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Abstract

Self-supervised methods in computer vision have become dominated by contrastive
learning approaches, surpassing various pretext tasks such as rotation prediction
and colorization. Contrastive methods learn augmentation invariant representations
of images by pulling augmented views of the same image to the same representation
while pushing views of other images away. Non-contrastive methods reach similar
performance without requiring negative views. These methods pull all possible
crops of an image to the same representation, regardless of their content, position,
or shared information. This can hinder training and force the model to discard
valuable information about the views, as view pairs have widely varying amounts
of similarity. We propose a novel learning objective utilizing a graded similarity
measure to address this limitation. The graded similarity measure uses the overlap
of crops as a measure regarding the distance between representations in the latent
space. This novel learning objective better encodes the nuanced similarity between
views while emphasizing spatial relations. We implement this graded similarity
in contrastive methods (SimCLR) and non-contrastive methods (SimSiam). Our
results show that pre-trained encoders using our approach reach slightly better
performance in transfer learning and up to 1.4× better performance in retrieval
tasks. Notably, SimCLR improves significantly from this novel learning objective.



1 Introduction

Self-supervised learning (SSL) is a machine learning paradigm that allows models to learn useful
representations of data without the need for explicit labeling or supervision. In contrast to supervised
learning where data annotation is needed, self-supervised learning uses pretext tasks to learn useful
representations of the data [29]. An area of machine learning where self-supervised learning finds
many applications is computer vision [27]. The pretext tasks used in self-supervised learning force
models to learn the semantics and structure of images, such that a strong universal model is obtained.
Examples of pretext tasks are image inpainting, rotation prediction, and context prediction [25, 10, 8].
After pre-training, the model can be used to create lower-dimensional representations of the images.
These representations can then be directly used or finetuned for various downstream tasks, such as
classification, semantic segmentation and object detection, among others [4, 11]. The main advantage
of self-supervised learning is that the models can learn from any unlabelled data while obtaining
representations that are useful for various downstream tasks [27].

State-of-the-art self-supervised models in computer vision, such as SimCLR [4] and MoCoV2 [6],
use a contrastive learning approach. In contrastive learning, the pretext task consists of learning
invariance to augmentations applied to images. Examples of these augmentations are random
cropping, colour distortion, and blurring [4]. The contrastive learning objective is formulated such
that augmented views of the same image are pulled together while pushing away views of other
images [33]. Furthermore, non-contrastive methods that do not require negative examples, such as
SimSiam [5] and BYOL [11], have been developed that reach similar performance. These methods
use a stop-gradient and a predictor MLP to be able to avoid using negative views.

Though these approaches reach state-of-the-art performance, they require long training times, large
amounts of data, and large batch sizes or memory buffers [4, 11]. This is partially due to how the
learning objective treats view pairs. In (non)-contrastive methods, all random crops of an image are
encouraged to have the same representation, regardless of their position, scale, or shared information.
This can convolute the learning process, as shown in Figure 2, where different random crops of an
image depict completely dissimilar content.

Intuitively, one would expect that the similarity of the representations of different views is
related to their shared visual information. However, this is not possible in the discussed (non)-
contrastive methods, which do not utilize any information about the view sampling. To that end, we
propose a novel graded learning objective to refine contrastive and non-contrastive methods. Taking
inspiration from graded learning objectives in Visual Place Recognition (VPR) [17], we present a

Figure 1: An overview of graded similarity in contrastive learning. Contrastive (and non-contrastive)
methods pull all views of an image to the same representation (left), not taking into account that
different crops depict widely varying amounts of similarity. To that end, the graded similarity utilizes
the shared visual information as a direct measure of the distance between representations (right).
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novel learning objective that utilizes shared visual information of image crops. More specifically, we
use the overlap of views as a proxy for their shared visual information. Using this overlap, a graded
similarity measure is created, which is used in the loss function as a measure of the distance between
representations of views. Consequently, the method provides a natural distance metric between
representations, accounting for nuanced relationships between views. An overview of the method
and its difference with regular (non)-contrastive methods is shown in Figure 1. We demonstrate
the method in both contrastive and non-contrastive methods, namely SimCLR and SimSiam [4, 5].

Figure 2: An example of a false positive
view pair generated by random crop-
ping, image from ImageNet [31].

To design and test this novel learning objective, we devise
the following research questions:

1. What is a good graded similarity measure between
image views used as a measure for the distance
between their representations?

(a) What pixel-level measures are a good proxy
for view pair similarity?

(b) How must the similarity measure be con-
structed to be directly applied in an
augmentation-invariant (non)-contrastive set-
ting?

2. To what extent does incorporating a graded sim-
ilarity measure improve data utilization and effi-
ciency during pre-training?

3. How does the incorporation of graded view sim-
ilarity affect the learned image representations?

To answer these research questions, we first review relevant background and theory. Following this,
we position the proposed method in related work. Next, we describe the methods we use for the
experiments. We then conduct extensive experiments to demonstrate the method’s performance and
explore its interesting properties. Finally, we discuss the results and summarize our key findings by
answering the research questions.

2 Background

2.1 Pretext Tasks

Pretext tasks in self-supervised learning are tasks created for the model to solve. These tasks require
the model to predict transformations applied to the images. The tasks are designed to force the model
to learn the intrinsic structures and semantics of the images, leading to encoders that can be used for
various downstream tasks [21].

An example of a pretext task is rotation prediction. Here, images are rotated by 0◦, 90◦, 180◦ or
270◦ and the network predicts the angle in a multi-class prediction format [10]. Another powerful
pretext task is context prediction, where the relative position of two image patches is predicted
[8]. Other pretext tasks are colourization [34], image inpainting [25], and solving jigsaw puzzles
[23]. Visualizations of these pretext tasks are shown in Figure 3 [1]. The representations learned by
performing the pretext tasks are then used for various downstream tasks.

It is important to note that the nature of the pretext task is critical to the performance of
the representation on downstream tasks. That is because the learned representations are covariant
with the transformations used in the pretext task. Consequently, the generalizability and transferability
of the representations are affected [21]. Additionally, while the pretext tasks can give good quality
representations [1], the tasks are often handcrafted by utilizing prior domain knowledge about the
data for which it is created. This limits the generalization of the task and the representations obtained
by the task [4]. Contrastive methods have largely overcome this limitation [21], which we will
discuss next.
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Figure 3: Visualization of several pretext tasks used in self-supervised learning. These pretext tasks
allow the model to obtain meaningful representations of the images used for various downstream
tasks. Figure from [1].

2.2 Contrastive Learning

State-of-the-art self-supervised methods can come remarkably close to supervised counterparts on
downstream tasks such as classification and object detection without requiring labelled data during
training [27]. Most of these state-of-the-art self-supervised learning approaches use a contrastive
learning approach. In contrastive learning, the pretext task is to learn augmentation invariance
between different views of an image. These contrastive approaches outperform other pretext tasks
and generalize better to different datasets [21]. A popular contrastive approach is called Information
Noise Contrastive Estimation (InfoNCE) [33].

One prevalent contrastive method that utilizes the InfoNCE learning objective is SimCLR [4]. It
consists of a siamese network structure, where both sides consist of an encoder and a projector, as
shown in Figure 4. The encoder is a ResNet [12], whereas the projector is an MLP that learns a lower
dimensional representation of the encoder’s output. The input images are transformed by various
augmentations: random cropping, flipping, colour distortion, grayscale, and blurring. The learning
objective is formulated such that it pulls views of the same image together while pushing views of
other images away. The NT-Xent loss is used for this goal, a close adaptation of the InfoNCE loss.
Given two augmented views vi and vj sampled from some image x ∈ RW×H , the loss for this view
pair is defined as:

Figure 4: An overview of the Siamese architecture
used in SimCLR. The encoder is f(·) that encodes
the image, and the projector is g(·). An image x
is augmented twice by two different instances of
some set of augmentations T . The representations
of views of the same image are pulled together
while pushing away representations of other im-
ages. Figure from [4].
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LNTX = − log
exp( 1τ · ∥z̄i∥ · ∥z̄j∥)∑2N

k=1 1[k ̸=i] exp(
1
τ · ∥z̄i∥ · ∥z̄k∥)

, (1)

where zi and zj are the outputs of the projector, and τ is the temperature parameter controlling
randomness. The total loss is calculated over all possible image pairs in the batch, so (i, j) as well as
(j, i), among all other pairs. All views of other images in the batch are used as negative examples, as
seen in the sum in the denominator. SimCLR uses large batch sizes (4k+) since negative examples
are sampled within the batch.

Another popular contrastive method that utilizes the InfoNCE learning objective is Momen-
tum Contrast (MoCo) [13]. Its successor MoCoV2 [6] offers minor improvements over MoCo. This
method achieves performance similar to that of SimCLR without requiring large batches. MoCo uses
a momentum encoder in one branch of the Siamese setup, meaning the parameters of the encoder are
updated by a momentum-based moving average. More importantly, it uses a dictionary-based queue
to store negative samples, meaning no large batch sizes are needed but still utilizing much memory
[13]. Consequently, this and other contrastive approaches require much memory and long training
times for training [13, 4, 11].

2.3 Non-Contrastive Methods

Non-contrastive methods are very similar to contrastive methods, though they differ in using negative
views in the learning process. Non-contrastive methods don’t require negative examples and thus
only use different views of the same image.

An example of these techniques is Bootstrap Your Own Latent (BYOL) [11], which also
uses a Siamese network structure. The two networks are called online and target networks. The
weights of the target network are an exponential moving average of the online network (as in MoCo),
and the target network uses a stop gradient to prevent class collapse. This means that the gradient is
not backpropagated in that branch. As in SimCLR [4], it uses two strongly augmented views of an
image. A predictor MLP is placed in the online branch to reach a performance similar to that of
contrastive methods. This is an additional network that tries to predict the representation of the target
branch. The loss is the mean squared error (MSE), equal to the positive part of the contrastive loss
used in SimCLR [30]. This approach reaches similar performance without needing negative pairs and
large batch sizes.

SimSiam proposes a simpler Siamese architecture that does not require a momentum en-
coder for the target network [5]. It minimizes the negative cosine similarity, which is the same
learning objective as the MSE for L2 normalized representations, see Appendix B. They showed
that the stop-gradient operation is the only essential part of these non-contrastive methods to stop
class-collapse. However, the predictor and a deeper projector architecture are necessary to reach
state-of-the-art performance [5].

The learning objective of these methods is formulated as follows. Suppose there are two
views vi and vj sampled from some image x ∈ RW×H , which are augmented by two different
instances of the same set of augmentations. These are fed through the encoder, which outputs a
representation, fθ(vi) = zi. The predictor MLP, p(zi) in one branch, then predicts the representation
of the other branch, which has a stop-gradient applied to it. The loss is the mean squared error
between the two representations, noting that the output dimension of the predictor MLP is the same
as that of the projector.

LMSE = ∥p̄(zi)− sg(z̄j)∥22 , (2)

where z̄ denotes the L2 normalised representation: z/ ∥z∥2, and sg is the stop gradient operation. To
symmetrize the loss, both views are fed through both branches such that the final non-contrastive
(NC) loss becomes:

LNC =
1

2
∥p̄(zi)− sg(z̄j)∥22 +

1

2
∥p̄(zj)− sg(z̄i)∥22 . (3)
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Figure 5: Differences between contrastive (SimCLR) and non-contrastive (SimSiam) methods.
SimCLR utilizes negatives, while SimSiam uses an additional predictor and a stop-gradient. Figure
from [5].

The total loss is the sum over all view pairs in the batch.
A schematic view of the differences between SimCLR and SimSiam is shown in Figure 5. Though
they have a similar Siamese network structure, their difference lies in the use of negative samples.
SimCLR uses views of other images as negatives, while SimSiam uses an additional predictor MLP,
and a stop-gradient. Most notably, they utilize the same strategy for views of the same image, always
pulling them to the same representation.

3 Related Work

The discussed state-of-the-art contrastive and non-contrastive methods reach very good performance.
Nevertheless, they need long training times, large amounts of data, and many computational resources
to reach this level of performance. Therefore, there has been research into how to improve these
methods in terms of data utilization and efficiency.

The data augmentation set used in these state-of-the-art methods consists of various strong
augmentations, such as random cropping and resizing, flipping, colour distortion and blurring[4,
11]. These augmentations are essential as they reduce the mutual information between the views
fed to the model, which is essential in augmentation-invariant learning objectives [32]. In addition,
self-supervised models benefit more from augmentations than supervised methods. This makes them
essential in contrastive methods [4].

However, as proposed in Section 1, all random crops of an image are encouraged to have
the same representation. This may convolute the learning process and could lead to the model
discarding valuable information. This limitation in (non)-contrastive methods has been addressed in
many other works [26, 20, 32, 36, 35]. These either improve the cropping strategy or modify the
learning objective to overcome this limitation.
We will focus on strategies that modify the learning objective as this is the most relevant to our
research. Nevertheless, we discuss the possible impact and synergy of other cropping strategies on
our proposed method in Section 7.

One method that improves the learning objective in relation to the random crops is a method that
leverages global and local representations [35]. This method discriminates local and global crops
and proposes different relations between these crops. For instance, different local crops are pushed
away from each other, while local crops are pulled to global crops. It also uses an additional MLP
to estimate the similarity between local crops. This method reached better performance and data
efficiency in both contrastive and non-contrastive methods.
Another method called LESSL [36] uses five patches of an image, which significantly improves data
utilization. A localization task is added on top of the regular contrastive loss to better incorporate
spatial relations between views. This method also improves in terms of performance and data
efficiency.
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These methods show that addressing the limitation regarding the learning objective can sig-
nificantly improve performance. However, these methods fail to do this in an efficient and natural
manner. The methods require additional hyperparameter selection to incorporate the information,
which is both method and dataset-dependent [35, 36]. This limits the generalization of the methods
and, ultimately, the data efficiency. This is because hyperparameter grid searches must be done before
the methods can be successfully implemented. These are also hyperparameters related to balancing
the different learning objectives that must be tuned. In addition, they both require additional modules
to incorporate the information effectively, also requiring tuning and adding computational overhead.

Our proposed methodology circumvents this by directly using the shared visual information
of views in the contrastive learning objective. The overlap of the views is used as a proxy for their
shared information, which is used as a direct measure of distance between the representations. This
allows for the use of a natural measure of similarity without needing any careful balancing of learning
objectives or manual selection of when views are similar. Furthermore, this alleviates the need for
hyperparameter tuning across different methods and datasets. Finally, the graded property allows us
to capture the full continuous domain of view similarity. To our knowledge, no method has been
developed that directly modifies the contrastive learning objective with this graded information.

4 Methods

4.1 Overview

The method uses a graded similarity (GS) measure directly in the learning objective. This similarity
measure uses information about the view sampling process, namely the overlap and area of the views.
This measure is modified slightly to be used directly in the novel learning objective. An overview of
the method is shown in Figure 6.

First, random cropping and resizing is applied, from which the sampling parameters are ex-
tracted. Using this, the intersection and area of the views are calculated, which are required for the
similarity measure ψi,j . After other augmentations are applied and the views are fed into the encoder,
the modified loss is calculated. We discuss how this similarity measure is defined and how it is
incorporated into the proposed learning objectives. We consider both contrastive and non-contrastive
methods, namely SimCLR and SimSiam.

Figure 6: Overview of the pipeline used for the graded similarity for positive view pairs. The graded
similarity measure ψi,j is calculated from the sampling parameters. The symmetrized loss is adjusted
to use the graded similarity as a target for regression. We implement the graded similarity in both
contrastive and non-contrastive learning methods.
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4.2 Similarity Measure

The similarity measure used in this method is based on information about the cropping of the
views. Here, we consider uniform random cropping as the view sampling strategy, though any other
non-uniform strategy can be used.

We consider the intersection over area (IoA) of a view pair as the graded similarity mea-
sure. We show it is superior to the intersection over union (IoU) in Section 6.4. Given two views vi

and vj sampled from an image x ∈ RW×H by different instances of a random cropping distribution.
The IoA of view pair (i, j) is then defined as:

IoAi,j =
Intersection(vi,vj)

Area(vi)
(4)

This similarity measure has a few interesting properties. To begin with, it is asymmetric, meaning
both views have different values depending on their scale. This has the advantage that views only are
regressed to their intersecting content. A small view lying in a larger view has full similarity, while
that larger view only has partial similarity based on their intersecting content. This leads to a more
natural measure of distance between the representations. Additionally, non-overlapping crops that
can have dissimilar content are pushed away.

To optimally incorporate this similarity measure in current state-of-the-art (non)-contrastive
methods, a wrapper function is used to obtain the final similarity function. The primary goal of
(non)-contrastive methods is to learn augmentation invariance, which requires similar views to be
considered equally in the learning objective [4]. Here, we use a threshold of IoA, λ, that sets this
threshold for when views are considered equally in the learning objective. Below this threshold, the
similarity measure is linearly scaled from 0 to 1.

ψi,j =

{
IoAi,j

λ IoAi,j ≤ λ

1 IoAi,j > λ
. (5)

Note that the complement of this similarity measure is used as the distance measure, i.e., 1− ψi,j .
As a base value, λ = 0.5 is used such that views that share half of their visual content are considered
the same in the loss. This is motivated and elaborated on further in Section 6.4.

4.3 Loss Functions

The graded similarity is implemented in the learning objective of both contrastive and non-contrastive
methods. It is directly related to the distance between representations in the latent space while
conserving the augmentation-invariance learning objective. We will show how the learning objectives
are adapted to utilize this graded similarity. First, we consider non-contrastive methods (SimSiam)
as this is the base case that only considers positive pairs. We then expand this to SimCLR as it also
utilizes negative views.

Non-Contrastive Methods

The loss used in non-contrastive methods such as SimSiam and BYOL is the mean squared error
(MSE), given by:

D(p(zi), zj) = ∥p̄(zi)− z̄j∥22 , (6)

note this only concerns views from the same image, which have a graded similarity value. The loss
is adapted to a regression problem where we use the graded similarity as the target during learning.
We want to regress the distance between the representations, so we use 1 − ψi,j as the regression
target. In addition, the normalized Euclidean distance is used as a distance measure between the
representations with this similarity measure. This is motivated by the fact that the gradient dynamics
are similar to the baseline (see Appendix C), allowing for the use of similar hyperparameters and
optimizers in experiments. The adapted loss DGS then becomes:

DGS(zi, zj ;ψi,j) =
∥∥∥p̄(zi)− z̄j∥2 − (1− ψi,j)

∥∥2
2
. (7)
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Note that this distance function is asymmetric due to the asymmetry in the similarity distance.
Furthermore, the stop-gradient is used in the non-predictor branch, and the loss is symmetrized for
both views such that the loss becomes:

LNC−GS =
1

2
(DGS(p̄(zi), sg(zj);ψi,j) +DGS(p̄(zj), sg(zi);ψj,i)) , (8)

where LNC−GS is the non-contrastive graded-similarity loss used with the SimSiam architecture
during experiments.

Contrastive Methods

A similar approach can be taken in a contrastive setting with negatives, such as SimCLR. Here, only
the loss of the positive view pairs is modified to utilize the graded similarity. The contrastive loss
used in SimCLR is a form of the InfoNCE loss called NT-Xent [4]. The loss for view pair (i, j) is
given by:

LNTX = − log
exp( 1τ · ∥z̄i∥ · ∥z̄j∥)∑2N

k=1 1[k ̸=i] exp(
1
τ · ∥z̄i∥ · ∥z̄k∥)

, (9)

where N is the batch size, τ is a temperature parameter, and the summation is over all other views in
the batch. Note that the total loss is calculated over all pairs in the batch, (i, j) as well as (j, i). This
can be rewritten as the following, observing that the first term is the negative cosine similarity for
positive view pairs:

LNTX = −1

τ
∥z̄i∥ · ∥z̄j∥+ log

2N∑
k=1

1[k ̸=i] exp(
1

τ
· ∥z̄i∥ · ∥z̄k∥).

The first term is then modified to utilize the graded similarity similarly to non-contrastive methods,
where the only changes are the absence of the stop-gradient operation and the addition of temperature.
The full derivation can be found in Appendix D.

LC−GS(zi, zj) =
1

τ
DGS(zi, zj ;ψi,j)

+ log

2N∑
k=1

1[k ̸=i] exp(
1

τ
· ∥z̄i∥ · ∥zk∥),

(10)

where LC−GS is the contrastive graded similarity loss for view pair (i, j). Here, DGS is the
expression as defined in equation 7. The total loss is calculated for all positive pairs in the batch;
(i, j) as well as (j, i), as with the regular NT-Xent loss. This means the loss is symmetrized, as both
ψi,j and ψj,i are used.

5 Experiments

Baseline Methods We explore the implementation of the graded learning objective in two baseline
methods: SimCLR [4] and SimSiam [5], which are contrastive and non-contrastive methods,
respectively. We train the baseline and the graded similarity models in identical settings; the same
hyperparameters, random seeds, and architectures are used.

Pre-training The pre-training experiments are performed on the following datasets: CI-
FAR10, STL10 and ImageNet1000. For the CIFAR10 and STL10 pre-training, a ResNet18 [12] is
used as the encoder, pre-training for 800 epochs. When pre-training on CIFAR10, the CIFAR ResNet
version (smaller conv1 kernel size) is used. For the ImageNet1000 experiments, a ResNet50 encoder
is used pre-training for 100 epochs. For all experiments, λ = 0.5 is used. The crop ratio of the
baseline methods is used, which is [0.08, 1] of the original size for SimCLR and [0.2, 1] for SimSiam.
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Further pre-training details, such as augmentation, architecture, and hyperparameter details, are
found in Appendix A.

Transfer Learning To assess the quality and transferability of the representations, the
transfer learning performance of the pre-trained models is evaluated. The procedure consists of linear
evaluation of the ImageNet pre-trained model on a wide variety of datasets, namely CIFAR10/100
[14], Pascal VOC 2007 (for classification) [9], Aircraft [19], Stanford Cars [7], Flowers [22],
Food101 [2], and Oxford Pets [24]. The widely used linear evaluation protocol for transfer learning
is used, which consists of training a logistic regression classifier on the representations of the frozen
(ImageNet) pre-trained encoder.

Image Retrieval To further explore the generalizability of the representations trained us-
ing graded similarity, an image retrieval task is performed. The methods are tested on the revisited
Oxford5k and Paris6k datasets [28]. Here, the zero-shot performance of the ImageNet pre-trained
encoders is evaluated to assess generalizability to this new task.

5.1 Evaluation

Pre-training During pre-training, a KNN-classifier (k = 201) is used to track the quality of the
learned representations. After pre-training we perform linear-evaluation on the respective pre-training
dataset.

Linear Evaluation For linear evaluation on the pre-training dataset, we follow the linear
evaluation protocol of the baseline methods [4, 5]. This consists of training a single fully connected
layer at the output of the ResNet encoder (pool5). We train this for 90 epochs using an SGD Nesterov
optimizer. For SimCLR, we use a learning rate of 0.1 × BatchSize

256 , while for SimSiam, we use a
learning rate of 30× BatchSize

256 . We use a batch size of 256 for both. During training, we apply random
cropping, resizing, and flipping. Furthermore, we evaluate the images by resizing to 256× 256 and
center cropping to 224.

Transfer Learning Transfer learning performance is evaluated using the widely used lin-
ear evaluation protocol [4]. This consists of training a logistic regression classifier on the
representations generated by the frozen encoder. The l2 regularization parameter is chosen from
a grid search of 45 logarithmically spaced values between 10−6 and 105 on the validation set. As
transformations, the images are resized to 224 along the shorter size, after which a 224 × 224
center-crop is applied.

Image Retrieval The image retrieval task is performed on the revisited Oxford5k and Paris6k
datasets [28]. The query images are cropped following the provided bounding box and resized to
224 × 224, while the database images are only resized. Both images are normalized to ImageNet
statistics. The representations of the frozen encoder are L2 normalized, after which the retrieval task
is performed. We follow their evaluation protocol, reporting the mean average precision (mAP) and
the mean precision @ 10 (mP@10). The mAP gives a good general measure of the performance of
the encoder, while the mP@10 provides a realistic indication of ranking performance. Together, these
measures give a good overview of the performance of the pre-trained encoders at this new task.

6 Results

6.1 Pre-training & Linear Evaluation

We report a KNN (k = 201) accuracy monitor during pre-training. After training, we follow the
linear evaluation protocol on the respective datasets. We will discuss the pre-training and linear
evaluation performance of the graded similarity in both SimCLR and SimSiam.

SimCLR

The pre-training accuracy monitors (Fig. 7a and 7b) of SimCLR show slightly improved data
efficiency on CIFAR10 for the GS implementation while showing no significant difference on
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Model CIFAR10 STL10 ImageNet
Linear evaluation (%)

SimCLR 86.28 87.98 63.60
SimCLR-GS 87.19 88.19 63.53

SimSiam 88.71 88.57 65.29
SimSiam-GS 89.36 88.86 63.18

Table 1: Pre-training results on CIFAR10, STL10 and ImageNet. Top-1 accuracy is given from the
linear evaluation protocol.

STL10. As we see in the linear evaluation accuracy (Table 1), the difference between CIFAR10
and STL10 is not as large as the KNN monitor suggests. When using GS, we see a 0.91%
increase on CIFAR10 and a 0.21% increase on STL10. The difference between the KNN
accuracy monitor and the linear evaluation may be due to the expressiveness of the classifier
or the construction of latent space. As this may be the case, we focus on the linear evaluation accuracy.

The better relative performance on CIFAR may be caused by its lower resolution. Random
cropping is used to sample crops, while small views of CIFAR may lose their semantic content due
to the low resolution of the crops. Since the graded similarity is more likely to push away these
crops, training may be improved due to this. Since this is less of an issue with STL due to the higher
resolution, the performance increase may not be as large.

The ImageNet accuracy training monitor (Fig 7c) shows slightly faster training. In contrast,
the linear evaluation accuracy (Table 1) shows similar accuracy for both the GS and baseline
implementation, namely 0.07% higher for the baseline. The KNN classifier is less expressive,
especially at this large dataset, so we focus on the linear evaluation accuracy. A possible explanation
for the small relative decrease in performance on ImageNet is that ImageNet does not have square
images. This means that the distribution of the overlap of views will be different, and thus, the
regression target distribution will be different. Furthermore, the images in ImageNet are not as
object-centric, which may synergize with the graded similarity. These effects occur together, among
other interactions, which makes it difficult to estimate their exact influence on performance.

(a) CIFAR10 (b) STL10 (c) ImageNet

Figure 7: KNN (k = 201) top-1 accuracy monitor of pre-training of SimCLR with the graded
similarity implementation on CIFAR10, STL10, and ImageNet.

SimSiam

For SimSiam, we see slightly faster training on both CIFAR10 and STL10 (see Fig 8a and 8b),
though no large differences in performance are seen on the accuracy monitor during pre-training.
The GS implementation sees a linear evaluation accuracy increase of 0.65% CIFAR10 and 0.29% on
STL10. The difference between CIFAR10 and STL10 may be due to the same reason, as previously
discussed, regarding the small resolution crops losing semantic meaning.
Furthermore, the accuracy monitors on CIFAR10 and STL10 are more consistent with each other
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than those of SimCLR. This may be due to the structure of the vector space that is learned by
this pre-training method, which gives different results for a KNN classifier than SimCLR. This is
supported by the consistent increase in linear evaluation performance compared to that of SimCLR.

The ImageNet pre-training accuracy monitor of SimSiam is found in Figure 8c. We see a
slightly faster start when training with GS, though the accuracy then dips under the baseline. The
linear evaluation accuracy for the GS implementation is also significantly lower on ImageNet, namely
2.11%. This is not consistent with the results on CIFAR and STL, nor with the SimCLR results.

The different target distribution of ImageNet caused by the non-square images may have a
larger influence on the SimSiam-GS implementation. SimSiam has no negatives, leading to a
larger influence of this different distribution than for SimCLR. Furthermore, the SimSiam-GS
implementation for ImageNet uses a deeper projector and projection architecture, while that of
SimCLR does not. Though this is necessary to reach good performance and circumvent collapsing
issues [5], it may not be as essential for the GS implementation. Further considerations regarding this
are given in Section 7.

(a) CIFAR10 (b) STL10 (c) ImageNet

Figure 8: KNN (k = 201) top-1 accuracy monitor of pre-training of SimSiam with the graded
similarity implementation on CIFAR10, STL10, and ImageNet.

6.2 Transfer Learning

We evaluate transfer learning performance on various image classification datasets, of which the
results are found in Table 2. Generally, we see better transfer learning performance of SimSiam
with respect to SimCLR, which could partially be due to the better performance at ImageNet linear
evaluation. Furthermore, it may be due to the structure of the representations learned by this method.
However, as this is not the main focus of this research, we will focus on the differences between the
baseline and the GS implementations.

We generally see improved transfer learning performance for the SimCLR implementation
with graded similarity (Table 2). It improves on all datasets, except VOC2007, while performing
similarly to the baseline on ImageNet. Moreover, the relative increase is not constant over all datasets,
most notably the largest improvements are seen in the Aircraft and Cars datasets. These results
indicate that the features learned by incorporating the graded similarity generalize better to data with

Model CIFAR10 CIFAR100 VOC2007 Pets Aircraft Cars Flowers102 Food101

Linear evaluation (%)
SimCLR 83.62 60.40 67.56 66.01 40.23 27.04 68.34 60.08
SimCLR-GS 84.27 62.00 66.78 66.60 43.00 29.62 69.37 60.72

SimSiam 90.32 69.33 71.46 79.74 49.19 42.31 83.67 65.11
SimSiam-GS 89.83 70.55 70.80 79.38 50.90 44.17 81.59 65.57

Table 2: Transfer learning performance of SimCLR and SimSiam with graded similarity (GS) on
various natural image classification datasets. The performance is evaluated by the linear evaluation
protocol of the 100-epoch ImageNet pre-trained models with both methods.
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different characteristics and distributions. These features may be related to spatial structures and
relations, as we primarily see performance increases on datasets that rely on this understanding.

SimSiam sees a smaller relative increase in transfer learning performance. This is partly
due to the worse performance of SimSiam-GS on ImageNet pre-training with respect to the baseline.
Accounting for this, namely, does indicate that the representations learned by the GS objective have
slightly better transfer learning performance. The datasets at which performance is improved are
consistent with that of the SimCLR implementation, seeing the largest improvements on Aircraft and
Cars. This further confirms the hypothesis that the GS objective reinforces spatial understanding.

6.3 Image Retrieval

The results for the image retrieval task are given in Table 3. The zero-shot performance from
the frozen pre-trained encoders is evaluated. The graded similarity in SimCLR significantly
improves the retrieval performance in both Oxford and Paris. There is no remarkable difference
between the performance on the easy and medium tasks. This performance gain is larger than
the gain in transfer learning performance on classification tasks. This further indicates that the
graded similarity learns a better understanding of spatial structures and relations, which are
especially important in retrieval tasks [28]. Moreover, the GS may also learn better viewpoint and
occlusion invariant features. These are also important invariances that are tested in the medium re-
trieval task (Table 3) [28]. Nevertheless, further investigation must be done to confirm these properties.

The SimSiam encoder with graded similarity does not improve on the Oxford dataset while
slightly improving on the Paris dataset. We see a slight relative improvement in retrieval performance
when taking the linear evaluation accuracy in Table 1 as a baseline.

At this image retrieval task, we see that the graded similarity does not provide the same
level of improvement for SimSiam as it does for SimCLR. This difference may be due to the inherent
differences between non-contrastive and contrastive methods. Non-contrastive methods already focus
on intra-image content and thus possibly capture these spatial relationships within images better.
Meanwhile, contrastive methods focus more on contrasting views. This is also motivated by the
better baseline image retrieval and transfer learning performance. Therefore, contrastive methods
may benefit more from the additional information about spatial relationships. Nevertheless, we
foresee that the graded similarity could see better results with different architectures or optimization.
This is discussed in more detail in Section 7.2.

Model Oxford5k [E] Oxford5k [M] Paris6k [E] Paris6k [M]

mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

zero-shot
SimCLR 8.85 16.03 7.66 17.86 19.71 62.00 16.60 67.86
SimCLR-GS 11.11 18.24 8.97 19.43 27.15 70.29 20.28 73.29

SimSiam 15.78 20.15 12.42 23.00 43.07 81.57 30.03 84.57
SimSiam-GS 14.32 20.59 11.83 23.00 44.01 81.86 31.33 85.14

Table 3: Zero-shot image retrieval performance of the ImageNet pre-trained models on the revisited-
Oxford5k and Paris6k datasets [28]. The easy [E] and medium [M] tasks are evaluated. The mean
average precision (mAP) and mean precision@10 (mP@10) are reported.

6.4 Ablation Studies

As shown by transfer learning and image retrieval performance, the graded similarity can improve
the transferability of the learned representations to different tasks and datasets. However, the effects
are nuanced, which calls for a more concrete understanding of the properties of the graded similarity.
To do this, various ablation studies are done that attempt to highlight different aspects of the graded
similarity. We will consider other similarity measures, the role of λ, the removal of augmentations,
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and the effect of batch size. If not specified differently, we train SimCLR with the graded similarity
for 200 epochs on CIFAR-10 for efficiency reasons, with hyperparameters as specified in Appendix
A.

Different Similarity Measures

Different similarity measures were tested to understand better what is critical to the workings of the
similarity measure. An example of another interesting measure is the intersection over union, where
the union is the area of the combined patches. Note that this is a symmetric measure with the same
value for both views. This experiment is done with the implementation of the graded similarity in
SimCLR.

In Figure 9, the pre-training KNN accuracy monitor of both similarity measures, including
the baseline, is reported. The intersection over union has slightly worse performance, though
slightly improving over baseline performance. Hence, we see that the area of the individual views is
important to the similarity measure.

This behaviour may have several reasons. First, using the union instead of the area gives a
significantly different target distribution in the regression problem that may not be as conducive to
learning. Secondly, several unique properties of the similarity measure are lost when using the IoU.
For example, when a smaller crop lies in a larger crop, the smaller crop has full similarity, while the
larger crop only has their overlap as similarity. This interesting property is lost when using the IoU,
which would not consider the small crop to have full similarity. This property is also demonstrated
in the method using local and global crops [35]. This method also stresses the importance of this
property. As such, we see that the asymmetric properties of the IoA are important to the workings of
the similarity measure.

Figure 9: SimCLR baseline and with GS with IoA and IoU as similarity measures. KNN (k = 201)
accuracy is reported.

Optimal Value of λ

The value of λ in the similarity measure is critical to its performance. To empirically study the
behaviour of the threshold, we perform a grid search and evaluate the model for the values of λ. Here,
λ ∈ [0, 1] is tested with an interval of 0.1.

We report the accuracy for different values of λ (see Fig. 10). The partially non-linear
character of the trend may be caused by the fact that the target (IoA) distribution is non-uniform.
This means that some targets have more pairs than others, which affects the performance differently.
Furthermore, when λ is raised, the performance also increases, though decreasing after λ = 0.5. A
possible explanation is that in (non)-contrastive self-supervised learning, the heavy augmentations
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require treating similar views as hard positives in the loss function. The value of λ allows for
the balancing of the two learning objectives, thus showcasing improved performance at different
downstream tasks with respect to the regular contrastive task. Therefore, incorporating the graded
similarity can enhance the efficiency and performance in contrastive methods, though the heavy
augmentations require close views to be considered equally.

Figure 10: Performance of SimCLR with graded similarity for λ ∈ [0, 1] after pre-training for 200
epochs on CIFAR10. KNN (k=201) top-1 accuracy is reported.

Removing Augmentations

Augmentations are essential in (non)-contrastive methods [4, 16]. In the following study, we remove
many augmentations that are essential for reaching good performance to show the effectiveness of
the graded similarity. To do this, both SimCLR and SimSiam were trained on CIFAR10 with only
random cropping and flipping.

The performance for SimSiam is shown in Figure 11a. The near collapse at the start is
avoided when using graded similarity. This means that the additional regularization added by the
graded similarity ensures training stability even when augmentations are removed.

(a) SimSiam (b) SimCLR

Figure 11: Performance of SimCLR and SimSiam with only random cropping and flipping on
CIFAR10, trained for 200 epochs with settings as in Appendix A.
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The results for SimCLR are shown in Figure 11b. We see that SimCLR is not susceptible
to class collapse, though including the graded similarity slightly improves the performance. This
performance increase is similar to that when using augmentations. Thus, this suggests that in the
contrastive setting, there is no significant correlation between the augmentations and the graded
similarity. However, a more robust study must be done to verify this.

Thus, we can conclude that in non-contrastive settings, the graded similarity can provide
valuable regularization to prevent near-collapse, which is otherwise provided by augmentations. It
is important to note that augmentations are not the only factor influencing possible collapse; the
stop-gradient and architectural choices also play an essential role. However, including the graded
similarity may alleviate the need for deep architectures in the projector and predictor. Moreover, in a
contrastive setting with SimCLR, the graded similarity slightly improves over the baseline. This
performance increase is similar to when using augmentations, suggesting no significant correlation
between augmentations and the graded similarity.

Batch Size

SimCLR generally requires large batch sizes to function well, as the sampling of negatives happens
within the batch [4]. In this ablation study, we train SimCLR with and without the GS. Here, we
pre-train for 800 epochs as different batch sizes influence training dynamics, thus requiring longer
training for accurate results. Note we don’t focus on SimSiam as it is more robust to batch size
differences and does not require large batch sizes [5].

The top-1 KNN-accuracy for both the baseline and the GS is shown in Figure 12. Gener-
ally, there is a trend that the GS performs relatively better at lower batch sizes than the baseline. For
both, the performance deteriorates at larger batch sizes, which is specific to CIFAR-10 [4]. The
better performance of GS at smaller batch sizes suggests the graded similarity provides information
otherwise provided by more negatives within the batch. We also see better stability over different
batch sizes, indicating robustness to different training settings.

However, it should be noted that the batch size behaviour is different for each dataset, and
the results are dependent on the hyperparameters and optimizer. Furthermore, the KNN-accuracy can
give slightly different results than linear evaluation. In an ideal setting, the experiment is run on
ImageNet while averaging over different sets of hyperparameters.

Figure 12: SimCLR trained with and with-
out graded similarity with various batch
sizes on CIFAR10. KNN (k = 201) top-1
accuracy is reported. Note the batch size
scales exponentially.
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7 Discussion

7.1 Limitations of Experiments

Computational Resources

For a more thorough analysis of the graded similarity, a full 1000-epoch pre-training on ImageNet
would be preferably done. Unfortunately, a 100-epoch pre-training was done due to time and
computational resources limitations. Though this limits some results, 100-epoch ImageNet
pre-training was done in many of the experiments in the original methods[4, 5], and we have
shown that no significant deviations arise at long training times on CIFAR10 and STL10. The only
significant change is the lower batch size on SimCLR in ImageNet. However, we have also shown
that the performance of using graded similarity does not relatively deviate from the baseline on
CIFAR10 and STL10 when using larger batch sizes. Furthermore, we report exact differences with
the referenced baselines in Appendix E. Consequently, we may conclude that these are interesting
directions for further research, but they do not significantly affect the findings of these experiments.

The ablation studies were performed on CIFAR10, though these were ideally done on Ima-
geNet. Again, this is due to limitations in computational resources and time, as some ablations
required many pre-training iterations. We know the difference between performance on ImageNet
and CIFAR10, so this knowledge can be partly extrapolated to the ablation studies. However, we
cannot say that all results from the ablations generalize to other datasets. Especially studies that rely
on dataset properties, such as batch size and the value of λ, may see different outcomes.

Statistical Significance

This research used identical settings for training and evaluation for all experiments, including identical
seeding in all randomizers. However, in an ideal case, multiple runs with different seeds were done
for all experiments, especially pre-training. Moreover, different sets of hyperparameters would be
especially helpful in ablation studies to confirm the findings further. This would lead to stronger
statements and statistical bandwidths for the experimental results, though we hope to have mitigated
this as much as possible by the measures mentioned earlier.

7.2 Further Research

This research has shown that implementing graded similarity improves the transferability of the
pre-trained encoder and can improve data utilization. Though we provide a thorough evaluation of the
novel methodology, there remain many interesting directions in which to explore this concept further.

Downstream Tasks

In this research, we have considered two important downstream tasks: classification and image
retrieval. As self-supervised learning methods aim to learn a strong general encoder, it is vital to
benchmark it on various downstream tasks. We have seen that incorporating the graded similarity
can significantly improve the image retrieval performance, suggesting the learning objective better
captures spatial structures and relations. Therefore, it is an interesting research direction to further
explore other downstream tasks, such as object detection and semantic segmentation. These tasks
may benefit from the features learned by the graded similarity. Moreover, non-object-centric datasets,
such as OpenImages [15] and CoCo [18] that better represent real-world uncurated data, could be
used for pre-training. The graded similarity may transfer better to such datasets than binary learning
objectives, as it is influenced less by noisy images.

Graded Similarity

The implementation of the novel graded similarity measure in contrastive learning objectives can
improve data efficiency and transferability of the encoder, but there remain further interesting
directions to explore. First, the method was tested with the same hyperparameters of the baseline
methods for fair testing purposes. However, the gradient of the GS-loss is different (see Appendix C),
and there is additional regularization. This means there is probably a different set of hyperparameters
that performs better with this method. Furthermore, we saw slightly better performance at smaller

17



batch sizes in SimCLR on CIFAR10. Hence, it would be interesting to train without a large batch
size optimizer like LARS. Regular SGD may work well or better at small batch sizes, removing the
need for large ones.

In addition, the architectures were not changed for the GS implementation. Especially for
SimSiam, a less deep projection and prediction layer may lead to better results. This deep
architecture is necessary to avoid collapse and reach good performance [5]. However, we show better
regularization and stability when removing augmentation. Therefore, a downscale of the projector
and predictor architectures may benefit training with the graded similarity.

Furthermore, though the data efficiency is slightly improved on some datasets, there may
be further potential that can be exploited by a different cropping strategy, such as object-aware
cropping [20] or a multi-crop strategy [36]. These cropping strategies may synergize better with the
graded similarity with respect to regular contrastive methods. Multi-crop strategies decrease the
performance of these contrastive methods in baseline settings [3]. However, as the asymmetric graded
similarity provides additional information about view relations during training, it may synergize
well with these multi-crop strategies. This may also encourage further exploration of a different
construction of the loss function or different crop ratios.

Finally, it would be interesting to incorporate the graded similarity in other InfoNCE-based
methods, such as MoCoV2, or utilize it with transformer architectures [3]. Implementing these
different methods may further the understanding of the graded similarity learning objective and
provide exciting results.

8 Conclusions

In this research, we have proposed a novel learning objective for (non)-contrastive learning methods
that utilizes a graded similarity measure based on shared visual information. These methods consider
all views from the same image equally, even though the views may have widely varying amounts of
similarity. To address this, the overlap of views was used as a direct measure of distance between
their representations. The method has been demonstrated in both contrastive and non-contrastive
methods, namely SimCLR and SimSiam. To summarize our key findings, we answer the research
questions as proposed in Section 1.

1. What is a good graded similarity measure between image views used as a measure
for the distance between their representations?
We have considered the intersection over area (IoA) and the intersection over union (IoU) as
similarity measures for view pairs. Our results show the IoA is superior to the IoU as a similarity
measure, which is caused by the interesting asymmetric properties of the IoA.
Furthermore, to optimally incorporate the graded similarity with heavy augmentations in (non)-
contrastive methods, we have proposed a threshold at which views are considered equivalent. The
inclusion of this threshold allows for significant performance increases. We empirically show that the
best performance is reached when views that share at least half of their information are pulled to the
same representation.

2. To what extent does incorporating a graded similarity measure improve data uti-
lization and efficiency during pre-training?
Our method slightly improves data efficiency and performance on lower-resolution datasets such as
CIFAR10 and STL10 for both methods. The implementation in SimCLR also improves training
efficiency on ImageNet, but this is not the case for SimSiam. This may be due to different target
distributions for ImageNet or network architectures present in SimSiam. Furthermore, including the
graded similarity provides interesting regularization properties in SimSiam. SimSiam can avoid
near-collapse when removing augmentations when using the graded similarity objective.
Finally, our results suggest that SimCLR with graded similarity does not require as large batch sizes.
This reduces memory and computational power requirements since the method better utilizes the data
during training. We anticipate that an improved cropping strategy, such as object-aware cropping or a
multi-view cropping strategy, may further aid the data utilization of the method due to synergy with
the graded similarity.
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3. How does the incorporation of graded view similarity affect the learned image rep-
resentations?
The performance on the respective pre-training dataset does not change significantly when using the
graded similarity. More importantly, the representations obtained by the graded similarity objective
transfer better to other datasets, as shown by slightly improved transfer learning performance. This
is further emphasized by a significant performance increase at an unseen retrieval task, increasing
performance up to 1.4×. These results suggest a better understanding of spatial structures and
relations. We foresee that a larger variety of downstream tasks may further highlight the effectiveness
of the graded similarity in enhancing the transferability of the learned image representations.
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A Pre-Training Details

We use PyTorch for the implementation of the models. For all randomized we use seed 5. We
pre-train on a single NVIDIA L40 GPU.

Augmentations
We follow the augmentations as reported in the baseline papers [4, 5].

• Random cropping, resizing and flipping. For SimCLR we use a crop ratio of [0.08, 1],
while for SimSiam we use [0.2, 1] of the original size. After this, resizing is performed to
[3/4, 4/3] of the original aspect ratio. Random flipping is performed with probability 0.5.

• Color distortion. We perform color jittering and color dropping. For SimCLR, color
jittering is done with probability 0.8, with strength 0.8 for brightness, contrast and saturation,
while 0.2 strength is used for hue. Color dropping is used with probability 0.2. SimSiam
uses the same settings, but half strength for color jittering.

• Blurring. Finally, blurring is done with σ ∈ [0.1, 2.0] with probability 0.2. Blurring is not
done for pre-training on CIFAR10.

The baseline hyperparameters and architectures for both methods are used, which we will now detail.

SimCLR For all datasets, a 2 layer projection head is used with hidden dimension 512 and
output dimension 128. We use a temperature of 0.5, which is optimal for lower batch size and shorter
(< 300 epoch) pre-training [4]. For ImageNet pre-training the following settings hold. A LARS
optimizer with learning rate 0.3 and weight decay 10−6 is used with a batch size of 256. The learning
rate is scaled by a cosine decay scheduler with warm-up of 10 epochs. We pre-train for 100 epochs.
For CIFAR10 and STL-10 pre-training we use a 1024 batch size and pre-train for 800 epochs.

SimSiam For ImageNet pre-training, a 3-layer projection head is used in the architecture,
with hidden dimension 2048. The prediction MLP has 2 layers with hidden dimension 512. In
addition, a SGD optimizer with learning rate 0.05, weight decay 10−4 and momentum 0.9 is used.
For CIFAR10 and STL10 pre-training, a 2 layer projection head with dimension 2048 is used, while
the predictor remains the same. Furthermore, a lower learning rate of 0.03 and higher weight decay
of 5 · 10−4 is used. Pre-training duration for the different datasets is the same as for SimCLR. We
use a batch size of 256 for all experiments as this gives optimal performance [5]. Finally, a cosine
decay without warm-up learning rate scheduler is used for all experiments.

B Relation Between MSE and Cosine Similarity

Let x,y ∈ Rn, and ∥·∥2 be the L2 norm. Then x̄ = x
∥x∥2

such that ∥x̄∥22 = 1. Rewriting the mean
squared error (MSE):

MSE = ∥x̄− ȳ∥22
= ∥x̄∥22 + ∥ȳ∥22 − 2 (x̄ · ȳ)
= 2− 2 (x̄ · ȳ)
= 2− 2 cos(θ)

= 2 · (1− cos(θ))

Gives the negative cosine similarity, apart from a constant and offset. Therefore, minimizing the MSE
for L2 normalized vectors is the same learning objective as minimizing the negative cosine similarity.

C Gradient of DGS

DGS(zi, zj ;ψi,j) =
∥∥∥z̄i − z̄j∥2 − (1− ψi,j)

∥∥2
2

We define d = ∥p̄(zi)− z̄j∥2, such that:

DGS = ∥d− (1− ψi,j)∥22
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We then compute the gradient as:
∂DGS

∂(zi)
=
∂DGS

∂d
· ∂d
∂z̄i

= 2 (d− (1− ψi,j)) ·
z̄i − z̄j

∥z̄i − z̄j∥2
= 2

(
∥z̄i − z̄j∥2 − (1− ψi,j)

)
· z̄i − z̄j
∥z̄i − z̄j∥2

Which differs from the gradient of the regular MSE:
∂LMSE

∂(zi)
= 2 (z̄i − z̄j)

The difference in the gradient is then:
∂LMSE

∂zi
− ∂DGS

∂(zi)
= 2 (1− ψi,j) ·

z̄i − z̄j
∥z̄i − z̄j∥2

This means that the direction of the gradient is corrected by a factor that is determined by their
similarity measure. Note this correction is proportional to the angle between the representations.
When ψi,j = 1 (overlapping views, depending on λ), the gradient is that of the regular MSE. With
this construction of DGS , we conserve the magnitude of the gradient, making it possible to compare
it with the baseline under identical hyperparameter settings.

D Derivation of LC−GS

The contrastive loss used in contrastive methods such as SimCLR is a form of the InfoNCE loss
called NT-Xent [4], defined as:

LNTX = − log
exp( 1τ · ∥z̄i∥ · ∥z̄j∥)∑2N

k=1 1[k ̸=i] exp(
1
τ · ∥z̄i∥ · ∥z̄k∥)

WhereN is the batch size, τ is a temperature parameter and the summation is over different augmented
views of images in the batch. This can be rewritten as the following, observing that the first term is
the negative cosine similarity:

LNTX = −1

τ
· ∥z̄i∥ · ∥z̄j∥+ log

2N∑
k=1

1[k ̸=i] exp(
1

τ
· ∥z̄i∥ · ∥z̄k∥)

We can then rewrite the negative cosine similarity as the mean squared error. This does not change
the learning objective, see Appendix B, but allows the problem to be changed into regression with
the similarity measure as a target. Again using the notation z̄ = z/ ∥z∥2 for the L2 normalised
representation, we obtain:

L =
1

τ

(
∥z̄i − z̄j∥22 − 1

)
+ log

2N∑
k=1

1[k ̸=i] exp(
1

τ
· ∥z̄i∥ · ∥z̄k∥)

We want to minimize the MSE between the normalized euclidean distance between the representations
and the similarity distance. Doing this and removing constant terms as they do not alter the learning
objective, we obtain:

LC−GS =
1

τ

(∥∥∥z̄i − z̄j∥2 − (1− ψi,j)
∥∥2
2

)
+ log

2N∑
k=1

1[k ̸=i] exp(
zi · zk

τ · ∥zi∥ · ∥zk∥
)

After substituting the expression with DGS :

LC−GS(zi, zj) =
1

τ
DGS(zi, zj ;ψi,j)

+ log

2N∑
k=1

1[k ̸=i] exp(
1

τ
· ∥z̄i∥ · ∥zk∥)

It is important to note that the loss is calculated over all positive pairs; (i, j) as well as (j, i).
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E Comparison With State-of-the-Art

As we have slightly different pre-training settings and durations, we can compare our results to that
of state-of-the-art referenced in the papers [4, 5].
Though we train the baseline SimCLR with a lower batch size of 256, we outperform their results
with 0.6%, even when they use improved learning rate scaling, which we do not use. On transfer
learning, we get slightly lower performance. This averages about 10%, but this depends on the dataset.
This can be accounted to the lower pre-training duration, where they train 10× as long.
Our SimSiam implementation reaches slightly lower linear evaluation accuracy, namely a decrease
of 2.8%. This may be due to the linear evaluation protocol we use, as they mention the SGD with
lower batch size gives slightly lower accuracy [5]. Furthermore, it may be due to differences in
augmentations used during linear evaluation, which they do not report. Consequently, we used the
same as in SimCLR [4]. They do not report transfer learning classification performance, so this
cannot be compared.
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