
MSc Computer Science
Final Project

Generating Patch Ingredients for
Search-based Program Repair using
Code Language Models

Oebele Lijzenga

Supervisors:
Iman Hemati Moghadam
Vadim Zaytsev
Shenghui Wang

August, 2024

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Abstract

As software systems grow in size, more bugs occur, which are usually resolved manually. Manual bug
localization and fixing is a costly time-consuming process, and hinders the development of new soft-
ware. Search-based automated program repair (APR) techniques attempt to fix bugs in programs by
searching a search space of patches using an evolutionary algorithm. Patches are constructed from
code elements elsewhere in the program, also referred to as the redundancy assumption. As a result how-
ever, search-based APR techniques are not capable of fixing bugs if the required patch ingredients are
not present elsewhere in the code. Previous work has attempted to treat this problem, but has failed
to produce additional patch ingredients in a cost-effective manner. This study proposes ARJACLM,
a novel search-based APR technique based on ARJA, which uses pre-trained code language models
(CLM) to generate patch ingredients on-the-fly. Moreover, an extensive evaluation of the code gener-
ation capabilities of 20 CLMs is performed to determine which CLMs are most cost-effective, and are
suitable for use in APR techniques. Results show that the performance of ARJACLM is improved by
59% when CLMs are used. Furthermore, CLM-based patch ingredients are of higher quality than their
redundancy-based counterparts, and ARJACLM performs best when redundancy-based patch ingredi-
ents are omitted as a result. Moreover, the results expose several challenges involved with incorporating
CLMs into a search-based technique, and provide directions for future research.

Contents

1 Introduction 3

2 Background and Related Work 5
2.1 Automated Program Repair . 5
2.2 Search-based APR . 6

2.2.1 GenProg . 6
2.2.2 ARJA . 8

2.3 Deep Learning . 12
2.3.1 Code Language Models . 12
2.3.2 AlphaRepair . 13
2.3.3 GAMMA . 14
2.3.4 ARJANMT . 15

3 Proposed Technique 16
3.1 Overview . 17
3.2 Preparation . 17

3.2.1 Operation Screening . 18
3.2.2 Ingredient Screening . 18
3.2.3 Test Filtering . 19

3.3 Genetic Algorithm . 20
3.3.1 Patch Representation . 20
3.3.2 Population Initialization . 21
3.3.3 Crossover and Mutation . 21
3.3.4 Fitness Evaluation . 23
3.3.5 Selection . 23
3.3.6 Replacement . 24

3.4 Post-validation . 24
3.5 Contributions . 24

4 Evaluation and Selection of Code Language Models 26
4.1 Selection of CLMs . 26
4.2 Experiment Design . 27
4.3 Experiment Results . 30

4.3.1 Performance and CLM Size . 30
4.3.2 Performance and Cost . 31
4.3.3 CLM Size and Compilation Failures . 33
4.3.4 N=1 and N=5 Success Rate . 33
4.3.5 Nucleus Sampling and Beam Search . 33

4.4 Infill Diversity and Quality . 33

1

4.5 Notable Infill Tasks . 35
4.6 Conclusion . 35

5 Evaluation of ARJACLM 37
5.1 Defects4J . 37
5.2 Evaluation Protocol . 38
5.3 Experimental Results . 40

5.3.1 RQ1: Establishing the performance of ARJACLM 40
5.3.2 RQ2: Comparison against other search-based techniques 41
5.3.3 RQ3: Efficiency of AJRACLM . 41
5.3.4 RQ4: Quality of CLM-based patch ingredients 42

5.4 Threats to Validity . 43

6 Future Work 44

7 Conclusion 46

Appendices 48

A CLM Evaluation Results 49
A.1 UniXCoder . 50
A.2 Refact . 51
A.3 SantaCoder . 52
A.4 CodeShell . 53
A.5 StarCoder . 54
A.6 PLBART Base . 55
A.7 PLBART Large . 56
A.8 CodeT5 Small . 57
A.9 CodeT5 Base . 58
A.10 CodeT5 Large . 59
A.11 CodeLLaMA 7B . 60
A.12 CodeLLaMA 13B . 61
A.13 CodeLLaMA Instruct 7B . 62
A.14 CodeLLaMA Instruct 13B . 63
A.15 CodeGen2 1B . 64
A.16 CodeGen2 3.7B . 65
A.17 CodeGen2 7B . 66
A.18 CodeGen2 16B . 67
A.19 InCoder 1B . 68
A.20 InCoder 6B . 69

2

Chapter 1

Introduction

The escalating size and complexity of modern software systems have given rise to an increasing num-
ber of software bugs [1]. The consequences of this trend are not merely inconvenient, with reports
estimating that bug localization and fixing costs billions of dollars annually around the world [2]. This
financial burden underscores the critical need for efficient bug fixing strategies to reduce impact on
software development projects.

The manual resolution of bugs, a common practice in the software development life-cycle, poses
significant challenges. Manually fixing bugs is error-prone and time-consuming, especially for software
systems that are already in active use. Developers are estimated to spend 50% of their time fixing bugs
[3]. This considerable time investment hampers productivity and has motivated researchers to investi-
gate automated program repair (APR). Many APR techniques have been proposed over the years, and
substantial progress has been made in fixing more bugs [4]. Furthermore, state-of-the-art APR tech-
niques are able to fix more complex bugs compared to their early counterparts [5].

APR techniques can be categorized into four classes, namely constraint-based, template-based, search-
based, and learning-based. Constraint-based techniques fix bugs by synthesizing patches that satisfy
functional constraints obtained from the test suite [6]. Constraint-based techniques can effectively syn-
thesize patches for complex logic expressions, but fail to patch high-level constructs like function calls
since synthesis techniques only produce arithmetic and first order logic expressions [7]. Template-
based techniques leverage predefined repair templates to fix common programming errors. Template-
based APR techniques have been demonstrated to be highly effective [8], but are less flexible due to the
predefined nature of repair templates.

Search-based APR techniques use a heuristic function to guide a search algorithm to generate patches
in an iterative manner. Patches are commonly constructed from code elements elsewhere in the code,
also referred to as the redundancy assumption. The redundancy assumption provides a limited source
of patch ingredients which makes exploration of the search space of possible patches feasible. How-
ever, search-based APR techniques based on the redundancy assumption can only produce patches
consisting of code elsewhere in the project as a result, constraining their bug fixing capabilities.

To address these limitations, Yuan et al. [9] attempt to generate novel patch ingredients for a search-
based technique by mutating existing redundancy-based patch ingredients. Moreover, Li et al. [10] treat
patch ingredient limitations by generating novel patch ingredients using learning-based APR technique
SequenceR [11]. Despite these efforts, both techniques for generating additional patch ingredient yield
only a slight performance improvement, but with a substantially increased computational cost as a side-
effect.

Learning-based APR techniques based on pre-trained code language models (CLM) have recently
emerged as the state-of-the-art APR techniques [12, 13]. Such models leverage the strong code under-
standing capabilities of large state-of-the-art code language models to generate patches, and circumvent
the difficulties involved in training a new task-specific neural network for the purpose of APR. Zhang

3

et al. [13] achieve state-of-the-art performance by leveraging CLMs to generate patch ingredients for a
template-based APR technique.

Despite their impressive capabilities, the use of CLMs is limited in several ways. Deep leaning
models can only consider a limited amount of code, preventing them from analyzing entire programs
at once, which diminishes the quality of generated code. Secondly, CLMs suffer from hallucinations,
which frequently results in the generation of syntactically or semantically incorrect code [14, 15, 16].
Finally, CLMs only possess generic code generation capabilities, and no explicit APR capabilities. In-
stead, CLMs must be integrated into an APR technique, which leverages CLMs to generate code at
specific locations, with appropriate context, to construct patches [12, 13, 17, 18].

Search-based APR techniques and CLMs exhibit complementary strengths and weaknesses, sug-
gesting potential synergies in their integration. Search-based APR techniques are limited by the qual-
ity and availability of patch ingredients. CLMs, through guided code generation tasks,can potentially
address this limitation by providing a diverse set of high-quality patch ingredients. The integration
of these two approaches may amplify their capabilities, while mitigating individual weaknesses. For
instance, search-based techniques’ ability to consider the context of the buggy program during the re-
pair process could compensate for CLMs’ current inability to fully incorporate program context. This
integration presents an opportunity to leverage the strengths of both approaches: the systematic explo-
ration capability of search-based methods and the generative power of CLMs.

This study investigates the effectiveness of integrating CLM-generated patch ingredients into a
search-based APR technique. The contributions of this study are as follows. First, in Chapter 3, we
propose ARJACLM, an novel search-based APR technique which leverages a CLM to generate patch-
ingredients on-the-fly. ARJACLM aims to combine the strengths of both search-based and learning-
based techniques, while mitigating their respective weaknesses.

Second, in Chapter 4, we empirically evaluate code infill generation capabilities of 20 CLMs. CLMs
are being developed at a rapid pace. As a result, the cost and performance characteristics of well-known
CLMs are unclear. Moreover, the quality of code generated by CLMs differs per task, so an evaluation
of CLMs specifically for the purpose of APR is required to determine which models are most suitable
for ARJACLM. We perform a controlled experiment to determine the efficiency and effectiveness of
code infill generation capabilities of 20 CLMs.

Chapter 5 evaluates the bug fixing capabilities of ARJACLM, guided by four research questions.
First, we systematically evaluate various values for five key parameters of ARJACLM. Previous work
has omitted the systematic evaluation of various parameter values due to the high computational cost of
evaluating APR techniques. Nevertheless, determining the most effective parameter setting for ARJA-
CLM is crucial to the assessment of bug fixing capabilities of the search-based technique. Furthermore,
two of the evaluated parameters specifically control the integration of CLM-based patch ingredients
into ARJACLM, allowing for quantitative analysis of their impact on bug fixing performance.

Besides studying the bug fixing capabilities of ARJACLM, Chapter 5 evaluates the trade-off be-
tween its cost and performance. The impact of CLM-based patch ingredients on the efficiency of search-
based APR techniques is currently unknown. Moreover, the efficiency of APR techniques strongly
influences their practical value, and further industry adaptation.

Finally, we study the quality of CLM-based patch ingredients. The potential for CLM-based patch
ingredients to out-perform the redundancy-assumption has been demonstrated in other techniques [8].
Nevertheless, the value of CLM-based patch ingredients may strongly differ depending on their pur-
pose and integration technique. In Chapter 5, we compare the value of CLM-based and redundancy-
based patch ingredients to the repair capabilities of ARJACLM.

Building on these findings, Chapter 6 provides direction for future research into search-based APR
techniques based on the presented results. Finally, Chapter 7 concludes the study by summarizing our
keys findings and their implications.

4

Chapter 2

Background and Related Work

This chapter provides an overview of automated program repair techniques, and efforts to incorporate
large language models.

2.1 Automated Program Repair

The goal of automated program repair (APR) is to repair defects in programs in an automated manner.
This study focuses on test-based APR, a branch of APR research where a test suite with at least one
failing test exhibits the symptoms of a bug in a program. Test-based APR techniques aim to construct
patches for the buggy program such that the patched program passes the entire test suite, and the patch
is one that a human developer could have written.

APR techniques typically follow a common structure. An off-the-shelf fault-localization technique
is used to find likely buggy statements, typically based on coverage of passing and failing test cases.
The APR technique generates candidate patches which typically target likely buggy statements. Sub-
sequently each candidate patch is compiled. If this succeeds then the patch is a compileable patch. If the
patched program passes the test suite, the patch is considered a plausible patch. If a plausible patch is
semantically and syntactically equivalent to the developer patch then it is a correct patch.

The primary focus of APR research is the generation of higher quality candidate patches. Patch
generation techniques can be categorized into one of the classes discussed below.

• Constraint-based patch generation techniques typically use constraint-solving or synthesis tech-
niques to synthesize candidate patches [4]. For example, Nopol [6] fixes bugs in if-then-else
statements by feeding runtime information of patch execution into an satisfiability modulo the-
ory solver. The result of the solver is translated into a code patch.

• Template-based techniques use predefined repair templates to fix bugs. These repair templates
are usually hand-crafted based on common bug patterns, and are therefore less flexible than their
counterparts. Nevertheless, the template-based APR tool TBar[8] currently stands out as the best
performing APR tool employing a traditional (i.e. non learning-based) approach.

• Search-based patch generation techniques use heuristic functions to converge towards plausible
patches. For example, GenProg [19] and ARJA [9] generate and combine patches iteratively and
rank them using a fitness score.

• Learning-based patch generation techniques use a machine-learning or deep-learning model to
generate patches from buggy code. Recoder [5], CURE [20] and KNOD [21] train deep-learning
models to translate buggy code to fixed code. AlphaRepair [12], GAMMA [13] and SarGaM [17]
generate patches using general-purpose pre-trained code language models. All current state-of-
the-art APR techniques use deep-learning models for patch generation.

5

This study proposes a novel APR technique that combines search-based and learning-based APR
techniques. The following sections discuss these techniques in more detail.

2.2 Search-based APR

Search-based APR techniques use a search algorithm to explore a space of possible patches, and can
typically be distinguished based on three components. First, the candidate generation technique dic-
tates the creation of new candidate patches or the mutation of existing ones, thereby defining the search
space. Second, a heuristic function is used to rank candidate patches and guides the search algorithm
to generate better patches. The heuristic function is an indicator of the quality of the candidate patch.
Most search-based techniques use a heuristic function based on the number of passing test cases for this
purpose. Finally, the search strategy determines how the search space is explored, utilizing the heuristic
function and patch generation technique.

A well-known example of a search-based technique is a genetic algorithm [22], which leverages nat-
ural selection to optimize for one or more objectives. In genetic algorithms, a subset of the search-space,
referred to as the population, is improved in generations. A genetic algorithm starts with instantiating
the initial population, where individuals are initialized with random properties, or properties obtained
using some predefined initialization logic. In each generation, new individuals are created by applying
mutation and crossover operations to existing individuals. Mutation modifies one or more properties
of a single individual. Crossover combines two individuals to obtain two offspring individuals which
inherit properties from their parents. Subsequently, new individuals are evaluated according to a fitness
function, which is a heuristic function for the quality of the individual. At the end of each generation, a
selection method is used to determine which individuals in the population are replaced with new indi-
viduals. Generations are usually evaluated until either an adequate individual is found, or a predefined
generation limit is reached.

Having outlined the key components of search-based APR techniques, we now turn our attention
to examining related work in this area.

2.2.1 GenProg

GenProg [19] was the first search-based APR technique to find test-adequate patches using a genetic
algorithm. In GenProg, each individual represents a patch which modifies the buggy code. Mutation
operations modify patches by introducing more modifications to the code, and crossover generates off-
spring patches which inherit code modifications from their parents. The fitness of individuals is deter-
mined based on the result of compiling and executing tests on the patched code. Patches which result
in more passing test cases receive a higher fitness score. The genetic algorithm of GenProg terminates
if a test-adequate solution is found, or a predefined generation limit is reached.

Evaluation of the fitness function is the most time-consuming part of GenProg, as it requires com-
pilation of the source code and execution of test cases. Thus, the number of patch evaluations must
be constrained where possible. GenProg employs two measures for this purpose. First, GenProg uses
fault-localization to attach a weight to each statement based on coverage of passing and failing tests.
Statements that are covered by many failing tests cases receive a higher suspiciousness score, and are
more likely to be targeted by a patch as a result. This mechanism results in the prioritization the modi-
fication of statements which are likely to be the cause of the bug.

The second measure constrains what code can be added to the buggy program, also referred to
as patch ingredients. Arbitrarily generated patch ingredients are too likely to be incorrect, and would
result in a large search space of low quality, which cannot be feasibly searched due to the high cost
of evaluating individuals. Instead, GenProg re-uses statements from elsewhere in the buggy program
under the assumption that ingredients to a bugfix are already present elsewhere in the program. This

6

is commonly referred to as the redundancy assumption or the plastic surgery hypothesis [23, 24]. Patch
ingredients obtained from the redundancy assumption are referred to as donor code.

Figure 2.1 shows the representation of patches used for the genetic algorithm in GenProg. Each
patch is a sequence of modifications to the buggy program, which consists of an operation (replace,
insert, delete), the statement which is modified, and an ingredient statement in case of a replace or in-
sert operation. Crossover of two patches is performed by selecting a random cut point in the sequence
of modifications which make up each patch. Two offspring patches are obtained by swapping modi-
fications after the cut point between the two parents. Mutation modifies an existing patch by adding
an additional modification which uses a randomly selected operation, target statement and ingredient
statement if applicable.

R(5,15) I(2,10) R(7,13) D(9) I(6,20)

D(5) R(7,13) I(2,10) D(5) R(2,36)

I(9,15) R(2,36) I(9,15) R(7,13) I(2,10)

D(5) R(2,36) D(5) R(2,36) I(6,18)

Parent 1

Parent 2

Offspring 1

Offspring 2

cut point

cut point

Patch example

Crossover

Mutation

GenProg

Figure 2.1: The GenProg patch representation. The numbers inside parentheses are identifiers
for statements in the buggy program.

Although the approach of GenProg was ground breaking at the time, empirical studies have found
some shortcomings. For example, GenProg frequently generates patches with an order of magnitude
more changes than necessary [19]. Thus, parts of the search space are explored that are clearly undesir-
able, resulting in prolonged execution times, and lower patch quality. GenProg mitigates this problem
by reducing each test-adequate patch to the least amount of code modifications such that the test suite
passes. As a result, patch elements which do not contribute to making the test suite pass are removed.

The patch reduction technique of GenProg significantly reduces the size of generated patches. How-
ever, Qi et al. [25] observe that GenProg mostly generates patches that remove functionality instead of
repairing it. This might be a negative side-effect of the patch reduction step. Moreover, GenProg has
been shown to work better with random search instead of the genetic algorithm [26], which demon-
strates that the search-based approach used in GenProg does not effectively guide the repair process.
Finally, a large-scale experiment [27] has shown that jGenProg [28], an implementation of GenProg for
Java, finds correct patches for only five out of 224 bugs from the Defects4J 1.2 [29] benchmark.

7

2.2.2 ARJA

ARJA [9] is another APR technique based on a genetic algorithm. ARJA improves upon GenProg in
several ways. First, ARJA uses two objectives instead of one, also referred to as multi-objective search.
Similar to GenProg, the first objective is based on the number of passing tests, while the second is based
on the amount of code modified by the patch. A multi-objective genetic algorithm based on NSGA-II
[30] is used to search for test-adequate patches that perform few modifications to the code, under the
hypothesis that guiding genetic search to explore shorter patches yields more test-adequate and correct
patches.

In this study, we extend ARJA. Therefore, in the next sections, we will delve deeper into ARJA,
providing a comprehensive discussion to lay the groundwork for understanding our extension to this
technique.

2.2.2.1 NSGA-II

The genetic algorithm of ARJA is based on NSGA-II, and uses an objective based on the number of
passing tests, and another objective based on the number of modifications performed by the patch. This
objective based on patch size guides the genetic algorithm to explore patches that are shorter, mitigating
exploration of large patches which are unlikely to be correct as discussed in Section 2.2.1.

NSGA-II is a multi-objective optimization algorithm that addresses many common pitfalls in ge-
netic algorithms. It strikes an effective balance between convergence towards a Pareto-optimal set of
solutions, and maintaining population and solution diversity. A selection method based on a diversity
metric and Pareto dominance is used for this purpose. An individual dominates another if all of its fit-
ness scores are at least as good as that of the other, and at least one fitness score is better. Individuals that
are dominated by fewer individuals in the population, and achieve a higher diversity score, are more
likely to be selected as a parent for crossover, or to be transferred to the next generation.

The diversity metric of NSGA-II is based on the crowding distance of an individual with respect to
the adjacent individuals in its Pareto front. A Pareto front is a set of individuals which are not dominated
by other individuals, other than those of previous fronts. Figure 2.2a provides a visual representation
of non-dominated sorting. Pareto fronts are obtained by computing the initial Pareto front, which are
all individuals which are not dominated by other individuals. Subsequent Pareto fronts consist of in-
dividuals which are not dominated by other individuals, other than those of previous Pareto fronts.

Crowding distance of an individual is the difference between fitness scores of the adjacent individu-
als in the Pareto front. Figure 2.2b shows an example of the crowding distance calculation of individual
i, based on the difference in fitness of adjacent individuals i− 1 and i+1 with respect to objectives f1
and f2. The crowding distance of i, denoted by c(i), is computed as:

c(i) = f1(i+ 1)− f1(i− 1) + f2(i− 1)− f2(i+ 1) (2.1)

A high crowding distance indicates that an individual covers a relatively unexplored part of the search-
space, and is therefore prioritized in selection.

Finally, NSGA-II leverages elitism to mitigate the potential loss of fit individuals due to crossover
and mutation. Elitism ensures that one or more best performing solutions are always transferred to
the next generation. Elitism speeds up genetic algorithms and helps accelerate convergence towards
Pareto-optimal solutions [32, 33].

Similar to GenProg, ARJA uses tournament selection to select individuals for crossover, mutation
and population replacement. Tournament selection is a widely used selection method where a set of
individuals is randomly chosen from the population, with or without replacement. The individuals
take part in a tournament, and the fittest individual wins.

8

(a)Non-dominated sorting (b) Crowding distance calculation

Figure 2.2: Non-dominated sorting and crowing distance calculation in NSGA-II [31].

2.2.2.2 Search-space Optimizations

ARJA operates under the redundancy assumption, using donor code as patch ingredients. In addition,
ARJA introduces a novel screening procedure which prevents the use of undesirable donor code or edit
operations by filtering them with respect to each likely buggy statement (LBS). For example, a continue
statement should not be used as an ingredient for an LBS which is not contained inside a loop. Table 2.1
shows the rules and rationale for ingredient filtering.

Moreover, donor code is screened based on whether symbol references in donor code are valid
when placed at the location of an LBS.Table 2.2 shows the rules used to filter edit operations per LBS.Fi-
nally, Table 2.3 shows rules which preclude the use of specific combinations of ingredients and edit op-
erations. Altogether, these measures aim to improve the quality of the search space by preventing code
anti-patterns, which reduces execution time of the genetic algorithm and yield higher quality patches.

2.2.2.3 Generating Additional Patch Ingredients

Besides improving the quality of the existing search-space, ARJA is used to evaluate a novel type match-
ing technique for generating additional patch ingredients. The introduced type matching technique re-
places variable and method references in redundancy-based patch ingredients which are not in scope
at the location of an LBS. Variable and method references are replaced with symbols that are in scope,
and satisfy typing requirements. Type matching allows ARJA to fix bugs even if the required patch
ingredients are not present elsewhere in the code. Instead, redundancy-based patch ingredients only
need to contain the required code patterns, and the appropriate code symbols can be obtained using
type matching.

Despite relieving the constraints of donor code availability on ARJA, empirical evaluation shows
that type matching does not improve the performance of ARJA on real-world bugs. Type matching
introduces many new patch ingredients which increases the size of the search-space. The authors note
that search ability of the genetic algorithm of ARJA is possibly not strong enough to handle the large
search space determined by type matching [9].

9

No. Rule Rationale

1 The continue statement can be used as the in-
gredient only for a likely-buggy statement in the
loop.

The keyword continue cannot be used out of a loop (i.e.,
for,while or do-while loop).

2 The break statement can be used as the ingredi-
ent only for a likely-buggy statement in the loop or
a switch block.

The keywordbreak cannot be used out of a loop (i.e.,for,
while or do-while loop) or a switch block.

3 A case statement can be used as the ingredient
only for a likely-buggy statement in a switch
block having the same enumerated type.

The keyword case cannot be used out of a switch block,
and the value for a case must be the same enumerated
type as the variable in the switch.

4 A return/throw statement can be used as the
ingredient only for a likely-buggy statement in a
method declaring the compatible return/throw
type.

Avoid returning/throwing a value with non-compatible
type from a method.

5 A return/throw statement can be used as the in-
gredient only for a likely-buggy statement that is
the last statement of a block.

Avoid the unreachable statements.

6 A VDS can be used as the ingredient only for an-
other VDS having the compatible declared type
and the same program or disrupting the program
too much.

Avoid using an edit operation with no effect on the pro-
gram or disrupting the program too much.

Table 2.1: ARJA rules for disabling specific ingredients

No. Rule Rationale

1 Do not delete a variable declaration statement
(VDS).

Deleting a VDS is usually very disruptive to a program,
and keeping a redundant VDS usually does not influence
the correctness of a program

2 Do not delete a return/throw statement which
is the last statement of a method not declared void.

Avoid returning no value from a method that is not de-
clared void

Table 2.2: ARJA rules for disabling specific operations

No. Rule Rationale

1 Do not replace a statement with the one having the
same AST.

Avoid using an edit operation with no effect on the pro-
gram.

2 Do not replace a VDS with the other kinds of state-
ments.

Avoid disrupting the program too much.

3 Do not insert a VDS before a VDS. The same with No. 1.

4 Do not insert a return/throw statement before
any statement.

Avoid the unreachable statements.

5 Do not replace a return statement (with return
value) that is the last statement of a method with
the other kinds of statements.

Avoid returning no value from a method that is not de-
clared void.

6 Do not insert an assignment statement before
an assignment statement with the same left-hand
side.

The same with No. 1.

Table 2.3: ARJA rules for disabling specific operations on specific ingredients

10

2.2.2.4 Patch Representation

ARJA introduces a novel patch representation to address the limited flexibility of the crossover oper-
ation in GenProg. The crossover operation of GenProg cannot construct offspring consisting of edits
which inherit properties from both parents. For example, a test-adequate patch might be found by con-
structing an offspring patch with an edit which consists of the edit operation of one parent, and the in-
gredient of the other parent. The patch representation and crossover operation used by GenProg poses
a limitation on the way that promising elements of patches can be combined to obtain better patches.

The novel patch representation used by ARJA is shown in Figure 2.3. A more fine-grained patch
representation is leveraged to permit independent crossover of elements of each patch edit. Each patch
consists of three concatenated arrays, where each element of each array corresponds to an LBS. The
first array contains Booleans which indicates whether the corresponding LBS is modified by this patch.
The second array contains the respective patch operation, either replace, insert or delete. The third array
references the patch ingredient. Edit operations and ingredients are only applied if the edit is enabled,
indicated by the respective Boolean in the first array. The patch example of Figure 2.3 represents a patch
which replaces the first LBS with ingredient statement 15, and deletes the third LBS.

R I D R I 15 10 13 9 201 0 1 0 0

R I R 15 10 131 0 1

D R D 3 8 140 0 1

R I

R

15 10

13

0 0 1

D R

D

3 8

14

1 0 1

R I R 15 10 131 0 1 D I R 11 10 131 0 0

cut point

cut point

cut point

cut point

13

Parent 1 Offspring 1

Parent 2 Offspring 2

Patch example

Crossover

Mutation

ARJA

p=0.5

Figure 2.3: The ARJA patch representation. The numbers are identifiers for statements in the
buggy program.

A fine-grained crossover operation leverages the novel patch representation using two separate cut
points for patch operations and ingredients. This allows patch operation and ingredients to be swapped
between parents independently to obtain offspring patches. As a result, edits of offspring patches can
inherit the patch operation and ingredient for a single LSB from different parents. Crossover of the first
array, which indicates which LBSs are modified, is performed by swapping individual values between
parents with a probability of 0.5.

The mutation operation of ARJA applies a predefined mutation probability to each each element
of the three arrays of a patch. If a patch element is modified, an alternative value is selected. Elements
of the first array are mutated by flipping the Boolean values. Patch operations and patch ingredients are
mutated by randomly selecting an alternative operation or ingredient.

11

2.2.2.5 Performance

ARJA is evaluated on the Defects4J 1.2 [29] benchmark and fixes 18 out of 224 bugs whereas GenProg
fixes five. Computation time for ARJA and GenProg are roughly similar. Moreover, an ablation study
demonstrates that both the multi-objective search and rules for donor code improve the number of bugs
fixed by ARJA. In addition, the patch length objective helps ARJA generate shorter patches.

2.3 Deep Learning

Learning-based APR techniques leverage deep learning to generate patches using neural machine trans-
lation (NMT). Large bugfix training sets are used to train a deep learning model to translate buggy code
into fixed code. Various learning-based APR techniques have been proposed in the past, leveraging the
latest NMT architectures to fix more bugs [34, 11, 35, 36, 37, 5].

For example, Recoder [5] leverages a deep-learning model based on the transformer architecture
[38] to generate patches. The transformer architecture has gained a lot of attention recently, being lever-
aged in well known language models like GPT. Transformer models are highly effective at text trans-
lation and generation tasks due to their ability to capture complex relationships between parts of the
input. Recoder demonstrated state-of-the-art performance, fixing 51 out of 224 bugs from the Defects4J
1.2 benchmark.

Despite promising results, significant challenges are involved in training NMT models. The con-
struction of high quality training sets for APR is a very time-consuming. The quality of these datasets
is typically evaluated by validating only a sample of the dataset manually [39]. The amount of manual
effort involved in constructing high-quality datasets currently limits the effectiveness of NMT-based
APR techniques [4]. Additionally, NMT models frequently generate code containing syntax or seman-
tic errors [10]. Besides, expertise in deep-learning is required to construct state-of-the-art NMT models,
hindering the application deep-learning techniques to the domain of APR research.

Recent APR research has attempted to overcome the challenges of constructing custom application-
specific NMT models, leveraging pre-trained general-purpose code language models instead. The fol-
lowing section will delve into these models in greater detail.

2.3.1 Code Language Models

Large language models (LLM) leverage the power of transformer models to understand and generate
human-like text. These models are trained on vast amounts of textual data and can perform a wide range
of tasks. Building on this success, researchers have developed code language models (CLM) trained
specifically for code generation, which can perform a wide range of tasks like generating code snippets
[40, 41, 42, 43, 44], suggesting code improvements [40, 44, 45], and summarizing [40, 44, 45, 46] or
translating code [40, 44, 47, 48]. CLMs are trained on large unlabeled corpuses of publicly available
code with generic training objectives like predicting the next token (i.e. piece of text) in a given sequence.

In contrast to task-specific neural networks like Recoder [5], CLMs are designed to be applied to
many downstream tasks. The large amount of available training data, and the usability of CLMs for
many downstream tasks has motivated researchers to invest extensive computational and human re-
sources into constructing large powerful CLMs, some of which are publicly available. Clearly, the pre-
trained nature of CLMs and their strong code generation capabilities pose a valuable avenue for APR
research.

CLMs can be applied to various code generation tasks depending on the training objectives used to
construct the model. Figure 2.4 shows various common code generation tasks. Mask prediction, or fill-
in-the-blank style code generation, is used to generate code infills for existing code, while open-ended
code completion is used to complete existing code. Alternatively, natural language prompts can be used
to instruct CLMs to provide specific instructions on generating or modifying code.

12

Prompt-based code generation is only effective for CLMs with strong natural language understand-
ing, and extensive effort may be required to engineer an effective prompt format. Moreover, previous
research has shown that additional task-specific training (i.e. fine-tuning) may be required to achieve
effective prompt-based code generation [18]. On the contrary, many CLMs are trained on mask predic-
tion and open-ended code generation tasks, providing this functionality out-of-the-box as a result.

Input:
def sum_of_even_numbers(numbers):

even_sum = 0
for num in numbers:

if num % 2 == 0:
<mask>

return even_sum

Output:
even_sum += num

(a)Mask prediction

Input:
def sum_of_even_numbers(numbers):

even_sum = 0
for num in numbers:

if num % 2 == 0:

Output:
even_sum += num

return even_sum

(b)Open-ended code completion

Input:
Write a function which returns the sum of
even numbers in a list

Output:
def sum_of_even_numbers(numbers):

even_sum = 0
for num in numbers:

if num % 2 == 0:
even_sum += num

return even_sum

(c) Code generation prompt

Input:
Buggy line: even_sum *= num
Context:
def sum_of_even_numbers(numbers):

even_sum = 0
for num in numbers:

if num % 2 == 0:
even_sum *= num

return even_sum
The fixed code is:

Output:
def sum_of_even_numbers(numbers):

even_sum = 0
for num in numbers:

if num % 2 == 0:
even_sum += num

return even_sum

(d) Code modification prompt

Figure 2.4: Two code generation techniques

2.3.2 AlphaRepair

Xia and Zhang [12] propose AlphaRepair which uses CodeBERT [43] for mask prediction to fix bugs in
a zero-shot setting (i.e. without fine-tuning). AlphaRepair fixes 50 out of 395 bugs from the Defects4J
1.2 benchmark.

AlphaRepair uses three strategies to mask LBSs as shown in Figure 2.5. Patches are constructed
by using CodeBERT to generate infills for the masked code. The complete mask strategy either replaces
a line with mask tokens or inserts a line of mask tokens before or after a line of code. The partial mask
strategy replaces the start or end of a line with mask tokens. The template mask strategy replaces com-
monly buggy code elements with mask tokens. For example, the arguments to a function call or (parts
of) the condition of an if-statement are replaced with mask tokens.

CodeBERT is one of the first widely used CLMs, and its use in AlphaRepair poses several chal-

13

Figure 2.5: Mask strategies employed by AlphaRepair [12].

lenges. First, CodeBERT generates exactly one token for each mask token in the provided prompt.
Therefore, AlphaRepair must guess the number of tokens to generate beforehand to generate token se-
quences. To obtain the most probable code infills of arbitrary length, AlphaRepair generates infills for
all line lengths up to L+10 tokens where L is the number of tokens in the original line of code. This
mask prediction method is significantly slower than using a CLM capable of generating an arbitrary
number of tokens for a single mask token [13].

Another challenge comes from the difference between the training objective of CodeBERT and its
application. AlphaRepair uses CodeBERT with prompts containing sequences of consecutive mask to-
kens whereas it is trained to predict tokens for masks which are sparse. As a result, CodeBERT cannot
leverage the immediate context surrounding each mask token as it consists of other mask tokens, re-
ducing the quality of generated tokens. To treat this problem, AlphaRepair re-ranks generated token
sequences afterwards. Re-ranking is performed by querying CodeBERT for the likelihood of each indi-
vidual token in a line and uses these results to compute a joint score. The score for each token obtained
during re-ranking is more accurate than the score obtained during initial token prediction as the full
context of the generated sequence is available.

The final challenge in using CodeBERT for mask sequence prediction lies in applying beam search.
Beam search is a technique for sampling token sequences from CLMs which involves sampling mul-
tiple token sequences in parallel to avoid falling into local optima. CodeBERT only predicts a single
token at a time for mask predict task. Thus, a custom beam search implementation must be provided
to generate token sequences using CodeBERT. This increases the burden on researchers to develop
efficient and correct sampling strategies

AlphaRepair shows that CLMs can be used to construct effective APR techniques in a straight
forward manner. However, CodeBERT is an early CLM which is constrained in its usage patterns, and
many larger CLMs capable of generating high-quality infills of arbitrary length have been published
since.

2.3.3 GAMMA

Zhang et al. [13] propose GAMMA, a hybrid APR technique leveraging a CLM to generate patch
ingredients for a template-based APR technique. Template-based APR techniques use repair tem-

14

plates, some of which require patch ingredients to be completed. Traditional template-based tech-
niques like TBar [8] leverage the redundancy assumption to obtain patch ingredients. Donor code
is not always available however, which significantly reduces the effectiveness of template-based APR
techniques [8, 49, 50]. Instead, GAMMA leverages CLMs to generate patch ingredients for repair tem-
plates. GAMMA is evaluated using three CLM’s, namely UniXcoder [47], CodeBERT [43] and Chat-
GPT. UniXcoder and CodeBERT are used in a zero-shot setting.

UniXcoder is a CLM trained for mask prediction and is capable of an arbitrary length token se-
quence for a single mask token. Therefore, UniXcoder is much more convenient for generating an ar-
bitrary number of tokens when compared to CodeBERT as discussed in Section 2.3.2. Zhang et al. [13]
show that GAMMA with CodeBERT performs similar to GAMMA with UniXcoder, but the Code-
BERT version runs much slower due to limitations discussed in Section 2.3.2.

ChatGPT is the third CLM used in the evaluation of GAMMA. ChatGPT (based on GPT-3.5 at the
time) is asked to provide the 250 most likely replacements for the mask token and is given the buggy
code with the fix template and the original buggy line as context. This version of GAMMA performs
significantly worse than the other two. Zhang et al. [13] note that ChatGPT is not publicly available
and therefore it is unclear how it is trained and how it can best be leveraged. Furthermore, the prompt
design could be further improved to give ChatGPT a better understanding of the mask prediction task
and its context.

Empirical evaluation of GAMMA shows that it achieved state-of-the-art bug-fixing performance at
the time. GAMMA demonstrates that CLMs are an effective source for patch ingredients, and patch
ingredients generated by CLMs can be of higher quality than their redundancy-based counterparts.
Thus, the performance of GAMMA justifies further research into incorporating CLMs into traditional,
redundancy-based APR techniques.

2.3.4 ARJANMT

Li et al. [10] propose ARJANMT, a hybrid APR technique which augments ARJA by introducing addi-
tional patch ingredients generated by the learning-based APR technique SequenceR [11]. Search-based
APR techniques like GenProg and ARJA are incapable of fixing bugs when the necessary donor code
to construct a correct patch is not present elsewhere in the buggy program. ARJANMT overcomes this
limitation by using SequenceR to generate novel patch ingredients which are used to supplement the
existing redundancy-based patch ingredients. ARJANMT is evaluated on a subset of the Defects4J 1.2
benchmark. ARJANMT finds correct patches for 50 bugs, whereas ARJA finds 47. In addition, AR-
JANMT fixes four bugs that other evaluated APR techniques do not fix.

ARJANMT demonstrates that patch ingredients generated by deep-learning techniques can im-
prove the performance of traditional search-based APR techniques. Nevertheless, the improvement
in bug fixing capabilities of ARJANMT over AJRA is limited as it is significantly constrained in two
ways. First, ARJANMT generates all patch ingredients beforehand based on the initial buggy program,
so patch ingredients generated by SequenceR are not based on the patched code into which they are
integrated, reducing the relevance of learning-based patch ingredients as a result.

Another limitation of ARJANMT is the use of SequenceR for generating patch ingredients. Se-
quenceR is based on a neural network trained specifically for APR, for which only limited training data
and computational resources are available. Section 2.3.1 discusses the advantages of CLMs compared
to domain-specific learning-based techniques for code generation. CLMs are potentially capable of gen-
erating patch ingredients of higher quality.

This study proposes and evaluates a novel hybrid search-based APR technique which leverages
CLMs to generate additional patch ingredients, and aims to address the limitations of ARJANMT.

15

Chapter 3

Proposed Technique

The previous chapter has presented past research into search-based APR techniques. Such techniques
have become more sophisticated over time. Multi-objective search, advanced search space reduction
measures and improved patch representations and mutation operations are leveraged to more effec-
tively guide a genetic algorithm to find bug-fixing patches. Nevertheless, the effectiveness of search-
based APR techniques remains constrained by the redundancy assumption, preventing the repair of
bugs which require the introduction of novel code into the project.

Yuan et al. [9] aim to generate additional patch ingredients by modifying existing redundancy-based
ingredients, while Li et al. [10] leverage a learning-based APR technique to generate new ingredients.
As discussed in Chapter 2, these efforts have failed to produce promising results. Yet overcoming this
limitation remains crucial for advancing the bug-fixing capabilities of search-based APR techniques.

Recently, advancements in APR research have been made by leveraging pre-trained general-purpose
code language models (CLM) to generate code. The capability of these models to generate high-quality
code ad-hoc in a flexible manner have allowed for advancements in state-of-the-art APR techniques
[12, 13]. In addition, GAMMA [13] improves the performance of template-based APR technique TBar
[8] by using CLMs to generate patch ingredients. GAMMA demonstrates that bug fixing capabilities
of existing redundancy-based APR techniques can be augmented with patch ingredients generated by
CLMs.

This study aims to research the potential for leveraging CLMs to overcome the limitations posed
upon search-based APR techniques by the redundancy assumption. This chapter proposes ARJACLM,
a novel search-based APR technique based on ARJA which leverages CLMs to generate additional
patch ingredients on-the-fly. The novelty of ARJACLM lies in the use of CLMs to generate patch ingre-
dients on-the-fly in a zero-shot setting. Moreover, several improvements are made to the search-based
technique of ARJA in general. The soure-code of AJRACLM is publicly available on GitHub1.

This chapter provides a comprehensive overview of ARJACLM and explains the underlying ratio-
nale of notable design decisions. Subsequently, Chapter 4 evaluates the code generation capabilities of
various CLMs to determine which CLMs are suitable for generating patch ingredients for ARJACLM.
Chapter 5 assesses the effectiveness and efficiency of ARJACLM, and discusses the impact of changing
various configuration parameters.

1https://github.com/olijzenga/ARJACLM/tree/main

16

3.1 Overview

The focus of this study is to evaluate the effectiveness of incorporating CLMs into a search-based APR
technique. ARJACLM uses ARJA, the state-of-the-art search-based technique at the time of writing,
as the baseline search-based technique to facilitate this research. Various modifications are made to
effectively incorporate CLMs.

Figure 3.1 shows how ARJACLM works in a nutshell. The input of ARJACLM consists of a buggy
Java program, one or more LBSs obtained from fault localization and a JUnit test suite of which at least
one test case fails for the buggy program. LBSs are labeled with weights indicating the likelihood that
the statement is buggy, as determined by an external out-of-the-box fault localization technique. AR-
JACLM leverages a multi-objective genetic algorithm to find test-adequate patches based on a subset
of the entire test suite. In the preparation phase, the input is prepared for the genetic algorithm. In the
post-processing phase, patches which fail to pass the full test suite are dropped. The output of ARJA-
CLM is a set of unique patches which satisfy the entire test suite. The upcoming sections will delve into
the specifics of each phase, providing a comprehensive understanding of the repair process.

Likely Buggy
Statements

Buggy Program

Sampled Tests

Screened
Ingredients

Multi-objective
Genetic

Algorithm

Test Suite

Possibly
Test-adequate

Patches

Input ARJACLM Output

Extracted
Program Data Screened

Operations

Modification
Points

Test-adequate
Patches

Preparation Genetic Algorithm Post-Processing

Figure 3.1: A data dependency overview of ARJACLM

3.2 Preparation

The preparation phase transforms the input such that it can be used by the genetic algorithm. The in-
put of the genetic algorithm is a test suite, and a set of modification points. Modification points represent
statements in the buggy program which can be modified by a patch. Figure 3.2 shows an example of a
modification point. Each modification point has a unique index, a suspicousness score, the target state-
ment which can be modified, and the patch operations and redundancy-based patch ingredients which can
be used to modify the target statement. The suspiciousness score ranges from 0 to 1, where 1 indicates
a very suspicious statement.

Modification points are constructed based on LBSs provided in the input. The most suspicious
LBSs are used to construct modification points such that each modification point corresponds to an
LBS. The statement of an LBS is the target statement of the modification point, and the weight of the
LBS is used as the suspiciousness score. Redundancy-based patch ingredients are extracted from the
project source code, and both patch operations and ingredients are screened with respect the LBS, as
discussed in subsequent sections. The number of modification points is determined by the nmax pa-
rameter of ARJACLM.

17

int x = 0;Target

Redundancy
Ingredients

0.733Suspicousness

y = 1;

int x = 5;

if (x > 3) { return -1; }

continue;

Operations

insert

replace

delete

0Index

Figure 3.2: An example of a modification point in ARJACLM

3.2.1 Operation Screening

Operation screening determines which patch operations are suitable for modifying an LBS in the buggy
program, and are therefore used for its respective modification point. The patch operation screening
rules of ARJA, as shown in Table 2.2, are used for this purpose. Operation screening increases the ef-
ficiency of the search space by preventing the use of the delete patch operation for modification points
where the deletion of the target statement is likely to yield code that does not compile.

3.2.2 Ingredient Screening

Ingredient screening filters patch ingredients based on their compatibility with the code surrounding
an LBS. Patch ingredients for a modification point are those compatible with the corresponding LBS.
ARJACLM leverages the ingredient screening rules from ARJA, as shown in Table 2.1, for this purpose.
These rules focus on preventing incorrect use of context-specific statements like continue,break and
throw.

Besides rule-based ingredient screening, patch ingredients are screened for compatibility at the lo-
cation of an LBS. Patch ingredients that reference code symbols which are not visible at the location
of an LBS, or violate type constraints, are rejected. Ingredient symbol screening validates references to
local variables, instance variables, static variables, classes, and methods. Arguments for method invo-
cations are also screened for visibility and compatibility with a method signature.

In comparison to ARJA, the ingredient symbol screening procedure in ARJACLM validates more
code symbols, and is more strict as a result. Table 3.1 shows a comparison of types of patch ingredients
supported by the ingredient symbol screening procedures of ARJA and ARJACLM. Symbol visibility
checking is the ability to determine whether a symbol is in scope at a location in the code, while type
compatibility checking determines whether code symbols do not violate type constraints. ARJACLM
is capable of resolving visibility of all code symbols within a patch ingredient, whereas ARJA is only
capable of doing so for method invocations which make up the entire statement. For example, ARJA
can screen f(x, y);, but not z = f(x, y); as the method invocation is nested in an assignment
statement. Neither ARJA nor ARJACLM can evaluate type compatibility of results of unary operators,
binary operators and literals. Finally, both ARJA and ARJACLM ignore code elements that they are
not capable of screening, rather than rejecting the entire ingredient. Thus, false positives can arise if
code symbols which violate visibility or type constraints are contained within code elements not sup-
ported by the screening procedure. ARJACLM mitigates this problem using more extensive ingredient
screening which covers more code elements.

Extensive ingredient symbol screening as used in ARJACLM further improves the efficiency of the

18

Symbol Visibility Type Compatibility

Statement ARJA ARJACLM ARJA ARJACLM

x = y; ✓ ✓ ✓ ✓
x = y + 1; ✓ ✓ ✗ ✗
f(x, y); ✓ ✓ ✓ ✓
z = f(x, y); ✗ ✓ ✗ ✓
z = f(x, 1); ✗ ✓ ✗ ✗
f(x).y(); ✗ ✓ ✗ ✓
f(x).y(z); ✗ ✓ ✗ ✓

Table 3.1: A comparison of types of patch ingredients supported by ingredient symbol screen-
ing of ARJA and ARJACLM. A checkmark is provided only if the respective technique can
handle all symbols in the input.

search space by preventing compilation errors in patched code due to semantic errors. Nevertheless,
extensive ingredient screening can lead to an increase in the number of false negatives in ingredient
screening, reducing the amount of available, valid, patch ingredients. False negatives arise from the
complex nature of resolving and type matching of code symbols, especially for usages of external code
packages. This problem is partially mitigated in ARJACLM by the use of CLMs, which substantially
reduces the reliance of redundancy-based patch ingredients. Moreover, Chapter 5 demonstrates that a
sufficient amount of redundancy-based patch ingredients exist for ARJACLM to be effective without
CLMs.

3.2.3 Test Filtering

The test suite of a buggy program consist of negative tests, which establish the symptoms of a bug, and
positive tests which demonstrate the correctness of the remaining code. In most cases however, not
all positive tests are required to determine that a patch does not break working parts of the program.
For example, if a patch modifies module x, and module y does not depend on x, then the behavior of
module y is remains unchanged. Consequently, the results of tests for module y remain unchanged, and
execution of these tests can be omitted when evaluating this patch.

Most of the execution time of search-based APR techniques consists of the evaluation of patches.
Previous research has explored test filtering techniques to speed up fitness evaluation. For example,
GenProg [51] is capable of randomly sampling a predefined percentage of positive tests. A new sample
of the positive tests is obtained for each fitness evaluation. This technique introduces risk that a posi-
tive test is omitted which evaluates functionality that is altered by a patch. Moreover, GenProg caches
fitness evaluation results to avoid re-evaluation of previously evaluated patches. Therefore, patch eval-
uation results obtained with inadequate test suites are re-used throughout the entire execution of the
genetic algorithm.

ARJA filters positive tests based on their code coverage. Positive tests are used for fitness evalua-
tion only if they cover at least one statement of a class that may be modified by the genetic algorithm.
This test filtering technique substantially reduces the number of positive tests and guarantees that all
relevant tests are executed.

ARJACLM leverages a straight forward test filtering technique. Test cases located in the same pack-
age as a negative test are always used. Moreover, positive tests are randomly selected until a fraction
of all positive tests are sampled. The rpos parameter is a configurable parameter of ARJACLM and
determines how many tests are sampled. Test sampling is only performed once, instead of sampling
tests for each variant, as ARJACLM leverages a test cache which mitigates the purpose of repeated test
sampling. This test sampling technique improves upon GenProg by prioritizing test cases which are

19

likely related to the buggy code based on their location, and avoids the use of a complex coverage based
sampling technique.

3.3 Genetic Algorithm

The genetic algorithm of ARJACLM evolves patches which modify modification points in the code,
using the sampled test suite to improve the population using natural selection. ARJACLM leverages a
multi-objective genetic algorithm based on NSGA-II [30]. This section presents the genetic algorithm
in detail.

3.3.1 Patch Representation

In genetic search, individuals in a population are mutated, combined and selected to obtain individuals
of higher fitness. Individuals in ARJACLM correspond to patches which modify the buggy program.
A patch consists of edits. Each edit modifies the target statement of a modification point using a patch
operation and ingredient. Edits can be either enabled or disabled. The enabled edits of a patch are the
modifications applied to the buggy program by the patch.

Figure 3.3 shows the data structure used by the genetic algorithm to represent patches. Similar to
ARJA, each patch consist of three separate arrays, where element i of each array corresponds to the
edit for modification point with index i. The first array contains Booleans indicating whether edit i is
enabled, and the second and third array contain the respective patch operation (insert, replace or delete)
and patch ingredient.

R I D R I 15 10 13 9 *1 0 1 0 0

R I R 15 10 131 1 0

D R D 3 * 141 0 0

R R

R

15 *

13

1 0 0

D I

D

3 10

14

1 1 0

R I R 15 10 131 0 1 D I R 11 10 131 0 0
ARJA Mutation

cut point

cut point

cut point

cut point

13

Parent 1 Offspring 1

Parent 2 Offspring 2

R D R 15 10 131 0 0 D I R 15 * 131 1 0
CLM Mutation

R I R 15 10 131 1 0 D R R 15 * 131 1 0
CLM Mutation

* = ingredient generated by CLM

generated ad-hoc

generated ad-hoc

Patch example

Crossover

Mutation

ARJACLM

p=0.5

Figure 3.3: The patch representation of ARJACLM. ’*’ is used to indicate an arbitrary patch
ingredient generated by a CLM.

The proposed patch representation introduces two novel aspects. First, contrary to the public im-

20

plementation of ARJA 2, new patch ingredients can be introduced into patches of ARJACLM on-the-
fly. As a result, patch edits are not limited to redundancy-based patch ingredients obtained beforehand.
Instead, novel patch ingredients generated ad-hoc by a CLM can be introduced in a straight-forward
manner. Second, patch ingredients can consist of an arbitrary number of statements instead of exactly
one, providing CLMs with more freedom in the amount of code that is generated.

3.3.2 Population Initialization

The initial population for genetic search determines which patches are evolved to construct test-adequate
patches. Population initialization aims to construct an initial population which consists of diverse indi-
viduals that are likely to be of high quality. A diverse initial population allows the genetic algorithm to
explore various parts of the search space. An initial population with low quality individuals however,
can make genetic search fall into the local optimum easily, which diminishes its effectiveness [52].

ARJACLM constructs the initial population randomly in the same manner as ARJA. Each edit is
initialized with a randomly selected patch operation and redundancy-based ingredient of its respective
modification point, using a uniform distribution. Edits are initialized as enabled with a probability of
suspciousness × µ, where suspiciousness is the suspiciousness score of the respective modification
point, and µ is a configurable parameter of ARJACLM. As a result, more suspicious statements are
more likely to be modified by patches in the initial population, which guides genetic search to explore
the modification of more suspicious code.

3.3.3 Crossover and Mutation

Crossover and mutation operations generate new individuals based on individuals in the current pop-
ulation. Crossover operations combine two parent individuals to obtain two offspring individuals with
the goal of obtaining offspring patches which inherit good properties of their parents. Mutation opera-
tions aim to introduce new patch elements into the population by modifying an individual. Figure 3.3
shows the crossover and mutation operations of ARJACLM.

Following ARJA, crossover is applied N/ 2 times per generation, producing N offspring patches,
where N is equal to the population size, which is a configurable parameter of ARJACLM. Mutation is
applied to each offspring patch.

3.3.3.1 Crossover

ARJACLM uses the crossover operation of ARJA. Crossover is performed separately for the edit en-
abled/disabled status, patch operations and patch ingredients. The patch enabled/disabled status is not
swapped between two parents if their value is the same for two respective edits. If the value differs,
the values are swapped with a probability of 0.5. Patch operations of two parents are combined using
single-point crossover. A cut point is randomly selected, which is a point in the list of patch edits. Only
patch operations of edits after the cut point are swapped between parents. Single-point crossover is also
used to combine patch ingredients, using a separate, newly selected, cut point.

3.3.3.2 Mutation

Two mutation operations are used in ARJACLM. First, the redundancy mutation is based on the muta-
tion of ARJA, and is used to enable or disable edits, and to modify the patch operation and redundancy-
based ingredient for an edit. With probability pmut, the patch operation and ingredient of each edit is
replaced with a randomly selected alternative of the modification point. The CLM mutation functions
slightly different from the redundancy mutation and leverages a CLM to generate patch ingredients.

2https://github.com/yyxhdy/arja

21

https://github.com/yyxhdy/arja

The redundancy mutation in ARJACLM differs from mutation in ARJA with respect to enabling
and disabling edits. The mutation operation of ARJA enables and disables patch edits with the same
probability, resulting in a tendency to generate patches where half of the edits are enabled. In practice,
the genetic algorithm is executed with many patch edits, so modification of many code locations yields
lower quality patches [9, 19]. ARJACLM uses different mutation probabilities for this reason. Disabled
edits are enabled with probability pmut, but enabled edits are disabled with probability pmut× (|{e ∈
edits | e is enabled}| + 1). As a result, the redundancy mutation converges towards patches with a
lower number of enabled edits, which are more likely to be similar to developer-written patches.

Besides the redundancy mutation which is limited to applying redundancy-based patch ingredi-
ents, ARJACLM introduces a novel CLM mutation operation which leverages a CLM to generate patch
ingredients on-the-fly. As discussed in Section 2.3.1, CLMs can be prompted to generate code at ar-
bitrary locations. The CLM mutation generates a new patch ingredient at the location of an LBS and
applies it to the respective patch edit.

Similar to the redundancy mutation, the CLM mutation enables and disables edits based on the
pmut probability. Moreover, a patch ingredient is generated and applied to an edit if this edit was en-
abled in the previous step, or with probability pmut. When a patch ingredient is generated by the CLM
mutation, either the insert or replace operation is selected randomly. This operation determines which
code location the patch ingredient is generated for. Generating a patch ingredient using a CLM is costly
however. Therefore edits for which ingredients are generated by the CLM mutation are enabled to
ensure that CLM patch ingredients are always used.

The value for pmut is equal tommut/n, wheren is the number of modification points, andmmut is
a multiplier for the mutation probability used to scale the basic 1/nmutation probability. The 1/nmu-
tation probability ensures that the overall number of mutations remains roughly the same for various
amounts of modification points.

ARJACLM generates patch ingredients using mask prediction. Mask prediction is the most straight-
forward method for obtaining infills for arbitrary code locations. The prompt format for mask predic-
tion provides full control over the target location of generated code. The generated patch ingredients
can therefore be generated and incorporated into the CLM mutation in a straight forward manner. The
C parameter of AJRACLM determines how many lines of code context surrounding the mask token
are provided to the CLM. More specifically, up to C/2 lines of context from the target source file are
provided both before and after the mask token.

Whenever mutation is performed in ARJACLM,the mutation operation is randomly selected. CLM
mutation is selected with probability pclm, which is a configurable parameter of ARJACLM. The re-
dundancy mutation is selected otherwise. As previously discussed, the CLM mutation enables and
disables patch edits in the same way as the redundancy assumption. Moreover, mutation of patch op-
erations and ingredients occurs at roughly the same frequency for both mutation operations. A similar
mutation rate is therefore achieved for both mutation operations, such that ARJACLM does not rely
on either mutation to modify specific patch elements. As a result, ARJACLM can be an effective APR
technique for any value of pclm, permitting the evaluation of a wide range of CLM mutation probabil-
ities to determine the value CLM-based patch ingredients. Note that even for pclm = 1, some patches
using redundancy-based patch ingredients are evaluated, as population initialization solely leverages
redundancy-based ingredients as discussed in Section 3.3.2.

Screening for patch ingredients and operations as discussed in Section 3.2.2 and Section 3.2.1 is not
applied to patch ingredients generated by a CLM. As a result, CLMs are provided with more control
over what code can be generated. If a CLM is adequately powerful, this can yield unique new patches
of high quality for complex code elements.

22

3.3.3.3 Operation and Ingredient Screening

Patch operation and ingredient screening as discussed in Section 3.2.2 and Section 3.2.1 prevent the
construction of patches for which the patch ingredient or operation introduces a code anti-pattern by
itself. However, anti-patterns can also occur as the result of a combination of a patch ingredient and a
specific operation. ARJACLM leverages a patch representation similar to ARJA, where patch ingredi-
ents and operations are considered independent values. As a result, mutation and crossover in ARJA-
CLM can give rise to patch edits containing code anti-patterns.

ARJACLM leverages the rules for screening combinations of patch ingredients and operations
from ARJA, as shown in Table 2.3. In ARJACLM, ingredient and operation screening is performed
for new individuals obtained through crossover and mutation. Patch edits which exhibit a code anti-
pattern are rectified by randomly selecting an alternative redundancy-based patch ingredient such that
no anti-patterns occur. The patch is discarded if no such ingredient is available. This screening tech-
nique treats the construction of patches containing anti-patterns without diminishing the mutation rate
of the genetic algorithm.

3.3.4 Fitness Evaluation

The multi-objective genetic algorithm used in ARJACLM is based on the minimization of the two ob-
jectives of ARJA, namely the weighted failure rate (denoted by f1), and patch size (denoted by f2). The
weighted failure rate is given by Equation 3.1, whereTn andTp are the set of negative and sampled pos-
itive tests respectively, and w is a configurable parameter of ARJACLM where 0 ≤ w ≤ 1.

f1(x) =
|{t ∈ Tn | x fails t}|

|Tn|
× (1− w) + min(1,

|{t ∈ Tp | x fails t}|
5

)× w (3.1)

The weighted failure rate f1 differs from ARJA in its computation of the failure rate for positive
tests. ARJACLM divides the number of failed positive tests by 5, instead of the number of positive
tests, asTp is usually much larger thanTn, and varies strongly between buggy programs. As a result,f1
provides a more sensitive and consistent heuristic for the failure ratio of positive tests. Patches where
f1(x) = 0 are test-adequate.

The patch size is given by Equation 3.2, which is the number of enabled edits of the patch.

f2(x) = |{e ∈ x | e is enabled}| (3.2)

The genetic algorithm of ARJACLM simultaneously minimizes f1 and f2, optimizing for test-
adequate patches which perform few modifications on the program. Patches which either fail to com-
pile, exceed the test execution timeout or have zero enabled edits, are assigned fitness +∞ for both
objectives.

3.3.5 Selection

Genetic algorithms use a selection algorithm to determine which individuals are selected for crossover
and mutation, and to select individuals for replacement in the population. Following ARJA,tournament
selection is used for this purpose. In ARJACLM, each tournament consists of two randomly selected
individuals. In order of occurrence, a patch wins the tournament if:

1) It compiles, and the other does not

2) It is test-adequate, and the other is not

23

3) It is dominated by fewer individuals than the other

4) Its crowding distance is greater than that of the other

A tournament winner is selected randomly if these criteria fail to determine a winner.

3.3.6 Replacement

Each generation of a genetic algorithm ends with the replacement of individuals in the population with
new individuals obtained from crossover and mutation. Genetic algorithms based on NSGA-II perform
replacement based on its selection method and elitism. Elitism guarantees that the efittest individuals
of the current population are carried over to the next generation. Elite count eis a configurable parameter
of AJRACLM. Tournament selection as discussed in Section 3.3.5 is used to select the remainder of the
new population.

3.4 Post-validation

The genetic algorithm of ARJACLM stops once G generations have been evaluated, which is a config-
urable value. The test-adequacy of patches is determined by the genetic algorithm based on a sample
of the entire test suite, as discussed in Section 3.2.3. In the post-validation phase, solutions generated
by the genetic algorithm are evaluated using the entire test suite of the buggy program. Patches which
fail to pass the entire test suite are removed from the set of test-adequate solutions.

This chapter has presented ARJACLM, a novel APR technique which leverages patch ingredients gen-
erated by CLMs to overcome limitations of existing search-based APR techniques. Chapter 4 studies
the effectiveness of many well-known CLMs for mask prediction, and studies their behavior under var-
ious sampling configurations. Two effective CLMs with different cost characteristics are selected for the
evaluation of ARJACLM in Chapter 5.

3.5 Contributions

This chapter has so far presented ARJACLM, which is based on ARJA, but involves some key dif-
ferences. This section summarizes the differences between ARJACLM and ARJA. First, AJRACLM
leverages a more straight forward test filtering approach, partially selecting positive tests at random to
reduce the execution time. The coverage-based test filtering technique of ARJA provides more reliable
filtering, but increases the burden of implementing the technique. Ingredient screening of ARJACLM
is more strict compared to ARJA, which omits screening of complex ingredients, resulting in more, but
lower quality, redundancy-based patch ingredients.

The patch representation of ARJACLM is more flexible than that of AJRA, as it allows for introduc-
ing additional arbitrary patch ingredients on-the-fly. This flexibility is crucial to incorporating CLM-
based patch ingredients. Such ingredients are introduced into the population by a novel mutation oper-
ation which functions similar to the existing redundancy-based mutation of ARJA, but leverages CLM-
generated patch ingredients instead. Moreover, both the redundancy-based and CLM-based mutation
operations of ARJACLM dynamically adjust the probability of disabling patch edits based on the num-
ber of edits already present in the patch. This mechanism avoids the exploration of patches with an
excessive number of code edits.

ARJACLM leverages a fitness function which increases the weight given to the failure rate of pos-
itive tests. ARJA records the maximum loss as the result of failing positive test cases if all (usually
hundreds or thousands) positive test cases fail, whereas in ARJACLM, maximum loss for positive tests

24

is obtained when five positive tests fail. ARJACLM is much more sensitive to positive test failures as a
result.

25

Chapter 4

Evaluation and Selection of Code
Language Models

Code language models have recently been developed at a rapid pace, and are trained using various gen-
eral tasks, datasets and training methodologies. Moreover, CLMs come in various sizes, which influ-
ences the quality of generated code and the cost of applying them. As a result, it is currently unknown
which CLMs are most effective at generating code infills. Evaluating ARJACLM with a wide range of
CLMs is too costly, so a CLM with strong code generation capabilities is used for this purpose. In this
chapter, the code infilling capabilities of 20 CLMs are evaluated to determine which CLMs are most
suitable for evaluating ARJACLM.

Several works have attempted to evaluate code generation capabilities of CLMs, generating code for
a benchmark of code generation tasks, and evaluating the correctness of the generated code. Recently,
Jiang et al. [53] evaluate APR capabilities of CLMs via code infilling, and use APR benchmarks with test
suites to determine the correctness of generated code. In addition, the study evaluates the efficiency of
CLMs by comparing the cost of applying each CLM to the number of bugs fixed, where cost is expressed
in the number of parameters of each CLM, the generation time per fix and GPU memory usage.

Despite reporting several key metrics for selecting CLMs, the evaluation of Jiang et al. has several
limitations. CodeT5 [40], PLBART [44], CodeGen [54] and InCoder [46] are thoroughly evaluated, but
numerous novel CLMs have emerged since. Moreover, the evaluation solely relies on the beam search
sampling strategy with a single beam size. Nucleus sampling is not evaluated, limiting our understand-
ing of the impact of sampling methods and parameters on performance and cost of CLMs.

This chapter addresses the discussed limitations with respect to code infilling capabilities of CLMs
by evaluating performance and cost of a wide range of well-known CLMs using both beam search and
nucleus sampling with a broad spectrum of parameters. Moreover, a novel benchmark is proposed for
evaluating CLMs’ capabilities of generating infills consisting of a single line of code. The results are used
to improve understanding of performance and cost characteristics of CLMs, and to determine which
CLMs are used to evaluate the proposed APR technique.

4.1 Selection of CLMs

CLMs are identified through an informal snowballed exploration of academic papers, surveys [58, 53]
and online resources, guided by three inclusion criteria. First, each CLM must be publicly available
and capable of being executed locally to facilitate the acquisition of cost metrics and the configuration
of the sampling technique. Thus, CLMs like ChatGPT and Codex are excluded. Second, CLMs must
provide explicit mask prediction capabilities, as it is the code generation technique leveraged by AR-
JACLM. Therefore, CLMs like GPT-NeoX [59] and CodeGeeX2 [48] are excluded. Third, CLMs must

26

Name Variants Functional Evaluated

CodeBERT [43] 125M Yes No
CodeGen [54] 250M, 2B, 6B, 16B Yes No
CodeGen 2 [45] 1B, 3.7B, 7B, 16B Yes Yes
CodeGen 2.5 [45] 7B No No
Incoder [46] 1B, 6B Yes Yes
CodeT5 [40] small (60M), base (220M), large (737M) Yes Yes
PLBART [44] base (140M), large (400M) Yes Yes
Refact [55] 1.6B Yes Yes
StarCoder [41] 15.5B Yes Yes
StarCoderPlus [41] 15.5B No No
SantaCoder [42] 1.1B Yes Yes
CodeLLama [56] 7B, 13B Yes Yes
CodeLLama-Instruct [56] 7B, 13B Yes Yes
CodeShell [57] 7B Yes Yes
UniXCoder [47] 125M Yes Yes

Table 4.1: An overview of CLMs considered for evaluation. Variants of CLMs are denoted by
the number of parameters, expressed in millions (M) or billions (B).

not consume over 48G of VRAM when 16-bit quantization is used, which results in the exclusion of
CLMs like CodeLLaMA 34B and 70B [56].

Table 4.1 lists all identified CLMs that match the inclusion criteria. For the sake of completeness,
this table also includes CLMs which satisfy the inclusion criteria but were not evaluated for other rea-
sons. Among the chosen CLMs, we encountered challenges with CodeGen 2.5 and StarCoderPlus,
which failed to produce meaningful results during preliminary testing. Moreover, earlier versions of
CodeGen are excluded since they are superseded by CodeGen 2 [54, 45]. CodeBERT is omitted from
the evaluation due to its impracticality in generating code sequences of arbitrary lengths, as discussed
in Section 2.3.2.

4.2 Experiment Design

The code infill generation capabilities of CLMs are evaluated by generating code infills for a bench-
mark set containing Java infilling tasks. Each infill is tests using the test suite provided with each infill
task. We construct a novel single-line code infilling benchmark based on the HumanEval-Java [53].
HumanEval-Java is an APR benchmark obtained by translating the code completion benchmark Hu-
manEval [60] from Python to Java. Jiang et al. manually introduce a bug into each completed Java file,
resulting in an APR benchmark with 163 buggy files, each accompanied with the correct version of the
file and a test suite consisting of 6.3 test cases on average.

We construct a novel single-line code infilling benchmark by masking a random line in each correct
Java file which has been modified with respect to its buggy variant, ensuring that behaviorally relevant
code is masked. Thus, a code infilling benchmark is obtained which consists of 163 Java files with a
masked line of code, and a test suite for evaluating the correctness of each infill. Figure 4.1 shows an
infilling task from the constructed benchmark, and Figure 4.2 shows a single test case of the correspond-
ing test suite.

This experiment evaluates the performance and cost of CLMs using two sampling techniques—
beam search and nucleus sampling—across a predefined range of parameters. Beam search is a deter-
ministic sampling method which generates token sequences by exploring multiple sequences of infills
at once to avoid local optima. The beam size determines how many sequences are explored in parallel.
A higher beam size can yield higher quality results, at the cost of increased VRAM usage and compu-

27

package humaneval.buggy;

import java.util.ArrayList;
import java.util.List;

// Implement a function that takes an non-negative integer and returns an array of
// the first n integers that are prime numbers and less than n.
// for example:
// count_up_to(5) => [2,3]
// count_up_to(11) => [2,3,5,7]
// count_up_to(0) => []
// count_up_to(20) => [2,3,5,7,11,13,17,19]
// count_up_to(1) => []
// count_up_to(18) => [2,3,5,7,11,13,17]

public class COUNT_UP_TO {
public static List<Integer> count_up_to(int n) {

List<Integer> primes = new ArrayList<Integer>();

for (int i = 2; i < n; i += 1){
boolean is_prime = true;
<mask>

if (i % j == 0) {
is_prime = false;
break;

}
}
if (is_prime) primes.add(i);

}
return primes;

}
}

Figure 4.1: A sample from the CLM infilling benchmark

package humaneval;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class TEST_COUNT_UP_TO {
@org.junit.Test(timeout = 3000)
public void test_0() throws java.lang.Exception {

List<Integer> result = humaneval.buggy.COUNT_UP_TO.count_up_to(5);
org.junit.Assert.assertEquals(

result, new ArrayList<Integer>(Arrays.asList(2, 3))
);

}
}

Figure 4.2: Part of the test suite for a sample of the CLM infilling benchmark

28

tation time. Nucleus sampling is a statistical sampling method which explores a single token sequence,
selecting subsequent tokens from the top-p most likely tokens of the cumulative probability distribu-
tion. Each subsequent token is randomly selected based on the probability of the token, such that prob-
able tokens are more likely to be selected. The temperature parameter scales the probabilities of tokens
before selection. Temperatures between 0 and 1 lead to more predictable results, while temperatures
over 1 lead to less predictable results. A temperature of 1 yields unmodified probabilities.

Beam search is evaluated with beam sizes 5 and 10, and nucleus sampling is evaluated with all
combinations of top-p∈ {0.2, 0.4, 0.6, 0.8} and temperature ∈ {0.1, 0.4, 0.7, 1.0, 1.3, 1.6, 1.9}.
These parameter ranges are selected based on the results of informal preliminary testing, which showed
no benefit in evaluating top-p = 1.0, or temperature ≥ 2.0. Moreover, beam size ≥ 10 led to excessive
VRAM usage without demonstrating noticeably improved results to justify the cost. Thus a total of 2
and 28 sampling configurations are evaluated for beam search and nucleus sampling respectively. It
should be noted that UniXCoder and Refact are only evaluated using beam search and nucleus sam-
pling respectively, as only these sampling methods are provided out-of-the-box in the versions pub-
lished on HuggingFace1.

Result Description

No result Occurs if the CLM generates less than the number of requested infills.
Compilation failure The infilled code fails to compile.
Test compilation failure Test code fails to compile. Can occur if the function signature in the infilled

code is modified.
Test failure One or more test cases failed.
Test timeout Test execution has exceeded its configured timeout.
Success The source and test code compile successfully and all test cases pass.

Table 4.2: List of possible evaluation outcomes for a code infill result.

All experiments are performed using a single NVidia A40 with 48GB of VRAM, using 16-bit quan-
tization. Each CLM is applied to the single-line infilling benchmark once for each sampling configura-
tion, in a zero-shot setting i.e. without fine-tuning. Five infills are generated for each infill task. Subse-
quently, each infill is evaluated by compiling and testing the infilled code, which yields to one of the
results shown in Table 4.2.

Several metrics are employed to measure the performance and cost of CLMs. The performance of
CLMs is evaluated based on the following metrics. The N=1 performance of a CLM is the number of
infill tasks for which the first generated infill is test-adequate. The N=5 performance is the number of
infill tasks for which any of the five infills is test-adequate. Moreover, we report the compilation rate of
infills applied to the respective masked file. Compilation rate is based on all five infills for the 163 infill
tasks:

compilation rate = total number of compileable infills / (163 ∗ 5) (4.1)

Finally, we measure the number of unique infills generated for each task. Infills are considered duplicate
if they are syntactically equal, disregarding additional white-space and indentation.

The cost of applying each sampling configuration of each CLM is determined based on the follow-
ing metrics. Firstly, the number of parameters of each CLM indicates its size, which impacts the VRAM
usage and computation time needed to generate infills. Second, the total time needed to generate all in-
fills for all infill tasks is measured for each CLM, along with peak VRAM usage.

For each CLM, we discuss the best results obtained across all sampling configurations. The best
result is determined based on the N=1 performance. It is explicitly mentioned when N=5 performance
is reported instead.

1https://huggingface.co/

29

https://huggingface.co/

Fixes Beam Top Temp- Compilation
CLM Size N=1 N=5 Difference Size p erature Rate

UniXCoder 125M 26 34 +8 (30.8%) 5 46.3%
Refact 1.6B 112 121 +9 (8%) 0.6 0.1 95.3%
SantaCoder 1.1B 101 107 +6 (5.9%) 0.6 0.7 97.1%
CodeShell 7B 125 132 +7 (5.6%) 0.6 0.7 96.1%
StarCoder 15.5B 136 141 +5 (3.7%) 0.8 0.7 97.8%

PLBART Base 140M 41 67 +26 (63.4%) 10 70.1%
PLBART Large 400M 42 76 +34 (81%) 10 80.3%

CodeT5 Small 60M 22 38 +16 (72.7%) 10 31.3%
CodeT5 Base 222M 50 61 +11 (22%) 5 46.9%
CodeT5 Large 737M 69 69 - 0.4 0.1 94.4%

CodeLLaMA 7B 7B 126 135 +9 (7.1%) 0.6 1 98.0%
CodeLLaMA 13B 13B 137 143 +6 (4.4%) 0.6 0.7 98.6%
CodeLLaMA-Instruct 7B 7B 74 116 +42 (56.8%) 0.8 0.7 62.1%
CodeLLaMA-Instruct 13B 13B 76 132 +56 (73.7%) 0.8 1.3 62.0%

CodeGen2 1B 1B 2 3 +1 (50%) 0.4 1.3 1.7%
CodeGen2 3.7B 3.7B 8 9 +1 (12.5%) 0.4 1.3 36.8%
CodeGen2 7B 7B 44 46 +2 (4.5%) 0.6 0.4 48.0%
CodeGen2 16B 16B 124 126 +2 (1.6%) 0.8 0.7 82.0%

Incoder-1B 1B 63 74 +11 (17.5%) 5 54.7%
Incoder-6B 6B 70 82 +12 (17.1%) 5 63.1%

Table 4.3: Per model, infill task success rate for the N=1 and N=5, resource usage and the sampling settings for the
best benchmark results for N=1.

4.3 Experiment Results

Table 4.3 shows the results for the best performing sampling configuration for each CLM. Appendix A
provides the complete benchmark results of all sampling configurations for each CLM. This section
primarily examines the overall performance of CLMs based on N=1 and N=5 performance.

4.3.1 Performance and CLM Size

Figure 4.3 shows the N=1 performance of all evaluated CLMs with respect to their size. A broad spec-
trum of cost and performance values can be observed. For example, CodeT5 is the smallest CLM
(60 million parameters) and generates 22 correct infills, while CodeGen2-16B is the largest (16 bil-
lion parameters) and generates correct infills for 124 out of 163 tasks. Notably, UniXCoder, CodeT5,
PLBART, SantaCoder, Refact, CodeShell, CodeLLaMA, StarCoder and CodeGen2-16B perform best
with respect to their size. A positive relationship between size and performance can be observed for
these CLMs, demonstrating that the investment of more computational resources can yield better per-
formance. Performance gain for larger CLMs diminishes however. For example, SantaCoder is 18x
larger than CodeT5 Small and performs 359% better, but StarCoder is 14x larger than SantaCoder and
only performs 35% better.

CodeLLaMA-Instruct 7B and 13B produce 74 and 76 correct infills, respectively, while the base
CodeLLaMA model generates 126 and 136 correct infills. CodeLLaMA-Instruct is a version of CodeL-
LaMA fine-tuned to more accurately respond to human instructions. It is plausible that the fine-tuning
step has diminished the mask prediction capabilities of CodeLLaMA-Instruct compared to its base
model.

CodeGen2 1B, 3.7B and 7B generate 2, 8 and 44 correct infills respectively, whereas CodeGen2 16B

30

108 109 1010
0

20

40

60

80

100

120

140

160

base large

small

base

large

7B
13B

7B 13B

1B
3.7B

7B

16B

1B
6B

CLM Size (number of parameters)

Co
rr

ec
tI

nfi
lls

UniXCoder
StarCoder
SantaCoder
Refact
CodeShell
PLBART
CodeT5
CodeLLaMA
CodeLLaMA-Instr.
CodeGen2
InCoder

Figure 4.3: N=1 performance of CLMs vs their size.

generates 124 correct infills. Both preliminary evaluation and empirical evaluation demonstrate that
CodeGen2 1B and 3.7B are ineffective at code infilling tasks.

4.3.2 Performance and Cost

We compare the performance of CLMs to their cost in terms of total infill time and peak recorded
VRAM usage. Nucleus sampling and beam search have different cost characteristics, which hinders di-
rect comparison of results obtained from different sampling techniques. For this reason, the we instead
report the performance and cost of each CLM based on the metrics obtained for the best performing
nucleus sampling configuration (wrt. N=1) for the model. Thus, the reported N=1 performance differs
from previously reported performance for CLMs which perform best under a beam search configura-
tion. Moreover, UniXCoder is excluded from this comparison as it is only evaluated using beam search.

Figure 4.4 shows the N=1 performance of CLMs compared to VRAM usage. VRAM usage of
CLMs is mostly proportional to their size, the only exception being CodeGen2-1B, which uses more
memory than its 7B and 16B counterparts while generating far fewer correct infills.

Figure 4.5 plots the performance of CLMs compared to the total infill generation time. CodeT5
Small and Base take 19 and 69 seconds respectively, meanwhile PLBART, SantaCoder and Refact take
107 to 188 seconds, and CodeT5 Large, CodeLLaMA, Codeshell and StarCoder take 243 to 307 sec-
onds. PLBART, CodeLLaMA-Instruct and CodeGen2 are outperformed by their counterparts with
similar performance. CodeT5, SantaCoder, Refact, CodeLLaMA, CodeShell and StarCoder demon-
strate a positive relationship between time cost and performance. Nevertheless, the gain in performance
obtained from increased costs diminishes for larger CLMs.

31

0.5 1 2 4 8 16 32
0

20

40

60

80

100

120

140

160

base

large

small

base

large

7B
13B

7B 13B

1B
3.7B

7B

16B

1B
6B

Memory Usage (GiB)

Co
rr

ec
tI

nfi
lls

Figure 4.4: N=1 performance of CLMs vs memory
usage.

16 32 64 128 256 512 1,020
0

20

40

60

80

100

120

140

160

base

large

small

base

large

7B
13B

7B13B

1B
3.7B

7B

16B

1B
6B

Total Infill Time (s)

Co
rr

ec
tI

nfi
lls

Figure 4.5: N=1 performance of CLMs vs infill time.

108 109 1010
0

20

40

60

80

100

120

140

160

base
large

small

base
large

7B
13B

7B

13B

1B
3.7B

7B

16B

1B
6B

CLM Size (number of parameters)

Co
rr

ec
tI

nfi
lls

Figure 4.6: N=5 performance of CLMs vs their size.

108 109 1010

0

20

40

60

80

100

base

large

small

base

large 7B 13B

7B 13B

1B

3.7B

7B

16B

1B
6B

CLM Size (number of parameters)

%
Co

m
pi

la
tio

n
R

at
e

Figure4.7: Compilation rates (%) for infills generated
by CLMs.

32

4.3.3 CLM Size and Compilation Failures

Negative evaluations of code infills are mostly comprised of compilation errors and test failures. Fig-
ure 4.7 plots the compilation rate of infills generated by CLMs with respect to their size. Infills gener-
ated by CodeT5 Large, SantaCoder and Refact compile successfully 94.4% to 97.1% of the time, while
compilation rates for larger models like CodeShell, CodeLLaMA 7B and 13B and StarCoder range from
96.1% to 98.6%. Compilation rates for CLMs smaller than CodeT5 Large quickly diminish, ranging
from 80.3% for PLBART Large to 1.7% for CodeGen2-1B.

4.3.4 N=1 and N=5 Success Rate

The previously discussed results present the overall performance of each CLM as the number of infill
tasks for which the first infill yielded a correct result, i.e. N=1. We hypothesize that the first generated
infill is of the highest quality, and only the first infill should be considered for ARJACLM to obtain an
efficient search space. Table 4.3 shows a comparison of N=1 and N=5 performance for each CLM, and
Figure 4.6 plots the N=5 performance. On average, the N=5 performance of CLMs is increased by 27%
compared to N=1. There are some notable outliers however.

CodeLLaMA Instruct 7B and 13B perform 56.8% and 73.7% better respectively for N=5. An in-
formal manual analysis of several generated infills shows that CodeLLaMA Instruct generates high-
quality infills similar to CodeLLaMA, but frequently fails to halt token generation at the appropriate
moment, which yields infills containing superfluous code, disturbing the syntax or behavior of the pro-
gram. Nevertheless, CodeLLaMA Instruct exhibits much improved N=5 performance as the proba-
bility of halting token generation at the proper location at least once increases when more infills are
generated.

PLBART Base and Large and CodeT5 Small perform 63.4%, 81% and 72.7% better respectively for
N=5. In contrast to CodeLLaMA Instruct, these CLMs do not fail to appropriately halt token genera-
tion. Instead, correct subsequent infills are frequently a slight variation of the first, incorrect, infill. It
must be noted that PLBART Base and Large and CodeT5 Small demonstrate the best performance for
both N=1 and N=5 under beam search, which is capable of generating a diverse set of infills consistently,
improving the probability of generating correct code at least once.

4.3.5 Nucleus Sampling and Beam Search

Some cost characteristics of nucleus sampling and beam search are well known. For example, beam
search utilizes more VRAM than nucleus sampling and is usually more time consuming. The most
suitable sampling method depends on the model and its application. Table 4.3 shows the best perform-
ing sampling settings for each CLM. Again, note that UniXCoder and Refact were only evaluated using
beam search and nucleus sampling respectively.

4.4 Infill Diversity and Quality

The evaluation results presented so far, mostly focused on determining the most effective CLMs with
regards to the quality of the first infill they generate. Nevertheless, generating additional, unique, infills
of high quality is a desirable trait for CLMs in general.

Diverse results are easily obtained using beam search, as over 4.5 average unique infills can be ob-
served for most CLMs when beam search is applied. For example, SantaCoder produces 4.8 and 4.7
unique infills on average for beam sizes 5 and 10 respectively. Meanwhile, the conducted experiments
show that all CLMs produce downwards of two unique infills per task for the majority of evaluated nu-
cleus sampling configurations. However, higher result diversity can be achieved with nucleus sampling
using high values for top-p and temperature.

33

0.1 0.4 0.7 1 1.3 1.6 1.9

0.2

0.4

0.6

0.8

Temperature

To
p-

p

1 2 3 4

(a)Unique results

0.1 0.4 0.7 1 1.3 1.6 1.9

0.2

0.4

0.6

0.8

Temperature

To
p-

p
60 70 80 90 100

(b) Correct N=1 results

0.1 0.4 0.7 1 1.3 1.6 1.9

0.2

0.4

0.6

0.8

Temperature

To
p-

p

100 110

(c) Correct N=5 results

0.1 0.4 0.7 1 1.3 1.6 1.9

0.2

0.4

0.6

0.8

Temperature

To
p-

p

300 350 400 450

(d) Total correct results

0.1 0.4 0.7 1 1.3 1.6 1.9

0.2

0.4

0.6

0.8

Temperature

To
p-

p

200 300 400 500

(e) Total infill generation time

0.1 0.4 0.7 1 1.3 1.6 1.9

0.2

0.4

0.6

0.8

Temperature

To
p-

p
50 100 150 200

(f) Total compilation failures

Figure 4.8: Heatmap of Santacoder infilling metrics pertaining result diversity.

This section studies the trade-off between patch quality and diversity for nucleus sampling based
on results obtained for SantaCoder. Similar results can be observed for most CLMs. Figure 4.8a shows
the average number of unique infills generated by SantaCoder per infill task for all evaluated top-p and
temperature values. The number of average unique infills range from 1.0 for low top-p temperature
values, while high values for both parameters yield up to 4.3.

Figure 4.8b shows the number of successful N=1 results for the evaluated nucleus sampling con-
figurations. The results demonstrate that the best N=1 results are obtained using moderate parameter
values. Performance is strongly diminished for high top-p and temperature values. All other sampling
configurations demonstrate a performance loss of less than 20% with respect to the best performing
parameters.

Figure 4.8c shows number of successful N=5 results. The sensitivity of N=5 performance is similar
to that of N=1. However, N=5 performance is not strongly diminished for high diversity sampling
configurations. Notably, the best N=5 performance is obtained by striking a specific balance between
moderate to high top-p and temperature values.

Figure 4.8d shows the total number of correct results generated out of all five generated infills per
task. The results mostly correspond with N=1 performance, but with more clearly diminished results
for high-diversity configurations.

Figure 4.8e shows the time needed to complete all infilling tasks. More time is needed to generate
infills for high-diversity sampling configurations. Furthermore, Figure 4.8f shows that infills generated
under high-diversity configurations are less likely to be compileable.

The case study of infill diversity on SantaCoder demonstrates that diversity can come at the cost of

34

result quality when nucleus sampling is used. Depending on the application, a balance must be struck
between quality and diversity to obtain the desired result. Similar patterns to those presented for San-
taCoder can be observed for Refact, CodeT5 Large, StarCoder, CodeLLaMA and CodeShell.

4.5 Notable Infill Tasks

Some infill tasks which are not fixed by any CLM, or are fixed by exactly one CLM. For N=1, there are
13 tasks for which no CLM produced a test-adequate result, 6 of those could not even be fixed by any
model at N = 5: CAR_RACE_COLLISION, CHECK_IF_LAST_CHAR_IS_A_LETTER, DECODE_SHIFT,
FIND_ZERO, GET_ROW, IS_EQUAL_TO_SUM_EVEN, MAKE_A_PILE, MIN_SUBARRAY_SUM, MULTIPLY,
STARTS_ONE_ENDS,STRING_SEQUENCE,TRIANGLE_AREA_2 and TRUNCATE_NUMBER.

For N = 5, CodeLLaMA Instruct 7B managed to fix TRIANGLE_AREA_2, CodeT5 Large fixed
MIN_SUBARRAY_SUM, and PLBART Large managed to fix TRUNCATE_NUMBER. Several CLMs fixed
CHECK_IF_LAST_CHAR_IS_A_LETTER, DECODE_SHIFT, FIND_ZERO and STRING_SEQUENCE. This
result shows that despite promising statistics, some relatively simple infill tasks cannot be completed
by CLMs.

4.6 Conclusion

This evaluation studies the effectiveness of code infilling capabilities of 20 CLMs with various charac-
teristics. CodeT5, SantaCoder, Refact, CodeShell, CodeLLaMA and StarCoder are the most effective
CLMs at generating infills with respect to their cost and size, covering a wide range from 70 million up
to 15.5 billion parameters. In addition, 94.4% of infills generated by CodeT5 Large, SantaCoder, Refact,
CodeShell, CodeLLaMA and StarCoder were compileable. Finally, larger CLMs are slower, require
more VRAM, and diminishing returns can be observed in the effectiveness of CLMs with respect to
their size and cost.

The experiments show that effective CLMs exist in a wide range of sizes, and can be selected based
on a budget of computational resources. Both Refact and SantaCoder are effective at a low cost, while
CodeLLaMA 13B and StarCoder are the most effective CLMs at a higher cost. Larger CLMs like Santa-
Coder and CodeLLaMA 13B provide more effective code infilling capabilities than their smaller, more
efficient, counterparts. AJRACLM is evaluated with a larger CLM to determine its strongest overall
bug fixing capabilities. We arbitrarily select CodeLLaMA 13B for this purpose.

The overall difference between N=1 and N=5 performance across all CLMs is 27% on average. This
performance improvement is only limited to 8% for the CodeLLaMA 13B however. This improvement
does not justify a drastic increase in search space size. Therefore, Chapter 5 evaluates ARJACLM by
only considering the first infill generated for each task.

The empirical evaluation of infilling capabilities of CLMs is adequate for obtaining the most suit-
able CLMs for evaluating ARJACLM. The evaluation is limited in some ways however, which make
the results less generalizable.

First, each CLM is evaluated exactly once for each sampling configuration using a fixed seed. The
performance these experiments can be influenced by randomness, which could be reduced by execut-
ing each benchmark multiple times using different seeds.

Second, generated infills were not manually validated. Infills which pass the test suite may still be
incorrect, as it is often infeasible to evaluate all scenarios. It is currently unclear to what extent CLMs
generate infills which are test-adequate but incorrect nevertheless.

Third, infilling is evaluated by replacing an existing line of code from HumanEval-Java with a mask
token. Thus, all infilling tasks pertain scenario where code should be present in place of the mask token.
However, ARJACLM leverages CLMs to generate code at arbitrary suspicious code locations, where

35

additional code is not always desirable. Thus, the CLM evaluation setting differs from the intended
purpose in ARJACLM.

Finally, only a limited range of sampling parameters were evaluated. Table 4.3 shows that several
CLMs perform best using nucleus sampling options which are the minimum or maximum of the evalu-
ated ranges for top-p and temperature. It follows that some CLMs might perform better with sampling
parameters outside of the evaluated range. Moreover, a more fine-grained range of parameter values
can yield slightly better performance for many CLMs.

36

Chapter 5

Evaluation of ARJACLM

This chapter evaluates ARJACLM CodeLLaMA 13B, and addresses the following research questions:

RQ1: What is the performance of ARJACLM in terms of bug fixing?

To address this research question, the overall performance of ARJACLM needs to be determined.
To this end, we perform an systematic investigation to determine the most effective configuration of
ARJACLM, and measure its overall performance with CodeLLaMA.

RQ2: What is the performance of ARJACLM compared to other search-based techniques?

A comparison of ARJACLM with other search-based techniques reveals the extent of the perfor-
mance improvement provided by CLMs.

RQ3: What is the time and memory efficiency of ARJACLM?

The cost of ARJACLM is expected to be higher when using CLMs. We investigate whether the cost
of ARJACLM can be justified by its performance.

RQ4: What is the quality of CLM generated patch ingredients?

Evidence on the quality of CLM-based patch ingredients compared to their redundancy-based
patch counterparts can be useful for a wide range of APR techniques.

This remainder of this chapter discusses the experimental evaluation of ARJACLM and presents its
results.

5.1 Defects4J

The research questions are answered based on experiments on Defects4J 2.0 [29], which is a collection
of bugs mined from real-world open-source Java projects, commonly used to evaluate APR techniques
[5, 8, 9, 12, 19, 17, 18, 51, 61, 62]. Defects4J 2.0 consists of 835 bugs in total from 17 different projects.
For each bug, a test suite is provided with positive test cases, and at least one negative test case which
demonstrates the bug. Moreover, tools are provided to facilitate the compilation of the buggy program
and the execution of its test suite.

Not all bugs of Defects4J are evaluated for this experiment. Table 5.1 shows how many bugs of each
project are evaluated. In total 398 out of 835 bugs of Defects4J are evaluated. Many bugs are excluded
from the evaluation for two reasons. First, many test suites of bugs contain flaky tests. Flaky tests fail

37

Project #Total Bugs # Pre-processed Bugs # Evaluated Bugs

Chart 26 26 20
Cli 39 38 20
Closure 174 0 0
Codec 18 18 18
Collections 4 0 0
Compress 47 45 20
Csv 16 0 0
Gson 18 18 18
JacksonCore 26 0 0
JacksonDatabind 112 0 0
JacksonXml 6 0 0
Jsoup 93 91 20
JxPath 22 0 0
Lang 64 38 20
Math 106 99 20
Mockito 38 0 0
Time 26 25 20

Total 835 398 176

Table 5.1: Overview of the number of bugs per project of Defects4J, and the number of evalu-
ated bugs.

to produce consistent test results due to randomness, or time-based behavior, for example. Defects4J
provides tooling which for obtaining consistent test results across an entire test suite by filtering results
of flaky tests, and providing a more consistent execution environment. However, this execution method
is not compatible with ARJACLM and GZoltar [63], which is the fault localization technique used for
this evaluation. Both tools execute tests directly, and are not compatible with external execution tools.
As a result, all flaky tests have to be manually found by the authors, which is a time-consuming process.
Therefore not all bugs are evaluated.

Another reason for excluding many Defects4J bugs from this experiment is the inability to directly
compile and run all buggy projects. While Defects4J provides tools to simplify the compilation of buggy
projects, direct compilation is necessary to allow for instrumentation of GZoltar to be included in the
program artifact. On the other hand, direct compilation fails for some bugs on certain system config-
urations due to the need for specific settings. These settings are provided by Defects4J’s compilation
tool but are otherwise cumbersome to apply.

Finally, to reduce the substantial computational cost involved with evaluating configurations of
ARJACLM on complex real-world bugs, only a subset of the Defects4J bugs that were successfully
pre-processed are evaluated. For each project, a maximum of 20 bugs are evaluated. Consequently,
ARJACLM is evaluated on 176 bugs in total.

5.2 Evaluation Protocol

For RQ1 we investigate which parameters are optimal for ARJACLM. Table 5.2 shows the default pa-
rameters used for this purpose. These default values are based on those of AJRA, and on results for
preliminary experimentation. Experiments are performed for specific parameter values in a structured
manner, where each experiment evaluates the performance of one modified parameter with respect to
a basic parameter setting.

We identify two key parameters which substantially affect the incorporation of CLMs into ARJA-
CLM. Table 5.3 shows these parameters, and their respective evaluated values. pclm and C control how

38

often the CLM is leveraged, and how much code context is provided respectively. The evaluation of
various parameter values provides key insights into effective generation and integration of CLM-based
patch ingredients.

Experiments for pclm and C are performed independently. Note that C is evaluated up 800 lines of
code to stay within the 16k token context limit of CodeLLaMA. The overall best result of these exper-
iments represents the overall performance of ARJACLM. Moreover, AJRACLM is evaluated without
CLMs to determine the relative performance gain of ARJACLM when CLMs are introduced. Metrics
obtained for this result is used result is used to answer RQ1-4

Parameter Description Default Value

N Population size 40
G Maximum number of generations 20
γmin Suspiciousness threshold 0.1
nmax Maximum number of modification points 40
µ Scale for number of enabled edits in the initial population 0.06
wpos Positive test weight 0.33
e Elite count 1
mmut Mutation probability multiplier 0.1
pmut Mutation probability mmut/n
pclm CLM mutation ratio 0.4
C Number of lines of context for mask predict prompts 100

Table 5.2: The parameter setting for ARJACLM in the experiments.

Parameter Evaluated Values

pclm {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
C {100, 200, 400, 800}

Table 5.3: The values evaluated for parameters of ARJACLM.

For each experiment, the following metrics are collected:

1) "#Fixed Bugs": number of bugs from Defects4J for which one or more test-adequate patch was
produced.

2) "#Evaluated Patches": total number of unique evaluated patches.
3) "Total Time": total time elapsed.
4) "CLM Time": time spent generating CLM infills
5) "VRAM": peak VRAM usage.
6) "CLM Parse Rate": rate at which CLM ingredients are syntactically correct and therefore can be

successfully parsed as Java code.
7) "CLM Compilation Rate": compilation rate of patches involving at least one CLM ingredient.

Note that CLM ingredients are not used in patches if they are not syntactically correct. As a
result, patch ingredients are guaranteed to be syntactically correct, and the compilation rate only
reflects the rate of semantic correctness of the code.

8) "Redundancy Compilation Rate": compilation rate of patches involving only redundancy-based
ingredients. Also see the note on CLM compilation rate, as redundancy-based patch ingredients
are also guaranteed to be syntactically correct.

All experiments performed on ARJACLM are executed three times due to the stochastic nature of
the technique. Additional trails could provide more significant results, but this is not feasible due to the

39

high cost involved in the evaluation of APR techniques on Defects4J. Nevertheless, three trials should
provide adequate metrics for the performance of ARJACLM. For all metrics, the average value across
all trials is reported as the overall result.

All experiments were performed on 2.1 GHz Intel Xeon Silver 4216 processor machines with 32GB
memory and a single NVidia A40 GPU with 48GB VRAM. The CPU is shared with other users, but
16 physical cores are allocated for up to 15 parallel patch evaluations, preventing starvation of CPU
capacity. The GPU is exclusively dedicated to the APR process, and therefore is not shared with other
users. All experiments with CodeLLaMA use 8-bit quantization as providing more context results in
higher VRAM usage, and without quantization, the available 48GB of VRAM is inadequate for C ∈
{200, 400, 800} with CodeLLaMA.

5.3 Experimental Results

This section presents the results in order to address RQ1-4.

5.3.1 RQ1: Establishing the performance of ARJACLM

ARJACLMn represents ARJACLM without the use of CLMs. ARJACLMn fixes 25.0 bugs on average.
Table 5.4 shows the results for experiments on ARJACLM for pclm and C. ARJACLM performs best
for high values of pclm. For pclm = 1.0, a performance improvement of 34.4% is observed with respect
to pclm = 0.0, at a 309% increased computation time. This result shows that CLM-based patch ingre-
dients yield a more effective search-based APR technique compared to the redundancy assumption.

Parameter Value #Fixed Bugs Total Time (in hours)

pclm 0.0 29.0 21.6
0.2 30.3 37.1
0.4 33.0 53.3
0.6 33.7 66.3
0.8 36.0 78.7
1.0 39.0 88.3

C 100 31.8 27.6
200 32.6 30.5
400 35.6 33.0
800 33.4 37.2

Table 5.4: Results for the evaluation of ARJACLM.

The results for C show that providing more context is only valuable to a limited extent. More con-
text should allow CLMs to generate better code based on more information on code patterns and avail-
able code symbols. Despite this, the best performance for ARJACLM is observed when roughly half of
the available context size is used. Moreover, a larger context size results in longer execution time. The
results provide evidence that CodeLLaMA cannot effectively leverage its full context size in the set-
ting of ARJACLM. It is currently unclear whether this observation is a result of the limited capability
of CodeLLaMA to deal with larger contexts, or whether the setting of ARJACLM prevents them from
doing so.

Overall, the best result for ARJACLM is obtained for pclm = 1.0, generating test-adequate patches
for 39.0 out of 176 bugs on average. Thus, ARJACLM fixes 39 bugs whereas ARJACLMn fixed 25 bugs,
noting an improvement in bug fixing capabilities of 56%.

40

5.3.2 RQ2: Comparison against other search-based techniques

We compare ARJACLM performance on Defects4J against ARJA and GenProg. ARJA is evaluated
on 224 bugs of Defects4J 1.0 from the JFreeChart, Joda-Time, Commons Lang and Commons Math
projects [9]. Motwani et al. [51] evaluate GenProg on the entirety of Defects4J 1.0, which includes all
bugs from the aforementioned projects. ARJACLM is evaluated on 20 bugs for each of the aforemen-
tioned projects. We compare the number of bugs fixed on these 80 repair tasks for ARJACLM, ARJA
and GenProg.

ARJA is evaluated on Defects4J with a single trial, while GenProg is evaluated with 30 trials. We
report the result of the single ARJA trial. GenProg fixes 20.7 bugs on average per trial, and the best
performing trial fixes 23 bugs. We report the result of the best GenProg trial to avoid understating its
capabilities. ARJA and GenProg are evaluated with time limits of four and three hours respectively.
Our experiments use a time limit of one hour, but very few additional patches would be found with a
greater time limit.

Project ARJACLMn ARJACLM GenProg ARJA

JFreeChart 7.0 9.7 4 8
JodaTime 1.0 3 1 4
Commons Lang 2.0 5 2 3
Commons Math 4.0 5.3 4 5

Total 14 23 11 20

Table 5.5: A comparison of ARJACLM, GenProg and ARJA.

ARJACLMn outperforms GenProg, but does not outperform AJRA. ARJACLM is a novel search-
based APR technique implementation, and more extensive effort is required to replicate the search-
based APR capabilities of ARJA. Nevertheless, ARJACLMn is capable of finding test-adequate patches
for buggy programs, and provides a framework for evaluating the incorporation of CLMs. ARJACLM
slightly outperforms ARJA on the limited set of repair tasks.

5.3.3 RQ3: Efficiency of AJRACLM

#Fixed #Eval- VRAM Time per Bug (minutes) CLM Time per Bug (minutes)

Technique Bugs uations (GiB) Min Median Max Avg Min Median Max Avg

ARJACLMn 14 563.4 - 0.6 6.6 30.5 7.9 - - - -
ARJACLM 23 334.6 21.3 0.8 31.8 64.8 32.3 0 26.8 60.6 26.9

Table 5.6: A comparison of cost of ARJACLM variants per bug.

Table 5.6 shows the cost of ARJACLM. As previously discussed results have shown, introducing
CLMs yields better resultsFor ARJACLMn, the average computation time per bug is 7.9 minutes, while
ARJACLM takes 32.3 (+308%) minutes on average. ARJACLM spent 26.9 minutes generating ingre-
dients using CodeLLaMA.

We also note that ARJACLM evaluates fewer bugs than ARJACLMn. The results indicate that
fewer patch evaluations are required to find test-adequate patches when CLMs are applied. As a result,
the CPU cost of ARJACLM is lower than that of ARJACLMn. Moreover, the average execution time
of 32.3 minutes per bug of ARJACLM can be adequate for practical applications given the time and
financial cost of manual bug fixing.

41

5.3.4 RQ4: Quality of CLM-based patch ingredients

CLM Redundancy

Technique Parse Rate Compilation Rate Compilation Rate

ARJACLMn - - 60.6%
ARJACLM 43.5% 68.2% 60%

Table 5.7: The quality of CLM and redundancy-based patch ingredients.

Table 5.7 compares the quality of CLM and redundancy-based patch ingredients. The results for
ARJACLMn show that 60.6% of patches consisting only of redundancy-based patch ingredients com-
pile successfully. For ARJACLM, 43.5% of patch ingredients generated by CodeLLaMA are syntacti-
cally correct, and 68.2% of patches containing a CLM-based patch ingredient successfully compile.

The syntactic correctness of CLM-based patch ingredients is disappointing compared to the results
of Chapter 4, where over 98.6% of infills generated by CodeLLaMA were compileable. The setting of
CLMs in ARJACLM differs from the CLM evaluation in three key ways. First, ARJACLM provides
partial context of code surrounding the each infill location due to context size limitations imposed by
CLMs, whereas HumanEval-Java consists of small, complete Java classes. Second, the infill tasks of
ARJACLM for Defects4J bugs are more complex than those evaluated in HumanEval-Java, and infills
might be of lower quality as a result. Finally, the context of infill tasks may contain buggy code, whereas
infill tasks for HumanEval-Java contain strictly correct code.

An informal, manual analysis of syntactically incorrect infills was performed to determine the cause
of syntax errors. In some cases, we observed that CodeLLaMA attempts to complete a function rather
than provide an infill for the mask token provided inside of it. This occurred in the case where there
was a bug elsewhere in the code. In this case CodeLLaMA attempts to complete the code, and does
so in a correct manner. However, this hallucination produces a code completion rather than an infill,
which results in syntax errors when the generated code is inserted into the existing code.

Prompt:
if (x > y) {

<mask>
}

Result:
return x;

} else {
return y;

Figure 5.1: An example of an infill which is syntactically correct, but alters the structure of the
surrounding code.

Another reason for many syntax errors for CLM-based patch ingredients is a constraint posed by
the patch representation of ARJACLM. In ARJACLM, each patch ingredient consists of one or more
statements. Some infills provided by CodeLLaMA are syntactically correct, but alter the structure of
the surrounding code, and cannot be parsed as a separate sequence of statements. Figure 5.1 shows an
example of such an infill. ARJACLM considers such infills syntactically incorrect, as only complete
statements can be incorporated into the patch representation of ARJACLM. A more flexible patch rep-
resentation designed specifically for the incorporation of learning-based techniques could overcome
this constraint.

42

The compilation rate of patches containing at least one (syntactically correct) CLM-based patch
ingredients is more promising, as the use of at least one CLM-based patch ingredient yields a 12.5%
higher compilation rate compared to patches consisting only of redundancy-based ingredients. This
supports our findings in Table 5.4, which shows that CLM patch ingredients contribute to better APR
capabilities compared to redundancy-based ingredients. We note that the compilation rate of patches in
general is expected to be lower than the compilation rates of infills from Chapter 4, as the search-based
technique combines and mutates patches with limited consideration of the relation between separate
patch ingredients and patch operations.

5.4 Threats to Validity

This section discusses validity concerns regarding this experimental evaluation. First, 176 bugs of De-
fects4J 2.0 are used to evaluate the performance of ARJACLM. The limited number of bugs in which
ARJACLM is evaluated poses a significant limitation on the significant of the obtained results. The
available computational resources currently limit our ability to provide more significant results.

Another validity concern regards the training of CLMs on large repositories of public data. Jiang et
al. [53] note that projects from Defects4J are possibly included in training sets for CLMs. As a result,
CLMs could demonstrate better performance on Defects4J bugs than on real-world bugs. It is currently
unclear to which extent Defects4J data is included in the training sets of CLMs, and what performance
impact might be observed as a result. CLMs are not trained on pairs of buggy and fixed code however,
limiting the impact of CLM training data on experimental results.

This study primarily uses the number of test-adequate patches as a metric to determine the perfor-
mance of ARJACLM. The number of correct patches are usually substantially lower than the number
of correct patches, as demonstrated by many experimental studies on APR techniques [12, 13, 19, 21,
17, 27, 51]. The number of correct patches is commonly obtained through independent manual evalua-
tion of patches by several individuals other than the authors. The setting of this study does not provide
a straight-forward avenue for such an evaluation.

Another validity concern regarding the test-adequate patches metric is the variance between the re-
sults of experiment trials. ARJA is evaluated on Defects4J using only a single trial [9], and the authors
note that more trials are needed to provide more representative performance metrics. GenProg is eval-
uated based on 20 trials instead. ARJACLM is evaluated based on three trials. Additional trials would
reduce the variance of overall results, and provide more convincing performance metric and allow for
better selection of optimal parameters.

The primary metric used to represent the cost of ARJACLM is its total execution time. The experi-
ments are performed on a shared CPU however. Adequate cores are allocated to ARJACLM to prevent
starvation of computational resources. Nevertheless, other processes running on the same CPU can
affect the speed of the entire CPU, resulting in inconsistent execution times.

Finally, the validity of this empirical study is limited by the novel ARJACLM technique and its
implementation. ARJACLMn is intended to replicate ARJA, but fails to provide the same bug fixing
capabilities. Therefore, this study does not provide direct evidence that CLMs can augment state-of-
the-art search-based techniques. Future research should investigate whether the relative performance
gain of ARJACLM over ARJACLMn can be replicated for ARJA.

43

Chapter 6

Future Work

This chapter provides four avenues of potential future work regarding hybrid search-based APR tech-
niques which leverage CLM-based patch ingredients.

First, this study demonstrates that CLM-based patch ingredients can significantly improve the per-
formance of search-based APR techniques. Nevertheless, ARJACLMn does not have the same repair
capabilities as ARJA, and it is possible that the impact of CLM-based patch ingredients on a more capa-
ble search-based technique gives rise to different results. Future work should investigate whether the
same performance improvement can be achieved for a state-of-the-art search-based technique.

Second, our results show that the patch representation of AJRACLM is not entirely suitable for
leveraging CLM-generated patch ingredients. Patch ingredients in ARJACLM represent entire state-
ments, and as a result, infills generated by CLMs cannot be incorporated into ARJACLM if they alter
the structure of surrounding statements. A more flexible patch representation could enable the use of
more CLM-generated patch ingredients, and provides CLMs with more freedom in code generation.

The third avenue of future work regards the improvement of the quality of CLM-based patch ingre-
dients. The results for RQ4 show that the majority of CLM-based patch ingredients are syntactically
incorrect, while our evaluation of CLM demonstrates that many CLMs are capable of generating com-
pileable code over 95% of the time. Moreover, the case study of syntactically incorrect infills shows that
many incorrect infills are not caused by the lack of infill capabilities of CLMs, but are the result of the
constraints posed upon CLMs by the mask predict format. Improving quality of CLM-based patch in-
gredients is a promising avenue of research and higher quality ingredients would further improve the
performance and efficiency of ARJACLM.

Fine-tuning is a promising method for improving the quality of infills for ARJACLM. Jiang et al.
[53] demonstrate that fine-tuning can improve overall infill quality. In addition, it can provide CLMs
with the ability to leverage context of the buggy code line to improve infill quality specifically for APR
techniques. The existing buggy code line provides valuable context to the existing code and allows
powerful CLMs like CodeLLaMA to generate even more suitable infills.

Besides mask prediction, search-based APR techniques could leverage alternative code generation
methods which provide CLMs with more control over the code edit location. For example, CLMs with
strong natural language capabilities can be prompted to edit the code location which it deems most
suspicious. Such a code generation task omits the constraint imposed by mask prediction tasks upon
CLMs.

A third avenue of research could be to leverage more infills per code location. ARJACLM generates
only single infill for each infill task, under the hypothesis that subsequent infills are likely of lower qual-
ity. In Chapter 4, we observe only an 8% performance improvement from N = 1 (i.e. a single infill) to
N = 5 (i.e. the best of five infills). This hypothesis however does not consider that ARJACLM rejects
CLM-based patch ingredients which are syntactically incorrect. It is possible that subsequent infills
might provide additional value in such scenarios. Moreover, additional infills might be valuable for

44

highly suspicious statements, and additional cost of generating more infills would be mostly mitigated
if they are generated only in specific cases.

Finally, to further augment search-based APR techniques, CLMs can be leveraged in more ways.
CLMs are not only capable of generating code. In addition, CLMs can provide a score for the occur-
rence probability of code. This capability could be leveraged to screen patch ingredients, provide an
additional search objective, or determine where code should be added or removed at a specific location.
The impact of these potential improvements are mostly unexplored at the time of writing, and might
give rise to a new sequence of research on hybrid search-based APR techniques.

45

Chapter 7

Conclusion

Traditional search-based APR techniques are constrained in their repair capabilities by the availabil-
ity of high-quality patch ingredients. Bugs can only be fixed by such techniques if the ingredients to
a patch are present elsewhere in the code. Previous work has attempted to generate additional patch
ingredients by modifying redundancy-based ingredients, or by leveraging a learning-based APR tech-
nique, but these efforts have not yielded significant improvements. We study the potential to generate
additional patch ingredients using pre-trained code language models (CLMs). ARJACLM is proposed
to empirically evaluate the impact of CLM-based patch ingredients on a search-based APR technique
based on ARJA.

CLMs are used to generate patch ingredients for ARJACLM on-the-fly in a zero-shot setting. We
perform an extensive comparative analysis of well-known CLMs to determine which state-of-the-art
CLMs are most effective with respect to their cost. We find that SantaCoder, Refact, CodeLLaMA and
StarCoder effectively generate high-quality code infills with respect to their resource usage, where San-
taCoder and Refact are smaller models, while CodeLLaMA and StarCoder are larger and more resource
intensive. Smaller CLMs like CodeT5 provide even stronger infilling capabilities with respect to their
cost, but they perform poorly overall, frequently generating code that fails to compile. A high level of
infill quality is required as search-based APR techniques are only effective for efficient search spaces,
and therefore smaller CLMs like CodeT5 Large are excluded.

We systematically evaluate ARJACLM with various parameters and obtain an effective set of pa-
rameters. Using these parameters, we obtain the overall performance of ARJACLM without CLM-
based patch ingredients, and with ingredients generated by CodeLLaMA. The results demonstrate
that ARJACLM out-performs ARJACLM without any CLM. We conclude that CLMs substantially
improve the performance of search-based APR techniques. In addition, larger, more capable, CLMs
provide a stronger performance improvement than their smaller counterparts. Moreover, ARJACLM
performs best when only CLM-based patch ingredients are used. CLM-based patch ingredients are
clearly of higher quality than their redundancy-based counterparts. This conclusion provides clear di-
rection to future research into search-based APR techniques, which can avoid the cumbersome process
of obtaining and screening redundancy-based donor code.

The performance of ARJA and GenProg on 80 bugs of Defects4J are compared to the performance
of ARJACLM and ARJACLMn on those same bugs. ARJA out-performs ARJACLMn, but ARJACLM
out-performs ARJA. More extensive effort is required to provide ARJACLMn with the same bug-fixing
capabilities of ARJA.Nevertheless, ARJACLMn out-performs GenProg, and as a result shows that a sig-
nificant performance improvement can be achieved for search-based APR techniques which perform
at the level of well-known existing techniques. Future work should investigate the augmentation of
ARJACLMn to achieve similar performance to ARJA, such that the impact of CLMs on state-of-the-art
search-based techniques can be more extensively investigated.

The cost of three ARJACLM variants are evaluated with respect to their cost. CLM-based vari-

46

ants introduce a higher computational cost per bug. Nevertheless, a substantial improvement in bug
fixing capabilities is observed. Finally, we evaluate the quality of both redundancy and CLM-based
patch ingredients. Results show than CLM-based patch ingredients are often not parseable, and fre-
quently do not compile. Nevertheless, CLM-based patch ingredients more frequently compile than
their redundancy-based counterparts. Moreover, the experimental results demonstrate that CLM-based
patch ingredients play a stronger role in fixing bugs than redundancy-based ones. Still, future work
should investigate ways to more effectively harness the strong infilling capabilities of CLMs, which are
sometimes constrained in their bug fixing capabilities due to the strict mask prediction prompt format.
Improved code generation methods could even further improve the performance of APR techniques
leveraging CLM-based patch ingredients.

To conclude, CLMs can be used to effectively improve the performance of search-based techniques,
albeit at a higher computational cost, but more extensive effort should be invested into evaluating its
effect on state-of-the-art techniques. Moreover, we conclude that CLM-based patch ingredients are of
higher quality than their redundancy-based counterparts, and many avenues of future research exist to
further improve the quality of CLM-based ingredients.

47

Appendices

48

Appendix A

CLM Evaluation Results

This appendix contains the results for all benchmarks performed for each CLM. Each table contains
the time spent on mask prediction in seconds, beam size, top-p. temperature, the number of unique
results generated and N=5 performance (N=5 Suc). Moreover, the following metrics are provided for
the first generated infill (N=1) and in total for all generated infills: number of correct infills (Suc), test
failures (TFail), compilation failures (CFail), test compilation failure (TCFail), test timeout (TTo) and
no result (NoRes).

49

A.1 UniXCoder
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
10

7.3
4.

6
4.

2
34

26
65

72
0

0
0

71
26

6
39

1
0

0
87

10
13

7.7
12

.4
4.

7
35

25
66

72
0

0
0

80
30

7
42

8
0

0
0

50

A.2 Refact
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

0.
2

0.
1

99
.2

5.
6

1
10

2
10

2
51

9
1

0
0

51
0

25
8

42
5

0
0

0.
4

0.
1

96
.2

5.
6

1.2
10

4
10

3
50

9
1

0
0

51
1

26
2

37
5

0
0

0.
6

0.
1

10
7.6

5.
6

1.8
12

1
11

2
43

7
1

0
0

53
6

24
1

33
5

0
0

0.
8

0.
1

11
2.

6
5.

6
1.9

11
9

10
4

54
4

1
0

0
52

3
25

5
32

5
0

0
0.

2
0.

4
96

.1
5.

6
1

10
2

10
2

51
9

1
0

0
51

0
25

8
42

5
0

0
0.

4
0.

4
97

5.
6

1.2
10

4
10

3
50

9
1

0
0

51
1

26
2

37
5

0
0

0.
6

0.
4

10
9.

2
5.

6
1.9

11
9

10
4

52
6

1
0

0
51

6
25

5
39

5
0

0
0.

8
0.

4
11

4.
2

5.
6

1.9
12

1
10

7
49

6
1

0
0

52
0

24
9

41
5

0
0

0.
2

0.
7

96
.3

5.
6

1.1
10

1
10

1
53

8
1

0
0

50
5

26
5

40
5

0
0

0.
4

0.
7

10
0.

8
5.

6
1.3

10
4

10
0

55
7

1
0

0
50

5
27

0
35

5
0

0
0.

6
0.

7
10

3.
6

5.
6

1.8
11

1
99

56
7

1
0

0
50

1
27

9
30

5
0

0
0.

8
0.

7
11

9.
5

5.
6

2.
1

11
6

97
56

8
1

1
0

49
6

26
4

44
5

6
0

0.
2

1
87

.2
5.

6
1.1

10
6

10
6

48
8

1
0

0
53

0
24

1
39

5
0

0
0.

4
1

93
.1

5.
6

1.3
10

7
10

5
50

7
1

0
0

52
4

24
8

38
5

0
0

0.
6

1
11

3.
8

5.
6

1.8
11

3
10

4
53

5
1

0
0

51
7

26
1

32
5

0
0

0.
8

1
14

5.
6

5.
6

2.
7

12
6

90
62

10
1

0
0

48
7

27
3

50
5

0
0

0.
2

1.3
91

.5
5.

6
1.1

10
2

10
1

52
9

1
0

0
50

7
25

8
45

5
0

0
0.

4
1.3

12
3.

1
5.

6
1.7

11
0

10
5

53
4

1
0

0
50

6
26

9
36

4
0

0
0.

6
1.3

14
7.1

5.
6

2.
4

12
3

10
0

52
10

1
0

0
49

5
26

1
53

4
2

0
0.

8
1.3

17
1.8

5.
6

3.
1

11
9

87
56

18
1

1
0

44
1

28
4

79
5

6
0

0.
2

1.6
12

0.
2

5.
6

1.3
10

4
10

2
52

8
1

0
0

51
0

26
1

39
5

0
0

0.
4

1.6
16

8.
9

5.
6

2.
1

12
0

99
53

10
1

0
0

49
1

26
8

48
5

3
0

0.
6

1.6
20

9.
7

5.
6

3
12

1
91

55
15

1
1

0
45

5
28

7
65

4
4

0
0.

8
1.6

36
0.

9
5.

6
3.

7
11

8
72

61
29

1
0

0
38

4
27

1
15

3
3

4
0

0.
2

1.9
12

0.
9

5.
6

1.3
10

7
10

6
50

6
1

0
0

52
6

24
9

35
5

0
0

0.
4

1.9
20

1.9
5.

6
2.

5
11

6
91

58
13

1
0

0
46

6
27

0
72

5
2

0
0.

6
1.9

27
2.

6
5.

6
3.

5
11

9
83

55
22

1
2

0
40

3
28

7
11

6
4

5
0

0.
8

1.9
10

52
.2

5.
6

4.
3

91
55

37
68

1
2

0
26

4
23

8
30

3
4

6
0

51

A.3 SantaCoder
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
49

5.
2

4
4.

8
10

8
91

45
26

1
0

0
28

4
31

0
21

3
5

3
0

10
65

6
5.

1
4.

7
98

79
38

45
1

0
0

23
1

23
1

34
8

5
0

0
0.

2
0.

1
12

5.
6

3.
9

1
96

96
62

4
1

0
0

48
0

31
0

20
5

0
0

0.
4

0.
1

11
9.

9
3.

9
1

96
96

62
4

1
0

0
48

0
31

0
20

5
0

0
0.

6
0.

1
12

8.
8

3.
9

1.1
98

98
62

2
1

0
0

48
3

30
9

18
5

0
0

0.
8

0.
1

12
9.

5
3.

9
1.2

10
0

98
62

2
1

0
0

48
8

30
9

13
5

0
0

0.
2

0.
4

11
8.

5
3.

9
1

96
96

62
4

1
0

0
48

0
31

0
20

5
0

0
0.

4
0.

4
12

2.
5

3.
9

1
96

96
61

5
1

0
0

48
0

30
8

22
5

0
0

0.
6

0.
4

13
9.

6
3.

9
1.4

10
2

96
61

5
1

0
0

48
8

30
0

22
5

0
0

0.
8

0.
4

15
3.

4
3.

9
2

10
9

88
69

5
1

0
0

48
1

30
8

21
5

0
0

0.
2

0.
7

12
3.

6
3.

9
1

95
95

63
4

1
0

0
47

5
31

3
22

5
0

0
0.

4
0.

7
12

5.
8

3.
9

1.2
97

96
62

4
1

0
0

47
7

30
9

24
5

0
0

0.
6

0.
7

15
3.

1
3.

9
1.7

10
7

10
1

57
4

1
0

0
49

6
29

5
19

5
0

0
0.

8
0.

7
18

0.
9

3.
9

2.
4

11
0

91
65

7
0

0
0

46
9

31
8

22
4

2
0

0.
2

1
12

5.
1

3.
9

1
96

96
62

4
1

0
0

48
0

31
0

20
5

0
0

0.
4

1
13

5.
6

3.
9

1.3
10

0
96

62
4

1
0

0
48

5
30

9
16

5
0

0
0.

6
1

16
4.

2
3.

9
2.

2
10

9
96

60
6

1
0

0
47

3
31

2
25

5
0

0
0.

8
1

22
1.4

3.
9

2.
9

11
8

95
61

6
1

0
0

46
0

30
4

44
5

2
0

0.
2

1.3
12

8.
6

3.
9

1.1
96

96
62

4
1

0
0

48
0

31
0

20
5

0
0

0.
4

1.3
14

0
3.

9
1.5

10
4

99
61

2
1

0
0

49
2

30
3

15
5

0
0

0.
6

1.3
20

3.
1

3.
9

2.
5

11
1

97
56

9
1

0
0

46
9

30
5

34
5

2
0

0.
8

1.3
33

6.
4

3.
9

3.
4

11
4

81
66

15
1

0
0

42
2

31
8

71
4

0
0

0.
2

1.6
13

9.
3

3.
9

1.2
97

96
64

2
1

0
0

48
1

31
3

16
5

0
0

0.
4

1.6
15

7.3
3.

9
1.9

10
6

98
58

6
1

0
0

49
0

30
0

20
5

0
0

0.
6

1.6
24

0.
9

3.
9

3
11

4
88

66
7

1
1

0
44

9
32

3
38

3
2

0
0.

8
1.6

48
2.

6
3.

9
3.

9
11

2
69

63
30

0
1

0
35

1
33

0
12

2
3

9
0

0.
2

1.9
13

7.8
3.

9
1.3

98
95

64
3

1
0

0
48

1
31

5
14

5
0

0
0.

4
1.9

21
0

3.
9

2.
3

11
1

95
58

8
1

1
0

47
4

30
0

35
4

2
0

0.
6

1.9
32

5
3.

9
3.

5
11

8
75

70
17

1
0

0
39

7
33

0
84

4
0

0
0.

8
1.9

55
9.

8
3.

9
4.

3
10

2
58

62
40

1
2

0
27

5
29

8
23

1
3

8
0

52

A.4 CodeShell
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
83

7
19

.2
4.

7
12

7
11

3
26

23
1

0
0

31
7

19
0

30
1

5
2

0
10

10
87

.3
23

4.
6

11
6

10
2

21
39

1
0

0
25

1
14

0
41

6
5

3
0

0.
2

0.
1

23
0.

7
18

.9
1

12
1

12
1

37
4

1
0

0
60

5
18

5
20

5
0

0
0.

4
0.

1
22

5.
3

18
.9

1
12

1
12

1
37

4
1

0
0

60
5

18
5

20
5

0
0

0.
6

0.
1

23
9.

2
18

.9
1.2

12
6

12
3

35
4

1
0

0
60

9
18

0
21

5
0

0
0.

8
0.

1
24

0.
1

18
.9

1.2
12

7
12

4
33

5
1

0
0

61
3

17
3

24
5

0
0

0.
2

0.
4

23
4.

6
18

.9
1

12
1

12
1

37
4

1
0

0
60

5
18

5
20

5
0

0
0.

4
0.

4
23

9.
9

18
.9

1
12

1
12

1
37

4
1

0
0

60
5

18
3

22
5

0
0

0.
6

0.
4

25
7.2

18
.9

1.3
12

7
12

2
34

6
1

0
0

60
9

17
3

28
5

0
0

0.
8

0.
4

29
2.

8
18

.9
1.7

13
3

12
2

36
4

1
0

0
60

9
17

0
30

5
1

0
0.

2
0.

7
23

3
18

.9
1

12
2

12
2

36
4

1
0

0
61

0
18

0
20

5
0

0
0.

4
0.

7
24

7.4
18

.9
1.1

12
3

12
2

36
4

1
0

0
60

9
17

8
22

5
1

0
0.

6
0.

7
27

9.
3

18
.9

1.6
13

2
12

5
30

6
1

1
0

62
2

16
0

27
5

1
0

0.
8

0.
7

32
6.

2
18

.9
2.

2
14

0
12

1
33

7
1

1
0

59
9

17
6

33
5

2
0

0.
2

1
23

3.
5

18
.9

1
12

2
12

2
36

4
1

0
0

61
0

18
0

20
5

0
0

0.
4

1
25

4.
1

18
.9

1.3
12

7
12

4
34

4
1

0
0

62
0

16
6

23
5

1
0

0.
6

1
31

1.9
18

.9
1.9

13
5

12
2

33
6

1
1

0
60

9
16

2
36

4
4

0
0.

8
1

37
3.

6
18

.9
2.

5
13

9
10

9
39

13
1

1
0

57
1

19
4

41
5

4
0

0.
2

1.3
24

3.
3

18
.9

1
12

2
12

2
36

4
1

0
0

61
0

17
7

23
5

0
0

0.
4

1.3
26

6
18

.9
1.4

12
7

12
4

33
4

1
1

0
61

3
16

6
29

5
2

0
0.

6
1.3

32
1.5

18
.9

2.
2

13
8

11
8

36
9

0
0

0
58

8
18

7
35

3
2

0
0.

8
1.3

47
0.

3
18

.9
2.

9
14

5
11

5
37

10
1

0
0

55
9

20
2

48
5

1
0

0.
2

1.6
24

5.
8

18
.9

1.1
12

1
12

1
37

4
1

0
0

60
4

18
5

21
5

0
0

0.
4

1.6
30

2.
7

18
.9

1.7
13

0
12

3
33

6
1

0
0

60
8

15
8

44
5

0
0

0.
6

1.6
40

8.
1

18
.9

2.
6

14
0

11
0

44
8

0
1

0
55

3
20

2
54

4
2

0
0.

8
1.6

68
0.

8
18

.9
3.

6
13

6
93

45
24

1
0

0
46

8
22

3
11

6
5

3
0

0.
2

1.9
29

2.
4

18
.9

1.2
12

5
12

4
34

4
1

0
0

61
7

17
2

21
5

0
0

0.
4

1.9
40

9.
1

18
.9

2
13

3
12

3
34

5
1

0
0

59
3

18
6

31
5

0
0

0.
6

1.9
69

0.
7

18
.9

3.
1

14
1

10
8

34
21

0
0

0
52

2
19

4
95

3
1

0
0.

8
1.9

10
09

.8
18

.9
4

12
9

80
43

40
0

0
0

40
0

23
3

18
1

1
0

0

53

A.5 StarCoder
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
85

4.
5

33
4.

6
13

8
13

1
20

11
1

0
0

43
5

17
0

20
5

5
0

0
10

14
39

.2
36

.8
4.

7
13

4
11

9
22

21
1

0
0

31
5

11
6

37
9

5
0

0
0.

2
0.

1
26

4.
4

33
1

13
1

13
1

28
3

1
0

0
65

5
14

0
15

5
0

0
0.

4
0.

1
26

3
33

1
13

1
13

1
28

3
1

0
0

65
5

14
0

15
5

0
0

0.
6

0.
1

26
3.

6
33

1.1
13

1
13

1
28

3
1

0
0

65
3

14
2

15
5

0
0

0.
8

0.
1

26
1.4

33
1.2

13
3

12
9

30
3

1
0

0
65

5
14

2
13

5
0

0
0.

2
0.

4
26

3.
7

33
1

13
1

13
1

28
3

1
0

0
65

5
14

0
15

5
0

0
0.

4
0.

4
26

4.
6

33
1

13
1

13
1

28
3

1
0

0
65

5
14

0
15

5
0

0
0.

6
0.

4
27

4.
4

33
1.2

13
6

13
0

29
3

1
0

0
65

7
14

0
13

5
0

0
0.

8
0.

4
28

5.
2

33
1.5

13
8

13
1

29
2

1
0

0
65

7
14

6
6

5
1

0
0.

2
0.

7
26

3.
3

33
1

13
1

13
1

28
3

1
0

0
65

5
14

0
15

5
0

0
0.

4
0.

7
28

1.3
33

1.1
13

1
13

1
27

4
1

0
0

65
5

13
6

19
5

0
0

0.
6

0.
7

29
4

33
1.5

13
6

13
0

29
3

1
0

0
65

8
14

0
12

5
0

0
0.

8
0.

7
30

7.1
33

1.8
14

1
13

6
23

3
1

0
0

65
3

14
4

13
5

0
0

0.
2

1
26

7.6
33

1
13

1
13

1
28

3
1

0
0

65
5

14
0

15
5

0
0

0.
4

1
28

8.
4

33
1.2

13
3

13
2

27
3

1
0

0
65

6
13

6
18

5
0

0
0.

6
1

31
5.

9
33

1.8
14

4
13

3
28

1
1

0
0

65
8

14
3

9
5

0
0

0.
8

1
34

4.
2

33
2.

3
14

1
12

5
31

3
1

3
0

63
1

15
8

17
5

4
0

0.
2

1.3
27

0.
2

33
1.1

13
1

13
1

28
3

1
0

0
65

5
13

9
16

5
0

0
0.

4
1.3

29
8.

1
33

1.4
13

4
12

7
31

3
1

1
0

65
4

14
0

15
5

1
0

0.
6

1.3
34

1.2
33

2
14

3
13

1
28

3
1

0
0

63
5

16
5

10
5

0
0

0.
8

1.3
43

9
33

2.
7

14
6

12
0

37
5

1
0

0
61

2
16

5
33

5
0

0
0.

2
1.6

27
3.

5
33

1.1
13

1
13

1
28

3
1

0
0

65
5

13
9

16
5

0
0

0.
4

1.6
29

9
33

1.5
14

0
13

1
29

2
1

0
0

65
6

14
5

9
5

0
0

0.
6

1.6
38

9.
3

33
2.

4
14

4
12

1
40

1
1

0
0

61
6

16
4

28
5

2
0

0.
8

1.6
64

9.
3

33
3.

3
13

8
11

2
38

12
1

0
0

54
3

19
9

69
4

0
0

0.
2

1.9
28

4.
7

33
1.2

13
1

13
1

27
4

1
0

0
65

5
13

5
20

5
0

0
0.

4
1.9

33
5.

6
33

1.9
14

0
13

0
27

4
1

1
0

63
4

15
9

15
5

2
0

0.
6

1.9
55

9.
2

33
2.

9
14

3
11

6
38

8
1

0
0

57
4

17
7

59
5

0
0

0.
8

1.9
85

7.2
33

3.
7

13
7

98
33

31
1

0
0

47
0

17
7

16
3

3
2

0

54

A.6 PLBART Base
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
41

8.
7

1.2
5

56
41

90
30

1
1

0
11

2
40

7
28

8
5

3
0

10
41

7.3
1.4

5
67

41
93

28
1

0
0

12
9

44
2

23
9

5
0

0
0.

2
0.

1
38

3.
5

1.1
1

26
26

87
48

1
1

0
13

0
43

5
24

0
5

5
0

0.
4

0.
1

36
2.

6
1.1

1
26

26
87

48
1

1
0

13
0

43
5

24
0

5
5

0
0.

6
0.

1
39

0.
2

1.1
1.3

26
25

86
50

1
1

0
12

5
42

7
25

3
5

5
0

0.
8

0.
1

38
4.

1
1.1

1.6
31

26
87

48
1

1
0

12
7

42
3

25
6

5
4

0
0.

2
0.

4
38

2.
8

1.1
1

26
26

87
48

1
1

0
13

0
43

5
24

0
5

5
0

0.
4

0.
4

39
1.8

1.1
1.1

26
26

86
49

1
1

0
12

9
42

9
24

7
5

5
0

0.
6

0.
4

38
6.

9
1.1

1.9
32

27
80

54
1

1
0

13
1

42
9

24
6

5
4

0
0.

8
0.

4
39

4.
9

1.1
2.

9
37

25
83

54
1

0
0

12
8

42
6

25
6

5
0

0
0.

2
0.

7
39

4.
6

1.1
1

26
26

86
49

1
1

0
13

0
42

9
24

6
5

5
0

0.
4

0.
7

39
0.

4
1.1

1.4
27

24
85

53
1

0
0

12
8

42
3

25
5

5
4

0
0.

6
0.

7
38

7.4
1.1

2.
7

33
24

81
56

1
1

0
12

2
43

4
25

1
5

3
0

0.
8

0.
7

41
9.

9
1.1

3.
8

43
23

88
51

1
0

0
12

1
42

5
26

4
5

0
0

0.
2

1
36

7.4
1.1

1.1
26

26
86

50
1

0
0

12
9

43
3

24
8

5
0

0
0.

4
1

37
5.

6
1.1

2.
1

32
24

88
50

1
0

0
12

6
42

7
25

7
5

0
0

0.
6

1
38

9.
7

1.1
3.

5
44

25
85

52
1

0
0

13
1

41
2

26
3

5
4

0
0.

8
1

40
0.

3
1.1

4.
4

43
24

70
68

1
0

0
10

3
38

7
31

7
5

3
0

0.
2

1.3
39

4.
7

1.1
1.3

26
25

87
49

1
1

0
12

7
42

6
25

2
5

5
0

0.
4

1.3
38

9.
2

1.1
2.

9
34

28
85

49
1

0
0

13
1

42
4

25
2

5
3

0
0.

6
1.3

38
4.

6
1.1

4.
2

44
25

73
62

1
2

0
11

8
39

7
29

2
4

4
0

0.
8

1.3
44

0.
2

1.1
4.

6
43

22
63

76
1

1
0

98
31

1
39

5
4

7
0

0.
2

1.6
38

4.
7

1.1
1.7

28
24

84
53

1
1

0
12

2
42

5
25

9
5

4
0

0.
4

1.6
40

0.
5

1.1
3.

8
43

23
79

59
1

1
0

11
8

39
5

29
5

5
2

0
0.

6
1.6

40
8.

7
1.1

4.
5

42
19

74
69

1
0

0
94

34
2

37
4

5
0

0
0.

8
1.6

43
5.

5
1.1

4.
8

32
13

39
11

1
0

0
0

64
19

6
55

5
0

0
0

0.
2

1.9
38

5.
4

1.1
2.

3
31

23
90

49
1

0
0

12
1

42
2

26
7

5
0

0
0.

4
1.9

41
2.

4
1.1

4.
3

48
25

66
71

1
0

0
11

9
34

7
34

1
4

4
0

0.
6

1.9
40

3
1.1

4.
8

29
15

43
10

4
0

1
0

67
24

4
49

8
3

3
0

0.
8

1.9
48

4.
4

1.2
5

19
7

15
14

1
0

0
0

31
83

70
0

1
0

0

55

A.7 PLBART Large
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
71

6.
4

2
5

73
42

99
20

1
1

0
16

2
44

8
19

5
4

6
0

10
74

6.
4

2.
8

5
76

42
98

21
1

1
0

17
3

47
5

15
6

3
8

0
0.

2
0.

1
66

7.7
1.9

1
38

38
91

31
1

2
0

19
0

45
5

15
5

5
10

0
0.

4
0.

1
67

2
1.9

1
38

38
91

31
1

2
0

19
0

45
5

15
5

5
10

0
0.

6
0.

1
64

2.
8

1.9
1.2

40
37

93
30

1
2

0
18

8
46

0
15

2
5

10
0

0.
8

0.
1

65
5.

6
1.9

1.6
41

37
90

32
1

3
0

18
6

44
9

16
2

5
13

0
0.

2
0.

4
67

1.7
1.9

1
38

38
91

31
1

2
0

19
0

45
5

15
5

5
10

0
0.

4
0.

4
65

0.
9

1.9
1.1

38
37

92
31

1
2

0
18

6
45

4
16

0
5

10
0

0.
6

0.
4

66
3.

9
1.9

1.9
46

34
91

33
1

4
0

18
2

45
3

16
2

5
13

0
0.

8
0.

4
66

4.
3

1.9
3

47
39

95
27

1
1

0
17

5
46

7
16

0
5

8
0

0.
2

0.
7

64
1.8

1.9
1

38
38

91
31

1
2

0
19

0
45

5
15

5
5

10
0

0.
4

0.
7

64
9.

6
1.9

1.4
42

39
89

32
1

2
0

19
1

44
8

15
8

5
13

0
0.

6
0.

7
66

1.7
1.9

2.
7

48
33

93
34

1
2

0
17

7
46

8
15

9
5

6
0

0.
8

0.
7

67
5.

3
1.9

3.
7

62
38

82
40

1
2

0
18

4
44

6
17

1
5

9
0

0.
2

1
64

0.
3

1.9
1.1

38
37

92
31

1
2

0
18

8
45

7
15

5
5

10
0

0.
4

1
65

5.
5

1.9
1.9

42
36

95
29

1
2

0
18

7
46

4
14

9
5

10
0

0.
6

1
67

9
1.9

3.
6

56
33

97
31

1
1

0
17

3
46

9
16

1
5

7
0

0.
8

1
67

6.
2

1.9
4.

3
65

34
89

37
1

2
0

16
4

43
8

19
6

5
12

0
0.

2
1.3

64
5.

7
1.9

1.2
42

40
89

31
1

2
0

19
5

44
8

15
6

5
11

0
0.

4
1.3

63
2.

9
1.9

2.
9

51
42

93
26

1
1

0
18

8
46

1
15

1
5

10
0

0.
6

1.3
65

6.
6

1.9
4.

1
59

32
90

38
1

2
0

16
4

45
5

18
5

5
6

0
0.

8
1.3

68
4

1.9
4.

7
53

28
72

61
1

1
0

12
6

39
4

28
5

5
5

0
0.

2
1.6

61
4.

7
1.9

1.5
43

39
92

29
1

2
0

19
4

45
2

15
4

5
10

0
0.

4
1.6

64
4.

7
1.9

3.
6

53
32

89
40

1
1

0
17

2
45

6
17

4
5

8
0

0.
6

1.6
66

4.
6

1.9
4.

4
55

24
88

50
1

0
0

12
9

41
1

26
5

5
5

0
0.

8
1.6

68
2.

7
1.9

4.
8

38
21

42
98

1
1

0
85

23
8

48
5

3
4

0
0.

2
1.9

66
5.

6
1.9

2
44

38
90

31
1

3
0

18
0

46
1

16
0

5
9

0
0.

4
1.9

69
2.

2
1.9

4.
1

55
37

87
38

0
1

0
15

9
41

8
22

9
4

5
0

0.
6

1.9
91

3.
5

1.9
4.

8
44

19
55

86
0

3
0

86
28

7
43

3
4

5
0

0.
8

1.9
96

8.
8

1.9
4.

9
21

3
31

12
9

0
0

0
37

12
8

64
9

1
0

0

56

A.8 CodeT5 Small
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
33

.1
0.

9
4.

6
36

22
60

81
0

0
0

67
19

1
55

5
0

2
0

10
34

.7
1

4.
8

38
22

61
80

0
0

0
67

18
7

55
7

0
4

0
0.

2
0.

1
24

0.
9

1
18

18
51

94
0

0
0

90
25

5
47

0
0

0
0

0.
4

0.
1

19
.7

0.
9

1
18

18
51

94
0

0
0

90
25

5
47

0
0

0
0

0.
6

0.
1

18
.8

0.
9

1.1
18

18
52

93
0

0
0

90
25

4
47

1
0

0
0

0.
8

0.
1

18
.4

0.
9

1.2
18

18
50

95
0

0
0

82
25

2
48

1
0

0
0

0.
2

0.
4

18
.5

0.
9

1
18

18
51

94
0

0
0

90
25

5
47

0
0

0
0

0.
4

0.
4

21
0.

9
1.1

18
18

50
95

0
0

0
89

24
6

48
0

0
0

0
0.

6
0.

4
19

0.
9

1.5
18

15
53

95
0

0
0

76
26

1
47

8
0

0
0

0.
8

0.
4

22
.4

0.
9

1.9
22

17
47

99
0

0
0

76
24

0
49

9
0

0
0

0.
2

0.
7

18
.6

0.
9

1.1
18

17
51

95
0

0
0

89
25

4
47

2
0

0
0

0.
4

0.
7

20
.4

0.
9

1.4
19

17
50

96
0

0
0

85
25

2
47

8
0

0
0

0.
6

0.
7

19
.2

0.
9

2.
1

22
19

51
92

0
1

0
80

23
6

49
5

0
4

0
0.

8
0.

7
31

.3
0.

9
2.

7
23

18
47

97
0

1
0

76
21

6
52

0
0

3
0

0.
2

1
27

.1
0.

9
1.3

19
19

49
95

0
0

0
90

24
6

47
9

0
0

0
0.

4
1

27
.3

0.
9

2
20

18
47

98
0

0
0

83
23

5
49

7
0

0
0

0.
6

1
30

.2
0.

9
2.

8
22

14
48

10
1

0
0

0
73

21
5

52
7

0
0

0
0.

8
1

18
.9

0.
9

3.
4

21
11

40
11

0
0

2
0

67
18

6
55

8
0

4
0

0.
2

1.3
21

.7
0.

9
1.6

19
17

47
99

0
0

0
84

24
4

48
7

0
0

0
0.

4
1.3

19
.6

0.
9

2.
6

21
19

44
98

0
2

0
83

20
6

52
1

0
5

0
0.

6
1.3

25
.4

0.
9

3.
6

20
11

41
11

1
0

0
0

62
17

0
58

3
0

0
0

0.
8

1.3
23

.4
0.

9
4.

1
19

11
32

12
0

0
0

0
56

12
3

63
6

0
0

0
0.

2
1.6

20
.6

0.
9

2
19

16
45

10
2

0
0

0
78

22
1

51
6

0
0

0
0.

4
1.6

20
.7

0.
9

3.
3

26
16

39
10

8
0

0
0

71
18

8
55

2
0

4
0

0.
6

1.6
34

.6
0.

9
4.

1
19

12
30

12
0

0
1

0
59

13
5

61
7

0
4

0
0.

8
1.6

28
.3

0.
9

4.
6

19
12

25
12

6
0

0
0

45
11

5
65

4
0

1
0

0.
2

1.9
19

.5
0.

9
2.

3
19

16
43

10
4

0
0

0
72

20
1

54
2

0
0

0
0.

4
1.9

23
.2

0.
9

3.
9

19
10

35
11

7
0

1
0

55
15

4
60

4
0

2
0

0.
6

1.9
26

.9
0.

9
4.

5
23

9
25

12
8

0
1

0
53

11
9

63
8

0
5

0
0.

8
1.9

30
0.

9
4.

8
15

7
21

13
4

0
1

0
33

80
70

0
0

2
0

57

A.9 CodeT5 Base
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
57

.8
1.5

4.
8

61
50

57
54

0
2

0
15

1
22

7
42

7
1

9
0

10
76

.4
1.7

4.
9

61
50

58
54

0
1

0
14

5
23

3
42

9
1

7
0

0.
2

0.
1

80
.3

1.3
1

48
48

59
54

0
2

0
24

0
29

6
27

0
0

9
0

0.
4

0.
1

55
1.3

1
48

48
59

54
0

2
0

24
0

29
5

27
0

0
10

0
0.

6
0.

1
68

.9
1.3

1.1
50

49
60

53
0

1
0

24
4

29
6

27
0

0
5

0
0.

8
0.

1
58

.7
1.3

1.2
50

49
59

54
0

1
0

24
5

28
3

28
1

0
6

0
0.

2
0.

4
68

.7
1.3

1
48

48
59

54
0

2
0

24
0

29
5

27
0

0
10

0
0.

4
0.

4
68

.7
1.3

1
48

48
60

53
0

2
0

24
0

29
9

26
8

0
8

0
0.

6
0.

4
70

.5
1.3

1.3
49

48
61

53
0

1
0

23
7

28
6

28
7

0
5

0
0.

8
0.

4
63

.5
1.3

1.7
49

47
58

57
0

1
0

22
5

27
9

30
5

1
5

0
0.

2
0.

7
57

.6
1.3

1
48

48
59

54
0

2
0

24
0

29
5

27
0

0
10

0
0.

4
0.

7
70

.5
1.3

1.1
48

48
60

54
0

1
0

23
8

30
2

27
0

0
5

0
0.

6
0.

7
66

.9
1.3

1.7
48

45
61

56
0

1
0

22
2

29
3

29
5

0
5

0
0.

8
0.

7
66

.1
1.3

2.
3

50
45

68
48

0
2

0
20

5
29

4
30

7
0

9
0

0.
2

1
54

.5
1.3

1
48

48
59

54
0

2
0

24
0

29
5

27
0

0
10

0
0.

4
1

61
.1

1.4
1.4

47
47

61
54

0
1

0
23

4
29

3
28

2
0

6
0

0.
6

1
67

.6
1.3

2.
4

51
48

54
60

0
1

0
21

4
26

4
33

0
1

6
0

0.
8

1
86

.1
1.3

2.
9

49
43

53
67

0
0

0
19

9
25

2
35

9
1

4
0

0.
2

1.3
55

.4
1.3

1.1
48

48
60

53
0

2
0

24
0

29
8

26
7

0
10

0
0.

4
1.3

61
1.3

1.8
50

46
59

57
0

1
0

22
3

28
9

29
6

0
7

0
0.

6
1.3

72
.6

1.3
2.

9
51

42
54

66
0

1
0

19
9

25
0

36
0

1
5

0
0.

8
1.3

77
.2

1.3
3.

6
50

41
55

65
1

1
0

18
3

23
3

39
2

2
5

0
0.

2
1.6

68
.7

1.3
1.2

48
48

59
54

0
2

0
23

6
30

3
26

9
0

7
0

0.
4

1.6
69

1.3
2.

4
49

43
55

64
0

1
0

20
7

27
0

33
4

0
4

0
0.

6
1.6

87
.6

1.4
3.

5
53

44
53

65
0

1
0

18
6

23
6

38
9

0
4

0
0.

8
1.6

68
.6

1.4
4.

3
54

34
45

84
0

0
0

14
6

21
2

45
5

0
2

0
0.

2
1.9

54
.9

1.3
1.5

49
49

61
52

0
1

0
23

5
30

9
26

6
0

5
0

0.
4

1.9
59

.8
1.3

2.
9

52
40

55
67

0
1

0
19

4
23

5
38

1
0

5
0

0.
6

1.9
69

.4
1.3

4
47

33
52

76
1

1
0

14
2

21
9

44
9

1
4

0
0.

8
1.9

78
.8

1.4
4.

6
42

19
40

10
4

0
0

0
90

16
0

56
2

0
3

0

58

A.10 CodeT5 Large
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
10

8.
8

3.
1

4.
2

75
65

86
11

0
1

0
19

0
35

3
26

6
0

6
0

10
13

7.5
4.

9
4.

2
76

66
84

12
0

1
0

20
0

35
7

25
2

0
6

0
0.

2
0.

1
22

9.
7

2.
8

1
68

68
85

9
0

1
0

34
0

42
5

45
0

5
0

0.
4

0.
1

24
2.

5
2.

8
1

69
69

84
9

0
1

0
34

3
42

2
45

0
5

0
0.

6
0.

1
23

4.
3

2.
8

1
69

68
85

9
0

1
0

33
9

42
0

49
0

7
0

0.
8

0.
1

22
0.

1
2.

8
1.1

68
68

85
9

0
1

0
33

0
42

4
55

0
6

0
0.

2
0.

4
23

3.
8

2.
8

1
68

67
85

9
0

2
0

33
8

42
3

45
0

9
0

0.
4

0.
4

31
0.

4
2.

8
1

68
67

84
9

0
3

0
33

3
42

3
50

0
9

0
0.

6
0.

4
28

4
2.

8
1.2

67
66

83
11

0
3

0
32

8
41

7
63

0
7

0
0.

8
0.

4
32

8.
1

2.
8

1.4
67

64
86

11
0

2
0

30
1

41
5

88
0

11
0

0.
2

0.
7

31
8.

2
2.

8
1

69
66

81
9

0
7

0
33

7
41

9
45

0
14

0
0.

4
0.

7
36

7.3
2.

8
1.1

67
64

82
12

0
5

0
32

4
41

2
65

0
14

0
0.

6
0.

7
29

3.
1

2.
8

1.4
65

61
88

12
0

2
0

30
1

40
9

92
0

13
0

0.
8

0.
7

33
2.

2
2.

8
1.8

67
60

91
10

0
2

0
28

4
39

5
11

8
0

18
0

0.
2

1
43

8.
2

2.
8

1
67

63
82

9
0

9
0

33
0

41
6

45
0

24
0

0.
4

1
30

4.
6

2.
8

1.1
69

67
84

10
0

2
0

33
5

41
3

60
0

7
0

0.
6

1
25

4
2.

8
1.7

65
60

85
15

0
3

0
29

8
39

5
10

4
0

18
0

0.
8

1
37

5.
5

2.
8

2.
3

67
54

74
16

0
19

0
26

6
36

1
12

7
0

61
0

0.
2

1.3
33

2.
8

2.
8

1
68

64
82

10
0

7
0

31
6

39
7

49
0

53
0

0.
4

1.3
29

8
2.

8
1.3

68
61

77
12

0
13

0
28

6
36

1
77

0
91

0
0.

6
1.3

38
1.3

2.
8

2
68

54
77

13
0

19
0

27
0

34
6

11
9

0
80

0
0.

8
1.3

37
2.

1
2.

8
2.

4
67

55
80

13
0

15
0

26
7

36
1

15
5

0
32

0
0.

2
1.6

36
6.

3
2.

8
1.1

68
65

75
12

0
11

0
30

1
37

3
56

0
85

0
0.

4
1.6

50
2

2.
8

1.7
68

52
55

16
0

40
0

26
4

33
1

93
0

12
7

0
0.

6
1.6

54
9.

9
2.

8
2.

4
59

34
57

15
0

57
0

13
8

18
6

15
4

0
33

7
0

0.
8

1.6
63

2.
9

2.
8

3
49

25
31

25
0

82
0

11
3

15
4

19
7

0
35

1
0

0.
2

1.9
62

6.
3

2.
8

1.1
65

33
41

11
0

78
0

25
6

32
8

59
0

17
2

0
0.

4
1.9

53
7.8

2.
8

2
68

42
59

14
0

48
0

23
4

29
9

10
7

0
17

5
0

0.
6

1.9
52

0.
2

2.
8

2.
7

59
37

55
17

0
54

0
20

2
30

4
17

9
0

13
0

0
0.

8
1.9

33
0.

2
2.

8
3.

5
63

46
72

30
0

15
0

20
0

28
0

25
3

0
82

0

59

A.11 CodeLLaMA 7B
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
57

4.
4

31
.4

4.
8

13
8

12
0

29
13

1
0

0
41

3
19

8
19

4
5

5
0

10
11

68
43

.8
4.

8
12

7
11

2
28

22
1

0
0

31
0

15
2

34
8

5
0

0
0.

2
0.

1
21

4
21

1
12

1
12

0
39

2
1

1
0

60
3

19
1

10
5

6
0

0.
4

0.
1

21
0.

5
21

1
12

1
12

0
39

2
1

1
0

60
1

19
0

10
5

9
0

0.
6

0.
1

22
2.

9
22

1.1
12

5
12

3
36

2
1

1
0

61
7

17
8

10
5

5
0

0.
8

0.
1

23
4.

6
22

1.3
12

8
12

3
35

2
1

2
0

61
6

17
9

10
5

5
0

0.
2

0.
4

18
0

21
1

12
1

12
0

39
2

1
1

0
60

4
19

1
10

5
5

0
0.

4
0.

4
18

3.
8

21
1

12
1

12
1

38
2

1
1

0
60

5
19

0
10

5
5

0
0.

6
0.

4
19

6.
7

22
1.3

12
6

12
3

36
2

1
1

0
61

6
18

0
10

5
4

0
0.

8
0.

4
23

5.
2

23
.4

1.7
12

8
11

9
41

2
1

0
0

60
5

18
9

12
5

4
0

0.
2

0.
7

19
7.4

21
1

12
1

12
1

38
2

1
1

0
60

5
19

0
10

5
5

0
0.

4
0.

7
18

7.4
21

1.1
12

1
12

1
38

2
1

1
0

60
5

19
0

10
5

5
0

0.
6

0.
7

23
4.

9
22

1.6
13

2
12

5
32

3
1

2
0

61
3

18
0

14
5

3
0

0.
8

0.
7

25
9.

7
23

.4
2.

1
13

7
12

3
31

6
1

2
0

61
8

17
1

16
5

5
0

0.
2

1
18

0.
5

21
1

12
1

12
1

38
2

1
1

0
60

5
19

0
10

5
5

0
0.

4
1

19
2.

2
21

1.2
12

2
11

8
39

2
1

3
0

60
1

19
2

10
5

7
0

0.
6

1
30

3.
1

23
.4

1.8
13

5
12

6
31

4
1

1
0

61
8

17
5

11
5

6
0

0.
8

1
26

6.
5

20
.9

2.
4

14
1

12
3

35
4

1
0

0
60

2
19

0
17

5
1

0
0.

2
1.3

18
2.

4
21

1.1
12

1
12

1
38

2
1

1
0

60
5

19
0

10
5

5
0

0.
4

1.3
20

5.
7

21
1.4

12
5

12
3

36
2

1
1

0
60

2
19

4
10

5
4

0
0.

6
1.3

26
1

23
.4

2.
2

13
9

12
3

35
3

1
1

0
61

8
17

2
17

5
3

0
0.

8
1.3

33
1

20
.9

3
14

1
11

1
44

3
1

4
0

56
6

21
5

24
5

5
0

0.
2

1.6
18

1
21

1.1
12

1
12

0
39

2
1

1
0

60
4

19
1

10
5

5
0

0.
4

1.6
22

3.
9

21
1.6

12
9

12
3

35
3

1
1

0
60

1
19

1
16

5
2

0
0.

6
1.6

30
2.

1
20

.9
2.

6
14

2
11

9
35

7
1

1
0

58
3

19
5

27
5

5
0

0.
8

1.6
43

7.1
23

.4
3.

5
13

0
10

2
45

14
1

1
0

49
0

23
1

86
5

3
0

0.
2

1.9
17

8.
7

21
1.2

12
1

12
0

39
2

1
1

0
60

1
19

3
12

5
4

0
0.

4
1.9

25
6.

2
21

2
13

4
12

0
36

6
1

0
0

60
2

19
1

15
4

3
0

0.
6

1.9
39

1.2
21

.5
3.

1
14

2
10

8
46

8
0

1
0

52
4

23
2

48
4

7
0

0.
8

1.9
77

0.
7

21
4

12
3

70
47

45
1

0
0

37
5

21
8

21
8

4
0

0

60

A.12 CodeLLaMA 13B
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
88

6.
5

44
.2

4.
8

14
0

12
8

21
13

1
0

0
45

9
17

0
17

9
5

2
0

0.
2

0.
1

23
7.1

34
.8

1
13

4
13

4
26

2
1

0
0

67
0

13
0

10
5

0
0

0.
4

0.
1

23
6.

2
34

.8
1

13
4

13
4

26
2

1
0

0
67

0
13

0
10

5
0

0
0.

6
0.

1
24

2
34

.8
1.1

13
6

13
5

26
1

1
0

0
67

3
13

2
5

5
0

0
0.

8
0.

1
25

5.
4

34
.8

1.2
13

7
13

5
24

3
1

0
0

67
3

12
9

8
5

0
0

0.
2

0.
4

24
2.

2
34

.8
1

13
4

13
4

26
2

1
0

0
67

0
13

0
10

5
0

0
0.

4
0.

4
24

4.
2

34
.8

1
13

4
13

4
25

3
1

0
0

67
0

12
7

13
5

0
0

0.
6

0.
4

25
6.

7
34

.8
1.3

13
8

13
3

28
1

1
0

0
66

8
13

7
5

5
0

0
0.

8
0.

4
27

9
34

.8
1.6

14
0

13
3

27
1

1
1

0
66

4
14

0
4

5
2

0
0.

2
0.

7
23

9.
5

34
.8

1
13

4
13

4
26

2
1

0
0

67
0

13
0

10
5

0
0

0.
4

0.
7

24
7.1

34
.8

1.1
13

4
13

4
26

2
1

0
0

66
9

13
0

11
5

0
0

0.
6

0.
7

25
5.

5
34

.8
1.5

14
3

13
7

24
1

1
0

0
67

1
13

2
6

5
1

0
0.

8
0.

7
31

1.2
34

.8
1.9

14
5

12
9

31
2

1
0

0
65

8
14

2
10

4
1

0
0.

2
1

24
9.

8
34

.8
1

13
4

13
4

26
2

1
0

0
67

0
13

1
9

5
0

0
0.

4
1

26
5.

7
34

.8
1.2

13
4

13
3

27
2

1
0

0
66

5
13

6
9

5
0

0
0.

6
1

28
9.

7
34

.8
1.7

14
4

13
3

28
0

1
1

0
67

3
13

0
3

5
4

0
0.

8
1

38
7.7

39
.2

2.
4

14
6

13
0

30
2

1
0

0
63

9
15

3
16

4
3

0
0.

2
1.3

24
5.

2
34

.8
1.1

13
4

13
4

25
3

1
0

0
67

0
12

9
11

5
0

0
0.

4
1.3

25
8.

6
34

.8
1.3

13
9

13
3

28
1

1
0

0
67

4
12

8
8

5
0

0
0.

6
1.3

33
1.8

34
.8

2
14

3
13

5
25

1
1

1
0

64
5

15
4

6
5

5
0

0.
8

1.3
41

3.
4

41
.6

2.
8

14
8

12
1

34
7

1
0

0
61

2
17

7
19

5
2

0
0.

2
1.6

25
1.7

34
.8

1.1
13

4
13

4
26

2
1

0
0

66
7

13
3

10
5

0
0

0.
4

1.6
28

1.2
34

.8
1.5

14
2

13
4

26
2

1
0

0
66

7
13

7
4

5
2

0
0.

6
1.6

35
7.9

34
.8

2.
5

14
7

12
7

31
3

1
1

0
63

4
15

9
13

5
4

0
0.

8
1.6

74
5.

2
44

3.
4

14
7

10
8

39
14

0
2

0
53

1
20

9
67

4
4

0
0.

2
1.9

30
8.

5
34

.8
1.1

13
4

13
4

27
1

1
0

0
66

8
13

6
6

5
0

0
0.

4
1.9

35
7.4

34
.8

1.8
14

5
13

6
23

3
1

0
0

65
1

14
6

13
5

0
0

0.
6

1.9
58

5.
7

41
.6

2.
8

14
7

11
3

42
6

1
1

0
59

1
18

4
32

4
4

0
0.

8
1.9

77
2.

9
39

.2
4

12
8

84
44

33
0

2
0

42
3

23
6

14
5

2
9

0

61

A.13 CodeLLaMA Instruct 7B
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
12

98
.1

37
.1

4.
8

69
29

14
11

9
1

0
0

10
5

72
63

4
4

0
0

10
16

54
43

.7
4.

8
58

29
14

12
0

0
0

0
93

57
66

2
3

0
0

0.
2

0.
1

68
5.

7
25

.3
1

68
68

27
67

1
0

0
34

0
13

5
33

5
5

0
0

0.
4

0.
1

69
8.

8
25

.3
1

68
68

27
67

1
0

0
34

0
13

5
33

5
5

0
0

0.
6

0.
1

74
2

26
.5

1.4
70

66
24

72
1

0
0

33
4

12
3

35
3

5
0

0
0.

8
0.

1
79

2.
6

26
.5

1.9
76

67
25

70
1

0
0

32
8

11
9

36
3

5
0

0
0.

2
0.

4
69

5
25

.3
1

68
68

27
67

1
0

0
34

0
13

5
33

5
5

0
0

0.
4

0.
4

68
3.

7
25

.3
1.1

71
70

26
66

1
0

0
34

7
13

3
33

0
5

0
0

0.
6

0.
4

78
1.1

26
.5

2.
2

80
62

26
74

1
0

0
32

6
12

9
35

7
3

0
0

0.
8

0.
4

88
5.

6
26

.6
3.

1
97

66
24

72
1

0
0

33
5

12
4

34
8

4
4

0
0.

2
0.

7
79

8
25

.3
1.1

69
69

26
67

1
0

0
34

2
13

2
33

6
5

0
0

0.
4

0.
7

80
9.

4
26

.5
1.4

74
70

26
66

1
0

0
35

0
12

7
33

3
5

0
0

0.
6

0.
7

99
1.8

26
.5

3
89

63
31

68
0

1
0

32
2

13
3

35
3

4
3

0
0.

8
0.

7
11

03
.7

26
.5

3.
7

11
6

74
23

65
0

1
0

35
7

14
7

30
4

3
4

0
0.

2
1

79
7.4

25
.3

1.3
69

68
27

67
1

0
0

34
1

13
2

33
7

5
0

0
0.

4
1

84
7.6

26
.5

2
79

68
30

65
0

0
0

34
5

13
7

33
1

2
0

0
0.

6
1

10
54

.4
26

.5
3.

5
10

2
70

26
66

1
0

0
33

9
12

9
34

3
3

1
0

0.
8

1
12

58
.5

26
.5

4
12

5
71

28
62

1
1

0
35

9
15

2
29

8
2

4
0

0.
2

1.3
79

8.
9

25
.3

1.4
70

69
25

68
1

0
0

34
4

13
3

33
3

5
0

0
0.

4
1.3

86
0.

8
26

.5
2.

4
83

65
26

71
0

1
0

34
5

13
2

33
4

3
1

0
0.

6
1.3

11
07

.8
26

.5
3.

8
11

4
60

31
71

1
0

0
35

2
15

6
30

1
4

2
0

0.
8

1.3
12

35
.2

26
.5

4.
2

13
1

67
33

63
0

0
0

33
7

17
4

30
2

1
1

0
0.

2
1.6

13
40

.2
25

.3
1.6

74
70

24
68

1
0

0
35

4
13

2
32

5
4

0
0

0.
4

1.6
16

25
.6

26
.6

2.
9

88
67

26
70

0
0

0
27

0
19

6
34

4
3

2
0

0.
6

1.6
20

71
26

.5
4

12
2

67
37

57
1

1
0

34
6

17
5

28
5

4
5

0
0.

8
1.6

23
78

.8
26

.5
4.

5
12

7
64

40
58

0
1

0
31

1
19

3
30

0
4

7
0

0.
2

1.9
13

33
.5

25
.3

1.8
77

71
22

69
1

0
0

35
9

12
5

32
6

5
0

0
0.

4
1.9

16
98

26
.6

3.
3

10
5

68
29

64
1

1
0

34
7

15
0

30
8

3
7

0
0.

6
1.9

12
53

.6
26

.6
4.

3
13

1
66

39
57

1
0

0
34

4
17

7
28

9
2

3
0

0.
8

1.9
13

03
.7

26
.5

4.
6

11
1

55
39

69
0

0
0

26
0

18
4

36
7

2
2

0

62

A.14 CodeLLaMA Instruct 13B
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
15

21
.8

42
.5

4.
8

64
30

16
11

7
0

0
0

11
8

67
62

9
1

0
0

0.
2

0.
1

97
5.

5
43

.5
1

62
62

21
80

0
0

0
31

0
10

5
40

0
0

0
0

0.
4

0.
1

98
2.

6
43

.5
1

62
62

21
80

0
0

0
31

0
10

5
40

0
0

0
0

0.
6

0.
1

10
67

.2
43

.4
1.5

65
58

22
83

0
0

0
28

1
11

2
42

2
0

0
0

0.
8

0.
1

11
00

.3
43

.7
2

69
56

23
84

0
0

0
27

4
10

6
43

5
0

0
0

0.
2

0.
4

10
01

.6
43

.4
1

62
62

21
80

0
0

0
31

0
10

5
40

0
0

0
0

0.
4

0.
4

97
6.

8
43

.5
1.2

63
63

20
80

0
0

0
30

8
10

0
40

7
0

0
0

0.
6

0.
4

11
19

.3
43

.4
2.

4
73

56
20

87
0

0
0

27
8

94
44

3
0

0
0

0.
8

0.
4

12
16

43
.6

3.
5

92
58

16
89

0
0

0
29

0
88

43
6

1
0

0
0.

2
0.

7
99

7.9
43

.5
1

62
62

21
80

0
0

0
31

0
10

5
40

0
0

0
0

0.
4

0.
7

97
3.

1
43

.5
1.6

63
60

21
82

0
0

0
29

7
10

3
41

5
0

0
0

0.
6

0.
7

11
96

.2
43

.4
3.

3
84

59
19

84
1

0
0

28
2

10
0

43
0

2
1

0
0.

8
0.

7
12

82
43

.4
4

11
7

63
18

82
0

0
0

34
4

85
38

5
0

1
0

0.
2

1
10

28
.1

43
.5

1.2
63

62
21

80
0

0
0

30
9

10
5

40
1

0
0

0
0.

4
1

10
35

.3
43

.4
2.

2
64

59
18

86
0

0
0

28
8

10
1

42
6

0
0

0
0.

6
1

12
57

.1
43

.4
3.

7
99

65
26

72
0

0
0

31
6

97
40

0
1

1
0

0.
8

1
14

18
.8

43
.3

4.
2

12
5

72
26

64
1

0
0

32
6

13
2

35
3

3
1

0
0.

2
1.3

97
5.

5
43

.4
1.5

62
60

21
82

0
0

0
30

0
95

42
0

0
0

0
0.

4
1.3

10
48

.1
43

.4
2.

9
80

59
20

83
1

0
0

30
7

88
41

8
2

0
0

0.
6

1.3
12

66
.2

43
.4

4.
1

11
6

65
21

77
0

0
0

33
0

10
2

38
0

3
0

0
0.

8
1.3

13
12

.6
43

.3
4.

3
13

2
76

31
56

0
0

0
36

1
14

4
30

8
2

0
0

0.
2

1.6
96

5.
1

43
.5

1.7
63

59
21

83
0

0
0

29
1

10
1

42
3

0
0

0
0.

4
1.6

11
31

.8
43

.4
3.

5
99

62
12

89
0

0
0

32
6

80
40

5
3

1
0

0.
6

1.6
12

53
.6

43
.3

4.
1

12
5

71
25

65
0

2
0

34
8

12
9

33
4

1
3

0
0.

8
1.6

13
50

.8
43

.3
4.

5
13

2
70

25
67

1
0

0
34

4
15

7
30

7
4

3
0

0.
2

1.9
11

56
.2

43
.5

2.
1

66
59

20
84

0
0

0
29

1
10

5
41

9
0

0
0

0.
4

1.9
13

18
.3

43
.3

3.
9

11
0

65
23

75
0

0
0

33
4

10
8

37
2

1
0

0
0.

6
1.9

13
26

.4
43

.3
4.

3
13

0
67

28
68

0
0

0
33

7
16

0
31

6
0

2
0

0.
8

1.9
14

07
.2

43
.3

4.
6

12
5

66
32

65
0

0
0

28
9

16
9

35
5

0
2

0

63

A.15 CodeGen2 1B
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
69

3.
9

44
.2

3.
9

1
1

0
16

2
0

0
0

5
0

81
0

0
0

0
10

16
43

.8
44

.1
4.

1
1

1
0

16
2

0
0

0
5

0
81

0
0

0
0

0.
2

0.
1

57
4.

1
43

.8
1

1
1

4
15

8
0

0
0

5
20

79
0

0
0

0
0.

4
0.

1
56

1.2
42

.5
1

1
1

4
15

8
0

0
0

5
20

79
0

0
0

0
0.

6
0.

1
55

0.
5

43
.8

1.3
1

1
3

15
9

0
0

0
5

18
79

2
0

0
0

0.
8

0.
1

56
3.

6
43

.6
1.9

1
1

4
15

8
0

0
0

5
19

79
1

0
0

0
0.

2
0.

4
55

8.
1

43
1

1
1

4
15

8
0

0
0

5
20

79
0

0
0

0
0.

4
0.

4
58

5.
2

44
.1

1.3
1

1
3

15
9

0
0

0
5

15
79

5
0

0
0

0.
6

0.
4

57
3.

5
44

3.
4

1
1

5
15

7
0

0
0

5
13

79
7

0
0

0
0.

8
0.

4
59

5.
8

44
4.

3
2

1
5

15
7

0
0

0
5

15
79

5
0

0
0

0.
2

0.
7

57
3.

6
44

.3
1.4

1
1

4
15

8
0

0
0

5
20

79
0

0
0

0
0.

4
0.

7
62

5.
4

43
.2

3.
5

1
1

2
16

0
0

0
0

5
8

80
2

0
0

0
0.

6
0.

7
58

3.
9

44
4.

6
1

1
1

16
1

0
0

0
5

4
80

6
0

0
0

0.
8

0.
7

61
3.

2
44

4.
9

2
1

3
15

9
0

0
0

6
5

80
4

0
0

0
0.

2
1

60
5

44
2.

5
1

1
3

15
9

0
0

0
5

12
79

8
0

0
0

0.
4

1
63

2.
4

44
.1

4.
4

2
1

0
16

2
0

0
0

6
5

80
4

0
0

0
0.

6
1

65
6.

9
41

.7
5

1
1

3
15

9
0

0
0

4
13

79
8

0
0

0
0.

8
1

50
6.

1
44

.1
5

2
1

1
16

1
0

0
0

5
11

79
9

0
0

0
0.

2
1.3

62
6.

3
43

.3
3.

6
1

1
1

16
1

0
0

0
5

5
80

5
0

0
0

0.
4

1.3
61

8.
7

44
.3

4.
8

3
2

1
16

0
0

0
0

7
7

80
1

0
0

0
0.

6
1.3

65
1.8

43
.9

5
1

1
3

15
9

0
0

0
5

20
79

0
0

0
0

0.
8

1.3
44

3.
9

43
.9

5
1

1
5

15
7

0
0

0
5

17
79

2
0

1
0

0.
2

1.6
56

9.
4

42
.3

4.
2

2
1

0
16

2
0

0
0

6
4

80
5

0
0

0
0.

4
1.6

60
1.8

43
.3

5
2

1
4

15
8

0
0

0
6

14
79

5
0

0
0

0.
6

1.6
55

8.
9

43
.4

5
1

1
3

15
9

0
0

0
3

21
79

1
0

0
0

0.
8

1.6
39

7.4
44

.1
5

1
1

2
16

0
0

0
0

4
18

79
3

0
0

0
0.

2
1.9

63
4.

7
44

4.
7

2
1

2
16

0
0

0
0

6
10

79
9

0
0

0
0.

4
1.9

55
7.2

42
.7

5
2

1
6

15
5

1
0

0
6

17
79

1
1

0
0

0.
6

1.9
44

9.
5

43
.5

5
2

1
2

16
0

0
0

0
5

13
79

7
0

0
0

0.
8

1.9
34

0.
2

44
.1

5
1

1
1

16
1

0
0

0
5

17
79

3
0

0
0

64

A.16 CodeGen2 3.7B
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
N

=5
R

es
A

ny
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
69

4
23

.1
3.

6
5

5
21

13
7

0
0

0
12

11
2

69
1

0
0

0
10

14
21

.4
43

.8
3.

9
7

5
22

13
6

0
0

0
15

10
3

69
7

0
0

0
0.

2
0.

1
46

2.
7

23
.2

1
6

6
65

91
0

1
0

30
32

5
45

5
0

5
0

0.
4

0.
1

46
0.

3
23

.2
1

6
6

65
91

0
1

0
30

32
5

45
5

0
5

0
0.

6
0.

1
45

7.6
25

.2
1.3

6
6

65
91

0
1

0
30

32
3

45
7

0
5

0
0.

8
0.

1
44

8.
8

25
.2

1.8
7

7
62

93
0

1
0

32
31

5
46

3
0

5
0

0.
2

0.
4

46
6.

5
23

.2
1.1

6
6

66
90

0
1

0
30

32
8

45
2

0
5

0
0.

4
0.

4
45

5.
5

23
.2

1.7
6

6
65

91
0

1
0

29
32

0
46

2
0

4
0

0.
6

0.
4

45
2.

7
25

.2
3

6
5

63
94

0
1

0
25

31
8

46
7

0
5

0
0.

8
0.

4
40

1.4
25

.2
3.

8
6

6
64

92
0

1
0

24
31

2
47

6
0

3
0

0.
2

0.
7

47
4.

5
23

.2
1.7

6
6

63
93

0
1

0
30

31
5

46
5

0
5

0
0.

4
0.

7
43

7.2
32

.1
3.

1
8

8
65

89
0

1
0

34
31

9
45

8
0

4
0

0.
6

0.
7

48
7

22
.1

4.
1

7
6

59
97

0
1

0
24

29
9

48
8

0
4

0
0.

8
0.

7
44

3.
8

25
.4

4.
6

6
5

57
99

0
2

0
21

27
2

51
6

0
6

0
0.

2
1

47
0.

5
32

.1
2.

4
6

6
65

91
0

1
0

30
31

6
46

5
0

4
0

0.
4

1
47

4.
4

25
.4

3.
9

7
6

58
98

0
1

0
29

30
8

47
3

0
5

0
0.

6
1

44
6.

8
33

.5
4.

7
7

5
51

10
6

0
1

0
23

26
6

52
1

0
5

0
0.

8
1

45
1.9

30
.8

4.
9

6
3

52
10

8
0

0
0

16
24

7
54

8
0

4
0

0.
2

1.3
46

1.6
26

.1
3.

1
7

6
64

92
0

1
0

31
30

8
47

3
0

3
0

0.
4

1.3
49

0.
5

25
.4

4.
4

9
8

54
10

0
0

1
0

31
26

8
51

3
0

3
0

0.
6

1.3
43

7.7
22

.1
4.

9
7

4
51

10
7

0
1

0
21

25
1

53
8

0
5

0
0.

8
1.3

43
2.

9
28

.8
4.

9
9

6
40

11
7

0
0

0
21

19
2

59
9

0
3

0
0.

2
1.6

50
8.

1
27

.4
3.

8
7

7
61

94
0

1
0

27
31

1
47

2
0

5
0

0.
4

1.6
44

1.5
34

.4
4.

6
7

5
48

10
9

0
1

0
26

25
7

52
9

0
3

0
0.

6
1.6

44
0.

7
25

.4
4.

9
8

5
46

11
1

0
1

0
22

23
0

55
7

0
6

0
0.

8
1.6

40
0.

6
30

.8
5

9
4

36
12

3
0

0
0

22
18

5
60

4
0

4
0

0.
2

1.9
41

0.
6

25
.4

4.
1

8
7

62
93

0
1

0
27

30
6

47
8

0
4

0
0.

4
1.9

43
4.

7
28

.3
4.

9
7

4
46

11
1

0
2

0
21

23
7

55
0

0
7

0
0.

6
1.9

39
2.

5
22

.7
5

9
6

34
12

2
0

1
0

22
19

8
59

2
0

3
0

0.
8

1.9
42

6.
7

24
.7

5
9

3
33

12
7

0
0

0
16

15
5

63
9

0
5

0

65

A.17 CodeGen2 7B
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
16

99
.3

37
.6

3.
5

47
40

27
95

1
0

0
12

2
12

9
55

9
2

3
0

10
34

56
.8

43
.7

3.
6

46
41

29
92

1
0

0
12

2
13

3
55

6
2

2
0

0.
2

0.
1

15
29

38
.3

1
42

42
33

87
1

0
0

21
0

16
5

43
5

5
0

0
0.

4
0.

1
15

35
.7

38
.3

1
42

42
33

87
1

0
0

21
0

16
5

43
5

5
0

0
0.

6
0.

1
15

09
.4

38
.3

1.3
42

42
35

84
1

1
0

20
9

17
2

42
7

5
2

0
0.

8
0.

1
14

94
38

.3
1.7

43
43

34
85

1
0

0
21

0
16

4
43

4
5

2
0

0.
2

0.
4

15
37

.8
38

.3
1

42
42

33
87

1
0

0
21

0
16

5
43

5
5

0
0

0.
4

0.
4

15
03

.5
38

.3
1.4

42
42

34
85

1
1

0
21

0
17

9
41

9
5

2
0

0.
6

0.
4

15
10

.7
41

.2
2.

4
46

44
40

78
1

0
0

21
0

18
1

41
8

5
1

0
0.

8
0.

4
16

07
.5

41
.2

3.
1

43
38

42
82

1
0

0
17

5
17

7
45

7
5

1
0

0.
2

0.
7

15
65

.7
38

.3
1.2

42
42

34
86

1
0

0
21

0
17

2
42

8
5

0
0

0.
4

0.
7

15
29

.1
41

.2
2.

2
42

42
35

85
1

0
0

21
0

17
8

42
2

5
0

0
0.

6
0.

7
15

61
.6

41
.2

3.
2

40
36

39
87

1
0

0
18

2
18

0
44

7
5

1
0

0.
8

0.
7

14
69

.7
39

.8
3.

6
44

39
45

77
1

1
0

17
9

18
5

44
3

5
3

0
0.

2
1

15
44

.1
38

.3
1.7

42
42

33
87

1
0

0
21

0
16

3
43

4
5

3
0

0.
4

1
15

26
.5

40
.3

2.
8

43
43

35
84

1
0

0
20

6
18

7
41

6
5

1
0

0.
6

1
15

57
.7

34
.7

3.
5

40
38

43
81

1
0

0
18

3
18

9
43

5
5

3
0

0.
8

1
15

38
.5

38
.9

4
45

38
41

83
1

0
0

17
2

17
2

46
6

3
2

0
0.

2
1.3

15
17

.7
38

.3
2.

1
42

42
38

82
1

0
0

20
9

18
4

41
7

5
0

0
0.

4
1.3

14
95

.2
41

.2
3.

3
43

38
42

82
1

0
0

19
8

18
8

42
3

5
1

0
0.

6
1.3

14
14

.8
41

.7
3.

9
42

37
51

74
1

0
0

16
6

19
2

45
0

5
2

0
0.

8
1.3

13
79

.7
41

.9
4.

2
46

35
46

80
1

1
0

14
6

17
5

48
8

2
4

0
0.

2
1.6

15
34

.7
41

.2
2.

5
43

42
35

84
1

1
0

21
0

17
9

41
9

5
2

0
0.

4
1.6

15
26

.6
38

3.
5

42
39

42
81

1
0

0
19

0
18

7
42

9
5

4
0

0.
6

1.6
15

03
.8

34
.4

4.
2

47
33

39
90

1
0

0
14

5
16

7
49

9
3

1
0

0.
8

1.6
13

67
.4

37
4.

4
41

32
40

90
1

0
0

12
8

15
9

52
1

3
4

0
0.

2
1.9

15
22

.4
41

2.
8

44
42

35
85

1
0

0
21

2
17

5
42

2
5

1
0

0.
4

1.9
13

29
.9

38
.7

3.
7

44
37

44
81

1
0

0
18

4
17

8
44

7
5

1
0

0.
6

1.9
14

25
.7

34
.4

4.
3

41
31

44
85

1
2

0
13

5
17

7
49

6
3

4
0

0.
8

1.9
15

06
.7

37
4.

7
34

26
39

96
1

1
0

94
14

5
57

2
2

2
0

66

A.18 CodeGen2 16B
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

0.
2

0.
1

13
84

.5
44

.3
1

11
6

11
6

44
2

1
0

0
58

0
22

0
10

5
0

0
0.

4
0.

1
13

88
.8

44
.3

1
11

6
11

6
44

2
1

0
0

58
0

22
0

10
5

0
0

0.
6

0.
1

13
92

.7
44

.3
1.1

11
6

11
6

44
2

1
0

0
57

3
21

8
19

5
0

0
0.

8
0.

1
13

91
.4

44
.3

1.2
11

5
11

4
47

1
1

0
0

56
1

21
6

33
5

0
0

0.
2

0.
4

13
88

.4
44

.3
1

11
6

11
6

44
2

1
0

0
58

0
22

0
10

5
0

0
0.

4
0.

4
14

06
.5

44
.3

1
11

6
11

6
44

2
1

0
0

58
0

22
0

10
5

0
0

0.
6

0.
4

14
90

.9
44

.3
1.3

11
7

11
6

44
2

1
0

0
55

9
21

1
40

5
0

0
0.

8
0.

4
15

09
.1

44
.3

1.6
11

7
11

5
45

2
1

0
0

54
2

17
7

91
5

0
0

0.
2

0.
7

13
83

44
.3

1
11

6
11

6
44

2
1

0
0

58
0

22
0

10
5

0
0

0.
4

0.
7

13
87

.8
44

.3
1

11
6

11
6

44
2

1
0

0
58

0
21

3
17

5
0

0
0.

6
0.

7
15

04
.4

44
.3

1.5
11

8
11

5
46

1
1

0
0

54
7

17
6

87
5

0
0

0.
8

0.
7

14
29

.5
44

.3
1.9

12
6

12
4

38
0

1
0

0
54

2
12

6
14

4
3

0
0

0.
2

1
14

06
.4

44
.3

1
11

6
11

6
44

2
1

0
0

58
0

22
0

10
5

0
0

0.
4

1
14

38
.3

44
.3

1.2
11

7
11

5
45

2
1

0
0

57
7

19
9

34
5

0
0

0.
6

1
14

68
.1

44
.3

1.8
11

9
11

8
44

0
1

0
0

53
7

14
6

12
7

5
0

0
0.

8
1

14
54

.2
44

.3
2.

4
11

5
11

3
47

2
1

0
0

46
0

12
8

22
3

4
0

0
0.

2
1.3

14
75

.4
44

.3
1

11
6

11
6

44
2

1
0

0
57

9
21

7
14

5
0

0
0.

4
1.3

14
43

.6
44

.3
1.3

12
0

12
0

41
1

1
0

0
57

9
18

1
50

5
0

0
0.

6
1.3

14
34

.3
44

.3
2.

1
11

7
11

5
46

1
1

0
0

50
3

14
8

15
9

5
0

0
0.

8
1.3

15
35

44
.3

2.
9

11
5

10
5

55
2

1
0

0
43

7
12

6
25

1
1

0
0

0.
2

1.6
14

83
44

.3
1.1

11
6

11
6

44
2

1
0

0
58

0
21

4
16

5
0

0
0.

4
1.6

14
33

.8
44

.3
1.6

11
6

11
5

47
0

1
0

0
54

9
17

7
84

5
0

0
0.

6
1.6

15
93

.6
44

.3
2.

6
11

1
10

8
51

3
1

0
0

44
9

12
6

23
5

5
0

0
0.

8
1.6

17
36

.9
44

.3
3.

3
10

7
10

5
54

3
1

0
0

37
5

10
6

33
3

1
0

0
0.

2
1.9

15
06

.5
44

.3
1.2

11
8

11
7

43
2

1
0

0
58

1
19

5
34

5
0

0
0.

4
1.9

13
75

.8
44

.3
1.8

11
6

11
2

46
4

1
0

0
52

7
15

1
13

2
5

0
0

0.
6

1.9
16

57
.7

44
.3

3
10

9
99

60
3

1
0

0
39

9
13

2
28

2
2

0
0

0.
8

1.9
21

95
.6

44
.3

3.
8

92
84

58
20

1
0

0
30

0
11

2
40

1
2

0
0

67

A.19 InCoder 1B
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
18

7.5
6.

2
3.

9
74

63
60

39
1

0
0

19
6

22
1

34
3

3
0

52
10

22
9.

1
9.

5
3.

9
70

62
60

41
0

0
0

19
1

19
6

37
6

0
0

52
0.

2
0.

1
15

8.
3

5.
7

1
52

52
70

41
0

0
0

24
1

32
7

20
1

0
0

46
0.

4
0.

1
15

5.
2

5.
7

1
52

52
70

41
0

0
0

24
1

32
7

20
1

0
0

46
0.

6
0.

1
16

6.
3

5.
7

1.3
52

51
69

42
1

0
0

23
7

32
3

20
4

5
0

46
0.

8
0.

1
15

7.1
5.

7
1.6

55
55

69
39

0
0

0
24

1
30

2
23

2
0

0
40

0.
2

0.
4

15
6.

3
5.

7
1

52
52

70
41

0
0

0
24

1
32

7
20

1
0

0
46

0.
4

0.
4

15
8.

7
5.

7
1.2

54
54

70
39

0
0

0
24

4
32

3
21

0
0

0
38

0.
6

0.
4

16
8.

4
5.

7
2

56
51

70
42

0
0

0
23

1
27

7
26

8
0

0
39

0.
8

0.
4

16
8.

4
5.

7
2.

7
59

54
77

32
0

0
0

22
8

27
2

27
7

1
0

37
0.

2
0.

7
15

5.
4

5.
7

1.1
54

54
70

39
0

0
0

24
8

32
2

19
9

0
0

46
0.

4
0.

7
16

2.
1

5.
7

1.8
58

54
69

40
0

0
0

24
4

28
8

23
7

0
0

46
0.

6
0.

7
15

6.
1

5.
7

2.
8

61
52

76
34

1
0

0
22

9
25

5
28

5
1

0
45

0.
8

0.
7

17
4.

9
5.

7
3.

3
65

55
64

43
1

0
0

23
3

21
7

32
1

1
0

43
0.

2
1

16
4.

7
5.

7
1.3

53
53

67
43

0
0

0
23

8
30

5
23

4
0

0
38

0.
4

1
16

3.
5

5.
7

2.
4

58
50

70
43

0
0

0
23

4
27

0
28

4
0

0
27

0.
6

1
17

7.9
5.

7
3.

4
63

51
67

45
0

0
0

21
4

20
7

34
5

1
0

48
0.

8
1

20
1.1

5.
7

3.
8

65
48

68
46

1
0

0
20

7
21

6
36

3
1

0
28

0.
2

1.3
16

3.
5

5.
7

1.7
56

53
67

43
0

0
0

23
9

28
2

25
4

0
0

40
0.

4
1.3

16
9.

4
5.

7
3

64
52

69
40

0
2

0
23

4
22

9
31

1
1

2
38

0.
6

1.3
19

3.
5

5.
7

3.
7

67
52

67
42

0
2

0
21

0
21

3
34

4
1

3
44

0.
8

1.3
21

9.
5

5.
7

4.
1

56
34

63
63

1
2

0
15

4
18

7
43

1
1

3
39

0.
2

1.6
16

2.
1

5.
7

2
56

52
70

41
0

0
0

23
2

27
6

26
1

0
3

43
0.

4
1.6

18
2.

5
5.

7
3.

5
64

52
72

38
1

0
0

22
0

23
1

32
5

2
0

37
0.

6
1.6

24
0.

1
5.

7
4

61
46

58
55

1
3

0
17

5
16

5
42

0
1

7
47

0.
8

1.6
50

7.1
5.

8
4.

4
47

32
42

87
1

1
0

11
3

12
2

53
5

2
2

41
0.

2
1.9

16
3.

2
5.

7
2.

6
59

54
65

44
0

0
0

23
5

23
4

31
0

1
0

35
0.

4
1.9

19
7.6

5.
7

3.
8

65
51

65
42

1
4

0
20

3
19

8
36

4
2

5
43

0.
6

1.9
22

1.7
5.

7
4.

3
55

44
46

72
0

1
0

13
4

12
9

51
5

0
2

35
0.

8
1.9

30
2

5.
7

4.
6

34
26

33
10

3
0

1
0

70
95

61
5

0
1

34

68

A.20 InCoder 6B
N

=1
To

ta
l

Be
am

To
p

M
as

k
Si

ze
p

Te
m

p
Ti

m
e

V
RA

M
U

ni
qR

es
N

=5
Su

c
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es
Su

c
TF

ai
l

CF
ai

l
TC

Fa
il

TT
o

N
oR

es

5
17

0.
4

21
.5

3.
9

82
70

66
26

1
0

0
21

7
26

6
27

9
4

0
49

10
22

0.
1

30
.5

4
80

69
61

32
1

0
0

21
2

25
1

29
9

4
0

49
0.

2
0.

1
14

2.
6

18
.1

1
63

63
69

30
1

0
0

29
7

32
3

14
6

5
0

44
0.

4
0.

1
14

1.7
18

.1
1

63
63

69
30

1
0

0
29

7
32

3
14

6
5

0
44

0.
6

0.
1

13
6.

7
18

.1
1.1

65
64

67
31

1
0

0
29

9
30

9
15

5
5

0
47

0.
8

0.
1

15
1.9

18
.1

1.4
68

63
65

33
1

1
0

29
5

28
0

17
7

5
7

51
0.

2
0.

4
15

1.1
18

.1
1

63
63

69
30

1
0

0
29

7
32

3
14

6
5

0
44

0.
4

0.
4

14
9.

4
18

.1
1.1

65
65

69
28

1
0

0
29

8
31

6
14

8
5

0
48

0.
6

0.
4

13
4.

3
18

.1
1.7

73
67

69
26

1
0

0
29

7
28

6
18

2
5

0
45

0.
8

0.
4

13
9.

6
18

.1
2.

4
75

64
66

32
1

0
0

27
2

28
4

21
0

5
0

44
0.

2
0.

7
14

2
18

.1
1

63
63

69
30

1
0

0
29

7
32

3
14

6
5

0
44

0.
4

0.
7

15
1.1

18
.1

1.6
71

66
71

25
1

0
0

30
1

30
0

16
5

5
0

44
0.

6
0.

7
14

0.
7

18
.1

2.
3

78
63

70
29

1
0

0
27

7
26

1
21

8
5

0
54

0.
8

0.
7

16
0

18
.1

3
80

63
71

28
1

0
0

27
0

25
5

24
4

5
0

41
0.

2
1

16
0.

7
18

.1
1.2

63
62

69
31

1
0

0
29

3
31

1
15

8
5

0
48

0.
4

1
14

7.7
18

.1
2

69
61

72
29

1
0

0
27

5
26

2
22

2
5

0
51

0.
6

1
16

2.
7

18
.1

3.
1

78
57

73
32

1
0

0
25

6
25

4
25

4
5

0
46

0.
8

1
19

7.5
18

.1
3.

6
80

52
69

42
0

0
0

23
9

24
4

28
8

3
0

41
0.

2
1.3

14
4.

3
18

.1
1.4

66
65

71
26

1
0

0
28

8
31

3
16

3
5

0
46

0.
4

1.3
14

6.
8

18
.1

2.
6

76
66

72
24

1
0

0
26

9
26

9
23

3
5

0
39

0.
6

1.3
17

6.
3

18
.1

3.
4

81
58

70
34

1
0

0
25

6
23

9
27

7
4

0
39

0.
8

1.3
22

7.9
18

.1
4

77
50

63
49

1
0

0
20

9
21

3
36

1
2

0
30

0.
2

1.6
14

3.
2

18
.1

1.8
71

63
69

30
1

0
0

28
4

29
2

18
9

5
0

45
0.

4
1.6

17
5.

4
18

.1
3.

1
81

63
71

28
1

0
0

25
9

24
6

26
9

5
0

36
0.

6
1.6

20
1.3

19
3.

9
78

61
57

44
0

1
0

22
6

20
2

34
9

1
2

35
0.

8
1.6

30
1.5

18
.1

4.
3

68
40

60
62

1
0

0
15

4
14

8
46

5
1

5
42

0.
2

1.9
25

0.
9

18
.1

2.
2

72
62

70
28

1
2

0
27

3
28

7
20

1
5

8
41

0.
4

1.9
19

1.9
18

.1
3.

5
73

56
78

28
1

0
0

23
0

24
8

29
0

5
0

42
0.

6
1.9

32
2.

4
17

.9
4.

2
71

46
57

58
1

1
0

18
8

17
5

41
6

2
2

32
0.

8
1.9

37
4

18
.8

4.
6

50
29

34
97

0
3

0
10

5
10

8
57

1
0

3
28

69

Bibliography

[1] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. “Automatic Software Repair: A Survey”. In: IEEE
Transactions on Software Engineering (2019).doi: 10.1109/TSE.2017.2755013.

[2] Herb Krasner. Cost of Poor Software Quality in the U.S.: A 2022 Report. 2022.

[3] Tom Britton, Lisa Jeng, Graham Carver, Tomer Katzenellenbogen, and Paul Cheak. Reversible Debugging
Software "Quantify the time and cost saved using reversible debuggers". 2020.

[4] Quanjun Zhang,Chunrong Fang, Yuxiang Ma,Weisong Sun,and Zhenyu Chen.A Survey of Learning-based
Automated Program Repair. 2023.doi: 10.48550/arXiv.2301.03270.

[5] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong, and Lu Zhang. A Syntax-
Guided Edit Decoder for Neural Program Repair. 2022.doi: 10.48550/arXiv.2106.08253.

[6] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian Lamelas, Thomas Durieux,
Daniel Le Berre, and Martin Monperrus. “Nopol: Automatic Repair of Conditional Statement Bugs in
Java Programs”. In: IIEEE Trans. Software Eng. (2017).doi: 10.1109/TSE.2016.2560811.

[7] Thomas Durieux and Martin Monperrus. “DynaMoth: dynamic code synthesis for automatic program
repair”. In: Proceedings of the 11th International Workshop on Automation of Software Test. ACM, 2016.doi:
10.1145/2896921.2896931.

[8] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. “TBar: Revisiting Template-based
Automated Program Repair”. In: Proceedings of the 28th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis. 2019.doi: 10.1145/3293882.3330577.

[9] Yuan Yuan and Wolfgang Banzhaf. “ARJA: Automated Repair of Java Programs via Multi-Objective Ge-
netic Programming”. In: IIEEE Trans. Software Eng. (2020).doi: 10.1109/TSE.2018.2874648.

[10] Dongcheng Li, W. Eric Wong, Mingyong Jian, Yi Geng, and Matthew Chau. “Improving Search-Based
Automatic Program Repair With Neural Machine Translation”. In: IEEE Access (2022). doi: 10.1109/
ACCESS.2022.3164780.

[11] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, and Martin
Monperrus.“SequenceR: Sequence-to-Sequence Learning for End-to-End Program Repair”.In: IIEEE Trans.
Software Eng. (2019).doi: 10.1109/TSE.2019.2940179.

[12] Chunqiu Steven Xia and Lingming Zhang. Less Training, More Repairing Please: Revisiting Automated Pro-
gram Repair via Zero-shot Learning. 2022.doi: 10.48550/arXiv.2207.08281.

[13] Quanjun Zhang, Chunrong Fang, Tongke Zhang, Bowen Yu, Weisong Sun, and Zhenyu Chen. GAMMA:
Revisiting Template-based Automated Program Repair via Mask Prediction. 2023. doi: 10.48550/arXiv.
2309.09308.

[14] Lei Huang et al. A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and
Open Questions. 2023.doi: 10.48550/arXiv.2311.05232.

[15] Joseph Spracklen, Raveen Wijewickrama, A. H. M. Nazmus Sakib, Anindya Maiti, and Murtuza Jadliwala.
We Have a Package for You! A Comprehensive Analysis of Package Hallucinations by Code Generating LLMs.
2024.doi: 10.48550/arXiv.2406.10279.

[16] Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, Li Zhang, Zhongqi Li, and Yuchi
Ma. Exploring and Evaluating Hallucinations in LLM-Powered Code Generation. 2024.

70

https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.48550/arXiv.2301.03270
https://doi.org/10.48550/arXiv.2106.08253
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1145/2896921.2896931
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1109/ACCESS.2022.3164780
https://doi.org/10.1109/ACCESS.2022.3164780
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.48550/arXiv.2207.08281
https://doi.org/10.48550/arXiv.2309.09308
https://doi.org/10.48550/arXiv.2309.09308
https://doi.org/10.48550/arXiv.2311.05232
https://doi.org/10.48550/arXiv.2406.10279

[17] Changshu Liu, Pelin Cetin, Yogesh Patodia, Saikat Chakraborty, Yangruibo Ding, and Baishakhi Ray. Au-
tomated Code Editing with Search-Generate-Modify. 2023.doi: 10.48550/arXiv.2306.06490.

[18] Wei Yuan, Quanjun Zhang, Tieke He, Chunrong Fang, Nguyen Quoc Viet Hung, Xiaodong Hao, and
Hongzhi Yin. CIRCLE: Continual Repair across Programming Languages. 2022. doi: 10.48550/arXiv.
2205.10956.

[19] Claire Le Goues,ThanhVu Nguyen,Stephanie Forrest,and Westley Weimer.“GenProg: A Generic Method
for Automatic Software Repair”. In: IEEE Transactions on Software Engineering (2012). doi: 10.1109/
TSE.2011.104.

[20] Nan Jiang, Thibaud Lutellier, and Lin Tan. “CURE: Code-Aware Neural Machine Translation for Auto-
matic Program Repair”. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
2021.doi: 10.1109/ICSE43902.2021.00107.

[21] Nan Jiang, Thibaud Lutellier, Yiling Lou, Lin Tan, Dan Goldwasser, and Xiangyu Zhang. KNOD: Domain
Knowledge Distilled Tree Decoder for Automated Program Repair. 2023. doi: 10.48550/arXiv.2302.
01857.

[22] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, 2015.doi: 10.1007/978-3-
662-44874-8.

[23] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro. “The plastic surgery
hypothesis”.In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014.doi: 10.1145/2635868.2635898.

[24] Matias Martinez, Westley Weimer, and Martin Monperrus. “Do the Fix Ingredients Already Exist? An
Empirical Inquiry into the Redundancy Assumptions of Program Repair Approaches”. In: Companion
Proceedings of the 36th International Conference on Software Engineering. 2014.doi: 10.1145/2591062.
2591114.

[25] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. “An analysis of patch plausibility and correctness
for generate-and-validate patch generation systems”. In: Proceedings of the 2015 International Symposium
on Software Testing and Analysis. ACM, 2015.doi: 10.1145/2771783.2771791.

[26] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. “The Strength of Random Search
on Automated Program Repair”. In: (2014).

[27] Matias Martinez,Thomas Durieux,Romain Sommerard,Jifeng Xuan,and Martin Monperrus.“Automatic
repair of real bugs in java: a large-scale experiment on the defects4j dataset”. In: Empir Software Eng (2017).
doi: 10.1007/s10664-016-9470-4.

[28] Matias Martinez and Martin Monperrus. “ASTOR: a program repair library for Java (demo)”. In: Proceed-
ings of the 25th International Symposium on Software Testing and Analysis. ACM, 2016. doi: 10.1145/
2931037.2948705.

[29] René Just, Darioush Jalali, and Michael D. Ernst. “Defects4J: a database of existing faults to enable con-
trolled testing studies for Java programs”. In: Proceedings of the 2014 International Symposium on Software
Testing and Analysis. ACM, 2014.doi: 10.1145/2610384.2628055.

[30] K.Deb,A.Pratap,S.Agarwal,and T.Meyarivan.“A fast and elitist multiobjective genetic algorithm: NSGA-
II”. In: IEEE Trans. Evol. Computat. (2002).doi: 10.1109/4235.996017.

[31] Shanu Verma,Millie Pant,and Vaclav Snasel.“A Comprehensive Review on NSGA-II for Multi-Objective
Combinatorial Optimization Problems”.In: IEEE Access (2021).doi:10.1109/ACCESS.2021.3070634.

[32] Günter Rudolph.“Evolutionary search for minimal elements in partially ordered finite sets”. In: Evolution-
ary Programming VII. Series Title: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1998.
doi: 10.1007/BFb0040787.

[33] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. “Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results”. In: Evolutionary Computation (2000).doi: 10.1162/106365600568202.

[34] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and Denys Poshyvanyk. On Learn-
ing Meaningful Code Changes via Neural Machine Translation. 2019.doi:10.48550/arXiv.1901.09102.

71

https://doi.org/10.48550/arXiv.2306.06490
https://doi.org/10.48550/arXiv.2205.10956
https://doi.org/10.48550/arXiv.2205.10956
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/ICSE43902.2021.00107
https://doi.org/10.48550/arXiv.2302.01857
https://doi.org/10.48550/arXiv.2302.01857
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1145/2635868.2635898
https://doi.org/10.1145/2591062.2591114
https://doi.org/10.1145/2591062.2591114
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1007/s10664-016-9470-4
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/ACCESS.2021.3070634
https://doi.org/10.1007/BFb0040787
https://doi.org/10.1162/106365600568202
https://doi.org/10.48550/arXiv.1901.09102

[35] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. “DeepFix: Fixing Common C Language
Errors by Deep Learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence (2017). Number:
1.doi: 10.1609/aaai.v31i1.10742.

[36] Saikat Chakraborty and Baishakhi Ray. On Multi-Modal Learning of Editing Source Code. 2021. doi: 10.
48550/arXiv.2108.06645.

[37] Jianlei Chi, Yu Qu, Ting Liu, Qinghua Zheng, and Heng Yin. SeqTrans: Automatic Vulnerability Fix via Se-
quence to Sequence Learning. 2022.doi: 10.48550/arXiv.2010.10805.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. 2017.doi: 10.48550/arXiv.1706.03762.

[39] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshy-
vanyk. An Empirical Study on Learning Bug-Fixing Patches in the Wild via Neural Machine Translation. 2019.
doi: 10.48550/arXiv.1812.08693.

[40] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. CodeT5: Identifier-aware Unified Pre-trained
Encoder-Decoder Models for Code Understanding and Generation. 2021. doi: 10.48550/arXiv.2109.
00859.

[41] Raymond Li et al. StarCoder: may the source be with you! 2023.doi: 10.48550/arXiv.2305.06161.

[42] Loubna Ben Allal et al. SantaCoder: don’t reach for the stars! 2023.doi: 10.48550/arXiv.2301.03988.

[43] Zhangyin Feng et al. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. 2020. doi:
10.48550/arXiv.2002.08155.

[44] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified Pre-training for Pro-
gram Understanding and Generation. 2021.doi: 10.48550/arXiv.2103.06333.

[45] Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. CodeGen2: Lessons for
Training LLMs on Programming and Natural Languages. 2023.doi: 10.48550/arXiv.2305.02309.

[46] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau
Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A Generative Model for Code Infilling and Synthesis. 2023.
doi: 10.48550/arXiv.2204.05999.

[47] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. UniXcoder: Unified Cross-Modal
Pre-training for Code Representation. 2022.doi: 10.48550/arXiv.2203.03850.

[48] Qinkai Zheng et al.“CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Benchmark-
ing on HumanEval-X”. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. ACM, 2023.doi: 10.1145/3580305.3599790.

[49] Deheng Yang, Kui Liu, Dongsun Kim, Anil Koyuncu, Kisub Kim, Haoye Tian, Yan Lei, Xiaoguang Mao,
Jacques Klein, and Tegawendé F. Bissyandé. “Where were the repair ingredients for Defects4j bugs?” In:
Empir Software Eng (2021).doi: 10.1007/s10664-021-10003-7.

[50] Kui Liu, Jingtang Zhang, Li Li, Anil Koyuncu, Dongsun Kim, Chunpeng Ge, Zhe Liu, Jacques Klein, and
Tegawendé F. Bissyandé. “Reliable Fix Patterns Inferred from Static Checkers for Automated Program
Repair”. In: ACM Trans. Softw. Eng. Methodol. (2023).doi: 10.1145/3579637.

[51] Manish Motwani, Mauricio Soto, Yuriy Brun, René Just, and Claire Le Goues. “Quality of Automated
Program Repair on Real-World Defects”. In: IEEE Transactions on Software Engineering (2022). doi: 10.
1109/TSE.2020.2998785.

[52] Xinwu Yang, Guizeng You, Chong Zhao, Mengfei Dou, and Xinian Guo. An Improved multi-objective genetic
algorithm based on orthogonal design and adaptive clustering pruning strategy. 2019.doi:10.48550/arXiv.
1901.00577.

[53] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. “Impact of Code Language Models on Automated
Program Repair”.In: 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE) (2023).
doi: 10.1109/ICSE48619.2023.00125.

[54] Erik Nijkamp,Bo Pang,Hiroaki Hayashi,Lifu Tu,Huan Wang,Yingbo Zhou,Silvio Savarese,and Caiming
Xiong. CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis. 2023. doi:
10.48550/arXiv.2203.13474.

72

https://doi.org/10.1609/aaai.v31i1.10742
https://doi.org/10.48550/arXiv.2108.06645
https://doi.org/10.48550/arXiv.2108.06645
https://doi.org/10.48550/arXiv.2010.10805
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1812.08693
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2301.03988
https://doi.org/10.48550/arXiv.2002.08155
https://doi.org/10.48550/arXiv.2103.06333
https://doi.org/10.48550/arXiv.2305.02309
https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.48550/arXiv.2203.03850
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1007/s10664-021-10003-7
https://doi.org/10.1145/3579637
https://doi.org/10.1109/TSE.2020.2998785
https://doi.org/10.1109/TSE.2020.2998785
https://doi.org/10.48550/arXiv.1901.00577
https://doi.org/10.48550/arXiv.1901.00577
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.48550/arXiv.2203.13474

[55] Klimov and Vakhreev. Applying All Recent Innovations To Train a Code Model. 2023.

[56] Baptiste Rozière et al.Code Llama: Open Foundation Models for Code.2024.doi:10.48550/arXiv.2308.
12950.

[57] Rui Xie, Zhengran Zeng, Zhuohao Yu, Chang Gao, Shikun Zhang, and Wei Ye. CodeShell Technical Report.
2024.doi: 10.48550/arXiv.2403.15747.

[58] Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi Gong, Hang Yu, Jianguo Li, and Rui Wang.
Unifying the Perspectives of NLP and Software Engineering: A Survey on Language Models for Code. 2023.
doi: 10.48550/arXiv.2311.07989.

[59] Sid Black et al. GPT-NeoX-20B: An Open-Source Autoregressive Language Model. 2022. doi: 10.48550/
arXiv.2204.06745.

[60] Mark Chen et al. Evaluating Large Language Models Trained on Code.2021.doi:10.48550/arXiv.2107.
03374.

[61] Yuan Yuan and Wolfgang Banzhaf. “A hybrid evolutionary system for automatic software repair”. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference. ACM, 2019. doi: 10.1145/3321707.
3321830.

[62] Wenkang Zhong, Chuanyi Li, Kui Liu, Tongtong Xu, Tegawendé F. Bissyandé, Jidong Ge, Bin Luo, and
Vincent Ng.Practical Program Repair via Preference-based Ensemble Strategy.2023.doi:10.1145/3597503.
3623310.

[63] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. “GZoltar: an eclipse plug-in for testing and
debugging”. In: 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering. 2012.doi: 10.1145/2351676.2351752.

73

https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2403.15747
https://doi.org/10.48550/arXiv.2311.07989
https://doi.org/10.48550/arXiv.2204.06745
https://doi.org/10.48550/arXiv.2204.06745
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.1145/3321707.3321830
https://doi.org/10.1145/3321707.3321830
https://doi.org/10.1145/3597503.3623310
https://doi.org/10.1145/3597503.3623310
https://doi.org/10.1145/2351676.2351752

	Introduction
	Background and Related Work
	Automated Program Repair
	Search-based APR
	GenProg
	ARJA

	Deep Learning
	Code Language Models
	AlphaRepair
	GAMMA
	ARJANMT

	Proposed Technique
	Overview
	Preparation
	Operation Screening
	Ingredient Screening
	Test Filtering

	Genetic Algorithm
	Patch Representation
	Population Initialization
	Crossover and Mutation
	Fitness Evaluation
	Selection
	Replacement

	Post-validation
	Contributions

	Evaluation and Selection of Code Language Models
	Selection of CLMs
	Experiment Design
	Experiment Results
	Performance and CLM Size
	Performance and Cost
	CLM Size and Compilation Failures
	N=1 and N=5 Success Rate
	Nucleus Sampling and Beam Search

	Infill Diversity and Quality
	Notable Infill Tasks
	Conclusion

	Evaluation of ARJACLM
	Defects4J
	Evaluation Protocol
	Experimental Results
	RQ1: Establishing the performance of ARJACLM
	RQ2: Comparison against other search-based techniques
	RQ3: Efficiency of AJRACLM
	RQ4: Quality of CLM-based patch ingredients

	Threats to Validity

	Future Work
	Conclusion
	Appendices
	CLM Evaluation Results
	UniXCoder
	Refact
	SantaCoder
	CodeShell
	StarCoder
	PLBART Base
	PLBART Large
	CodeT5 Small
	CodeT5 Base
	CodeT5 Large
	CodeLLaMA 7B
	CodeLLaMA 13B
	CodeLLaMA Instruct 7B
	CodeLLaMA Instruct 13B
	CodeGen2 1B
	CodeGen2 3.7B
	CodeGen2 7B
	CodeGen2 16B
	InCoder 1B
	InCoder 6B

