
MSc Computer Science
Final Project

Test Vector Leakage
Assessment on Number
Theoretic Transform

Yuezhou Lyu

Supervisor: dr.ing. Florian Hahn

August, 2024

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Contents

1 Introduction 3

2 Background 5
2.1 Side-Channel Analysis . 5

2.1.1 Power-Based Side-Channel Analysis 6
2.1.2 Simple Power Analysis . 7
2.1.3 Differential Power Analysis . 10
2.1.4 Test Vector Leakage Assessment . 11

2.2 Post-Quantum Cryptography . 11
2.2.1 Quantum Computers . 12
2.2.2 Lattices . 12
2.2.3 Lattice-Based Cryptography . 12
2.2.4 Dilithium . 13

2.3 Number Theoretic Transform . 14
2.3.1 Fourier Transform . 14
2.3.2 Discrete Fourier Transform . 15
2.3.3 Fast Fourier Transform . 15
2.3.4 Polynomial Multiplication and Number Theoretic Transform 16
2.3.5 Real-World Implementation . 18

2.4 Related Work . 19
2.4.1 Side-Channel Attacks on NTT . 19
2.4.2 Implementations of NTT . 19
2.4.3 Side-Channel Analysis and TVLA 19

3 Plain NTT 20
3.1 Characterization of Dilithium NTT Implementation 20
3.2 Plain NTT . 22
3.3 HW Model . 22

3.3.1 Test Vector Generation . 22
3.3.2 TVLA for HW model . 24

3.4 HD Model . 26
3.4.1 Test Vector Generation . 26
3.4.2 TVLA for HD Model . 28
3.4.3 Performance Evaluation . 28

3.5 ID Model . 29

2

4 GKS20 NTT 30
4.1 Differences between GKS20 and Plain NTT 30
4.2 Measurement Setup . 33
4.3 Trace Example . 35
4.4 HW Model . 35

4.4.1 Test Vector Generation . 35
4.4.2 TVLA for HW Model . 36
4.4.3 Experiment Result . 36

4.5 HD Model . 38
4.5.1 Test Vector Generation . 38
4.5.2 TVLA for HD Model . 41
4.5.3 Experiment Result . 41

4.6 ID Model . 43
4.6.1 Experiment Result . 43

5 GKS20 NTT Butterfly 46
5.1 Structure of a GKS20 NTT Butterfly . 46
5.2 ID Model . 46

5.2.1 Test Vector Generation . 47
5.2.2 TVLA for ID Model . 47
5.2.3 Experiment Result . 48

5.3 Correlation Analysis . 55
5.3.1 Experiment Result . 56

6 Template Attack 64
6.1 Secret Keys in Dilithium . 64
6.2 Template Building . 64

6.2.1 Experiment Result . 65

7 Conclusion 69

A Test Vectors for GKS20 NTT 76
A.1 Trace Example . 76
A.2 HW model . 77

A.2.1 Fixed-vs-Random . 77
A.2.2 Fixed-vs-Fixed . 78

A.3 HD model . 78
A.3.1 Fixed-vs-Random . 78
A.3.2 Fixed-vs-Fixed . 79

A.4 ID model . 79
A.4.1 Fixed-vs-Random . 79
A.4.2 Fixed-vs-Fixed . 79

B Test Vectors for GKS20 NTT Butterfly 80
B.1 Structure of GKS20 NTT Butterfly . 80
B.2 ID Model . 80

B.2.1 Experiment 1 . 80
B.2.2 Experiment 2 . 80
B.2.3 Experiment 3 . 81
B.2.4 Experiment 4 . 81

3

B.2.5 Experiment 5 . 81

4

Abstract

We propose algorithms for generating test vectors in power-based side-channel Test Vec-
tor Leakage Assessment (TVLA) of the Number Theoretic Transform (NTT) algorithm
in CRYSTALS-Dilithium, a post-quantum signature algorithm selected by NIST for stan-
dardization. In particular, we focus on two implementations: plain NTT and GKS20 NTT.
Our algorithms encompass all three power models: Hamming Weight (HW), Hamming Dis-
tance (HD), and Identity (ID). We validate our test vectors on a Piñata board with ARM
Cortex-M4F core. We are able to detect various leakages from the Piñata board with
t-values ranging from 6.57 to 3174.96. In addition, we characterize leakages from NTT
butterflies with correlation analysis, and conclude that most of the leakages come from
memory operations. We therefore close the gap for a lack of practical leakage assessment
for Dilithium NTT.

We also investigate how much such leakages can be utilized for launching a template
attack against the Dilithium secret key s1. Our result shows a 68.45% reduction of entropy
in the best case scenario for s1, even with a single-trace attack.

Keywords: post-quantum cryptography, side-channel analysis, leakage assessment, num-
ber theoretic transform, embedded systems security

Acknowledgements

First I would like to thank my academic advisors Dr. Florian Hahn and Dr. Tihanyi
Norbert, and industrial advisors Dr. Barış Ege and Mikheil Kushashvili, for their
guidance, encouragement, sharing of knowledge and meticulous feedback. I would also
thank Dr. Roland van Rijswijk-Deij for being members of my graduation committee.
Furthermore I would thank EIT Digital Master School for providing me with the
opportunity and support for finishing the program. Last but not least I would thank my
parents, grandparents, and friends, for their support and love ad infinitum.

1

List of Notations

Z,Q,R,C the set of integers, rational numbers, real numbers, complex numbers
[a, b] the set of integers {x ∈ Z|a ≤ x ≤ b}
q the prime modulus of Dilithium, set at q = 8380417
Zq the ring of integers modulo q, also a finite field since q is prime
s1 the s1 secret key of Dilithium
ψ a 512-th root of unity in the field Zq, set at ψ = 1753
α, β inputs of an NTT butterfly
ζ coefficient multiplied to β in a butterfly, aka “twiddle constant”
P probability measure
L,B a lattice and basis of a lattice
F ,F−1 Fourier transform and inverse Fourier transform on R

DFT ,DFT −1 discrete Fourier transform and inverse discrete Fourier transform
f ∗ g convolution of functions f and g
T t-value as result of Welch’s t-test
Gen key generation algorithm for Dilithium
Sign signing algorithm for Dilithium

NTT,NTT−1 number theoretic transformation and inverse number theoretic transform for Dilithium
S0, S1, . . . , S8 input and 8 stages of plain NTT

HW Hamming weight of a number
HD Hamming distance of a number
⊕ XOR operation

2

Chapter 1

Introduction

Side-channel analysis exploits information leakage from a cryptographic system, usually
implemented on a physical device [25]. While cryptanalysis attacks a cipher by inspecting
the algorithm itself, side-channel analysis utilizes auxiliary information such as power
consumption, electromagnetic emanations, timing, and acoustic data during the execution
of the algorithm [38]. Leakage assessment determines if a specific implementation of a
cipher is prone to side-channel analysis [44]. In other words, leakage assessment detects
the cases when the device is leaking sensitive cryptographic information.
Classical cryptographic hard problems such as factorization and discrete logarithm are
vulnerable to quantum computers because of the Shor’s algorithm. Post-Quantum
Cryptography (PQC) aims to provide security when quantum computers become a threat
to classical cryptographic algorithms [7]. PQC is an umbrella term for many ciphers
based on different types of cryptographic primitives, with lattice-based cryptography one
of the most popular one currently. During execution, lattice-based ciphers are required to
perform a high volume of polynomial multiplication, potentially being computationally
expensive if implemented naively. Number Theoretic Transform (NTT) is an algorithm
for fast computation of polynomial multiplication. Most lattice-based ciphers include
NTT as a crucial component for efficiency [43].
Several side-channel attacks have been proposed to target the NTT [36][35][11]. However,
no prior research has been done on practically assessing the leakage of NTT. Our research
will fill this gap and investigate how far the Test Vector Leakage Assessment (TVLA)
methodology could be used in leakage assessment for NTT. TVLA is usually the first step
assessing a novel cryptographic device, by comparing the power consumption of many
carefully crafted inputs (test vectors) fed into the device. Our work will focus two
variations of NTT implementation, propose test vector generation algorithms for both
variations, and assess the effectiveness of test vectors on real-world devices. Our main
contributions are the algorithms proposed in Chapter 3, 4, and 5, and the experiment
done in Chapter 4, 5, and 6. Intuitively, our algorithms generate randomized
intermediate states and utilize the bijectivity of plain NTT to find the test vectors. After
conducting experiment on the Piñata board, which is known to be leaky, we are able to
confirm its leakages with our test vectors. With a threshold of |T| > 4.5, our TVLA
t-values ranging from |T| = 6.57 to |T| = 3174.96, depending on which part of the NTT is
tested against. Correlation analysis shows that most of the leakages come from memory
operations. Template attack built on such leakages show on average a 1.15% to 68.45%
reduction of entropy for s1.
An outline of our work is given here

Chapter 2 contains background information about side-channel analysis, post-quantum

3

cryptography, number theoretic transform, and a summary of prior research done
on these topics.

Chapter 3 contains a purely theoretical treatment of the “textbook” version of NTT,
namely plain NTT. Plain NTT is not implemented in real-world devices, but serves
as a foundation for our further discussion of real-world implementations.

Chapter 4 investigates the leakage of a popular implementation of NTT on ARM
Cortex-M4 microcontrollers, namely GKS20 NTT. We will identify the differences
between GKS20 NTT and the plain NTT discussed in Chapter 3. Algorithms
proposed in Chapter 3 are then adapted for this particular implementation. We
then conduct real-world experiment, showing per-stage leakages of the Piñata
board.

Chapter 5 goes one step further from the experiment results of Chapter 4 by generating
test vectors not for a whole stage of NTT, but for a few NTT butterflies. We then
conduct experiment for these test vectors, showing per-butterfly leakages of the
Piñata board. Test vectors in this chapter can be combined with the test vectors in
Chapter 4, to reveal a more delicate and comprehensive leakage profile of a certain
device. Correlation analysis is then performed to match the leakages with processor
instructions and power models.

Chapter 6 investigates how much of the leakages identified in Chapter 4 and 5 can be
used to launch a template attack.

Riscure is a leading security lab specialized in side-channel analysis and fault injection.
Riscure designs Inspector, a commercial-grade current probe for power-based side-channel
analysis. Piñata board is a tutorial board with ARM Cortex-M4F processor, produced by
Riscure for side-channel analysis training. All of our research is conducted at Riscure
during the author’s stay as a thesis-based intern. We utilize Riscure devices (current
probe, Piñata, etc.) and Riscure software (Inspector SCA) for hardware testing.

4

Chapter 2

Background

2.1 Side-Channel Analysis

Most information of side-channel analysis, especially power-based side-channel analysis, is
from “The Blue Book” [25].
A cryptographic device is a physical hardware with some cryptographic functionality
implemented in it and usually stores a cryptographic key. Typical cryptographic devices
include USB keys, smart cards, hardware security modules, and various
Field-Programmable Gate Array (FPGA) and Application-Specific Integrated Circuit
(ASIC) implementations of cryptographic protocols. Cryptographic devices are built with
logic cells, where logic cells are the smallest logic building blocks of a circuit.
One goal of attacking a cryptographic device is to retrieve the key stored in the device.
Attacks can be classified in two different ways: as passive or active, and as invasive,
semi-invasive, or non-invasive. Passive attacks are performed when the cryptographic
device is operated as normal, within its specification. Active attacks are performed when
the device is forced to behave abnormally by manipulating the device itself, the input of
the device, or the environment. Invasive attack sets no limits to what can be done to the
device. In invasive attack, we start with depackaging and then access different electronic
components using a probing station. In semi-invasive attack, the device is depackaged,
but no direct electrical contact to a chip is ever made. In non-invasive attack, the device
is attacked “as is”, without leaving evidence for attacking.
The two ways of classification thus lead to six types of actual attacks. In invasive passive
attacks, there is a probing station connected to the electronic components directly, but
the probing station is only used to observe signals. For example, we can probe the signals
fired on a bus. In invasive active attacks, signals or even physical components in the
device are manually changed. In semi-invasive passive attacks, the attacker reads the
content of memory cells without probing the circuit. Semi-invasive active attacks are
essentially fault injection with depackaging, using X-rays, electromagnetic fields, lasers,
etc. for example. Non-invasive passive attacks are also known as side-channel analysis,
including timing-based, power-based, acoustic-based, etc. Non-invasive active attacks are
fault injection without depackaging, for example, changing temperature of the
environment, or injecting clock or power glitches.
Non-invasive attack is relatively easy and stealthy to setup because no depackaging or
physical modification is required. Passive attack is relatively cheap to launch compared
to invasive attacks because current probe is generally cheaper than probing station or
fault injection tools. Thus the combination of the two requires the attacker to attack a
device with the least amount of efforts and maximum stealthiness. Therefore we will

5

focus on non-invasive passive attack, and specifically power-based side-channel analysis.

2.1.1 Power-Based Side-Channel Analysis

As described above, power-based side-channel analysis is a non-invasive passive attack. It
utilizes the information leaked from power consumption to infer knowledge about the
cryptographic device that is otherwise unavailable. Power-based side-channel analysis
contains

Simple Power Analysis (SPA) Interpreting power consumption directly to infer the
key.

Differential Power Analysis (DPA) Statistically analyzing large amount of power
consumption to infer the key.

Test Vector Leakage Assessment (TVLA) Instead of inferring the key, assess if the
device leaks any side-channel information.

Recall that cryptographic devices are built from logic cells, we may analyze its power
consumption in terms of these cells. Within a device, power consumption can be
classified into two parts: static and dynamic. Usually static power consumption is
negligible compared to dynamic power consumption.

• Static: power consumption when there is no switching activity in a cell.

• Dynamic: power consumption when an internal or output signal switches. Usually,
power consumption from internal signal switch is negligible compared to output
signal switch. Moreover, consumption is data-dependent: for one bit, switching for
0→ 0 and 1→ 1 are very low, essentially consuming only static power.
Consumption for 0→ 1 and 1→ 0 are much larger.

During actual practice, we usually only care about the power consumption caused by
flipping of the output signals because it is usually the dominant factor.
A power model is a mathematical abstraction of a device’s power consumption. Based on
the above discussion about power consumption, we introduce three power models. The
Hamming Distance (HD) model conjectures that the power consumption is correlated to
the Hamming distance of a register (or memory location) before and after computing a
certain intermediate value. For example, for a 32-bit register that changed from
0xdeadbeef to 0xfeedf00d, the Hamming distance between the two states is precisely
how many bits are flipped. In this case, the Hamming distance is 10. Hamming distance
model is likely to perform better with hardware implementation of a cryptographic
algorithm.
Another power model is the Hamming Weight (HW) model, which conjectures that
power consumption is correlated to the Hamming weight of an intermediate value. For
example, if a 32-bit register that changed from 0xdeadbeef to 0xfeedf00d, the Hamming
weight model would predict a power consumption change that is proportional to 24→ 20.
The Hamming weight model is cruder than the Hamming distance model, but is a good
choice when we do not have white-box knowledge of a specific hardware implementation.
Hamming weight model is likely to perform better with software implementation of a
cryptographic algorithm.
Apart from HD and HW models, there is another popular model: the Identity (ID)
model. The ID model essentially says, only the same intermediate value can produce the

6

same power consumption. In other words, each unique intermediate value corresponds to
a unique power consumption. For example, two intermediate values 0xdeadbeee and
0xdeadbeef, although very similar in terms of HW and HD, still produce different power
traces under ID model. Identity model is likely to happen with both hardware and
software implementations, and shows a serious lack of side-channel protection in the
implementations.
Various equipment is required for measuring power consumption

• Cryptographic device: the Device Under Test (DUT). It usually has an interface to
connect to a PC for receiving commands of execution of cryptographic algorithms.

• Clock generator: some cryptographic devices need to be supplied with an external
clock signal. For example, smart cards are supplied with a clock signal of up to
4MHz.

• Power supply: cryptographic devices also need external power supply. For example,
power supply for smart cards are provided by the reader. Ideally, the power supply
should provide highly stable voltage for measurement quality.

• Circuit probe or Electromagnetic (EM) probe: the actual probe for measuring
power consumption. They generate voltage signals that are proportional to power
consumption. Circuit probe is placed between power supply and the DUT, while
EM probe can measure consumption indirectly to the DUT.

• Digital sampling oscilloscope: for recording the voltage signals provided by the
circuit or EM probe. Modern setup uses digital sampling oscilloscope controlled by
a PC.

• PC: controls the whole setup and stores data collected through the measurement.
Data can be later analyzed either on the same PC controlling data collection, or on
another PC specialized in data processing.

Collected power consumption data are called power traces, or simply traces. Power traces
are then collected with the following steps

1. Supply the cryptographic device with power and clock signal; so the device is
operational and ready to interact.

2. PC configures and starts the oscilloscope.

3. PC sends commands to cryptographic device that starts execution of an algorithm.

4. Power consumption measured by circuit probe or EM probe.

5. PC receives the result of execution from cryptographic device, and power traces
from oscilloscope.

2.1.2 Simple Power Analysis

Simple Power Analysis (SPA) reveals the key stored in DUT by directly interpreting
power traces. The assumption for a successful SPA attack is that the key has a
significant impact on power consumption. SPA usually only requires a few traces. When
the attack uses only one trace, it is called a single-trace or one-shot SPA. Attack using a
few traces is called a multiple-trace or multiple-shot SPA. In multiple-trace SPA, either
we have the traces of encrypting the same plaintext for multiple times, or we have the
traces of encrypting different plaintexts.

7

Visual Inspection

Visual inspection of power traces is usually the first step of SPA. Visual inspection often
helps identify the locations on power traces that correspond to stages of cryptographic
algorithms. In extreme cases, the power traces can reveal the secret key directly. For
example, as in Figure 2.1 if the exponential step in RSA is implemented using naive
double-and-add algorithm, then the steps when “add” is performed would cost more
power [38]. This potentially leaks the secret exponent by leaking one bit at a time on the
power traces.

Figure 2.1: Power trace during RSA double-and-add from [38].

It is also possible to visually identify the ten rounds in an encryption of AES-128 on
power traces [38] as in Figure 2.2.

Figure 2.2: Power trace during ten rounds of AES-128 encryption from [38].

Template Attack

While visual inspection most likely only gives an impression about how the power traces
look like, template attack will actually reveal the key.

8

In template attack, two devices are usually involved. Device A (“real” device) contains
the key that the attacker is trying to obtain. Device B (“copy” device) has the exactly
same configuration as Device A, without containing Device A’s key. The attacker has full
access to Device B, but only limited access to Device A. In particular, we assume the
attacker can only obtain one or only a few power traces from Device A, without knowing
the input or key for Device A. We assume the attacker can choose arbitrary inputs or
keys and can freely obtain power traces from Device B. The attacker’s task is to retrieve
the key stored in Device A.
In a real-life scenario, consider the case where Device A is a malicious credit card reader,
placed secretly by the attacker on a public vending machine. The attacker can record
power traces from the malicious card reader, but can only obtain one trace from a certain
customer (assuming the customer’s card is only swiped once). Assume the attacker has
no direct access to the customer’s card. To launch a template attack and obtain the keys
stored in customers’ cards, the attacker uses another card reader, Device B, that is
exactly the same as the malicious card reader. With one customer’s trace obtained from
Device A, and a lot of traces collected from Device B, a successful template attack would
reveal the customer’s key in the card.
Template attack has two phases: template building when the attacker collects traces from
Device B, and template matching when the attacker makes inference with a few traces
collected from Device A. Denote the key on the device A as kck, and the trace collected
would be encrypting plaintext d with kck. Note that both kck and d are unknown to the
attacker. While at the same time, the attacker can perform encryption of any pair (di, kj)
on device B and collect the traces when performing any encryption on the device B. Then
the attacker needs to decide what the template is built upon. For example, the template
may be built on the input (di, kj), but most likely the template is built on some
intermediate values f(di, kj). Then, for each unique value the template is built upon, the
attacker runs N experiments repetitively, collects N traces, and find NIP power
consumption samples at different “interesting” moments, also called Points Of Interest
(POI). The attacker finally builds (estimates) an NIP -dimensional multivariate Gaussian
distribution for each unique value the template is built upon.
The POI are usually selected with statistical methods, such as signal-to-noise ratio
(SNR), sum of squared pairwise t-differences (SOST), and sum of squared pairwise
differences of the average (SOSD) [15]. Usually, we first set manually how many POI we
are going to use in our templates. Then, we compute for each time point

• the SNR, computed with dividing the variance of exploitable power consumption by
the variance of noisy power consumption.

• the SOST, computed with first performing all pairwise t-tests and then the squared
sum of pairwise t-values.

• the SOSD, similar to SOST, but computed with pairwise differences of the mean
instead of t-values.

Finally we pick the top NIP time points of SNR/SOST/SOSD results as our POI.
For a concrete example, the attacker decides to build a template on the first S-box of
AES. S-boxes of AES have an 8-bit output, thus a total of 28 = 256 outputs. For each
output, the attacker builds an NIP -dimensional multivariate Gaussian distribution. For
example, the attacker is looking at the output 0b10000000. Then the attacker tries to
identify the (di, kj) such that the first S-box produces this output. With the desired
(di, kj), the attacker performs N encryption experiments repetitively, and collect N

9

traces. After determining the POI, each trace obtained by the attacker contains NIP

points. Using the NIP ×N matrix of data, the attacker constructs an NIP -dimensional
multivariate Gaussian distribution by estimating the parameters (µ,Σ). The attacker
repeats the above process for every output from 0b00000000 to 0b11111111. In the end,
the attacker finishes the template building phase after gathering 256 multivariate
Gaussian distributions and starts the template matching phase. Denote the trace
collected from device A as t. The attacker is then able to compute

P(t|N (µ,Σ) related to f(di, kj)) =
e−

1
2
(t−µ)TΣ−1(t−µ)√
(2π)NIP detΣ

(2.1)

for each intermediate value, from 0b00000000 to 0b11111111. Following
maximum-likelihood principle, the attacker infers that the highest probability
corresponds to the actual S-box output in device A.
Note that what the template is built upon highly depends on what the device leaks. If
the device leaks all output of the first S-box with ID model, the attacker should build the
template as in the last concrete example. However, a lot of devices leak the Hamming
weight of the output of the S-boxes. In this case, the attacker only needs to build 9
templates, with each template representing the case of having output Hamming weight
from 0 to 8.

Collision Attack

We say a collision occurs if there are different di ̸= d∗i such that for some intermediate
value, f(di, kj) = f(d∗i , kj). We observe that a collision cannot occur for all key values,
but only a subset of keys. Thus collision helps us to reduce the search space for keys.
To determine a collision in practice, first decide the part in power trace where the
intermediate value is processed. Then we determine if two power traces are the same or
not. In terms of templates:

• We can build the templates for the part of trace where the intermediate value
collides.

• Alternatively, if we are certain where the collision will happen, we can simply
compare the two traces.

Collision attack, however, is irrelevant to attack for plain NTT because plain NTT is
fully deterministic, with each step equivalent to a bijective linear transformation. The
kernels are thus all trivial and no collision is ever possible in plain NTT.

2.1.3 Differential Power Analysis

In Differential Power Analysis (DPA), we control the actual device instead of just a copy.
The key kck of the DUT is unknown and we collect a lot of traces to reveal the key using
statistical methods. Suppose we want to attack the first S-box of AES. We are again
given some input (di, kj) and an intermediate value f(di, kj). In particular, there are D
data input and K key input, so i = 1, . . . , D and j = 1, . . . ,K. Since we have control over
the device, for each data di, we can collect one trace with NIP points. Stacking all the
collected traces together, we obtain a D ×NIP matrix T such that each row corresponds
to a unique data input di, and each column is the consumption at specific time. Then
compute offline a D ×K matrix of intermediate values V , such that Vi,j = f(di, kj).
Then we pick a power model based on what the device leaks. With the power model,

10

each entry of V is applied to a function h that converts the actual intermediate value into
its corresponding power consumption. The result power consumption model is a D ×K
matrix H such that Hi,j = h(Vi,j). In the end we construct a NIP ×K matrix R such
that Ri,j is the correlation of i-th column of H and j-th column of T . R basically finds:
which intermediate value (and thus which key) could align with actual consumption at
some points in time. Following maximum-likelihood principle, the largest entry of R, say
Rck,ct, has its row index corresponds to the actual key kck.

2.1.4 Test Vector Leakage Assessment

The aim of Test Vector Leakage Assessment (TVLA) is different from SPA or DPA.
Instead of retrieving the key, TVLA assesses if the DUT is leaking any information [3].
Recall that in SPA and DPA, the choice of power model depends highly on what the
DUT leaks. Device manufacturers may deploy countermeasures, namely hiding and
masking, that potentially mitigate some leaks. TVLA can then assess the effectiveness of
these countermeasures. For example, after proposing a new masking procedure for
polynomial inversion, TVLA is performed to evaluate if the masking is effective against
side-channel analysis [23]. Hardware implementation of masking in S-boxes of SKINNY
block cipher is also tested and validated with TVLA [22]. Although assessments from
TVLA are usually not comprehensive (not feasible to test all inputs and keys for an
algorithm), TVLA serves as the first step to approach hardware devices or cipher
implementations that we have no prior knowledge about them.
Essentially, TVLA compares two distributions of power traces. Each distribution can be
one of the following three types: fixed, random, semi-fixed. A fixed distribution contains
power traces obtained from executing a fixed input to the cryptographic algorithm.
Similarly a random distribution contains power traces when executing random inputs. A
semi-fixed distribution contains power traces of semi-fixed inputs. Only a specific part of
semi-fixed inputs is fixed across all traces, and the rest part being random.
For example, suppose we want to test if a device is leaking the Hamming weight of the
first S-box of AES with fixed-vs-random TVLA. We prepare one set of plaintexts such
that the Hamming weight of the first S-box is low; these plaintexts are called fixed test
vectors and they are said to be “biased” (because we picked them to have low Hamming
weights in the first S-box). Another set of plaintexts are chosen randomly, and they are
called random test vectors, also said to be “unbiased”. After collecting traces from
fixed-vs-random test vectors, we use Welch’s t-test to compare if the two distributions are
equal. If they are equal, it means our device is not leaking the Hamming weight of the
first S-box because there is no difference in power traces between encryption of biased
and unbiased data. The search for test vectors then becomes the main task for
developing TVLA. The device may leak different things and we need test vectors for
almost all of these situations.

2.2 Post-Quantum Cryptography

Post-quantum cryptography (PQC) aims to provide security when quantum computers
become a threat to classical cryptographic algorithms. NIST has standardized some PQC
algorithms after a multi-round competition. The winner for key encapsulation mechanism
(KEM) is CRYSTALS-Kyber [9], and the winners for signature are
CRYSTALS-Dilithium [12], FALCON [13], and SPHINCS+ [6]. In particular,
CRYSTALS-Kyber, CRYSTALS-Dilithium and FALCON are lattice-based protocols. In

11

our research, we primarily focus on the CRYSTALS-Dilithium (or simply, Dilithium), and
retain the possibility of generalizing our methods to other lattice-based protocols.

2.2.1 Quantum Computers

Quantum computers are computers utilizing quantum mechanical effects [32]. Analogous
to a classical computer using traditional binary bits taking values of 0 and 1, quantum
computers use quantum bits, or qubits, taking values as linear combinations of basis

|0⟩ :=
(
1
0

)
and |1⟩ :=

(
0
1

)
. Such structure exploits the power of linear algebra enabled

by quantum effects, and allows quantum computers to perform Quantum Fourier
Transform (QFT), an analogy to classical Fast Fourier Transform (FFT), in polynomial
time. Enabled by QFT, Shor’s algorithm [45] could solve a class of problems, namely the
hidden subgroup problems for abelian groups, in polynomial time. Hidden subgroup
problems for abelian groups contain a wide range of classical hard problems, including
integer factorization and discrete logarithm [24]. As a result, we need hard problems that
are not examples of the hidden subgroup problems for abelian groups, when quantum
computers are strong enough to break classical public-key cryptography. To evaluate the
hardness of these problems, we distinguish classical hardness based on classical security
models such as random oracle model, and quantum hardness based on quantum security
models such as quantum random oracle model.

2.2.2 Lattices

Most content in this and the next session is based on [34]. There are many lattice
problems and we will only describe a few of them. A lattice is a free Z-module embedded
in Rn. Concretely

Definition 2.2.1 (Lattice). Given B = {b1, . . . , bk} a set of linearly independent vectors
in Rn. A lattice L is the Z-linear combination of these vectors

L :=

{
k∑
i=1

aibi

∣∣∣∣∣ ai ∈ Z

}
.

In particular, k is called rank of a lattice. When k = n, the lattice is called a full lattice;
we usually only consider full lattices. The set B is called a basis of a lattice. Notice that
for the same lattice, there are many different choice of bases. In fact, the choice of basis
plays a key role in lattice-based cryptography. We say a basis is “good” if there are only
short vectors in the basis and the vectors are close to orthogonal. A basis is “bad”
otherwise. Transforming a bad basis into a good one is called lattice reduction. While
lattice reduction is trivial for lattices of rank k = 2, reduction is believed to be hard for
lattices of higher ranks. The idea of lattice-based public-key cryptography is to make the
bad basis a public key, and the good basis a private key.
There exists a variety of lattice problems that are easy to solve with a good basis, and
hard to solve with a bad basis. One example being the Decisional Approximate SVP
Problem, denoted as GapSVP.

2.2.3 Lattice-Based Cryptography

Lattice-based cryptography is built upon problems that are proved or believed to be (at
least) as hard as the lattice problems introduced in the previous section. We briefly

12

introduce the hard problems that Dilithium is based upon, focusing more on the “rough
idea”, with simplifications omitting technical details like security parameters and
hardness assumptions. The rigorous reader should consult references such as [34] for a
rigorous description.

Definition 2.2.2 (Short Integer Solution). The Short Integer Solution SIS problem is
formulated as following: given positive integers n, q > 0, and a matrix A ∈ Zn×mq whose
entries are uniformly sampled from Zq, find z ∈ Zmq such that ∥z∥ is less than some
positive threshold, and Az = 0 ∈ Zmq , for some norm ∥ · ∥.

Ajtai first proved that SIS is at least as hard as GapSVP in [2]. Stronger results are
obtained subsequently [28][29].

Definition 2.2.3 (Learning With Errors). Given positive integers n, q > 0. Let s ∈ Znq be
an unknown vector. Define a distribution As,χ as: sample a ∈ Znq uniformly, and sample
e ∈ Zq according to distribution χ. χ is usually taken as a discrete Gaussian distribution.
Then sampling from As,χ gives an element of Znq × Zq, specifically (a, ⟨a, s⟩+ e).
Then the Search version of the Learning with Errors SearchLWE is defined as: given m
samples from As,χ, determine s.
The Decision version of the Learning with Errors DecisionLWE is defined as: given m
samples from the set Znq × Zq, decide if they are drawn from a fixed As,χ, or drawn
uniformly randomly from Znq × Zq.

Blum et al. proved that the Search and Decision versions of Learning With Errors are
equivalent [8], and Regev proved that they are at least as hard as GapSVP [40].

2.2.4 Dilithium

Dilithium is a digital signature scheme, based on three hard problems: Module Learning
With Errors MLWE, Module Short Integer Solution MSIS, and SelfTargetMSIS [12]. In
particular, MSIS and MLWE are the special version of SIS and LWE, where the ring Zq is
replaced by some polynomial ring. Although there is no proof that MSIS and MLWE are
as hard as SIS and LWE respectively, it is widely believed that the attacker cannot gain
advantages utilizing the additional module structure. The problem SelfTargetMSIS is
proved to be as hard as MSIS classically, with recent proof showing reduction from
MLWE in quantum random oracle model [19]. Dilithium is generally believed to be
secure; it is not only selected by NIST as a standard post-quantum signature algorithm,
but also recommended as the primary algorithm among other two winners (Falcon and
SPHINCS+).
Dilithium comes with 3 levels of security: Level 2, Level 3, and Level 5, each with its own
set of security parameters. In particular, we focus on the Level 3 version, because
“according to a very conservative analysis, (Level 3 Dilithium) achieves more than 128
bits of security against all known classical and quantum attacks” claimed and
recommended by the authors of Dilithium.
Throughout our whole thesis, q always denotes the prime number q = 8380417, and
Dilithium works in the ring Zq[x]/(x256 + 1). From an attacker’s point of view, the most
valuable information of Dilithium is the secret key vector s1, containing 5 polynomials
from the aforementioned ring. Each polynomial of s1 has coefficients of range [−4, 4].
Each time the algorithms signs a new message, it pre-computes NTT(s1). s1 is
subsequently used in computing the signature z (subject to rejection) with z := y + cs1,
where y is a nonce, and c is a challenge. The challenge c is a polynomial in the

13

aforementioned ring with τ = 49 nonzero coefficients, and an entropy of 225 bits. Note
that the nonce y has the same dimension as s1, and c is just one polynomial. The
multiplication cs1 is a scalar multiplication in a module, and the multiplication is
performed elementwise in the NTT domain (we will discuss this in the next section).
We are interested in the Sign algorithm because of the following reason. Usually, when
attacking a real-life device, we have no access to key generation, because the key is
already generated and stored in the device. The cryptographic device is usually designed
to perform signatures. An attacker usually could only collect side-channel traces during
the signing process of the device. Each time signing a new message, the secret key s1 is
transformed into the NTT domain. Therefore attacking NTT could potentially reveal s1
directly.

2.3 Number Theoretic Transform

Polynomial multiplication is ubiquitous in lattice-based cryptography. Notice that in
MSIS and MLWE, evaluating expressions such as Az and ⟨a, s⟩ all require polynomial
multiplication. If implemented naively, polynomial multiplication can be time-consuming.
Given two polynomials of degree n, a naive schoolbook multiplication has complexity
O(n2). Number Theoretic Transform (NTT) is a fast implementation of polynomial
multiplication. NTT reduces the complexity from O(n2) to O(n log n). The following
text regarding the continuous and discrete Fourier transform is mainly based on [47]. The
content and figures regarding NTT are from [43].

2.3.1 Fourier Transform

Definition 2.3.1 (Fourier Transform). Suppose f(x) is a sufficiently nice function
defined on R. Its Fourier transform F(f) is defined as

[F(f)](ξ) = f̂(ξ) =

∫ ∞

−∞
f(x)e−2πixξ dx. (2.2)

Definition 2.3.2 (Inverse Fourier Transform). The inverse Fourier transform F−1 on
f̂(ξ) is defined as

[F−1(f̂)](x) = f(x) =

∫ ∞

−∞
f̂(ξ)e2πixξ dξ. (2.3)

We usually say a function f(x) is living in the time domain, and its Fourier transform
f̂(ξ) is living in the frequency domain.

Definition 2.3.3 (Convolution). Given two sufficiently nice functions f(x) and g(x), the
convolution of them is defined as

(f ∗ g)(x) =
∫ ∞

−∞
f(t)g(x− t) dt. (2.4)

Fourier transform has a nice property about convolution, namely the convolution theorem

Theorem 2.3.4 (Convolution Theorem).

f ∗ g = F−1(F(f) · F(g)). (2.5)

The theorem basically tells that convolution in time domain is multiplication in
frequency domain.

14

2.3.2 Discrete Fourier Transform

Fourier transform deals with functions defined on R. However, in computer science,
numbers are represented and stored discretely. Instead of working with functions defined
on R, we need to deal with sequences of N data points. Sequences can be considered as a
function defined on a finite set [0, N − 1]. In this case, we will have a discrete
transformation, namely the Discrete Fourier Transform (DFT).

Definition 2.3.5 (Discrete Fourier Transform). Given sequence {x0, . . . , xN−1}, its
Discrete Fourier Transform (DFT) is DFT ({x0, . . . , xN−1}) = {X0, . . . , XN−1} such that

Xk =
N−1∑
n=0

xne
−2πi k

N
n. (2.6)

Similarly for the inverse transformation

Definition 2.3.6 (Inverse Discrete Fourier Transform). Given sequence {X0, . . . , XN−1},
its Inverse Discrete Fourier Transform (IDFT) is
DFT −1({X0, . . . , XN−1}) = {x0, . . . , xN−1} such that

xk =
1

N

N−1∑
n=0

Xne
2πi k

N
n. (2.7)

There is also a discrete version of convolution

Definition 2.3.7 (Discrete Linear Convolution). The discrete linear convolution of two
sequences {xn}N−1

n=0 and {yn}N−1
n=0 is defined as

xn ∗ yn =

N−1∑
m=0

xmyn−m. (2.8)

Then the convolution theorem also holds for discrete linear convolution, namely

xn ∗ yn = DFT −1(Xn · Yn) (2.9)

where {Xn} = DFT ({xn}) and {Yn} = DFT ({yn}).

2.3.3 Fast Fourier Transform

Fast Fourier Transform (FFT) is a fast implementation of the DFT algorithm [10]. If we
consider {x0, . . . , xN−1} as a vector, the DFT is then realized as a full-rank linear
transformation on N -dimensional vector space. The matrix representation of such linear
transformation is called the DFT matrix. The naive matrix-vector multiplication has a
complexity of O(n2) for n× n matrix. Due to the innate symmetry within the DFT
matrix, with divide and conquer, it is possible to break the huge matrix down into
smaller block matrices. Such modification reduces the complexity from O(n2) to
O(n log n), and is called the Fast Fourier Transform (FFT). There are multiple ways to
divide the matrix, with Cooley-Tucky the most classical one. The computation is
represented as the Cooley-Tucky butterflies, which we will describe in later sections.

15

2.3.4 Polynomial Multiplication and Number Theoretic Transform

Polynomial multiplication is itself a convolution. Given a commutative ring R and
polynomials f, g ∈ R[x] with degree less than N . If we consider the polynomial
f = a0 + a1x+ · · ·+ aN−1x

N−1 as a sequence {a0, a1, . . . , aN−1}, then multiplying two
polynomial is the same as a linear discrete convolution on the two sequences. We can
then naturally use DFT and FFT for fast computation of polynomial multiplication.
Since the commutative ring R is usually taken as a finite field Zq, DFT on coefficients of
polynomials is called Number Theoretic Transform (NTT). The inverse transformation is
called Inverse NTT (INTT).
In lattice-based cryptography, we usually use quotient polynomial rings like R[x]/(xn+1)
or R[x]/(xn − 1) instead of R[x]. Polynomial multiplications in these quotient rings are
similar, while convolutions in these rings are called cyclic convolutions, slightly different
from the linear discrete convolutions. In particular, convolutions of coefficients of
polynomials in R[x]/(xn + 1) are called negative wrapped convolution (because xn is
replaced by −1), and convolutions of coefficients of polynomials in R[x]/(xn − 1) are
called positive wrapped convolution. In our research, since we focus on the Dilithium
protocol, we only investigate the case of negative wrapped convolution as used in
Dilithium in the ring Zq[x]/(x256 + 1).

Definition 2.3.8 (NTT with Negative Wrapped Convolution). Given n a power of 2.
Suppose Zq with q prime is a finite field with a 2n-th root of unity denoted ψ. Define

NT T ψ : Znq → Znq (2.10)

(a0, a1, . . . , an−1) 7→ (â0, â1, . . . , ân−1),where (2.11)

âj :=

n−1∑
i=0

ψ2ij+iai (2.12)

Denote ψ a 512-th root of unity in the field Zq. In particular, Dilithium uses ψ = 1753.
Then the fast NTT with negative wrapped convolution is denoted as NTT.
The algorithm can be summarized in butterfly diagrams, and there are two types of NTT
used in Dilithium: Cooley-Tucky (CT) and Gentleman-Sande (GS). In particular, CT is
used in NTT and GS is used in INTT. The ways of connecting butterflies are summarized
in Figure 2.3 for CT butterflies. In Figure 2.3, we are using a smaller degree 7 polynomial
and a 3-stage NTT to give an idea of how the CT butterflies look like. In particular, we
transform a polynomial g into NTT domain ĝ using CT butterflies. The coefficients of g
forming the input of CT butterflies are denoted as g[0], g[1], . . . , g[7]. The coefficients in
the NTT domain are denoted as ĝ[0], ĝ[1], . . . , ĝ[7]. To read such butterfly diagrams, we
use the CT butterfly for example and walk through the computation of ĝ[0] to ĝ[7] from
g[0] to g[7]. First trace the red line starting from input g[0] up to the vertical blue line
marking the end of Stage 1, and realize the line stops at a level the same as g[4]. If
tracing the red line starting from input g[4], the line will terminates at the same level as
g[0] at the vertical blue line of Stage 1. This implies the 0-th input and the 4-th input are
combined to form a butterfly (marked in red). Also notice that a factor ζ = ψ4 presents
under the line of g[4]. These information combined tells us that, the 0-th output of Stage
1 is computed as stage1[0] := g[0] + ψ4 · g[4], and the 4-th output of Stage 1 is computed
as stage1[4] := g[0]− ψ4 · g[4]. Similarly, tracing the line of g[1] leads to the same level as
g[5], which tells us that the the 1-st output of Stage 1 is computed as
stage1[1] := g[1] + ψ4 · g[5], and the 5-th output of Stage 1 is computed as
stage1[5] := g[1]− ψ4 · g[5]. Now we proceed to Stage 1. By tracing yellow arrows

16

starting from the 0-th output of Stage 1, we realize that it stops at the same level as
stage1[2] at the blue vertical line of Stage 2. This tells us that the 0-th output of Stage 2
is computed as stage2[0] := stage1[0] + ψ2 · stage1[2], and the 2-nd output of Stage 2 is
computed as stage2[2] := stage1[0]− ψ2 · stage1[2], forming the yellow butterfly.
Similarly, tracing the green 4-th output of Stage 1, we realize that it stops at the same
level as stage1[6]. Therefore the 4-th and 6-th outputs of Stage 2 are computed as
stage2[4] := stage1[4] + ψ6 · stage1[6] and stage2[6] := stage1[4]− ψ6 · stage1[6], forming
the green butterfly. Everything remains the same until the output of Stage 3. In
particular, the indices for stage3 and ĝ do not coincide. Instead, the relationship between
the indices is bit reversal defined later.
In essence, the reader should realize that each time, tracing one line tells the reader how
to compute a butterfly, where each butterfly contains two inputs and two outputs. The
two outputs are linear combination of the form α± ζβ, and the first output is always
α+ ζβ, and the second output is always α− ζβ.

g[0] ĝ[0]

Input (Stage 0) Stage 1 Stage 2 Stage 3

ψ4

g[1] ĝ[4]

Input (Stage 0) Stage 1 Stage 2 Stage 3

ψ4

g[2] ĝ[2]

Input (Stage 0) Stage 1 Stage 2 Stage 3

ψ4

g[3] ĝ[6]

Input (Stage 0) Stage 1 Stage 2 Stage 3

ψ4

g[4] ĝ[1]

Input (Stage 0) Stage 1 Stage 2 Stage 3

g[5] ĝ[5]

Input (Stage 0) Stage 1 Stage 2 Stage 3

g[6] ĝ[3]

Input (Stage 0) Stage 1 Stage 2 Stage 3

g[7] ĝ[7]

Input (Stage 0) Stage 1 Stage 2 Stage 3

ψ2

ψ2

ψ6

ψ6

ψ1

ψ5

ψ3

ψ7

Figure 2.3: CT butterflies used in Dilithium with reduced number of coefficients.

Recall that NTT is for computing polynomial multiplications. For example, if we want to
multiply two polynomials f and g, that is, we want to compute h = f · g. We would first
transform f [0], . . . , f [7] into f̂ [0], . . . , f̂ [7], and then transform g[0], . . . , g[7] into
ĝ[0], . . . , ĝ[7], all using CT butterflies. Then we compute an elementwise multiplication,
namely ĥ[0] := f̂ [0] · ĝ[0], ĥ[1] := f̂ [1] · ĝ[1], and so on. After obtaining ĥ[0], . . . , ĥ[7], we
transform them back into the normal domain using GS butterflies and obtain
h[0], . . . , h[7], coefficients of the polynomial h = f · g.
The number of stages for NTT is log2N . Note that for example, from Input to Stage 1,
the output is essentially the repetition of a bijective linear transformation Z2

q → Z2
q with

matrix representation (
1 ψ4

1 −ψ4

)

17

where the constant, ζ = ψ4 in this case, is called the twiddle constant. If we take a look
at all the powers of ψ, we realize that the CT butterfly has twiddle factors
ψ4, ψ2, ψ6, ψ1, ψ5, ψ3, ψ7. In fact, these numbers 4, 2, 6, 1, 5, 3, 7 are actually the
bit-reversal of numbers 1, 2, 3, 4, 5, 6, 7. Bit reversal of an integer is defined as the reverse
of binary representation of a number. For example, given a 3-bit number 1, represented
as 0b001. Then its bit reversal would be 0b100, which is 4. More notably, the output of a
CT butterfly also arranges in bit-reversal orders (BO). However, Dilithium would not
change the bit-reversal ordered output into normal order (NO) so we can simply ignore
it. The only pitfall is, we need to use bit-reversal order for GS input when computing
INTT. GS will then output coefficients in normal order.
All the butterflies we have seen so far consists of 2 inputs, and 2 outputs. NTT with
these kinds of butterflies are called radix-2. If number of coefficients of the polynomial is
also a power of 4, we can make a butterfly consists of 4 inputs and 4 outputs. NTT with
such kinds of butterflies are called radix-4. Notice that if we build a radix-4 NTT, the
twiddle factors will not be the same as radix-2 NTT.

2.3.5 Real-World Implementation

On real-world devices, NTT is implemented with optimizations that deviate from
textbook NTT. As an example, we discuss the GKS20 NTT implementation proposed in
[16], also implemented on the Piñata board.
In this particular implementation, integers are signed. Elements in the ring Zq are 32-bit
integers represented in range [− q−1

2 , q−1
2] instead of [0, q − 1]. Representation of numbers

significantly affects the Hamming weight of a number.
Moreover, each NTT butterfly contains one execution of Montgomery multiplication, for
computing the multiplication with the twiddle factor. Montgomery multiplication is a
constant-time fast algorithm for computing modular multiplication of two integers. When
computing a · b (mod q), multiplication takes place in the ring Z2k instead of the ring Zq
because modular reduction in Z2k is computationally cheaper and constant time. Z2k is
called the Montgomery domain. The result is then transformed back from Z2k to Zq. In
this particular implementation, Greconici et al. include the feature “lazy reduction” where
a penultimate intermediate result (in a range larger than [− q−1

2 , q−1
2]) is kept for

computing NTT; the final reduction to ring Zq is not performed throughout the entire
NTT.
On real-world devices, NTT is usually optimized for reducing certain computational
overhead, improving security, or saving energy [27]. Greconici, Kannwischer, and
Sprenkels have provided a balanced design GKS20 for ARM Cortex processors by merging
two stages of NTT into one loop of iteration. Thus, the execution order of GKS20 NTT
butterflies differs from the textbook NTT design. For example in GKS20, butterflies of the
first and second stages are computed together, called level merging. An example of
2-level merging, using again Figure 2.3, would be: first compute the red butterfly g[0] and
g[4]. Next, instead of computing g[1] and g[5], we compute orange butterfly of g[2] and
g[6]. Then, instead of computing other butterflies in Stage 1, we compute butterflies in
Stage 2, specifically, the yellow butterfly stage1[0] and stage1[2], and the green butterfly
stage1[4] and stage1[6]. We store the computation results, namely
stage2[0], stage2[2], stage2[4], stage2[6], and go back to the Input, repeat the same thing
with the remaining butterflies, until obtaining the remaining outputs of Stage 2. This
example is said to be a 2-level merging that merges the Stage 0 and 1.

18

2.4 Related Work

2.4.1 Side-Channel Attacks on NTT

While we focus on leakage assessment instead of specific attacks, we are still interested in
specific leakages and their countermeasures because they hint us on designing test vectors.
Primas et al. first demonstrate a single-trace template attacks on INTT, targeting the
step where modular reduction is happening [36]. They utilize soft-analytical side-channel
analysis [51] and belief propagation for attacking. However, the number of templates
required is too large, rendering the attack less practical. The same authors later
demonstrate a practical single-trace attack against NTT [35], based on their previous
work attacking INTT. With improvement on number of templates needed, they are able
to attack a real-world Kyber implementation with 213 templates. Hamburg et al. further
improve the two previous attack for Kyber [18]. Custers presents a detailed treatment on
soft-analytical side-channel analysis against NTT in a master’s thesis [11]. Mujdei et al.
attacks the Toom-Cook and NTT components for KEM algorithms such as Saber and
NTRU instead of signature algorithm [30]. Qiao et al. present an SIS-assisted attack on
NTT [37]. Steffen et al. investigate hardware implementation of NTT and propose
countermeasures [46].
For countermeasures, Reparaz et al. have proposed masking by splitting a polynomial
into two parts and then performing NTT on each part independently [41]. Oder et al.
have proposed hiding on top of masking. Hiding is another countermeasure for SCA
against NTT that randomizes the execution order of multiplications in NTT domain [33].
Another way of masking is to mask the twiddle constant [42][39]. Shuffling is another
countermeasure that shuffles butterfly execution in NTT [52].
Other non-power-based side-channel attacks are proposed to attack the NTT. For
example, Yu et al. investigates a CPU frequency-based side-channel attack of NTT [54].

2.4.2 Implementations of NTT

There are various software and hardware implementations of NTT. Our research mainly
focuses on the textbook implementation and the implementation optimized on the ARM
Cortex-M4 processor [16]. Mert et al. present an up-to-date comprehensive survey on
software implementation of NTT [27]. For hardware, a list of implementations is provided
in [43]. FPGA [26] and ASIC [50] implementations of NTT are also surveyed extensively.
One noticeable recent hardware design is specified in [31].

2.4.3 Side-Channel Analysis and TVLA

Although its content mostly covered by [25], Randolph et al. provide a concise
introduction to power-based SCA in layman’s term. Guo et al. investigates soft analytical
SCA from a coding theory point of view [17].
TVLA methodology is widely applied to both software [48] and hardware [20]
implementations of classical public-key algorithms. TVLA is also applied to classical
symmetric algorithms such as AES [3][49].

19

Chapter 3

Plain NTT

We start with a rough characterization of different implementations. We then define
plain NTT and focus on algorithms for TVLA on plain NTT. Since plain NTT is never
recommended to use in real hardware devices, this chapter focuses on theoretical
discussion. Theories discussed in this chapter will be applied to practical cases in the
subsequent chapters.

3.1 Characterization of Dilithium NTT Implementation

Numerous variations could present in real-world implementations of NTT. With different
optimization targets in mind, one implementation could potentially differ from another in
many aspects. To limit our scope, we only discuss the NTT used in Dilithium. We try to
characterize Dilithium NTT according to the following aspects that could potentially
impact power traces.

Integer representation The input of NTT is a set of coefficients of polynomials in
Zq[x]/(x256 + 1). Each coefficient of a polynomial is mathematically an element of
Zq. Usually in real-world implementations, such a number is represented as a
signed 32-bit integer x within range − q−1

2 ≤ x ≤
q−1
2 . However, it is also possible

to represent the number as a positive integer within range 0 ≤ x ≤ q − 1. Note that
these ranges are for the input of NTT; the intermediate values of NTT could
potentially be in a larger range depending on what kind of modular reduction is
used.

Multiplication Within a butterfly of form α± ζβ, the modular multiplication of a
coefficient to a twiddle factor ζβ ∈ Zq is usually implemented with Montgomery
multiplication [16]. However, some hardware implementations use Barrett reduction
[5] or NewHope-flavored reduction [53] instead.

Twiddle factors storage Twiddle factors can be pre-computed and stored on a device,
or computed on-the-fly. In addition, when using Montgomery multiplication,
twiddle factors are commonly stored in Montgomery domain for immediate use.

Modular reduction If placed at a wrong place, modular reduction can lead to
side-channel vulnerabilities. Lazy reduction is implemented in most real-world cases
for avoiding branching during reduction. With lazy reduction, no exact modular
reduction is performed throughout the whole NTT process. Some implementation
with unsigned integer representation could perform an incomplete reduction by

20

replacing α− ζβ with α+ (2q − ζβ). Note that such incomplete reduction is still
constant-time, and is not an exact reduction modulo q.

Level merging Level merging, or stage merging, is an optional optimization strategy by
computing multiple NTT stages together, instead of computing one stage after
another. The most common way is 2-level merging for Dilithium NTT as in [16].
For Cortex-M4 microcontrollers, implementation with 3-level merging is also
proposed [1]. Level merging will change the order of butterflies being computed.

Radix Similar to FFT, Dilithium NTT with 256 = 28 = 44 = 162 coefficients could
potentially be implemented in both radix-2 and radix-4 fashions. While most
software implementations on microcontrollers such as [16][1] stick to the standard
radix-2 NTT, some hardware implementations include both radix-2 and radix-4
designs [31]. The trade-off is a more complicated computation for twiddle factors
because twiddle factors will change in each iteration for high-radix implementations.

Intermediate value handling During NTT execution, intermediate values are read
multiple times from the memory, and are written multiple times to the memory. In
software implementations, how and when these values are handled could differ by
programming languages and compiler settings.

SCA mitigation Side-channel mitigations have been proposed to Dilithium NTT.
Shuffling will change the execution order of butterflies. Masking will change the
twiddle factors.

Table 3.1 summarizes the characterizations of Dilithium NTT implementations related to
our research.

NTT Implementa-
tion

Plain NTT Reference C GKS20 ARM Assem-
bly

Integer representa-
tion

Unsigned 32-bit in-
teger in range [0, q−
1]

Signed 32-bit in-
teger in range
[− q−1

2 , q−1
2]

Signed 32-bit in-
teger in range
[− q−1

2 , q−1
2]

Multiplication Integer multiplica-
tion

Montgomery multi-
plication

Montgomery multi-
plication

Twiddle factor stor-
age

Pre-computed, in
Zq

Pre-computed, in
Montgomery do-
main

Pre-computed, in
Montgomery do-
main

Modular reduction Performed after
computing each
butterfly

Lazy reduction Lazy reduction

Level merging No merging No merging 2-level merging
Radix Radix-2 Radix-2 Radix-2
Intermediate value
handling

Values are read and
stored per stage

Values are read and
stored in-place per
butterfly

Values are read and
stored in-place per
butterfly

SCA mitigation None None None

Table 3.1: Characterizations of implementations related to our research.

21

3.2 Plain NTT

We define the plain NTT as NTT in its “textbook” form, as described in Section IV.A of
[43], with all values represented by unsigned integers. Plain NTT is essentially what we
have described in the CT butterflies of Section 2.3.4 but with a larger dimension (256
coefficients instead of 8 coefficients). Modular reduction is performed after computing
each butterfly. We assume the modular reduction is time-constant here, for convenience
of theoretical discussion and avoidance of timing attack. The plain NTT is rarely
implemented in real-world devices, but serves as a basis for our discussion for other
real-world variations.
Plain NTT in Dilithium, denoted S : Z256

q → Z256
q , is essentially a bijective linear

operator on vector space Z256
q over the finite field Zq. For the sake of convenience, we say

the 0-th stage of NTT is the input of NTT. Define Si : Z256
q → Z256

q as a map from stage
i− 1 to i. For the sake of convenience, let S0 : Z256

q → Z256
q be the identity map. Then

plain NTT is essentially a composition S8 ◦ S7 ◦ · · · ◦ S1 ◦ S0. Notice that each Si is a
bijective linear transformation, and S−1

i corresponds exactly to a stage in INTT (they
differ by when to multiply each 2−1 ∈ Zq). Moreover, each butterfly Bζ is a bijective
linear transformation Bζ : Z2

q → Z2
q with standard matrix representation

Bζ =

(
1 ζ
1 −ζ

)
. (3.1)

Butterflies that share the same ζ are said to be “in the same block”. Each Si can be
decomposed into 2i−1 blocks.

3.3 HW Model

Suppose we want to know if a device running plain NTT leaks the Hamming weight of
(at least) one NTT stage. Recall that our plain NTT represents integers in range
[0, q − 1], where ⌈log2(q − 1)⌉ = 23. Thus for each value, it can take Hamming weight
from 0 to 23. Notice that with 256 coefficients, the total Hamming weight of a stage can
range from 0 to 256× 23 = 5888.

3.3.1 Test Vector Generation

Our test vectors for both fixed-vs-fixed and fixed-vs-random TVLA should then bias the
total Hamming weight of a certain stage. More precisely, we want to find input x ∈ Z256

q

of NTT such that at stage i ∈ [1, 8] with Hamming weight h ∈ [0, 5888] and threshold
k ∈ [0, 5888], the total Hamming weight at stage i differs the Hamming weight at stage
i− 1 by at least k.
Since the plain NTT is fully deterministic, the idea is to generate a stage with a desired
Hamming weight, and evolve backwards (by applying S−1

i) to compute the Hamming
weight of the previous stage. If the difference in Hamming weight is greater than the
threshold, evolve further back to get the input. If the difference in Hamming weight is
not large enough, repeat the process until we can find one input that satisfies our needs.
To generate a stage with a desired Hamming weight, we first find a (not necessarily
uniformly) random integer partition of h with (h0, . . . , h255)← Partition(h), that is,
h0, . . . , h255 ∈ [0, 23] such that h = h0 + h1 + · · ·+ h255. We apply a random permutation
σ on indices of (h0, h1, . . . , h255) as part of Partition(h). Then, for each hj , find a
random integer yj ∈ [0, q − 1] such that HW(yj) = hj . This is realized by ReverseHW

22

algorithm. Let y = (y0, y1, . . . , y255) be the candidate for i-th stage. If∣∣HW(y)− HW(S−1
i (y))

∣∣ ≥ k, we output x = S−1
1 ◦ · · ·S

−1
i−1 ◦ S

−1
i (y) as the NTT input; if

not, we repeat with a new integer partition of h.
Although theoretically we have h ∈ [0, 5888] and k ∈ [0, 5888], practically since we want
to bias an intermediate stage with small Hamming weight, we are only interested in a
restricted range h ∈ [0, 200] and thus k ∈ [0, 5888]. Note that the Hamming weight of a
random vector x $←− [0, q − 1]256 is essentially “independently placing binary 1’s to 5888
slots with probability roughly equal to 1

2 for each slot”. Thus, the Hamming weight of a

random vector x $←− [0, q − 1]256 follows a binomial distribution HW(x) ∼ B(5888, 12).
Thus, the expectation of Hamming weight for a random vector is
E(HW(x)) = 5888 · 12 = 2944. By setting h ≤ 200, we are biasing an intermediate stage
such that, a random input only has P(HW(x) ≤ 200) = 1

25888
∑200

k=0

(
5888
k

)
< 2−4633

probability of having a comparable Hamming weight. Therefore, when comparing a
random vector and a biased vector with Hamming weight as low as 200, we are confident
about the effectiveness of biasing.
The threshold k is mainly for “making the biased stage stands out more than other
unbiased stages”. From a leakage detection point of view, k is not of crucial importance
and is usually set with k = 0 because in TVLA we are comparing the biased stage with a
random stage, not other stages of the test vector itself. By setting a large k we might be
able to observe a cleaner signal, but the computational cost for test vector searching could
become unnecessarily higher. In our experiment in later chapters, we usually set k = 0.
The test vector generation algorithm for plain NTT with HW model TVGenPlainHW
is summarized in Algorithm 1.

Algorithm 1 TVGenPlainHW
Input: (i, h, k) ∈ [1, 8]× [0, 200]× [0, 5688]
Output: x ∈ [0, q − 1]256

1: x := ⊥
2: while x = ⊥ do
3: (h0, h1, . . . , h255)← Partition(h)

4: σ
$←− Sym([0, 255])

5: for j = 0, 1, . . . , 255 do
6: yσ(j) ← ReverseHW(hj)
7: end for
8: y := (y0, y1, . . . , y255)
9: if

∣∣HW(y)− HW(S−1
i (y))

∣∣ ≥ k then
10: x := S−1

1 ◦ · · ·S
−1
i−1 ◦ S

−1
i (y)

11: end if
12: end while

There are multiple ways to implement the random integer partition Partition. One
naive way is to sample recursively

h0
$←− [0,max({h, 23})] (3.2)

h1
$←− [0,max({h− h0, 23})] (3.3)

and so on, until h = h0 + h1 + · · ·+ hj and we set hj+1 = hj+2 = · · · = h255 = 0. This
would indeed give us a legit random partition but it would generate a vector y with a lot
of entries with 0, and high hamming weight concentrated at a single entry of y.

23

Since we are mostly dealing with small h ≤ 200, we propose an easy empirical solution for
partitioning small h by simply sample each hj uniformly from the set {0, 1, 2} as in
Algorithm 2. The problem of random integer partition is complicated and out of scope
for our research. For larger h, we could sample each hj from a Gaussian distribution, or
use Fristedt’s method [14].

Algorithm 2 Partition
Input: h ∈ [0, 200]
Output: (h0, h1, . . . , h255) ∈ {0, 1, 2}256
1: for j = 0, 1, . . . , 255 do
2: if h > 2 then
3: hj

$←− {0, 1, 2}
4: h := h− hj
5: else if 0 ≤ h ≤ 2 then
6: hj ← h
7: h := 0
8: end if
9: end for

10: h := (h0, h1, . . . , h255)

Algorithm 3, ReverseHW, by taking a Hamming weight h, randomly samples a number
y within range of Hamming weight h. More precisely, we want
y

$←− {z ∈ Z|0 ≤ z ≤ q − 1,HW(z) = h}. Note that this set roughly has size
(
23
h

)
and can

be easily computed if h is not too close to 23
2 .

Algorithm 3 ReverseHW
Input: h ∈ [0, 23]
Output: y ∈ [0, q − 1]
1: Y := {z ∈ Z|0 ≤ z ≤ q − 1,HW(z) = h}
2: y

$←− Y

3.3.2 TVLA for HW model

For TVLA, we usually compare two groups of test vectors with Welch’s t-test. First we
need to determine how many test vectors are placed in each group. Denote NA the
number of test vectors in group A and NB the number of test vectors in group B. Then
we need to determine which stage to bias and set parameters (i, h, k). By performing a
fixed-vs-random TVLA in Algorithm 4, we acquire our traces T0, T1, . . . , TNA+NB−1,
where TraceAcquisition abstracts the collection of NTT traces.

24

Algorithm 4 TVLAFvRAcquisition
Input: NA, NB, (i, h, k)
Output: T0, T1, . . . , TNA+NB−1

1: jA := 0, jB := 0
2: n = 0
3: x := TVGenPlainHW(i, h, k)
4: while jA + jB < NA +NB do
5: rn

$←− {0, 1}
6: if rn = 0 and jA < NA then
7: Tn ← TraceAcquisition(NTT(x))
8: jA := jA + 1
9: n := n+ 1

10: else if rn = 1 and jB < NB then
11: x′

$←− [0, q − 1]256

12: Tn ← TraceAcquisition(NTT(x′))
13: jB := jB + 1
14: n := n+ 1
15: end if
16: end while

Then our fixed group, group A, would be A := {Tn|rn = 0}. Our random group, group
B, would be B := {Tn|rn = 1}. Note that each Tn is a collection of measurement points
{(0, v0), (1, v1), . . . , (τ, vτ)} where τ is the total number of time points collected for NTT.
v0 is the voltage signal from the current probe at t = 0, and vτ is the voltage signal from
the current probe at t = τ . For convenience of notation, we treat each Tn as a function
Tn : t 7→ v, with Tn(0) = v0, Tn(1) = v1, . . . , Tn(τ) = vτ , where t = 0 is the beginning of
NTT, and t = τ is the end of NTT. Then for each time point, we perform a Welch’s
t-test among these two groups. To reduce ambiguity, denote t-values with the Gothic T.
We then have, for each time t, a t-value Tt computed by

Tt =
At −Bt√
s2At
NA

+
s2Bt
NB

(3.4)

where s is the corrected sample standard deviation, At = {T (t)|T ∈ A} and
Bt = {T (t)|T ∈ B}. For all t = 0, 1, . . . , τ , if there exists one t such that |Tt| > 4.5, we
will have a > 99.999% confidence that the device leaks side-channel information.
However, to confirm that the device is leaky, we usually repeat TVLA at least twice to
confirm that the same t point gives us |Tt| > 4.5.
For fixed-vs-fixed TVLA in Algorithm 5, everything is similar to Algorithm 4, with one
difference that x′ is generated after line 3 (highlighted in red), so x′ is still random, but
stays the same during the TVLA.

25

Algorithm 5 TVLAFvFAcquisition
Input: NA, NB, (i, h, k)
Output: T0, T1, . . . , TNA+NB−1

1: jA := 0, jB := 0
2: n = 0
3: x := TVGenPlainHW(i, h, k)

4: x′
$←− [0, q − 1]256

5: while jA + jB < NA +NB do
6: rn

$←− {0, 1}
7: if rn = 0 and jA < NA then
8: Tn ← TraceAcquisition(NTT(x))
9: jA := jA + 1

10: n := n+ 1
11: else if rn = 1 and jB < NB then
12: Tn ← TraceAcquisition(NTT(x′))
13: jB := jB + 1
14: n := n+ 1
15: end if
16: end while

The computation for Tt and the choice of threshold are all the same with the
fixed-vs-random case.

3.4 HD Model

TVLA with HD model reveals if a device is leaking the Hamming distance when
computing a certain NTT stage. More precisely, if y is the output of the (i− 1)-th stage,
we would like to know if the device leaks HD(y, Si(y)). Note that
HD(y, Si(y)) = HW(y ⊕ Si(y)) where ⊕ is the XOR operation.

3.4.1 Test Vector Generation

Our test vectors intend to create an intermediate stage with low Hamming distance
between its input and output. These test vectors are suitable for both fixed-vs-fixed and
fixed-vs-random TVLA. More precisely we want to find input x ∈ Z256

q of NTT with
threshold k ∈ [0, 5888] such that at stage i ∈ [1, 8], the Hamming distance
HD(y, Si(y)) ≤ k where y = Si−1 ◦ Si−2 ◦ · · · ◦ S1(x). Although ideally, adjacent stages
should have larger HD compared to the biased stage HD(S−1

i (y), y) ≥ HD(y, Si(y)) and
HD(Si(y), Si+1Si(y)) ≥ HD(y, Si(y)) for a clear signal, we usually do not enforce this as it
could introduce unnecessarily high computational overhead.
Biasing a HD model is harder than biasing the HW model, because it essentially asks
“how many bits are flipped after applying a linear transformation”, which appears random
and lacks proper mathematical tools to tackle the problem. In this case, we can either
exploit the “zero trick” (Algorithm 6) or brute-force (Algorithm 8). Instead of considering
all 256 coefficients, we break one stage into blocks, and only consider one NTT butterfly
per block. This would make the “zero trick” clearer, and the brute-forcing easier.
Recall that butterflies in a block are essentially bijective linear transformations

Bζ : Z2
q → Z2

q of form Bζ =

(
1 ζ
1 −ζ

)
. Given an input (α, β), the output is

26

(α+ ζβ, α− ζβ). If β = 0, we have input (α, 0) and output (α, α), so the Hamming
distance is HW(α). In this case, between stages, we are able to achieve a Hamming
distance from 0 to 128× 23 = 2944. Again, for convenience we only consider threshold
k ∈ [0, 200] so we can reuse the Partition function in Algorithm 2. It is also possible to
play the “zero trick” on the first entry with inputs like (0, β) but the idea is similar.

Algorithm 6 TVGenPlainHDZero
Input: (i, k) ∈ [1, 8]× [0, 200]
Output: x ∈ [0, q − 1]256

1: (k0, k1, . . . , k255)← Partition(k)
2: (idx0, idx1, . . . , idx255) := Index(i)
3: for j = 0, 1, . . . , 127 do
4: yidx2j ← ReverseHW(k2j + k2j+1)
5: yidx2j+1

:= 0
6: end for
7: x := S−1

1 ◦ · · ·S
−1
i−2 ◦ S

−1
i−1(y)

We need to figure out the indices for each butterfly in each stage, by Algorithm 7.

Algorithm 7 Index
Input: i ∈ [1, 8]
Output: (idx0, idx1, . . . , idx255) ∈ [0, 255]256

1: for j = 0, 1, . . . , 2i−1 − 1 do
2: for k = 0, 1, . . . , 28−i − 1 do
3: idxj·29−i+2k := j · 29−i + k
4: idxj·29−i+2k+1 := j · 29−i + k + 28−i

5: end for
6: end for

Another way of generating test vectors is by a brute-force searching of all possible inputs
(α, β) ∈ [0, q − 1]2 of a butterfly (note that α and β start from 1 because there is no need
to brute-force anything that can be found with “zero trick”). In this case, it is better to
first determine the threshold per butterfly k′ empirically from the total threshold. For
example, we want to bias stage i = 2 with total threshold k = 500. There are 2 blocks in
stage 2, and in our case it is better to set k′ = 10 and gather one data (α, β) by
brute-forcing one of the two blocks (ζ = ψ64 or ζ = ψ192). Then we duplicate (α, β) for
m = 50 times, and leave all other butterflies (0, 0).

27

Algorithm 8 ButterflyBruteForcing
Input: (ζ, k′) ∈ {ψn ∈ Zq|n ∈ [0, 255]} × [1, 23]
Output: (α, β) ∈ [0, q − 1]2

1: i := 1, j := 1
2: (α, β) := ⊥
3: while (α, β) = ⊥ do
4: if HD(i, i+ ζj) + HD(j, i− ζj) ≤ k′ then
5: (α, β) := (i, j)
6: else if j = q − 1 then
7: j := 1
8: i := i+ 1
9: else

10: j := j + 1
11: end if
12: end while

Then we can build test vectors by stacking ButterflyBruteForcing(ζ, k′) for m times,
and fill 0 with other butterflies in the same block.

3.4.2 TVLA for HD Model

The fixed-vs-random and fixed-vs-fixed TVLA for HD model are exactly the same with
TVLA for HW model. The only difference is to replace the TVGenPlainHW function
with TVGenPlainHDZero or results from ButterflyBruteForcing, in both
Algorithm 4 and 5.

3.4.3 Performance Evaluation

We implemented the brute-forcing algorithm in C language, with maximal parallelism
and compiler optimization. Then we run the code on a Windows 10 desktop, with an
Intel i7-7700K CPU at 4.2 GHz and 32 GB RAM. For benchmarking, we brute-force the
first butterfly of NTT, namely with ζ = ψ128. We record the approximate time T elapsed
for generating 1000 test vectors satisfying a threshold k′. The time for generating 1 test
vector is then T

1000 . The measurement is summarized in Table 3.2.

HD Threshold Time Elapsed for Generating 1 TV
10 35 µs
9 160 µs
8 600 µs
7 3.5 ms
6 20 ms
5 200 ms

Table 3.2: Time for brute-forcing one test vector given HD threshold.

We have also brute-forced all possible input for the first butterfly, which took less than 3
days on the desktop. Out of (q − 1)2 cases, there are 4 inputs with Hamming distance 1,
286 cases with Hamming distance 2, and 7482 cases with Hamming distance 3.
Interestingly there is 1 input (4553774, 3115892) with Hamming distance 46, so all bits
are flipped after linear transformation.

28

3.5 ID Model

Recall the discussion about ID model in Section 2.1.1, the model assumes that only the
same intermediate value can produce the same power consumption. Therefore, test vector
generation and TVLA for ID model of plain NTT is trivial, because we expect to find
leakage between any two test vectors that are different. For fixed-vs-random TVLA, we
fix one random vector x $←− [0, q − 1]256 and test against other varying random vectors.
For fixed-vs-fixed TVLA, we fix two random vectors x, x′ $←− [0, q − 1]256 and test against
each other.

29

Chapter 4

GKS20 NTT

The GKS20 implementation [21][16] is a popular optimized implementation for ARM
Cortex-M4 microcontroller. It is also the Dilithium NTT implemented in Piñata.

4.1 Differences between GKS20 and Plain NTT

The GKS20 implementation differs from the plain NTT in the following aspects:

• Integers in GKS20 are signed 32-bit. This means negative values have the highest
Hamming weights.

• GKS20 implementation uses Montgomery multiplication with lazy reduction. ζ’s are
pre-computed and stored in Montgomery domain.

• GKS20 implements 2-level merging.

Each aspect could affect both test vector construction and power traces.

Integer Representation

Since integers have been stored as 32-bit 2-complement signed numbers, the computation
for HW and HD and function such as ReverseHW should adapt to this construction. In
particular, HW should compute a number using its signed 32-bit representation, similar
to HD. We will adapt ReverseHW into ReverseSignedHW for giving a result within
the correct range.

Montgomery Multiplication and Lazy Reduction

For convenience of discussion in this section, we use a slightly larger range [− q
2 ,

q
2] instead

of [− q−1
2 , q−1

2], and [−q, q] instead of [−(q − 1), q − 1], and so on. In our previous
discussion about plain NTT without Montgomery, each stage Si is a bijective linear
transformation [0, q]256 → [0, q]256, or effectively with a signed range [− q

2 ,
q
2]→ [− q

2 ,
q
2].

Montgomery multiplication has one property: the result of Montgomery multiplication is
in a larger range [−q, q]. With Montgomery multiplication, in the first stage, the result of
ζβ is extended to [−q, q], and thus result of a butterfly α± ζβ is in range [−3q

2 ,
3q
2]. Note

that the result of the first stage is input of the second stage, thus when computing ζβ in
the second stage, β is in range [−3q

2 ,
3q
2], but ζβ is in range [−q, q] again, because it is the

result of a Montgomery multiplication. Since α is in range [−3q
2 ,

3q
2], the results of second

stage will then be in range [−5q
2 ,

5q
2]. In the end, the largest range of intermediate value

30

in the whole GKS20 NTT is [−17q
2 ,

17q
2]. Large values can only be attained by coefficients

that do not undergo Montgomery multiplication, for example the 0-th coefficient of the
whole NTT input. From numerical simulation, we realized that almost all intermediate
values lie in range [−4q, 4q].
Montgomery multiplication with lazy reduction not only makes our bruteforcing for a
deeper stage harder, but also ruins the one-to-one correspondence between (α, β) and
(α+ ζβ, α− ζβ). In other words, a butterfly is not a bijective linear transformation
anymore, because the result of Montgomery multiplication ζβ will randomly fall either in
range [− q

2 ,
q
2], or in range [−q,− q

2] ∪ [q2 , q], and accumulated through stages due to lazy
reduction.
However, Montgomery multiplication is not utterly disastrous. Fix ζ and denote

Mζ :

[
−3q

2
,
3q

2

]
→ [−q, q] (4.1)

β 7→ ζβ (4.2)

This Mζ will mimic the Montgomery multiplication in most cases. If we set ζ = 25847,
which is the ζ used in the entire first stage, a preliminary computation reveals
Mζ(−1) =Mζ(−1 + q), and Mζ(1) =Mζ(1− q). This hints that the range of Mζ does
not fill all of [−q, q] but is restricted to a smaller range. With numerical simulation, we
discovered that that range of Mζ is always only slightly larger than [− q

2 ,
q
2], and the

mapping Mζ is almost 3-to-1. (Similarly, we also simulated the case where β ∈ [−q, q] and
β ∈ [−2q, 2q], the range of ζβ is similar and the mappings are almost 2-to-1 and almost
4-to-1 correspondingly.) The range of Mζ associated to the first 30 ζ’s are computed in
Table 4.1. For each Mζ , we also find ε > 0 such that its range is within [− q

2 − ε,
q
2 + ε].

31

ζ max(Mζ(β)) min(Mζ(β)) ε

25847 4190274 −4190274 66
−2608894 4197730 −4197730 7522
−518909 4191704 −4191704 1496
237124 4190893 −4190893 685
1826347 4195472 −4195472 5264
2353451 4196981 −4196981 6773
−777960 4192477 −4192477 2269
−359251 4191234 −4191234 1026
−2091905 4196223 −4196223 6015
−876248 4192747 −4192747 2539
3119733 4199217 −4199217 9009
−2884855 4198452 −4198452 8244
466468 4191550 −4191550 1342
3111497 4199262 −4199262 9054
2680103 4197869 −4197869 7661
2725464 4197878 −4197878 7670
2706023 4197967 −4197967 7759
95776 4190474 −4190474 266
1024112 4193173 −4193173 2965
3077325 4199121 −4199121 8913
3530437 4200448 −4200448 10240
−1079900 4193335 −4193335 3127
−1661693 4194970 −4194970 4762
−3592148 4200600 −4200600 10392
3585928 4200517 −4200517 10309
−2537516 4197421 −4197421 7213
3915439 4201560 −4201560 11352
−549488 419178 −4191789 1581
−3861115 4201506 −4201506 11298
−3043716 4199060 −4199060 8852

Table 4.1: Ranges of Montgomery multiplication output.

This implies that even if our β’s are from a larger range, if β1 ≡ β2 (mod q), we have
very high chance that ζβ1 = ζβ2 ∈ [− q

2 ,
q
2],

Level Merging

In plain NTT or the Dilithium reference C implementation, NTT is performed stage by
stage. Butterflies in the second stage are not executed unless the first stage is finished. In
GKS20, the first and second stages are computed together, exactly as in Figure 2.3 first
computing two butterflies of the first stage (red then orange), then two butterflies of the
second stage (yellow then green). In this case, intermediate values of the first stage are
never stored in memory. Similarly, the third and fourth stages are computed together,
and intermediate values of the third stage are never stored in memory. This hints us that
for a software implementation like GKS20, per-stage leakages could be too crude,
especially for odd-numbered stages. For a more refined characterization of leakage, we
need to look into the leakage per butterfly in the next chapter.

32

4.2 Measurement Setup

We use Piñata board as our target device. Piñata is a development board modified and
programmed for side-channel analysis and fault injection training, with its firmware
developed by Riscure. It has a STM32F417IG processor with 32-bit ARM Cortex-M4F
core, operating at a clock frequency of 168 MHz. We use the UART Interface for
communication between our PC and Piñata board, through a FT232RL USB-TTL
adaptor. The baudrate is set at 115200, with a timeout of 0.01 second.
Power for Piñata board is supplied with 2 AA alkaline batteries. Between the power
supply and Piñata, we place a Riscure Inspector current probe for power consumption
signals.
We use a modified custom firmware for executing standalone NTT, made available at
https://github.com/sqmshossifrage/Pinata-dev.
We use PicoScope 5203 for triggering and power trace acquisition. The oscilloscope has a
vertical resolution of 8 bits, and a max sampling rate of 500 MSa/s when two channels
are used simultaneously. Table 4.2 summarizes our setup parameters.

Parameters Channel A Channel B
Signal Source Riscure Inspector current

probe
Trigger signal from Piñata
PC2 pin

Channel Range 200 mV 5 V
Trigger Threshold N/A 1 V
Trigger Direction N/A Rising
Trigger Delay N/A 5750

Coupling Type DC DC
Timebase 1

Sampling Rate 500 MSa/s 500 MSa/s
Pre-trigger Samples 0

Post-trigger Samples 34000

Oversample 0

Acquisition Mode Rapid Block Mode

Table 4.2: PicoScope setup parameters.

The PC used for trace acquisition has Intel i7-7600U processor, with 16 GB RAM and
Windows 11 Business (version 23H2) operating system. The acquisition scripts are
running in a Linux virtual machine. Unless otherwise specified, all TVLAs are performed
with collecting NA = NB = 1000 traces. Our acquisition scripts are running with Python
(version 3.11.8), PySerial (version 3.5), and the Python wrapper for PicoSDK. Our
acquisition rate for standalone NTT is about 4 traces per second. We also transform our
traces into .trs files with Riscure’s python-trsfile tool (version 2.2.2) and then use
Riscure’s Inspector SCA software (version 2024.1) for correlation analysis.
Figure 4.1 summarizes our hardware setup for trace acquisition.

33

Figure 4.1: Hardware setup for experiment.
34

4.3 Trace Example

We acquire two traces, and plot them as examples of GKS20 NTT traces in Figure 4.2.
The first input x_A has all its entries 0, and the second input x_B is a random input.
Detailed specification of these inputs are presented in Appendix A.1.

Figure 4.2: Example NTT traces with input x_A (left) and input x_B (right).

4.4 HW Model

4.4.1 Test Vector Generation

We need modifications to plain NTT test vector generation (Algorithm 1) in order to
generate better test vectors for GKS20. Specifically, we need to modify Algorithm 3 into
Algorithm 9, and HW here will compute the Hamming weight of a 32-bit signed integer.

Algorithm 9 ReverseSignedHW
Input: h ∈ [0, 32]
Output: y ∈ [− q−1

2 , q−1
2]

1: Y := {z ∈ Z| − q−1
2 ≤ z ≤

q−1
2 ,HW(z) = h}

2: y
$←− Y

We define GKS20NTT(x, i) an algorithm that takes x ∈ [− q−1
2 , q−1

2]256 and i ∈ [0, 8],
that outputs y ∈ Z256 the intermediate values of i-th stage. Note that due to
Montgomery multiplication, y sits in a bigger set compared to x.
When generating test vectors, the strategy is to first generate a test vector similar to
Algorithm 1, and then evolve it to stage i using GKS20 NTT instead of Plain NTT. We
introduce a new threshold h′ regarding the HW of GKS20 NTT at the biased stage. Then,
we check both thresholds and see if the test vector satisfies them. The whole process is
summarized in Algorithm 10.

35

Algorithm 10 TVGenGKS20HW

Input: (i, h, h′, k) ∈ [1, 8]× [0, 200]2 × [0, 5688]
Output: x ∈ [− q−1

2 , q−1
2]256

1: x := ⊥
2: while x = ⊥ do
3: (h0, h1, . . . , h255)← Partition(h)

4: σ
$←− Sym([0, 255])

5: for j = 0, 1, . . . , 255 do
6: y′σ(j) ← ReverseSignedHW(hj)
7: end for
8: y′ := (y′0, y

′
1, . . . , y

′
255)

9: x′ := S−1
1 ◦ · · ·S

−1
i−1 ◦ S

−1
i (y′)

10: y := GKS20NTT(x′, i)
11: if |HW(y)− HW(GKS20NTT(x′, i− 1))| ≥ k and HW(y) ≤ h′ then
12: x := x′

13: end if
14: end while

In particular, usually we have y′ > y (which is acceptable if the threshold h′ is satisfied),
but we could find one case of y′ = y with less than 20 trials for smaller i and h, for
example, i = 3 and h ≤ 20.
The discussion for k is similar to the discussion in Section 3.3.1 of plain NTT. Usually we
set k = 0 to avoid the computational cost. Moreover, with Montgomery multiplication,
we usually observe a larger gap between Hamming weight of the biased stage and
unbiased stage, so usually we are granted to satisfy a large k for free.

4.4.2 TVLA for HW Model

For GKS20 NTT, there is not much difference in TVLA trace acquisition compared to
plain NTT. The only difference being replace TVGenPlainHW (Algorithm 1) with
TVGenGKS20HW (Algorithm 10) in TVLAFvRAcquisition (Algorithm 4) and
TVLAFvRAcquisition (Algorithm 5). The computation for Welch’s t-test remains the
same as in Section 3.3.2.

4.4.3 Experiment Result

First we bias the second stage and generate a fixed test vector x_A with parameters
i = 2, h = 50, h′ = 100, k = 0. The test vector is included in the Appendix A.2.1. In this
case, we have biased the second stage of x_A to have Hamming weight 94. The evolution
for Hamming weights for each stage (with Stage 0 the input vector) of x_A is summarized
in Table 4.3. We also summarize the evolution for Hamming weights of x_B, where x_B is
the other fixed vector in fixed-vs-fixed TVLA, specified in Appendix A.2.2.

Stage 0 1 2 3 4 5 6 7 8
HW
of x_A

1037 595 94 555 1626 2754 4084 4209 3989

HW
of x_B

3912 3875 3907 3899 3981 4043 3854 4014 3746

Table 4.3: GKS20 Test Vector HW Evolution.

36

We then perform fixed-vs-random TVLA, with NA = NB = 1000 and we plot the first 5
fixed traces, and the first 5 random traces.

Figure 4.3: Example plots of 5 fixed (left) and 5 random (right) traces during
fixed-vs-random TVLA for HW model.

We also perform fixed-vs-fixed TVLA, with NA = NB = 1000, and test vectors specified
in the Appendix A.2.2.

Figure 4.4: Example plots of 5 fixed x_A (left) and 5 fixed x_B (right) traces
during fixed-vs-fixed TVLA for HW model.

The t-values versus time plots are shown in Figure 4.5.

37

Figure 4.5: Example t-values in fixed-vs-random (left) and fixed-vs-fixed (right)
TVLA for HW model.

Results for both experiment are summarized in Table 4.4.

Fixed-vs-Random Fixed-vs-Fixed
Max t-value 446.576 2167.06

Time offset for max t-value 3904 15755

Min t-value −530.07 −3174.96
Time offset for min t-value 2683 6372

Leakage detected Yes Yes

Table 4.4: GKS20 NTT TVLA for HW model.

4.5 HD Model

4.5.1 Test Vector Generation

Note that even with Montgomery multiplication, the “zero trick” and brute force still
works. The only difference is that we need to compute the signed Hamming weight of
32-bit numbers, instead of the unsigned counterpart. Moreover, we need to evolve the
test vector to the biased stage and inspect if the Hamming distance is still biased, up to a
tolerance of k′, just as the h′ in TVGenGKS20HW (Algorithm 10).
A numerical simulation of averaging the Hamming distance of 1000000 trials of two
random numbers shows that HD(x, x′) features a double peaked distribution with an
average of 16 for x, x′ $←− [− q−1

2 , q−1
2]. The double peaked shape is a result of the

2-complement representation of negative numbers. The histogram of HD(x, x′) is plotted
in Figure 4.6.

38

Figure 4.6: Histogram of Hamming distance for two random numbers.

Notice that a butterfly is a 2-by-2 transformation involving the Hamming distance
change of 2 coefficients. If we assume a linear transformation changes the bits in the
input vector randomly, a total Hamming distance of a butterfly is then the sum of two
random variables following the above distribution. After randomly sampling 1000000
pairs of random inputs and outputs, we have obtained the Hamming distance distribution
of a butterfly plotted in Figure 4.7.

39

Figure 4.7: Histogram of Hamming distance for butterfly.

We have only obtained 41 occurrences with Hamming distance of a butterfly less than 10.
An empirical estimation shows that, biasing each butterfly with Hamming distance less
than 10 gives us a bias such that a random butterfly only has about 0.04% chance of
attaining a comparable Hamming distance.
This suggests that setting a k′ ≤ 128 ∗ 10 = 1280 is usually sufficient for TVLA.
Algorithm 11 summarizes the modified “zero trick” specifically for GKS20 NTT.

40

Algorithm 11 TVGenGKS20HDZero

Input: (i, k, k′) ∈ [1, 8]× [0, 1280]2

Output: x ∈ [− q−1
2 , q−1

2]256

1: x := ⊥
2: while x = ⊥ do
3: (k0, k1, . . . , k255)← Partition(k)
4: for j = 0, 1, . . . , 127 do
5: yidx2j ← ReverseSignedHW(k2j + k2j+1)
6: yidx2j+1

:= 0
7: end for
8: x′ := S−1

1 ◦ · · ·S
−1
i−2 ◦ S

−1
i−1(y)

9: if HD(GKS20NTT(x′, i− 1),GKS20NTT(x′, i)) ≤ k′ then
10: x := x′

11: end if
12: end while

4.5.2 TVLA for HD Model

There is not much difference in TVLA trace acquisition compared to plain NTT. The
only difference is to replace TVGenPlainHW with TVGenGKS20HDZero in
TVLAFvRAcquisition and TVLAFvRAcquisition. The computation for Welch’s
t-test remains the same as in Section 3.3.2.

4.5.3 Experiment Result

We use TVGenGKS20HDZero with parameter i = 2, k = 250, k′ = 500 and generate a
fixed test vector. The test vector is included in Appendix A.3.1. In this case, we have
biased the second stage of x_A to have Hamming distance 307. The evolution for
Hamming distances for each stage (with Stage 0 the input vector) of x_A is summarized
below. We also summarize the evolution for Hamming distances of x_B, where x_B is the
other fixed vector in fixed-vs-fixed TVLA, specified in Appendix A.3.2. Note that Stage i
here denotes “the Hamming distance between the input and the output of Stage i”.

Stage 1 2 3 4 5 6 7 8
HD of
x_A

1055 307 3603 3971 3850 3906 3664 3799

HD of
x_B

3845 3682 3670 3614 3718 3667 3648 3692

Table 4.5: GKS20 Test Vector HD Evolution.

We then perform fixed-vs-random TVLA, with NA = NB = 1000 and we plot the first 5
fixed traces, and the first 5 random traces.

41

Figure 4.8: Example plot of 5 fixed (left) and 5 random (right) traces during
fixed-vs-random TVLA for HD model.

We also perform fixed-vs-fixed TVLA, with NA = NB = 1000, and test vectors specified
in Appendix A.3.2.

Figure 4.9: Example plot of 5 fixed x_A (left) and 5 fixed x_B (right) traces during
fixed-vs-fixed TVLA for HD model.

The t-values versus time plots are shown in Figure 4.10.

42

Figure 4.10: Example t-values in fixed-vs-random (left) and fixed-vs-fixed (right)
TVLA for HD model.

Results for both experiment are summarized in Table 4.6.

Fixed-vs-Random Fixed-vs-Fixed
Max t-value 386.69 1123.18

Time offset for max t-value 9094 4169

Min t-value −451.44 −1056.28
Time offset for min t-value 2552 5650

Leakage detected Yes Yes

Table 4.6: GKS20 NTT TVLA for HD model.

4.6 ID Model

ID model is similar to plain NTT, except we need a range [− q−1
2 , q−1

2] instead of
[0, q − 1]. Test vector generation and TVLA are also trivial. Note that this does not
necessarily imply that the result of TVLA based on ID model is trivial. Instead, devices
showing ID leakage should be assessed in a more detailed sense, as what we present in the
next chapter.

4.6.1 Experiment Result

Our test vectors x_A and x_B are specified in the Appendix A.4. For both TVLA, we use
NA = NB = 1000.
For fixed-vs-random TVLA, we plot the first 5 fixed traces, and the first 5 random traces.

43

Figure 4.11: Example plot of 5 fixed (left) and 5 random (right) traces during
fixed-vs-random TVLA for ID model.

For fixed-vs-fixed TVLA, we plot the first 5 fixed traces with input x_A, and the first 5
fixed traces with input x_B.

Figure 4.12: Example plot of 5 fixed x_A (left) and 5 fixed x_B (right) traces
during fixed-vs-fixed TVLA for ID model.

The t-values versus time plots are shown in Figure 4.13.

44

Figure 4.13: Example t-values in fixed-vs-random (left) and fixed-vs-fixed (right)
TVLA for ID model.

Results for both experiment are summarized in Table 4.7.

Fixed-vs-Random Fixed-vs-Fixed
Max t-value 105.24 1231.99

Time offset for max t-value 6384 8015

Min t-value −130.57 −1047.66
Time offset for min t-value 8048 7599

Leakage detected Yes Yes

Table 4.7: GKS20 NTT TVLA for ID model.

45

Chapter 5

GKS20 NTT Butterfly

From the previous chapter, we realized that Piñata leaks even with ID model. This
implies we could potentially characterize the leakage from Piñata in a greater depth. We
bias just a few butterflies of Piñata instead of biasing a whole stage. We will launch
semi-fixed-vs-random, and semi-fixed-vs-semi-fixed TVLA against the board.

5.1 Structure of a GKS20 NTT Butterfly

One GKS20 NTT Butterfly includes 5 instructions of ARM Assembly code.

.macro ct_butterfly_montg pol0, pol1, zeta, q, qinv, th, tl
smull \tl, \th, \pol1, \zeta
mul \pol1, \tl, \qinv // q is -qinv
smlal \tl, \th, \pol1, \q
sub \pol1, \pol0, \th
add.w \pol0, \pol0, \th

.endm

In particular, the first three instructions are Montgomery multiplication computing ζβ.
The last two instructions are linear combinations computing α∓ ζβ.
In addition, 4 butterflies are always grouped together to achieve a 2-level merging, In
each group, 4 ldr operations are performed before 4 butterfly operations. Then 4 str
operations are performed after butterfly operations to put the computation results back,
into the same memory places where they come from. Example assembly code of such
grouping is included in Appendix B.1.

5.2 ID Model

Since our target is just a few butterflies, and we already know that Piñata leaks with ID
model, it is natural for us to also assume that the butterflies would leak with ID model as
well.
To better understand leakage per butterfly, we only focus on the first two stages, thus we
will fix a few coefficients of input x = (x0, x1, . . . , x255). For example, if we want to fix
the first butterfly ever computed in the first stage, we fix input coefficients {x0, x128}. If
we want to fix the first 4 butterflies computed, with 2 of them in the first stage and 2 of
them in the second stage, we fix input coefficients {x0, x128, x64, x192}.

46

5.2.1 Test Vector Generation

When generating test vectors for ID model of butterflies, first we need to determine
constrains on coefficients by specifying C ⊆ [− q−1

2 , q−1
2]. For example, if we are interested

in leakage associated to secret key s1, we need to impose constraint xj ∈ [−4, 4] for all j,
and set C := [−4, 4]. Such C allows us to detect leakages that can potentially be exploited
later. Since we mainly use semi-fixed test vectors for GKS20 butterflies, we then need to
determine which coefficients to fix. The fixed coefficients, together with their values, are
denoted as a function F : [0, 255]→ C ∪ {⊥}. For example, if we want to fix the first 4
butterflies ever computed, with x0 = 1, x128 = −2, x64 = 3, x192 = −4, we just let

F : x 7→

1 if x = 0

−2 if x = 128

3 if x = 64

−4 if x = 192

⊥ otherwise

Test vectors are then generated by Algorithm 12.

Algorithm 12 TVGenGKS20BflyID

Input: C ⊆ [− q−1
2 , q−1

2], F : [0, 255]→ C ∪ {⊥}
Output: x ∈ C256

1: for j = 0, 1, . . . , 255 do
2: if F (j) ̸= ⊥ then
3: xj := F (j)
4: else
5: xj

$←− C
6: end if
7: end for
8: x := (x0, x1, . . . , x255)

5.2.2 TVLA for ID Model

For semi-fixed-vs-semi-fixed TVLA (Algorithm 13), we compare two groups with the
same constraint, but different fixed coefficients FA, FB. Usually, we perform experiments
with FA and FB fixing different values for coefficients at the same location. For example,
we have FA fixing x0 = 1 and x128 = −2; and FB fixing x0 = 0 and x128 = 1.
Occasionally, we fix coefficients at different locations, for example, FA fixing x0 = 1 and
x128 = −2; and FB fixing x0 = 1 and x1 = −2. The choice of FA, FB depends on the aim
of the experiments.

47

Algorithm 13 TVLASFvSFAcquisition
Input: NA, NB, C, FA, FB
Output: T0, T1, . . . , TNA+NB−1

1: jA := 0, jB := 0
2: n = 0
3: while jA + jB < NA +NB do
4: rn

$←− {0, 1}
5: if rn = 0 and jA < NA then
6: x← TVGenGKS20BflyID(C,FA)
7: Tn ← TraceAcquisition(NTT(x))
8: jA := jA + 1
9: n := n+ 1

10: else if rn = 1 and jB < NB then
11: x← TVGenGKS20BflyID(C,FB)
12: Tn ← TraceAcquisition(NTT(x′))
13: jB := jB + 1
14: n := n+ 1
15: end if
16: end while

For semi-fixed-vs-random TVLA, we use Algorithm 13 with a fixed FB(x) = ⊥ for all
x ∈ [0, 255].
Then the Welch’s t-test remains the same as in Section 3.3.2.

5.2.3 Experiment Result

We have conducted multiple experiments to reveal the leakage gradually. In Experiment
1, we confirm that leakage of a single butterfly is not only possible but shows up clearly.
In Experiment 2 we present a stronger leakage from 4 butterflies executed consecutively.
Experiment 3 shows the leakage from a single coefficient, and hints that leakages are
mostly from memory operations. Experiment 4 is a preliminary exploration of how much
of the leakage detected can be used in a template attack against secret key s1.
Experiment 5 shows that more leakage can be detected if we double the number of TVLA
traces.

Experiment 1

First we want to conduct a semi-fixed-vs-random TVLA, and a semi-fixed-vs-semi-fixed
TVLA, both with NA = NB = 1000, to confirm that leakage of a single butterfly actually
happens. We fix 2 input coefficients that belong to the same butterfly. We want to
choose a good butterfly for a clear signal, that is, the butterfly should not be too close to
the beginning or end of a stage (otherwise power consumption would mix with the
constant loading at beginning of this or next stage). Thus we choose C = [− q−1

2 , q−1
2]

and F, FA, FB all with x31, x159 fixed. The values of the fixed coefficients are specified in
Appendix B.2.1.
For semi-fixed-vs-random TVLA, we plot the first 5 semi-fixed traces, and the first 5
random traces.

48

Figure 5.1: Example plot of 5 semi-fixed (left) and 5 random (right) traces during
fixed-vs-random TVLA for Butterflies in ID model.

Since one butterfly is too fast (only 5 clock cycles), visual inspection does not show a big
difference. However, the highest t-value is attained at offset 5795 with value 18.16. We
plot 20 semi-fixed traces and 20 random traces between offset 5500 and 6000, to show
zoomed-in version of traces. The red vertical line marks the place where the largest
t-value is attained.

Figure 5.2: Zoomed in plot of 20 semi-fixed (left) and 20 random (right) traces
during semi-fixed-vs-random TVLA for butterflies in ID model.

For semi-fixed-vs-semi-fixed TVLA, we plot the first 5 semi-fixed traces with input x_A,
and the first 5 random traces with input x_B.

49

Figure 5.3: Example plot of 5 fixed x_A (left) and 5 fixed x_B (right) traces during
semi-fixed-vs-semi-fixed TVLA for butterflies ID model.

We also plot the zoomed-in version of traces, from the same 5500 to 6000 offset, with the
red vertical line indicates the place where the largest t-value is attained.

Figure 5.4: Zoomed in plot of 20 semi-fixed x_A (left) and 20 semi-fixed x_B
(right) traces during semi-fixed-vs-semi-fixed TVLA for butterflies in ID model.

The t-values versus time plots are shown in Figure 5.5.

50

Figure 5.5: Example t-values in fixed-vs-random (left) and fixed-vs-fixed (right)
TVLA for ID model.

Results for both experiment are summarized in Table 5.1.

Semi-Fixed-vs-Random Semi-Fixed-vs-Semi-Fixed
Max t-value 18.16 18.92

Time offset for max t-value 5795 5802

Min t-value −8.12 −16.72
Time offset for min t-value 5707 5713

Leakage detected Yes Yes

Table 5.1: GKS20 NTT Butterfly Experiment 1.

This experiment concludes that even a single butterfly would leak side-channel
information.

Experiment 2

We perform a similar experiment to Experiment 1, but with 4 consecutive butterflies
fixed. Two of the butterflies are in Stage 1, and two of the butterflies are in Stage 2,
because of the 2-level merging. Therefore, we are going to fix x31, x95, x159, x223 in all
F, FA, FB. The test vectors are specified in Appendix B.2.2. Since we are biasing more
butterflies, we expect to see a stronger and clearer t-value result.
Since visual inspection does not help much in these semi-fixed TVLA, we would not show
the plots for traces. The t-values are plotted in Figure 5.6.

51

Figure 5.6: Example t-values in fixed-vs-random (left) and fixed-vs-fixed (right)
TVLA for 4 butterflies in ID model.

Results for both experiment are summarized in Table 5.2.

Semi-Fixed-vs-Random Semi-Fixed-vs-Semi-Fixed
Max t-value 12.73 28.42

Time offset for max t-value 5795 5719

Min t-value −36.43 −40.02
Time offset for min t-value 5787 5796

Leakage detected Yes Yes

Table 5.2: GKS20 NTT Butterfly Experiment 2.

This experiment concludes that when fixing 4 butterflies, it would show a stronger
leakage of side-channel information.

Experiment 3

Now we have identified leakages within a single butterfly. However, we are not sure if the
leakage is from the memory operations (ldr and str), or the Montgomery multiplication
and linear combination. The following experiment hints us that at least part of our
leakage is from the ldr operation.
We perform a similar experiment to the semi-fixed-vs-random version of Experiment 1,
but with only 1 input coefficient fixed. In particular, we use F with x31 fixed. The test
vector is specified in Appendix B.2.3. Notice that in this case, the only difference
between a semi-fixed test vector and a random test vector is the loading part with ldr.
The semi-fixed test vector will load exactly the same coefficient x31 for every run, while
the random test vector will load different values for x31. Since the other coefficient of the
same butterfly, x159, is random per every run for semi-fixed test vectors, the butterfly
operations and str operations are essentially processing random inputs. Thus the only
difference between the semi-fixed and the random test vectors is the ldr operation.

52

Figure 5.7: Example t-values in semi-fixed-vs-random TVLA for a single coeffi-
cient in ID model.

Results for the experiment are summarized in Table 5.3.

Semi-Fixed-vs-Random
Max t-value 10.65

Time offset for max t-value 5768

Min t-value −7.50
Time offset for min t-value 6030

Leakage detected Yes

Table 5.3: GKS20 NTT Butterfly Experiment 3.

This experiment concludes that ldr does leak side-channel information.

Experiment 4

In this experiment, we try to use an input that mimics the structure of the secret key s1
of Dilithium. That is, we use restriction C = [−4, 4] to make sure coefficients are within
this range. We would like to perform 2 semi-fixed-vs-semi-fixed experiments, by fixing
the same places, again x31, x159 with FA = FB. This experiment will show how much the
leakages are actually exploitable. If we can observe strong leakage by comparing two
different input, we could use the leakage to reduce the entropy for the secret key. In

53

particular, this time we use hand-crafted test vectors with specific features. In the first
experiment, we compare (x31, x159) = (0, 0) versus (x31, x159) = (1, 0). Note that these
butterflies have a special property that, the output is the same as the input. Moreover,
both Hamming weight differences and Hamming distances between (0, 0) and (1, 0) are
quite small. Had we observed any leakage in this experiment, we could conclude that the
butterflies are leaking with ID model. In the second experiment, we compare
(x31, x159) = (0, 0) versus (x31, x159) = (0, 1). Notice that for this example, the output for
a butterfly with input (0, 1) would be (ζ,−ζ), and ζ usually has larger Hamming weights.
Test vectors are specified formally in Appendix B.2.4.

Figure 5.8: Example t-values in semi-fixed-vs-semi-fixed TVLA for first (left) and
second (right) experiments.

Results for the experiment are summarized in Table 5.4.

Semi-Fixed-vs-Semi-Fixed
First

Semi-Fixed-vs-Semi-Fixed
Second

Max t-value 3.31 28.92

Time offset for max t-value 2420 5711

Min t-value −3.61 −10.54
Time offset for min t-value 24471 5973

Leakage detected No Yes

Table 5.4: GKS20 NTT Butterfly Experiment 4.

This experiment concludes that butterflies are probably not leaking according to ID
model, because the first experiment does not show leakage. It also tells us that some
butterfly inputs are very hard to distinguish, thus less exploitable; while some other
butterfly inputs are easy to distinguish, thus more exploitable in a template attack.

Experiment 5

We conduct a further experiment to investigate the number of traces needed to detect a
leakage. We again perform two experiments, both with the same coefficients X31, x159
fixed with the same values: (0, 2) versus (0, 4). In the first experiment, we use the
ordinary NA = NB = 1000 number of traces throughout our whole thesis. In the second
experiment, we double the number of traces collected for both Group A and Group B

54

NA = NB = 2000. The experimental result shows that while increasing the number of
traces, some inputs could show leakage that is not otherwise observed with less traces.
The test vectors are specified in Appendix B.2.5.

Figure 5.9: Example t-values in semi-fixed-vs-semi-fixed TVLA for first (left) and
second (right) experiments.

Results for the experiment are summarized in Table 5.5.

Semi-Fixed-vs-Semi-Fixed
First

Semi-Fixed-vs-Semi-Fixed
Second

Max t-value 3.63 3.77

Time offset for max t-value 16007 16015

Min t-value −3.65 −6.57
Time offset for min t-value 5749 5754

Leakage detected No Yes

Table 5.5: GKS20 NTT Butterfly Experiment 5.

5.3 Correlation Analysis

We already know from the assembly code that with each iteration, 4 butterflies are
enclosed by 4 memory reading and 4 memory writing operations. We are also hinted that
the ldr operation would leak side-channel information. However, we are not sure if there
is any other part that leaks more side-channel information. Also we have used the ID
model for most of the discussion, but we also realize that the ID model does not best
describe the leakage presented in Piñata. Thus we perform a correlation analysis and
figure out which factor contributes the most to the traces.
Correlation analysis is similar to DPA, but without the attack part. We first collect N
traces with known input x. Each trace is collected with NIP time points. For each trace,
we select and compute intermediate values of our interest. Then for a specific type of
intermediate value, we compute the correlation of that value and the trace voltage for
every time point.
In our experiment, we collect N = 10000 traces, with known but random input
x

$←− [− q−1
2 , q−1

2]. For each trace, we collect with NIP = 34000 time points. We choose our

55

interesting intermediate values by grouping 4 input coefficients, where these 4 coefficients
are computed in the same iteration of Stage 1 and 2 (2 butterflies in Stage 1 and 2
butterflies in Stage 2). Since the number of input coefficients is 256, we have 256

4 = 64
such groupings. For each grouping, the interesting intermediate values of our choice are

• Hamming weights of 4 input coefficients. This indicates the correlation between ldr
and power consumption.

• Hamming weights of 4 Stage 2 output. Notice that the output coefficients after
Stage 2 stay at the same place as the input coefficients. This indicates the
correlation between str and power consumption.

• Hamming weights of 4 input and 4 Stage 2 output combined. Note that this
combines the ldr and str, thus indicates the correlation between memory
operations and power consumption.

• Hamming weights of 4 Stage 1 output. Note that the results of Stage 1 are never
stored in the memory. This reveals the effectiveness of biasing the Hamming weight
of an odd-numbered stage in this 2-level merged GKS20 implementation.

• Hamming distance of 4 input coefficients and 4 Stage 1 output. This reveals the
effectiveness of biasing the Hamming distance of a single stage in GKS20
implementation.

• Hamming distance of 4 input coefficients and 4 Stage 2 output. This reveals the
effectiveness of biasing the Hamming distance of two stages in GKS20
implementation.

5.3.1 Experiment Result

After computing the correlation for all the aforementioned interesting intermediate
values, we conclude that the str, and the ldr and str combined, have the best
correlation with our traces. This implies that the most leakage of NTT comes from
memory operation during execution of NTT.
We first plot the correlation of Hamming weight of input and Stage 2 output with
different grouping in Figure 5.10. Note that the 0-th grouping contains the very first 4
butterflies being computed, and the 63-th grouping contains the very last 4 butterflies
being computed during Stage 1 and 2. Moreover, the 31-th grouping contains the 4
butterflies that we have conducted the most of our TVLA experiments on. Notice that
correlation is a dimensionless value from −1 to 1. When reading the plots, the y-axis
always has range from −1 to 1. The *100m label indicates that the numbers on y-axis
should be read as multiplied with 100× 10−3 = 0.1. For example, the 5 labeled on the
y-axis actually represents 0.5, and the 10 labeled on the y-axis actually represents 1.
We realize that peaks of correlation are moving to the right when grouping indices
increase, because these peaks are roughly located at the place where these groupings are
executed, thus confirming the execution order of the groupings. For groupings with
smaller indices (0, 7, 15), correlations also propagate to deeper stages, especially in Stage
3 and 4. For groupings with larger indices (31, 63) correlations propagated to deeper
stages are negligible.

56

Figure 5.10: Correlation of Hamming weight of input and Stage 2 output with
0, 7, 15, 31, 63-rd grouping.

57

We also plot 5 traces on top of each other to illustrate the order of butterfly executions in
Figure 5.11. Here we stack plots from the 31-st grouping to the 35-th grouping and we
can clearly see the time progression of these butterfly groupings, although execution of a
grouping is very fast and the correlations are not very well separated among groupings.

Figure 5.11: Correlation of Hamming weight of input and Stage 2 output with
31-st to 35-th grouping stacking.

We would also include the correlation of just the input in Figure 5.12, and of just the
Stage 2 output in Figure 5.13. From visual inspection, we compare them with Figure 5.10
and conclude that the benefit of including the HW of the input in addition to the HW of
Stage 2 output is negligible. Therefore we believe Stage 2 output is likely to be the main
contributor for leakages, corresponding to the 4 memory writing operations within a
grouping.
Moreover, we realize that Stage 2 output is also Stage 3 input. Thus when computing
Stage 3 and Stage 4, these values are again loaded into memory with ldr. That is
probably the reason why we can observe correlations for Stage 2 output even in Stage 3
and Stage 4.

58

Figure 5.12: Correlation of Hamming weight of input alone, with 0, 31, 63-rd
groupings.

59

Figure 5.13: Correlation of Hamming weight of Stage 2 output alone, with
0, 31, 63-rd groupings.

60

We also test the HW of Stage 1, and discover that the HW of the Stage 1 output has a
noticeable correlation with our traces. We believe such correlation partly comes from the
parity of the input. However, the correlation of Stage 1 output is weaker than the
correlation of Stage 2 output. Therefore the correlation of Stage 1 is probably due to an
arithmetic relationship between the HW of intermediate values of Stage 1, and the HW of
intermediate values of Stage 2.

Figure 5.14: Correlation of Hamming weight of Stage 1 output alone, with
0, 31, 63-rd groupings.

61

We also realize that the Hamming distance models are not ideal in terms of correlating
with our traces. No noticeable correlation appears with the HD of either the first layer,
or the whole merged two layers. This suggests that for this software implementation, HD
model is not as realistic as HW model.

Figure 5.15: Correlation of Hamming distance of input and Stage 1 output, with
0, 31, 63-rd groupings.

62

Figure 5.16: Correlation of Hamming distance of input and Stage 2 output, with
0, 31, 63-rd groupings.

Recall that we can observe leakage by biasing Hamming distance per-stage in the
experiment summarized in Table 4.6. This does not contradict with our observation that
correlation of HD model is very low because the leakage in Table 4.6 does not come from
biasing the Hamming distance, but ID or HW leakages by fixing the butterflies.
Note that although the Hamming distance models do not work very well with Piñata or
the GKS20 implementation, they may work well with other hardware implementations.

63

Chapter 6

Template Attack

6.1 Secret Keys in Dilithium

Secret key of Dilithium contains two secret parts s1 and s2, both generated by the
ExpandS(ρ′) algorithm, where ρ′ is a 512-bit seed. In particular s1 contains 5 polynomials,
with each polynomial containing 256 coefficients, and each coefficient in range [−4, 4].
The total entropy for a single polynomial in s1 is then 256 · log2(9) ≈ 811.50 bits.
Knowing the full s1 is sufficient for the attacker to trivially recover the other secret part
s2. Therefore we focus on attacking the s1 parameter in Dilithium.
From an attacker’s point of view, usually the attacker does not have direct access to the
key generation Gen part of Dilithium. Instead, the IoT device pre-stores the secrets s1, s2
and only implements the signing Sign part of Dilithium. Thus usually the attacker only
has direct access to the signing part of Dilithium on a target, where NTT is performed
once on s1 each time a new message is signed. We aim to build templates on s1 and
compute the reduction in entropy for a single polynomial in s1.

6.2 Template Building

There are two different approaches to building the templates, each with its own trace-off.

1. Build templates on each input butterfly with ID model. In this case, we need to
build templates on 128 input butterflies. Each butterfly contains 2 coefficients, and
each coefficient contains 9 possibilities. Therefore for each butterfly we need to
build 92 = 81 templates. If we collect 2000 traces for each template, in total we
need to collect 81× 2000 = 162000 traces. Given an acquisition rate of 4 traces per
second, it takes about 12 hours to collect all traces. The storage required for all the
traces is 20.5 GB in a .trs file.

2. Build templates on each grouping of 2 input butterflies with ID model. In this case,
we need to build templates on 64 input butterfly groupings. Each butterfly grouping
contains 4 coefficients, and each coefficient contains 9 possibilities. Therefore for
each butterfly grouping we need to build 94 = 6561 templates. If we collect 2000
traces for each template, in total we need to collect 6561× 2000 = 13122000 traces.
Given an acquisition rate of 4 traces per second, it takes about 38 days to collect all
traces. The storage required for all traces is estimated at 1.66 TB.

The acquisition time for the first approach is feasible, but the accuracy for each template
could be lower than the second approach because the first approach does not combine the

64

leakages from the second layer. The second approach could provide better accuracy, but
the acquisition time and storage overhead made it nearly impossible to execute.
Therefore we follow the first approach and try to benchmark its performance.
For each possibility of the 0-th butterfly, we collect 2000 traces and their corresponding
NTT inputs for template building. Specifically, we collect 2000 traces with the 0-th and
128-th coefficients fixed at (α, β) = (−4,−4) and all the rest coefficients uniformly
random from [−4, 4]. We then collect 2000 similar traces with the 0-th and 128-th
coefficients fixed at (α, β) = (−4,−3), and so on. Note that it is in fact unnecessary to
force an even number of traces per each possibility of the 0-th butterfly. Alternatively we
can just collect 162000 traces, all with uniformly random coefficients from [−4, 4]. All
input coefficients should be stored together with the traces.
After collecting all traces, we start to build templates on different butterflies. Recall that
there are 128 butterflies. For each butterfly, we compute the Points of Interest (POI)
using Riscure Inspector SCA. Ideally we want to pick POI from a more spread and
diverse distribution of time points, because leakages may propagate to a deeper stage,
and POI from these deeper stages can carry more information for our templates. We
realize that for some butterflies (such as the 0-th butterfly), SOSD gives a more spread
selection of POI while for other butterflies (such as the 1-st butterfly), SOST gives a
more diverse selection of POI. In the end we decide to combine both methods: we
compute the first 200 POI with SOSD as well as the first 200 POI with SOST, and then
take the union set of the two as our final POI. The computation for POI is done with
Riscure Inspector SCA software.
With one POI set for each butterfly, we build templates based on full multivariate
Gaussian distributions. By saying “full” we mean to use both mean and covariance in our
template building. Using only the mean will significantly decrease the quality of our
templates.
For performance evaluation, we in addition collect 10000 random evaluation traces with
coefficients in [−4, 4].

6.2.1 Experiment Result

We focus on templates built on the 0− 7-th, 64− 67-th, and 124− 127-th butterflies. In
other words, these butterflies are from the 0− 3-rd, 32− 33-rd, and 62− 63-rd groupings.
For each butterfly and each evaluation trace, we match the evaluation trace with all
templates, and compute the probability of all templates. We then sort the probabilities
in descending order, and figure out the ranking of the ground truth in this sorted list. For
example, if the ranking of ground truth is 0, it means our templates give the correct
prediction. If the ranking of ground truth is 1, it means the ground truth lies in the first
two predictions of our templates. Recall that there are 81 templates per butterfly, so a
ranking of 1 reduces the entropy of a butterfly from log2(81) ≈ 6.3 bits to 1 bit. In the
end, for each butterfly, we obtain 10000 rankings for every single evaluation trace, and a
histogram plot of rankings. For example, ranking histograms for the 0-th and 1-st
butterfly are shown in Figure 6.1.

65

Figure 6.1: Example histograms of rankings for template attack on 0-th (left)
and 1-st (right) butterflies.

Given a fixed butterfly, we can further break down the 10000 evaluation traces by ground
truths, and plot the ranking distribution for each ground truth. For example, ranking
histograms for the 64-th and 65-th butterflies on ground truths (0, 4) and (4, 0).

Figure 6.2: Example histograms of rankings for template attack on 64-th (left)
and 65-th (right) butterflies with ground truth (0, 4).

66

Figure 6.3: Example histograms of rankings for template attack on 64-th (left)
and 65-th (right) butterflies with ground truth (4, 0).

We can then compute the average best, median, and worst rankings for each butterfly,
and estimate the reduction of entropy for s1.

Butterfly Index Average Best Ranking Average Median Ranking Average Worst Ranking
0 26.88 39.89 54.12

1 2.51 33.44 66.48

2 0.81 40.04 79.25

3 0.51 31.63 76.94

4 0.53 39.33 79.22

5 0.30 31.86 77.23

6 0.40 39.77 79.44

7 0.19 32.78 78.07

64 0.22 39.70 79.41

65 0.19 30.00 77.80

66 0.32 39.67 79.32

67 0.23 30.17 77.64

124 0.78 39.09 78.95

125 0.52 32.38 76.75

126 2.95 39.81 75.21

127 2.72 34.48 73.51

averaged among
butterflies 2.50 35.88 75.58

Table 6.1: Best, median, and worst rankings for template attack, averaged among
all 81 possibilities.

In general we observe a better ranking with odd-indexed butterflies compared to
even-indexed butterflies, probably because more leakages are propagated to a deeper
stage with odd-indexed butterflies. To compute the reduction in entropy, we first increase
the rankings by 1 and then round up. Using the total average among butterflies, we have

• Best case scenario, entropy of a single polynomial in s1 is reduced to
128 · log2(⌈2.50 + 1⌉) = 256 bits, a 1− 256

811.5 ≈ 68.45% reduction.

67

• Median case scenario, entropy of a single polynomial in s1 is reduced to
128 · log2(⌈35.88 + 1⌉) ≈ 666.81 bits, a 1− 666.81

811.5 ≈ 17.83% reduction.

• Worst case scenario, entropy of a single polynomial in s1 is reduced to
128 · log2(⌈75.58 + 1⌉) ≈ 802.15 bits, a 1− 802.15

811.5 ≈ 1.15% reduction.

In conclusion, on average the leakage could at least reduce the entropy of s1 by 1.15%,
and at most by 68.45% with a single-trace template attack. Such reduction is far from a
realistic retrieval of secret key s1, but more serves as a benchmark for the advantage
gained by an attacker, even with a cheap and crude attack.

68

Chapter 7

Conclusion

We aim to fill the research gap of practically assessing the leakage of Dilithium NTT. We
first propose algorithms for generating per-stage biased test vectors for plain NTT in
Section 3.3 to 3.5, for all three power models: HW, HD, and ID. Our algorithm mainly
exploits the bijectivity of the NTT stages and evolves the desired stage back to the NTT
input.
We then analyze the differences between real-world NTT and plain NTT, and proposed
modified algorithms for generating per-stage biased test vectors for GKS20 NTT in
Section 4.4 to 4.6, again for all three power models: HW, HD, and ID. To figure out the
effectiveness of our test vectors, we then conducted experiment and evaluated the leakage
of Piñata when performing NTT. We have observed leakage from Piñata for all three
power models, with highest t-value 3174.96. Due to time limitation, we only investigate
one particular implementation of Dilithium NTT, namely GKS20. Future research
regarding leakage assessment on NTT could fall in the following categories, ranked from
more specific to more general.

• Design test vectors for other implementations of Dilithium NTT on ARM
Cortex-M4. For example, we may analyze the level merging in [1] that is different
from GKS20, and design optimized test vectors for this implementation.

• Investigate the implementations of Dilithium NTT on other architectures or
platforms. For example, we may design test vectors for software implementation on
Cortex A-72 and Apple M1 presented in [4]. In addition, leakages from hardware
implementations may drastically differ from software implementations. Therefore,
hardware implementation like [31] awaits further investigation as well.

• Evaluate the leakages from a SCA-protected implementation of Dilithium NTT. As
shown in Table 3.1, all implementations included in our research have no
side-channel mitigation at all. Thus we are curious about precisely how much
leakage can be reduced in protected NTT designs such as [39].

• Investigate NTT components in other ciphers such as Kyber, Falcon, NewHope, etc.
NTT components in other ciphers are likely to have different sizes with different set
of parameters. We may need to develop new test vector generation strategies for
these ciphers.

In addition, potential minor improvement to our test vector generation algorithms exits.
For example, Algorithm 2 uses an ad hoc uniform sampling for generating random integer
partition with constraint. A more elegant way is to implement the Fristedt’s method [14].

69

Inspired by the per-stage biased test vectors, we also propose algorithms for generating
per-butterfly biased test vectors for GKS20 NTT butterflies in Section 5.2 for ID model.
We conduct experiment and evaluate the per-butterfly leakage of Piñata. We have
observed leakage from Piñata for most cases with ID model, with highest t-value 40.02.
We also use correlation analysis in Section 5.3 to profile leakages of a few butterflies, and
conclude that most of the leakages come from memory operation, especially memory
writing.
Furthermore, we conduct a template attack against the NTT operation on the Dilithium
secret key s1. Results show at least a 1.15% reduction of entropy, and at most a 68.45%
reduction of entropy. The large gap between the minimal and maximal reduction of
entropy reveals that our attack robustness can be improved. In particular, if time
permits, we may collect more traces and build templates on butterfly grouping (4
coefficients) instead of a single butterfly (2 coefficients).
In conclusion, our work propose algorithms for generating test vectors for Dilithium
NTT, and effectively detect per-tage and per-butterfly leakages from the Piñata board.
We further identify the main source of leakage with correlation analysis, and conduct a
template attack to evaluate the reduction of entropy caused by the leakages.

70

Bibliography

[1] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Amber
Sprenkels. Faster kyber and dilithium on the cortex-m4. In Giuseppe Ateniese and
Daniele Venturi, editors, Applied Cryptography and Network Security, pages 853–871,
Cham, 2022. Springer International Publishing.

[2] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, page 99–108, New York, NY, USA, 1996. Association for
Computing Machinery. doi:10.1145/237814.237838.

[3] George Becker, Jim Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary
Kenworthy, Timofei Kouzminov, Andrew Leiserson, Mark Marson, Pankaj Rohatgi,
et al. Test vector leakage assessment (tvla) methodology in practice. In
International Cryptographic Module Conference, volume 1001, page 13. sn, 2013.

[4] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and
Shang-Yi Yang. Neon ntt: Faster dilithium, kyber, and saber on cortex-a72 and
apple m1. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022:221–244, 2021. URL:
https://api.semanticscholar.org/CorpusID:236941216.

[5] Luke Beckwith, Duc Tri Nguyen, and Kris Gaj. High-performance hardware
implementation of crystals-dilithium. In 2021 International Conference on
Field-Programmable Technology (ICFPT), pages 1–10, 2021.
doi:10.1109/ICFPT52863.2021.9609917.

[6] Daniel J Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost
Rijneveld, and Peter Schwabe. The sphincs+ signature framework. In Proceedings of
the 2019 ACM SIGSAC conference on computer and communications security, pages
2129–2146, 2019.

[7] Daniel J Bernstein and Tanja Lange. Post-quantum cryptography. Nature,
549(7671):188–194, 2017.

[8] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J. Lipton. Cryptographic
primitives based on hard learning problems. In Douglas R. Stinson, editor, Advances
in Cryptology — CRYPTO’ 93, pages 278–291, Berlin, Heidelberg, 1994. Springer
Berlin Heidelberg.

[9] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-kyber: a
cca-secure module-lattice-based kem. In 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 353–367. IEEE, 2018.

71

https://doi.org/10.1145/237814.237838
https://api.semanticscholar.org/CorpusID:236941216
https://doi.org/10.1109/ICFPT52863.2021.9609917

[10] James W Cooley and John W Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

[11] Frank Custers. Soft analytical side-channel attacks on the number theoretic
transform for post-quantum cryptography. Master’s Thesis, 2022. URL:
https://research.tue.nl/en/studentTheses/
soft-analytical-side-channel-attacks-on-the-number-theoretic-tran.

[12] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-based digital
signature scheme. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 238–268, 2018.

[13] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, Zhenfei
Zhang, et al. Falcon: Fast-fourier lattice-based compact signatures over ntru.
Submission to the NIST’s post-quantum cryptography standardization process,
36(5):1–75, 2018.

[14] Bert Fristedt. The structure of random partitions of large integers. Transactions of
the American Mathematical Society, 337(2):703–735, 1993. URL:
http://www.jstor.org/stable/2154239.

[15] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs. stochastic
methods. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware
and Embedded Systems - CHES 2006, pages 15–29, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[16] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Compact
Dilithium implementations on Cortex-M3 and Cortex-M4. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(1):1–24, December 2020.
Artifact available at https://artifacts.iacr.org/tches/2021/a1.
doi:10.46586/tches.v2021.i1.1-24.

[17] Qian Guo, Vincent Grosso, François-Xavier Standaert, and Olivier Bronchain.
Modeling soft analytical side-channel attacks from a coding theory viewpoint. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020.

[18] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas
Schamberger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal.
Chosen ciphertext k-trace attacks on masked cca2 secure kyber. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021(4):88–113, Aug. 2021.
URL: https://tches.iacr.org/index.php/TCHES/article/view/9061,
doi:10.46586/tches.v2021.i4.88-113.

[19] Kelsey A. Jackson, Carl A. Miller, and Daochen Wang. Evaluating the security
of crystals-dilithium in the quantum random oracle model. In Marc Joye and Gregor
Leander, editors, Advances in Cryptology – EUROCRYPT 2024, pages 418–446,
Cham, 2024. Springer Nature Switzerland.

[20] Aruna Jayasena, Emma Andrews, and Prabhat Mishra. Tvla*: Test vector leakage
assessment on hardware implementations of asymmetric cryptography algorithms.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023.

72

https://research.tue.nl/en/studentTheses/soft-analytical-side-channel-attacks-on-the-number-theoretic-tran
https://research.tue.nl/en/studentTheses/soft-analytical-side-channel-attacks-on-the-number-theoretic-tran
http://www.jstor.org/stable/2154239
https://artifacts.iacr.org/tches/2021/a1
https://doi.org/10.46586/tches.v2021.i1.1-24
https://tches.iacr.org/index.php/TCHES/article/view/9061
https://doi.org/10.46586/tches.v2021.i4.88-113

[21] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. pqm4:
Testing and benchmarking nist pqc on arm cortex-m4. Second NIST PQC
Standardization Conference, 2019. URL: https://eprint.iacr.org/2019/844.

[22] Mustafa Khairallah and Shivam Bhasin. Hardware implementation of masked skinny
sbox with application to aead. In Lejla Batina, Stjepan Picek, and Mainack Mondal,
editors, Security, Privacy, and Applied Cryptography Engineering, pages 50–69,
Cham, 2022. Springer Nature Switzerland.

[23] Markus Krausz, Georg Land, Jan Richter-Brockmann, and Tim Güneysu. Efficiently
masking polynomial inversion at arbitrary order. In Jung Hee Cheon and Thomas
Johansson, editors, Post-Quantum Cryptography, pages 309–326, Cham, 2022.
Springer International Publishing.

[24] Chris Lomont. The hidden subgroup problem-review and open problems. arXiv
preprint quant-ph/0411037, 2004.

[25] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Revealing the secrets of smart cards, volume 31. Springer Science & Business Media,
2008.

[26] Ahmet Can Mert, Emre Karabulut, Erdinç Öztürk, Erkay Savaş, and Aydin Aysu.
An extensive study of flexible design methods for the number theoretic transform.
IEEE Transactions on Computers, 71(11):2829–2843, 2020.

[27] Ahmet Can Mert, Ferhat Yaman, Emre Karabulut, Erdinç Öztürk, Erkay Savaş, and
Aydin Aysu. A survey of software implementations for the number theoretic
transform. In Cristina Silvano, Christian Pilato, and Marc Reichenbach, editors,
Embedded Computer Systems: Architectures, Modeling, and Simulation, pages
328–344, Cham, 2023. Springer Nature Switzerland.

[28] D. Micciancio and O. Regev. Worst-case to average-case reductions based on
gaussian measures. In 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 372–381, 2004. doi:10.1109/FOCS.2004.72.

[29] Daniele Micciancio and Chris Peikert. Hardness of sis and lwe with small
parameters. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, pages 21–39, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[30] Catinca Mujdei, Lennert Wouters, Angshuman Karmakar, Arthur Beckers, Jose
Maria Bermudo Mera, and Ingrid Verbauwhede. Side-channel analysis of
lattice-based post-quantum cryptography: Exploiting polynomial multiplication.
ACM Transactions on Embedded Computing Systems, 2022.

[31] Trong-Hung Nguyen, Binh Kieu-Do-Nguyen, Cong-Kha Pham, and Trong-Thuc
Hoang. High-speed ntt accelerator for crystal-kyber and crystal-dilithium. IEEE
Access, 12:34918–34930, 2024. doi:10.1109/ACCESS.2024.3371581.

[32] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum
information. Cambridge university press, 2010.

[33] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. Practical
cca2-secure and masked ring-lwe implementation. Cryptology ePrint Archive, 2016.

73

https://eprint.iacr.org/2019/844
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/ACCESS.2024.3371581

[34] Chris Peikert et al. A decade of lattice cryptography. Foundations and trends® in
theoretical computer science, 10(4):283–424, 2016.

[35] Peter Pessl and Robert Primas. More practical single-trace attacks on the number
theoretic transform. In Progress in Cryptology–LATINCRYPT 2019: 6th
International Conference on Cryptology and Information Security in Latin America,
Santiago de Chile, Chile, October 2–4, 2019, Proceedings 6, pages 130–149. Springer,
2019.

[36] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks
on masked lattice-based encryption. In Cryptographic Hardware and Embedded
Systems–CHES 2017: 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, pages 513–533. Springer, 2017.

[37] Zehua Qiao, Yuejun Liu, Yongbin Zhou, Mingyao Shao, and Shuo Sun. When NTT
meets SIS: Efficient side-channel attacks on dilithium and kyber. Cryptology ePrint
Archive, Paper 2023/1866, 2023. https://eprint.iacr.org/2023/1866. URL:
https://eprint.iacr.org/2023/1866.

[38] Mark Randolph and William Diehl. Power side-channel attack analysis: A review of
20 years of study for the layman. Cryptography, 4(2):15, 2020.

[39] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopadhyay. On
configurable sca countermeasures against single trace attacks for the ntt. In Lejla
Batina, Stjepan Picek, and Mainack Mondal, editors, Security, Privacy, and Applied
Cryptography Engineering, pages 123–146, Cham, 2020. Springer International
Publishing.

[40] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Proceedings of the Thirty-Seventh Annual ACM Symposium on
Theory of Computing, STOC ’05, page 84–93, New York, NY, USA, 2005.
Association for Computing Machinery. doi:10.1145/1060590.1060603.

[41] Oscar Reparaz, Sujoy Sinha Roy, Ruan De Clercq, Frederik Vercauteren, and Ingrid
Verbauwhede. Masking ring-lwe. Journal of Cryptographic Engineering,
6(2):139–153, 2016.

[42] Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermeasures for
lattice signatures. Journal of Cryptographic Engineering, 8(1):71–84, 2018.
doi:10.1007/s13389-017-0149-6.

[43] Ardianto Satriawan, Infall Syafalni, Rella Mareta, Isa Anshori, Wervyan
Shalannanda, and Aleams Barra. Conceptual review on number theoretic transform
and comprehensive review on its implementations. IEEE Access, 2023.

[44] Tobias Schneider and Amir Moradi. Leakage assessment methodology. Journal of
Cryptographic Engineering, 6(2):85–99, 2016. doi:10.1007/s13389-016-0120-y.

[45] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[46] Hauke Steffen, Georg Land, Lucie Kogelheide, and Tim Güneysu. Breaking and
protecting the crystal: Side-channel analysis of dilithium in hardware. In Thomas
Johansson and Daniel Smith-Tone, editors, Post-Quantum Cryptography, pages
688–711, Cham, 2023. Springer Nature Switzerland.

74

https://eprint.iacr.org/2023/1866
https://eprint.iacr.org/2023/1866
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/s13389-017-0149-6
https://doi.org/10.1007/s13389-016-0120-y

[47] Elias M Stein and Rami Shakarchi. Fourier analysis: an introduction, volume 1.
Princeton University Press, 2011.

[48] Michael Tunstall and Gilbert Goodwill. Applying tvla to public key cryptographic
algorithms. Cryptology ePrint Archive, 2016.

[49] Rei Ueno, Naofumi Homma, and Takafumi Aoki. Toward more efficient dpa-resistant
aes hardware architecture based on threshold implementation. In Sylvain Guilley,
editor, Constructive Side-Channel Analysis and Secure Design, pages 50–64, Cham,
2017. Springer International Publishing.

[50] Felipe Valencia, Ayesha Khalid, Elizabeth O’Sullivan, and Francesco Regazzoni. The
design space of the number theoretic transform: A survey. In 2017 International
Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS), pages 273–277. IEEE, 2017.

[51] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In Palash Sarkar and Tetsu Iwata, editors, Advances
in Cryptology – ASIACRYPT 2014, pages 282–296, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[52] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and
François-Xavier Standaert. Shuffling against side-channel attacks: A comprehensive
study with cautionary note. In Xiaoyun Wang and Kazue Sako, editors, Advances in
Cryptology – ASIACRYPT 2012, pages 740–757, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[53] Zixuan Wu, Rongmao Chen, Yi Wang, Qiong Wang, and Wei Peng. An efficient
hardware implementation of crystal-dilithium on fpga. In Tianqing Zhu and Yannan
Li, editors, Information Security and Privacy, pages 64–83, Singapore, 2024.
Springer Nature Singapore.

[54] Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan, and Jian Weng.
Hints from hertz: Dynamic frequency scaling side-channel analysis of number
theoretic transform in lattice-based kems. Cryptology ePrint Archive, 2024.

75

Appendix A

Test Vectors for GKS20 NTT

A.1 Trace Example

Our first example NTT input contains all zero, generated with the following Python code

x_A = [0 for _ in range(256)]

and our second example input is generated with Python’s random module, with seed 0

import random
random.seed(0)
x_B = [random.randint(-q//2,q//2) for _ in range(256)]

In particular, the values are

76

x_B = [2893314, -958538, 2167973, 3277698, -662199, -3850602, -2018258,
3908697, 98674, -113953, -793376, 3512498, 2384770, 2771101, -1645838,
3928285, -192224, -1186674, 703554, 3289582, 3427594, -2357779, 43411,
-3021897, -1825982, -3017937, 2149936, -3394711, 997046, 2515665,
-2088810, 4091521, 3441295, 277258, 4053993, 1725204, 2606385, 858911,
3377707, -2957408, -1588503, -3361723, 1932063, -3571613, 3349793,
2944082, 1547464, -1420314, -229589, 505848, -3345467, -1222393,
-548112, -1537759, 934282, 1182051, 3468682, -2474926, 3918272, 444695,
-188761, -476628, 3068536, 183222, -2005042, -3667770, 2562853,
3514432, 412614, 3493709, -4072419, -3407788, 1847111, 2856986,
-844635, 1767828, 2729092, 2395248, 1414666, 1054900, -4180623, 942755,
-49778, 2756089, 3087770, -1395669, -2144137, 1935811, -1462198,
1712372, 3111832, -3661859, -2587423, 3502303, 570416, -2330422,
-2188554, 2548737, 3926106, -2994880, 2547348, 364720, -432368,
-3425035, -3515381, 4141537, -1505397, 3150555, 70705, 4181383,
3634968, -85774, -3275366, -1661491, 434155, -1748364, 1736857,
-3143221, 402058, -1398896, 2642034, 3546182, 342018, -2485629,
3895054, 2515871, 869678, 400289, 739080, -1777165, -457371, -3421544,
811807, 2503355, -961425, -1530628, 638701, -2159267, -1754749,
-2647807, -2601480, 2700757, -2623809, -3913617, 950104, 4041529,
1318249, -2008700, -192778, -3610680, -3436708, 1503340, 2165033,
-3097808, 3164673, -2935690, 3555672, -3866061, 2876859, -3517038,
3344213, 1676135, 3553167, 2766974, 344671, 1543391, -907780, 2838313,
1726136, 210236, -1878023, 186883, 2618226, -2214678, 2935795,
-2384970, 3317922, 1509635, 757401, 2732601, 3776996, -671832, 672625,
-1881574, -410612, -57517, 1348330, 1188539, 4167007, 1683708, 3501651,
4051266, 2464684, -1192393, -3499215, -1469576, 950188, -3222586,
-109620, 734530, 1095850, -1377757, 2898815, -2593196, -2151479,
-4054238, 1945967, -1916578, -3207616, 1726554, -2340852, -1069142,
2475236, -2760105, -1400694, -615562, 2654166, -3668501, -3346252,
2379065, -2962466, 2984757, 1662276, -2355004, -3810759, 2664292,
623728, 1129899, 3443558, 3665887, 290968, 861163, 1518986, -3569479,
-3966261, -3146300, 1136556, -2608784, 896126, 2773058, 641234,
-3186131, -908507, -3422385, -1085251, 2804585, 4034960, -3216744,
-3884931, 889128, -4008709, -2557862, 3871505, 3952544, -2638552,
1833762]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

A.2 HW model

A.2.1 Fixed-vs-Random

Fixed test vector is obtained by running TVGenGKS20HW(2, 50, 100, 0). The
coefficients are

77

x_A = [128, 0, 266242, 0, 0, 4190211, 524288, 0, 0, 0, 0, 0, 0, 133376,
512, 4255745, 0, 0, 2, 33024, 0, 263168, 768, 0, 0, 0, 0, 8196, 2,
147456, 73728, 131072, 16388, 132, 128, 2064, 532480, 0, 0, 0, 131072,
0, 0, 0, 16, 0, 0, 0, 65568, 0, 262146, 0, 0, 32, 0, 0, 0, 0, 131074,
4224, 4, 0, 0, 0, 4590522, 0, 3324028, 0, 0, 3166843, 5502781, 0, 0, 0,
0, 0, 0, 455365, 494874, 6006869, 0, 0, 7523026, 2715879, 0, 6616727,
7638106, 0, 0, 0, 0, 1714782, 7531214, 1644275, 4218520, 981489,
5708009, 2075113, 4066490, 3566289, 2398823, 0, 0, 0, 7661008, 0, 0, 0,
6793624, 0, 0, 0, 7854539, 0, 7266642, 0, 0, 3173586, 0, 0, 0, 0,
8242435, 107498, 1714782, 0, 0, 0, 4702026, 0, 6111657, 0, 0, 4740349,
1300230, 0, 0, 0, 0, 0, 0, 5347564, 6333147, 146464, 0, 0, 7144446,
6342660, 0, 4744655, 5309512, 0, 0, 0, 0, 5143127, 1235971, 6045962,
6888132, 3865151, 4377779, 2230084, 3678391, 1698688, 534882, 0, 0, 0,
4515266, 0, 0, 0, 1507351, 0, 0, 0, 757069, 0, 585856, 0, 0, 3014702,
0, 0, 0, 0, 3279295, 4061065, 5908475, 0, 0, 0, 4066490, 0, 3831810, 0,
0, 3156608, 4454461, 0, 0, 0, 0, 0, 0, 1245444, 6779163, 6139956, 0, 0,
7531214, 1602295, 0, 2952726, 2401881, 0, 0, 0, 0, 1698406, 7523026,
1939115, 4071100, 719409, 5757145, 2615521, 4590522, 3496690, 3463523,
0, 0, 0, 7398928, 0, 0, 0, 6859128, 0, 0, 0, 7592491, 0, 7798990, 0, 0,
3042578, 0, 0, 0, 0, 132286, 639720, 1698406, 0, 0, 0]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

A.2.2 Fixed-vs-Fixed

Our first fixed test vector x_A is the same as the test vector x_A in the last section,
generated with TVGenGKS20HW(2, 50, 100, 0).
Our second fixed test vector x_B is the same as x_B in A.1.

A.3 HD model

A.3.1 Fixed-vs-Random

Fixed test vector is obtained by running TVGenGKS20HDZero(2, 250, 500). The
coefficients are

78

x_A = [9248, 1319468, 165896, 90368, 4190532, 129, 393769, 131493, 65792,
73728, 163850, 16, 1067009, 590336, 32832, 1444352, 5796001, 25100,
32776, 4845833, 66112, 264224, 81920, 4239369, 8264, 81921, 72704,
917826, 69888, 33100, 1024, 827394, 133136, 4355593, 4723009, 1049664,
552964, 1049648, 2052, 9477, 263170, 1118218, 4224, 524617, 1048577,
1024, 146, 1062, 32768, 32, 1062976, 280614, 262658, 262406, 524800,
1044, 400200, 1082881, 524435, 67653, 4453025, 266256, 524801, 528384,
0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6343894, 3538851,
6397758, 7395193, 3442493, 106168, 2762029, 2538960, 3281268, 1492285,
2254039, 1507351, 4833324, 4304903, 7670038, 323801, 1556071, 6133904,
375141, 3206235, 6655916, 3856154, 726937, 7858812, 1827523, 7360552,
2028244, 371948, 6763745, 651335, 0, 640424, 2816578, 6754585, 5243863,
7714821, 3619964, 5543781, 191337, 6409793, 2399791, 5398005, 3678391,
7035904, 6172683, 4094540, 4430646, 5873271, 0, 5365715, 1206132,
706813, 6494331, 7517966, 747040, 5059131, 5391758, 5349898, 1677778,
2620969, 4966259, 5840277, 2825183, 917556, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

A.3.2 Fixed-vs-Fixed

Our first fixed test vector x_A is the same as the test vector x_A in the last section,
generated with TVGenGKS20HDZero(2, 250, 500).
Our second fixed test vector x_B is the same as x_B in A.1.

A.4 ID model

A.4.1 Fixed-vs-Random

Our fixed test vector is the same as x_B in A.1.

A.4.2 Fixed-vs-Fixed

Our two fixed test vectors are generated with the following Python code.

import random
random.seed(1)
x_A = [random.randint(-q//2,q//2) for _ in range(256)]
x_B = [random.randint(-q//2,q//2) for _ in range(256)]

79

Appendix B

Test Vectors for GKS20 NTT Butterfly

B.1 Structure of GKS20 NTT Butterfly

The following block of assembly code shows a specific grouping of 4 memory reading,
followed by 4 butterfly operations, and then 4 memory writing.

ldr.w pol0, [ptr_p]
ldr pol1, [ptr_p, #256] //64*4
ldr pol2, [ptr_p, #512] //128*4
ldr pol3, [ptr_p, #768] //192*4
ct_butterfly_montg pol0, pol2, zeta0, q, qinv, temp_h, temp_l //stage1
ct_butterfly_montg pol1, pol3, zeta0, q, qinv, temp_h, temp_l //stage1
ct_butterfly_montg pol0, pol1, zeta1, q, qinv, temp_h, temp_l //stage2
ct_butterfly_montg pol2, pol3, zeta2, q, qinv, temp_h, temp_l //stage2
str pol1, [ptr_p, #256]
str pol2, [ptr_p, #512]
str pol3, [ptr_p, #768]
str pol0, [ptr_p], #4

B.2 ID Model

B.2.1 Experiment 1

The fixed values in the semi-fixed test vectors x_A and x_B are generated with

import random
random.seed(0)
fixed = [random.randint(-q//2,q//2) for _ in range(4)]

and concretely

fixed = [2893314, -958538, 2167973, 3277698]

Formally, for x_A we set FA(31) = 2893314 and FA(159) = −958538. For x_B we set
FB(31) = 2167973 and FB(159) = 3277698.

B.2.2 Experiment 2

The fixed values in the semi-fixed test vectors x_A and x_B are generated with

80

import random
random.seed(1)
fixed = [random.randint(-q//2,q//2) for _ in range(8)]

and concretely

fixed = [-3063081, 584619, 2918580, 2539678, 2216796, -3660831, -2050535,
-3201036]↪→

Formally, for x_A we set FA(31) = −3063081, FA(95) = 584619, FA(159) = 2918580, and
FA(223) = 2539678. For x_B we set FB(31) = 2216796, FB(95) = −3660831,
FB(159) = −2050535, and FB(223) = −3201036.

B.2.3 Experiment 3

The fixed value in the semi-fixed test vector x_A uses the first random number of fixed
generated in Experiment 1. Concretely, we set FA(31) = 2893314.

B.2.4 Experiment 4

For the first experiment, we choose x_A with FA(31) = FA(159) = 0, and x_B with
FB(31) = 1 and FB(159) = 0.
For the second experiment, we choose x_A with FA(31) = FA(159) = 0, and x_B with
FB(31) = 0 and FB(159) = 1.

B.2.5 Experiment 5

For both the first and second experiment, we choose x_A with FA(31) = 0 and
FA(159) = 2, and x_B with FB(31) = 0 and FB(159) = 4. For the first experiment, we
collect NA = NB = 1000 traces; while for the second experiment, we collect
NA = NB = 2000 traces.

81

	Introduction
	Background
	Side-Channel Analysis
	Power-Based Side-Channel Analysis
	Simple Power Analysis
	Differential Power Analysis
	Test Vector Leakage Assessment

	Post-Quantum Cryptography
	Quantum Computers
	Lattices
	Lattice-Based Cryptography
	Dilithium

	Number Theoretic Transform
	Fourier Transform
	Discrete Fourier Transform
	Fast Fourier Transform
	Polynomial Multiplication and Number Theoretic Transform
	Real-World Implementation

	Related Work
	Side-Channel Attacks on NTT
	Implementations of NTT
	Side-Channel Analysis and TVLA

	Plain NTT
	Characterization of Dilithium NTT Implementation
	Plain NTT
	HW Model
	Test Vector Generation
	TVLA for HW model

	HD Model
	Test Vector Generation
	TVLA for HD Model
	Performance Evaluation

	ID Model

	GKS20 NTT
	Differences between GKS20 and Plain NTT
	Measurement Setup
	Trace Example
	HW Model
	Test Vector Generation
	TVLA for HW Model
	Experiment Result

	HD Model
	Test Vector Generation
	TVLA for HD Model
	Experiment Result

	ID Model
	Experiment Result

	GKS20 NTT Butterfly
	Structure of a GKS20 NTT Butterfly
	ID Model
	Test Vector Generation
	TVLA for ID Model
	Experiment Result

	Correlation Analysis
	Experiment Result

	Template Attack
	Secret Keys in Dilithium
	Template Building
	Experiment Result

	Conclusion
	Test Vectors for GKS20 NTT
	Trace Example
	HW model
	Fixed-vs-Random
	Fixed-vs-Fixed

	HD model
	Fixed-vs-Random
	Fixed-vs-Fixed

	ID model
	Fixed-vs-Random
	Fixed-vs-Fixed

	Test Vectors for GKS20 NTT Butterfly
	Structure of GKS20 NTT Butterfly
	ID Model
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

