies 

from person to person. Therefore, this study aims to improve the overall satisfaction of streaming 

music rather than trying to obtain specific, measurable outcomes (the number of songs streamed or 

the time spent listening). This approach acknowledges that the goal of streaming services is not just 

about delivering music efficiently but also about making sure the experience is personally meaningful 

and enjoyable for each user. 

1.4.4 Limitations 
The limitations of this research are categorised into three main areas: access, time, and availability. 

Currently, we only have access to knowledge about Excel Visual Basic as a programming language. In 

terms of literature access, we are restricted to academic papers. Given the commercial nature of the 

market, it is important to assume that relevant information exists in non-academic sources that we do 

not have access to. Usually, this research is designed to be completed within ten weeks, but more time 

is allocated to it due to preferences. However, conducting a survey about the model’s effectiveness 

would take a lot of work to validate. As mentioned in Section 1.4.3 Scope, we would instead look at 

the overall satisfaction rather than the individual aspect. Additionally, we have chosen to focus on only 

one music genre as a subset of all music due to the variety of music genres, which was decided to 

ensure that the research is more contained. Availability is dependent on both data and the company’s 

cooperation. Music data can be accessed through the Spotify API. Within this research, we assume 

that this data is accurate.  Moreover, the involvement of Awaves in this research is less than usual. 

Due to managerial implications, a more independent approach is used in conducting this research.  
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2. Theoretical Framework 
In this chapter, the first three sub-research questions are answered. In Section 2.1, we explain the 

overall DJ process. Section 2.2 links the relevant variables, and Section 2.3 summarises how this 

problem was solved earlier. The first research question we are answering is: 

• How are digital mixtapes currently made? 

2.1 How to Create a Digital Mixtape 
To answer this question, we perform exploratory research. We gather relevant concepts and 

constructs from literature to understand the theoretical perspectives and terminology. The literature 

describes creating a mixtape using the following steps: 1. Recommendation 2. Classification 3. 

Sequencing 4. Mixing. Therefore, we choose to adopt this designation.  

2.1.1 Recommendation 
Within the literature, recommender systems are defined as: “any system that produces individualized 

recommendations as output or has the effect of guiding the user in a personalized way to interesting 

or useful objects in a large space of possible options” (Burke, 2002). The music recommendations are 

given by looking for similarities from one music to another or by giving preference from one user to 

another (Adiyansjah et al., 2019). By knowing historical data from users, charts are created, so those 

songs are found more easily. Recommender Systems use information filtering algorithms to select their 

music. Usually, those algorithms are selected from an extensive catalogue of music items, that are 

identified as most relevant to a target user (Schedl et al., 2015).  

This process is described as → Assisting the search for new music, which is helped by insights through 
user data. 

Within recommender systems, there are four different layers that applications take into account 

(Afchar et al., 2022): 

• Frontpage recommendation: Recommending content at the home page without any user 

input  

• Music exploration/discovery: Recommendations after a query. Which is item similarity in 

terms of artists’ names, genres or lyrics. 

• Automatic playlist generation: Playlists are automatically generated based on various criteria 

such as genre, mood, user behaviour or thematic content.  

• Automatic playlist continuation: When a music playlist is given, songs are automatically added 

based on a sequence of seed tracks.  

 

2.1.2 Classification 
Within the literature, classification is defined as: “the process of organizing data by relevant categories 

so that it may be used and protected more efficiently. On a basic level, the classification process makes 

data easier to locate and retrieve” (De Groot, 2023). And “music classification is a music information 

retrieval (MIR) task whose objective is the computational understanding of music semantics” (Won et 

al., 2021) 

Therefore, this process is described as → Translating music into an understandable language to make 

accurate decisions on the given information. 

Within the classification tasks, five types of data are extracted (Ng & Mehrotra, 2020): 
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• Audio signal data 

Musical features that are extracted directly from the audio signal, such as pitch, rhythm, and 

loudness.  

• Metadata and expert annotations 

Descriptive information about songs that is added, such as genre, artist, and release year.   

• Audio attributes 

Audio attributes of music content, e.g. danceability, energy and valence. These attributes 

help quantify and describe the track’s acoustic characteristics and are used to understand 

how transitions in the audio attributes impact user perception of recommended music. 

• Social web data 

Information that is obtained from social media platforms, including tags, ratings, and the 

social graph, which reflects user interactions and preferences. 

• Usage data 

Data reflecting how users interact with music tracks, including play counts, skips, and 

inclusion in user-generated playlists. 

 

2.1.3 Sequencing and Mixing 
Within the literature, sequencing and mixing are closely related. According to Cliff (2000), the expertise 

of DJing highly depends on two skill levels: “the macro-level of sequencing and the micro-level of 

mixing.” Deciding the order in which music tracks are played, involves considering the DJ's taste and 

the technical aspects, such as varying the music's tempo over the DJ set to match the energy levels 

desired for the event. 

The Cambridge Dictionary (2024) defines a sequence as: “a series of related things or events, or the 

order in which they follow each other”. Baccigalupo & Plaza (2006) claim: “the quality of the 

recommendation depends mostly on the quality of past playlists: the more accurately they have been 

compiled by the users with a meaningful order, the more this order will be reflected in the output”. 

However, choosing the best option from an infinite amount of options within limited time is known to 

be difficult, even for experienced DJs (Hirai et al., 2018). As reported by Dias et al. (2017): “Findings 

unveil that though the order of the songs is ‘usually significant’, there are no clear rules for sorting the 

songs in a playlist.”  

Mixing is defined as: “given a list of songs, a DJ selects a song with beats and sounds that are similar 

to a specific point in the currently playing song such that the song transition is seamless. Consequently 

the songs will be mixed as a consecutive song” (Hirai et al., 2018). Mixing seamlessly is in the most 

basic version depending on the skill level of crossfading and beat-matching. Crossfading is fading out 

the volume of the outgoing song and fading in the volume of the incoming song. During the cross-fade, 

both songs are audible at the same time. That is where beat-matching is needed. When the both tracks 

are audible, the tempo has to be aligned. If that is not the case, a phase difference is heard. When the 

crossfading and beat-matching are executed correctly, the new song is mixed without any audible 

error. (Cliff, 2000).  

The process of sequencing is described as → Ordering the songs logically, within the selected music of 

the recommendation and classification phase. Mixing is described as → Smoothening the transitions 

of the sequenced songs, to make the moment of changing the song less observable. 

2.1.4 Answer research question 
A digital mixtape is made by adapting the recommendation, classification, sequencing, and mixing. This 

process involves a series of decisions where the mixtapes are customised. These decisions are made 
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before and during the music performance and are dependable on existing knowledge and data. To 

meet the demand of the music listener while having a limited supply of music and user data, some 

problems are more challenging than others. Playlist sequencing is such an unsolved problem. 

2.2 Playlist sequencing 
In this part, we zoom in on the process of playlist sequencing.  According to (Ng & Mehrotra, 2020): 

“Music streaming is inherently sequential in nature, with track sequence information playing a key role 

in user satisfaction with recommended music”. Now that we have enough knowledge about ‘sequence 

information’ and the recommendation steps of the DJ process, we want to find out how creating 

mixtapes is related to the flow and satisfaction of playlist sequencing. Therefore, we answer the 

following research question: 

• How are digital mixtapes defined regarding playlist sequencing, flow and user satisfaction? 

2.2.1 Playlist 
In the literature, playlist generation is defined as: “given a pool of tracks, a background, knowledge 

database, and some target characteristics of the playlist, create a sequence of tracks fulfilling the target 

characteristics in the best possible way” (Bonnin & Jannach, 2014), p.3). Before defining playlist 

sequencing, there has to be a clear distinction between two types of playlists: 

• User-curated list (Database) 

The user curated playlist is seen as the classic Spotify playlist. This playlist is defined as “a repackaging 

of music in a form native to streaming platforms”. Curated by either a person or an algorithm (Bonini 

& Gandini, 2019). A repackaged user or algorithmically created list belongs in this research to the 

recommendation and classification step and can therefore be seen as the input for our solution. 

• Queue of songs that are played (Sequence) 

The second type of playlist is defined as: “a set of songs meant to be listened to as a group, usually 

with an explicit order” (Fields, 2012). The process of arranging a set of songs into a specific order 

enhances the listening experience. Unlike a user-curated list, which may focus solely on song selection, 

this playlist emphasises the importance of the songs’ order (Furini, 2021). Therefore, this ‘queue’ of 

songs  seen as a filtered and sequenced version of the user-curated list and is the output of our 

solution. 

2.2.2 Flow 

Flow is a “psychological state characterized by complete absorption and focused attention in an 

activity, where individuals experience a sense of control and lose track of time. It is a state of optimal 

experience that occurs when the challenges of an activity match an individual's skills, leading to a state 

of deep engagement and enjoyment”. Flow was described by Mihaly Csikszentmihalyi (1990).  

Despite the definition above, flow is decomposed in multiple ways. To find the most suitable definition 

for our problem, we stated the most appropriate by Chirico et al. (2015): 

• Intensity of Flow: The degree to which individuals experience flow, characterised by deep 

immersion, enjoyment, and engagement in the activity. 

• Flow as a State: Refers to the transient, immediate experience of flow that occurs in specific 

situations or activities where individuals feel fully engaged and immersed. 
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2.2.3 Satisfaction 
The Cambridge Dictionary (2024) defines satisfaction as: “a pleasant feeling that you get when you 

receive something you wanted, or when you have done something you wanted to do”. Depending on 

the situation, there are different levels of satisfaction. The satisfaction is influenced by the “extent to 

which the list matches its intended purpose; fulfils the desired target characteristics; or is in line with 

the user’s expectations, including aspects of taste, context, or mood” (Fields  2011). The desired 

properties found are (Dias et al., 2017): 

• Popularity: Popular and trendy songs should be included if a large group has to be satisfied. 

• Freshness: The playlist should have something new to keep the listener captivated. 

• Homogeneity and diversity: There is a demand for a balance between the homogeneity and 

diversity of a playlist.  

• Musical Features: People value features differently. Some might prefer more energetic, and 

others want more peaceful music. 

• Transition and Coherence: The quality of the DJ sequencing and mixing does determines the 

overall satisfaction. An interesting finding is that the second half of the music selection usually 

has a lower coherence. 

2.2.4 Answer research question  
Changing a sequence can influence the flow experienced by the user. Flow is seen as a focus level that 

reflects the match between the music that is played and the intensity of music listening. If a flow is 

experienced, a user could experience some satisfaction by receiving something that is wanted. By 

stimulating flow, the user is in a state of meeting expectations and feeling a sense of control. 

Experiencing flow can potentially, therefore, have a positive influence on user satisfaction.  

2.3 Automatic playlist sequencing algorithms 

In this section, we answer the third research question. First, we briefly address how algorithms have 

been developed over the years. Second, the most used problem-solving methods are explained. 

Third, the evaluation methods of these solutions are summarised. Finally, an answer is given to the 

research question. The third research question that we deal with is: 

• Which models or methods exist in the literature for automatic sequencing? 

2.3.1 History 
From the literature, we notice that the development of sequencing algorithms was already underway 

before the rise of extensive streaming services. “The term playlist was first used around the beginning 

of the 20th century when the radio was introduced”(Dias et al., 2017). Concepts of mixing and 

coherence already gained relevance within concert programs around 1850. Particular inventions, such 

as audio recording and playback have made it possible to share music with a larger audience without 

the need for a live DJ or artist. Around 1970, the concept of continuous mixing was introduced together 

with the “elimination of space between songs played back in sequence” (Assante, 2008). When 

portable audio devices emerged, the usage of cassette tapes grew. Cassette tapes made combining 

and reordering different songs into personal mixtapes possible. This development made mixtapes the 

starting point for the recommendation and discovery of new music. The playlist took a further step 

during the transition from analogical to digital audio recording. With the formation of the World Wide 

Web and the MP3, sharing mixtapes without the physical constraints became possible. Today, we are 

familiar with web-based storage playlists, where music is streamed via a service (Spotify, Deezer) or 

bought online (Apple Music, Beatport). To give an overview of the history, the following figure was 

taken from the source: 
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Figure 4: History of the Playlist (Dias, 2017) 

Now that we know the timeline of the music playlist, we take a closer look at the consequences of 

these developments. “The issue of generating automatic sequences of music titles that satisfy user 

preferences” was brought up early (Aucouturier & Pachet, 2002, p.1.). Then, the main issues that 

emerged were the loss of expressiveness and incapacity to handle large music catalogues (scalability) 

(Balkema, 2009). Which is because the “problem of generating a playlist given a catalogue of titles with 

musical metadata, and a set of arbitrary constraints is a combinatorial problem. It its full generality, 

the problem is NP-hard, as it boils down to a finite domain constraint satisfaction problem” 

(Aucouturier & Pachet, 2002, p.1.), which still seems to be the case. 

2.3.2 Methods 
To solve the NP-hard problem, as discussed in the previous section, some solution methods have been 

constructed to tackle these issues. Within the literature, it is found that the following methods are 

used to generate playlists. Below, these methods are summarised, including their advantages and 

disadvantages (Bonnin & Jannach, 2014)(Dias et al., 2017): 

• Similarity-Based Algorithms: Approaches that generate playlists by selecting and ordering 

tracks based on their similarities. Distance functions depending on the available data. The 

advantage is its scalability; the disadvantage is its homogeneity. 

• Collaborative Filtering: Techniques that utilise community-provided ratings or preferences to 

recommend tracks or playlists. The advantage is that it adapts to preferences; the 

disadvantage is that it requires much data. 

• Frequent Pattern Mining: Identifying common patterns or associations among tracks in 

existing playlists to inform new playlist compositions. The advantage is that it can reproduce 

what already exists; the disadvantage is that the quality depends on the input. 

• Statistical Models: Utilising statistical methods to track selection and sequence, such as 

Markov and latent variable models. The advantage is that plenty of algorithms exist; the 

disadvantage is that the learning process is time-consuming. 



18 
 

• Case-Based Reasoning: Leveraging past cases or instances of playlist generation to solve new 

playlist creation challenges. The advantage is low computational complexity; the disadvantage 

is low scalability. 

• Discrete Optimisation: Formulating playlist generation as an optimisation problem where the 

goal is to meet explicitly defined constraints. The advantage is that most targets are satisfied 

when background knowledge is accurate; the disadvantage is that most solutions are 

computationally complex and hard to scale. 

• Hybrid Techniques: Combining multiple algorithms or techniques to leverage their strengths 

and mitigate their weaknesses. The advantage is overcoming individual limitations; the 

disadvantage is that it is more expensive and time-consuming than a sub-optimal solution. 

 

2.3.3 Answer research question 
There exist methods for the development of automatic playlist sequencing. Even more, these 

developments already started a century ago. As this is an NP-hard problem, there are some issues 

that still need to be resolved. Over the years, some solutions have emerged who have developed the 

music industry as we know it today. In the next chapter, the methods above are compared to the 

known approaches in the field of Industrial Engineering and Management. 
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3. Solution: Traveling Salesman Problem 
In this chapter, the solution approach to the core problem is chosen. In Section 3.1, the possible 

solutions are presented. In Section 3.2 the solutions are compared to the problem. In Section 3.3 the 

chosen solution is explained further. In Section 3.4, the mathematical formulation of the solution is 

shown. In Section 3.5, additional literature is discussed. Within this chapter, the following research 

question is answered: 

• Which optimisation approaches are applicable to solve the problem? 

3.1 Optimisation approaches 
With the theoretical framework of the previous chapter, we can choose a fitting solution from 

knowledge within the scope. Here, planning is known as one of the most complex tasks in operations 

management because the number of possible options increases rapidly as the number of activities and 

processes increases. We require is that we need an approach, which can automate playlist sequencing 

with available data. First, we are familiar with optimisation tools for dynamic and linear programming. 

Dynamic programming usually obtains solutions by working backwards from the end of a problem 

toward the beginning, thus breaking up a significant, unwieldy problem into a series of more minor, 

more tractable problems (Winston, 2004). Linear programming attempts to maximise or minimise the 

linear function of decision variables while satisfying some constraints. Second, we know planning 

heuristics for scheduling and the traveling salesman problem. Scheduling determines the sequence in 

which work is to be tackled, where some operations require a detailed timetable showing  when jobs 

should start and when they should end (Slack et al., 2016). The traveling salesman problem, also known 

as the Vehicle Routing Problem, focuses on minimising the total routing cost with a fixed number of 

vehicles (Golden et al., 1984). However, finding the optimal solutions for significant problems in a 

reasonable time is still hard. Therefore heuristics “common sense methods” are applied. Last, we know 

about the stochastic process of queuing and Markov chains. A stochastic process is the study of how a 

random variable changes over time (Winston, 2004). The table below has been created to give a better 

overview of the approaches. Here, the existing methods of the literature from Chapter 2 are linked:  

Known 
Approaches 

Purpose Aligning Method 
(Section 2.3) 

Input Dangers 

Dynamic 
programming 

Optimise 
decisions 

Discrete 
optimisation 

Decisions Too many 
decisions 

Linear 
programming 

Optimise 
objective 

Discrete 
optimisation 

Objective 
function 

No specific 
objective 

Scheduling 
heuristics 

Allocate 
resources 

Discrete 
optimisation 

Priorities and 
availabilities 

Unknown 
priorities and 
unlimited 
availability 

Traveling salesman 
problem heuristics 

Determine 
optimal 
route 

Similarity-based 
algorithms 

Locations, 
distances, 
capacity 

Abstractness 
music 

Queuing/ Markov Optimise 
service 
processes 

Statistical method Arrival and 
service ratios 

Scarcity data and 
non-
deterministic 

 

Table 2: Overview approaches 
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By choosing the solution, we have to consider the dangers that come with combining this approach 

with a new case. The danger of choosing discrete optimisation as dynamic or linear programming is 

that scalability could be better. When more songs or variables are added, the computation time 

increases with increasing decisions, or the objective function loses its specific objective. Also, 

scheduling suffers from scalability due to the company’s extensive music database. In addition, there 

are no clear priorities defined between songs, mainly because user preferences still need to be 

discovered. The danger of the traveling salesman problem heuristics as a similarity-based algorithm is 

the tendency to homogeneity, where music becomes too abstract. Finally, the risk of considering a 

stochastic solution as the Markov chains is that the user data is scarce. Knowing probabilities is 

necessary to solve a non-deterministic problem.  

3.2 Selected approach 
In order to decide which solution approach we are using, the MoSCoW rules are applied (Heerkens, 

2017). Hence, we can prioritize what needs to be done now and what can potentially wait till later. In 

the table, demands and requirements are classified into different categories: 

 

MoSCoW Automatic Playlist 
Sequencing 

Must Have No delay 

Should have Scalable 

Could have Adaptive  

Want to have but not 
have this time around 

Optimal sequence 

 

     Table 3: MoSCoW rules 

From the problem case, we know that the application Awaves Play functions well. Implementing a 

new solution might affect the system’s functionality by, for instance, increased computation times. 

The following arguments have been chosen by the MoSCoW rules: 

• No delay is a must-have requirement. When a delay is experienced, the application Awaves 

Play automatically performs worse than before implementation. Therefore, no delay (minimal 

computation time) is a must-have requirement.  

• Scalability is the second important requirement. While improving the sequence, the target of 

the action problem is to increase the average streaming time. If the solution is not scalable, 

the system still fails after minor improvement.  

• Adaptivity of the solution is the third important requirement. As mentioned in the possible 

core problems and literature, user preferences within the music industry are dynamic. That is 

why a possible solution could only work temporarily and loses its value over time. Also the 

effect of satisfaction can decrease by experienced homogeneity.  

• The search for the optimal solution is the least important priority. Knowing that there exists 

a widespread taste of users, the optimal solution remains subjective. Within scheduling, 

providing an optimal solution is rarely attempted and somewhat satisfied by an acceptable 

solution.  

Decision 
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Considering the should-have criteria, given that only the traveling salesman problem heuristic remains 

as a scalable and potential solution. In addition, the traveling salesman problem already has similarities 

with music sequencing. Namely, the DJ has to find the most logical order of songs to make the music 

sound coherent, whereas the traveling salesman has to find the shortest/cheapest route to deliver its 

packages. Besides, in the algorithm, the salesman can only visit each city once, while during DJ mixing, 

it is preferable to play not the same song again. Based on this information, we chose this approach to 

develop further in this research. 

3.3 The Traveling Salesman Problem (TSP) 
The chosen approach for solving the problem is a traveling salesman problem heuristic. Which is a 

classic optimisation problem, and belongs to the class of NP-hard problems (Jünger et al., 1995). The 

problem involves a salesman who has to visit a set of cities and return to the starting city, minimising 

the total distance of cost travelled. Where at Vehicle Routing Problems, cities can be visited multiple 

times, here the goal is to find the most efficient route that visits each city exactly once. A well-known 

example of a TSP heuristic is the nearest neighbour. Furthermore, variants of the traveling salesman 

problem exist, such as subtours and the distinction between symmetric and asymmetric distances. For 

the scope of this research, we keep it to the most basic version of the problem: 

Dantzig-Fulkerson notation (Laporte, 1992): 

𝑚𝑖𝑛 ∑ 𝑑𝑖𝑗𝑡𝑖𝑗

𝑛

𝑖≠𝑗

 

Subject to: 

∑ 𝑡𝑖𝑗

𝑛

𝑖=1𝑖≠𝑗
= 1  ∀i ∈ N 

∑ 𝑡𝑖𝑗

𝑛

𝑗=1𝑗≠𝑖
= 1 ∀j ∈ N 

For all proper subsets 𝑉 ⊂ 𝑁, 𝑉 ≠  ∅ 

∑ 𝑡𝑖𝑗

𝑛

𝑖≠𝑗

 ≤ |𝑉| − 1 

𝑡𝑖𝑗 ∈  {0,1}, i, j ∈ 𝑁   

Where: 

• N = {1,2, …, n} is the set of locations 

• 𝑑𝑖𝑗 is the distance between i and j  

• 𝑡𝑖𝑗 is a decision variable with a value of 1 if and only if the salesman goes from i to j, 0 

otherwise. 

• Each location N can only be visited once. 

 

3.4 Existing Applications 
Before we start constructing the problem model, we first want to dive once again into the literature 

to discover if the traveling salesman problem approach has already been used with music sequencing. 

If that is the case, what are the necessary components that are considered? In the following table, 
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some applications of the traveling salesman problem in combination with music sequencing are 

highlighted:  

Tool Method Chosen Variables Goal Creator 

Travellers Sound 
Player 

Audio and web-
based similarities 

Timbre, 
Instrumentation, 
Social 
background 
artist. 

Music 
recommendation 

(Pohle et al., 
2007) 

Music Map Mapping songs 
into a two-
dimensional map 

Artist name, Song 
Length, Tempo 

Reflect subjective 
preferences 

(Hartono & 
Yoshitake, 
2013) 

Graph problem Graph traversal 
using tempo, key 
and timbre 

Key, Tempo, 
Timbre 

Replicate 
professional music 
curators 

(Bittner et al., 
2016) 

Smart Playlist 
Shuffle 

2opt script in 
Python 

Acousticness, 
Danceability, 
Energy, 
Instrumentalness, 
Loudness, 
Speechiness, 
BPM, Valence 

Smooth 
transitioning 

(Hildén, 2020) 

Playlist 
Optimalisation 

Nearest 
neighbour with 
multiple 
dimensions 

Key, Tempo, 
Energy 

Visualisation track 
ordering  

(Holtes, 2021) 

 

Table 4: TSP music sequencing applications  

We have found from the literature that over the years, some articles have been published about the 

traveling salesman problem application to a music playlist. For instance, the first article used the TSP 

to order an extensive music database on a portable MP3 player logically, where a physical wheel was 

added to navigate within the route. The second article researched creating smaller neighbourhoods 

based on audio features to reflect user subjective preferences and solve them with a TSP algorithm. 

Moreover, the fifth article performed a TSP solution together with a principle component analysis to 

use all variables simultaneously.  

Although these articles do not go in-depth about our case, they still provide an inside look at how this 

has been used or will be used in the future. What stands out is that each article has its interpretation 

of implementing the traveling salesman problem and chooses music variables differently. For example, 

the two oldest articles aim to reduce the of the music database’s randomness. The third article is trying 

to replicate professional artists by reducing audible errors. Moveover, the last two articles investigate 

how they can increase song coherence. Therefore, we might assume that the interpretations and 

chosen variables may have evolved with the available data and resources. In addition, the second 

article recommended further research: “We believe that there is a strong psychological correlation 

between the selections of the attributes with the satisfaction of the users with respect to the automatic 

generation of the playlist”. They are indicating the enduring relevance of this solving method.  



23 
 

3.5 Answer research question 
To answer the research question; only some optimisation approaches are equally applicable. We 

have decided that delay and scalability are requirements that need to be met in the solution, and 

therefore the, traveling salesman problem heuristic is chosen as our solving method. This method, 

combined with automatic playlist sequencing is familiar, however the goals behind the problem cases 

vary widely. Hence, the necessary components are a well-considered selection of chosen variables, 

and a compatible application of the traveling salesman problem. 
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4. Construction model 
This chapter aims to construct the model. In 4.1 TSP as a Music Sequencer, the mathematical model 

is modified, and the growth of decisions is explained. In Section 4.2 & 4.3, the model input and 

distance function are discussed. In Section 4.4, the solution methods are constructed and in Section 

4.5, the results are highlighted. Answering the following research questions: 

• How is the solution constructed?     

• How is the solution evaluated? 

4.1 The TSP as a Music Sequencer 
Before constructing the model, the mathematical model needs to be modified. To adapt the traveling 

salesman problem for sequencing of music playlists, the following rephrases have been made to the 

mathematical model: 

• The city N that has to be visited is renamed with song S 

• The distance 𝑑𝑖𝑗 is the distance between the chosen song variables. 

• The salesman is changed by DJ. 

Resulting in the following model: 

𝑚𝑖𝑛 ∑ 𝑑𝑖𝑗𝑡𝑖𝑗

𝑠

𝑖≠𝑗

 

Subject to: 

∑ 𝑡𝑖𝑗

𝑠

𝑖=1𝑖≠𝑗
= 1  ∀i ∈ S 

∑ 𝑡𝑖𝑗

𝑠

𝑗=1𝑗≠𝑖
= 1 ∀j ∈ S 

For all proper subsets 𝑉 ⊂ 𝑆, 𝑉 ≠  ∅ 

∑ 𝑡𝑖𝑗

𝑠

𝑖≠𝑗

 ≤ |𝑉| − 1 

𝑡𝑖𝑗 ∈  {0,1}, i, j ∈ 𝑆   

 

Where: 

• S = {1,2, …, n} is the set of songs 

• 𝑑𝑖𝑗 is the distance between the variables from song i and j * 

• 𝑡𝑖𝑗 is a decision variable with a value of 1 if and only if the DJ goes from i to j, 0 otherwise. 

• Each song S can only be chosen once. 

 

 
* See 4.3 Distance 
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4.2 Data input (Audio Features)  
Now that we have defined the mathematical model, we can start by defining the model’s input. The 

data input needed are the musical songs’ respective audio features. As mentioned in Chapter 2, audio 

features are labels for extracted data from the classification step. Using Spotify API data, we can access 

an extensive database of classified songs. The features that are considered most important are tempo, 

energy, danceability, valence and key. tempo is necessary for the beat-matching process of song 

mixing. Energy, danceability and valence are used to determine the direction of the mix. Moreover key 

is used to make the music sound harmonically correct. As we have seen in the existing applications and 

notice within the Spotify API, these features currently appear to be the most relevant. Further 

explanations of audio features are given (Spotify for developers, 2024): 

Tempo 

The tempo is the overall estimated pace of a track in beats per minute (BPM). In musical terminology, 

tempo is the speed of a given song and derives directly from the average beat duration. This audio 

feature sets the mood (Kody, 2021). Also, here, it is best to stick with the same tempo. After a moment, 

it gets too uniform, and a change has to be made. An overview of some examples is given below: 

 

 

    Figure 5: Genre BPM (Kody, 2021) 

Energy 

Energy is a measure from 0.0 to 1.0, representing a perceptual measure of intensity and activity. 

Typically, energetic tracks feel fast, loud, and noisy. For example, death metal has high energy, while 

a Bach prelude scores low on the scale. Perceptual features contributing to this attribute include 

dynamic range, perceived loudness, timbre, onset rate, and general entropy. 

Danceability 

Danceability describes how suitable a track is for dancing based on a combination of musical elements, 

including tempo, rhythm stability, beat strength, and overall regularity. A value of 0.0 is the least 

danceable, and 1.0 is the most danceable. 

Valence 

Valence is a measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track. Tracks 

with high valence sound more positive (e.g. happy, cheerful, euphoric), while tracks with low valence 

sound more negative (e.g. sad, depressed, angry) 

Key 

The key is the note or chord the track is in. Integers are used to map keys using standard Pitch Class* 

notation. E.g. 0 = C, 1 = C♯/D♭, 2 = D.  
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(*Pitch Class Notation is a way of naming the tones of the musical chromatic scale without regard to 

octaves. In this notation, the 12 unique tones of the Western musical system are identified by a 

number from 0 to 11.) (Wikipedia, Pitch Class) 

Mixed In Key is an example of a software application used by DJs and music producers to analyse the 

music classification of songs and tracks. One of their inventions is the Camelot Wheel, shown in the 

figure below, a version of the circle of fifths. This wheel guides them to choose the right song on their 

key. The rule of thumb is to stick to the same key to make the music sound harmonically correct. 

However, after a while, this becomes homogenous. The solution is to go up or down one increment in 

a straight line on the wheel.  

 

                   

Figure 6: Camelot Wheel (Mixed in Key)  Figure 7: Solution harmonic sound (MiK) 

 

4.3 Distance 
After defining the most relevant audio features, we discuss the distance function. Due to the 

different scales, also different distances have to be determined. In this research, we use two kinds of 

distances: The Euclidian distance and the Key distance.  

4.3.1 Euclidian distance 
The Euclidian distance is known as its most general metric, where mainly the Pythagorean theorem is 

used to determine the distance: 

𝑑(𝑃, 𝑄) = √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 

Where 𝑃 = (𝑝1,𝑝2) and 𝑄 = (𝑞1,𝑞2)  are two different songs with two chosen audio features. 

However, for this problem, we are adding a normalisation formula to fit the audio features within the 

calculations. If needed the distance can be as well be calculated for multiple dimensions. 

Normalisation 

The data is normalised before we actual distance is calculated. Which is to make sure the chosen 

songs have a relatively equal value concerning the other coordinates. Which is done by the following 

formula:  
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𝜈𝑎𝑙𝑢ⅇ − min

max −min
 

 

   Figure 8: Normalisation formula 

 

In the table below a practical example of value normalisation is given. Variable X is an example of an 

energy, danceability, or valence type of value, and variable Y, is an example of a tempo type of value. 

As we can see at norm X and norm Y the lowest value now has the value zero, and the highest value 

has the value one. Each value in between gets a relative value in between.  

 

Variable X Variable Y Norm X Norm Y 

0,1 100 0 0 

0,4 120 0,5 0,4 

0,75 140 0,8125 0,8 

0,9 150 1 1 

 

    Table 5: Example value normalisation 

Multiple dimensions 

Within the original traveling salesman problem, only two coordinates are needed. However, within 

music theory, more than two variables are relevant simultaneously. For this situation, we have to 

first look at the theory of dimensions. The Euclidian distance namely applies to multiple dimensions 

(Black, 2004). This means that the new distance is calculated by adding one dimension to the 

formula. The principle holds that the shortest distance can also be found if the distance is calculated. 

For three dimensions:    𝑑(𝑃, 𝑄) = √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + (𝑝3 − 𝑞3)2 

Where 𝑃 = (𝑝1,𝑝2, 𝑝3) and 𝑄 = (𝑞1,𝑞2, 𝑞3)  are two different songs with three chosen audio 

features. 

And for N dimensions:  𝑑(𝑃, 𝑄) = √∑ (𝑝𝑖 − 𝑞𝑖)2𝑁
𝑖=1  

Where 𝑃 = (𝑝1,𝑝2, … , 𝑝𝑛) and 𝑄 = (𝑞1,𝑞2, … , 𝑞𝑛)  are two different songs with 𝑛 chosen audio 

features. 

The advantage of using this theory, is that the calculated distance becomes more representable to 

reality. The disadvantage is that it comes at the expense of simplicity in terms of possible scenarios 

and visualisation. To give an impression, a scenario with one extra dimension (3D-model from an 

existing application) is visualised in Figure 9. Due to the scope and limitations this research will only 

focus on two dimensions. 
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Figure 9: Visualisation of a TSP solution (Holtes, 2021) 

4.3.2 Key distance 
The key variable is unique because of its chromatic scale, as mentioned in Section 4.2 Key. Instead of 

using the Euclidean distance, a new distance has to be used to find the optimal sequence. To have a 

clear overview the key variables’ position, we use of the Camelot Wheel. Which is an ordinal scale with 

cyclic properties. In Figure 6, it is shown that every movement around the wheel is counted as one 

step. So, all possible steps range from zero to a maximum of seven steps. The following figure gives an 

example of one versus seven steps is given, indicating a significant difference in harmony. 

                    

    

   Figure 10: Distance Key Camelot Wheel (Mixed in Key) 

As we can see in Figure 10, one step represents distance one, and the maximum distance is distance 

seven. This gives in total a total of eight possible distances. If the distance is counted eight or more, 

there is a shorter route somewhere else. When the set of songs is equally distributed in key, the 

following probabilities of a key distance are used. Also, here, the distances are normalised. 

Distance Probability Normalisation 

0 1/24 0 

1 3/24 1/7 
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2 1/6 2/7 

3 1/6 3/7 

4 1/6 4/7 

5 1/6 5/7 

6 3/24 6/7 

7 1/24 7/7 

7< 0 Not applicable 

  

Table 6: Distance Key 

Decision 

Regarding the scope of this study, we decided to only use the Euclidean distance for the remainder of 

this research. Despite the fact that key being an vital audio feature and the applicability to use the 

TSP approach, it brings new complications when combining the key distance with the Euclidean 

distance. First, because the Euclidian distance is based on a fixed location in the Euclidian space and 

the key distance based on a relative position of the starting point in a circle. Second, it comes along 

with the computational problem that key is already using more than one dimension. In addition, we 

have to consider that key is a qualitative variable and the Euclidean distance variables are 

quantitative, and therefore weights are necessary to balance the distance values.  

4.4 Solution methods  
With all the information about the solution and data input collected, the solution methods are 

selected. First, a random sequence used as a representative of the old situation. Next, we use brute 

force in order to find the optimal distance. Because brute force runs into computational complexities 

two near-optimal alternatives are chosen: The nearest neighbour heuristic and the evolutionary 

method. In the table below the advantages and disadvantages of the solution methods are highlighted.  

 

Solution Method Random (Old 
method) 

Brute Force Nearest 
Neighbour 

Evolutionary 

Advantage Unlimited 
song capacity 

Optimal Simple Near-optimal 

Disadvantage Unsystematic Limited song 
capacity 

Sub-optimal Complex 

       

Table 7: Comparison of solution methods 

4.4.1 Brute force 
One of the most robust methods of solving the traveling Salesman Problem is brute force, which is 

simply said: visiting every option possible. The minimum of songs needed for a mix is two, and from 

then, a first transition is made. However, the amount of permutations grows exponentially. In the 

evaluation, we decided to use the amount of eight songs. For a mixtape, assuming that the average 

song length is three minutes, this would mean a length of (8 * 3 minutes) 24 minutes. If we want to 

hear the optimal sequence, it would already take nearly two years (40320*24 min) to listen to all 

possible sequences. Which emphasises that the original way runs into computation complexities. The 

advantage of this method is that the optimal solution is always found. The disadvantage is the limited 
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song capacity that can be used, which is not favourable in case of scalability. For more clarity, we can 

check the following permutation table.                              

 

Number of songs (n) Permutations (n!) 

1 1 

2 2 

3 6 

4 24 

5 120 

6 720 

7 5040 

8 40320 

9 362880 

10 3628800 

11 39916800 

12 479001600 

 

    Table 8: Example Permutations 

 

4.4.2 Nearest Neighbour (NN) 
As we have seen in 4.4.1 Brute force, exact solutions are only sometimes possible. That is when we 

have to switch to heuristics. As mentioned at 3.3 Traveling Salesman Problem, one of the well-known 

TSP heuristics is the nearest neighbour. The nearest neighbour entails constructing a route by adding 

the nearest city to the end of the route (van der Heijden & van der Wegen, 2017). Here, the 

algorithm chooses a starting point (e.g. i1 ), checks for a song that is closest to i1 (e.g. i2), and connects 

this city with i1. After that this step is repeated until the last song which has not been visited yet is 

added to the end of the tour. The advantage of this method is the computational simplicity. The 

disadvantage is the sub-optimality of the generated answer. Figure 11 gives an example of how this 

process evolves. 

 

Figure 11: Example Nearest Neighbour (van der Heijden & van der Wegen, 2017) 
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4.4.3 Evolutionary (Excel Solver) 
When searching for an Excel implementation of the traveling salesman problem, the evolutionary 

method of Excel Solver is mentioned multiple times as an alternative solution method to brute force 

(Rasmussen, 2011)(Gusron, 2023)(Sam, 2022). The method is a genetic algorithm (Young, 2024), that 

works by starting with a random population of input values. The outcomes of these values are 

compared to the target value (minimal distance). Then, the values closest to the target are used to 

produce offspring for the second population. Which goes on until there is very little change in the 

objective function. In the figure below, this process is visualised: 

 

    Figure 12:  Evolutionary method (Young, 2024)  

4.4.4 Implementation plan (pseudocode) 
The implementation plan is drafted to describe steps that are executed to measure the solution 

methods. Using this plan generates four sequences based on each solution method. The execution of 

this plan can be found in the Appendix A. 

 

General (Random) 

1. Create a table with the randomly chosen songs from 1 to S and select two or more 

Euclidian distance audio features. 

2. Choose the first song as a starting point. 

3. Create a second table where the distance (d) is calculated based on the Euclidian 

distance. 

 

➢ Brute Force 

4. Create a new Excel sheet and put down the permutations of every possible sequence. 
For instance, with three songs (1,2,3) that is: {(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), 
(3,2,1)} 

5. Combine the second table (Distance table) with the sequences of the new Excel sheet. 
6. Calculate the total distance of every sequence  by summing the individual distances. 
7. Find the minimum distance of all the total distances, which is the optimal distance. 

 
➢ Nearest Neighbour (VBA)* 

 
* The Visual Basic code can be found in Appendix B 
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4. Take parameter MinDistance and give it a large value, e.g. 10000. 

5. Calculate the distance between the first and second song of the selection. 
6. Check if distance is smaller than the large number. 
7. If it is smaller than MinDistance, the value is updated. 
8. Repeat this for every possible distance. 
9. Mark the song with the smallest distance as visited, e.g. Visited(False) → Visited(True) 
10. Create a third table where the value of the next visited song is placed. 
11. Create a loop where it is checked if the city is not visited yet.  
12. Repeat step 4 until all songs are marked as visited. 

 

➢ Evolutionary  

4. Create a third table with a chosen sequence and the matching distance from the second 

table. 

5. Sum the total distance under the third table. 

6. Use the Excel solver to calculate* the minimal distance of the sequence. (Select the 

evolutionary solving method and choose that songs can only be chosen once).     

4.5 Results 
After executing the solution methods in Excel and algorithms to the Visual Basic coder, we were able 

to read some results. In this section, we briefly visualise the music sequencing model and summarise 

of the findings. First, an example of the solutions’ performance is given. Next, a sensitivity analysis is 

executed for different scenarios. Last, the methods were implemented in an actual mixtape and 

assessed based on user preferences.  

4.5.1 Assumptions 
In conducting this evaluation, several decisions are made based on assumptions. These assumptions 

were necessary to generalise the results and manage the complexity of the study.  

• Song Selection: The songs selected for the evaluation are collected from Spotify playlists 

based on three different genres: EDM (Electronic Dance Music), Hip-Hop and Rock. Assuming 

that these popular genres have different audio feature values. 

• Variable Selection: The selected variables are filtered by their practical and computational 

applicability. Valence is a variable that values musical positiveness. However, this subject is 

neither used nor reflected yet in the company. On the other hand, key is a valuable variable, 

but, as discussed in 4.3.2 Key distance, combining this feature with the others will create a 

new mathematical problem. Therefore, both variables are excluded. We assume that the 

other variables are valuable enough to test the effectiveness of the solution methods.  

• Number of songs: The number of songs selected is nine, based on the maximum available 

permutations for brute force in Excel. Given that the first song is fixed, 8! (40320) different 

sequences are possible. We assume that 40320 possible sequences are representable for 

comparing the solution methods.  

• Solver Settings: The input settings are based on literature within Excel solver. In addition, the 

amount of iterations decreased with the extension of the Excel file due to the computational 

power of the laptop. Assuming that the answers to the evolutionary method may differ with 

different settings. 

 

 
* The settings can be found in Appendix C 
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4.5.1 Performance 
First, a simple technical validation is executed. Here, an EDM playlist is selected together with the 

variables energy and danceability*. The optimal solution is calculated by using the Euclidean distance 

(4.3.1) formula and compared to the old situation (random) and the two solution methods (NN & 

Excel Solver). In Figure 12, a visual representation of the sequences is given. What stands out is that 

the old situation has multiple line intersections, and all the solution methods have nearly no 

intersections. Moreover, it is noticeable that Brute Force and Solver differ in one song in their 

sequence. In Table 9, the distances of the sequences are collected and compared. As expected from 

the theory, all solutions have a smaller distance than the random sequence. 

 

  

Figure 12: Sequence solution methods  

 

Method Random Brute force Nearest 
Neighbour 

Solver 

Distance 5,227 2,263 2,858 2,362 

 

    Table 9: Comparison of solution methods 

 
* See Appendix E 
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4.5.2 Sensitivity analysis 
For the sensitivity analysis, three different playlists are combined with three different song variable 

combinations. The collected playlists each consist of a different music genre. EDM, the company’s 

primary genre, was selected first. Next, Hip-Hop and Rock are chosen as comparable popular genres. 

The variables left (Danceability, Energy and Tempo) are chosen for the different scenarios. As shown 

in Table 10, EDM songs have a wide range of danceability, a high energy level and a relatively high 

tempo. The Hip-Hop songs have a high danceability, broad energy level and an intermediate tempo. 

Last, the Rock songs have a relatively low danceability rating, a broad energy level and a broad tempo 

range.  

Genre EDM Hip-Hop Rock 

Danceability (0,355-0,786) (0,737-0,852) (0,414-0,586) 

Energy (0,802-0,984) (0,547-0,821) (0,631-0,945) 

Tempo (125-140) BPM (93-117) BPM (82-130) BPM 

 

     Table 10: Input variables 

The following table compares all the different playlists to the solution methods. The first scenario 

corresponds to the performance example in Figure 12 and Table 9. In addition, the maximum 

distance, calculated by brute force, is added to indicate how the random solution performs. The most 

striking point of this analysis is that all the solutions outperform the random solution. It is also 

noticeable that the nearest neighbour heuristic sometimes performs better than the Excel solver. 

Furthermore, no exceptional results were noticed. 

 

Playlist 
(variables) 

Random Brute Force Nearest 
Neighbour 

Excel Solver Max distance 

EDM (Dance, 
Energy) 

5,227 2,263 2,858 2,362 6,273 

EDM (Tempo, 
Energy) 

5,425 2,769 3,107 2,915 6,523 

EDM (Dance, 
Tempo) 

5,753 2,799 2,799 3,135 6,601 

Hip-Hop 
(Dance, Energy) 

4,334 2,649 2,896 2,655 6,322 

Hip-Hop 
(Tempo, Energy) 

4,501 2,63 2,779 2,693 5,479 

Hip-hop (Dance, 
Tempo) 

5,002 2,657 2,885 2,657 6,05 

Rock (Dance, 
Energy) 

5,145 2,649 2,649 2,649 6,248 

Rock (Tempo, 
Energy) 

5,774 2,718 3,264 2,718 6,518 

Rock (Dance, 
Tempo) 

5,807 2,387 2,392 2,729 7,589 

 

    Table 11: Sensitivity analysis 
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4.5.3 Practical validation  
To practically validate the solution, a group of four different sequences have been compiled into a 

mixtape: 

1. Shortest distance (Brute Force) 

2. Sub-optimal distance (Nearest Neighbour) 

3. Random distance 

4. Maximum distance (Brute Force) 

Here, the same songs and sequences at 4.1.5 Performance were used for this analysis (EDM, 

Danceability & Energy). During the setup of this validation, some adjustments were made to make 

the assessment manageable:  

• First, the solver sequence has been omitted to prevent ambiguity about the similarity 

between the solver and the brute force sequence. Instead, the maximum distance, calculated 

by brute force, has been added as a “worst-case scenario”.  

• Second, to decrease the total length of the mixtape, the duration of the songs was shortened 

to 7 bars (~13 seconds); here, the first drop (most intense section) of every song was 

selected as a fragment.  

• Third, a pause of 1 bar (~1,5 seconds) was added between the songs to intensify the focus on 

the sequence instead of the transitions. 

Subsequently, 23 volunteers from within the social environment were asked to rank the sequences 

based on their preferences from 1 (best) to 4 (worst). The titles of the samples were made 

anonymous. The results of this assessment are shown in the frequency table below, where each 

point represents the number of times the sample is given that respectable ranking. The 

implementation expected that the shortest distance would perform best, the sub-optimal distance 

second, the random distance third, and the maximum distance last. What stands out from this 

practical assessment is that the shortest distance (Min) has a significant difference compared to the 

others. The maximum distance (Max) is ranked with second highest average ranking, the random 

(Random) sequence third and the nearest neighbour (NN) is ranked fourth. 

Sample  Rank #1 Rank #2 Rank #3 Rank #4 Average Score 

NN (1) 3 3 11 6 2,867 

Random (2) 4 7 3 9 2,739 

Max(3) 6 6 7 4 2,391 

Min (4) 10 7 2 4 2 

 

Table 12: Frequency analysis & average ranking 

4.5.4 Answer research question 
In this chapter, we combined all the information gathered from the previous chapters, constructed 

the model and introduced solution methods to implement. Here, we discovered that despite the 

possibilities (multiple dimensions and the key distance), the model quickly runs into new 

computational challenges and therefore, had to be excluded. Later, during the evaluation, the 

solutions were theoretically validated, and the chosen methods improved in sequence distance. The 

sensitivity analysis shows that this is still the case for different scenarios. Last, volunteers have been 

practically validated four sequences, resulting in a different ranking than expected. 
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5. Discussion model 
This chapter discusses a brief report of the model. Its purpose is to look critically at the decisions that 

have been made through this research. 

General remarks 
This research has shown that the traveling salesman problem is used for optimising automatic 

sequencing. Based on the model and the definition of flow, we might also predict that this solution 

leads to an increased music satisfaction. What stands out most is the convenience of building the 

model and proving the concept. Later, we faced the challenge of validating all possible scenarios. 

While generating one answer, it is likely to assume that more scenarios are valuable to improve 

music satisfaction. The traveling salesman problem usually minimises the total distance because 

every extra kilometre has extra costs. In this model we calculated the distance by its most basic form. 

In reality with music optimisation, the distance becomes subjective, which means that every optimal 

solution differs for each situation. Nevertheless, there are still some aspects to be critical of before 

we can draw further conclusions: 

Technical Validation 

First, the validations performed thus far are still at a preliminary stage. Increasing the number of 

repetitions, testing with a greater variety of playlists, and exploring more scenarios with different 

quantities of songs could enhance the robustness of the results. Within the limitations of this 

research, we had to restrict ourselves to the most basic form. 

Song selection 

Second, constructing the model showed that some songs have a large deviation on one or more 

variables, which has a significant influence on the normalisation. Such outliers raise the question 

whether songs need to be filtered in advance based on these values. However, how the songs should 

be filtered is something we have not yet investigated. To guide this explanation, two examples are 

provided in Figures 21 and 22, where the effect of the outliers can be spotted (Each dot represents a 

song). 

 

 

Figure 21: Example Single Outlier 
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Figure 22: Example Both-sided Outlier 

 

Dependent on Recommendation and Classification 

Third, we cannot deny that the sequence output depends on the musical input’s recommendation 

quality. In this research, we have chosen arbitrary songs and an arbitrary first song. However, in 

reality the song selection has a direct influence on the overall experience of the played music. On the 

other hand, sequence output also depends on the classified data. Two of the chosen audio features 

are objective (tempo, key), and the other three are subjective (danceability, energy, valence). The 

result is that the sequence is based on both objective and subjective decisions, which can influence 

the reliability of the optimal solution.  

Input Variables (weights) 

Fourth, we also have decided on which features/variables to include. Since we do not know which 

are more effective in which situation, we have now treated them equally in the model. In reality, it is 

conceivable that the effectiveness can fluctuate and that, for instance, there are differences in 

satisfaction with optimised sequences per genre. In addition, it is yet to be determined how many 

variables there are needed to be included simultaneously. The more variables, the more 

representative the outcome, but more variables also result in that distances are drawn to the mean. 

Hence, we may lose the overview of why songs are sequenced and when.  

Capacity limitations 

Fifth, despite a few related articles, the amount of research on this subject could be much higher, 

leading to capacity limitations in the early stage of the implementation. For simplicity, Excel VBA was 

chosen as the primary programming tool. However, the integration of multiple functions and 

calculations presented challenges to automation. Moreover, some scenarios still need to be explored 

even with additional time dedication to this research. For instance, combining key to the Euclidian 

distance and using more than two variables have yet to be investigated. 

Practical validation 

Last, the implementation was facing several challenges to create a realistic validation. Despite 

shortening the songs, the volunteers indicated that they found it difficult to hear and remember the 

differences between the mixtapes. Besides, we might assume that the setting, where the mixtape 

was listened to, could influence the experience of the variables. For this validation, the chosen 

variables were danceability and energy, where it is imaginable that the effect of the variables can 

differ when the volunteer was, for instance, sitting on a chair or walking outside. The volunteers also 

stated that they had different focus points, even though they were asked the same. Some focused on 

the overall feeling of the mixtape, while others were focusing on the individual transitions of songs. 
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As stated in this research, subjectivity plays a significant role and every situation could need a 

different assessment. Therefore, it is challenging to provide significant conclusions about whether 

the theory behind the solution improves music satisfaction.  
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6. Conclusions & recommendations 
In this chapter, we are answering the main research question: 

What is the optimal way to increase music satisfaction by improving the sequential flow through 

automated playlist sequencing? 

While doing so, we summarise all the chapters above in 6.1. In Section 6.2, we give 

recommendations for further research. 

6.1 Conclusion 
In this research, we have analysed the problem of the case company Awaves B.V. After defining the 

core problem of lacking a systematic sequencing process, we went through the literature on how a 

digital DJ mix should be automatically sequenced. In the literature, we found that the sequencing 

process is part of four steps of how to DJ: Recommendation, Classification, Sequencing and Mixing. 

While zooming in on the third step, we discovered that investing in sequencing can stimulate flow 

experience and increase user satisfaction. With this background knowledge, we went through the 

literature again to find out whether any research has already been done to improve automatic 

sequencing. Within the literature, we found the beginning period of the concept of music sequencing 

and how this has technologically been developed over time. Out of these developments we stated the 

most relevant methods nowadays are used to optimise sequencing. 

In the second part of the research, we combined the theoretical framework with the optimisation 

approaches within our scope. Hence, we decided which solution approach to use. This was the 

traveling salesman problem heuristic due to its convenience in applying, scalability, and similarities 

with the DJ process. Next, we defined the mathematical model and summarised some existing 

applications. After that, we constructed a model and implemented three solution methods to compare 

with Brute force, the nearest neighbour heuristic and Evolutionary (Excel Solver). All solution methods 

were able to automatically sequence a music playlist while using a traveling salesman problem 

approach. Based on the existing applications, five variables were selected: tempo, energy, danceability, 

valence, and key. During the construction, we understood that the audio feature key needed a 

different approach. For this, we used the Camelot wheel to determine the distance. However, this 

variable appeared computationally complex to combine with the other variables, so it was excluded 

from the evaluation. 

In the end, the implementation of the solution was evaluated. A theoretical validation, a sensitivity 

analysis and a practical validation were executed. The solution methods performed better than the old 

situation (random), and repeating this for multiple scenarios gave the same results. The execution of 

the practical validation showed the difficulty of measuring the subjective side of this research, 

indicating that more research needs to be done. In this assessment, the sequence with the minimal 

distance was ranked highest, then the maximum distance, followed by the random sequence and 

nearest neighbour heuristic. 

Based on the theoretical framework and the implementation of the model, we showed that we are 

closer to solving the action problem, which is the low streaming time. The proposed solution methods 

can decrease an exponential amount of decisions and find the (sub)optimal music sequence. 

Consequently, music playlists can be automatically sequenced, while improving the flow experience 

and increasing user satisfaction. 
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6.2 Recommendations 
Despite the proposed solution’s potential, this research also indicates that some analysis and testing 

still need to be done. Therefore, we propose the following recommendations for further research: 

• Solve the other core problems: As mentioned in the discussion, recommendation and 

classification play a significant role on sequence’s results. Both steps are difficult to ignore in 

the practical assessment. Having more information about the music selection would make the 

research more compact. Therefore, the other core problems in named in the  problem 

introduction are recommended to be prioritized after this research.  

• Examine Brute Force First 

As we have seen in the results, brute force only faces capacity limitations until nine songs. 

While the evolutionary method and nearest neighbour are possible alternatives, the optimal 

solution can be helpful to conclude subjective questions first. For instance, how many songs 

are needed to experience flow? How much does each variable contribute to flow? Given the 

strong preference for the shortest route in the practical validation, brute force could provide 

more certainty of an improved sequence. 

• Define music selection rules: For this research, we used a discrete playlist, but the playlist is 

not always defined. There are even more sequences possible. To tackle this issue, we 

recommended a study examining the maximum (and perhaps minimum) distance between 

variables. Which is seen as a song filter for certain complex combinations. If we have a 

preselection, we are confident that the transitions are always at least within a specific 

boundary and that outliers can be prevented. For example, EDM users would prefer to have 

the tempo difference within five beats per minute. Defining this rule would exclude already 

some possible sequences. Furthermore, it could be the case that the energy level is not wanted 

to be decreased, as in Figure 10. If that is the case, songs with a high energy level must be 

filtered out as possible starting songs.  

• Explore more use cases: Due to the scalability of this solution, this model might also be 

applicable to other use cases. For example, the optimal sequence can be compared to 

sequences created by live DJs. Reaching out to DJs may also provide new feedback for input 

variables. Furthermore, users can be asked when they experience a positive or negative feeling 

during the mixtape. The setting of the listening situation can be determined, for instance, a 

student house party and the individual transitions can also be ranked.  

• Combine with stochastic models: Another idea is to combine this model with non-

deterministic models, such as Markov chain applications. For now, we have only dealt with a 

deterministic playlist, but in practice, we can imagine that the demand for music is more 

dynamic and probabilistic. When more user data is available, stochastic calculations can make 

this model more realistic. In other words, once the behaviour of users is known, several routes 

will be built, predicted and even corrected. Hypothetically, the model will be further developed 

with AI and machine learning algorithms already possessing this information.  
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Appendix A: Model Excel & Dataset 
 

 

Figure 23: Model Excel 
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Appendix B: VBA Code Nearest Neighbour 
 

   

Figure 24: VBA Code Nearest Neighbour 
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Appendix C: Settings Excel Solver 
 

 

 

Figure 25: Solver Parameters 
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Appendix D: Key Data Translation 
 

 

 

Figure 26: Key Data Translation 
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Appendix E: Playlists Sensitivity Analysis 
 

EDM Song Danceability Energy Tempo 

Sunglasses at night 
 

0,617 
 

0,883 
 

140,012 
 

Navigator 
 

0,742 
 

0,931 
 

128,012 
 

BONZAI 
 

0,707 
 

0,926 
 

134,973 
 

Beautiful People 
 

0,415 
 

0,809 
 

127,921 
 

Love 
 

0,579 
 

0,914 
 

131,979 
 

Rock That Body 
 

0,715 
 

0,907 
 

124,992 
 

Ray Of Solar 
 

0,355 
 

0,802 
 

135,017 
 

Crave The Bassline 
 

0,786 
 

0,984 
 

127,988 
 

Metro 
 

0,633 
 

0,961 
 

125,033 
 

 

Table 13: EDM Playlist 

 

Hip-Hop Song Danceability Energy Tempo 

Personality 
 

0,74 
 

0,667 
 

93,001 
 

Come Ova 
 

0,795 
 

0,547 
 

116,748 
 

Best Wel Chill 0,808 
 

0,72 
 

100,012 
 

Stiekem ‘24 
 

0,827 
 

0,634 
 

104,003 
 

Keeper 
 

0,792 
 

0,616 
 

93,931 
 

Wahala (feat. Olamide) 
 

0,852 
 

0,566 
 

96,937 
 

Lie to You 
 

0,835 
 

0,646 
 

102,988 
 

Tokkoh 
 

0,823 
 

0,821 
 

100,034 
 

Ver 0,737 
 

0,709 
 

102,033 
 

 

Table 14: Hip-Hop Playlist 
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Rock Song Danceability Energy Tempo 

SPINE 
 

0,414 
 

0,934 
 

149,98 
 

that b*tch don't even 
kno my name... 

0,538 0,647 
 

158,092 
 

Everything and Nothing 
 

0,586 
 

0,928 
 

132,976 
 

Sick of Being Young 
 

0,52 
 

0,899 
 

150,107 
 

Take A Bite 
 

0,537 
 

0,631 
 

91,007 
 

Perfume 
 

0,505 
 

0,891 
 

93,003 
 

Edge of the Earth 
 

0,494 
 

0,751 
 

160,426 
 

MORE 
 

0,58 
 

0,666 
 

92,01 
 

lightweight 
 

0,492 
 

0,945 
 

154,978 
 

 

Table 15: Rock Playlist 
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Appendix F: Practical Validation 

 

 

Table 16: Individual results Ranking test 

 

Table 17: Results Validation Test 
 

Person 1 2 3 4
1 1 4 3 2
2 4 2 1 3
3 1 3 2 4
4 4 2 3 1
5 2 4 1 3
6 3 2 1 4
7 4 3 1 2
8 4 3 1 2
9 4 2 1 3

10 3 4 1 2
11 3 4 2 1
12 2 4 1 3
13 3 1 4 2
14 4 2 3 1
15 4 2 3 1
16 3 2 4 1
17 2 3 1 4
18 4 1 3 2
19 2 3 1 4
20 1 4 3 2
21 3 4 2 1
22 4 3 1 2
23 4 1 3 2

Amount 1 2 3 4
NN (1) 3 3 11 6
Random (2) 4 7 3 9
Max (3) 6 6 7 4
Min (4) 10 7 2 4
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Figure 27: Chart Pie Results Validation Test 

 

 


