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Abstract
In this study, laminar and turbulent boundary layers over curved surfaces and airfoils are solved
while using simple modeling approaches coupled with spectral element methods.

A linear vortex panel method has been designed that can obtain reliable pressure distribution
results in an inviscid setting. This pressure distribution is used as input for the integral boundary
layer equations, which are spatially discretized using higher-order Galerkin method. A simple
interaction law between inviscid region and boundary layer model is implemented as a semi-
strong solution that predicts the changes that the displacement thickness exerts on the edge
velocity. The semi-strong solution enables circumvention of Goldstein’s singularity of separated
flow.

The equations are solved using an implicit Euler based point-implicit scheme, and spectral
vanishing viscosity is applied to stabilize the numerics. The resulting boundary layer parameters
are used as input for the panel method, such that an iterative scheme is obtained that proceeds
until convergence has been reached.

A wake is added to ensure smooth outflow at the trailing edge, such that the Kutta condition
is fully satisfied. Validation of the boundary layer parameters as well as the pressure distributions
is done using XFOIL and experimental results.
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Chapter 1

Introduction

1.1 Boundary layer theory
For past decades, boundary layers have been the central motivation and topic of many articles,
studies and additional research done over the entire world, and as such, it remains an important
subject in the field of aeronautics and aerodynamics. Boundary layers, a concept illustrated
in Figure 1.1, encapsulate complex physical processes such as turbulence, transition and heat
transfer, resulting from the viscous effects in a fluid. Therefore, a good understanding of the
physics is paramount for any practical application, which can range from wind turbines to
hydrodynamics, as well as arterial blood flow, and many more. Boundary layer research has
been conducted since the beginning of the previous century by Prandtl [1], who is credited as the
discoverer of the boundary layer. Von Kármán built further on Prandtl’s work by beginning with
the boundary layer equations in integral form and arriving at the momentum integral equation
[2], which bears Von Kármán’s name. Important contributions in boundary layer theory have
since been done by Schlichting [3], Cebeci [4], and Drela [5], to name a few. An extensive
description of boundary layer research, methods and solutions can be found in Özdemir [6].

Figure 1.1: Boundary layer on an airfoil visualized, from Özdemir [6].

Another important contributor was Goldstein, who discovered a phenomenon currently known
as the Goldstein singularity [7], where a simulated flow breaks down due to a singularity in the
solution of the integral boundary layer equations. The physical explanation behind this simula-
tion breakdown is that the flow becomes prone to separation, and the boundary layer calculation
at that moment cannot be continued anymore. Some solutions have been proposed, such as the
triple-layered boundary layer structure, found independently by Stewartson [8], Messiter [9], and
Sychev [10], where the underlying assumption is that flow separation takes place in a boundary
sublayer, and each so-called deck is solved with a different set of similarity equations. What is
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found, is that a loss of hierarchy between the inviscid flow region and the boundary layer ensues,
and thus the simulation breaks down. In other words, in a ‘healthy’ system, the inviscid region
feeds a pressure gradient to the boundary layer. However, when a flow is liable to separate, a
self-induced pressure gradient in the boundary layer is created, thus there is no more hierarchy
between the two models at the point of separation and beyond. So begins the need for models
that have a strong coupling between inviscid region and boundary layer solver, to bypass the
singularity.

The simplest approach is the design of a panel method, that directly supplies its pressure
distribution as input to the viscous model. The viscous model then calculates and outputs a
displacement thickness, which is used to create a new effective aerodynamic body around the air-
foil, for which subsequently, a new pressure distribution is calculated by the panel method. This
method is applied iteratively and converges in this way, but as mentioned, the solution breaks
down when separation occurs, due to Goldstein’s singularity [7]. The most robust alternative is a
strongly coupled system, where the pressure distribution is taken within the viscous model, and
everything is solved at once. An example of such a strongly coupled (two-dimensional) system
is XFOIL, by Mark Drela [11]. Starting development in the 80s, XFOIL has nowadays become
a widely-used code to obtain reasonably accurate predictions of the aerodynamic properties of
airfoils. Having been updated over the years, it has become a powerful tool to rapidly perform
calculations on two-dimensional airfoils and geometries, with the possibility of inviscid as well
as viscous calculations. For many applications, it serves as a useful means of validation for any
generated aerodynamic result, and as such, it will be used in the present study.

Figure 1.2: 3D wing geometry with local Cartesian vectors and three-dimensional boundary layer profile, from
[12].

However, the strongly coupled method, albeit very robust, is significantly more complicated
than the direct, iterative solver, and very unfeasible to extend to complex geometries in three-
dimensional space. Drela published a study on a three-dimensional boundary layer model, [13],
expanded as recently as 2022 by Zhang [12]. An example of the mesh needed for such a model
can be seen in Figure 1.2. Including in this three-dimensional model the external pressure (or
velocity) calculations would make the model even more complex, and extremely costly in com-
putational terms. As these complete, strongly coupled models are unfeasible, computationally
costly, and complicated to implement, and direct solvers break down in separated flows as a
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result of Goldstein’s singularity, there is a desire for a different approach that could be feasible
in three dimensions as well. The idea of the interaction law is brought to life, in which a reaction
from the boundary layer on the outer potential flow is incorporated in the viscous model. It
can be seen as a semi-strong approach, as it couples the pressure distribution to the boundary
layer in a weak form, and is not directly included in the system as opposed to in a strongly
coupled method. Figure 1.3 shows in a schematic way how the direct method and the semi-
strong scheme operate. In the left block, the models are fully separated. In the right, changes
in the displacement thickness immediately induce a change in the external velocity, such that
an ‘updated’ velocity is used in the boundary layer calculations.

Inviscid model

Viscous model

Inviscid model

Viscous model +
Interaction law

Direct boundary layer solver Semi-strong boundary layer solver

Figure 1.3: Block diagram showing different interaction methods.

In 1979, Veldman produces an early example of such a semi-strong scheme [14]. Over the
years, Veldman develops new methods, including quasi-simultaneous schemes and transonic cases
[15][16][17], until in his 2009 paper, he proposes a simple, semi-strong approach to solving the
boundary layer. He names it a quasi-simultaneous viscous-inviscid interaction law [18]. The Von
Kármán momentum integral equation is posed as the first in the system of equations. Head’s
entrainment method, which describes the mixing of fluids in a turbulent flow [19], is taken as
the second equation, closing the system of equations with a so-called closure set. The external
velocity is obtained from an inviscid panel method, and the change that the boundary layer
induces on the external velocity is posed as an additional unknown in the system of equations,
in the form of a simple interaction law. In this manner, the hierarchy between the models is kept
even in separated flow. Veldman’s article shows promising results in comparison to experiments,
and in addition demonstrates the robustness of the semi-strong boundary layer solver.

1.2 Spectral element methods
Many different techniques have risen over the past decades to better approximate numerically
the phenomena surrounding mankind. An example of such a technique, that is still widely
used, is the finite difference method. Simple, robust and effective, it was already discovered and
explained by Euler in his Institutiones calculi differentialis [20]. Depending on the mesh size, very
reasonable results are obtained with a finite difference numerical scheme. Another technique is
the finite element method, that relies on dividing a domain in a number of elements, usually two-
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or three-dimensional. The convergence of the method depends on the set of basis functions used,
often chosen triangular or quadrilateral. Then there are spectral methods, where the solution
to a differential equation is globally approximated through the summation of a set of basis
functions. Coefficients of the basis functions are found through weighted-residual projection to
match the solution as well as possible. Spectral element methods combine the advantages of the
latter two methods by dividing a domain into separate elements, where each element has its own
high-order solution approximation. In numerical jargon, it takes the flexibility offered by h-type
finite element methods to refine the mesh if one desires, and in addition, it allows the increase of
the order of piece-wise polynomial approximation of a local element, or p-refinements. As such,
spectral element methods are also called hp element methods.

The first use of a spectral element method is attributed to Patera [21], who in 1984 pub-
lished a work, where he tested the method on an expanding pipe, or channel, to demonstrate
the viability. The method proved itself promising, and was developed more in 1989, by Maday
and Patera [22], who showed the spatial discretization of the incompressible Navier-Stokes equa-
tions. It then found its use in the field of seismology, where Chebyshev nodes instead of lin-
early distributed nodes were introduced by Faccioli et al. [23] to avoid Runge’s phenomenon
of oscillation occurring at the element’s boundary through polynomial interpolation. Moreover,
Legendre Gauss-Lobatto quadrature was used to approximate numerically the integrals when
the governing partial differential equation is transformed to its weak formulation. A little while
later, Lagrange polynomials were employed, once again in seismological context, as a set of
basis functions by Komatitsch and Vilotte [24], resulting in a diagonal mass matrix and thus
simplifying the subsequent matrix inversion. Karniadakis and Sherwin published a book de-
tailing the spectral/hp element methods in the context of Computational Fluid Dynamics [25],
explaining, among many things, the technique of collocated Gauss-Lobatto quadrature using a
Lagrange basis defined at the Lobatto nodes. When using a collocated quadrature, the basis
becomes approximately orthogonal, as it leads to a lumped diagonal mass matrix, and as such,
the computational cost becomes significantly lower.

Figure 1.4: Visualization of CG and DG solutions obtained from a SEM solver, from Moura [26].

A principal distinction that can be made in spectral element methods is between continuous
and discontinuous methods. An example of the former is Continuous Galerkin, or CG, whereas
an example of the latter is Discontinuous Galerkin, or DG. In CG, continuity of the zeroth degree
is enforced between elements, guaranteeing that the numerical solution (but not necessarily its
derivative) be continuous on element interfaces. In DG, however, this condition is not imposed,
allowing for small discontinuities across element interfaces and yielding a larger independence
between the elements. This difference in continuity among elements can be seen in Figure 1.4.
In addition, numerical dissipation is introduced through upwind fluxes on the interfaces. The
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development of spectral element methods brought about some challenges, such as the choice
between continuous or discontinuous methods, how to choose the configuration of mesh h and
order p refinement for the most accurate result, or ensuring stability in the case of shocks where
numerical dissipation does not suffice. In recent decades, all challenges and difficulties have been
overcome, and currently, spectral element methods are successfully used in a variety of problems
and applications [27]. In the present study, a higher-order Continuous Galerkin method is
employed as discretization method, in a nodal-collocated formulation, which leads to a diagonal
mass matrix.

1.3 SEM in boundary layer analysis
Some works from the past have already shown very reasonable results from a Discontinuous
Galerkin scheme applied as spatial discretization to the unsteady version of the integral bound-
ary layer equations, namely the master’s theses of Van Es [28], Van den Boogaard [29] and
Haciahmetoğlu [30]. In the quasi-simultaneous and fully simultaneous schemes, there are non-
conservative effects present that change the location of the equilibria. Due to these changes,
effectively the solution of the scheme is changed and a dependency on the numerical scheme
used is created. Specialized non-conservative numerical schemes based on Discontinuous Galer-
kin have been applied to circumvent this dependence on numerical scheme in the master’s theses
by Seubers [31] and Passalacqua [32]. A joint effort to produce an unsteady two-dimensional
interacting boundary layer method that also deals with the arising non-conservative mechanisms
was performed by Özdemir et al. [33]. Another work that is worth mentioning, is a master’s
thesis by Ye [34], that also uses Discontinuous Galerkin as spatial discretization scheme and
found improvements in the set of closure relations. Lastly, an article by Zhang et al. [35] shows
a coupled solver based on Discontinuous Galerkin, designed for free transition flow.

A recent study from 2020 by Moura et al. [36] finds preliminary results with a Continuous
Galerkin spatial discretization, applied to a non-trivial, complex boundary layer. The study
finds reasonable results for a lower amount of degrees of freedom, demonstrating that Continu-
ous Galerkin could have potential to reach accuracy at a lower computational cost. Aside from
Continuous Galerkin having been used in high-fidelity simulations, its efficiency in simpler sim-
ulations, that do not necessarily require this high level of accuracy, e.g. the integral boundary
layer equations, remains to be demonstrated. The present study serves as a first exploratory
journey of the implementation of the Continuous Galerkin in such a manner. The aim is to dis-
cover the advantages and disadvantages that the higher-order Galerkin spectral element method
offers when used as a spatial discretization scheme for the integral boundary layer equations.

1.4 The objective
Considering that spectral element methods are a relatively new technique of spatial discretiza-
tion, it is interesting to see what possibilities it could offer when applied to a boundary layer.
Results based on Discontinuous Galerkin have already been shown to be promising, but studies
documenting on the performance of Continuous Galerkin are scarcer. This calls for research
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that might uncover some of higher-order Galerkin spectral element methods’ hidden qualities in
facilitating an accurately discretized interactive boundary layer model.

The posed objective is to develop a semi-strong solver that comprises a viscous boundary
layer modeled by a higher-order Continuous Galerkin approximation, combined with the simple
interaction law to provide simultaneity with the external velocity model and circumvent Gold-
stein’s singularity. The boundary layer model will receive the external inviscid velocity as input,
obtained from a vortex panel method with linearly varying circulations across the panels. The
viscous solver in turn will generate, from the same set of equations that Veldman uses [18], the
boundary layer parameters that are used as new input in the panel method, until iteratively con-
verging to the steady-state solution. Within the viscous solver, the interaction law is employed,
such that the external velocity change as a result from the change in displacement thickness
is predicted by the simple model, as mentioned in Veldman’s article, yielding the semi-strong
solution. Spectral vanishing viscosity is added as a means to stabilize the higher-order Galer-
kin scheme, which is otherwise free of numerical dissipation. The equations are solved using a
point-implicit convergence scheme. NACA airfoils are taken as the boundary layer-generating
surfaces, and can easily be compared to results obtained from XFOIL. Lastly, a simplified wake
model is added to guarantee a smooth outflow at the trailing edge.

1.4.1 The outline
The present study will present the following topics:

• Chapter 2 will discuss the theory of potential flow and panel methods, that rely on this
theory. The derivation of the potential function, which consists of linearly varying vortices
superimposed on a uniform flow, is given, and the linear vortex panel method is presen-
ted. The Kutta condition is explained and results from NACA airfoils are compared with
corresponding results from XFOIL. Moreover, a mesh refinement of the panel method is
shown and the necessity of a wake is illustrated.

• Chapter 3 discusses boundary layer theory and shows the system of equations that will
be solved in the present study, namely the Von Kármán momentum integral equation
and Head’s turbulent entrainment equation. For the laminar part, Thwaites’ method is
introduced and applied. Goldstein’s singularity is demonstrated and the interaction law
to circumvent it is explained. Lastly, a derivation of the analytical model is given, which
represents the interaction law implemented in the boundary layer solver.

• Chapter 4 gives a basic explanation of Lagrange polynomials, the theory of Galerkin meth-
ods applied to the advection-diffusion equation, and shows a result for this equation as a
test case. It proceeds to apply a higher-order Galerkin discretization on the governing set
of equations, as well as on the interaction law. It discusses the point-implicit scheme that
is used to converge the equations, and shows the theory behind spectral viscosity that is
added to the system for stabilization measures. Lastly, an order refinement of the Galerkin
scheme is shown.

• Chapter 5 shows and discusses the results from the boundary layer model applied to the
NACA 0012 symmetrical airfoil and the NACA 2412 cambered airfoil, at various degrees
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of angles of attack. Displacement thickness, momentum thickness and shape factor will
be visualized, as well as the viscous pressure distributions. The aerodynamic lift and drag
coefficients are calculated and shown. Comparisons to XFOIL and experimental results
will be made in this chapter, and general comments on the results are given.

• Chapter 6 will draw conclusions on the presented work and give future recommendations.
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Chapter 2

Potential Flow and Panel Methods

In this chapter, the panel method will be discussed. The theory of potential flow, on which
the panel method relies, is treated briefly, and the potential function of an airfoil with linearly
varying vortices in a uniform flow is shown and derived. It is explained how the Kutta condition
is satisfied, and a mesh refinement of the panel method is performed by increasing the amount
of panels. The manner in which the panel method is coupled with the boundary layer solver is
explained, and the necessity of a wake is illustrated.

2.1 Potential theory
A flow surpassing an object can be separated into two different regions: one inviscid outer layer,
and a boundary layer sufficiently close to the aforementioned object, where viscous effects need
to be considered. For incompressible flow, it is established that the velocity is free of divergence,

∇ · V = 0. (2.1.1)

Potential theory relies heavily on the assumption that the velocity in the inviscid layer is irra-
tional, and thus, it can be defined as having zero curl,

∇× V = 0. (2.1.2)

From vector calculus, the velocity vector field can then conveniently be written as the gradient
of a scalar potential,

V = ∇ϕ −→ ∇×∇ϕ = 0. (2.1.3)

Now, substituting Equation 2.1.3 in Equation 2.1.1, an alternative formulation is obtained,
namely the differential equation that forms the basis for potential flow:

∇ · ∇ϕ = ∇2ϕ = 0. (2.1.4)

The physical significance of writing the velocity as the gradient of a scalar potential, is the
property of superposition, due to their linear nature: let A and B be solutions of an arbitrary
linear problem, then A + B is also a solution of said problem. What this means, in the case
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of a fluid, is that a potential flow can be described as the summation of multiple (types of)
elementary solutions.

The fundamental types of solutions are uniform flow, a source and sink, and a vortex. The
latter is an indication of fluid particles moving in a circular trajectory, rather than revolving
around their own centers, thereby maintaining the irrotational nature of the flow. The elementary
solutions can be used to virtually approximate any shape or body, the illustration of which can
be seen in Figure 2.1. A symmetric airfoil, also known as a teardrop profile, can be approximated
well with sources and sinks, due to its symmetry. For a cambered airfoil, additionally, vortices
are needed. The profile in (a) of Figure 2.1, can be formed by superposition of (b), the teardrop,
and (c), the skeleton. This skeleton represents the camber line of the body being approximated,
and contains a vortex distribution to form the characteristic curve of an airfoil profile. Skeleton
theory will be discussed in more detail in section 3.6.

Figure 2.1: (a) Cambered airfoil at angle of alpha α, (b) Symmetric airfoil generated by sources and sinks,
(c) Cambered airfoil at angle of attack α, generated by vortices, image taken from Schlichting [37].

It is decided to follow the well-established panel method described in the book by Kuethe
and Chow [38], known as the linear vortex panel method, where a curved body, e.g. a cambered
airfoil, is divided into m panels, with vortices of unknown circulation strength defined at every
panel edge, varying linearly from endpoint to endpoint, such that m + 1 circulations γ are
introduced. Superimposing all these circulations and a uniform flow V∞, the potential is then
defined as

ϕ(x, y) = V∞(x cosα + y sinα)−
m∑
j=1

∫
j

γ(sj)

2π
tan−1

(
y − yj
x− xj

)
dsj, (2.1.5)

where x and y can be taken as arbitrary control points, on or off the surface of the airfoil, and
α is the angle of attack. The variable γ(sj) indicates the linearly varying circulation strength
over panel j, which is written as

γ(sj) = γj + (γj+1 − γj)
sj
Sj

, (2.1.6)
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where Sj is the total length of panel j, and sj is the integration variable, shown in Equation 2.1.5
as well, increasing from 0 to total panel length Sj. In Equation 2.1.5, the varying circulations
are integrated over each panel, and their summation is defined as the influence of the vortices
on the velocity at point (x, y) in the system. Now, Equation 2.1.5 has to be solved for all γs
to obtain the potential solution. This is done by applying a boundary condition; the velocity
in the outward normal direction in the middle of the panel is zero. The implication is that
there is no flow coming in, nor going out of the airfoil, which corresponds with the underlying
physics of an impenetrable body. As a natural consequence, x and y in Equation 2.1.5 are
taken as the midpoints (xi, yi) of each panel of the airfoil. As such, the potential solution will
give the tangential velocity and consequently the pressure, embodied in the pressure coefficient
Cp, at these midpoints, resulting in the familiar pressure distributions. The manner in which
the system is made solvable is by applying the zero normal velocity as a Neumann boundary
condition:

∂

∂n
ϕ(xi, yi) =

∂ϕ

∂xi

nix +
∂ϕ

∂yi
niy = 0, for i = 1, 2, ...,m. (2.1.7)

There are now m equations, namely the midpoints from m panels, for m + 1 circulations. The
equation that closes the system is the Kutta condition, and is given in section 2.3, such that the
system is fully solvable.

2.2 Expanding the potential function
Taking Equation 2.1.5, the integral is somewhat simplified, introducing a natural coordinate ξ

which will be substituted for the length of panel j, going from 0 to 1. Hence,

ξ =
sj
Sj

, dsj =
dsj
dξ dξ = Sjdξ. (2.2.1)

As the integral in Equation 2.1.5 is carried out over each panel j, xj, yj and γj can be written
as functions of this natural coordinate ξ as well,

xj(ξ) = xj + (xj+1 − xj)ξ,

yj(ξ) = yj + (yj+1 − yj)ξ,

Γj(ξ) = γj + (γj+1 − γj)ξ.

(2.2.2)

Substituting Equation 2.2.2 into Equation 2.1.5 yields

ϕ(x, y) = V∞(x cosα + y sinα)−
m∑
j=1

∫ 1

0

Γj(ξ)Sj

2π
tan−1

(
y − yj(ξ)

x− xj(ξ)

)
dξ, (2.2.3)

where the sum of the integrals over all the panels is taken. A function βj(x, y, ξ) =
y−yj(ξ)

x−xj(ξ)

is substituted, that describes the angle between points (x, y) and (xj, yj), varying with ξ as
(xj → xj+1, yj → yj+1). Rewriting the equation by taking out constants and substituting β
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yields

ϕ(x, y) = V∞(x cosα + y sinα)− 1

2π

m∑
j=1

Sj

∫ 1

0

Γj(ξ) tan−1 βj(x, y, ξ)dξ. (2.2.4)

Now, the formulation that allows the implementation of a Neumann boundary condition, as
imposed in Equation 2.1.7, must be obtained. As such, the derivative of the potential function
with respect to x and y is found,

∂ϕ

∂x
= V∞ cosα− 1

2π

m∑
j=1

Sj

∫ 1

0

Γj(ξ)
1

1 + β2
j

∂βj

∂x
dξ, ∂βj

∂x
=

−(y − yj(ξ))

(x− xj(ξ))2
, (2.2.5)

∂ϕ

∂y
= V∞ sinα− 1

2π

m∑
j=1

Sj

∫ 1

0

Γj(ξ)
1

1 + β2
j

∂βj

∂y
dξ, ∂βj

∂y
=

1

x− xj(ξ)
. (2.2.6)

Now, the function Γj(ξ) will be rewritten, such that the individual circulations γ can be resolved
explicitly,

Γj(ξ) = γj(1− ξ) + γj+1ξ. (2.2.7)

Rewriting Equation 2.2.5 and Equation 2.2.6 yields

∂ϕ

∂x
= V∞ cosα− 1

2π

m∑
j=1

Sj

(
γj

∫ 1

0

∂βj/∂x

1 + β2
j

(1− ξ)dξ + γj+1

∫ 1

0

∂βj/∂x

1 + β2
j

ξdξ
)
,

∂ϕ

∂y
= V∞ sinα− 1

2π

m∑
j=1

Sj

(
γj

∫ 1

0

∂βj/∂y

1 + β2
j

(1− ξ)dξ + γj+1

∫ 1

0

∂βj/∂y

1 + β2
j

ξdξ
)
.

(2.2.8)

Now the derivatives with respect to x and y are found. The identities in Equation 2.2.8 are
substituted in Equation 2.1.7. It is emphasized that the x and y coordinates are not general
anymore, but rather the m panel midpoints (xi, yi), with corresponding unit normal vectors
(nix , niy), are substituted in place of (x, y). As such, the function βj obtains an extra index i to
make clear that the midpoint coordinates (xi, yi) and endpoints (xj, yj) of the panels are meant;
the term becomes βij. Rearranging the terms, one obtains the specific form of the governing
vortex panel method equation,

V∞(nix cosα + niy sinα)− 1

2π

m∑
j=1

Sj

(
γj

∫ 1

0

[
nix

∂βij

∂xi

+ niy

∂βij

∂yi

]
1− ξ

1 + β2
ij

dξ + ... (2.2.9)

...+ γj+1

∫ 1

0

[
nix

∂βij

∂xi

+ niy

∂βij

∂yi

]
ξ

1 + β2
ij

dξ
)

= 0, for i = 1, 2, ...,m.

Equation 2.2.9 has m+1 γs, for the endpoints of the panels. As mentioned in section 2.1, there
are i = 1, 2, ...,m equations, for m midpoints. Hence, there is one unknown too many. To close
the system, the Kutta condition is introduced.
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2.3 The Kutta condition
The Kutta condition states that the flow leaving a sharp object, such as the trailing edge of
an airfoil, must be smooth. In other words, there is no circulation around the sharp corner of
the trailing edge of an airfoil. Anderson [39] explains the Kutta condition in more detail. In
mathematical terms, this means that the first and last circulation γ1 and γm+1 must be equal in
magnitude, and negative each other, as to cancel out their effects and ensure smooth outflow:

γ1 + γm+1 = 0. (2.3.1)

This is the closing relation that provides a full set of equations, in combination with Equa-
tion 2.2.9. Firstly rearranging Equation 2.2.9,

m∑
j=1

Sj

2πV∞

(
γj

∫ 1

0

[
nix

∂βij

∂xi

+ niy

∂βij

∂yi

]
1− ξ

1 + β2
ij

dξ + ... (2.3.2)

...+ γj+1

∫ 1

0

[
nix

∂βij

∂xi

+ niy

∂βij

∂yi

]
ξ

1 + β2
ij

dξ
)

= nix cosα + niy sinα, for i = 1, 2, ...,m,

and substituting matrix identities to simplify,

Mij+1 =
Sj

2πV∞

∫ 1

0

[
nix

∂βij

∂x
+ niy

∂βij

∂y

]
ξ

1 + β2
ij

dξ,

Nij =
Sj

2πV∞

∫ 1

0

[
nix

∂βij

∂x
+ niy

∂βij

∂y

]
1− ξ

1 + β2
ij

dξ,

where Mij+1 is the matrix that linearly builds the influence of the next circulations γ+1, namely
ξ increasing from 0 to 1, and Nij is the matrix that linearly decreases the influence from previous
ones γ, as 1− ξ tends to 0, starting from 1. It is emphasized that either matrix has dimension
m×m, but for matrix N , both indices i and j range from 1 to m, whereas for matrix M , index
i ranges from 1 to m and index j ranges from 2 to m+ 1. Equation 2.3.2 now becomes

m∑
j=1

(Nijγj +Mij+1γj+1) = nix cosα + niy sinα, for i = 1, 2, ...,m. (2.3.3)

Now, adding the extra equation Equation 2.3.1 that will ensure the Kutta condition is satisfied,
and lastly collecting all the terms, one arrives at the system


N11 N12 +M12 · · · · · · M1m+1

... . . . . . . . . . ...
Nm1 · · · · · · Nmm +Mmm Mmm+1

1 0 · · · 0 1





γ1
γ2
...
γm
γm+1


= 2πV∞


(n1)x cosα + (n1)y sinα

...
(nm)x cosα + (nm)y sinα

0

 ,

(2.3.4)
which has m+1 equations for m+1 unknowns, and can be solved as a system of linear equations.
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2.4 Results and mesh refinement
A panel method is implemented as an external inviscid layer solver, and can provide accurate
and rapid solutions in cases where viscous effects are negligible. An example of a widely used
panel method solver is XFOIL [11], hence a comparison between the two models can be made.

To demonstrate the functionality of the panel method and the convergence, a mesh refinement
is done on the same test cases, where the number of x and y coordinates of an airfoil is increased
such that there are more panels to form a smoother curvature. The amount of panels used is
gradually going from 12 to 300. The default configuration of XFOIL is 160 panels, with which
the results are compared. From Equation 2.3.4, having solved for the circulations γ, the velocity
components u and v for each panel are obtained (from ∂ϕ

∂x
and ∂ϕ

∂y
). However, typically the result

from a panel method is given in the form of the pressure coefficient,

Cp = 1−
(

V

V∞

)2

. (2.4.1)

The derivation of this equation can be found in Appendix A. The results of the implemented
panel method with mesh refinement can be seen in Figure 2.2 and Figure 2.4.

Figure 2.2: A mesh refinement of the panel method for NACA 0012 at an angle of attack of 0°.

The graph in Figure 2.2 is cut off for legibility purposes, but it is implied that the graph
descends to a pressure coefficient of 1, namely the leading edge stagnation point. The symmetry
condition of a symmetrical airfoil at 0° is satisfied, as the lines for pressure and suction side
are on top of each other. For the symmetrical NACA 0012 airfoil, the correspondence gradually
becomes better with increasing number of panels at the leading edge. At the trailing edge,
however, an upward tail starts to grow for a high amount of panels, where it should actually
descend towards the value of 1, namely the trailing edge stagnation point in the inviscid case.
This might be attributed to the fact that the airfoil is not actually a closed body, but rather,
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the first and last coordinate of the airfoil are set such that they reach sufficiently close to
zero. Figure 2.3 shows the pressure distribution, zoomed in at the trailing edge for legibility
purposes. The pressure distribution over the entire domain can be seen in the lower left corner
of Figure 2.3. Moreover, the open and closed geometry at the trailing edge can be seen in the
upper right corner. Figure 2.3 shows the results for the open and (manually) closed trailing
edge, however this manual close causes a sudden kink in the curvature of the airfoil trailing edge,
shown in the upper right graph, which still results in a spike in the pressure coefficient, albeit
smaller than the result of the open trailing edge. This spike is physically interpreted as a sudden
acceleration of the flow, caused by the abrupt, sharp angle between two panels. In section 2.6,
it will be demonstrated that the wake resolves this problem.

Figure 2.3: The pressure distribution for an open and fully closed trailing edge of a NACA 0012 airfoil at 0°,
modeled using 300 panels, and the XFOIL result for reference.

A similar mesh refinement is done for a cambered airfoil at an angle, to show that the panel
method can also accurately calculate pressure distributions for different circumstances. The
NACA 2412 airfoil is chosen, at an angle of attack of 10°. The result can be seen in Figure 2.4.
The gradual approach to the XFOIL suction peak can be seen with the increase of the amount
of panels. For 300 panels, a similar tail can be seen at the leading edge as in Figure 2.2, but it
is much smaller in magnitude, and is resolved by the wake as well. From the mesh refinement,
it is concluded that a number of panels between 160 and 200 is adequately accurate to perform
simulations with, as the results for this amount of panels is sufficiently close to XFOIL’s result,
but not overly high to unnecessarily increase computational cost.
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Figure 2.4: A mesh refinement of the panel method for NACA 2412 at an angle of attack of 10°.

2.5 Coupling with boundary layer solver
A different application of panel methods is to couple it with a boundary layer solver. Iteratively,
the two models work together to arrive at a converged solution. However, the displacement
thickness calculated in the boundary layer model works in supplying a different, somewhat
larger, effective body. The area between the actual airfoil and this effective body is considered
the boundary layer, whereas everything outside this effective body is considered inviscid. Cebeci
[4] and Veldman [18] describe how the boundary layer solver and inviscid model are coupled.

Firstly, a zero normal velocity was imposed in Equation 2.1.7. In coupling with an inviscid
solver, a nonzero ‘blowing’ positive normal velocity is assumed and applied, instead of the zero
Neumann boundary condition, and derived from

v =
d
dx(ueδ

∗), such that ∂ϕ

∂n
= v, (2.5.1)

also known as the surface transpiration concept [40]. The idea behind this concept is the form-
ing of the effective body around the airfoil and ‘pushing’ the outer inviscid layer away. Since
the inviscid layer is pushed away and a different effective aerodynamic body is created, Equa-
tion 2.3.1, which made the flow satisfy the Kutta condition, is not valid on the airfoil surface
anymore. Hence, the condition should be applied at the edge of the effective body instead of on
the trailing edge itself.

When viscous effects are taken into consideration, the Kutta condition is satisfied if the
velocities above and below the trailing edge are equal, i.e. equal pressure, and have parallel
outflow angles. However, as mentioned, in a viscous situation the condition is not imposed
on the airfoil trailing edge itself, but rather one δ∗ away from the trailing edge, such that
the difference between the velocities at the edge of the effective aerodynamic body is zero, as
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explained by Cebeci [4]. It will be seen that a wake is necessary to accurately model smooth
outflow on the trailing edge. When imposing the Kutta condition in a viscous case without a
wake, similar to how it is done in Equation 2.3.1 in the inviscid case, but now one δ∗ away from
the trailing edge, one cannot guarantee that the upper and lower outflow have the same velocity
as well as parallel outflow angles. One can set a difference in circulation in the Kutta condition
around the trailing edge to try to resolve the matter of differing angles. Instead of demanding in
Equation 2.3.1 that the first circulation be minus the last circulation, a difference between the
two circulations is now imposed to try to resolve the issue of trailing edge outflow of different
angles. Let the Kutta condition be rewritten,

γ1 + γm+1 = ∆Γ, (2.5.2)

where ∆Γ is a user-specified value. This ∆Γ is manipulated to see the effect that it has on the
velocity and the outflow angles, one displacement thickness δ∗ above and below the trailing edge.
In Figure 2.5, the effects of this imposed circulation difference can be seen. For the symmetrical
case of NACA 0012 airfoil at 0°, the two outflow angles one δ∗ above and below the trailing edge
are shown. Also shown is the difference in velocity ∆v between the two flows that leave the
trailing edge. It can be seen that, for zero circulation difference, i.e. the original Equation 2.3.1
to satisfy the Kutta condition, there is inherently a difference between the outflow angles. In
imposing parallel outflow angles by setting a difference in circulation ∆Γ of 7 (or -7), there is a
difference in velocities leaving the trailing edge of around 0.3 (or -0.3).

Figure 2.5: Difference in circulation around the trailing edge of a NACA 0012 airfoil at 0°, including velocity
difference and outflow angle on lower and upper airfoil side, one displacement thickness δ∗ away from the trailing
edge.

Figure 2.5 explains the necessity of a wake to ensure smooth outflow of the trailing edge and
satisfy the Kutta condition, as there cannot be equal velocities and parallel outflow of the airfoil
without a wake. To guarantee both, the work has to be ‘divided’. The wake ensures that the
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flows leaving the trailing edge are directed outwards with parallel angles, while the last row in
Equation 2.3.4 serves to equate the trailing edge outflow velocities.

2.6 The wake
When the circulations γ have been calculated, the velocity at any point can be given by Equa-
tion 2.2.8. Considering that the gradient of the potential is the velocity, and is dependent on
the x and y position where it is evaluated, an ordinary differential equation can be set up,

u(x, y) =
∂x

∂t
(x, y) =

∂ϕ

∂x
(x, y),

v(x, y) =
∂y

∂t
(x, y) =

∂ϕ

∂y
(x, y),

(2.6.1)

where the definitions of the potential’s gradient can be substituted from Equation 2.2.8 to obtain
an explicit expression from which the velocity in x and y direction can readily be obtained. Initial
conditions are chosen sufficiently close to the trailing edge, on the upper and lower side, and used
as input by an explicit ODE solver, available in MATLAB, to calculate the trajectory of a fluid
particle with an initial position slightly above or below the airfoil’s trailing edge. Coordinates
along this trajectory are chosen according to a cosine distribution, thus obtaining two wake lines
with a higher density of points closer to the trailing edge. Using this newly-defined geometry as
input for the panel method, the pressure distribution is again calculated. The result is presented
in Figure 2.6, as well as the airfoil and wake geometry, and optimal agreement with XFOIL is
found. For the sake of completeness, the NACA 2412 including wake is presented in Figure 2.7,
showing that the spike at the trailing edge has disappeared, and that the result is indeed reliable.

Figure 2.6: A wake generated for NACA 0012 at an angle of attack of 0°, compared with XFOIL.
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Figure 2.7: A wake generated for NACA 2412 at an angle of attack of 10°, compared with XFOIL.
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Chapter 3

Integral Boundary Layer Equations

This chapter considers the system of equations employed by Veldman in his article, namely
the Von Kármán momentum integral equation and Head’s entrainment equation. Thwaites’
method is discussed as the method to calculate the laminar region of the boundary layer. The
closing relations of the model are shown, and the complete system of boundary layer equations
is presented. Goldstein’s singularity is demonstrated, and emphasis is put on the semi-strong
coupling, for which the analytical model is derived.

3.1 The system of equations
The integral boundary layer equation, derived by Theodore von Kármán in 1950, is taken as a
first equation. The derivation from the boundary layer equations to the Von Kármán equation
can be followed step by step in Drela, [5], chapter 4. The equation is as follows,

1

u2
e

∂

∂t
(ueθH) +

∂θ

∂x
+

θ

ue

(2 +H)
∂ue

∂x
=

1

2
cf , (3.1.1)

where the variables ue, θ, H and cf are the edge velocity, the momentum thickness, the shape
factor δ∗/θ and the skin friction coefficient, respectively. Formulas for these variables, also known
as the closure relations, will be given in section 3.3. In the present study, only steady situations
are considered, and thus the time-dependent term drops, simplifying the equation to

dθ
dx +

θ

ue

(2 +H)
due

dx =
1

2
cf . (3.1.2)

Consistently throughout the present study, the boundary layer is calculated in two regions. The
leading edge stagnation point on an airfoil is taken as the start, after which the upper or lower
side of the foil is calculated. Firstly, the laminar region is calculated using Thwaites’ method,
which will be introduced in section 3.2. Laminar flow is assumed until transition to turbulent
flow sets in at a user-specified location (for example s = 0.1), at which point a switch is made
from Thwaites’ equations to Equation 3.1.2. To form a closed system of equations with the
Von Kármán equation, Head’s Equation 3.3.2 is added as the closure set, to be introduced in
section 3.3. This system of equations is initially solved using an explicit ODE solver, available
in MATLAB. However, this ODE solver does not provide accurate solutions after Goldstein’s
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singularity, as will be shown in section 3.4, and is only used to obtain an initial condition for
the higher-order Galerkin solution of the boundary layer, that already approximates the actual
solution before separation. The higher-order Galerkin method will be introduced in chapter 4.

3.2 Thwaites’ method
In 1960, Bryan Thwaites derived a method to analytically integrate the momentum thickness
from the edge velocity [41], which upholds reasonably well for laminar boundary layers. Following
Drela’s derivation in [5], the von Kármán equation is manipulated by multiplying it with two
times the local momentum thickness Reynolds number Reθ = ueθ

ν
. Thwaites arrived at an

identity
ue

ν

d(θ2)
ds = 2[T − (H + 2)λ] ≡ Fθ, (3.2.1)

where a transition to streamwise coordinate s has been made, and with the substituted identities

T ≡ Reθ
cf
2
, λ ≡ θ2

ν

due

ds . (3.2.2)

In Equation 3.2.2, the first term T represents a non-dimensional wall shear, whereas the second
term λ stands for a streamwise, non-dimensional, external velocity gradient. Thwaites empiric-
ally found the relation for the right-hand side Fθ = 0.45− 6 θ2

ν
due

ds = 0.45− 6λ to be the best fit.
Substituting this identity in Equation 3.2.1 enabled the possibility of direct explicit integration
by means of an inverted product rule. Multiplying Equation 3.2.1 with νu5

e, he found[
ue

ν

d(θ2)
ds = 0.45− 6

θ2

ν

due

ds

]
νu5

e −→ d(u6
eθ

2)

ds = 0.45νu5
e. (3.2.3)

If one knows the edge velocity distribution and the kinematic viscosity, Equation 3.2.3 can be
directly integrated, such that

θ2(s) =
1

u6
e(s)

[
u6
e(s0)θ(s0) + 0.45ν

∫ s

s0

u5
e(s

′) ds′
]
, (3.2.4)

where the ′ simply denotes the integration variable. No initial data is required, as the simulation
is run from a stagnation point, where s = 0 and ue = 0, and thus, θ(0) is immaterial. Such is
Thwaites’ method, which will be used to obtain results for the momentum thickness θ in the
laminar region of the boundary layer. The point of transition to turbulent flow is user-specified,
and in the present study, it is set at 0.1 length in the streamwise coordinate. Having obtained the
momentum thickness, one can calculate the normalized velocity gradient λ from Equation 3.2.2,
and with that, the shape factor is calculated by means of Drela’s [5] curve fits:

H = 2.61− 4.1λ+ 14λ3 +
0.56λ2

(λ+ 0.18)2
. (3.2.5)
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The normalized wall shear T , from which the skin friction coefficient cf is calculated with
Equation 3.2.2, is given by the curve fit

T = 0.220 + 1.52λ− 5λ3 − 0.072λ2

(λ+ 0.18)2
. (3.2.6)

The skin friction coefficients (as well as the pressure coefficients) will be used to obtain the lift
and drag coefficients, the calculation of which is given in Appendix A.

3.3 Head’s entrainment equation
The unknowns for which the Von Kármán equation will be solved are θ and H. Hence, there
is need for another equation to close the system. This equation is found in the method of
entrainment, or carrying something along by a fluid, by Head [19]. Head proposes an altered
shape factor,

H1 =
δ − δ∗

θ
,

where δ stands for the boundary layer thickness. Head’s entrainment equation is given by

1

ue

∂

∂t
(θ(H1 +H)) +

1

ue

∂

∂x
(ueθH1) = CE, (3.3.1)

where CE denotes the entrainment coefficient, i.e. the coefficient that denotes the ‘carrying’ of a
fluid by a turbulent flux [42]. The steady version is considered, and the brackets are expanded,
yielding

H1
dθ
dx + θ

dH1

dx +
H1θ

ue

due

dx = CE. (3.3.2)

Closure relations for H1 = H1(H) and CE = CE(H1) will be provided below. Putting both
Equation 3.1.2 and Equation 3.3.2 together in a matrix system of equations, one arrives at[

1 0

H1 θ dH1

dH

]
d
dx

{
θ

H

}
=

(
1
2
cf − θ

ue
(2 +H)due

dx
CE − H1θ

ue

due

dx

)
. (3.3.3)

Moreover, closure relations for the additional variables in the equations are needed. Assuming
that the edge velocity is known from the panel method, such relations are needed for cf , H1 and
CE, and are obtained from Veldman [18]. Some of these closure relations were found to contain
some typing errors and were corrected; the corrected closure relations are given.

Reθ =
ueθ

ν
, (3.3.4)

cf0 =
0.01013

log(Reθ)− 1.02
, (3.3.5)

cf = cf0

[
0.9(

6.55
(
1−

√
1
2
cf0

)
− 0.4

)
H

− 0.5

]
, (3.3.6)
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ht = min(H, 0.5 ∗ (H + 2.732)), (3.3.7)

H1 =

1.9710 + 3.2ht

ht+2.4689
, if H > 4,

ht
0.5ht+1
ht−1

, if H ≤ 4,
(3.3.8)

CE = 0.0306(H1 − 3)−0.6169. (3.3.9)

Using Equation 3.3.3, and all of the above closure relations, a fully closed system of (ordinary
differential) equations is obtained, that can be integrated explicitly when the edge velocity
distribution is known.

3.4 Explicit integration and Goldstein’s singularity
Taking a closer look at Equation 3.3.3, more specifically the system matrix[

1 0

H1 θ dH1

dH

]
,

one concludes that, for a value of dH1

dH
= 0, a column of zeroes exists, rendering the matrix

singular, and thus the simulation breaks down. This is better seen in Figure 3.1, where some
relations between Head’s entrainment coefficient and the shape factor are displayed.

Figure 3.1: Different H1-H relations from ONERA [43], RAE [44] and NLR [45], graph taken from Veldman
[46].

All relations show a local minimum at H ≈ 2.7, where accordingly dH1

dH
= 0. Generally,

the shape factor of boundary layers lies around 2.6 for laminar flow, and 1.4 for turbulent [5],
which in Figure 3.1 lies to the left of this minimum. However, when a flow nears separation,
the shape factor rises from its turbulent value of 1.4 upward, until it reaches the local minimum
shown in Figure 3.1, and as such, dH1

dH
indeed becomes 0, and a column of zeroes forms in the
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system matrix. The matrix becoming singular is Goldstein’s singularity at work, and causes
the system to break down when a flow is nearing separation. Beyond this point of separation,
explicit integration is not possible anymore, as the inverted system matrix diverges to infinity.

Figure 3.2: Momentum thickness and shape factor on suction side of a NACA 2412 at 0°, Reynolds 1 ∗ 106.

An example of a simulation that breaks down, can be seen in Figure 3.2. The suction side
of a NACA 2412 airfoil is modeled at 0° angle of attack, and a Reynolds number of 1 ∗ 106,
with a forced transition at the streamwise coordinate of s = 0.1. The result from the explicit
ODE solver that is available in MATLAB is shown, as well as XFOIL’s result for reference. A
study by Kwon et al. [47] states that before a turbulent flow starts to separate, the shape factor
rises to between 2 and 2.5. In the lower graph in Figure 3.2, the XFOIL result has not yet
reached this value, whereas the shape factor from the explicit solver is already increasing when
nearing the trailing edge, after which there is exponential growth in both momentum thickness
and shape factor. From Figure 3.2, it is clear that the results from the ODE solver diverge to a
high value, and the simulations would break down were it not for manual clipping of the results.
This manual clipping is set at the shape factor separation value of 2.7, which is clearly visible
in the lower graph in Figure 3.2, and enables the solver to still produce results, but one can
conclude that these results are not reliable. At this point and beyond, explicit integration of the
differential equations is no longer possible.

Figure 3.2 shows the numerical consequence of Goldstein’s singularity, and highlights the
importance and the necessity of a semi-strong solution employed in a boundary layer model if it
is to produce sensible results in a situation where separation might occur. Hence, the semi-strong
interaction between inviscid velocity and boundary layer is introduced as a solution to bypass
Goldstein’s singularity of separation and produce reliable results.

3.5 Veldman’s quasi-simultaneous interaction scheme
Veldman [18] proposes a scheme that involves using the change in displacement thickness directly
in a submodel to update the external velocity in the boundary layer simulations. The principal
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idea behind this scheme is to circumvent Goldstein’s singularity of separation. Where there
would previously be a ‘hierarchical’ relation between the external panel method solver and the
internal boundary layer model, as the latter is dictated by the former, now they are merged
in a quasi-simultaneous structure, creating the semi-strong solution. The overall strategy is
to use a simple analytical model to improve the convergence of the weak coupling interactions
between the boundary layer solver and the panel method. This specific analytical model will
be derived in section 3.6. Firstly, a description is given for when the semi-strongly coupled
model has converged. The input variables displacement thickness δ∗ and external velocity u

are defined. Let the boundary layer solver be denoted by the operator S (as in solver), such
that δ∗ = Su, or equivalently, u = S−1δ∗, and the panel method (with prescribed blowing) by
the operator P , such that u = Pδ∗. Now, a representation of the functional model is given in
the form of two equations and two variables. The system will have converged when there is no
more (or very little) change between the variables between iterations. The solution of these two
equations is the desired converged state. For example, the converged δ∗ distribution is such that
(P−S−1)δ∗ = 0, or alternatively, the converged velocity distribution is such that (S−P−1)u = 0.
The interaction proposed by Veldman is obtained by inserting the analytical model in such a
way as to have the following combined interactive system,

δ∗(n) = Su(n) (3.5.1)

u(n) = Pδ∗(n−1) + A
(
δ∗(n) − δ∗(n−1)

)
(3.5.2)

where A denotes the analytical model. A unified equation can be derived for the (modified)
boundary layer solver, namely

S−1δ∗(n) = Pδ∗(n−1) + A
(
δ∗(n) − δ∗(n−1)

)
, (3.5.3)

whose alternative form,
(S−1 − A) δ∗(n) = (P − A) δ∗(n−1), (3.5.4)

makes clear that, upon convergence, as δ∗(n−1) −→ δ∗(n), the obtained solution matches that of
the original problem, namely (P −S−1) δ∗ = 0. A visualization of the scheme, and the difference
with the direct, weak solver, is shown in Figure 3.3, where δ∗(n) − δ∗(n−1) is denoted as ∆δ∗.

Panel Method

BL Solver

Panel Method

BL Solver

Analytical Model

Semi-strongly coupled BL solverWeakly coupled BL solver

Figure 3.3: Block diagram of the weakly and semi-strongly coupled solvers.
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3.6 The analytical model
The analytical model is introduced by taking the thin-airfoil approximation from Schlichting
[37], also known as the skeleton theory. Schlichting explains the theory after describing the
influence of the elementary solutions (given in section 2.1 as well) on the body contour formed
in potential theory; the skeleton theory serves to give a good prediction of the lift generated,
and relies on the assumption that the body is thin and just slightly cambered. As such, the
circulations can be placed on the chord line instead of on the skeleton line, the process of which
is seen in Figure 3.4, going from (a) to (b). In (c) of Figure 3.4, the circulation distribution is
shown along the chord line, and the variable k(x) is introduced, representing the vortex strength
per unit length. Defining a strip on the chord line of width dx, the circulation of this strip can
be calculated,

dΓ = k(x)dx. (3.6.1)

Figure 3.4: (a) Vortex distribution on skeleton line, (b) Vortex distribution on chord, (c) Circulation distribution
along chord, image taken from Schlichting [37].

The vortex density k(x) induces changes ∆ in the velocity components u and v, which
Schlichting quantifies in two equations using the law of Biot-Savart,

∆u(x, y) =
1

2π

∫ c

0

k(ξ)
y

(x− ξ)2 + y2
dξ, (3.6.2)

∆v(x, y) = − 1

2π

∫ c

0

k(x′)
x− ξ

(x− ξ)2 + y2
dξ. (3.6.3)

The at (x, y) induced velocities are given by Equation 3.6.2 and Equation 3.6.3, where c is the
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chord length and ξ is the integration variable for the vortex density. Note that in Equation 3.6.2
and Equation 3.6.3, there is a singularity for ξ = x. This singularity will be dealt with in
subsection 4.2.1. As the profile is assumed to be slightly cambered, the circulations are placed
on the chord line, and thus, y becomes 0. The equations are taken with limit y → 0, becoming

∆u(x) = ±1

2
k(x), (3.6.4)

∆v(x) = − 1

2π

∫ c

0

k(ξ)
dξ

x− ξ
. (3.6.5)

In Equation 3.6.4, the integral with the singularity has disappeared due to the limit of y →
0, therefore the vorticity k(x) has become a direct function of the singularity coordinate x.
Equation 3.6.5 can be rewritten with an inverse Cauchy relation [48], such that

k(x) =
2

π

∫ c

0

∆v(ξ)
dξ

x− ξ
. (3.6.6)

It should be noted that, in applying the inverse Cauchy relation, the variables x and ξ were
also switched. Evaluating the integral in Equation 3.6.6, v(ξ) becomes v(x), a function of the
singularity position x, similar to k(x) in Equation 3.6.4. Now, Equation 3.6.6 can be substituted
in Equation 3.6.4, and one arrives at what Cebeci et al. [49] called the perturbation velocity to
account for the viscous effects,

∆u(x) =
1

π

∫ c

0

∆v(ξ)
dξ

x− ξ
. (3.6.7)

Equation 3.6.7 describes the changes induced on the velocity by changes in a velocity ∆v, as a
result of a vortex distribution on the chord line. The inviscid velocity from the panel method
can be added to form a combined model for the total velocity u(x), such that

u(x) = u0(x) +
1

π

∫ c

0

v(ξ)
dξ

x− ξ
. (3.6.8)

Lastly, Veldman [18] gives the final relation that prescribes wall transpiration as the gradient of
velocity and displacement thickness,

v(ξ) =
d(uδ∗)

dξ , (3.6.9)

with which the model is complete,

u(x) = u0(x) +
1

π

∫ c

0

d(uδ∗)
dξ

dξ
x− ξ

. (3.6.10)

The idea behind Equation 3.6.10 is to update the external velocity distribution simultaneously
with the changing of the displacement thickness, thus creating the semi-strong solution in the
boundary layer model. The model is further expanded to fit into the higher-order Galerkin
scheme in subsection 4.2.1.
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Chapter 4

Higher-Order Galerkin Applied to the
Integral Boundary Layer Equations

This chapter will discuss the theory of higher-order Galerkin and Lagrange polynomials, and
show a one-element example discretization of the advection-diffusion equation. It will proceed
to show the spatial discretization of the governing equations employed in the boundary layer
model and explain collocation of the Lagrange nodes to lump the mass matrix, as well as how
the interaction law is incorporated in the spatial discretization. The point-implicit iterative
scheme is completely derived, and spectral vanishing viscosity is explained and introduced to
stabilize the higher-order Galerkin scheme. Finally, an order refinement of an arbitrary solution
is presented to show convergence.

4.1 Theory of higher-order Galerkin
Galerkin methods, named after the Russian mathematician Boris Galerkin, are an intricate
spatial discretization method in Computational Fluid Dynamics. Its governing principles rely
on discretizing a function or a partial differential equation as a polynomial that is constructed
through a summation of projection constants multiplied with a set of basis functions. The
elegance behind the method is that it allows for mesh refinement as well as order increase to
augment accuracy of the numerical solution. A distinction that can be made between Galerkin
methods is continuous [25], and discontinuous [50].

The principal difference between Continuous and Discontinuous Galerkin, as mentioned in
section 1.2, is that in the former, continuity of the zeroth degree C0 over interfaces is guaranteed,
whereas the latter allows for discontinuities on interfaces, hence the name difference between
the two. The advantage that these discontinuities offer is the numerical dissipation via the
fluxes in the scheme. However, in the present study, to not overcomplicate the implementation,
only one element will be used in the turbulent domain, and as such, only two interfaces will
be present, namely the edges of the single element. With only two interfaces, a scheme based
on Discontinuous Galerkin would have little stabilization due to the fluxes. To stabilize the
numerics, additionally spectral vanishing viscosity [22] would have to be applied, which has
been developed more for Continuous than for Discontinuous Galerkin. It is noted that, in
the case of implementation of multiple elements, Discontinuous Galerkin could be considered
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worthwhile as discretization scheme. In any case, a Dirichlet boundary condition on the first
interface is supplied by Thwaites’ method for the laminar region. On the second interface, a zero
Neumann boundary condition is applied, which in Continuous Galerkin is simply implemented
by not actively applying a boundary condition, i.e. ‘doing nothing’. In Discontinuous Galerkin,
the implementation would be somewhat more involved. Keeping the above in mind, the choice is
made to spatially discretize the turbulent boundary layer according to the Continuous Galerkin
scheme. However, as only one element is considered and as such, there are no interfaces between
elements to force continuity on, a more appropriate nomenclature is higher-order Galerkin, which
will be used henceforth.

The spatial discretization of a one-dimensional variable, in this case velocity, of arbitrary
order P , is written as the summation of a set of solution coefficients, denoted by ,̂ multiplied
with the corresponding function from the set of basis functions,

u(x) ≈
P∑

j=0

ûjϕj(ξ), (4.1.1)

where ûj indicates the jth solution coefficient, and ϕj the corresponding basis function in the
standard domain Ωst that ranges from [−1, 1], denoted by the coordinate ξ. This will be explained
in more detail further in this section.

Examples of basis functions that are commonly used in higher-order Galerkin methods, are
Lagrange polynomials [51] and Legendre polynomials [52]. The principle difference between these
two polynomials is that the former is nodal, whereas the latter is modal. This will be explained
in further detail in section 4.2. In the present study, for each instance, Lagrange polynomials are
used as the set of basis functions, as the polynomials as well as their derivatives are relatively
simple to implement, and easy to understand. Lagrange polynomials are defined for a set of
user-specified nodes on the standard domain Ωst, and have the property of the Kronecker delta,
namely that they are 1 in their corresponding node, and zero in the other nodes,

δi,j =

0 if i ̸= j,

1 if i = j.
(4.1.2)

The mathematical formulation [26][51] for the ith Lagrange polynomial is given by

ℓi(ξ) =

[
j ̸=i∏

j=0,...,P

(ξi − ξj)

]−1 j ̸=i∏
j=0,...,P

(ξ − ξj), i = 0, ..., P. (4.1.3)

Note that in Equation 4.1.3, the rightmost term indicates the polynomial term with standard
variable ξ, whereas the first term is a normalizing factor to ensure unit value at the specific node
for which the Lagrange polynomial was designed, ℓi(ξi) = 1.

A visual example of Lagrange polynomials is shown in Figure 4.1. Three nodes are defined,
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namely [−1, 0, 1]. Using these nodes in Equation 4.1.3, the following basis is obtained,

ℓi(ξ) =


1

(−1−0)(−1−1)
(ξ − 0)(ξ − 1)

1
(0−−1)(0−1)

(ξ −−1)(ξ − 1)
1

(1−0)(1−−1)
(ξ −−1)(ξ − 0)

 =


1
2
(ξ2 − ξ)

−(ξ2 − 1)
1
2
(ξ2 + ξ)

 , i = 1, 2, 3. (4.1.4)

The order of the polynomial is by definition always equal to the amount of nodes minus 1, hence
in this specific case, the Lagrange polynomials are quadratic, as can be seen in Equation 4.1.4.
From Figure 4.1, the Kronecker delta property can be seen clearly; three polynomials are defined
that have unit value at their corresponding node, and are zero at the other nodes. This is also
confirmed by plugging the nodes [−1, 0, 1] in the functions in Equation 4.1.4. The nodes were
linearly spaced as a means of clear illustration, but it is emphasized that the nodes can be
specified simply by the user.

Figure 4.1: Three quadratic Lagrange polynomials.

Referring back to Galerkin methods, the manner in which the Galerkin projection is done, is
similar to finite element formulations, namely by taking the PDE in its strong form, for example
the linear one-dimensional advection-diffusion equation,

∂u

∂t
+ a

∂u

∂x
= µ

∂2u

∂x2
, (4.1.5)

and taking it in its weak form on a domain Ω, using the same set of basis functions ϕi (the
Lagrange polynomials) that will be used to spatially discretize the solution,∫

Ω

ϕi
∂u

∂t
dx+

∫
Ω

ϕi a
∂u

∂x
dx =

∫
Ω

ϕi µ
∂2u

∂x2
dx, for i = 0, 1, ..., P. (4.1.6)

Analytical solutions to a particular PDE have to satisfy certain smoothness conditions, whereas
these conditions are somewhat loosened in the weak formulation, as it satisfies the PDE in
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a ‘weaker’ way. Now, the second-order derivative can be split through integration by parts,
reducing the degree of smoothness that the candidate solution has to satisfy,∫

Ω

ϕi
∂2u

∂x2
dx =

[
ϕi
∂u

∂x

]⊕
⊖
−
∫
Ω

∂ϕi

∂x

∂u

∂x
dx, (4.1.7)

where ⊖ and ⊕ denote the values at the borders of the domain. The Lagrange polynomial is used
as the set of basis functions, and therefore, due to its Kronecker delta property, the boundary
term, i.e. the first term on the right-hand side of Equation 4.1.7 simplifies considerably, as
only ϕ0 and ϕP are non-zero at the element boundaries. These are thus dictated by either
Dirichlet or Neumann boundary conditions and are obtained as input values, known beforehand,
for the right-hand side of Equation 4.1.7. The domain Ω is taken as one element in the Galerkin
formulation, and the projection of the velocity u, Equation 4.1.1, is substituted, yielding the
following discretized set of equations,

∫
Ω

ϕi

( P∑
j=0

dûj

dt ϕj

)
dx+ a

∫
Ω

ϕi

( P∑
j=0

dϕj

dx ûj

)
dx = ...

... µ

([
ϕi
∂u

∂x

]⊕
⊖
−
∫
Ω

∂ϕi

∂x

(
P∑

j=0

∂ϕj

∂x
ûj

)
dx
)
, for i = 0, 1, ..., P,

(4.1.8)

where the projection constants ûj are a function of time only, ûj(t), and the boundary terms[
ϕi

∂u
∂x

]⊕
⊖ disappear through Dirichlet boundary conditions, or are known from Neumann boundary

conditions. In the case of a zero Neumann boundary condition, the first term on the right-hand
side of Equation 4.1.8 disappears altogether.

The integrals are evaluated using the commonly used Gauss-type quadratures [53], a way of
approximating integrals by summing weight values multiplied with the function to be integrated,
probed at specific quadrature nodes. These nodes are specified as the roots of Jacobi polynomials
[53]. Quadrature will be explained in more detail in section 4.2. As these quadratures are
applied in the standard coordinates in Galerkin methods, ranging from [−1, 1], the differentials
and integrals must be transformed using the Jacobian factor of transformation,

J =
dx
dξ =

x⊕ − x⊖

2
, (4.1.9)

where ξ denotes the ‘standard’ coordinate, and [x⊖, x⊕] denote the boundaries of the domain.
Equation 4.1.8 is transformed to standard coordinates, giving

∫ 1

−1

ϕi

( P∑
j=0

dûj

dt ϕj

)
dx
dξ dξ + a

∫ 1

−1

ϕi

( P∑
j=0

dϕj

dξ �
�
�dξ

dxûj

)
�
�
�dx

dξ dξ = ...

... µ

[
ϕi
∂u

∂x

]⊕
⊖
− µ

∫ 1

−1

dϕi

dξ
dξ
dx

( P∑
j=0

dϕj

dξ �
�
�dξ

dxûj

)
�
�
�dx

dξ dξ, for i = 0, 1, ..., P.

(4.1.10)

Substituting the Jacobian and matrix identities for the mass matrix, advection matrix, and
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diffusion matrix, a system of equations in ODE can be written in matrix form,

J
P∑

j=0

Mij
dûj

dt + a
P∑

j=0

Aijûj = µ

[
ϕi
∂u

∂x

]⊕
⊖
− µ

J

P∑
j=0

Dijûj, for i = 0, 1, ..., P, (4.1.11)

with

Mij =

∫ 1

−1

ϕiϕj dξ, Aij =

∫ 1

−1

ϕiϕ
′
j dξ, Dij =

∫ 1

−1

ϕ′
iϕ

′
j dξ. (4.1.12)

Lastly, vectors û and ϕ for ûj and ϕi are substituted to complete the formulation,

J M d
dt û + aAû = µ

[
ϕ
∂u

∂x

]⊕
⊖
− µ

J
Dû, (4.1.13)

with

û = {u0, ..., uP}T , ϕ = {ϕ0, ..., ϕP}T . (4.1.14)

Terms that are known from either Dirichlet or Neumann boundary conditions are moved to the
right-hand side. A spatially discretized system of equations has now been created, that contains
only a time-dependent term. Hence, one is left with a set of ordinary differential equations, such
that an ODE solver, for example ODE45 from MATLAB, is able to march the system forward in
time. In this manner, a PDE with first- and second-order spatial derivatives can be transformed
to an ODE that is time-dependent only, and can produce results within desired accuracy by
increasing order P .

Figure 4.2: Solutions for the advection-diffusion equation, modeled at different orders of accuracy.

To show the functionality of the higher-order Galerkin scheme, a test case of the linear,
unsteady, one-dimensional advection-diffusion equation, as given in Equation 4.1.13, is run, with
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the Lagrange polynomials being the set of basis functions. For an advection speed of a = 1, and
a viscosity of µ = 0.1, a one-element solution of various orders of accuracy is seen in Figure 4.2.
A sinusoidal function is used as Dirichlet boundary condition on the left border of the domain,
and on the right border, by ‘doing nothing’, a Neumann boundary condition is applied of ∂u

∂x
= 0.

Note that in Figure 4.2, the solutions of order 8 and 10 are on top of each other, indicating that
the solution has already converged.

It is further emphasized that the solutions in Figure 4.2 consist of the summations of coeffi-
cients multiplied with their respective Lagrange polynomial. As such, the solution in its entirety
is in fact a polynomial of order P . Knowing the set of solution coefficients ûj, one can obtain
the solution at any given x coordinate. Firstly, the coordinate for which one wants to know the
solution needs to be mapped linearly to the standard domain through the following relation [26],

ξ =
2x− x⊕ − x⊖

x⊕ − x⊖ , x ∈ Ω = [x⊕, x⊖]. (4.1.15)

Inversely, one can calculate a corresponding x coordinate for any given ξ through

x =

(
1− ξ

2

)
x⊖ +

(
1 + ξ

2

)
x⊕, ξ ∈ Ωst = [−1, 1]. (4.1.16)

Now, let the coordinate at which the solution is to be obtained, be denoted by x?. The solution
is now found by reconstructing the location of x? through linear mapping to ξ, into the standard
domain [−1, 1], using Equation 4.1.15. Once ξ? is known, the solution is simply found through
interpolation of the summated Lagrange polynomial,

u(x?) ≈
P∑

j=0

ûjℓj(ξ?). (4.1.17)

Lastly, a solution of order P produced by higher-order Galerkin has an order of accuracy of
P + 1 [25]. In reality, Galerkin spectral element methods have two manners in which they can
converge. One can increase the amount of elements, thereby decreasing the mesh size h, or one
can increase the polynomial order of approximation P . As such, an error convergence (and thus
implicitly the order of accuracy) can be established as

ϵ ∝ hP+1. (4.1.18)

This can best be visualized in the residual of the solutions. A solution of order 50 is generated
as a reference solution, with which the solutions from Figure 4.2 are compared, according to the
L2 norm,

Residual =
√∑

(usol − unum)2, (4.1.19)

where usol is the reference solution of order 50, and unum denotes the numerical solutions of
lower order in Figure 4.2. The produced result can be seen in Figure 4.3. Note that Figure 4.3
shows a logarithmic y axis and a linear x axis, i.e., ‘exponential’ convergence with linearly
increasing polynomial order; by slightly increasing the number of nodes (or degrees of freedom),
and with that, the polynomial order of the approximating solution, one can obtain an exponential
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convergence to a solution, showing the potential that higher-order Galerkin methods have in
numerical analysis.

Figure 4.3: Residual for linear advection-diffusion equation.

Having explained the theory of higher-order Galerkin methods, it will now be applied to
the governing system of integral boundary layer equations from section 3.3, in the next section,
section 4.2.

4.2 Nodal Galerkin on the system of equations
Depending on the basis function, a Galerkin method is applied in a nodal or modal manner [25].
Referring back to section 4.1, Lagrange and Legendre polynomials are mentioned. The former
is nodal [51], where a set of nodes defines the Lagrange polynomials that serve as basis. All
polynomials are of the same degree P . The latter, the Legendre basis, is modal [52], where the
set of basis functions is hierarchical, i.e., lower order sets are contained by higher-order sets, such
that the order of the set is ‘increasing’, as it were, instead of all the functions having the same
order such as in nodal formulations. As mentioned before, a nodal set of Lagrange polynomials
is employed as basis in the present study, and as such, a nodal Galerkin scheme is applied to
the system of equations.

Starting from the governing matrix system of Equation 3.3.3, the weak form is taken. For
the sake of completeness, the system of equations is repeated here,[

1 0

H1 θ dH1

dH

]
d
dx

{
θ

H

}
=

(
1
2
cf − θ

ue
(2 +H)due

dx
CE − H1θ

ue

due

dx

)
. (4.2.1)

As mentioned in section 4.1, Lagrange polynomials are chosen as an appropriate set of nodal
basis functions ϕ. They will be denoted as ℓi for i = 0, 1, ..., P for the weak form of the equations,
and ℓj for j = 0, 1, ..., P for the expanded projections, respectively. As such, the solution for the
variables θ and H will be expanded in this polynomial basis, denoting the variables as solution
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coefficients θ̂j and Ĥj, for j = 0, 1, ..., P , similar to the discretization of the advection-diffusion
equation in section 4.1. The Galerkin projections will take on the form

θ(x) ≈
P∑

j=0

θ̂jℓj(ξ) and H(x) ≈
P∑

j=0

Ĥjℓj(ξ). (4.2.2)

Taking Equation 4.2.1, the term 1
ue

due

dx can be merged together using the chain rule.

Let g(x) = ue(x),

and f(g(x)) = lnue,

such that df(g(x))
dx =

df
dg

dg
dx → d ln ue

dx =
1

ue

due

dx ,

and thus, the term 1
ue

due

dx becomes d
dx lnue. The weak forms on domain Ω are, respectively,∫

Ω

dθ
dxℓi dx =

∫
Ω

1

2
cf ℓi dx −

∫
Ω

θ(2 +H)
d ln ue

dx ℓi dx, (4.2.3)∫
Ω

H1
dθ
dxℓi dx +

∫
Ω

θ
dH1

dH
dH
dx ℓi dx =

∫
Ω

CE ℓi dx−
∫
Ω

H1θ
d ln ue

dx ℓi dx. (4.2.4)

Individual terms are each mapped linearly to the standard domain Ωst, using coordinate ξ.
Furthermore, the Galerkin projections θ ≈

∑
j θ̂jℓj and H ≈

∑
j Ĥjℓj are substituted, where

the integrals are evaluated using collocation of the Gauss-Lobatto nodes, stemming from the
rule of Gauss-Lobatto quadrature [54], which concentrates nodes near the edges and includes
the borders of the domain itself. An alternative commonly used Gaussian quadrature (more
information on quadrature can be found in [55]) is Gauss-Legendre [56], but this technique
does not include the borders. As a Dirichlet condition will be applied on the left border of the
domain, provided by Thwaites’ calculation of the laminar boundary layer until transition, the
borders need to be explicitly included within the quadrature. As such, following [25] and [54],
Gauss-Lobatto quadrature approximates an integral in the following manner,

∫ 1

−1

u(ξ) dξ ≈
Q∑

k=1

wku(ξk), (4.2.5)

where Q is the amount of quadrature nodes where the function is to be probed, ξk is the
node to probe the function on, and wk is the weight with which this value contributes to the
approximation of the integral. The coordinates ξk are obtained by the roots of the Jacobi [53]
polynomial J 1,1

Q−2(ξ) of degree Q− 2, whereas the weights are given by wk =
2

Q(Q−1)
[J 0,0

Q−1(ξk)]
−2,

following the derivation of [25]. In any case, the nodes of the Lagrange polynomials are chosen
by design to correspond to the Lobatto nodes at which the quadrature is performed, such that
contributions from other nodes are anulled due to the Kronecker delta property of Lagrange
polynomials.
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Implementing the quadrature in the first integral term of Equation 4.2.3 gives

∫ dθ
dxℓi dx ≈

∫ ( P∑
j=0

θ̂jℓ
′
j

)
ℓi dξ ≈

P∑
k=0

wk

∑
j

θ̂jℓ
′
j(ξk)ℓi(ξk),

=
P∑

k=0

wk

∑
j

θ̂jℓ
′
j(ξk)δi,k = wi

P∑
j=0

θ̂jℓ
′
j(ξi).

Due to the collocated nature of the quadratures and the Kronecker delta property of Lagrangian
polynomials, many weight terms drop, simplifying the equations and accelerating the process.
The term wi represents the weight associated with the quadrature node. The other terms are
obtained similarly, ∫

1

2
cfℓi dx ≈ 1

2
Jwicf (θ̂i, Ĥi),∫

θ(2 +H)
d ln ue

dx dx ≈ wi(2 + Ĥi)θ̂i
d ln ue

dξ

∣∣∣∣
ξi

,

∫
H1

dθ
dxℓi dx ≈ wiH1(Ĥi)

P∑
j=0

θ̂jℓ
′
j(ξi),

∫
θ

dH1

dH
dH
dx ℓi dx ≈ wiθ̂iH

′

1(Ĥi)
P∑

j=0

Ĥjℓ
′
j(ξi),∫

CE ℓi dx ≈ JwiCE(Ĥi),∫
H1θ

d ln ue

dx ℓi dx ≈ wiH1(Ĥi)θ̂i
d ln ue

dξ

∣∣∣∣
ξi

,

where the Jacobian J appears for terms that do not possess a spatial derivative. A close ob-
servation allows discarding the weights for each term, as these weights appear on both sides
of Equation 4.2.3 and Equation 4.2.4. Lastly, the first equation i = 0 in the system can be
discarded, as the first coefficients θ̂0 and Ĥ0 are already known variables from Thwaites’ method
of analytically obtaining the boundary layer parameters in the laminar region; these values are
used directly as a Dirichlet boundary condition for the first of the Gauss-Lobatto nodes, to guar-
antee continuity between the laminar and turbulent domains. On the right side of the border, by
‘doing nothing’, a zero Neumann boundary condition is applied. Hence, the system is diminished
by one equation, yielding the following set,

P∑
j=0

θ̂jℓ
′
j(ξi) =

1

2
Jcf (θ̂i, Ĥi)− (2 + Ĥi)θ̂i

d ln ue

dξ

∣∣∣∣
ξi

H1(Ĥi)
P∑

j=0

θ̂jℓ
′
j(ξi) + θ̂iH

′

1(Ĥi)
P∑

j=0

Ĥjℓ
′
j(ξi) = ...

... = JCE(Ĥi)−H1(Ĥi)θ̂i −
d ln ue

dξ

∣∣∣∣
ξi


for i = 1, 2, ..., P, (4.2.6)
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where θ̂0 and Ĥ0 are thus known terms from Thwaites’ method. Before this equation is solved
numerically, the analytical model for the external velocity, described in section 3.6, should also
be incorporated in the discretization.

4.2.1 Implementation of the external velocity model in the Galerkin
scheme

Equation 3.6.10 is taken and repeated for the sake of completeness,

u(x) = u0(x) +
1

π

∫ c

0

d(uδ∗)
dξ

dξ
x− ξ

. (4.2.7)

The integration variable ξ in Equation 4.2.7 is now rewritten to ζ to avoid ambiguity with
the standard coordinate ξ in the higher-order Galerkin scheme. Moreover, Equation 4.2.7 is
transformed to streamwise coordinates, with the domain ranging from the point where transition
sets in (which will be the user-specified s = 0.1) until the trailing edge. Another change, as
accuracy of the analytical model is not of first concern, is that the model can be simplified even
further by replacing u in the integrand with V∞, and taking it out of the integrand. Lastly, u(si)
is written as ue(si) to be consistent with Equation 4.2.6, giving

ue(si) = u0(si) +
V∞

π

∫ TE

0.1

dδ∗
dζ

dζ
si − ζ

, (4.2.8)

where ζ is the continuous streamwise coordinate, si denotes the discretized streamwise coordinate
on point i of the grid in the turbulent region, and u0 is the external velocity supplied by the
inviscid panel method solver. For the sake of consistency with the article of Veldman [18], a
discrete form of the integral in Equation 4.2.8 is adopted, on a uniform grid of 120 points. The
integral in Equation 4.2.8 is then split into two parts to work around the singularity in the
denominator in the integrand, where the displacement thickness is linearly interpolated on the
midpoints of the grid and summed. At the neighboring points of the singularity, a quadratic
interpolation is performed to avoid the singularity itself, yielding

ue(si) ≈ u0(si)−
2hV∞

π

d2δ∗

dζ2

∣∣∣∣
i

+
hV∞

π

∑
j ̸=i−i,i

dδ∗
dζ

∣∣∣∣
j+ 1

2

ln
∣∣∣∣ i− j

i− j − 1

∣∣∣∣, (4.2.9)

where h denotes the mesh size of the uniform grid. Note that a first and second derivative of
the displacement thickness with respect to the streamwise coordinate s is required (written as ζ
in Equation 4.2.9). From the higher-order Galerkin model, an approximation of the momentum
thickness θ and the shape factor H, both of order P are obtained. As the displacement thickness
δ∗ is given by the product of these two solutions, it can be expressed as a polynomial of order
2P . To derive the displacement thickness δ∗ from these variables, one simply multiplies,

θH = δ∗, (4.2.10)

such that an approximation of order 2P for the displacement thickness is found. The solution
coefficients θ̂j and Ĥj are specifically known at the P + 1 Lobatto nodes, and are used to
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approximate the solution over the entire domain of the turbulent flow with a polynomial of
order P ,

θ(s) ≈
P∑

j=0

θ̂jℓj, H(s) ≈
P∑

j=0

Ĥjℓj. (4.2.11)

Through polynomial interpolation, the set of solution coefficients is found at 2P + 1 Lobatto
nodes, needed to obtain the polynomial approximation of order 2P for δ∗,

θ̂k =
P∑

j=0

θ̂jℓj(ξk), Ĥk =
P∑

j=0

Ĥjℓj(ξk), for k = 1, 2, ..., 2P + 1. (4.2.12)

The set of P +1 solution coefficients has now gone to a set of 2P +1 solution coefficients through
polynomial interpolation. As the product of these sets is equal to the set of solution coefficients
for the displacement thickness δ∗, the sets are multiplied,

δ̂∗k = θ̂kĤk =

(
P∑

j=0

θ̂jℓj(ξk)

)(
P∑

j=0

Ĥjℓj(ξk)

)
, for k = 1, 2, ..., 2P + 1. (4.2.13)

Having obtained the full set of 2P +1 solution coefficients for the displacement thickness δ∗, the
solution is represented as the sum of the solution coefficients multiplied with their basis function,
yielding a solution of polynomial order 2P ,

δ∗(s) ≈
2P∑
k=0

δ̂∗kℓk. (4.2.14)

Summarizing the process, from the Galerkin projected definitions of the momentum thickness θ
and the shape factor H, the displacement thickness δ∗ was obtained,

θH ≈

(
P∑

j=0

θ̂jℓj

)(
P∑

j=0

Ĥjℓj

)
→

2P∑
k=0

δ̂∗kℓk ≈ δ∗(s). (4.2.15)

From the definition Equation 4.2.14 for the displacement thickness, the derivatives needed for
Equation 4.2.9 are obtained by taking the derivatives with respect to ξ denoted by the ′,

δ∗
′ ≈

2P∑
k=0

δ̂∗kℓ
′

k =
2P∑
k=0

δ̂∗k
dℓk
dξ , δ∗

′′ ≈
2P∑
k=0

δ̂∗kℓ
′′

k =
2P∑
k=0

δ̂∗k
d2ℓk
dξ2 . (4.2.16)

Note, however, that the derivatives in Equation 4.2.16 are taken with respect to the standard
coordinate ξ, whereas for Equation 4.2.9, they are needed with respect to the streamwise co-
ordinate s.
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A division by the Jacobian J solves this problem, such that

dδ∗
ds ≈

(
2P∑
k=0

δ̂∗kℓ
′

k

)
dξ
ds =

1

J

(
2P∑
k=0

δ̂∗kℓ
′

k

)
,

d2δ∗

ds2 ≈

(
2P∑
k=0

δ̂∗kℓ
′′

k

)
d2ξ

ds2 =
1

J2

(
2P∑
k=0

δ̂∗kℓ
′′

k

)
.

(4.2.17)

Nodal polynomial formulations have been obtained in Equation 4.2.17, which will be used in
the model described in Equation 4.2.9. To obtain the values of the first and second derivative
of δ∗ with respect to s on the coordinates of the uniform grid specifically, Equation 4.2.17
will be evaluated on the coordinates of the uniform grid, linearly mapped to ξ. Combining
Equation 4.2.9, Equation 4.2.15 and Equation 4.2.17, the external velocity, discretized on a
streamwise uniform grid of 120 points, is written as a function of the solution coefficients θ̂j and
Ĥj, namely

ue(si, δ
∗) = ue(si, θ̂j, Ĥj). (4.2.18)

Note that with Equation 4.2.18, the value of the external velocity has been obtained on the
uniform streamwise grid. One final step should be performed, such that the system of equations
is complete; for Equation 4.2.6, the value d lnue

dξ is needed, evaluated at ξi, namely P +1 Lobatto
nodes. Having the solution of the external velocity at 120 points, they are linearly interpolated to
the values at the original Gauss-Lobatto quadrature nodes to obtain a set of solution coefficients
ûj. It should be noted that this is a simple, first-order linear interpolation, and as such, the
uniform mesh on which the velocity and displacement thickness are discretized cannot be too
coarse. In the case of a polynomial solution of very high order, this mesh would need to be
refined as well, to minimize the interpolation error when approximating the solution coefficients
ûj of the external velocity.

In any case, the set of solution coefficients ûj is obtained, with which the entire solution is
found through Lagrange interpolation, ue(s) ≈

∑
j ûjℓj, but it is not yet in the form in which

it is needed in Equation 4.2.6. An intermediate variable v is introduced, taken as the natural
logarithm of the set of solution coefficients ûj, such that

v̂j = ln ûj → lnue(s) ≈
∑
j

v̂jℓj. (4.2.19)

Now, one last operation is performed for the term to be ready for Equation 4.2.6, which is to
obtain the derivative probed at the nodes ξi,

d ln ue

dξ

∣∣∣∣
ξi

=
d
dξ
∑

v̂jℓj(ξi) =
∑

v̂jℓ
′

j(ξi), for i = 1, 2, ..., P. (4.2.20)

The last identity has now been derived, with which Equation 4.2.6 can be completely closed.
The challenge that now remains, is how to solve this system of equations. In the next section,
section 4.3, the numerical technique to solve the system in Equation 4.2.6 will be discussed.
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4.3 Point-implicit iteration scheme
A point-implicit (simplified implicit Euler) method is employed [57][58] to find the solution of the
nonlinear system of governing equations for the turbulent part of the boundary layer. Hence, the
point-implicit method is employed only as a means to accelerate convergence to the steady-state
solution of the governing equations within the boundary layer solver. The manner in which it
works, is that it sweeps back and forth across the spatial nodes to find updates values, before
proceeding to the next time step and repeating the spatial sweeps again. A visualization of the
scheme is seen in Figure 4.4. It should be noted that there is a point 0, but this is the Dirichlet
boundary condition, and hence, it is not included in the iteration scheme, as its value is fixed.
The scheme commences at time step n at node 1, and makes a first prediction of a ∆θ1 and ∆H1,
going to the green dot (θ∗1, H∗

1 ). It starts to do spatial sweeps, thereby calculating and updating
the changes ∆θ and ∆H that will denote the difference between time step n and time step n+1.
The changes are temporarily added to the existing values of θ and H, denoting the most recent
value with an asterisk, (θ∗, H∗), indicated by the blue dots in Figure 4.4. In calculating the
change of the next point in the forward sweep, the most recent values of the previous points are
used. Arriving at node p, the system does a backward sweep, again always using the most recent
point of each node, until it arrives at the first node again. Now ∆θs and ∆Hs are obtained for
all points 1, 2, ..., p, each of them updated twice (forward and then backward), using the most
recent values (θ∗, H∗) in the scheme. It is noted that the spatial sweeps use these most recent
values only to obtain updated ∆θ1,2,...,p and ∆H1,2,...,p; the sweeps are meant to converge between
time step n and n+ 1.

time step n

time step n+1

node 1 node 2 node 3 node p-2 node p-1 node p

Forward sweep

Backward sweep

Figure 4.4: Point-implicit scheme at work.

The idea behind the point-implicit scheme is to introduce a time-dependency in the equa-
tions as a residue that tends to zero while iterating further, to retrieve the steady-state solution.
Therefore, the time dependent terms on the left-hand side of the governing equations are not
taken away, as they are needed for the implicit Euler scheme. The system of equations, Equa-
tions (6-7) from Veldman [18], is reintroduced,

H

ue

∂θ

∂t
+

θ

ue

∂H

∂t
= −∂θ

∂x
+

cf
2

− (2 +H) θ
d ln ue

dx ≡ R1(θ,H), (4.3.1)
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H1 +H

ue

∂θ

∂t
+ (H ′

1 + 1)
θ

ue

∂H

∂t
= −H1

∂θ

∂x
−H

′

1 θ
∂H

∂x
+ CE −H1 θ

d ln ue

dx ≡ R2(θ,H). (4.3.2)

The time dependent velocity term ∂u/∂t however, is not included in the calculation. A physical
velocity changing with time is not considered, but rather, the time derivatives of θ and H are only
introduced to march forward in a pseudo-time and do not necessarily have a physical meaning;
they help converge to the steady-state of θ and H, for which R1(θ,H) = 0 and R2(θ,H) = 0.
Hence, the time derivative of u is not considered a variable to be solved, and as such, it is not
treated in the equations. In the spirit of pseudo-time derivatives, the left-hand side can actually
be simplified by replacing the values of θ, H and u before the time derivatives, by constant
values to once again aid convergence, such that

H⋆

u⋆

∂θ

∂t
+

θ⋆

u⋆

∂H

∂t
= R1(θ,H), (4.3.3)

H⋆
1 +H⋆

u⋆

∂θ

∂t
+ (H

′⋆
1 + 1)

θ⋆

u⋆

∂H

∂t
= R2(θ,H) , (4.3.4)

where the superscript ⋆ denotes the constants that help converge to the steady-state solutions.
Given that the solution for the whole turbulent part of the boundary layer is expressed through
a single polynomial based on Lagrange basis functions built upon Gauss-Lobatto nodes, namely,

θ(x) =
P∑

j=0

θ̂j ℓj(ξ(x)) and H(x) =
P∑

j=0

Ĥj ℓj(ξ(x)), (4.3.5)

the higher-order Galerkin method applied to Equation 4.3.3 and Equation 4.3.4 leads to

Ĥ⋆
i

û⋆
i

∂θ̂i
∂t

+
θ̂⋆i
û⋆
i

∂Ĥi

∂t
= Ri

1(θ̂, Ĥ), (4.3.6)

H1(Ĥ
⋆
i ) + Ĥ⋆

i

û⋆
i

∂θ̂i
∂t

+ [H ′
1(Ĥ

⋆
i ) + 1]

θ̂⋆i
û⋆
i

∂Ĥi

∂t
= Ri

2(θ̂, Ĥ). (4.3.7)

In addition, θ̂ and Ĥ denote the whole set of solution coefficients (or nodal solution values),
expressed as column vectors, and

Ri
1,2(θ̂, Ĥ) =

1

Jwi

∫
R1,2(θ,H) ℓi(ξ) dx, (4.3.8)

or the weak formulation of the residual, for which collocated quadrature is assumed as per
the strategy of higher-order Galerkin Spectral Element Methods, explained in section 4.2. In
addition, wi is the quadrature weight associated to node ξi of Gauss-Lobatto’s rule and J is the
mapping Jacobian factor (i.e. half of the turbulent section’s length), as discussed in section 4.2.

Let the solution variation across a time step be denoted as ∆θ = θn+1 − θn and ∆H =

Hn+1−Hn, with n referring to the current time step level, then implicit Euler’s method prescribes
that

Ĥ⋆
i

û⋆
i

∆θ̂i
∆t

+
θ̂⋆i
û⋆
i

∆Ĥi

∆t
= Ri

1(θ̂
n+1

, Ĥ
n+1

), (4.3.9)
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H1(Ĥ
⋆
i ) + Ĥ⋆

i

û⋆
i

∆θ̂i
∆t

+ [H
′

1(Ĥ
⋆
i ) + 1]

θ̂⋆i
û⋆
i

∆Ĥi

∆t
= Ri

2(θ̂
n+1

, Ĥ
n+1

), (4.3.10)

with the following approximation both for Ri
1 and Ri

2,

Ri(θ̂
n+1

, Ĥ
n+1

) ≈ Ri(θ̂
n
, Ĥ

n
) +

∂Ri

∂θ̂i
∆θ̂i +

∂Ri

∂Ĥi

∆Ĥi +
∑
j ̸=i

(
∂Ri

∂θ̂j
∆θ̂j +

∂Ri

∂Ĥj

∆Ĥj

)
, (4.3.11)

where all partial derivatives are to be evaluated at time level n.
In the point-implicit method, iterative sweeps shall be used across solution points to update

solution values until eventually reaching the solution at the next time level. Now, recognizing
that

Ri(θ̂
n
, Ĥ

n
) +

∑
j ̸=i

(
∂Ri

∂θ̂j
∆θ̂j +

∂Ri

∂Ĥj

∆Ĥj

)
≈ Ri(θ̂

⋆
, Ĥ

⋆
), (4.3.12)

where the superscript ⋆ now denotes the most recent updated solution values (approximating
values at time level n + 1) for all points neighboring point i, the following iterative scheme is
obtained, (

Ĥ⋆
i

û⋆
i ∆t

− ∂Ri
1

∂θ̂i

)
∆θ̂i +

(
θ̂⋆i

û⋆
i ∆t

− ∂Ri
1

∂Ĥi

)
∆Ĥi = Ri

1(θ̂
⋆
, Ĥ

⋆
), (4.3.13)

(
[H1(Ĥ

⋆
i ) + Ĥ⋆

i ]

û⋆
i ∆t

− ∂Ri
2

∂θ̂i

)
∆θ̂i +

(
[H ′

1(Ĥ
⋆
i ) + 1] θ̂⋆i

û⋆
i ∆t

− ∂Ri
2

∂Hi

)
∆Ĥi = Ri

2(θ̂
⋆
, Ĥ

⋆
). (4.3.14)

The above is a 2x2 linear system whose solution is trivial and yields ∆θi = θn+1
i − θni and

∆Hi = Hn+1
i −Hn

i at any single solution point i.
The point-implicit scheme prescribes that one should update the preliminary solution of level

n+ 1, namely the solution vector (θ̂⋆
, Ĥ

⋆
), immediately as the variations ∆θi and ∆Hi become

available for each single point. This way, one can perform forward and backward sweeps across
the points always using the most recent solution (θ̂

⋆
, Ĥ

⋆
) in the evaluation of the right-hand

side of the above equations along the process – so that the estimated variation at any given
point can benefit from the most recent updated solution from its neighbors.

Generally, the amount of spatial sweeps needed to converge all ∆θ1,...,p and ∆H1,...,p to proceed
from time step n to time step n + 1 lies around two times forward and backward. After these
four sweeps, ∆θ and ∆H do not change significantly anymore, and additional sweeps are trivial.
As such, one can then proceed to time step n+ 1 to repeat the cycle.

The numerical scheme behind solving the equations was explained in this section. In the
next section, section 4.4, it will be discussed how one goes about stabilizing the numerics.

4.4 Spectral vanishing viscosity
Without element interfaces, both Discontinuous and Continuous Galerkin would have no, or
very little diffusive properties. As such, it can be beneficial to introduce an artificial viscosity
that can stabilize the scheme by diffusing energy from a selection of modes in the candidate
solution. A technique that has recently taken a growth in Large Eddy Simulations is spectral
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vanishing viscosity, or SVV. Originally introduced as a pseudo-viscosity term in one-dimensional
hyperbolic problems [59], it has now been developed to serve for additional robustness in LES
without deteriorating the accuracy of a numerical solution [60][61].

A higher-order Galerkin spatially discretized pure diffusion equation acts on the entire ap-
proximated solution and all its modes equally, as seen in Equation 4.1.13 and Equation 4.1.12,
whereas spectral viscosity can be ‘activated’ from a specific, user-specified mode. The idea be-
hind SVV is to ensure diffusivity that acts only on the higher modes of the solution, as these
are the ones prone to cause instabilities and diverging simulations, but maintain the level of
accuracy that higher-order Galerkin provides. Instead of the regular diffusive term

µ
∂2u

∂x2
, in the Galerkin scheme µ

J

∑
j

Dijûj,

a term is written with a type of stabilizing filter that acts on modes of higher order,

µsvv
∂

∂x

(
Q ⋆

∂u

∂x

)
. (4.4.1)

In Equation 4.4.1, Q takes on the role of this filter, the so-called SVV kernel, and µsvv is the
artificial viscosity coefficient that dictates the overall magnitude of SVV. Now, following a similar
derivation as the one in Equation 4.1.7,∫

Ω

ϕi
∂

∂x

(
Q ⋆

∂u

∂x

)
dx =

[
ϕiQ ⋆

∂u

∂x

]⊕
⊖
−
∫
Ω

∂ϕi

∂x

(
Q ⋆

∂u

∂x

)
dx. (4.4.2)

Generally, the boundary term
[
ϕiQ ⋆ ∂u

∂x

]⊕
⊖ is disregarded, and SVV is assumed to be active only

within internal elements. Hence, in the latter term in Equation 4.4.2, the discrete projection of
the velocity u ≈

∑
j ujϕj is substituted, giving

∫
Ω

∂ϕi

∂x

(
Q ⋆

∂u

∂x

)
dx = J−1

∫ 1

−1

ϕ′
iQ ⋆

(∑
j

ujϕ
′
j

)
dξ. (4.4.3)

Now, as the right-hand side of Equation 4.4.3 contains a derivative term in the projection, a
rotation should be performed to find a set of coefficients that corresponds to the element-wise
coefficients of ∂u

∂ξ
. This set ĝj is found through a projection,

∫
(

P∑
j=0

ûjϕ
′
j)ϕi dξ =

∫
(

P∑
j=0

ĝjϕj)ϕi dξ, for i = 0, 1, ..., P, (4.4.4)

and thus, looking back at Equation 4.1.12,

Aû = Mĝ, or ĝ = M−1Aû. (4.4.5)

Now, the coefficients ĝj of the polynomial
∑

j ûjϕ
′
j are known. Before the filter is applied,

however, an additional change to a modal basis should be performed. The filtering function of

42



kernel Q is more naturally applied to a polynomial expansion that is written in a modal, or
hierarchical basis, such that a clearer distinction between modes can be made. It is remembered
that the basis used in the present study, is the nodal Lagrange basis, and as such, applying
viscosity directly on this basis would cause interference in all modes. Hence, an additional
transformation to a modal basis is required; specifically one with orthonormal properties, such
that the SVV kernel Q is more easily specified as modal filter. As mentioned in section 4.2,
a common modal set of basis functions is the Legendre polynomials [52], such that the nodal
Lagrange basis is rotated to the modal Legendre basis with an additional Galerkin projection,

∫ ( P∑
j=0

ôjφj

)
φi dξ =

∫ ( P∑
j=0

ĝjϕj

)
φi dξ, for i = 0, 1, ..., P, (4.4.6)

such that
Iô = Rĝ, with Rij =

∫ 1

−1

φiϕj dξ. (4.4.7)

In Equation 4.4.7, φi denotes the set of orthonormal Legendre polynomials. Due to the orthonor-
mal properties, I denotes the identity matrix, and can be omitted for simplicity. As there is now
an orthogonal set of coefficients ôj, the SVV kernel Q can be defined through a diagonal matrix
Q multiplying ôj. Usually, a monotonically increasing kernel function is taken; a well-known
example that reaches unit value as its last entry, is the exponential kernel, originally proposed
in [59],

Qii = exp
[
− (i− P )2

(i− Psvv)2

]
, for i > Psvv, (4.4.8)

where Psvv is the order at which SVV is ‘activated’, and can be specified by the user. An
adequate value of Psvv has been found to be P/2. Now, SVV is activated through the kernel in
Equation 4.4.8, and should be transformed back into the original basis ϕi through R−1, obtaining
a set of coefficients q̂ that has already been filtered,

q̂ = R−1Qô = R−1QRĝ = R−1QRM−1Aû. (4.4.9)

All matrices have been defined such that Q ⋆ (
∑

j ûjϕ
′
j) =

∑
j q̂jϕj. Now, Equation 4.4.3 is

rewritten,

J−1

∫ 1

−1

ϕ′
iQ ⋆

(
P∑

j=0

ujϕ
′
j

)
dξ = J−1

∫ 1

−1

ϕ′
i(

P∑
j=0

q̂jϕj) =
P∑

j=0

q̂jAji =
P∑

j=0

AT
ij q̂j, (4.4.10)

such that, combining Equation 4.4.1 and Equation 4.4.10,

µsvv

J
AT q̂ =

µsvv

J
ATR−1QRM−1Aû =

µsvv

J
Hû. (4.4.11)

In Equation 4.4.11, H = ATR−1QRM−1A, denoting the artificial diffusion term that, in the
pure case, is denoted by D. Moreover, if the diagonal matrix Q becomes the identity matrix, the
pure diffusion matrix D is actually obtained for H, showing the similarity to standard diffusion.
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4.4.1 SVV in the system of equations
The pure diffusion equation in its simplest form takes on the following shape,

∂u

∂t
= µ

∂2u

∂x2
. (4.4.12)

It should be noted that this is only one equation to solve one variable. Preferably, the SVV
terms would be implemented in its simplest form, being

∂θ

∂t
= ...+ SV Vθ,

∂H

∂t
= ...+ SV VH ,

(4.4.13)

however, referring back to section 4.3, more specifically Equation 4.3.1 and Equation 4.3.2, the
system of equations contains coupled time-derivatives of both variables that appear in both equa-
tions. Hence, the SVV terms should be introduced accordingly, to obey the diffusion mechanism
in a mathematical manner.

Let R1 and R2 once again be defined,

R1(θ,H) ≡ −∂θ

∂x
+

cf
2

− (2 +H) θ
d ln ue

dx ,

R2(θ,H) ≡ −H1
∂θ

∂x
−H

′

1 θ
∂H

∂x
+ CE −H1 θ

d ln ue

dx ,

(4.4.14)

such that

H

ue

∂θ

∂t
+

θ

ue

∂H

∂t
= R1(θ,H),

H1 +H

ue

∂θ

∂t
+ (H ′

1 + 1)
θ

ue

∂H

∂t
= R2(θ,H).

(4.4.15)

Now, Equation 4.4.13 shows in essence how the system operates with a single viscosity term.
However, given that the system is coupled, the same coupling should be applied on the single
viscosity terms to satisfy the diffusion mechanics. Let Equation 4.4.15 be rewritten in matrix
form, [

H
ue

θ
ue

H1+H
ue

(H ′
1 + 1) θ

ue

]{
∂θ
∂t
∂H
∂t

}
=

{
R1(θ,H)

R2(θ,H)

}
, (4.4.16)

such that the matrix is obtained that prescribes the coupling of the time-derivatives in the
system of equations. This system matrix is multiplied with Equation 4.4.13 to obtain a correct
implementation of the SVV terms, yielding[

H
ue

θ
ue

H1+H
ue

(H ′
1 + 1) θ

ue

]{
SV Vθ

SV VH

}
=

{
H
ue
SV Vθ +

θ
ue
SV VH

H1+H
ue

SV Vθ + (H ′
1 + 1) θ

ue
SV VH .

}
. (4.4.17)
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Hence, the total system of equations can be set up,

H

ue

∂θ

∂t
+

θ

ue

∂H

∂t
= R1(θ,H) +

H

ue

SV Vθ +
θ

ue

SV VH ,

H1 +H

ue

∂θ

∂t
+ (H ′

1 + 1)
θ

ue

∂H

∂t
= R2(θ,H) +

H1 +H

ue

SV Vθ + (H ′
1 + 1)

θ

ue

SV VH .

(4.4.18)

Now let SV Vθ and SV VH be defined, following section 4.4’s derivation,

SV Vθ =
µθ

J
ATR−1QRM−1Aθ̂ =

µθ

J
Fθ̂,

SV VH =
µH

J
ATR−1QRM−1AĤ =

µH

J
FĤ ,

(4.4.19)

where µθ and µH are separate artificial viscosity coefficients that can be defined individually.
Moreover, let the matrices A, M, R and Q from Equation 4.4.19 be taken from section 4.4.
To avoid confusion with the shape factor variable Ĥ , matrix H from section 4.4 is substituted
with F. Matrices A and M are calculated using the Lagrange polynomials and its derivatives
only, whereas R is calculated using Lagrange and Legendre polynomials. Finally, Q is taken
as diagonal matrix where the values start monotonically increasing to unit value, starting from
Psvv, where the latter is taken to be Psvv = round(1

2
P ).

Lastly, let the spectral vanishing viscosity terms be included (with a minus sign coming from
the integration by parts in Equation 4.4.2) in the complete discretized set of equations that is
iteratively solved using the point-implicit scheme, defined as residuals

R1

(
θ̂
∗
, Ĥ

∗)
≡ −

P∑
j=0

θ̂jℓ
′
j(ξi) +

1

2
Jcf (θ̂i, Ĥi)− (2 + Ĥi)θ̂i

d ln ue

dξ

∣∣∣∣
ξi

− ... (4.4.20)

...− Ĥi
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...−H1(Ĥi)θ̂i
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− H1(Ĥi) + Ĥi

ue|ξi

µθ

J
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j=0

Fij θ̂j − ... (4.4.21)

...− (H ′
1(Ĥi) + 1)

θ̂i
ue|ξi

µH

J

P∑
j=0

FijĤj for i = 1, 2, ..., P,

which finally can be fed back as input for the point-implicit time-iterative scheme, Equation 4.3.13
and Equation 4.3.14.

In this section and section 4.3, it was explained in which numerical manner the equations
would be solved, and how the numerical process is stabilized. In the next section, section 4.5,
the appropriate polynomial order for which to run the simulations will be decided.
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4.5 Polynomial order refinement
Whereas it is common to perform a mesh refinement to obtain an idea of the convergence of a
scheme, in the present study only one element is used, and as such, the mesh is not refined. What
will be refined, however, is the polynomial order; such a refinement is performed on the scheme
by increasing the amount of nodes, such that the polynomial expansion of the solution has a
higher order. In section 4.1, it was already shown that the polynomial order of the Lagrange
basis function equals the amount of nodes minus 1. Hence, increasing the amount of nodes
will increase the order of the approximating polynomials, allowing an order refinement to be
performed. The objective of this order refinement is to establish an adequate number of nodes,
i.e., degrees of freedom, for the simulations.

The system is tested on the symmetrical case of the NACA 0012 airfoil at 0° angle of attack.
A simulation of polynomial order 60 is run, of which the solution is taken as the reference solution,
to determine which order is reasonably accurate. All simulations are obtained with the same
Dirichlet boundary condition coming from Thwaites’ method, which runs until the streamwise
coordinate s = 0.1, after which the switch to the higher-order Galerkin scheme is made. The
results are shown in Figure 4.5.

Figure 4.5: Order refinement of solution for NACA 0012 airfoil at 0°.

In Figure 4.5, the displacement thickness of the different solutions is shown, including that
of the reference solution. Especially the solutions of the lower orders diverge significantly from
the reference, whereas from order 20, the solutions seem to stabilize.

Reconstructing the solution at any given streamwise coordinate s within the domain of the
turbulent boundary layer, is done through polynomial interpolation. As mentioned in section 4.1,
a higher-order Galerkin solution consists of the summation of the products of the solution coef-
ficients with their respective polynomial from the set of basis functions. Summing all these
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intermediate solutions gives the total solution for the system, being

θ(s) ≈
P∑

j=0

θ̂jℓj, H(s) ≈
P∑

j=0

Ĥjℓj. (4.5.1)

In subsection 4.2.1, the derivation on how to obtain the solution for the displacement thickness
δ∗ was shown, which is approximated by a polynomial of order 2P , namely Equation 4.2.14,
repeated for completeness,

δ̂∗k(s) ≈
2P∑
k=0

δ̂∗kℓk. (4.5.2)

Finding the solution for any arbitrary s? would simply entail finding the corresponding linearly
mapped standard coordinate ξ?, and the solution is found by using this coordinate as the input
in the Lagrange polynomials,

δ̂∗k(s?) ≈
2P∑
k=0

δ̂∗kℓk(ξ?). (4.5.3)

All that is left, is to decide on the appropriate number of nodes (or polynomial order) for which
to run the simulations. A visualization of the residuals of the solutions in Figure 4.5 helps decide
this amount of nodes. The residuals are calculated, once again using the L2 norm Equation 4.1.19,
with usol being the reference solution of order 60, and unum the numerical solutions of lower order.
The calculated residuals for all orders can be seen in Figure 4.6.

Figure 4.6: Residuals for different polynomial orders, solution of order 60 as reference.

Observing Figure 4.6, the residual drops an order of magnitude from order 10 to order 20.
After order 20, the solution seems to stabilize, indicating that solutions from order 20 and higher
are sufficiently close to the reference solution. As such, polynomial approximations of 20th order
are chosen to represent the solutions from the boundary layer solver to obtain sufficiently accurate
results, but not to unnecessarily increase the computational cost of the simulations.
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It is interesting to note that Figure 4.6 shows a different trend than Figure 4.3. The error
convergence of the two solutions do not agree with each other, as there is not a clear linear trend
distinguishable in Figure 4.6, and as such, the solution does not necessarily converge exponen-
tially. An explanation for this loss of exponential convergence could be the linear interpolation
to the set of solution coefficients ûj. An alternative, more likely explanation for this loss is the
first-order nature of the closing relations mentioned in section 3.3. In addition, these relations,
more specifically Equation 3.3.7 and Equation 3.3.8, contain a non-smooth derivative, which
affects the convergence of higher-order Galerkin, losing its exponential character [25]. As such,
the error convergence ϵ ∝ hP+1 would not be valid anymore. To verify this suspicion, a simula-
tion could be run with fully smooth closing relations. This assessment, however, lies outside the
scope of the current research.

The polynomial order refinement concludes the chapter on higher-order Galerkin. The per-
formance of the solver will be demonstrated and discussed in the next chapter, chapter 5.
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Chapter 5

Results

This chapter will present the results obtained from the boundary layer solver. For various airfoils
at various angles, the boundary layer parameters and resulting viscous pressure distribution
will be shown and compared to XFOIL and experimental results. Moreover, the aerodynamic
parameters lift and drag coefficient are discussed. The lift and drag coefficients are obtained
using the pressure and skin friction distributions. The derivation on how they are obtained is
given in Appendix A.

5.1 The symmetrical case
The most straightforward result obtained from the boundary layer solver is the momentum
thickness θ and the shape factor H, as these are the variables for which the adopted set of
integral boundary layer equations are set up and solved. As the simulations are run from the
leading edge stagnation point until the trailing edge, two sets of results are obtained, namely
one for the suction, or upper side, and one for the pressure, or lower side. The symmetrical
case of the NACA 0012 airfoil at 0° angle of attack will be presented first, as a means to verify
whether the outcome is symmetric, as it should be. Pressure coefficient values are available from
experiments performed by Ladson [62]. The experiments were conducted at an angle of attack
of 0.021°, for a chord-based Reynolds number of 9.0 ∗ 106, with tripping devices at 5% chord
length to guarantee fixed transition to turbulent flow. These circumstances have been recreated
in XFOIL and in the present boundary layer solver to resemble the circumstances in which the
experiments were performed. For the sake of completeness, a simulation at exactly 0° angle of
attack and chord-based Reynolds number of 1.0 ∗ 106 has also been performed to demonstrate
ideal symmetry, and can be seen in Appendix B.

Observing the results from Figure 5.1, there is an overprediction of the momentum thickness
when turbulence sets in. The laminar part that is calculated by Thwaites’ method seems to
align well, however the curve produced by the adopted integral boundary layer equations is
significantly different in the turbulent region. The ‘tripping’ device at 5% chord length, or
streamwise coordinate s = 0.065, can very clearly be seen in the shape factor graph, as the shape
factor reaches the appropriate value of around 2.6 for laminar flow and, when turbulence sets
in, drops to around 1.4, with some fluctuations for turbulent flow, likely due to underresolution.
Referring back to Kwon et al. [47], the shape factor of a turbulent flow that begins to separate
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Figure 5.1: The momentum thickness and shape factor results for NACA 0012 at 0.021°, approximated with a
Lagrange polynomial of order 20 at Reynolds of 9 ∗ 106, compared with XFOIL.

rises to between 2 and 2.5. These values are not reached yet in Figure 5.1, however nearing the
trailing edge of the foil, the shape factor is already starting to gradually increase. From the
shape factor plot, it can be seen that the increase in shape factor sets in slightly earlier in the
boundary layer solver than in XFOIL, at around 80% chord length.

It should be noted that the results for the shape factor in the laminar boundary layer,
produced by XFOIL, stem from a set of laminar boundary layer equations [11], and hence,
it avoids any approximations and simplifications that are inherent to the assumptions made
to apply Thwaites’ method. As such, XFOIL is likely to produce more accurate results than
the results for the shape factor in the laminar region from the present boundary layer solver.
Moreover, XFOIL uses a different, less simplified model for the turbulent boundary layer as
well, namely Green’s shear stress lag-entrainment equation [63]. However, it is stressed that the
objective of the present study is not to potentially produce boundary layer parameter results of
improved accuracy, but rather to test the viability of the semi-strong interaction combined with
a higher-order Galerkin discretization for the turbulent boundary layer.

A curiosity in section 5.1 is the fluctuations, just after transition to turbulent flow has set in.
At first glance, an explanation might be Runge’s phenomenon of oscillation at an element’s edges.
However, the nodes in the higher-order Galerkin were collocated following the Gauss-Lobatto
nodes of quadrature, thereby lumping the mass matrix but also avoiding Runge’s phenomenon
as Gauss-Lobatto nodes are more densely distributed closer to the borders of the domain [64]. A
probable explanation is an underresolution in the spatial scheme, indicating that a higher number
of nodes would solve the problem. Increasing the amount of nodes increases the polynomial order,
and more importantly, the computational cost. Another more preferable solution could be to
increase the spectral viscosity to dampen out these fluctuations.

Multiplying the momentum thickness and the shape factor, one obtains the displacement
thickness. This result, including comparison, can be seen in Figure 5.2.
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Figure 5.2: The displacement thickness for NACA 0012 at 0.021°, approximated with a Lagrange polynomial of
order 20 at Reynolds of 9 ∗ 106, compared with XFOIL.

Here as well, the curves are aligned on top of each other, emphasizing the symmetrical nature
of the problem. The overestimation is visible in the turbulent part, whereas the laminar part
before tripping follows XFOIL’s curve closely. Once more, the trip at 5% chord length, s = 0.065,
can be seen clearly, indicating transition to turbulence has set in. Moreover, the effect of the
fluctuations in the shape factor just after transition is seen in this dip downward.

Figure 5.3: The viscous pressure distribution for NACA 0012 at 0.021° at Reynolds of 9 ∗ 106, compared with
XFOIL and experiments [62]; cut off at 0.3 for legibility.

Now turning to the pressure distribution in Figure 5.3, obtained using the displacement
thickness from Figure 5.2 as input, decent correspondence between the two graphs can be seen

51



except when nearing the trailing edge of the airfoil, where a small underestimation can be seen.
Moreover, there is a small overprediction near the suction peak. Experimental results, produced
by Ladson [62], have been added for additional reference. It is repeated that the simulation is not
run exactly symmetrically, but rather at 0.021° angle of attack, to stay more loyal to the ambiance
in which the experiments were performed. Furthermore, it should be noted that the graph is cut
off to show the differences between the results better. Both numerical methods report a leading
edge stagnation point value of 1, whereas the experimental results show a stagnation point value
of 1.0416, reminding that experiments are not without error; the experimental results show
a larger discrepancy between pressure and suction side values than the numerically produced
results.

Another method of comparing results, is by looking at the aerodynamic coefficients generated
by the solvers. These coefficients are presented in Table 5.1. As the foil is a symmetric profile
and the flow around the body is (practically) symmetric, no significant lift is produced by the
airfoil. Therefore, a qualitative comparison of lift coefficients is not very sensible. There is
decent correspondence between drag coefficients, however, with a slight underprediction of drag
from the present boundary layer solver.

BL solver XFOIL Experiment
CL 0.0013 0.0024 -0.0052
CD 0.0069 0.00742 0.00765

Table 5.1: Aerodynamic coefficients for NACA 0012 at 0.021°.

To verify the numerics, a truly symmetric case was produced as well, where the boundary
layer parameters from upper and lower side, and the pressure from both sides lie perfectly on
top of each other. This result can be seen in Figure B.3, in Appendix B.

5.2 Symmetrical airfoil at an angle
A different situation is considered; the symmetrical NACA 0012 airfoil is set at an angle of attack
of 6°. Firstly, the momentum thickness and shape factor are obtained from the simulation.

In the momentum thickness graph of Figure 5.4, four curves can be distinguished, namely
from suction and pressure side, and produced by higher-order Galerkin and XFOIL. Here as
well, one can see that the boundary layer model adopted in the present study overestimates
the growth of the boundary layer thickness on both suction and pressure side. Turning to the
shape factor graph, the solver produces results that align closely with the XFOIL curves in the
turbulent region, especially for the lower part. Moreover, some differences are observed on both
sides along the laminar portion, as also noted in the previous section. The fluctuations after
transition to turbulent flow can still be seen, but they are less intense when compared to the
fluctuations in Figure 5.1. Overall, if the angle of attack is not too large, there is relatively
good correspondence for the shape factor. The result of the overprediction of the momentum
thickness, however, is visible in the displacement thickness in Figure 5.5, where the curves for
both sides differ from XFOIL in the turbulent region as well.
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Figure 5.4: The momentum thickness and shape factor results for NACA 0012 at 6°, approximated with a Lagrange
polynomial of order 20 at Reynolds of 1 ∗ 106, compared with XFOIL.

Figure 5.5: The displacement thickness for NACA 0012 at 6°, approximated with a Lagrange polynomial of order
20 at Reynolds of 1 ∗ 106, compared with XFOIL.

In Figure 5.6, the pressure distribution for the viscous case can be seen. The pressure
difference is underpredicted on suction and pressure side, but arrives, flowing off of the trailing
edge smoothly, and corresponding well with XFOIL. This underprediction will be discussed in
more detail in section 5.4. Moreover, in the XFOIL curve, the forced transition is more explicitly
visible as a bump, however, being milder in the present boundary layer model.
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Figure 5.6: The viscous pressure distribution for NACA 0012 at 6° at Reynolds of 1∗106, compared with XFOIL.

Lastly, the aerodynamic coefficients are presented in Table 5.2. The underprediction of the
pressure coefficient, especially near the suction peak, has a direct impact on the lift coefficient,
which is underpredicted as well. The higher drag coefficient might be attributed to a higher
pressure drag, whose contribution to the total drag is increasing, likely because the flow is
tending to form a separation bubble on the suction side trailing edge.

BL solver XFOIL
CL 0.5476 0.6693
CD 0.0144 0.01193

Table 5.2: Aerodynamic coefficients for NACA 0012 at 6°.

5.3 Cambered airfoil at an angle
As a last result, a cambered NACA 2412 airfoil at an angle of attack of 6° is presented.

In Figure 5.7, on the trailing edge, the shape factor can be seen to reach the value of 2,
indicating that a separation bubble is beginning to form. In a way, XFOIL seems to ‘catch up’
with the overpredicted boundary layer parameters and can be seen to surpass them in Figure 5.7
and Figure 5.8, on the suction side.
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Figure 5.7: The momentum thickness and shape factor results for NACA 2412 at 6°, approximated with a Lagrange
polynomial of order 20 at Reynolds of 1 ∗ 106, compared with XFOIL.

Figure 5.8: The displacement thickness for NACA 2412 at 6°, approximated with a Lagrange polynomial of order
20 at Reynolds of 1 ∗ 106, compared with XFOIL.

Once more, the pressure distribution along both sides of the airfoil is quite underestimated,
as can be seen in Figure 5.9.
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Figure 5.9: The viscous pressure distribution for NACA 2412 at 6° at Reynolds of 1∗106, compared with XFOIL.

Lastly, the aerodynamic coefficients can be seen in Table 5.3. The underprediction in lift
is larger than in the case of the symmetrical airfoil at an angle in Table 5.2, which can be
explained by the fact that the pressure distributions in Figure 5.9 differ more than in Figure 5.6.
Moreover, the drag is overpredicted in comparison to XFOIL’s value. This could be attributed
to a separation bubble having formed on the suction side trailing edge, as indicated by the
shape factor in Figure 5.7. Part of the flow leaving the trailing edge being separated drastically
increases the pressure drag, which could be the cause of a significantly higher drag coefficient in
the boundary layer model.

BL solver XFOIL
CL 0.6460 0.8813
CD 0.0211 0.01265

Table 5.3: Aerodynamic coefficients for NACA 2412 at 6°.

5.4 Some general remarks on the results
The capability of the present boundary layer model was limited to an angle of attack of 10°.
Above 10°, the simulation had a high tendency towards imaginary values, which would cause the
system of equations to diverge. The reason for this divergence most likely is an overprediction
of the shape factor H in the laminar region of the boundary layer, calculated by Thwaites’
explicit integration. The value for the shape factor at transition was taken as Dirichlet boundary
condition for the higher-order Galerkin scheme, and would become higher for laminar boundary
layers at higher angles of attack, leading to a steeper drop in shape factor at transition. If the
drop was too high, the simulation would overshoot, surpassing the shape factor value of 1.4 for
turbulent boundary layers, and eventually diverge.
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An alternative explanation for the divergence could be a too steep decrease in the pressure
distribution, or inversely a too high acceleration of the flow on the suction side, causing the mo-
mentum thickness to grow too rapidly and the simulation breaking down. One more possibility,
is the instability of the scheme itself, namely the combination of higher-order Galerkin spatial
discretization with the point-implicit scheme. However, the spectral vanishing viscosity was
added to stabilize the discretization. Moreover, to try to resolve the divergence, the time step
in the point-implicit scheme was reduced, but it was found that in the majority of simulations,
this only delayed the divergence. Using a previous result from a lower angle as input for the
simulation would accelerate the convergence of the scheme, especially for lower angles of attack,
but above 10° angle of attack, the simulations would break down nonetheless.

There is a general underprediction in the pressure distributions and a general overprediction
in the boundary layer itself. Firstly, the underprediction in the pressure can be explained by
the fact that a simplified viscous wake was used, as the boundary layer was assumed to remain
constant, and only the effect of the velocity change was used as input for the blowing of the
panels. Essentially, the boundary layer would stay ‘open’ after the trailing edge, even though
there is not a friction generating surface anymore. A fully viscous wake would account for the
effect of a diminishing boundary layer as well, which could have an impact on the overall pressure
distribution. Due to time limitations, a fully viscous wake could not be implemented.

The wake did however already fulfill its purpose, as a wrinkle accumulation was visible before
the simplified wake was implemented, that became more extreme per iteration between panel
method and viscous model. Namely, without the wake, a small wrinkle in velocity at the trailing
edge would translate in a similar wrinkle in the momentum thickness in the viscous region. This
would cause a wrinkle in the displacement thickness, and as such, the wrinkles would become
larger per simulation. Without a wake, this accumulation of wrinkles had no way to ‘escape’,
and ultimately the simulation would diverge. With the wake, any wrinkle would only appear
after the first iteration, as the first cycle uses the fully inviscid pressure distribution as input.
In the subsequent viscous pressure distributions, in which the velocities are slightly lower, the
wrinkles would disappear.

The overprediction in the present boundary layer model could be attributed to the use of a
different set of equations than XFOIL. Where in the present study the Von Kármán momentum
integral equation and Head’s entrainment equation are used to close the system, XFOIL uses
the compressible integral momentum and kinetic energy equations, and Green’s shear stress lag
equation [63] to close the system in turbulent conditions. It would not be extraordinary that a
different set of equations does not produce identical different results.

A thought that comes to mind is the following: as the displacement thickness of the boundary
layer is overpredicted by the present solver, one can assume that the entire viscous region is in
fact estimated larger than it is in reality. Comparing XFOIL’s inviscid pressure distributions
with its viscous solutions, the inviscid peaks are always reported higher than in viscous situations.
This gives reason to believe that a larger effective aerodynamic body would result in a lower
suction peaks in its pressure distribution. It should be noted that the suction peak occurs in
the laminar region, and as such, the calculation of the laminar boundary layer parameters using
Thwaites’ method of explicit integration could also be a source of error.

Another source of error affecting the overall accuracy must be mentioned. In the panel
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method, circulations are integrated over all the panels of the airfoil, which is performed numer-
ically by MATLAB. As the control points are the midpoints of each panel, possible singularities
along the panel are avoided by reaching sufficiently close and then bypassing them. These sin-
gularities do not occur in the viscous case, as the control points are then set one displacement
thickness δ∗ away from the airfoil surface. One should remember that a numerical error is in-
troduced in the process of numerical integration. Analytical expressions are, however, readily
available from Kuethe and Chow [38], and could potentially provide better results. It should be
noted that these analytical expressions are derived for a fully inviscid case, where no boundary
layer exists. As such, it shows accurate inviscid pressure distributions, but its implementation
(and performance) for viscous cases could prove more cumbersome.

Lastly, it was found that, for higher angles of attack, Thwaites’ method of explicit integration
of the laminar boundary layer was not fully reliable anymore. For an angle of attack of 8° and
higher, free transition would already occur before the streamwise coordinate of s = 0.1 for
forced transition, with the exact position of free transition depending on the Reynolds number.
Hence, the laminar region would become smaller, resulting in the need for a higher resolution to
obtain accurate momentum thickness and shape factor from Thwaites’ integration. Moreover,
the pressure distributions would show high suction peaks for these (and higher) angles, resulting
in a large acceleration of the flow on the suction side. As seen in Equation 3.2.2, high acceleration
directly results in a very high λ, giving off a high shape factor that could cause divergence, as
explained in the beginning of this section. As such, Thwaites’ method could have a tendency
to produce inaccurate results for the laminar boundary layer, and perhaps more importantly, to
provide an unreliable Dirichlet boundary condition for the turbulent domain.
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Chapter 6

Conclusions and recommendations

6.1 Conclusions
An interactive, quasi-simultaneous flow solver, based on a simple semi-strong coupling law
between boundary layer and inviscid model, has been developed that is able to predict the
momentum thickness and shape factor of a turbulent boundary layer. The present study proved
successful in its primary objective: to demonstrate the viability of a semi-strongly coupled
scheme, based on a higher-order Galerkin formulation, to solve the integral boundary layer equa-
tions over airfoils. It was found that the solver could produce results up to an angle of attack
of 10° (this angle would probably be lower for strongly cambered airfoils), after which the sim-
ulations would diverge due to a sharp drop in the shape factor when transition sets in. Three
specific cases have been analyzed, namely a fully symmetrical case, a symmetrical foil at 6° angle,
and a cambered airfoil at 6° angle. The obtained results showed consistency with the results
produced by XFOIL, however, in some aspects, a certain lack of accuracy was observed.

In all cases, an overestimation was seen in the prediction of the momentum thickness in
comparison to XFOIL. Due to the quickly growing momentum thickness, a small separation on
the trailing edge on the suction side would occur earlier than XFOIL results showed. The shape
factor resembled the curves from XFOIL closely, in the laminar boundary layer region as well as
in the turbulent region after transition had taken place. However, due to the overprediction of
the momentum thickness, the displacement thickness was also overestimated, and as such, the
borders of the viscous region were predicted larger as well.

Subsequently, a large underprediction of the pressure distribution was seen in the results,
which grew more present in the test case of the cambered airfoil at an angle, leading to believe
that an increasing angle would augment the underprediction. The underprediction of the pressure
distribution can likely be attributed to the simplified viscous wake, in which the displacement
thickness leaving the trailing edge was kept constant. Smooth outflow at the trailing edge, which
had been a problem anteriorly due to the accumulation of velocity wrinkles at the trailing edge,
was guaranteed by this wake in all cases. Furthermore, any other wrinkles or oscillations that
could cause divergence in the system at lower angles of attack were dampened successfully by the
implementation of spectral viscosity in the higher-order Galerkin scheme, additionally stabilizing
the numerics.
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6.2 Recommendations
In future work, a fully viscous wake should be implemented. Currently, two wake lines are
extrapolated from the inviscid flow distribution, and only the change in velocity is accounted for
when calculating the blowing velocity that the wake panels should have, according to the surface
transpiration model. It should be noted that this is an accelerating velocity, as the flow at the
trailing edge is generally slower than the uniform flow, and as such, it induces a positive outward
velocity on the wake panels, or a blowing velocity. In any case, the boundary layer thickness is
held constant in the wake, but from a physical point of view, it should slowly start to diminish
until it disappears sufficiently far away from the trailing edge. This diminishing effect has a
negative contribution to the transpiration, and hence, an inward, sucking velocity is induced on
the panels. This sucking can be interpreted as the ‘closing’ of the boundary layer, and the flow
proceeding uniformly again. Leaving the boundary layer ‘open’, as it is currently done, likely
exerts a large influence in the underprediction of the produced pressure distributions from the
simulations. This probably has an impact on the Kutta condition, which in turn impacts the
pressure distribution. Another factor impacting the pressure near the leading edge and nearby
regions (often including suction and pressure peaks) is the solution of the laminar boundary layer
based on the Thwaites’ approximations. A less simplified version of the integral boundary layer
equations for the laminar part could be adopted instead of Thwaites’ method. Using a more
accurate method for the laminar region would probably result in a more accurate prediction of
suction and pressure peaks, which strongly impact overall pressure distribution.

An alternative approach to the solver process would be to divide the turbulent boundary
layer in two segments, the first being the ‘normal’ turbulent boundary layer and the second
segment being the region where the flow might be prone to separation. In the first region, the
integral boundary layer equations would be solved using an explicit ODE solver (e.g. MATLAB’s
ODE45), such that the reported sharp decrease in the shape factor at the point of transition
would not cause any divergence in the model. The segment where separation might occur would
be solved by the higher-order Galerkin scheme. This would have the advantage of additional
robustness, as the shape factor decrease would not cause the simulations to diverge. Moreover,
the simulations would be accelerated, as the explicit ODE solver can produce results more
quickly than the point-implicit scheme; in addition, the computational cost would be less, as
the domain for higher-order Galerkin would be smaller, thus requiring less nodes, or degrees of
freedom, to represent this ‘reduced’ part of the turbulent boundary layer accurately. Potentially,
this structure would allow for calculations at higher angles of attack.

Lastly, the second equation from the governing system of equations in the present study,
being Head’s entrainment equation, might not form an adequate model to produce very accurate
results. Although Veldman reports a good correspondence to the lift coefficients generated by his
model [18], it does not guarantee excellent agreement in boundary layer profiles and parameters
generated by both models. Head’s closure is known to be a somewhat obsolete model. In fact,
alternative, more sophisticated models are widely employed in boundary layers solvers nowadays
[11][65]. An example of an alternative formulation of the integral boundary layer equations,
employed by XFOIL, would be to set up the system of equations with the more sophisticated
Green’s lag-entrainment equation [63].
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Appendix A

Derivation of the lift and drag
coefficients

From the simulations, pressure and skin friction distributions are obtained. Using derivations
in Anderson [39], the pressure and skin friction are transformed to lift and drag coefficients.
Lift and drag are defined as the forces perpendicular and parallel to the onset flow, and can
be non-dimensionalized into coefficients, similar to pressure and skin friction. Lift and drag are
visualized in Figure A.1.

Figure A.1: Lift and drag on an airfoil.

As mentioned before, pressure and skin friction are obtained from the simulation. The
formulas for all coefficients are given below.

q∞ =
1

2
ρV 2

∞ → dynamic pressure, (A.0.1)

Cp =
p− p∞
q∞

→ pressure coefficient, (A.0.2)

Cf =
τ

q∞
→ skin friction coefficient, (A.0.3)

CL =
L

q∞c
→ lift coefficient, (A.0.4)

CD =
D

q∞c
→ drag coefficient. (A.0.5)
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In the above equations, the forces are defined per unit span, as everything is dealt with in
2D. The variables p, τ and c denote the static pressure, the shear stress and the chord length,
respectively. Taking Bernoulli’s law,

p∞ +
1

2
ρV 2

∞ = p+
1

2
ρV 2, (A.0.6)

which is valid in inviscid flow, and rewriting,

p− p∞ =
1

2
ρV∞ − 1

2
ρV =

1

2
ρ(V∞2 − V 2), for incompressible flow. (A.0.7)

Equation A.0.7 can now be substituted in Equation A.0.2, giving

Cp =
1
2
ρ(V 2

∞ − V 2)

q∞
= �

�1
2
ρ(V 2

∞ − V 2)

�
�1
2
ρV 2

∞
= 1− V 2

V 2
∞

= 1−
(

V

V∞

)2

, (A.0.8)

the definition used in section 2.4. To obtain the lift and drag coefficients, firstly, the pressure
and skin friction coefficients have to be transformed to pressure and skin friction forces. This is
done by multiplication with the dynamic pressure, following Equation A.0.2 and Equation A.0.3.
Hence,

p− p∞ = Cpq∞, τ = Cfq∞, (A.0.9)

where p − p∞ will be substituted with a net pressure pnet for simplicity. The force per unit
span is obtained by integrating both pressure and skin friction over a length, namely the airfoil
contour. As such, a total pressure and skin friction force per unit span can be defined,

Fpres =

∮
pnetds =

∮
Cpq∞ds, Fskinf =

∮
τds =

∮
Cfq∞ds. (A.0.10)

The orientation of these forces should be known to be able to derive lift and drag. Therefore, the
unit vectors are needed. Pressure is always defined inward normal, and shear stress is defined
tangential to the surface, in positive streamwise coordinate. For a NACA 0012 at 0° angle of
attack, the unit vectors for pressure and skin friction can be seen in Figure A.2. Now, let i be
the number of panels in which the airfoil is discretized. Each panel has its own inward normal
unit vector and streamwise positive tangential unit vector. Each of these vectors has an x and
a y component. The normal and tangential vectors of the ith panel are defined as

−→n = [nix , niy ],
−→
t = [tix , tiy ]. (A.0.11)

Now, the pressure and skin friction force can be written in a direction,

Fpres =

∮
Cpq∞ds →

−→
F pres = q∞

∑
i

SiCp,i

[
ni,x

ni,y

]
, (A.0.12)

Fskinf =

∮
Cfq∞ds →

−→
F skinf = q∞

∑
i

SiCf,i

[
ti,x
ti,y

]
, (A.0.13)
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Figure A.2: Unit vectors for pressure and skin friction.

where the contour integral can be simplified by multiplying coefficient i, be it pressure or skin
friction coefficient, with the length of panel i, and summing all of them to a total. This will give
a resultant pressure and skin friction force, which can be decomposed into a normal and an axial
force. The former is perpendicular to the chord c, while the latter is parallel to c. In the case
of 0° angle of attack, adding the x and y components of pressure and skin friction forces will
already be equal to the lift and drag forces. In the case of an angle, the upper definitions will
give the normal and axial forces. To determine the lift and drag forces, which are perpendicular
and parallel to the onset flow, the normal and axial forces have to be transformed by a rotation
matrix, namely

R =

[
cosα − sinα

sinα cosα

]
, such that

{
FL

FD

}
=

[
R

]{
Fnorm

Fax

}
, (A.0.14)

where α is the angle of attack. Putting together Equation A.0.12, Equation A.0.13 and Equa-
tion A.0.14, one arrives at{

FL

FD

}
= q∞

[
cosα − sinα

sinα cosα

]∑
i

Si

{
Cp,iniy + Cf,itiy
Cp,inix + Cf,itix

}
. (A.0.15)

Note that the y components are now mentioned first, as the normal force is mentioned as the first
component of the vector to be rotated. The last step is to non-dimensionalize the lift and drag
forces, thereby obtaining the lift and drag coefficients. Using Equation A.0.4 and Equation A.0.5,
one arrives at {

CL

CD

}
= ��q∞

��q∞c

[
cosα − sinα

sinα cosα

]∑
i

Si

{
Cp,iniy + Cf,itiy
Cp,inix + Cf,itix

}
. (A.0.16)

Generally, the chord length is taken as 1, and can thus be discarded as well, yielding the final
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equations for lift and drag coefficients,{
CL

CD

}
=

[
cosα − sinα

sinα cosα

]∑
i

Si

{
Cp,iniy + Cf,itiy
Cp,inix + Cf,itix

}
. (A.0.17)

Note that, for an angle of attack of 0°, the rotation matrix simply becomes the identity matrix,
giving the more simplified equation{

CL

CD

}
=
∑
i

Si

{
Cp,iniy + Cf,itiy
Cp,inix + Cf,itix

}
. (A.0.18)

It is interesting to note that, following Talay [66], for a streamlined body in a flow that is
not separated, the drag caused by skin friction is the dominating component, and the effect of
pressure drag is very small. In inviscid cases, pressure drag can even become negative, functioning
as a thrust force on an airfoil. In any case, the drag force is mainly decomposed of the skin
friction. However, for a separated flow, the pressure drag takes on a crucial parasitic role and
surpasses the skin friction drag. Additionally, the principal contributor to lift is the pressure, and
not so much the skin friction, which is generally two to three orders smaller than the pressure.
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Appendix B

Additional results

This appendix shows results that are complementary to chapter 5, namely the result of the
exactly symmetrical case.

Figure B.1: The momentum thickness and shape factor results for NACA 0012 at 0°, approximated with a
Lagrange polynomial of order 20 at Reynolds of 1 ∗ 106, tripping at s = 0.1, compared with XFOIL.
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Figure B.2: The displacement thickness for NACA 0012 at 0°, approximated with a Lagrange polynomial of order
20 at Reynolds of 1 ∗ 106, tripping at s = 0.1, compared with XFOIL.

Figure B.3: Pressure distribution from NACA 0012 at 0°, tripping at s = 0.1, compared with XFOIL; cut off at
0.3 for legibility.

BL solver XFOIL
CL 1.204e-6 0.000
CD 0.0095 0.01061

Table B.1: Aerodynamic coefficients for NACA 0012 at 0°.
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