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Abstract—Liver respiratory induced motion (RIM) presents
a significant challenge during biopsies and minimally invasive
hepatic surgeries. A method of battling this RIM is the use
of respiratory motion estimation (RME). RME utilises external
signals called surrogates to relay internal liver RIM noninvasively.
This study presents a novel RME method for liver Superior-
Inferior (SI) motion tracking using Infrared (IR) imaging as a
surrogate signal and deep learning using convolutional neural
networks (CNNs) to directly derive the displacement of the liver
from the IR images of the nose/mouth area, as a ROI, in patients.
This method utilises the raw image data as an input to the
fitting method along with MRI liver dome displacement values as
ground truth training values. The training and validation splits
were used to train the model on the motion patterns while the
test split was fed to the trained model to predict motion data
from the thermal images. The model was then validated on three
healthy human subjects, each participating in three sessions to
acquire displacement and thermal ground truth data using an
MRI machine and a thermal camera. This paper, to the best of
the author’s knowledge, presented a new method for tracking the
liver and proved that it can be a viable option. The R2 scores
ranged from 0.75-0.98 throughout the 9 sessions and the MAE
ranged from 0.91 mm-3.8 mm. The authors also suggested the use
of higher resolution (temporal and spatial) MRI and ultrasound
(US) scanners to significantly improve the results and allow the
exploration of 3D motion detection instead of only SI.

Index Terms—Respiratory Motion Estimation (RME), Respi-
ratory Induced Motion (RIM), Magnetic Resonance Imaging
(MRI), Thermal Infrared Imaging (IR), Convolutional Neural
Networks (CNN), Surrogate Signals, Computer Vision, Motion
Tracking.

I. INTRODUCTION

A. Liver Cancer

The liver is the largest internal organ in the body [1] and
is located in the upper right abdomen. About 9.5 of 100,000
people in the world are affected by liver cancer [2]. A large
number of these cancer cases could be treated with early
diagnosis and medical interference. The type of treatment
and interference differs depending on the type of cancer
present and the stage of the cancerous tumour, which can
be identified through needle biopsies. These treatments are
placed in two main categories, namely, local treatments and
systematic treatments [3]. Local treatments include tumour
ablation using percutaneous needle insertion, invasive surgery
and radiotherapy as they only target the cancerous cells. In
contrast, systematic treatments include drug treatments, such

as chemotherapy, immunotherapy, or targeted therapy, as they
can affect the entire body and not just the cancerous cells.

Multiple imaging modalities are used alongside these local
treatments to aid surgeons during diagnoses and operations by
showing the positions of the liver, the motion of the organs
or the position of the surgical tools. The importance of these
modalities during the diagnosis or detection of cancerous cells
is very crucial in some cases to detect the tumours early, as
this increases the chance of their treatment and termination.
They can also be used to detect which stage this cancer is at as
well as the location of these tumours. Some other modalities
include X-Ray imaging and Molecular and Nuclear Imaging
(PET and SPECT) [5].

Computed Tomography (CT) scans, Magnetic Resonance
Imaging (MRI) and ultrasound (US) imaging are the most
commonly used modalities in image-guided interventions. The
type of modality used differs according to which organ is
being operated on (type of tissue layer and its visibility in
the imaging modality) and the type of surgical instruments
used in the operation (MRI cannot work with ferromagnetic
materials). It also depends on whether or not the modality
needed should have a high image resolution or a high frame
rate, such as the case with MRI and US, respectively [4], for
real-time applications during surgery.

B. Respiratory Induced Motion (RIM)

Organs move in the body, especially in the abdominal area,
mainly due to the motion of the lungs during inhalation
and exhalation. This is caused by the lungs pushing on the
diaphragm and rib cage which are in turn pulling/pushing
on other organs. This motion is called Respiratory Induced
Motion (RIM) and it is the main reason for organ motion
during interventional procedures. This motion makes it very
hard for the operator to carry out the surgery because the
organ location becomes hard to pinpoint while the patient is
breathing. The liver displacement due to this RIM can range
between 0.8-2.5 cm [7] in a single direction and is mainly
dominant in the Superior-Inferior (SI) direction rather than the
Anterior-Posterior (AP) direction. The SI displacement is seen
to be typically around 25 mm in normal breathing conditions,
less than 2 mm in the AP direction [8] and around 1.5 mm
in the Left-Right (LR) direction [9]. The SI-AP directions can
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be seen in Fig. 1. The LR direction is along the axis going
into the page, normal to the SI-AP plane.
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Fig. 1: Superior-Inferior and Anterior-Posterior directions are
shown for liver motion. Left-Right motion is normal to the
SI-AP plane, going into the figure.

Because of the significance of RIM, imaging modalities
must be used to provide visual feedback to the clinician,
which can then be further processed to measure and track
the liver/tumour location throughout the whole surgery. The
average breathing rate of a person is 12-15 breaths per minute
at rest and if the imaging modality does not capture at this rate,
the captured images of the liver location will be inaccurate.
This will cause great uncertainties in locating the liver tumour
during the operation, especially in the cases of coughing and
gasping [4], where these will cause image artefacts, namely in
the case of MRI. This problem could also cause unnecessary
exposure of healthy cells to radiation, in radiotherapy, which
may damage them and further put the patient at risk.

A conventional method to mitigate such abnormal motions
is to ask patients to carry out a ”breath-hold” [10]. In this
breath-hold, patients are asked to hold their breaths for a
certain amount of time and the operation would only be
carried out during these windows of breath-holds. However,
this proves to be somewhat unreliable in some cases such
as in elderly patients, babies/infants, patients with breathing
illnesses or patients under heavy sedation (or oversensitive to
anaesthesia) where it is hard to carry out a sufficiently long
breath-hold or reproduce the same position of that breath-hold,
in the case of sedation [7]. Furthermore, the operation time
increases drastically because the surgeon is only allowed to
operate during these short windows of breath-holds [7].

C. Respiratory Motion Estimation (RME) using External Sur-
rogate Signals

Respiratory Motion Estimation (RME) is used to estimate
the motion of the liver rather than measure it. It works by
utilising an external signal that does not measure the actual

motion of the liver but rather another Region of Interest (ROI)
that has a strong correlation with the actual motion and can be
easily measured with a high frame rate/frequency [7]. A brief
overview of the steps that occur during RME can be seen
in Fig. 2. This signal is called Surrogate Signal (SS) and it
is fed into a correspondence model. A correspondence model
uses the correlation between the surrogate and the ground truth
object (liver in this case) and is trained using a fitting method
along with ground truth data from one of the common imaging
modalities previously mentioned. This correspondence model
estimates the values of the ground truth without the need for
the actual ground truth. In other words, after training, the
correspondence model estimates the liver motion and location
only using data from the surrogate signal with no ground
truths. This method allows for a more versatile setup when
common imaging modalities cannot be used.

Ground
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Motion
Estimation

Model
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Training

Motion
Estimation

Liver Dome Motion of Interest

Fig. 2: Flowchart of respiratory motion estimation steps: The
ground truth data (actual liver motion) and the IR surrogate
data (thermal breathing images) are both acquired simultane-
ously. The motion estimation model is then trained using the
fitting method chosen to independently predict the internal
motion without the need for ground truth motion data. The
trained model can then output raw displacement data of the
liver motion when given a thermal image as an input.

D. Goals of this study

This study will focus on RME of the liver using Infrared
(IR) imaging as a surrogate signal. The ground truth data was
supplied from MRI. The goals of this study are listed as:

• Validating the feasibility of using thermal imaging as an
independent (doesn’t depend on other modalities during
testing phase) external surrogate signal by comparing
them to MRI ground truth values

2



• Develop a neural network (NN) correspondence model
that is fed processed IR images to estimate the RIM of
the liver (per patient)

• Validating the accuracy of the model by conducting a
clinical study with healthy human subjects as participants.

E. Contribution and Novelty

IR is chosen as a surrogate signal and an IR camera is used
to acquire the breathing of a patient. Using the correlation
between temperature magnitude change, we can estimate the
displacement magnitude change of the liver. To the authors’
knowledge, IR imaging of the nasal area temperature and
relating it to internal organ motion has not been thoroughly
studied in literature. Thus, the main goal of this study is
to investigate whether it can estimate internal liver motion.
Furthermore, a correspondence model that uses an input of
raw IR images into an NN to directly estimate liver motion has
never been presented before, based on the author’s literature
review, presented in the following section. Thus, the authors
have decided to implement this idea to test the validity of this
new surrogate signal.

F. Paper Outline

The paper follows a chronological, step-wise structure.
Firstly, the types of surrogate data are mentioned in section II.
In the same section, thermal imaging of the nose/mouth ROI
will be chosen and justified as the optimal surrogate choice
during MRI acquisition and different thermal cameras will be
evaluated to choose the final model used in the experiments.
Additionally, the designed motion models are presented in
section III-C and preliminary experiments that were performed
to decide the parameters and metrics for the model training
are explained in the same section. The tracking algorithm
and pre-processing algorithms are presented in section III-D.
The conducted human subjects experiments are presented in
detail in section IV followed by the steps taken during post-
processing in section IV-D. Finally, the results are presented
in section V and discussed in section VI followed by the
conclusion in section VII. Limitations, improvements and
future suggestions will also be explored in section VII

II. LITERATURE

A. Surrogate Signal

1) Surrogate System Requirements: As briefly mentioned
before in section I-D, our surrogate data must be MR safe
as we are using MRI for the main imaging modality for our
ground truth data. A few requirements are set in place for our
surrogate signal to fulfil and so this will help in the selection
of the signal type.

• The signal selected must work seamlessly with MRI
without causing artefacts in the signal data or the ground
truth data during image acquisition

• The signal selected must work safely inside the MR
environment and not put the patient or the operator at
risk

• The signal must have a high enough capture rate to
capture changes in breathing as well as sudden changes
like coughing and hyperventilating. Normal breathing rate
is about 12 to 20 breaths per minute, while breathing
rate under load (exercise) goes to 35-40 breaths per
minute and it is said that above 40 breaths is considered
hyperventilation [11]. This means that our signal must
capture breathing at least 40 breaths per minute, which is
0.667Hz. This means that our capture rate must be greater
than double the breathing rate, so at 1.3Hz to capture all
breathing patterns [7]

• The selected signal must not expose the patient to health
risks (such as radiation) or cause additional discomfort
or pain during the operation

2) Surrogate Signal Comparisons: Some common candi-
dates for surrogate signals used in RME and their issues are
as follows:

• MR navigators are the most common surrogates for MRI
modalities used for RME [7]. The main issue with MR
navigators is that they increase acquisition time due to
them essentially being extra RF pulses emitted during the
main scan. Next to that is the issue of being totally MRI
dependent and so cannot work unless MRI acquisition is
the chosen imaging modality.

• Spirometers are also used along with respiratory bel-
lows to measure the airflow in and out of the lungs
[7], [12], [14]. The main difference between each is that
spirometers measure the airflow directly in and out of the
lungs while respiratory bellows are airbags that measure
the airflow coming in and out of them when the throat
or abdomen induces pressure on them. The main issue
with both methods is that they cause a lot of discomfort
to the patient, especially if it is a trauma victim (burns,
sensitive skin, lacerations or abrasions) [12]. Additionally,
they also face an issue with air leakage, causing a drift
in the results, and they restrict the operating area due to
their placement position, respectively [7].

• External markers and RGBD cameras are also com-
mon surrogate signals used for their high accuracy rel-
ative to their cost and MRI compatibility [7]. However,
a main limitation is that the external markers are placed
on the abdomen, near the liver, and so near the operation
area of the surgery. RGB-D cameras also share a similar
limitation where they rely on the visualisation of external
abdominal changes. This could induce external noise
while the surgeon is operating on the patient near the
markers or the abdominal ROI, which would reduce the
reliability of the estimated data. It could also cause signal
losses or lost frames if the markers or ROI were blocked
from the camera’s field of view (FOV) while the surgeon
is operating.

• Infrared imaging has been used before but not to
determine liver displacement from temperature readings
but rather to estimate breathing rate (BR) [12]–[14]. It has
proven successful with high accuracy in estimating the

3



BR of patients at rest, under load [13] and with different
breathing patterns and techniques [12]. No prior study,
to the best of our knowledge, has tried to correlate it
to liver displacement, except with the use of external
markers rather than temperature readings, which presents
the shortcomings mentioned above. However, with the
correct fitting model, it seems plausible, given the high
accuracy of BR estimation. Another point that helps IR
is that it is MR compatible and does not affect image
quality during acquisition for either the IR images or the
MRI images [16].

For these reasons, we chose IR imaging as a surrogate signal
for this study. According to our goals from subsection II-A1,
our system has the following features:

• The signal is MR compatible with no artefacts created
for either image acquisition process. IR imaging is also
fast enough to capture at higher rates than MRI, giving
it an advantage over the conventional modality.

• IR cameras can work within the MR environment, es-
pecially if shielding is implemented as an extra safety
precaution. This can be evident from the fact that MRI
rooms contain cameras inside them as well.

• IR cameras do not interact with the patient and are a non-
contact spirometry method so they cannot induce extra
pain or discomfort to the patient as well as not subject
them to extra radiation.

• IR cameras can work with extreme case patients due to
not requiring any belts, bellows or measuring instruments
to be connected to patients that are too small, fragile or
traumatised [12].

• IR cameras usually have frame rates ranging from 9Hz
and up to 200Hz [17], [18]. Thus, this means that
IR cameras are sufficiently fast to capture random and
extreme BRs seeing that we need at least 1.3Hz

B. Motion model

1) Correspondence model: In this study, we are examining
the displacement of the liver due to the RIM. Due to our
choice of IR imaging as a surrogate signal (with our ROI being
the nose and mouth areas), we need to explicitly address the
correlation between our measured signal and the actual motion
data. A few papers have discussed using BR to estimate liver
displacement [4], [6], [7] using different regression techniques.
This works due to the linear correlation between the lungs
pushing on the rib cage and the diaphragm, during inhalation,
which then pushes on the liver and vice versa during exhalation
[7]. This linearity allows regression models to estimate the
internal motion.

We can determine the cyclic displacement of the liver due
to respiration with this knowledge. Our IR method presents a
new research opportunity that has not been studied enough
yet. This is namely the magnitude of temperature change
captured and visualised by the IR camera. The visualisation
is the observations of the thermal camera, that show the
magnitude of temperature change due to breathing, i.e. the
strength at which the subject is breathing. The nose/mouth area

becomes hotter and colder during exhalation and inhalation,
respectively. This can then be tied to the strength that the lungs
push on the organs. Along with the ground truth data, this can
be used to train an estimation model. The trained model can
estimate the internal displacement of the liver. The intensity
and hue of the thermal image correspond to the thermal signal
(temperature) of the nose/mouth ROI, which is then translated
using our fitting method into liver displacement.

2) Fitting method: Following our qualitative analysis in
section II-B1, we decide to implement a novel fitting method to
estimate our results in our methodology. This method utilises
the raw image data and deep learning using convolutional
neural networks (CNNs) to directly derive the displacement of
the liver from the IR images of the ROI in patients. The filter
and image processing tools available in the FLIR Research
Studio (To be further discussed in section II-C), allow us to
define our ROI and pre-process the video file into frames of
appropriate resolution and size for input to the model.

C. IR Camera

To choose the most suitable camera for our purposes, we
created a market search of the most common models used in
other papers [12]–[14]. Of the cameras we found, three main
makes (Teledyne FLIR, VarioCam and SEEK) were found to
be sufficient for our testing and experimentation purposes. We
then researched the different models that suited our needs.
These models are discussed in Table I.

In [12], they were estimated breathing rate using IR imaging
rather than with bellows and spirometers. The VarioCam 800
series camera was used and got very accurate results, claiming
about 97.64% of the errors were smaller than one breath per
minute. In [13], they recorded the breathing frequency (breaths
per minute) as well as the temperature change frequency (◦C
per minute)of the ROI. They got mean squared errors (MSEs)
in four experiments ranging from 0.055-0.508 (min−2) and
0.001-0.003 (◦C/min)2, respectively. They used the SEEK
compact camera and proved the high accuracy of results.
Finally, in [14], they measured the difference between breath
volume (in litres) estimated using IR imaging and conven-
tional contact spirometry using the FLIR ONE camera. They
obtained errors as low as 0.0023 (L2) MSE and a high
accuracy of 0.9998 mean R-square value. These cameras,
though very varied in their accuracies and their temporal and
spatial resolutions, gave accurate results, based on the data
analysis performed in their respective studies. This made us
conclude that the main criteria of choice for our cameras would
be based on the following:

• Full-window resolution: This would be the average
spatial resolution of the camera needed to capture a bigger
ROI to account for head movements so that tempera-
ture differences would not be too large when accidental
motion occurs. A higher resolution would also provide
a cleaner image with smoother features for training the
model.

• Maximum and average frame rates: This is to test
the faster capabilities of IR imaging under normal cir-
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TABLE I: IR camera makes and models with their specs

Make Model Price (C) Spatial resolution (pixel2) full-window frame rate (Hz) max frame rate (Hz) accuracy (◦C)

FLIR A655sc 30,000 640×480 50 200 @ 640×120 ±2 ◦C
ONE Pro 450 160×120 < 9 ≈ 8.7 - ±3 ◦C

VarioCam HD head 800 33,000 1024×768 30 240 @ 1024×96 ±1 ◦C
HDx head S 12,900 640×480 30 60 @ 384×288 ±2 ◦C

SEEK Compact 235 200×150 < 9 ≈ 8.7 - ±2 ◦C
Compact PRO 470 320×240 > 15 - ±2 ◦C

cumstances. Faster frame rates can be used to capture
faster breathing patterns and extreme instances such as
coughing and gasping to test the limits of the camera
usage in a real-life scenario.

• Accuracy drop-off: This is how accurately the camera is
still able to capture minor changes in temperature at larger
distances. The setup in the MRI room will require the
camera to be farther from the subject due to the magnetic
field of the MRI. Thus we require a camera than can still
perform well at a larger distance from the subject. The
setup will be further discussed in detail in section IV

Based on these findings, we chose the FLIR A655sc (Tele-
dyne FLIR©, Oregon, United States of America) as the camera
used for MRI testing. The high temporal rate and accuracy of
±2 ◦C would be valuable for NN pattern and feature training
with MRI ground truth data. The accuracy drop-off at higher
distances is also low for this camera so it can accurately
capture the small temperature differences in the MRI setup.
The non-ferromagnetic material used for the camera and the
casing also allows it to be MR-safe.

As mentioned previously in section II-B2, we used the FLIR
Research Studio program to process our images and perform
data acquisition. The ease of use of the program as well as
the powerful pre/post-processing options, made it easier to put
the FLIR camera above the others.

III. METHODOLOGY

A. Motion Model: Analysis

It was outlined in [7], [15] that a motion model is made up
of a few analytical steps. These are:

• Choice of surrogate data: The chosen type of surrogate
signal used for this study is infrared (IR) as explained in
section II-A2.

• Choice of motion representation: The physical motion
represented in this study is the SI motion of the liver
under the influence of respiration.

• Motion model correspondence: The relation between
the actual data and the surrogate can be seen as a
linear relation between the temperature magnitude and the
strength of breathing to the displacement of the liver due
to respiration. Furthermore, because the data is patient
and session-specific (intra-fractional) a combination of
these linear signals can be used to estimate the motion
model [7]. Additionally, the use of a NN should also
follow the same ideology where the input thermal images
should have a corresponding liver displacement. The NN

is thought to overcome intra-fractional errors as well due
to the ability of the model to learn multiple breathing
patterns and estimate the results on different test sets.

• Fitting method: Since the correspondence of the motion
data and the surrogate data is linear, a CNN is used to
determine the estimated displacement depending on the
temperature in the ROI. The linearity of the data allows
for easy pattern recognition by the CNN which should
allow for higher precision and repeatability with different
sessions and subjects.

B. Surrogate signal: IR imaging

The input for our model is IR images. They required some
pre-processing before being used. The FLIR Research Studio
was used for thermal image pre-processing. It allowed us to
create and select specific ROI(s) and get the mean temperature
measurements within them. Another feature was the ability to
post-process the images after the acquisition, straight from
inside the program, so that they can be prepared for NN
training. The ROI overlay was removed and the image was
cropped to only show the ROI. The programmed processed
this simultaneously for all recorded frames of the video during
acquisition which made the process of testing and tuning the
NN using the camera data with different parameters much
more efficient.
Another feature was the camera override parameters tool
which allowed us to set the emissivity/reflectivity of the
objects as well as the ambient temperature and the distance
from the object. This was very useful as we were trying to
capture the temperature of the nose/mouth ROI off a mirror
in the MRI machine. The setup will be further discussed later
in the experimentation section.
After the specific orientation and transformations were applied
to the images, they were exported as individual frames to be
fed into the CNN as ground truth thermal input for training,
validation and testing.

C. Correspondence model: Convolutional Neural Network

As previously discussed in section II-B2, the use of a CNN
has been chosen for this study. Using a CNN, we can use the
thermal images from the IR camera as a direct input to the
model and take advantage of the direct relationship between
breath temperature and liver displacement. This would also
allow for more versatility to the given breathing pattern inputs
compared to conventional regression methods.

The premise that the model will be able to adapt to different
breathing patterns means that a single model can be trained
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and used for multiple test datasets. In other words, one model
might be enough to estimate the liver displacement for multiple
test subjects and sessions, completely removing the problem
of intra-fractional error.

After we attain the frames and choose the appropriate
image filter to use, normally grayscale (single-channel image),
we must then define our CNN architecture as well as the
parameters and metrics used for training. Firstly, we define
our problem as a regression rather than a classification. This
is due to having a range of observations (displacements in our
case) correlating to the range of breathing frames (magnitudes)
rather than a set number of labels to be assigned to our frames.
For this reason, we use mean squared error, which is the most
common method for this type of problem [21], [23], as our loss
function for training and testing. We also utilise the AdamW
optimiser to allow for adaptive model weights, momentum
optimisation and weight decay regularisation [23]. This is used
to mitigate the chance of overfitting the model to our training
data.

We also use two model architectures of different
complexities to test how model complexity affects the
predictions. A simpler model with only two convolutional
and max pooling layers and one dropout layer is used for the
simpler model while another with four convolutional and max
pooling layers and two dropout layers is used for the more
complex architecture. Both architectures are shown below in
tables II and III.

TABLE II: Simple Model

Layer Type Output Shape Parameters
Input (458, 614, 1)

Convolutional (229, 307, 16) 160
Activation(ReLu) (229, 307, 16)

Max Pooling (114, 153, 16)
Convolutional (114, 153, 32) 4,640

Activation(ReLu) (114, 153, 32)
Max Pooling (57, 76, 32)

Flatten (138624)
Fully Connected (512) 70,976,000
Activation(ReLu) (512)

Dropout (512)
Fully Connected (1) 513

Output (1)

The data is split into 80% training, 10% validation and
10% testing, where the training data is used for fitting the
models, the validation data is used to make sure the model
parameters are correctly set during the training and the testing
data is used to evaluate the performance of the trained models
on new unseen data.

D. Ground truth: liver edge tracking

To extract the ground truth displacements, we utilise a
series of MRI scans of the liver and perform a motion
detection process to track the displacement throughout the
series. The MRI experiment and details about the parameters

TABLE III: Complex Model

Layer Type Output Shape Parameters
Input (458, 614, 1)

Convolutional (458, 614, 32) 320
Max Pooling (229, 307, 32)
Convolutional (229, 307, 64) 18,496
Max Pooling (114, 153, 64)
Convolutional (114, 153, 128) 73,856
Max Pooling (57, 76, 128)
Convolutional (57, 76, 256) 295,168
Max Pooling (28, 38, 256)

Flatten (272384)
Fully Connected (512) 139,461,120

Dropout (512)
Fully Connected (128) 65,664

Dropout (128)
Fully Connected (1) 129

Output (1)

will be explained further in this paper’s experimentation
section (section IV).

1) Edge detection pre-processing: The MRI series contains
grayscale, coronal images of the abdomen with the liver being
in the centre of the inspection window. Some pre-processing
is applied to the image series to be able to start the tracking
of the liver dome. The set of processes applied are as follows,
in this order:

1) Gaussian filter
2) Contrast filter
3) Morphological dilation
4) Canny edge detection
In the case of line detection, it is better to have a blurred

Gaussian image to start with so that there are fewer sharp
features that would create noise artefacts. Thus, the Gaussian
filter used had a 9×9 pixel2 kernel size and a standard
deviation in X and Y of 5 units. This ensured a smooth
image, ready for contrast filtration, to only show the borders
between the liver and surrounding organs without the added
internal details of the organs. A contrast filter is applied to
reduce the contrast of the surrounding organs/tissue details
around the liver so that the liver is the main clear subject in
the images. Thirdly, we apply a morphological transformation
on the image, namely dilation, to fill the holes left by the
aggressive contrast filter. This returned a filled, smooth,
high-contrast image of the liver inside the abdomen. Finally,
Canny edge detection is applied to the resulting image to
create a binary image with the edges of the liver dome clearly
visible and easy to track.

2) Motion tracking: The motion detection of the edges
uses a simple ”white point tracking” condition. Other methods
that employ the use of OpenCV’s contour function (which
detects full unbroken lines or filled elements in an image)
were attempted. The accuracy however, was not as high as
preferred due to the liver dome being more of a ”broken line”
rather than a straight line. Additionally, the liver image was
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not a filled object in our ”Canny edge image” but rather an
open contour connecting to the rest of the organs around it,
with just the dome being the clean and free edge required for
tracking. This also meant that using a ”centroid detection”
approach [24] was not viable due to the ”blob” not being
a closed contour as required and the liver also undergoing
deformations next to the SI motion which made the RIM
tracking unreliable.
This presented a simple approach that performed well enough
to track the cyclic breathing motion of the liver dome. This
approach was a white point tracker, where we have a binary
image with a black background and a white edge (the liver
dome) comprised of white pixels moving. Thus, the simple
approach was to track the white pixel on the liver dome in
a specified window, as can be seen in Fig. 3. This gave us
a smooth motion tracking of the pixel’s displacement in the
breathing range of the subjects. For increased accuracy, there
was a grace/tolerance window of four pixels in the x-axis
direction so that if the tracked pixel was lost, another pixel
from the same line would be tracked, to ensure smooth and
precise tracking.

Fig. 3: Red point is the tracked pixel. Displacement indicator
written in green as a title. The tracking was done in the
background on the binary edge image but the original MRI
video was left as an overlay for easier visualisation

The displacement of the points was calculated using a
”frame subtraction” approach where the displacement of the
pixel would be compared to the previous frame pixel location.
A simple equation was used for this calculation:

(1)Y = −xcurrent + xprevious

Where Y is the displacement of the tracked pixel, xcurrent

is the current SI position of the pixel and xprevious is the
previous SI position. This equation allows for the displacement
calculation of the liver dome with the relative direction of
”up/superior” being positive and ”down/inferior” being neg-
ative. Finally, to get the correct displacements in mm rather
than pixels, the pixel displacement values were multiplied by
1.667 which was the pixel-to-mm conversion factor of the MRI
sequence used. The total displacement of the tracked point is
then the sum of the individual displacement changes through
the frames and plotted over the video duration as seen in Fig. 4.
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Fig. 4: Displacement of liver dome edge plotted over the
duration of the video to show RMI of the liver dome

IV. VALIDATION

A. Overview

As previously mentioned in the above sections, a RME
approach was proposed with the surrogate signal being the
Infrared signal, the ground truth being the MRI image series
and the motion model being the CNN as a novel method we
implement. In this section, we will discuss how we validated
these proposals with experiments on human test subjects.
Fig. 5 shows the experimental setup with the MRI and thermal
camera in place. The subject lies down inside the MRI scanner
with a mirror at a 45◦ angle above their head facing away from
their abdomen. This was required to train the models offline on

Mirror on
head coil

Thermal
Camera

Fig. 5: Thermal camera set behind the MRI machine and the
subject. The camera is aimed at a mirror fixed on the head-coil
which allows the heat signal of the ROI to bounce back into
the camera while the subject is lying down.

the ground truth results supplied by the MRI machine for the
liver displacement. However, once the model is fully trained,
this approach should permit the subject to be only lying in
front of a thermal camera and based on the breathing exhibited,
the liver displacement would be predicted by our models.
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MRI Bore/TubeMirror on
head coil Thermal camera

(Surrogate data)

Thermal signal reflecting off mirror
 and towards thermal camera

Processing of
surrogate data

and model training
on ground truth

Thermal camera
(Surrogate data)

Thermal signal directly
 to thermal camera

Prediction of
liver

displacement

Training Phase
(MRI present)

Prediction Phase
(MRI absent)

Fig. 6: Overview of the experimentation setup with the training phase (left) using an MRI as ground truth while the subject
lies in a supine position inside the bore-tunnel and the camera is placed behind them along the sagittal plane. The setup is then
changed during the prediction phase (right) to work directly with the subject and camera without the use of an MRI machine.
The thermal camera captures the temperature change in the nose/mouth area and the model predicts the liver displacement
directly using the input thermal images.

B. Workflow

As shown in Fig. 6, the data acquired from the experiments
were the ground truth MRI displacements, surrogate Infrared
images and the temperatures. These were then split into three
sets of training, testing and validation with the splits being
80%, 10% and 10% respectively. The thermal datasets ranged
in size between the subjects from 17k to 25k data points per
session for three sessions per subject while the MRI dataset
was about 2000 frames. The training and validation splits were
used to train the model on the motion patterns while the test
split was fed to the trained model to predict motion data from
the thermal images.

C. Human Subject Experiments

1) Measurement Protocol: Three healthy male subjects,
ages between 21 and 27, participated in the experiments.
Each of the subjects was timely informed of the study goals,
received a detailed experimentation protocol and filled in a
consent form as well as an MRI safety checklist to ensure
that there were no risks to them during the experiments and
familiarise them with MRI safety regulations.
Each subject participated in three sessions of 11 minutes
of scan-time each. The total investment time per subject
was about 60 minutes including the three scans, the pre-
scan debriefing and the MRI safety instruction. The experi-
ments were conducted in the University of Twente (Enschede,
Netherlands) and an ethical approval for the experiments was

received from the NES ethical committee of the university.
During the scans, each subject was asked to wear a disposable
medical face mask and breathe normally while looking in the
mirror during the acquisition. The use of the face mask was for
the ease of thermal data acquisition. The heat would disperse
on the mask more evenly (bigger surface area) than the skin
on the mouth and nose area, allowing for a bigger view of the
ROI to capture on the IR camera.

2) Experimental setup: The experimental setup consisted
of two main modalities, namely MRI and thermal imaging.
The MRI system used was the Siemens 1.5T MRI scanner
(Magnetom Aera, Siemens Healthineers, Erlangen, Germany)
shown in Fig. 5. This system is available at the University of
Twente. As explained in Fig. 6, the subject was placed in a
supine position with their face secured in a head-coil inside
the tunnel bore. Additionally, the subjects would lie normally
with their arms inside the machine and lying by their sides.
The machine bed was then moved so that the scanner was
positioned with the liver in clear view for acquisition of the
full range of motion. Once the bed was in position, the subject
was then asked to move their head into position inside the coil
so that the mask ROI was perfectly centred in the mirror. This
can be seen in Fig. 7.
The thermal camera used to capture the subject’s ROI, as
previously mentioned in section II-C, was a FLIR A655sc,
shown in Fig. 5, from Teledyne FLIR© (Oregon, United States
of America) with a 25◦ field of view (FOV) and 1.0 mm
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Fig. 7: Subject lying inside MRI tunnel bore with the mirror
attached to the head coil. The nose/mouth region of interest
can be seen in the mirror. The subject would be wearing a
mask and the thermal data would be picked up by the camera.

focal length, 24.6 mm-lens. The camera was placed behind the
subject’s head (facing the subject’s transverse plane), outside
the MRI’s immediate magnetic field, approximately 3 m away
from the mirror. This had to be done as a radius of ± 4 m
from the centre of the MRI machine is marked as a boundary
for safety, which can be seen in Fig. 5 as the red line, where
no ferromagnetic objects are allowed inside, to avoid safety
risks for the operators and the machine. To avoid potential
damage to the camera, even though it was mostly aluminium
and plastic, we adhered to the 3 m distance from the head
coil.

3) Data acquisition: The MRI images are acquired using
MRI sequence is a ‘TRUFI interactive realtime’ in the coronal
plane, slice thickness = 10 mm, repetition time = 355.6 ms,
echo time 1.17 ms, reconstructed resolution = 1.88×1.88 mm2,
field of view = 360×360 mm2, temporal resolution approx-
imately 0.4 fps. The thermal camera was set to record the
mask ROI at 50 fps with a camera window of 640×480 mm2.
Temporal synchronisation and alignment were done using two
breath-holds and feature matching.

D. Post-processing

1) Image processing: After the MRI and thermal acquisi-
tion, the MRI frames were segmented. As previously men-
tioned in section III-D, the MRI DICOM files were processed
by implementing a series of morphological transformations
and filters to isolate and track the upper liver dome. During
preliminary testing, the AP motion was shown to be very
small (around 2 mm [8]) and hard to track given our tracking
algorithm and lower MRI spatial resolution used during the

experiments. For these reasons, we decided to only focus on
the SI motion of the liver. Thus, the final experimental frames
were in the coronal plane to get a clear view of the liver
dome and track away from the disturbances caused by the
heart beating.
For the thermal images, the FLIR Research Studio program
was used to apply a high-contrast filter on the images to
increase the features (intensity due to temperature change)
seen by the NN. The program also allowed for the exporting of
the temperature values detected in the thermal images, within
the mask ROI, as a CSV file without the need for further
tracking or processing.

2) Signal synchronisation: Finally, after every MRI frame
was transformed into liver dome displacement values in mm
and thermal images into temperature values in ◦C, the outliers
were manually removed from the datasets. The MRI data
was 2000 frames per session so it was interpolated to match
the length of the thermal images. Finally, the breath-holds
and unique patterns in the data were matched together to
allow for correct time synchronisation. Additionally, a low-
pass Gaussian filter was applied to remove the noise from the
thermal images and allow only the cyclic breathing values to
be visible.

V. RESULTS

This section presents the results yielded for our RME
approach with IR imaging as a surrogate signal. We conducted
a few preliminary experiments to test our system’s limits and
choose the best model architecture and parameters for training.
This will be presented in section V-A. We then show the
final choice of the model and parameters in section V-B and
the reason behind the choices made. Finally, the comparison
between the estimated SI motion and ground truth MRI SI
motion is presented in section V-C and their discussion in
section VI.

A. Model and parameter choice

To choose the most viable model/parameters and test the
feasibility of IR as a surrogate with CNNs, we conducted
some preliminary tests to benchmark the system. Firstly, we
had the camera set up without an MRI and directly facing the
ROI to record the temperature changes and their corresponding
frames. The conducted experiment was to see how accurately
the CNN can estimate the temperature values based on the IR
frames and in a varied breathing pattern.
One subject was used for this experiment and they were sitting
directly in front of the IR camera and were breathing for 3
minutes at different rates while wearing a mask. Four types
of breathing were done, each for 45 seconds. Firstly, normal
breathing through the nose was done for the first time interval,
followed by fast and shallow breathing through the nose for
the following 45 seconds. The last minute and a half was the
same pattern but through the mouth, namely 45 seconds of
normal breathing through the mouth followed by 45 seconds
of fast and shallow breathing through the mouth. The main
reason behind this experiment was to extract a trend for the
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parameters required for the real experiments and to test the
limits of our architecture’s prediction abilities.
The experiment showed us which model to use according to
the estimation ability of the model on an unseen test set. In
Fig. 9, we show the predictions of the models vs ground truth
data (shown in blue), in a staggered view for clarity. After
a few tests, we decided to continue with the simpler model
because the more complex architecture was more prone to
overfitting and getting stuck in local maxima/minima. The
simpler model was better equipped to predict the different
breathing patterns because it was less prone to overfitting
due to less layers having an effect on the output [20]. We
experimented with various loss functions, number of epochs
and data shuffles. Due to this being a regressive problem, MSE
was the best and most common loss function to use [21], [22]
and that was also proven by Fig. 8a and further clarified in
the isolated graph in Fig. 8b. The ground truth data is the
blue data and the purple data is the fully trained MSE model,
which performed better than the fully trained Mean Absolute
Error (MAE) model (green).
The final model we chose was of the simple architecture shown
in Table II. MSE was selected as a loss function and the
optimizer used was AdamW, which reduces the complications
of overfitting due to it offering adaptive learning rates, momen-
tum optimization and weight decay regularisation [23]. Finally,
The model was trained with a checkpointing callback and early
stopping was implemented on the validation set. Fig. 8 shows
the preliminary model estimating the temperature values and
patterns of the input data with different breathing patterns.
The MAE and MSE were both 0.999 ◦C and 1.01 ◦C2,
respectively.

B. Final model training

The results from the preliminary test, mentioned in sec-
tion V-A, showed that the system was feasible. Thus, we
trained a similar model of the same architecture to one of
the subject’s sessions. Fig. 10 shows the scatter plot of the
predictions vs. ground truth (Fig. 10a) and the validation loss
vs. training loss of the model during training (Fig. 10b). The
scatter plot was used as an indicator to see if the model
was successfully improving its regressive abilities. Initially,
we attempted to retune the previously trained temperature
CNN, from section V-A, on the new displacement labels
instead of completely retraining it, however, the results were
not desirable. Thus, a new model was trained from scratch
for one session and fine-tuned for the rest of the sessions
instead. The fine-tuning involved keeping the model weights
as they were and only retraining the last four layers of the
model to change the displacement labels to match the session’s
specific displacements. Because of the high errors and the
models not converging to a desirable loss value, we concluded
that one single model cannot work on multiple subjects and
cannot work on multiple sessions of the same subject (due
to intrafractional error) as not only did different subjects
have different breathing patterns and displacements, but also
a single subject would breathe differently from one session

to the other. When we applied the retuning strategy, model
performance increased and predictions were more in-line with
ground truth.

C. MRI ground truth vs IR imaging estimation

In this section, the results of the trained models on three
subjects are shown. This includes three sessions of unseen
data points from the 10% test split. Fig. 11 shows the model’s
performance on the test dataset for sessions 1-3 for every
subject. The predictions were noisy because the IR image
inputs were noisy themselves. Thus, a Gaussian filter was
applied to the final predictions to allow only the low breathing
frequency to pass and cut off the higher noise frequencies.
Data analysis was performed on the test results to see the

quantitative performance of the model. Table IV shows the
mean values µ and standard deviations (std) σ of all three
sessions for Subjects 1, 2 and 3. The MAE, MSE and R2

scores were also calculated and shown in the table. The R2

score is a measure of the accuracy of the regressive estimation
of the model is, relative to a baseline.
Subject 1 was a rather special case due to their different breath-
ing method. Subject 1 exhibited diaphragmatic breathing [25],
which is breathing by drawing in air through the stomach while
the chest remains still. It is mainly exhibited in athletes [26]
as it usually allows for the lungs to intake more air as the
subject actively pulls the diaphragm downwards to fill up
their lungs. As a result, the liver does not move as much as
normal breathing but rather is deformed in place. Very little
SI motion is exhibited however, the results were used as a
case study to benchmark the model. We wanted to validate
the model’s accuracy on smaller displacements and jitters. As
seen in Fig. 11 and Table IV, the CNN can predict the liver
displacement values with sufficient accuracy (R2 score higher
than 0.75). Subject 1 had a lower accuracy due to the smaller
displacements and the occasional deep breaths that they would
take, which caused inconsistencies in the mean calculations.
Subject 2 had a few limitations faced during the sessions,
which will be discussed in section VI along with a breakdown
of the data analysis.
Finally, Fig. 12 shows the box plot for the means and standard
deviations (µ±σ) for the Peak-To-Trough (PTT) displacements
for all subjects’ sessions. The blue data is the ground truth
while the orange data is the predicted data. Fig. 12 shows
that the model predictions are smaller than the ground truth,
which is expected due to the Gaussian filter attenuation
and the randomness factor of the test data compared to the
training data. The figure shows that subject 3 exhibited deeper
breathing relative to other subjects with the highest mean
PTT displacement being their third session, at 45.2 mm. The
results’ variations allow us to test the performance of the
model on multiple scenarios ranging from shallow breathing
(subject 1’s diaphragmatic breathing) to normal breathing
(subject 2’s sessions 1 and 2) and deep breathing (subject 3’s
sessions 1 and 3).
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(a) Testing the CNN with different MSE and MAE configura-
tions vs ground truth (blue)
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(b) Isolated MSE graph to show model performance on the
unseen ground truth test split

Fig. 8: Comparison of different loss functions and training configurations

TABLE IV: Motion Data Analysis: MSE, MAE, R2 scores and Mean µ (mm) and standard deviation σ (mm) of the Liver SI
motion for Peak-To-Trough (PTT) displacement both for MRI (Ground Truth) and IR surrogate (Predictions) for three sessions
for subjects 1,2 and 3

Session MSE(mm2) MAE(mm) R2 score µ± σ (Ground Truth PTT in mm) µ± σ (Predictions PTT in mm)
1 2.46 1.22 ± 0.987 0.763 7.01 ± 3.26 4.98 ± 2.58
2 5.51 1.75 ± 1.57 0.877 11.8 ± 6.27 9.30 ± 4.97Subject 1
3 5.13 1.24 ± 1.89 0.903 7.64 ± 6.68 5.78 ± 5.01
1 4.69 1.82 ± 1.38 0.856 15.0 ± 4.69 10.0 ± 3.80
2 20.9 3.75 ± 3.00 0.745 24.5 ± 5.17 13.9 ± 4.54Subject 2
3 4.64 1.67 ± 1.76 0.969 31.0 ± 9.93 26.2 ± 10.1
1 9.44 2.59 ± 1.65 0.941 33.0 ± 4.63 26.7 ± 4.67
2 1.52 0.906 ± 0.835 0.983 14.3 ± 10.4 13.0 ± 9.73Subject 3
3 9.51 2.57 ± 1.70 0.968 45.2 ± 7.99 39.2 ± 7.35

Overall Performance 7.09 1.94 ± 1.64 0.889 21.0 ± 6.56 16.6 ± 5.86

VI. DISCUSSION

Looking at the previous section, we can see that the model
performed better on larger breathing magnitudes, as in the
third session for subjects 2 and 3. This can be seen in
Table IV where the R2 score is closer to 1, at 0.969 and 0.968
respectively. Subject 2’s second session has a relatively lower
accuracy of 0.745 even though the graph in Fig. 11 shows
good tracking of the breathing pattern. However, due to the
filtration added, the displacement magnitudes were attenuated.
The small sacrifice of the full magnitudes was required as
the data acquired was very noisy and only the low frequency
of breathing was needed. Additionally, the setup’s limitations
caused a lot of trending and moving average errors in the
thermal input data so it was hard for the model to learn features
and patterns reliably.
Due to the way the experiment was set up, the mirror on the
head coil would heat up due to the subject’s radiated breath
throughout the experiment. This would cause the camera to

pick up the heat around the ROI and the gradual increase in the
mirror’s temperature, which caused a moving average error in
most datasets. Furthermore, the subjects started breathing more
aggressively halfway through the session due to the mirror
fogging up from their breaths and them trying to actively cool
it down which caused temperature fluctuations, specifically in
the second session of the second subject. Thus, this caused the
data to have a nonlinear trend in that session and the model
had issues learning from the thermal images. Through these
issues, however, the model was still able to strongly predict
the pattern of breathing and estimate the displacement of the
liver to an MAE of 3.75 mm. Overall, the second subject’s
second session and the third subject’s first session had the
highest trending in their data and it proved slightly harder for
the model to learn from them. However, with some rigorous
post-processing, the input data was still useful enough for the
CNN to follow the general trend and predict the SI values with
sufficient R2 scores.
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Fig. 9: Testing different loss functions, parameters, optimisers
and model architectures in preliminary experiments to outline
an optimal combination for the final testing. Temperature
predictions in ◦C are made for every thermal frame input to
the model.

The results also showed that all subjects were breathing
normally with means ranging from 7.01-24.5 mm. On the
other hand, subject 2 was deep breathing during session 3 and
subject 3 in sessions 1 and 3. That can be seen by the mean
liver SI displacement of 31.0 mm, 33.0 mm and 45.2 mm,
respectively. These values are all consistent with previous
studies on liver displacement [7]–[9], [27], [28].
With a higher resolution camera or better camera lens, the
input IR images would have a higher resolution and less noise.
Shielding on the camera would also allow the camera to be
placed closer to the mirror and less signal dissipation and
accuracy drop-off. Finally, a cooling system, like a fan, to keep
the mirror’s temperature constant throughout the experiment,
would reduce the trending and moving averages in the input
IR data.
The case of subject 1 was still well-predicted by the CNN and
even though the breathing pattern is not as cyclic as a normal
chest-breathing subject, the CNN was still able to follow the
breathing pattern based on the input thermal frames and predict
the SI motion exhibited on the liver. The MAE values show
that the average error was less than 2 mm and the R2 scores
show that the model had a high regression correlation for
sessions 2 and 3 and a fair correlation for session 1.
Overall, the results from Table IV prove that our system works
well to estimate the liver’s SI motion using IR as a surrogate.
The setup allows for the IR camera to capture the thermal ROI
away from the abdomen, to allow freedom to the surgeon on
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(a) Scatter plot showing the trained model’s predictions vs ground truth
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(b) Line plot showing the convergence of the validation and training
losses for one subject session

Fig. 10: The model’s performance during training on one
session for one of the subjects

the abdomen and be independent of surgical-induced noise.
Furthermore, using the power of deep learning, the direct cor-
relation between thermal images and liver RIM can be utilised
in a CNN to get the predictions of the liver displacement. In a
real-life application, The system could be even more accurate
due to the sole use of the thermal camera without the MRI
in the testing phase. This means that no mirror is needed
to transfer the heat signal to the camera and that the direct
heat from the ROI can be picked up with no moving averages
or external noise. Furthermore, in clinical practice, an added
value is the non-contact measurement allowed by the thermal
camera. This means that the system would work with patients
of all builds, cases and needs, ranging from trauma patients
to infants to claustrophobic patients who cannot stay for long
times in the MRI. A real-time version can also be implemented
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Fig. 11: The model’s performance on subjects 1,2 and 3’s test sets for each session. A Gaussian filter was applied to these
results to show the model’s prediction ability clearly and only allow the breathing frequencies to be visible.

so that a stronger AI can learn the thermal values as they are
recorded and simulate the liver motion based on them.
This can also be a powerful tool in collaboration with aug-
mented reality (AR), where the operator can see the liver
in realtime, moving on the patient’s body, for a clearer
visualisation of the liver position and motion. Additionally,
with the use of virtual reality (VR), the operator can even
control a robotic arm, far away from the patient, and still be
able to see the real-time visualisation of the liver motion. The
compact size of the IR camera and the simplicity of thermal
waves makes it the perfect surrogate for most environments,
as no external radiation or electromagnetic waves can affect
the thermal values and there is no need for a large space to
house the thermal camera while in use.
Finally, a higher resolution MRI for the ground truth data

would allow for 3D motion detection of the liver (SI-AP-
LR) as more data can be extracted from the smaller motions.
Additionally, the use of mode-A (Amplitude) ultrasound (US),
in combination with MRI, would allow for a smoother ground
truth training sample because of the high temporal resolution
of the US. Mode-A ultrasound does not visualise the organs
as mode-B (Brightness) US does, however, it has a higher
accuracy when measuring internal organ dimensions [29].
A smoother ground truth means more data points within a
breathing cycle, which also means more data to train the
model from which could significantly reduce the acquisition
time for patients as more data points can be acquired in fewer
breathing cycles. The use of US could also allow the explo-
ration of extreme breathing patterns such as coughs, gasps and
hyperventilation, which usually have a higher frequency than
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(a) Box plot of mean PTT displacements
for subject 1 for all 3 sessions

(b) Box plot of mean PTT displacements
for subject 2 for all 3 sessions

(c) Box plot of mean PTT displacements
for subject 3 for all 3 sessions

Fig. 12: Box plots of the means µ and standard deviations σ (in mm) for the PTT displacements (ground truth in blue and
predictions in orange). The data is further shown and analysed in Table IV

conventional MRI machines.

VII. CONCLUSION

In this paper, we developed and evaluated a novel RME
approach to estimate the liver’s SI RIM. An infrared camera
was used to measure and record the temperature of the
nose/mouth area as a ROI. IR was chosen as a surrogate due to
the high correlation between breathing temperature and RIM
on the liver, the MRI compatibility and the camera’s high
spatial and temporal resolution. The thermal images of the
ROI temperature were used as an input to the fitting method
along with MRI liver dome displacement values as ground
truth training values. The fitting model was a CNN with
a regression-like loss function and optimisers. Multiple loss
functions and parameters were tested in preliminary exams
to find the optimal combination and evaluate their accuracy
and performance. The model was validated on three healthy
human subjects, each participating in three sessions to acquire
displacement and thermal ground truth data. The MRI and
thermal images acquired were segmented and processed and
then split into training, validation and testing segments. The
trained model was further evaluated on the test segment of the
split data for every subject session. The results showed that
the model predicted the liver SI displacement values with good
accuracy (overall MAE less than 2 mm and R2 score of about
0.89, including the high error session of subject 2 session 2).
Multiple factors affected the results of this paper. An MRI
machine was used for the ground truth liver displacement
values. The sequence used for acquiring the data had a low-
resolution set, which made it harder to measure the AP and
LR motion of the liver, on account of their small motions.
A higher resolution would have allowed for 3D liver motion
evaluation. Additionally, sharper displacement values would
have been obtained allowing us to get smoother results from
the tracking algorithm we used. Clearer MR images would
have also allowed us to use a more accurate segmentation
process, like the blob or centroid method, for more precise
liver tracking rather than the simple ”white pixel tracking”
method used. Furthermore, the experiments were conducted
on three healthy male subjects at the University of Twente. A

future improvement to test the full potential of our approach
is to use unhealthy patients as well as not only male subjects.
This would allow us to track a specific region in the liver
and benchmark the surrogate’s ability to predict said ROI’s
displacement. Finally, temporal alignment was done manually
by matching features in the data graphs and breath holds due
to the MRI machine having a different time-stamp relative to
the IR camera system. If a trigger is used for both systems
to start and stop acquiring simultaneously, it would improve
estimation accuracy and significantly reduce post-processing
errors.
To sum up, this paper’s objectives were to validate the feasibil-
ity and accuracy of IR as a surrogate in an MR environment,
develop a neural network model to directly relate thermal
images to liver motion and validate the approach on human
subjects by conducting experiments. The authors fulfilled these
goals by implementing a CNN-based model that utilised IR
images and successfully predicted liver displacement values.
In fact, to the best of the author’s knowledge, no other study
presented the use of CNNs to predict liver motion with the use
of IR thermal imaging as a surrogate. This paper, to the best
of the author’s knowledge, presented a novel method for liver
tracking and a novel surrogate signal for RME and proved that
it can work as a viable option.
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