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Abstract

This study researches the forecasting accuracy of Interest Rate Swap Spreads (IRSS) us-

ing both econometric models and machine learning techniques, with a focus on integrating

these approaches in a hybrid model to enhance predictive accuracy. Given the important

role of IRSS for financial institutions, accurate forecasting is essential for effective risk man-

agement. Our research evaluates the performance of the Hull-White Two-Factor (HW2F)

model, the Long Short-Term Memory (LSTM) networks, and introduces an integrative hy-

brid model combining the strengths of these two individual models.

Through an elaborate literature review, we have identified the important predictors in-

fluencing IRSS including financial predictors - such as the zero-coupon bond yield, the Trea-

sury yield and the TED Spread - and macroeconomic predictors, such as the gross domestic

product, the inflation rate and the unemployment rate. Our methodology involved data

preprocessing strategies - including stationarity tests, normalisation and outlier adjustment

- to ensure the quality of our dataset.

The HW2F model demonstrated high out-of-sample forecasting accuracy with a Root

Mean Squared Error (RMSE) of 2.298, a Mean Absolute Error (MAE) of 1.550, and a Mean

Absolute Percentage Error (MAPE) of 3.118%. It economically outperformed a naive model

for forecasting IRSS. The LSTM model showed it is prone to overfitting risks and strug-

gled in high volatility market conditions, with out-of-sample RMSE of 3.708, MAE of 2.571,

and MAPE of 5.041%. The hybrid model, designed to leverage the HW2F’s stability and

the LSTM’s pattern recognition capabilities using residual correction, showed promise in

reducing forecast volatility. However, it did not consistently outperform the HW2F model

in out-of-sample IRSS forecasting, with out-of-sample RMSE of 2.680, MAE of 2.131, and

MAPE of 4.123%.

Our findings highlight the importance of balancing model complexity and stability in

financial forecasting. Additionally, we recommend future research to research further model

enhancements and improve the model interpretability, for example by Explainable Artificial

Intelligence (XAI) techniques, ensuring that advanced models can provide transparent in-

sights for financial institutions. This study highlights the continued relevance of traditional

econometric models and explores the potential of integrating machine learning for improved

financial forecasting.

Keywords: Interest Rate Swap Spread, Financial Forecasting, Risk Management, Hull-

White Two-Factor Model, Long Short-Term Memory Networks, Hybrid Model
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1 Introduction

In this section, we will introduce the problem that will be covered throughout this thesis.

First, we will go over some general background information on risk management in Section

1.1. After that, we will elaborate on the more specific context on the subject of Interest Rate

Swap Spreads (IRSS) in Section 1.2, and we will identify the core problem of this research

in Section 1.3. After that, we will define our research objective and research questions in

Section 1.4. Lastly, we will cover the research design for this study in Section 1.5.

1.1 Background

Risk management in financial institutions consists out of identifying, assessing, monitor-

ing and controlling risks to ensure the institution’s stability, profitability and compliance

with regulatory requirements. Risk management is a vital process for the banking sector due

to the risks involved in banking activities, which range from lending, investing and trading

large amounts of finances.

At the core of risk management is the trade-off between risks and capital requirements.

Central banks require the banks to hold a certain amount of capital, known as the regulatory

capital, to cover the risks they take on. Regulatory capital serves as a buffer to absorb sudden

losses and protect depositors and the financial system in case of crises. However, the bigger

the regulatory requirements for the bank, the less money can be used in financing processes,

and hence, it is important for banks to keep their safety buffer as close to the regulatory

requirements as possible. Hence, financial institutions are constantly focusing on forecasting

risk types, to be able to cope with the ever-evolving landscape of the markets.

1.2 Problem Context

In the ever-evolving landscape of financial markets, swaps stand out as one of the most

versatile and widely used derivative instruments. These complex financial contracts allow

parties to exchange streams of cash flows over a specified period, catering for a broad spec-

trum of risk management, speculative and arbitrage needs. By transforming short-term

deposits into longer-term liabilities, institutions can manage their exposure to fluctuations

in rates effectively (McNulty 1990). The invention of swaps can be traced back to the early

1980s, and since then, they have grown exponentially in both volume and complexity, becom-

ing integral to the global system (Smith Jr, Smithson, and Wakeman 1988). This expansion

reflects the increasing need among financial institutions to hedge against the risks inherent

in their operations. In Figure 1.1, it is depicted that interest rate swaps constitute a signif-

icant proportion of the interest rate derivative Over The Counter (OTC) market. In April

2022, the daily turnover in EUR swaps equalled $1.3 trillion (TBIS 2022). Because interest

rate swaps are traded on the OTC market and not on the exchange market, the interest rate

swap transactions are directly dealt with between two parties and can be customised to the

needs of the participants.

1
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Figure 1.1: Interest Rate Derivatives Market Size in 2022 (TBIS 2022)

The mechanics of an interest rate swap transaction involve two parties agreeing to ex-

change cash flow streams over a set period (Hull 2012). These cash flows are often determined

by different interest rates or currencies. For example, in an interest rate swap, one party

might agree to pay a fixed interest rate on a notional principal amount, while receiving a

floating rate from the party. In Figure 1.2, a case is visualised in which two companies have

entered an interest rate swap agreement, in which Company A pays a fixed rate of interest of

3% and receives the floating London Interbank Offered Rate (LIBOR). The actual principal

amounts typically do not change hands, instead the net difference in interest payments is

exchanged. If Company A expects fluctuations in the interest rate, and it wants to hedge

the risks that are a consequence of those fluctuations, the company would enter such a swap

deal. To do so, the company must now pay a premium, which is typically above the initial

LIBOR at the starting moment of the agreement, which is called the IRSS.

Figure 1.2: Example of an Interest Rate Swap (Hull 2012)

Swaps come in various forms, each designed to meet specific financial goals and manage

different types of risks. The most common swap is a ”plain vanilla” interest rate swap where

a fixed rate of interest is exchanged for LIBOR (McNulty 1990). Other swaps are currency

swaps, where two parties help each other in hedging against currency risk; Commodity swaps

where parties exchange floating and fixed rates to hedge against price volatilities of raw ma-

terials; and Credit Default Swaps (CDS), which provide insurance against risk of default by

a third party (Hull 2012).

Swap spreads, particularly in the context of interest rate swaps, are a critical aspect of

the swap market. They allow financial institutions to take care of interest rate risk man-

agement, and liquidity management and find arbitrage opportunities (Duarte, Longstaff,

2
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and Yu 2007). The swap rate is essentially the fixed rate that one party agrees to pay in

exchange for receiving a floating rate, which is usually tied to a benchmark index such as

LIBOR (Bicksler and A. H. Chen 1986). The determination of IRSS is influenced by several

factors, including market conditions, market expectations, credit risks, and market supply

and demand. If market participants are expecting economic growth or tighter monetary

policy from central banks, there is expected to be a rise in the future interest rate (Tobin

1965). Rises in interest rates indicate rises in IRSS, ceteris paribus, and hence, the better

the economy is expected to perform, the higher the IRSS are. On the contrary, when the

economy is expected to fall, the central banks will step in and lower the interest rate, to

increase market anticipation. Hence, IRSS will decrease in bad economic situations, ceteris

paribus. However, when there is an increased risk of default in the market, this could imply

a higher interest rate swap rate (Pereira 2015).

Figure 1.3: Historical Interest Rate Swap Rates (Investing.com 2024)

1.3 Core Problem

Swaps play a pivotal role in financial markets by providing a mechanism for managing

risk and revealing information about market expectations on interest rates, currency move-

ments, and credit risk (Bae, Karolyi, and Stulz 2003). Changes in IRSS are predictive of

economic growth, inflation and monetary policy, ceteris paribus. The spread of a swap is

calculated by the difference between the fixed rate and the floating rate, and since in most

cases the floating rate equals the LIBOR, the uncertainty lies in the premium that is paid

for the fixed rate, which is a prediction of the risk in the market (Hull 1993). Thus IRSS

have a big impact on borrowing costs, investment decisions, and risk management strategies

for market participants. Moreover, swaps contribute to market efficiency by facilitating the

transfer of risk to those parties best equipped to bear them, thereby enhancing liquidity and

supporting financial stability.

As mentioned, changes in the IRSS are predictive of macroeconomic shifts, and hence,

the importance of accurate forecasting rises. Traditionally, the forecasting for swaps re-

lied heavily on econometric models. Models that are now being used are Autoregressive
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Integrated Moving Average (ARIMA) models and Generalised Autoregressive Conditional

Heteroskedasticity (GARCH) models (Kontopoulou et al. 2023). These are complex mathe-

matical models, as there are multiple factors influencing IRSS, which are often interrelated,

which makes it very hard to forecast (Hull 2012). However, as the market for swaps has

grown exponentially, so has the complexity of these instruments and the environments in

which they are traded. This complexity necessitates advanced methodologies for accurately

forecasting swaps.

Machine learning offers relatively new methods for the forecasting of IRSS, thanks to its

ability to analyse larger datasets and recognise complex (non-linear) patterns in high dimen-

sional spaces. Currently, financial institutions are exploring all possibilities with the help

of machine learning in risk management (ING 2022; Rabobank 2022). Furthermore, new

studies have found hybrid approaches between econometric and machine learning models,

to improve the forecasting performance (Batool, Ahmed, and Ismail 2022).

The effects of the COVID-19 pandemic on the interest rate swap market were significant,

and led to large fluctuations in the IRSS, as is visible in Figure 1.3, ceteris paribus. Market

liquidity and functioning deteriorated, and there was an overall effect of investors unwinding

their positions abruptly (Inoue, Miki, and Gemma 2021). Although a turmoil the size of

COVID cannot be predicted accurately, there is an increased need for accurate forecasting

within the interest rate swap market. The core problem that will be tackled during this

research is:

”Literature has shown that there currently is a lack of forecasting accuracy

using econometric models for IRSS forecasting.”

1.4 Research Objectives

The aim of this research is to investigate the IRSS forecasting performance of econometric

and machine learning models. The goal of this is to be able to find the accurate characteris-

tics of traditional forecasting and to combine them with the accurate characteristics of the

machine learning model. In recent studies, automated machine learning methods to build

time-series forecasting, Long-Short Term Memory (LSTM) deep learning were analysed to-

gether, and multiple time series and econometric models were tested, finding limitations

to each model that was considered (Batool, Ahmed, and Ismail 2022; Do, Lakew, Sungrae

Cho, et al. 2022; He et al. 2023; Jagero, Mageto, and Mwalili 2023; Kontopoulou et al. 2023).

The goal of this thesis is to address the gap in the financial literature regarding IRSS, a

subject with limited comprehensive research. While existing studies primarily utilise econo-

metric models, this work will introduce a machine learning approach and additionally, a

hybrid approach will be introduced, merging the two individual models to analyse one-

step ahead forecasting of IRSS more accurately. Additionally, the practical contribution of

this thesis includes enhancing risk management for financial institutions, aiding investors

in forming better strategies, providing policymakers with deeper market insights, advancing
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financial modelling techniques, and increasing market efficiency (Do, Lakew, Sungrae Cho,

et al. 2022; Kontopoulou et al. 2023).

Ernst & Young (EY) is a global consultant in assurance, tax, transaction and advisory.

At EY, the understanding of interest rates is critical for quantitative advisory services.

It helps with enhancing credit risk assessment in mortgage portfolios, accurately valuing

interest rate derivatives, and managing Interest Rate Risk in the Banking Book (IRRBB).

Predicting future interest rates enables precise calculations of the expected credit loss metrics

— such as Probability of Default (PD), Loss Given Default (LGD), and Exposure at Default

(EAD) — improves derivative forecasting and informs the impacts on the Economic Value

of Equity (EVE) and Net Interest Income (NII) for IRRBB reporting. Hence, the ability to

forecast IRSS underlies the understanding of interest rate risks, which will be fundamental

in the advisory towards financial institutions.

1.4.1 Main research question

The objective of this study is to address the following research question to be able to

solve the core problem:

How do the predictive capacities of traditional financial models contrast with those of

machine learning algorithms in one-step-ahead forecasting IRSS, and would an integrative

approach using a hybrid model enhance the overall forecasting accuracy?

1.4.2 Sub-research question

To create a foundation for the main research question, six sub-research questions are

produced to guide a step-by-step approach throughout this research.

I What factors are the predictors that influence the dynamics of IRSS?

In the first part of the research, the predictors that influence IRSS will be explored. To be

able to build the best forecasting method, certain economical features should be selected,

based on the predicting ability of the features. To find these values, a comprehensive explo-

ration of current literature will be performed. Macroeconomic predictors, such as inflation

rates, GDP growth, and unemployment rates, together with financial metrics such as the

LIBOR are expected to build the right foundation for this research, upon which the models

can be built.

II Which econometric models are currently being used in the one-step forecasting of IRSS,

and which are identified as the most accurate in literature?

To answer this sub-research question, the research will focus on studying academic literature

for various econometric models focusing on applications and accuracy. The goal is to find a

model with the highest expected forecasting accuracy.

III What are the assumptions and the limitations of these econometric models in the fore-

casting of IRSS?
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This sub-research question will research the theoretical assumptions of the selected econo-

metric model. Furthermore, we will evaluate the forecasting accuracy using performance

measures, that are selected to represent the error of the forecast. By doing this, the limita-

tions of the econometric model can be analysed.

IV Which machine learning models are expected to perform with the highest forecasting

accuracy in the one-step forecasting of IRSS?

Using academic literature and similar forecasting studies, we will evaluate multiple machine

learning models, focusing on their potential forecasting accuracy for the forecasting of IRSS.

One model will be selected based on our findings.

V What are the assumptions and the limitations of these machine learning models in the

forecasting of IRSS?

We will perform a similar study, where we will combine the theoretical assumptions of

the machine learning models, with the limitations found within the selected performance

measures. Hence, after the model-building phase, we will create insights into the weak

points of using machine learning forecasting for IRSS.

VI How can a hybrid model that integrates econometric and machine learning approaches

be optimally designed for one-step forecasting IRSS?

Finally, after building both the econometric and the machine learning models for one-step-

ahead forecasting IRSS, we will have gathered all the assumptions and the limitations of

the individual models. We will perform a literature study on how to combine the models in

a hybrid approach, to potentially overcome these limitations, and find and build the right

hybrid model, to increase the forecasting accuracy.

1.5 Research Design

This research will be split up into multiple sections, to create a comprehensive approach

to answer the sub-questions related to forecasting IRSS. The goal of this research is to

find a hybrid approach of econometric and machine learning forecasting of the IRSS, that

out-performs currently used methods. To do so, this research will first conduct a literature

study on the key predictors that influence the IRSS, and how those key predictors are

captured by the econometric and the machine learning models. This includes research on

how the IRSS is currently set in the market, to create a real understanding of the IRSS.

Additionally, within the literature study research will be conducted on current econometric

models that are being used, and what types of machine learning models are promising for

the forecasting process of IRSS. Based on this literature review, the models and their key

features will be selected, that will be used during the model-building phase. After the

models have been built, sensitivity analysis and analyses will be performed to confirm the

forecasting accuracy of the model. If the models have been proven to forecast accurately, the

predicting performance will be analysed, by comparing the results of the models with the

historical values of the IRSS. This will be done based on the performance measures found

in the research. The advantages and the limitations of both models will then be analysed,

6



August 22, 2024 1 INTRODUCTION

after which this information will be assessed in the hybrid-model building phase, which

incorporates the advantages of both models and leverages these advantages to outperform

the individual models in the forecasting performance of the IRSS. Finally, a conclusion will

be synthesised regarding the suitability of the hybrid model for forecasting the IRSS in the

financial markets.

1.6 Summary

Risk management in financial institutions involves identifying, assessing, monitoring and

controlling risks to ensure stability, profitability and compliance with regulatory require-

ments. Among the financial instruments used in risk management, swaps stand out as one

of the most versatile and widely used. They allow parties to exchange streams of cash flows

over a specific period, mitigating a broad range of risks. Swaps have grown exponentially

in volume and complexity since their inception in the early 1980s, becoming integral to the

global financial system. IRSS play a critical role in this market as they are predictive of

economic growth, inflation, and monetary policy. Accurate forecasting of IRSS is, therefore,

crucial. While econometric models have been used in forecasting, the increasing complex-

ity of swaps necessitates the exploration of more advanced methodologies, such as machine

learning. This research aims to investigate the IRSS forecasting performance of econometric

and machine learning models and to explore whether their integration could enhance overall

forecasting accuracy.

7



August 22, 2024 2 LITERATURE FRAMEWORK

2 Literature Framework

In this section, we will provide a comprehensive exploration of existing literature, to

provide a fundamental understanding of the concepts used during this study, and to identify

the gaps that currently exist. We will perform this literature study using a traditional liter-

ature review method, involving the identification, selection and critical analysis of previous

research that directly relates to our research questions and objectives mentioned in Section

1.4.

For our study, it is important to study the concept of IRSS. Hence, in Section 2.1, we

will find existing literature on the relevance of IRSS, with the aim of building an under-

standing of the concepts that are important in forecasting IRSS. Thereafter, if a good base

of understanding is built, we will focus on finding the right financial and economic predic-

tors for IRSS in Section 2.2. Furthermore, we will evaluate the relevant models for IRSS to

find the highest predictive accuracy. First, we evaluate econometric models in Section 2.3,

after which we will research machine learning models in Section 2.4. Lastly, we will find all

relevant literature on building a hybrid model in Section 2.5.

2.1 Measure of IRSS

Interest rate swaps are agreements between two institutions in which each party com-

mits to make periodic payments to the other based on a predetermined amount of notional

principal for a predetermined life, called maturity. Furthermore, the swap spread is defined

as the difference between the fixed rate on a swap and a Treasury yield with a comparable

maturity, ceteris paribus (Hull 1993). Along with the volatility of the Treasury yield, the

volatility in the swap spread is very important to determine the risk value of the swap po-

sitions to both of the counterparties.

In the business world, corporations face price risk, which stems from unexpected fluc-

tuations in the fixed interest rates of swaps. If a company has entered into a swap, and

the market rate for the swaps drops, ceteris paribus, the value of the swap decreases. In

this situation, the fixed rate payer is now stuck on an ”above-market” fixed rate for LI-

BOR recipience. This is known as negative mark-to-market value. It presents a loss that,

while not yet realised through actual transactions, may need to be reported within the

company’s financial statements. For the other party, these fluctuations will be represented

in an unexpected profit of the same magnitude. However, this gain comes with its own

risk, as the fixed-rate receiver becomes vulnerable to the possibility that the counterparty

might default on the agreement (K. C. Brown, Van Harlow, and Smith 1991). Hence, any

volatility in the swap spread directly impacts the value of the swap position for both parties.

Market makers, who hedge unmatched positions in their swap books with treasury secu-

rities in both cash and futures markets, this volatility creates somewhat different problems.

Because unexpected movements in the treasury components of the swap’s fixed rate can off-

set with any of several available instruments, the remaining source of risk is an unexpected
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change in the swap spread (K. C. Brown, Van Harlow, and Smith 1991). Given that these

market makers typically operate with very tight profit margins — often as slim as 0.05%

— even minor variations in the swap spread of a few basis points can significantly impact

their profitability, ceteris paribus. Hence, if there were a stable and predictable relationship

between the swap spread and other market rates, market makers could devise more effective

hedging strategies, known as cross-hedges, to reduce their financial exposure. Of course,

any residual risk resulting from the market maker’s inability to create such a hedge will be

priced into its bid/offer spread and ultimately affect the cost to corporations using swaps in

their interest rate risk management program.

2.1.1 Financial dynamics

Within this theoretical framework, one of our goals is to answer Sub-Research Question

I, in which our aim is to find the accurate predictors of IRSS. To do so, we will first find

literature on the financial approach of IRSS. Decomposing the financial approach will create

insights into the predictors of IRSS.

If an interest rate swap is agreed upon, Company A agrees to receive a fixed interest

rate from Company B, which is determined by adding a specific Treasury yield (T) to a

Swap Spread (SS). In return, Company A commits to pay a variable interest rate, typically

indexed to the LIBOR. The LIBOR furthermore reflects the additional credit and liquidity

risk premiums over the risk-free rate.

Net Settlement = (TN + SSN − LIBOR)×NP ,

where NP stands for the notional principal, which is essentially the reference amount upon

which the interest payments are calculated, as the NP is not exchanged during a swap

agreement. For a swap agreement that spans N periods, the fixed rate (represented as

TN + SSN ) is intended to match the expected average LIBOR throughout the duration of

the contract, as we have discussed above.

NP ×
N∑
i=1

(
TN + SSN

(1 + Zi)i

)
= NP ×

N∑
i=1

(
E[LIBORi−1]

(1 + Zi)i

)
,

where Zi are the zero-coupon discount rates corresponding to each settlement date and

E[·] is the expectation operator. In this equation, the pure expectations theory implies

that the fixed rate is determined by the market’s expectations of future short-term LIBOR.

Using the zero-coupon bond discount rates provides an accurate, market-reflective method of

calculating the present value of future swap payments compared to using a uniform treasury

rate.

TN + SSN =

∑N
i=1

(
E[LIBORi−1]

(1 + Zi)i

)
∑N

i=1

(
1

(1 + Zi)i

) = EN [LIBOR], (2.1)

where EN [·] denotes the expectations cover N periods. We can analyse the components of
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LIBOR at each date by breaking it down into two elements (K. C. Brown, Van Harlow,

and Smith 1991). First, the Treasury Bill (TB) rate for that date, represents the yield on

short-term government debt securities, which contains virtually no credit risk. Furthermore,

the TED Spread (TEDS), is the difference between the interest rates on a three-month TB,

and a three-month LIBOR. Hence, this spread represents the credit and liquidity risks. This

decomposition is expected as

TN + SSN = EN [TB + TEDS] = EN [TB] + EN [TEDS] (2.2)

The use of the TB in this model aligns with the short-term nature, matching the short-term

benchmarks used for the floating LIBOR. This in return can be rearranged as follows.

SSN = (EN [TB]− TN ) + EN [TEDS], (2.3)

which implies that in the financial market, the swap spread should equal the difference

between the expected future T-bill rates and the Treasury bond yield, plus the expected

average of future TED spreads. Furthermore, according to the pure expectations theory,

EN [TB] is expected to be the same as the yield for an N-period zero-coupon Treasury bond,

represented as ZN (Hejazi, Lai, and Yang 2000). Therefore, continuously reinvesting in one-

period Treasury bills over N periods, each at its expected yield as initially forecasted, should

yield the same compound rate of return as investing in an N-period zero-coupon Treasury

bond with a yield of ZN . Substituting this obtains

SSN = (ZN − TN ) + EN [TEDS] (2.4)

The equation indicates that the IRSS consists of two elements, the first element, ZN −
TN , reflects the coupon bias found within the treasury yield curve (Caks 1977), this bias

suggests that, depending on the yield curve’s direction, a ten-year zero-coupon can yield

higher or lower than a ten-year coupon-bearing bond of similar face value. Specifically an

upward-sloping yield curve will typically result in a higher yield for the zero-coupon bond

compared to the par-value bond, thereby increasing the IRSS, assuming other conditions

remain constant. The second element affecting the IRSS is the anticipated future levels of

the TED spread, summarised by its average value. An increase in this expected average

would also lead to an increase in the IRSS (K. C. Brown, Van Harlow, and Smith 1991).

However, it is important to note, that the future trajectories of LIBOR and TB rates may

not move parallel to each other, leading to variable outcomes for the TED spread. Here as

the swap matures, the longer-term ZN become more relevant, reflecting broader economic

expectations and providing more stability.

2.1.2 Macroeconomic dynamics

In the previous section, we have decomposed the financial approach of IRSS. However,

this can be a significant simplification, as the IRSS is influenced by macroeconomic dynam-

ics. One of the primary considerations is the costs incurred by market makers, especially in

relation to hedging open positions. The repurchase agreement (repo) rate stands out as a
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critical factor. In a repo, a financial institution that owns securities agrees to sell the secu-

rities for a certain price and to buy them back at a later time for a slightly higher price. As

the repo rate increases, ceteris paribus, so does the cost of hedging, leading market makers

to adjust their bid/offer spread accordingly. This adjustment impacts the fixed rate paid on

the swap, highlighting a significant role hedging costs play in the forecasting of longer-term

IRSS.

Another vital element is the credit risk associated with swap dealers. Dealers with higher

credit ratings tend to offer narrower bid/offer spreads, ceteris paribus, as they are perceived

to be lower risk (Sun, Sundaresan, and C. Wang 1993). This difference in credit reputation

among dealers directly affects IRSS forecasting. Furthermore, external market conditions,

including economic uncertainties and shifts in central bank rates, also play a crucial role.

These factors, alongside liquidity and credit spreads between different types of bonds, influ-

ence market expectations and, consequently, the forecasting of swaps.

Additionally, transaction costs are another factor influencing IRSS. Although swap mar-

kets generally feature narrower bid-offer spreads than interbank markets, higher transaction

costs can lead to increased quoted yields, reflecting the elevated costs associated with the

trade execution (Amihud and Mendelson 1986). Under simplifying assumptions — no trans-

action costs or default — swap forecasting theory implies arbitrage-free markets, which is

not true in real-world (Sun, Sundaresan, and C. Wang 1993). Under simplifying assumptions

(no transaction costs or default), swap forecasting theory implies that the arbitrage-free rate

for a generic interest rate swap should equal the yield on a par bond with the same matu-

rity, which is not the case in real-world swaps. Lastly, the relationship between IRSS and

Treasury yield varies with maturity, generally widening as maturity increases.

2.1.3 Summary

In this section, we have discussed the importance of the forecasting of swaps and the

swap spreads. In financial markets, corporations face price risk from fluctuations in fixed

IRSS. If market rates decline, the value of existing swaps falls, leading to a negative mark-to-

market value for the fixed-rate payer, who is stuck paying an above-market rate. Conversely,

the fixed-rate receiver might see an unrealised gain but faces default risk from the counter-

party. Market makers, hedging unmatched positions with treasury securities, face risks from

volatility, particularly from changes in the IRSS. These changes can significantly affect their

profitability, especially since they operate with tight profit margins.

Furthermore, we have decomposed the financial approach of IRSS, and by doing so, we

have found that the IRSS stems from the coupon bias found within the Treasury yield curve

(ZN − TN ) and the anticipated future levels of the TED spread (EN [TEDS]). However,

real-world forecasting of swaps is more complex. It includes factors like hedging costs, credit

risks of swap dealers, market conditions, economic uncertainties, central bank rate shifts,

liquidity, and credit spreads. Furthermore, the relationship between IRSS and Treasury

yields, which typically widens with maturity, adds another layer of complexity.
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With this information, we will focus on the main predictors of IRSS in the following

section. We will study the financial predictors that we have found, and will furthermore

focus on macroeconomic predictors and the forecasting of swaps.

2.2 Predictors of IRSS

During this research, we will use multiple models to forecast IRSS. To be able to forecast,

our models need predictors. Predictors for machine learning models are input features or

variables that are used to train and make predictions (S. Wang et al. 2015). Predictors are

selected based on their relevance to the target outcome, which in the case of our research

is the IRSS. The quality of the predictors directly affects the performance of the models,

making the process of feature selection a critical step in the model development process.

In general, the optimal number of predictors in machine learning depends on the com-

plexity of the problem, the available data, and the specific architecture and training methods

used (He et al. 2023). As in Section 2.1, we have found that IRSS is influenced by both

financial and macroeconomic dynamics, and hence, this section will focus on finding the

right predictors in these fields.

2.2.1 Financial predictors

In Section 2.1, we have concluded that within the financial decomposition of IRSS the

coupon bias within the Treasury yield curve (ZN − TN ), and the anticipated future levels

of the TED spread (EN [TEDS]) are important elements for forecasting. Hence the first

predictors that we select are as follows:

• Treasury yield curve: Kurpiel (2003) has identified the slope of the yield curve as

one of the variables potentially driving IRSS. As in a steep curve environment, the

demand for the fixed-rate receiver in a swap increases, ceteris paribus. Hence, not

only the position of the Treasury yield but additionally the slope will be considered.

R. Brown, In, and Fang (2002) have found that the curvature of the yield curve does

not have a significant contribution.

• N-period zero-coupon bond: Lekkos and Milas (2001) examine the ability of factors

such as the level, volatility and slope of the zero-coupon government bond yield curve.

They have found that the slope of the term structure has a significant counter-cyclical

effect across maturities.

• TED spread: The TED spread, which represents the default risk premiums, how-

ever, has been found to play a small role and the significance varies across maturities

(R. Brown, In, and Fang 2002), ceteris paribus, with a higher significance for longer

maturities (Lekkos and Milas 2001).
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2.2.2 Macroeconomic predictors

Furthermore, in Section 2.1, we have found that real-world forecasting of swaps is more

complex. It includes factors like hedging costs, credit risks of swap dealers, market condi-

tions, economic uncertainties, central bank rate shifts, liquidity, and credit spreads.

• Gross domestic product: The Gross Domestic Product (GDP) and IRSS are closely

interconnected, with GDP having a significant impact on IRSS (Gargano and Tim-

mermann 2014). GDP influences IRSS through its impact on monetary policy and

market expectations, ceteris paribus. A growing GDP can lead to higher interest rates

to control inflation, making IRSS more attractive.

• Unemployment rate: The unemployment rate impacts IRSS by influencing central

bank policies and market sentiment (Gargano and Timmermann 2014). High unem-

ployment typically leads to lower interest rates to encourage borrowing and investment,

ceteris paribus, making IRSS more attractive.

• Inflation rate: The inflation rate directly influences IRSS by affecting central bank

interest rate decisions and investor expectations (Beenstock and Chan 1988; S.-S. Chen

2009). High inflation often prompts central banks to raise interest rates to stabilise

prices, ceteris paribus, making interest rate swaps more desirable to lick in than current

rates.

2.2.3 Summary

In this section, we have focused on identifying predictors for forecasting IRSS using ma-

chine learning models. The selection of relevant predictors is crucial as it directly impacts

model performance. Financial predictors identified include the Treasury yield curve’s posi-

tion and slope, the N-period zero-coupon bond’s slope and the TED spread.

Macroeconomic predictors cover broader economic indicator swaps, such as GDP, which

influences interest rates and swap attractiveness through monetary policy and market expec-

tations. The unemployment rate impacts IRSS by guiding central bank policies and market

sentiment, while inflation rate adjustment by central banks affects investor expectations and

IRSS.

Concluding, within Section 2.2 and with the help of Section 2.1, we have answered

Sub-Research Question I of our research. In the next section, we will study the literature

surrounding Sub-Research Question II.

2.3 Econometric Models

In the following section, we will study traditional financial time-series models, in order to

answer Sub-Research Question II. Traditional financial time-series models apply statistical

and mathematical methods to the analysis of economic data. It aims to to give empirical

content to economic theories to test hypotheses and forecast future trends. As mentioned
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in Section 1.2, many models have been used and evaluated in their forecasting accuracy of

financial time-series (Duffie and Singleton 1997; Lekkos and Milas 2004; Sun, Sundaresan,

and C. Wang 1993). In this section, we will discuss the relevant econometric models for our

study, after which a decision can be made on which model will be used. The models that

we will discuss are found in current literature, where they predominantly have been used

in interest rate forecasting. As interest rate swaps are an interest rate-driven derivative,

multiple studies have found that these models are therefore applicable to IRSS forecasting

(Cortes 2003; Y. Huang, C. R. Chen, and Camacho 2008; K. Zhang and Liang 2008). This

close relationship is underpinned by the fundamental mechanics of interest rate movements

and their direct impact on the valuation of interest rate derivatives, such as IRSS, as we

have found in Section 2.1.

2.3.1 Econometric models

• Vector Autoregression: Vector Autoregression (VAR) is a statistical model, used

to capture the linear interdependencies among multiple time series. The VAR model

generalises the autoregressive model by allowing for more than one evolving variable,

all of which are interdependent (S. Kim and Roubini 2000). This method is widely

used in econometrics and financial analysis for forecasting economic and financial vari-

ables.

In VAR model, each variable is expressed as a linear combination of past values of

itself and past values of all other variables in the system. This setup allows for the

mutual influence of variables to be captured. A typical VAR model for a system of N

variables looks like as follows:

yi,t = ci +

n∑
j=1

p∑
k=1

βij,kyj,t−k + εi,t, (2.5)

where yi,t represents the value of the i-th variable at time t, ci represents a constant

term for the i-th equation, βij,k are the coefficients measuring the value of the j-th

variable’s lagged value on the i-th variable, and εi,t is the white noise error term. A

big limitation of VAR is that there’s a lack of theoretical guidance, as it treats all

variables endogenously.

When modelling interest rates, we will adapt the first formula as follows.

rt = c1 +

n∑
j=1

p∑
k=1

β1j,kyj,t−k + ε1,t,

where i = 1, and the other individual predictors within the formula will be a version

of Formula 2.5, where each predictor is represented as yi,t, for each i ≥ 2.

• ARIMA: The ARIMA model is a widely used statistical approach for forecasting and

analysing time series data. ARIMA models are particularly popular in economics and
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finance for their applicability to a wide range of stationary and non-stationary series,

such as stocks and economic indicators (Shumway et al. 2017).

The model consists of an integrated part, which involves differentiating the time series

to achieve stationarity, an autoregressive part, which represents the current value of

the time series as a linear combination of all its parameters, and a moving average

part, where the current value of the series is modelled as a linear combination of its

past forecast values. This makes the model very flexible, however, it does not fully

incorporate external factors (Khan, Urooj, and Muhammadullah 2021).

(1− ϕ1B − ...− ϕpB
p)(1−Bd)yt = (1 + θ1B + ...+ θqB

q)ϵt, (2.6)

where B denotes the backshift operator, yt represents the original time series, ϕi

denotes the parameters in the autoregression, θi are the parameters in the moving

average, and ϵt are the error terms. In the case of this study, within Formula 2.6 the

interest rate would be represented as a substitute for yt

(1− ϕ1B − ...− ϕpB
p)(1−Bd)rt = (1 + θ1B + ...+ θqB

q)ϵt

• GARCH: The GARCH model is a statistical approach used extensively in financial

econometrics to forecast financial time series, such as IRSS (Hull 2012). The general

formula is as follows.

σ2
n = γVL +

p∑
i=1

αiu
2
n−i +

q∑
j=1

βjσ
2
n−j , (2.7)

where VL represents the long-run variance rate, σ represents the volatility and u rep-

resents the return rate. γ, α, and β are the weights given to each of the parameters,

which together sum up to 1. Furthermore, p and q are the orders of the model speci-

fying the number of lag terms. The most commonly used setup of the model is called

GARCH(1,1) and replaces p and q with those values respectively.

The GARCH model makes use of mean reversion, in which the model tends to revert

to the long-term average. Furthermore, the model also used volatility clustering, in

which it captures the moment where high-volatility events tend to cluster together,

which is a close representation of the financial market. However, this element affects

the model as it assumes symmetric shocks to volatility.

• Vasicek: The Vasicek model is instrumental in the field of interest rate modelling.

Its ability to predict interest rate movements is built upon predicting the ”short-rate”,

which refers to the instantaneous interest rate at which an entity can borrow money

for an infinitesimally short period. This model is central in the forecasting processes

of interest rate derivatives, such as IRSS (Orlando, Mininni, and Bufalo 2020).
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In the Vasicek model, the short-rate is assumed to follow a mean-reverting stochastic

process, which means that the interest rate tends to revert towards a long-term average

level over time. The mathematical representation of this behaviour is a Stochastic

Differential Equation (SDE), which in the case of the Vasicek model is expressed as

follows:

dr = a(b− r)dt+ σdz, (2.8)

where a, b and σ are constants (Vasicek 1977). Here dr represents the change in the

short-rate, a represents the speed of the mean reversion, b is the long-term mean level

of the interest rate, σ is the volatility of the rate, and dz represents the increment of

a Wiener Process, representing the random market risk factor. The disadvantage of

this model is that the parameters are constant over time, which does not fully capture

the actual market behaviour. Furthermore, the model can produce negative interest

rates, which are not realistic in many financial scenarios.

• Hull-White: The Hull-White One Factor (HW1F) model is an extension to the Va-

sicek and the CIR models, to better accommodate the empirical characters of interest

rates and fit the observed market data more accurately (Hull and White 2001). Hence,

the formula is an evolution to Formula 2.8,

dr = [θ − art]dt+ σdz, (2.9)

where θ represents the time-dependent parameter designed to ensure the model fits

the current yield curve. The HW1F model allows for zero and negative rates. It has

proven to be very suitable for recent interest rate forecasting practices.

Furthermore, the Hull-White Two-Factor (HW2F) formula has evolved as the follow-

ing:

df(r) = [θ(t) + u− af(r)]dt+ σ1dz1, (2.10)

where f(r) is a function of interest rate r, and u has an initial value of zero, after

which it follows the following process

du = −budt+ σ2dz2

This model provides a richer pattern of the yield curve movements and a richer pattern

of volatilities than one-factor models of r (Hull 2012).

2.3.2 Comparison

In the literature, the HW2F has been found very effective for IRSS forecasting (Cortes

2003; Rodŕıguez, López, and Benedicto 2024; Seppälä, Poon, and Schröder 2013). Further-

more, based on the comparative analysis in Table 2.1, we find that HW2F emerges as the

most accurate model for forecasting term structures and interest rate derivatives, such as

IRSS. As IRSS are very complex interest rate derivatives, this model we will use this model

during this study.
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Table 2.1: Comparison of Econometric Models
Model Advantages Disadvantages Applications
VAR Captures relationships

between multiple vari-
ables

Can lead to parameter
overload; assumes lin-
earity; lack of theoreti-
cal guidance

Multivariate time se-
ries analysis; Forecast-
ing network of interre-
lated financial quanti-
ties

ARIMA Flexible; effective for
short-term forecasting

Assumes linearity; sta-
tionary requirement;
does not incorporate
external factors

Stock prices; Economic
indicators

GARCH Captures time-varying
volatility and volatil-
ity clustering; suitable
for conditional vari-
ance modelling

Can be complex to cal-
ibrate

Volatility forecasting;
Risk management

Vasicek Analytically tractable;
mean-reverting inter-
est rate model; founda-
tional model

Can produce negative
interest rates; simplis-
tic assumptions

Interest rate derivative
pricing; Risk manage-
ment; Bond pricing

Hull-White Flexible, allows for fit-
ting to current term
structures; mean rever-
sion; captures interest
rate movements

Potential complexity
in parameter estima-
tion

Interest rate derivative
pricing; Asset-liability
management

2.3.3 HW2F

In this Section, we will consider all relevant information about the HW2F model, that is

needed in the model-building phase of this research. For the model-building phase, we will

use the discretised equations of the continuous model mentioned in Formula 2.10. Hence

the formulas that we will use are

f(rt+∆t) = f(rt) + [θ(t) + ut − af(rt)]∆t+ σ1

√
∆tε1 (2.11)

ut+∆t = ut + (−but)∆t+ σ2

√
∆tε2 (2.12)

The HW2F model allows for the correlation between the two stochastic processes, an im-

portant element when dealing with real-world interest rates that often correlate between

different maturities. The correlation between dz1 and dz2 is defined as ρ, where −1 ≤ ρ ≤ 1

(Blanchard 2014). This ρ plays an important role in accurately capturing the interaction

between short-term fluctuations and long-term economic trends. The correlation affects the

shape and dynamics of the yield curve, realistically influencing how it reacts to changes in

economic conditions.

Furthermore, as mentioned the θt represents the time-dependent mean reversion level

of the short-rate. It ensures that the model fits the initial term structure of interest rates.

The process θt typically considers elements such as current market conditions, the mean
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reversion speed and the volatility of the interest rates. To determine the θt we will use

a bootstrapping method where we set the condition that the model prices of zero-coupon

bonds match the observed prices at time 0 (Hull 1996). Given the zero-coupon bond price

P (0, t), which represents the future payments of the interest rate swap, at time 0 maturing

at time t, the forward rate f(0, t) is

f(0, t) = −δlnP (0, t)

δt
(2.13)

Using this, the time-dependent drift term θ(t) can be derived as follows

θ(t) =
δf(0, t)

δt
+ af(0, t) +

σ2
1

2a
(1− e−2at) +

σ1σ2ρ

b− a
(e−at − e−bt) (2.14)

2.3.4 Summary

During this section, we have performed research on various econometric models that

focus on an application in financial time-series forecasting, such as the VAR, which is use-

ful for finding interdependencies among multiple time series but lacks theoretical guidance,

ARIMA, known for its flexibility and applicability to time-series data, however without

capturing external factors, and GARCH, which functions well in capturing volatility but

assumes symmetric volatility shocks.

Furthermore, interest rate models like the Vasicek model have been analysed, which is

foundational yet sometimes too simplistic, together with the Hull-White models. The HW2F

model can accurately account for complex market dynamics for interest rate derivatives.

Consequently, this model has been selected for use during this study. With this information,

we have found the answer to Sub-Research Question II. In the next section, we will elaborate

on the existing literature surrounding Sub-Research Question IV. Furthermore, we have now

built sufficient basis to research Sub-Research Question III in Section 4.1.

2.4 Machine Learning Models

In the following section, we will study machine learning models, in order to answer

Sub-Research Question IV.

2.4.1 Machine learning

Machine learning can be performed in three categories of models (Bishop and Nasrabadi

2006). Supervised learning, in which training data comprises examples of input vectors along

with their corresponding target vectors, unsupervised learning, in which the training data

consists of a set of input vectors without corresponding target values, and reinforcement

learning, which is concerned with the problem of finding suitable actions to take in a given

situation in order to maximise the final reward. In our case, to forecast the behaviour of

IRSS using machine learning, supervised learning is the most applicable. This is the case

because supervised training uses historical IRSS and economic indicators to predict the fu-

ture behaviour of IRSS.
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Furthermore, within supervised machine learning, there are two discrete categories: Clas-

sification and regression. Classification is about aiming to assign each input vector to one of

a finite number of discrete categories. Regression output consists of one or more continuous

variables. During this study in forecasting IRSS, we are going to use models that have the

function of creating regressions over the historical data.

There are many types of regressive supervised machine learning techniques. However, due

to the special nature of IRSS, and their complex and non-linear relationships and interactions

between variables, three models are suitable for our research.

• Random forest: A random forest algorithm operates by constructing multiple de-

cision trees during training time and outputting the mean of the prediction from the

individual trees. Each tree in the forest is built from a random sample of data, drawn

with replacement, known as a bootstrap sample. This process introduces variability

among the trees, which leads to a more robust and accurate model (Kumar and Then-

mozhi 2006).

The advantages of random forests are that they are very accurate in handling both

linear and non-linear data and that there is great control of overfitting. However,

there is a large usage of memory, as combining all individual trees can lead to slow

performance and large model sizes.

• Gradient boosting machines: Gradient Boosting Machines (GBM) are powerful

techniques used for regression tasks. GBM focuses on converting weak learners, such

as decision trees, into strong collective models through an iterative process. The main

principle is to build new models that progressively correct errors made by previous

models. At each step, a new decision tree is added that predicts the residuals or errors

of the entire sample. Instead of minimising the residuals in the space of the data, such

as random forests, GBM minimises them in the space of the previous model’s predic-

tions, performing a gradient descent in the model’s prediction space (Derbentsev et al.

2020).

The advantage of GBM is that it has superior predictive accuracy compared to other

machine learning models on structured data. Furthermore, it provides insights into

the significance of each feature in the prediction process. However, it is very complex,

as there are large numbers of hyperparameters, and the sequential nature of boosting

can lead to very long training times compared to models that can.

• Neural networks: Neural Networks (NN) represent a framework in the field of ma-

chine learning and artificial intelligence. A typical NN consists of an input layer, one

or more hidden layers, and an output layer. They process information by passing in-

puts through these interconnected layers, while each neuron applies a weighted sum of

its inputs and passes the result through a non-linear activation function (Bishop and
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Nasrabadi 2006).

The big advantage of NN is that they have got great understanding of forecasting com-

plex non-linear relationships, as it can identify complex patterns in high-dimensional

data. Furthermore, Furthermore, NN can handle very large datasets, making them

suitable for big data applications and deep learning. Neural networks are less sensitive

to error term assumptions and they can tolerate noise, chaotic components, and heavy

tails better than most other methods (Kaastra and Boyd 1996). Other advantages in-

clude greater fault tolerance, robustness, and adaptability compared to expert systems

due to the large number of interconnected processing elements that can be ‘trained’

to learn new patterns. However, the model is very prone to overfitting. Furthermore,

they are criticised due to the black-box nature of their solutions.

Given these characteristics, some research shows that NN is considered optimal for fore-

casting IRSS (Roy et al. 2020). Recent advances in neural network technologies showed

very promising results in comparison to other machine learning techniques, and hence, there

is a lot of interest in the financial sector in exploring the possibilities in risk management

(J. Huang, Chai, and Stella Cho 2020; Trippi and Turban 1992). Furthermore, in Section

2.2, we have identified ten financial and macroeconomic predictors for IRSS, and hence, our

input data will be high-dimensional and very complex, which the NN will be able to cope

with.

2.4.2 Neural networks

There are many types of NN and many studies have been performed on the subject of

financial forecasting (Bishop and Nasrabadi 2006; Cui, W. Chen, and Y. Chen 2016; Jagero,

Mageto, and Mwalili 2023; Kaastra and Boyd 1996; Trippi and Turban 1992; S. Wang et al.

2015). For our study, we will consider the most relevant neural network types, for optimal

IRSS forecasting.

• Feedforward Neural Network: Feedforward Neural Networks (FNN) is a founda-

tional architecture of NN and is seen as the most basic version (Fine 2006). FNN is

mainly designed for recognition and classification tasks and is characterised by layers

of neurons that process inputs and pass them forward, with each neuron receiving

input from multiple predecessors, as visualised in Figure 2.1. FNN does not produce

any feedback, as there are no loops within the network. Data thus flows from the input

layer through one or more hidden layers to the output layer.

20



August 22, 2024 2 LITERATURE FRAMEWORK

Figure 2.1: Feed Forward Neural Network (DeepAI 2019)

In comparison to other NNs, FNN is a very straightforward architecture, which makes

it relatively easy to interpret. Furthermore, this has the effect that the speed of the

model is faster, as there are no feedback loops, and hence, the model is able to converge

faster than other models. However, FNNs do not have a memory mechanism, unlike

other NNs. They treat each input independently without considering its relationship

to previous or future inputs. This makes the FNN model less effective for time series

analysis.

• Convolutional Neural Network: Convolutional Neural Networks (CNN) are a type

of artificial neural network that has shown significant promise in financial forecasting.

CNNs are particularly well-suited to this task due to their ability to learn and extract

features from time series data, which can be used to predict future trends and data

(Watson 2003).

One key advantage of CNN is their ability to handle multivariate time series data. This

means that they can be trained on multiple financial time series, such as our specified

predictors in Section 2.2, to learn relationships between these variables. Furthermore,

CNNs also have the ability to learn long-term dependencies in time series data. This

is achieved through the use of dilated convolutions, which allow the model to capture

both short-term and long-term trends (Cui, W. Chen, and Y. Chen 2016; Nouri 2014).

This tends to be important in finance, as long-term trends can be influenced by a

variety of factors such as economic indicators or geopolitical events.

• Recurrent Neural Network: Recurrent Neural Networks (RNN) are an improve-

ment of FNN and are distinguished by their ability to send information over sequential

steps. This means that unlike traditional NN, which assumes that all inputs are inde-

pendent of each other, RNNs are built on the premise that the order and context of

elements in a sequence matter to each other. Hence, in time series data in financial

markets, this characteristic provides high accuracy. The most important characteristic

that is the cause of this is the fact that RNNs work with a memory, which allows them

to not only individual data points but entire sequences of data (Watson 2003).
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Figure 2.2: Recurrent Neural Network (Jeans 2019)

However, traditional RNNs are particularly prone to problems of vanishing gradients

and exploding gradients during the training process. This means that if the contribu-

tion of information decays geometrically over time, it makes it difficult for the network

to learn and retain long-range dependencies within the sequence. It thus prioritises

short-term memory over the long-term information of the time series data. This issue

is significant because it can impede the ability of RNN to learn from data effectively.

An addition to the RNN, these challenges have led to the development of an RNN

variant, the Long Short-Term Memory (LSTM) network. Although an LSTM network

is also designed as an RNN, Hochreiter and Schmidhuber (1997) have introduced a

complex mechanism called a cell state, which runs through the chain of LSTM units.

A cell state acts like a transfer system, transporting information straight down the

entire chain of the network with only minimal linear interactions. This design allows

information to flow relatively unchanged through many steps, making it easier for an

RNN to transport and preserve long-term dependencies.

An LSTM cell exists out of three main components, as visible in Figure 2.3. A forget

gate determines what information should be discarded from the cell state, an input

gate decides what new information is going to be stored in the cell gate, and an output

gate decides what the next hidden state should be. With this system, both long-term

and short-term dependencies are captured within the network (Pawar, Jalem, and

Tiwari 2019).
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Figure 2.3: Schematic Representation of LSTM Cell (Tashmit 2023)

However, LSTM networks are computationally intensive and often require substantial

training times. Their complex internal mechanics are challenging to design, understand

and interpret compared to the simpler models.

2.4.3 Comparison

With the scope of this research, we are aiming to create valuable new insights for the

current literature. Currently, there have not been any studies on forecasting IRSS using

neural networks, and hence, we will be investigating its potential. In similar studies where

the credit default swap spreads have been analysed, and term structures have been fore-

casted, LSTM networks emerge with high potential (Mao et al. 2023; Vukovic et al. 2022;

Xiong et al. 2019). Although interest rate swaps are not the same product as credit default

swaps, we can expect similar dynamics of the products given the fact that are sensitive

to changes in credit conditions and market perceptions of risk (Giglio 2016). Furthermore,

term structures and IRSS are highly related, as both are influenced by expectations of future

interest rates and economic conditions (Cortes 2003). Term structures provide a snapshot

of the current interest rate environment across different maturities, which directly influences

the pricing and valuation of interest rate swaps. Hence, we will base this comparison on the

existing literature, and the potential for applying it to IRSS forecasting.

Based on the comparative analysis provided in Table 2.2, LSTM networks emerge as

the most suitable model for forecasting IRSS due to their specific advantages. Their ability

to manage different sequence lengths and mitigate the vanishing gradient problem from

an RNN. Furthermore, currently, some research indicates that LSTM dominates machine

learning algorithms in financial forecasting (Firat et al. 2017; H. Y. Kim and Won 2018;

Zahn et al. 2021). Despite the higher computational costs and their complexity, LSTM has

the highest forecasting accuracy.
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Table 2.2: Comparison of Neural Network Models in Financial Forecasting
Model Advantages Disadvantages Applications within

Financial Forecast-
ing

FNN Simple and fast to
train; Good for static
pattern recognition;
Easier to understand
and interpret

Lack of contextual
memory; Prone to
overfitting; Fixed
input and output size

Stock market predic-
tion; Credit risk assess-
ment; Fraud detection;
Portfolio management

CNN Efficient in processing
spatial data; Auto-
matic feature extrac-
tion; Robust to spatial
variations in input

High computational
cost; Poor generali-
sation to non-visual
data; Requires large
datasets for training

Market sentiment
analysis from visual
content; Fraud de-
tection in financial
documents; Feature
extraction from fi-
nancial charts for
algorithmic trading

RNN Can process sequential
data effectively; Con-
textual information
processing across time
steps; Flexible input
and output lengths

Prone to vanishing and
exploding gradient
problems; Compu-
tationally intensive
for long sequences;
Difficult to parallelise

Time series fore-
casting; Anomaly
detection in financial
transactions; Pre-
dictive analysis for
market trends

LSTM Excellent at handling
long-term depen-
dencies; Versatile in
managing various
sequence lengths;
Mitigates vanishing
gradient problem

Resource-intensive;
Complex architecture
leading to longer
training times; Can be
difficult to tune

High-frequency trad-
ing analysis; Long-
term stock market
forecasting; Risk man-
agement; Sequential
data analysis for eco-
nomic indicators

2.4.4 LSTM

In Section 2.4.2, we have already discussed the background of LSTM models. In short, we

have learned that RNNs enhance traditional networks by preprocessing sequences of data in

order, to capture contextual relationships. In contrast to other NN models, RNN contains

a memory component that handles entire time-series data. However, RNNs can struggle

with exploding gradients, limiting their ability to learn long-term dependencies. To solve

this problem, LSTM networks were developed, which incorporate mechanisms to capture

long-term dependencies, together while handling short-term dependencies.

In this section, we will elaborate on the mechanics of LSTM networks, in order to be able

to prepare the model architecture in Section 4.2. Therefore, we will elaborate more on the

structure of the LSTM cells, as depicted in Figure 2.3. The LSTM memory itself is called

a ”gated” cell, where the word gate reflects its ability to make the decision of preserving or

ignoring certain memory information (Siami-Namini, Tavakoli, and Namin 2019). An LSTM

model can capture important features from inputs and preserve this information based on

the weight values assigned to the information during the training process. Therefore, an

LSTM model can learn what types of information are worth preserving and what types are
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not. As visible in the figure, an LSTM cell exists out of the three following gates:

• Forget gate: The forget gate makes the decision on what information needs to be

removed. This is done with a sigmoid function,

σ(x) =
1

1 + e−x
, (2.15)

which creates a value which is often either close to 0 or close to 1 for each number

in the cell state, as the function converges to these values (Song et al. 2020). This

decision is based on the current input xt and the previous hidden state ht−1. The

output of this gate is computed as follows:

ft = σ(Wfh [ht−1],Wfx [xt], bf ), (2.16)

where bf operates as a constant which is called the bias value, and Wf are the weights.

An output close to 0 means to forget the information, and an output close to 1 means

to keep the information (Siami-Namini, Tavakoli, and Namin 2019).

• Input gate: The input gate makes the decision whether or not the new information

will be added to the LSTM memory. This gate consists of two layers, the sigmoid layer

as in Formula 2.15, and a hyperbolic tangent (tanh) layer (Song et al. 2020):

tanh(x) =
ex − e−x

ex + e−x
(2.17)

Similarly to the forget gate, the sigmoid function generates a value often close to 0 or

close to 1, acting as a filter that decides how much of the new values are let through.

Furthermore, the tanh creates a value between -1 and 1, to develop a vector of new

candidate values that will be added to the LSTM memory.

it = σ(Wih [ht−1],Wix [xt], bi) (2.18)

C̃t = tanh(Wch [ht−1],Wcx [xt], bc), (2.19)

where Wih , Wch , Wix and Wcx are the weights for the input gate and the candidate cell

state respectively, and bi and bc are the biases. it represents whether the value will be

updated or not, and ct indicates the vector of the new candidate values (Siami-Namini,

Tavakoli, and Namin 2019).

After the forget gate and the output gate, a new cell state Ct will be calculated with the

outputs from gates. This will be done with the following formula

Ct = ft × ct−1 + it × C̃t, (2.20)

where Ct−1 refers to the previous cell state. Combining these two layers from the input gate

with the forget gate will therefore yield a new cell state Ct, for the output gate.

• Output gate: The output gate uses two layers to make a decision. The first layer is

a sigmoid layer, as in Formula 2.15, on what part of the LSTM memory contributes
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to the output. After that, it performs a non-linear tanh function, as in Formula 2.17.

ot = σ(Woh [ht−1],Wox [xt], bo) (2.21)

ht = ot × tanh(C̃t), (2.22)

where ot is the output value, and ht is the next hidden state, which contains as a value

between -1 and 1.

2.4.5 Summary

There are three categories of machine learning, supervised learning, unsupervised learn-

ing and reinforcement learning. Forecasting IRSS fall into the category of regression-

supervised learning. In this section, the most significant models have been considered, such

as RF, GBM and NN. After analysing and comparing these models, this study has found

that NN has the highest forecasting accuracy. Although the black-box nature of NN and

the risks of overfitting, the biggest advantages are that NN can find non-linear relationships

and that it can work with large multi-dimensional datasets.

NN can vary widely but for financial forecasting FNN. CNN and RNN are relevant. From

these models, we have found that FNN and CNN have too many drawbacks, in comparison

to RNN, as RNN works with a memory, which more accurately captures the current trend of

financial time series. However, traditional RNN models have big risks of vanishing gradients,

and thus, LSTM models are considered, as these are designed to overcome these limitations.

Although LSTM models have higher computational demands, research supports that the

forecasting accuracy is superior. Based on these findings, we have now sufficient evidence

to answer Sub-Research Question IV. Additionally, based on this information we can focus

on studying Sub-Research Question V in Section 4.2 Similarly, we will provide the right

foundation to answer Sub-Research Question VI in the next section.

2.5 Hybrid Model

Now that we have found the models that will be used for the IRSS forecasting with

the highest expectation for forecasting accuracy, we will study the option to create an

econometric-machine learning hybrid, in order to answer Sub-Research Question VI.

2.5.1 Hybrid model

In recent years, a lot of studies have been performed to evaluate the performance of

hybrid forecasting, and the strengths offer a lot of potential. G. P. Zhang and Qi (2005)

have introduced an ARIMA-ANN model, demonstrating enhanced forecasting accuracy than

the individual models. In an economic context, hybrid models have proven effective as well,

as Khan, Urooj, and Muhammadullah (2021) applied hybrid models to predict gold prices,

and Mucaj and Sinaj (2017) focused on currency exchange rates time-series. However Devi

et al. (2021)’s research on wheat production forecasting and Musa and Joshua (2020)’s

study on Nigerian stock market returns, still faced limitations due to their specific contexts.
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Although the hybrid models have been found to show potential in these studies, there have

not been any studies yet on IRSS forecasting using hybrid models, or any similar interest

rate derivative. Hence, we will use the methodology of the existing hybrid model studies

mentioned above, and find the best approach for forecasting IRSS.

• Parameter prediction: As discussed in Section 2.3 and Section 2.4, both economet-

ric models and machine learning models are set up by a lot of (hyper-)parameters.

The setup of these parameters can be very difficult, as the setup of these parameters

defines the whole topology of the model (Gorgolis et al. 2019). In the Parameter Pre-

diction (PP) approach, the machine learning model will be used to accurately predict

the most accurate parameters of the econometric model.

• Residual correction: In the Residual Correction (RC) approach, the prior knowledge

of the econometric model is used to forecast. Using a similar setup to an individual

econometric model, an initial forecast is made. However, as discussed in Section 2.3,

econometric models could limited consider macroeconomic factors or other input pa-

rameters. Hence, with the use of machine learning models, the real value of the error

of the econometric model will be forecasted, whilst considering the macroeconomic

state. In this research, we will refer to the real value of the error as the residual error.

Due to the nature of ML models, this creates the opportunity to enhance our forecast

with multidimensional states.

• Direct output combination: In the Direct Output Combination (DOC), multiple

models are independently used to predict a future value, after which these models

will be combined. This can be done by assigning weights to each of the outputs, for

example, based on the general accuracy based on the historical data.

2.5.2 Comparison

Based on the comparative analysis provided in Table 2.3, we find that RC stands out as

the best hybrid model approach for our study. Whilst leveraging the strengths of econometric

models, additionally, we will decrease the impact of the black box effect of the ML model.

If we were to use the parameter prediction approach, we would discard a lot of our findings

in the LSTM model, as we would have to build a new model to find the specific parameters.

Furthermore, the direct output combination method is a relatively simplistic approach, in

which the combining process of the models is very limited.
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Table 2.3: Comparison of Hybrid Model Types for Forecasting Time Series Data
Model Advantages Disadvantages Applications
PP Enhances parameter

setting of econometric
models using ML
techniques, potentially
increasing model accu-
racy.

Relies heavily on the
quality and appropri-
ateness of the ML
model for parameter
estimation, which can
be complex.

Useful in complex
financial modelling
where parameter set-
ting is critical, like in
risk assessment and
pricing models.

RC Leverages the
strengths of econo-
metric models and
uses ML to correct for
their errors, improving
overall accuracy.

Dependence on the
initial model’s out-
puts; improvements
limited to the correc-
tion capacity of the
ML model.

Effective in enhancing
the forecast accuracy
of established models
in economics and
finance, especially
where residuals are
systematic.

DOC Combines predictions
from multiple mod-
els to potentially re-
duce bias and variance
through ensemble tech-
niques.

Requires careful cali-
bration of weights and
integration methods,
which can be non-
trivial.

Suitable for diverse
scenarios in financial
markets forecasting,
where multiple models
provide varied insights
and forecasts.

2.5.3 Summary

In this section, we have discussed multiple types of hybrid models between econometric

models and machine learning models. In the literature three main strategies were explored:

PP, which used ML to optimise the parameters of econometric models, RC, which applies

econometric models for initial forecasts and then uses ML models to correct any errors,

and DOC, which merges outputs of multiple models by a given weight to each model. The

analysis concludes that, given that we have found in Section 1.3 that the forecasting accuracy

of econometric models lacks for IRSS, the RC approach is most suitable for our study due

to its ability to leverage established strengths of econometric models whilst addressing their

limitations with the accuracy enhancements provided by ML.

2.6 Summary

In this section, a comprehensive literature study was performed to create a fundamental

understanding of the concepts that will be used during this study. We have studied the

dynamics of IRSS, both by addressing the theoretical and the practical applications. From

understanding the dynamics, and the risks associated with forecasting the IRSS including

hedging costs, credit risks and economic conditions, we were then able to find the most

relevant predictors for the IRSS. Both include financial predictors, to capture the risk-free

movements of the IRSS, such as the Treasury yield curve, and the real-world macroeconomic

predictors, such as GDP and inflation rates.

After selecting the most important predictors, we then focused on the models that could

be used for our research objective. We have evaluated various econometric models, such as

28



August 22, 2024 2 LITERATURE FRAMEWORK

the VAR, ARIMA, and GARCH, and financial models, Vasicek and Hull-White. From this

analysis, we found that the HW2F model will perform with the highest forecasting accuracy

within our study. Furthermore, we have also evaluated machine learning approaches, par-

ticularly NN models. Among the different NN models, the LSTM model is highlighted for

its superior forecasting accuracy, due to its ability to distinguish long-term and short-term

relationships within financial time-series data.

Furthermore, we finalise this theoretical study by analysing hybrid models used for fore-

casting financial time-series data. Among multiple types of hybrid types, we find that the

RC method emerges as the most promising, leveraging the theoretical strengths of both the

econometric model and the ML model. In the RC approach, we will apply econometric

models for initial forecasts and then use ML models to correct any errors.
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3 Data

In Section 2.2, we have performed research on the financial and macroeconomic predictors

IRSS. In this section, we will continue our research on our predictors, and transform them

into inputs for our model. In Section 3.1, we will elaborate on how we collect the data,

and in Section 3.2, we will perform an analysis on our data, in order to find improvements

for our data in order to improve forecasting accuracy. Lastly, we will prepare the date in

Section 3.3.

3.1 Data Collection

In order to solve our main research question, one of our objectives is to monitor the valid-

ity throughout our research. When doing quantitative research, the data used in the study

has a high impact on this validity (Kaastra and Boyd 1996). Hence, there are a few require-

ments that are set for the data before it can be used in our models. Firstly, as described in

Section 1.5, the data should be publicly available, to ensure transparency and replicability.

When data is publicly available, other researchers can verify our results by replicating the

analysis. This enhances the credibility of our findings. Secondly, the vendor of our data

should have a high reputation, in order to increase the accuracy and the reliability of our

outcomes. Errors in data can lead to incorrect conclusions, and hence, a study should be

performed on the reputation of the vendor. Lastly, the data should be retrieved from similar

sources. A similar source means that the number of distinctions between the types of data

are minimised, by for instance choosing a specific scope for the financial landscape the data

will be retrieved from (Kaastra and Boyd 1996). Therefore, and for data availability rea-

sons we will only investigate European data for this research. Furthermore, daily data will

provide less overfitting of the LSTM model and a better performance of our HW2F model,

and it enhances feature learning, as there is more data to learn from. Lastly, as mentioned

in Section 2.1, we found that the relationship between IRSS and Treasury yield varies with

maturity, generally widening as maturity increases. Hence, for more significant predictions,

we will use products with 10-year maturity.

As mentioned in the requirements above, to monitor the validity of our research, we

should thus ensure that we retrieve our data from highly reputable sources. Furthermore,

we need to ensure a similar format for our data. Hence, in Table 3.1, we enlist the sources

and the format of the input data to our models.

Table 3.1: Sources of datasets
Data Function Source n

Interest rate swap rate Output Refinitiv Eikon 5216
10-year zero-coupon bond Predictor Investing.com 5372

Treasury yield curve Predictor FRED Economic Data 5235
TED spread Predictor Refinitiv Eikon 5092

GDP Predictor Refinitiv Eikon 240
Unemployment rate Predictor Refinitiv Eikon 240

Inflation rate Predictor Refinitiv Eikon 240
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3.2 Data Analysis

Although the vendors have been checked on their reputation of providing high-quality

data, all data should still be checked for errors, by examining the basic statistics of the data

(Kaastra and Boyd 1996). In this section, we will analyse the descriptive statistics of each

of the datasets that we use. By doing so, we can look for inconsistencies and big outliers.

Additionally, we will analyse the trends of our data, which are visualised in Appendix A.

Furthermore, we will perform the Augmented Dickey-Fuller (ADF) test. The ADF test

is a statistical test used in time series analyses checking for stationarity. If the data is

non-stationary, the statistical properties, such as the mean and variance, change over time

(Lopez 1997). The model underlying the ADF test follows the following process:

∆yt = α+ βt+ γyt−1 +

p∑
i=1

δi∆yt−i + εt, (3.1)

where ∆yt is the first difference of the series, α is a constant term, βt represents the de-

terministic trend, γ is the coefficient on the lagged level of the series yt−1, and δi are the

coefficients for the lagged differences ∆yt−i. the error term εt is assumed to be white noise.

The null hypothesis H0 of the ADF test is that γ = 0, which means that the data is non-

stationary. The alternative hypothesis H1 is that γ < 0. If the test statistic is less than

the critical value of 5%, which is the standard level of significance used in many statistical

tests to minimise the risk of Type I errors, the null hypothesis is rejected, indicating that

the series is stationary.

In Figure 3.1, we visualise the correlation on a scale from 1 to -1, which represents perfect

positive correlation and perfect negative correlation respectively. Some key takeaways from

this figure are that IRSS shows a moderate positive correlation with inflation, which suggests

that higher correlation to increase IRSS, ceteris paribus. Furthermore, we see that a higher

unemployment rate is linked to lower IRSS observations, due to the moderate negative

correlation. Furthermore, we see a strong positive correlation between the zero-coupon

bond yields and the Treasury yields, as we expect, since both measure long-term borrowing

costs. Lastly, we see a negative correlation between the unemployment rate and the inflation

rate.
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Figure 3.1: Correlation Matrix of Data

3.2.1 Interest rate swap rate

First, we will examine the interest rate swap rate data obtained from Refinitiv Eikon.

This data will be used as the benchmark parameter for the output of our models. However,

we first have to translate this interest rate swap rate into the IRSS. this is done by the

following formula,

IRSS =

(
BidSwap Rate +OfferSwap Rate

2
− 10-Year Zero-Coupon Bond Yield

)
∗ 100 (3.2)

The trends within the IRSS are depicted in Figure 3.2. The graph shows both short-term

fluctuations and long-term trends, indicating that IRSS is influenced by a mix of shocks and

underlying economic factors. The IRSS fluctuates significantly over time, with sharp peaks

in 2008, 2012 and 2021, in times of economic crises. Table 3.2 shows that the standard

deviation of 16.81 bps is relatively high, and together with the very large range of the values

from the minimum value to the maximum value, we can conclude that the series is very

volatile. However, the ADF test shows stationarity, suggesting that there is no unit root

within the time series, which is ideal for our analysis.
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Figure 3.2: Trend of the IRSS

Table 3.2: Descriptive Statistics for Interest Rate Swap Rate
Count Mean std Min 25% 50% 75% max ADF
5117 36.98 bps 16.78 bps -0.3 bps 25.3 bps 35.7 bps 46.8 bps 106 bps Reject H0

Figure 3.3: QQ Plot for IRSS Data

In Figure 3.3, we see a deviation from the normal distribution in the Quantille-Quantile

(QQ) Plot, especially in the upper tail, indicating a positive skewness and potential outliers,

which in accordance with Figure 3.2 and the histogram in Figure 3.4.
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Figure 3.4: Histogram of IRSS Data

3.2.2 10-year zero-coupon bond

The 10-year zero-coupon yield shown in Appendix A.1 contains significant variance,

which is confirmed by the descriptive statistics in Table 3.3. Furthermore, it is noticeable

that the minimum value is negative, which means that despite the negative yield, it was still

perceived as relatively safe in the conditions of the market. Furthermore, we find with the

ADF test that the historical bond yield is non-stationary, as the H0 hypothesis is accepted.

However, the structural break between the training data and the testing data could cause

difficulties, as COVID-19 introduced a rising bond yield.

Table 3.3: Descriptive Statistics for 10-Year Zero-Coupon Bond
Count Mean std Min 25% 50% 75% max ADF
5117 1.80% 1.58% -0.854% -0.355% 1.70% 3.26% 4.69% Not Reject H0

Furthermore, the QQ plot in Appendix C.1 indicates deviation from normality, particu-

larly in the tails, as we can see by the many peaks in the histogram in Appendix D.1.

3.2.3 Treasury yield curve

The Treasury yield curve, as visualised in Appendix A.2, fluctuates a lot, as it is influ-

enced by economic data, central bank policies and market sentiment. The graphs suggest

that there are a lot of short-term interest rate changes. The descriptive statistics in Table

3.4 show a relatively moderate standard deviation. Furthermore, the interval from the min-

imum value to the maximum is according to the policy decisions of the past twenty years.

Although the moderate standard deviation, the time series does not reject the ADF test

null hypothesis and is therefore non-stationary. Lastly, the structural break of the Treasury

yield curve could not be ideal, as, after the break, the index rises quickly, unlike before.

Table 3.4: Descriptive Statistics for Treasury Yield Curve
Count Mean std Min 25% 50% 75% max ADF
5117 2.89% 1.13% 0.00% 2.00% 2.74% 3.84% 5.26% Not reject H0
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The QQ plot in Appendix C.2 shows a slight deviation from normality, with thick tails

to both ends. The histogram in Appendix D.2 shows a slightly left-skewed distribution, but

mainly confirms the thick tails.

3.2.4 TED Spread

The TEDS in Appendix A.3 shows variability with spikes, indicating periods of financial

stress, similar to the other predictors of IRSS. The standard deviation, given in Table 3.5, is

relatively high, mainly caused by the financial instability before 2010. In times of financial

stability, the TEDS has proven to be very stable. Therefore, the ADF test shows the series

to be stationary.

Table 3.5: Descriptive Statistics for TED Spread
Count Mean std Min 25% 50% 75% max ADF
5092 41.1 bps 35.0 bps -19.0 bps 20.9 bps 31.4 bps 49.8 bps 324 bps Reject H0

The histogram and the QQ plot in Appendix D.3 and Appendix C.3 relatively, indicate

a right-skewed distribution, with some upside outliers, and a significant deviation from

normality.

3.2.5 GDP

The GDP growth in Appendix A.4 generally shows a growth in the past twenty years.

The GDP series contains, in contrast to the other series, not daily but monthly observations.

Although the series visibly represents the economic turmoils in the past twenty years, ac-

cording to the descriptive statistics in Table 3.6 and to the ADF test, the series is stationary.

Lastly, we see in the graph that the structural break is not ideal, as the GDP experiences

big shocks due to COVID-19.

Table 3.6: Descriptive Statistics for GDP
Count Mean std Min 25% 50% 75% max ADF
5113 0.956% 3.06% -14.7% 0.500% 1.40% 2.10% 14.3% Reject H0

The QQ plot for GDP in Appendix C.4 shows significant deviations from normality,

with clusters of extreme values on both ends. The histogram in Appendix D.4 confirms a

left-skewed distribution, with some extremes on the positive side.

3.2.6 Unemployment rate

Appendix A.5, shows periods of stability and periods of fluctuations of the unemployment

rate in Europe. The descriptive statistics in Table 3.7 show a very moderate variance in the

series. However, the figure shows that over the time period of twenty years, there has been

a very large trend, suggesting a unit root within the series. This is confirmed by the ADF

test, and hence, the unemployment rate is non-stationary.
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Table 3.7: Descriptive Statistics for Unemployment Rate
Count Mean std Min 25% 50% 75% max ADF
5117 8.92% 1.68% 6.40% 7.50% 8.70% 10.1% 12.2% Not reject H0

In Appendix C.5, we see that there is no normality in the unemployment rate. Similarly

to the Treasury yield, the histogram of the unemployment rate in Appendix D.5 shows

several peaks, with no clear distribution.

3.2.7 Inflation rate

Throughout the past twenty years, the inflation rate in Appendix A.6 shows a relatively

stable trend, with minor fluctuations. However, since the COVID-19 pandemic, the series

has shown a very large peak, which has an effect on the interval between the minimum

and maximum value, and on the standard deviation of the series. Due to this large peak,

the inflation rate of the past twenty years is non-stationary according to the ADF test.

Lastly, due to COVID-19, we see a big shock in the inflation rate, which is not ideal for the

structural break.

Table 3.8: Descriptive Statistics for Inflation Rate
Count Mean std Min 25% 50% 75% max ADF
5117 2.12% 2.06% -0.600% 0.900% 1.80% 2.50% 10.6% Not reject H0

Appendix D.6 and Appendix C.6 show the histogram and the QQ plot of the inflation

rate. It shows a left-skewed distribution with very noticeable outliers on the positive side.

3.3 Data Preparation

Once the data is collected, it must be prepared for analysis in our models. This involves

cleaning the data and handling missing or inaccurate observations. Missing observation

which often exists, can be handled in various ways. All missing observations can be dropped,

or the observations can be created by interpolating nearby values in the data (Kaastra and

Boyd 1996). In our research, we will investigate the missing observations closely. A single

missing observation will be filled with the average value of the two surrounding values. If

there are many missing observations, we will look for other data sources. Lastly, the data

should be transformed into a suitable format for the analysis. For example, this means that

all data should be set to similar timelines, and to normalise all the data, in order to prevent

a single feature from dominating the whole analysis (Prince 2023). We can achieve this by

scaling the data in a range using a min-max standardisation, using the following formula

xi,norm = 2 ∗ xi,obs − xi,min

xi,max − xi,min
− 1, (3.3)

where xmax and xmin are the maximum and the minimum values of predictor i respectively.

This equation will result in a range of values from [-1,1], which is optimal for machine learn-

ing, as all values revolve around 0.
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Furthermore, in Appendix B, we analyse the box plots visualising a part of the descriptive

statistics given in Section 3.2. Here, we aim to find the outliers of each of the predictors, as

outliers can significantly impact the forecasting accuracy of our models. To do so, we use

the Interquartile Range (IQR), defined as the interval between the first quartile (25%) and

the third quartile (75%), with IQR = Q3−Q1. Outliers are identified for observations x of

predictor i for xi < Q1i−(c∗IQRi) or xi > Q3i+(c∗IQRi). For our analysis, we take c = 3,

as our dataset is very large, and we are looking for α = 0.05 (Zafeirelli and Kavroudakis

2024), similarly to our ADF analysis in Section 3.2. With this analysis, we find that the

predictors contain a lot of outliers, as visualised in Table 3.9. In Figure 3.5, we visualise

the box plot of the IRSS observations. We find that although there are outliers, none of

them fall outside of the 3 ∗ IQR range. This is confirmed by the table. After identifying the

outliers, we now transform these outliers and set them to the minimum or maximum value

within the 3 ∗ IQR range.

Figure 3.5: Box-plot of IRSS Observations

Table 3.9: Percentage of Outliers Per Parameter
Parameters Percentage of Outliers

Interest rate swap rate 0%
10-year zero-coupon Bond 0%

Treasury Yield 0%
TED Spread 0.0293%

GDP 0.0642%
Unemployment rate 0%

Inflation 0.0506%

Lastly, in Section 3.2 we have identified that the 10-year zero-coupon bond, the trea-

sury yield curve, the unemployment rate and the inflation rate are non-stationary time

series. Econometric models assume stationarity to produce reliable forecasts, hence, non-

stationary data can lead to inaccurate model parameters. A common technique to use for

non-stationary time series is to apply the first difference. In this case, we transform the data

with the following formula:

x⋆
t = xt − xt−1, (3.4)
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for every IRSS observation xt. This transformation helps stabilise the mean of the time

series by removing trends and reducing the impact of seasonality. After applying this first-

difference method, we find that our predictors are stationary according to the ADF test.

After preparing our data, we show the renewed descriptive statistics in Table 3.10. We

mainly see changes in the standard deviation and maximum values for the TEDS, GDP and

Inflation rates, which can be explained by the removal of the outliers of those predictors.

Furthermore, we see that all data is stationary, as each H0 hypothesis of the ADF test is

rejected. Additionally, no outliers are found within the data.

Table 3.10: Descriptive Statistics of Prepared Data
Parameter Count Mean std Min 25% 50% 75% Max ADF Outliers

Interest rate swap rate 5116 37.03 bps 16.81 bps -0.3000 bps 25.20 bps 35.80 bps 46.97 bps 106.0 bps Reject H0 0
10-year zero-coupon bond 5116 1.797% 1.577% -0.8540% 0.3550% 1.701% 3.256% 4.687% Reject H0 0

Treasury yield curve 5116 2.901% 1.126% 0.5200% 2.010% 2.750% 3.850% 5.260% Reject H0 0
TED spread 5116 39.74 bps 29.66 bps -18.97 bps 20.95 bps 31.18 bps 49.56 bps 135.4 bps Reject H0 0

GDP 5116 1.014% 2.126% -4.300% 0.5000% 1.400% 2.100% 6.900% Reject H0 0
Unemployment rate 5116 8,924% 1.675% 6.400% 7.500% 8.700% 10.10% 12.20% Reject H0 0

Inflation rate 5116 2.038% 1.792% 0.6000% 0.9000% 1.800% 2.500% 7.300% Reject H0 0

3.4 Summary

To ensure the validity of our research, we have set criteria for the quality of our data

sources. Firstly, the sources that we use should be publicly available for transparency and

replicability, the sources should be reputable vendors to ensure accuracy and reliability, and

we should minimise the distinctions between the data that we have retrieved, such as using

the same data interval, to improve the comparison between data types.

Within our data analysis, we have analysed all the predictors of IRSS for errors using

visual analysis of the time series and descriptive statistics. Furthermore, we have checked

the stationarity of the predictors using the ADF test.

Lastly, in the data preparation phase, we handled missing observations by interpolating

single gaps and seeking alternative sources for larger gaps. Furthermore, we have normalised

the data using min-max standardisation and we have aligned the data to similar timelines.

Outliers were then identified and adjusted using the IQR method to prevent them from

having too much impact on our forecasting accuracy. Non-stationary time series, where the

mean and variance change over time, are made stationary using the first-difference method,

which subtracts each data point from the previous one to eliminate the unit root. This

transformation is important for reliable forecasting, as the models used in our study require

stable data to produce accurate predictions.
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4 Empirical Implementation

After analysing the data in the previous section, we will now focus on the empirical

implementation of our models. In this section, we will elaborate on each individual model,

and describe the model architecture that we will use, in order to increase our forecasting

accuracy. First, we will In section 4.1, we will elaborate on the HW2F model, after which we

will discuss the LSTM model in Section 4.2. The knowledge and the architectures of these

models will then be combined in our hybrid model in Section 4.3. We will finally discuss

the performance estimators in Section 4.4.

4.1 HW2F Model

In Section 2.3, we have studied the theoretical information needed for our HW2F model.

In this section, we will learn how the architecture of the model is structured, and how it

operates. To do this, we will specify the parameters of the HW2F model and its calibration

to historical data, ensuring that it accurately reflects the dynamics of IRSS.

In Figure 4.1, we show the train-test split of the HW2F data that will be used in our

model. The structural break between the training and testing datasets reflects that the

model will be tested against realistic and volatile scenarios. The data before the break

contains realistic stress moments, similar to the data after the break. Hence, this will

provide a good evaluation of its performance.

Figure 4.1: Train-Test Split of the HW2F Data

A significant part of structuring the architecture of the model is by setting the model

parameters. The first step is to calibrate the parameters of the HW2F. A loss function will

be used, namely the RMSE, which will be introduced in Formula 4.3. During our study, we

will use the programming environment Python to optimise the complex parameters. During

this optimisation process, we will use a grid search with a large number of simulations to
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find the ideal setup of the model, minimising the RMSE. Each simulation will perform a full

training cycle, and after a number of training cycles, we take the average RMSE. By doing

this, we ensure to eliminate the randomness of the Wiener Process, which is mentioned in

Formula 2.10. To find the right number of simulations, we use a stopping rule that stops

the simulation after the convergence of the RMSE. Lastly, know that the range for a and

b are both non-negative and have a practical upper bound, as very high mean parameter

values would suggest too quick mean reversion. There is no information in the literature

on the boundary conditions of the parameters, so for this study, we set the constraints to

0.01 ≤ a ≤ 1.00 and 0.01 ≤ b ≤ 1.00. The results of this grid search will be considered

in Section 5.1.1. For the long-term and the short-term volatility of the model, we use dy-

namic volatilities which change over time, instead of static parameters. By using changing

volatility parameters, we aim to create a more flexible and adaptive model with improved

matching of the volatility behaviour of the IRSS data.

With all the information that we gathered on the HW2F model, we are able to build

the model. In Figure 4.2, a schematic overview of the model is shown. In step 1, we read

and preprocess the data. The input to our model is the historical IRSS observations, which

will first be normalised, using the min-max standardisation, after which the data will be

split into the train and test set, as mentioned in Section 3.3. After this, we build the

environment of the HW2F model. This step mainly consists of building the right functions

for the calculation of the HW2F model. Firstly, we will calculate the daily return rates,

which are then directly used to find the correlation between the short-term and the long-

term changes. This correlation is used in the Cholesky decomposition of the correlated

Wiener processes in Formula 2.10. Lastly, we set up the function for calculating the process

of θt according to Formula 2.14 and the general HW2F function according to Formula 2.10.

After setting up the environment, we can now train our model, and find the ideal setup for

our a and b parameters, by running through all possible settings. We evaluate the average

loss function per setup, and after all settings have been run through, we find the setup that

forecasts the most accurately. This setup is then used in our testing step, where we apply

our model to completely new data. The output of our model is the IRSS prediction of day

t+ 1, which we can compare to the real observation, and evaluate the RMSE.

Figure 4.2: Schematic Overview HW2F Model
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4.2 LSTM Model

In Section 2.4, we have considered the structure of LSTM cells. In order to make these

LSTM cells operate, the whole model will be configured appropriately. In this section, we

will consider the model architecture and the training dynamics of our LSTM model. The

architecture of the model is crucial to how the model learns and makes conclusions from the

data. The main goal of our LSTM model is that learn from in-sample data, and that the

model can apply this knowledge to out-of-sample data, in order to forecast the fluctuations

in IRSS. We will discuss the method of handling information within the network, and the

methods to perform best out-of-sample, without overfitting on the in-sample data.

During the testing phase, input data will first be passed forward through the system. The

input data that will be used are the predictors of IRSS, as found in Section 2.2. This means

that during a simulation, the predictor data goes through the LSTM cells, as described

in Section 2.4. The state of each cell is influenced by the input at that time step and the

previous cell state. After a complete pass through the system, the loss function is calculated.

Appropriate financial time series is to use the RMSE for this loss function, which is given

in Formula 4.3. This function measures the difference between the predicted output of the

LSTM and the actual observation. This information is then backpropagated through the

network, starting from the output layer, towards the input layer (Rumelhart and Zipser

1985). This process involves the calculation of the gradient of the loss function with respect

to each weight in the network by applying the chain rule. These gradients give information

on how changes in each parameter affect the overall loss function. As our LSTM model will

handle data sequentially and maintain a memory of previous inputs through their hidden

states, the gradients of the loss function that were calculated are not only important to the

current sequences but also for the dependencies (Bishop and Nasrabadi 2006). After the

updates of the gradients, the network will look for a local minimum, which is called the

gradient descent (Prince 2023). With this updated gradient, the weights and the biases of

the LSTM network are updated, with the use of the following formula

wnew = wold − η ∗ ∇wJ(w), (4.1)

where η represents the learning rate, and ∇wJ(w) the gradient of the loss function J with

respect to weight w. By doing so, the model aims to reduce the loss in subsequent iterations.

During these simulations, the model optimises its knowledge in each state at each time

step. After many runs, the goal is that the model has had enough experience with the

data, to be able to predict the next step. However, as for our HW2F model, it is important

that our model is not prone to overfitting. Hence, within the LSTM model, we will apply

three methods to prevent overfitting. Firstly, we split the training data set from the testing

data set. The out-of-sample testing set is crucial to provide an unbiased evaluation of the

prediction accuracy of new data, ensuring that the LSTM model generalises well beyond

the training data. As training the model is very important for the learning process of the

model, we have to create a large training data set. This will be done by taking a 70/10/20
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train-validation-test split, as visualised in Figure 4.3. This split ensures that the test-IRSS

data is similar to the HW2F test-IRSS data. This ensures a reliable comparison of the

results. The structural breaks between the training, validation and testing datasets are

chosen to segment different phases of market conditions. The training phase and the test-

ing phase both contain a stress period, to make sure that the model will be tested against

realistic scenarios. The validation dataset contains relatively less volatility, to make sure

that the validation process is smoother. Furthermore, as mentioned in Section 3.1, we will

use daily data as our input. Secondly, we will use a dropout mechanism, which randomly

sets a fraction of the input data equal to zero, to prevent neurons from co-adapting too

much. By doing this, the dropout forces the network to learn more robust features that are

useful in predicting IRSS. Thirdly, we will create a weight decay, that adds a penalty to

the loss function. This encourages the model to keep the weights small. These three strate-

gies will make sure that the model is simplified, and will help prevent it from overfitting.

The final output of the model is a single value that estimates the IRSS value on the next day.

Figure 4.3: Train-Test split of the LSTM Data

Furthermore, despite the useful functionalities of NN, they are typically characterised

by a large set of hyperparameters. These hyperparameters define the network’s topology,

computational power and a lot more (Gorgolis et al. 2019). Therefore, hyperparameters

are essential for machine learning algorithms since they directly control the training algo-

rithm’s behaviours and have a significant effect on the performance of machine learning

models (Bakhashwain and Sagheer 2021). Hence, these hyperparameters have to be config-

ured properly in order to increase the predictive accuracy of the network. Hyperparameter

optimisation aims to find the global optimum for x∗ of an unknown black-box function f

where f(x) can be evaluated for any arbitrary x ∈ χ. That

x∗ = argmaxx∈χf(x),
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where χ is a hyperparameter space that can contain categorical discrete and continuous

variables, which are set for our research in Table 4.1 (H. Cho et al. 2020).

Optimising these hyperparameters can be very difficult, and using a random value pro-

cess can take a lot of iterations before finding the right setup, as multiple hyperparameters

correlate with each other through a lot of dimensions (Goodfellow et al. 2013; Larochelle

et al. 2012). Furthermore, having to run the entire NN requires a lot of computational

effort and takes a lot of time. Hence, apart from randomly selecting the hyperparameters,

the implementation automation of hyperparameter tuning is required in our model. During

our study, we make use of Bayesian approximations, which use the probabilistic model to

make informed decisions on where to evaluate the function next within parameter space χ

(Nguyen 2019).

There are many hyperparameters that should be set for an LSTM model. The most

important ones are discussed here (Reimers and Gurevych 2017). Firstly, the number of

layers of the model determines the depth of the LSTM. A deeper NN can capture more

complex relationships but may be harder to train. The batch size represents the number

of samples that are processed before the LSTM model is updated. Smaller batch sizes can

lead to faster convergence, but it might be more noisy. Furthermore, the number of epochs

represents the number of complete passes through the entire training set. More epochs allow

more learning opportunities but lead to more overfitting. The type and the ranges of each

hyperparameter are enlisted in Table 4.1 (Gal and Ghahramani 2016).

Table 4.1: Possible Hyperparameters Setting Ranges
Hyperparameter Type Range
Number of layers Integer [1,4]

Batch size Integer 32,64,128,256,512
Units in each layer Integer 16,32,64,128,256,512

Epochs Integer [100,1000]
Activation Function Categorical relu, elu, selu, tanh, sigm

Dropout rate Float 0.05,0.1,0.025,0.5
Learning rate Float [0.001,0.1]

To conclude, we now have gathered all the information needed to start building the

model. In Figure 4.4, we find a schematic overview of the LSTM model that is built. The

model consists of 5 steps, in which the first step is to prepare the data. The input data

that is used in the LSTM model, are the predictors of IRSS that have been identified in

Section 2.2, which have been analysed in Section 3.2. The data is then split into the training,

validation and testing sets as discussed above. In the next step, we will set up the LSTM

model itself. This step consists of building the cells, after which the Bayesian approximations

hyperparameter tuner will find the ideal setup for the model, given the input data. The

ideal setup is then saved, so that it can be called upon when needed in the training and

the testing step. The next step is to start training the model, from which the improvement

of the weight distribution of the model is the most important element, as discussed above.
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The model starts using all the input parameters to find the output, which is the prediction

of the IRSS value on day t+1. With the use of gradient descent, an optimal setup is found

for the testing step. In this step, the model is applied to completely new data and predicts

the IRSS. The prediction can then be compared with the actual observation, after which we

can analyse the error.

Figure 4.4: Schematic Overview LSTM Model

4.3 Hybrid Model

In Section 2.5, we have performed a study on approaches to create an integrative hy-

brid approach to enhance the forecasting accuracy of individual traditional models and ML

models. In that study, we have found that RC contains the highest potential to enhance our

forecasting accuracy. Within RC, the prior knowledge of the econometric model is used to

forecast, after which the residual error of the traditional model will be forecasted. To apply

this to our models, we will use HW2F to do the main prediction. As discussed in Section

1.3, we know that this model’s predictive accuracy is limited, and hence we will leverage our

LSTM model to predict the residual error of our HW2F model. This hybrid model approach

is thus aimed as an enhancement of current forecasting techniques.

As discussed, with the aim of enhancing the individual models we set up a hybrid model.

The hybrid model consists of five steps, as visualised in Figure 4.5. Firstly, we will create

an environment that is very similar to the HW2F environment in Section 4.1. We set up

the parameters and the functions as described in Figure 4.2. The mean-reversing parame-

ters a and b will be trained during the training of the HW2F model phase, after which it

can directly be implemented in the hybrid model, as that setting produces the best HW2F

forecasting accuracy.

Figure 4.5: Schematic Overview Hybrid Model

The next step is to process the error of the HW2F. For each time step, we calculate the
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error of the HW2F model. The goal is to predict this error with our LSTM model, using

the RC approach as discussed in Section 2.5. Differently from our individual LSTM model,

where the IRSS rates are the input and the output of the model, our hybrid model now uses

the residual error as input and output. Due to this significant change in input and output

variables, we will find the ideal hyperparameter setting using the Bayesian approximations

parameter optimiser, as discussed in Section 4.2. With these hyperparameters, we start

training the model, using the same train/validation/test split. After that, our model will be

tested on our new testing data, during which it will use its built-up knowledge to predict

the error of the HW2F model. This output will then be evaluated with Formula 4.2, which

calculates the error of the hybrid model.

Error Hybrid Model = (Prediction HW2F−Observed IRSS)− Prediction LSTM (4.2)

Within our hybrid model, it is important to prevent overfitting. To make sure that the

model will not analyse the in-sample data too closely, we will use the same three procedures

for the HW2F part of the hybrid model, and the three procedures for the LSTM part of the

model. For the HW2F part, we make sure to split the data into training data and testing

data, we will use daily data to create sufficient historical data, and we will empirically check

whether the optimised parameters are economically plausible. Furthermore, for the LSTM

part, we will use a training/validation/testing split within our data, that aligns with the

split from the HW2F. Furthermore, we will use the same dropout mechanism as mentioned

in Section 4.2, and the same weight decay.

4.4 Performance Estimators

To evaluate the prediction accuracy of our HW2F, LSTM and hybrid models, we conduct

several experiments on the results of the models. To do this, we find the right performance

estimators in the current literature on forecasting financial time-series data. Although the

RMSE functions as the loss function of the LSTM model, we will evaluate the performance of

the models using the following three performance estimators, to improve our result analysis:

• Root Mean Squared Error: The RMSE is commonly used to assess the accuracy of

time-series data prediction using regression analyses (Bakhashwain and Sagheer 2021).

The RMSE captures the standard deviation of the prediction error, and is calculated

as follows:

RMSE =

√√√√ 1

T

T∑
t=1

(yobst − ypredt )2 (4.3)

The RMSE is sensitive to large errors, due to the squaring of prediction errors within

the formula. Hence, large outliers are penalised.

• Mean Absolute Error: The Mean Absolute Error (MAE) is a straightforward met-

ric in regression models, reflecting the average error in a set of predictions, without

considering their direction (Bakhashwain and Sagheer 2021). The MAE is calculated
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as follows:

MAE =

∑T
t=1 |yobst − ypredt |

T
(4.4)

A key advantage of MAE is its interpretability. Furthermore, it is robust to outliers

since it does not square the errors.

• Mean Average Percentage Error: The Mean Average Percentage Error (MAPE)

provides a useful measure of prediction accuracy in a forecasting method which usually

expresses accuracy as a percentage (Song et al. 2020). The MAPE is calculated as

follows:

MAPE =

(
1

T

T∑
t=1

yobst − ypredt

yt

)
× 100 (4.5)

A big advantage to adding MAPE as a performance estimator is that the MAPE

calculates the relative error instead of an absolute error. This allows for the comparison

of forecasts across different scales, which increases the cross-model comparison.

During our study, we will use both these performance estimators to evaluate the perfor-

mance of each model. The strengths of these performance estimators will provide a lot of

information on the nature of the errors. If the MAE is higher than the RMSE, we will know

that there are multiple errors, but those errors are not very large. On the other hand, if the

RMSE is higher than the MAE, we know that although the model could perform well, there

are a few very large errors. Furthermore, the MAPE will provide us with a relative error,

which increases the accuracy of our comparison.

4.5 Summary

In this chapter, we have elaborated on the architecture of the three models of this re-

search in forecasting IRSS. The HW2F model’s structure is developed by analysing historical

IRSS data, which provided initial estimates for the model parameters. The model calibra-

tion involves optimising the mean-reverting parameters a and b, using sensitivity testing

with the parameter constraint of 0.01 ≤ a, b ≤ 1.0. To overcome overfitting, the model uses

cross-validation, a train/test data split and daily data.

The architecture of the LSTM model and its hyperparameters is optimised using a

Bayesian approximations hyperparameter tuner. During the training phase of the model, a

lot of effort is put into preventing the model to start overfitting. This is done by using a

training/validation/testing data split, a dropout mechanism and a weight decay.

Lastly, the hybrid model combines the architecture of the HW2F and the LSTM models

to enhance forecasting accuracy. The HW2F model provides the initial predictions, while

the LSTM model predicts the residual error of the HW2F model. This approach leverages

the strengths of both models. The hybrid model follows a structured process from parameter

setup to error prediction, whilst incorporating all the aforementioned methods to prevent

overfitting.
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5 Results

In this section, we will elaborate on the results of our model. After that, we will go over

the individual results of each of the models. First, the HW2F model results will be discussed

in Section 5.1, after which the LSTM model results will be discussed in Section 5.2, and

lastly, our hybrid model results are shown in Section 5.3. After analysing the individual

models, we will do a comparative study of the results in Section 5.4.

5.1 Results HW2F

In this section, we will discuss the results of the econometric HW2F model. We will first

go over the results of our parameter analysis in Section 5.1.1, and continue in Section 5.1.2

on the HW2F model results.

5.1.1 Parameters

In Section 4.1, we have set up the environment for the HW2F model. We have discussed

As concluded in that section, the architecture of the model determines the behaviour of the

model. Hence, the settings of mean-reversion parameters a and b are very important to our

HW2F model. During the training phase of our HW2F model, we will perform a scenario

analysis for all the model setups where 0.01 ≤ a, b ≤ 1.0. For each setup, we simulate

the HW2F model many times, after which we will compare the best RMSE results for each

of the setups. In Appendix E, we visualise the outcomes of the simulations. From this

analysis, we have found that the model is best trained for values a = 0.97 and b = 0.73.

This setting will therefore be used in the testing phase of the model, in order to find the most

accurate out-of-sample prediction results. Furthermore, in Appendix F we have performed

sensitivity analyses on both variables and find that these values minimise the IRSS prediction

performance estimators. The values for a and b indicate a very strong mean reversion, to

capture the nature of the IRSS.

5.1.2 Model

After setting up the model as discussed in previous sections, the results of the model are

presented in Table 5.1.

Table 5.1: Performance Estimators HW2F
RMSE MAE MAPE

Train 3.371 2.287 15.50%
Test 2.298 1.550 3.118%

Furthermore, in Figure 5.2, we see the prediction error per time step of the HW2F model.

Most errors per time step are within a range of -5 bps and +5 bps, which indicates a generally

stable forecasting accuracy. This can be caused due to the high mean-reversion, smoothing

out the short-term fluctuations. However, when comparing the error per time step with the

return rate per time step in Figure 5.1, we see that this has a negative correlation. The
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extremes in the return rate result in spike rates in the error, and hence, we expect a naive

model, as the model is sensitive to non-linear conditions.

Figure 5.1: IRSS Return Rate Per Time Step Figure 5.2: Residual Prediction Error per
Time Step

When we then compare the results of the prediction with the observations of the IRSS

data in Appendix G.1 and Figure 5.3, we see that the model closely fits the prediction in

the next time step to the observation before. This could suggest that the model is using

lazy naive forecasting, where IRSSt+1 ≈ IRSSt. However, if we look at Formula 2.10, this

does seem normal, as we only calculate the small change in r, dr, from each day of the

observations, as we are using a one-step ahead predictor.

Figure 5.3: Snippet of Test Predictions (HW2F)

To make sure that the model is not a naive forecasting model, we test a naive predictor,

which calculates the error for IRSSt+1 = IRSSt. The results of the naive predictor on the

test data, given in Table 5.2, we see that our HW2F model outperforms the naive predictor.
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Table 5.2: Comparison Test Performance HW2F Model and Naive Predictor
RMSE MAE MAPE

HW2F Model 2.298 1.550 3.118%
Naive Predictor 2.306 1.555 3.119%

Lastly, in Figure 5.5, we visualise the distribution of our prediction in a box plot. We

can see that the box plot of the test error is narrower than the box plot of the train error,

however, that can be explained by the higher volatility of the IRSS train data, as visualised

in Figure 5.4. The comparable distribution of the underlying distributions indicates that

the model is showing a similar performance to the naive model.

Figure 5.4: Naive Error Box-Plot Figure 5.5: HW2F Error Box-Plot

5.2 Results LSTM

In this section, we will elaborate on the results of the LSTM model. First, we will present

our findings of the hyperparameter analysis in Section 5.2.1, after which we will discuss the

LSTM model results in Section 5.2.2.

5.2.1 Parameters

In section 4.2, we have found that the hyperparameters of our LSTM model have a

significant effect on the output of our model. Hence, we have decided to use the Bayesian

approximations hyperparameter tuner. Before the training phase of the model, this tuner

will create the best environment for the model, during many iterations of the hyperparameter

settings. The optimal hyperparameter settings are noted in Table 5.3.

Table 5.3: Optimal Hyperparameters Setting
Hyperparameter Optimal Value
Number of layers 3

Batch size 32
Units in each layer 150, 200, 100

Epochs 200
Activation Function tanh

Dropout rate 0.1, 0.3
Learning rate 0.0030
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The hyperparameters suggest a moderate complexity of the model, with 3 LSTM layers

having 150, 200 and 100 units respectively. The number of layers and units indicates a

large capacity to learn complex patterns. As mentioned in Section 2.4, the tanh activation

function allows the model to handle both positive and negative inputs, which is effective for

our data as we use a standardisation that ranges from -1 to 1.

5.2.2 Model

During the first phase of the LSTM, we train the model using the hyperparameters from

Table 4.1 and the inputs as mentioned in Section 4.2. During the epochs, we find that the

model converges quickly as shown in Figure 5.6, after which the early stopping algorithm

stops the training, to prevent overfitting. From the figure, we see a spike in loss at epoch

50, however, we can ignore this, as the loss stabilises again right after the peak.

Figure 5.6: LSTM Loss per Epoch

The results of the LSTM model are presented in Table 5.4, which makes a split between

the training, validation and testing data. It is evident that the value of the performance

estimators is influenced by the number of observations in the set. Due to the fact that the

training data set is bigger than the validation data set and the test data set, this has the

effect that the performance estimators are significantly higher as well. It is therefore not

possible to compare the results of one model, but as the other models will be set up in the

comparable data splits, this creates an opportunity for cross-validating our model.

Table 5.4: Performance Estimators LSTM
RMSE MAE MAPE

Train 3.195 2.249 12.50%
Validate 2.154 1.537 3.332%

Test 3.708 2.571 5.041%
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In Figure 5.7, we see that the average error of the residual error per time step fluctuates

within a range from -5 bps and +10 bps. We see that the residual error per time step

has a trend, where the first 400 days of the forecast are accurately predicted, after which

the error then increases. This is most likely caused by the extreme volatility of the IRSS

in combination with the out-of-sample performance is too unpredictable for the model to

understand. Furthermore, the spikes in the observations, visualised in Figure 5.1, are not

fully picked up by the forecast of the LSTM model.

Figure 5.7: Residual Prediction Error per Time Step (LSTM)

Furthermore, Figure 5.8 and Figure 5.9, which show a small snippet of the output, show

that the model closely follows the actual observations of the IRSS data, suggesting a good

fit. It is visible in Appendix G.2, where the full test prediction is attached, that the model

captures most fluctuations in the data, indicating effective learning and generalisation to

the validation and testing set.
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Figure 5.8: Snippet of Validation Predictions (LSTM)

Figure 5.9: Snippet of Test Predictions (LSTM)

The analysis of these graphs indicates a model that performs well in capturing the gen-

eral movements and volatility of IRSS in both the validation and the testing phases. The

model’s ability to fit close to the actual data in most of the observed range demonstrates its

prediction accuracy.

Lastly, in Figure 5.11, we find the box plot of the residual errors generated by our LSTM

model. It is noticeable that the box plot of the test error is narrower relative to the box plot

of the volatility of the data splits as visible in Section 5.16. This implies that the model is

functioning well in capturing the volatility of the IRSS data. However, we see a negative

median, which implies a negative bias of the LSTM model. Lastly, the in-sample error has
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decreased significantly, which suggests risks for overfitting.

Figure 5.10: Naive Error Box-Plot Figure 5.11: LSTM Error Box-Plot

5.3 Results Hybrid Model

In this section, we will go over the results of our hybrid model. We will start by presenting

our findings on the hyperparameter settings in Section 5.3.1, after which we will continue

discussing the results of the hybrid model in Section 5.3.2.

5.3.1 Parameters

As mentioned in Section 4.3, within the RC hybrid approach, we will first apply our

knowledge from the HW2F model that was built to produce the most accurate IRSS fore-

cast. As the model setting with the highest forecast accuracy has already been established

in Section 5.1.1, we will use the same setup, where our mean reverting parameters a and b

are 0.97 and 0.73, respectively.

After processing the error of the HW2F model, our LSTM model’s inputs will now change

significantly. Hence, we will again use the Bayesian hyperparameter tuner as explained in

Section 4.3. The optimal hyperparameter settings for this model are shown in Table 5.5.

Table 5.5: Optimal hyperparameters setting
Hyperparameter Optimal Value
Number of layers 2

Batch size 32
Units in each layer 100,50

Epochs 200
Activation Function tanh

Dropout rate 0.1
Learning rate 0.0026

The model has two layers LSTM layers, with 100 and 50 units respectively. This archi-

tecture results in a simple model reducing computational complexity. The tanh activation

function maps inputs to a range between -1 and 1, which fits the input and the output of

our model as mentioned in Section 3.3. The learning rate is slightly conservative, ensuring

a stable and precise convergence of the model during training.
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5.3.2 Model

In this section, we will discuss the results of our proposed hybrid model, according to

the specifications discussed above. As visible in Figure 5.12, the model is converging to its

optimal performance, finding the most accurate forecasting for the IRSS rate. However, as

mentioned, due to the setting of the hyperparameters, the convergence is relatively slow and

stable.

Figure 5.12: Hybrid Loss per Epoch

The results of the hybrid are visualised in Table 5.6. We see that the values among the

train, validation and test data sets differ significantly, however, this can be traced back to

the size of each of the data sets.

Table 5.6: Performance Estimators LSTM
RMSE MAE MAPE

Train 3.599 2.478 17.55%
Validate 1.650 1.172 2.475%

Test 2.680 2.131 4.123%

When we analyse the error per time step, as visualised in Figure 5.13, we see that the

prediction of the model is very stable up to time step 400. After this, as the IRSS time

series gets less stationary, as seen in Figure 1.3, the prediction accuracy of the hybrid model

decreases.
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Figure 5.13: Hybrid Residual Error per Time Step

In Figure 5.14, we see that the validation loss is very small. The margins between the

validation observations and the validation predictions are very small, as the model captures

the movement of the IRSS data. However, when analysing Figure 5.15 we find that out-of-

sample the model has more trouble with accurately fitting a prediction to the observation.

The trends of the IRSS observations are generally followed well, however, the predictions

are a lot more volatile. In Appendix G.3, we attach a full overview of the out-of-sample

prediction.

Figure 5.14: Hybrid Validation Predictions Snippet
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Figure 5.15: Hybrid Test Predictions Snippet

Lastly, we analyse the error distribution of the hybrid model in Figure 5.17, in comparison

to the return rates of the data in Figure 5.16. Here we find that the in-sample performance

of the model is very well, as the box plots of the training data set and the validation data

set have been narrowed significantly. For the out-of-sample performance, we see a lot fewer

extreme outliers, which implies a good predictive behaviour of the model.

Figure 5.16: Naive Error Box-Plot Figure 5.17: Hybrid Error Box-Plot

5.4 Comparative Analysis

In this section, we will perform a comparative analysis, based on all our findings. We

will start by analysing the model complexity in Section 5.4.1, followed by the visual analysis

in Section 5.4.2. After that, we will focus on the performance estimators as discussed in

Section 5.4.3, and the error statistics in Section 5.4.4. Finally, we will analyse the relative

performance per time step on out-of-sample data in Section 5.4.5.

5.4.1 Model complexity

We start analysing the complexity of the model by comparing the parameters of the

models. Firstly, the HW2F model is relatively simple to set up, as the financial literature
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surrounding it already exists, requiring no further knowledge. After calibration of the pa-

rameters, the model’s computational demand is minimal, making it an efficient choice for

practical applications.

Furthermore, the LSTM model is more complex and challenging to set up. Its deeper

architecture and higher number of units per layer lead to a larger number of parameters,

allowing it to capture more intricate patterns in the data. This is shown in Table 5.7. This

increased complexity, however, needs more computational resources and poses a higher risk

of overfitting. Our LSTM model’s increased complexity is highlighted by its deeper archi-

tecture and higher number of units per layer. This can also be found in the relatively quick

convergence of the model, as shown in Figure 5.6, in comparison to the hybrid model’s con-

vergence in Figure 5.12.

Lastly, the hybrid model combines the setup of both HW2F and LSTM models, re-

quiring further insights and understanding of both models. This dual setup increases its

complexity and demands a comprehensive understanding of the underlying mechanisms of

each component model.

Table 5.7: Optimal Hyperparameters Setting Comparison
Hyperparameter LSTM Hybrid
Number of layers 3 2

Batch size 32 32
Units in each layer 150,200,100 100,50

Epochs 200 200
Activation Function tanh tanh

Dropout rate 0.1, 0,3 0.1
Learning rate 0.0030 0.0026

5.4.2 Graphs

When analysing the model outputs, as visualised in the sections above, and Appendix

G, we find that in terms of accuracy, the HW2F model shows the most accurate predictions

out-of-sample. The LSTM model produces very volatile outputs in periods of stress, which

are partly neutralised by our hybrid model. Furthermore, all the models capture the trend

of the IRSS well, but the LSTMmodel cannot cope accurately with the volatility of the IRSS.

Based on the graphs, we find that the HW2F model is the most robust model in terms of

out-of-sample performance, maintaining a close prediction with the IRSS observations across

different periods. The Hybrid model performs reasonably well but shows more volatile

outputs in stress periods. Lastly, the LSTM model is the least consistent, showing very

significant deviations in the IRSS predictions.
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5.4.3 Performance estimators

As discussed in Section 4.4, we will use three performance estimators to analyse the

forecasting accuracy of the models. By analysing the in-sample performance of the models

in Table 5.8, we find that the LSTM is the best-performing model. The LSTM model

produces the lowest RMSE, MAE and MAPE, which indicates that it provides on average

the most accurate predictions. Furthermore, the HW2F shows good performance, similar to

the naive model, with slightly higher performance estimators than the LSTM model. The

hybrid model has the lowest in-sample forecasting accuracy according to the performance

estimators.

Table 5.8: In-Sample Estimators Comparison
Naive HW2F LSTM Hybrid

RMSE 3.403 3.371 3.195 3.599
MAE 2.306 2.287 2.249 2.478
MAPE 15.48% 15.50% 12.50% 17.55%

After analysing the out-of-sample performance in Table 5.9, we find that the HW2F pro-

duces the most accurate predictions for the IRSS. The HW2F model has the lowest RMSE,

MAE and MAPE, which indicates that it performs the best on unseen data. Although the

hybrid model performs worse than the HW2F model, the hybrid model seems to perform

better than the LSTM model.

Table 5.9: Out-of-Sample Performance Estimators Comparison
Naive HW2F LSTM Hybrid

RMSE 2.306 2.298 3.708 2.680
MAE 1.555 1.550 2.571 2.131
MAPE 3.119% 3.118% 5.041% 4.123%

Altogether, the HW2F demonstrates the most consistent and reliable performance, for

both in-sample and out-of-sample data. The LSTM model performs very well on in-sample

data but is not able to produce accurate predictions on out-of-sample data. This suggests

that the model is very prone to overfitting. Lastly, the hybrid model shows potential but

needs further improvement to match the reliability of the HW2F model.

5.4.4 Error statistics

We continue our comparison by comparing the box plots provided in the sections above,

which provide the distribution of the residual errors of the models. In Table 5.10, we

analyse the distribution of the in-sample performance. The naive model contains the lowest

mean IRSS error. The HW2F model shows a slight overestimation of the IRSS but has

low variability in its predictions. The LSTM has the lowest mean error, and the lowest

standard deviation, which indicates that the model provides the most accurate in-sample

forecast. Additionally, the spread of the LSTM model, the distance between the maximum

and minimum value, is also the lowest, implying the most consistent predictions. Lastly, the
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hybrid model performs less accurately than the other models in terms of the distribution of

errors.

Table 5.10: In-Sample Residual IRSS Error Distribution (bps)
Naive HW2F LSTM Hybrid

Mean 0.0008 0.1058 -0.02596 0.1563
Std 3.403 3.379 3.019 3.596
Min -29.49 -29.11 -33.23 -29.08
Max 26.10 26.04 15.02 29.00

Median 0 0.07416 0.1999 0.1425
Spread 55.59 55.15 48.25 58.08

Furthermore, in Table 5.11, we visualise the error distribution of the models on the out-

of-sample date. Here, we find that the HW2F appears to be the most stable model with

the lowest standard deviation and the most consistent prediction errors. The LSTM model

lacks performance, as the variability of the error is significant in comparison to the other

models, as can be seen from the spread of the model errors. The hybrid model performs

slightly less accurately than the HW2F model, but it does have the lowest spread.

Table 5.11: Out-of-Sample Residual IRSS Error Distribution (bps)
Naive HW2F LSTM Hybrid

Mean 0 0.09475 -1.103 0.2548
Std 2.306 2.299 3.890 2.969
Min -21.29 -21.01 -16.26 -18.31
Max 10.35 10.72 20.15 13.30

Median 0.0 0.03587 -1.246 -0.08422
Spread 31.64 31.73 36.41 31.61

In terms of consistency and stability, the hybrid model and the HW2F stand out as the

most accurate models, both during in-sample and out-of-sample forecasting. These models

show the lowest standard deviation and the lowest estimation bias. Furthermore, the LSTM

produces the lowest average in-sample error but significantly lacks the ability to forecast

unseen data. Although the hybrid shows do not match the accuracy of the HW2F in-sample

performance, it does have a similar performance on out-of-sample data.

5.4.5 Relative performance

In Table 5.12, we find the individual comparison between two models, where we analyse

what percentage of time steps the ”row”-model outperforms the ”column”-model, by having

a smaller error than the other. Here we see that overall, the HW2F is the strongest model,

by consistently outperforming the LSTM and the hybrid model, in the majority of the time

steps. Furthermore, the results show that the hybrid model outperforms only the LSTM

model, which is the least-performing model on out-of-sample data. The behaviours of the

naive model and the HW2F model are very similar
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Table 5.12: Percentage of Time Steps Each Individual Model Outperforms
Naive HW2F LSTM Hybrid

Naive - 52% 72% 65%
HW2F 48% - 73% 66%
LSTM 28% 27% - 32%
Hybrid 25% 34% 68% -

Furthermore, when we analyse the three models together, which outperform the out-of-

sample data in Table 5.13, we see that the HW2F model still shows the highest percentage of

lowest errors, followed by the hybrid model. Altogether, based on outperforming the other

models per time step, we find that the HW2F model is the most robust model, and the

weakest performance is shown by the LSTM model.

Table 5.13: Percentage of Time Steps All Models Outperform
Outperforms

Naive 29%
HW2F 22%
LSTM 23%
Hybrid 27%

Lastly, in Table 5.14 we perform the Wilcoxon signed-rank test. The Wilcoxon signed-

rank test is a statistical test used to compare two related samples, which do not follow

normal distributions (Oyeka, Ebuh, et al. 2012). If the p-value < α, the null hypothesis

gets rejected, meaning that there is a significant difference between the samples. From the

results, we see that there is no significant difference between the naive errors and the HW2F

errors. The other pairs do have significant differences, meaning one model outperforms the

other significantly. Based on this, we find that the naive model and the HW2F model are

best performing, followed by the hybrid model, and lastly the LSTM model.

Table 5.14: Results Wilcoxon Signed-Rank Test with α = 0.05
Model 1 Model 2 P-Value α Reject H0?
Naive HW2F 2.547e-01 0.05 No
Naive LSTM 7.837e-63 0.05 Yes
Naive Hybrid 8.561e-63 0.05 Yes
HW2F LSTM 5.082e-64 0.05 Yes
HW2F Hybrid 6.748e-32 0.05 Yes
LSTM Hybrid 1.723e-23 0.05 Yes

5.4.6 Economical outperformance

Lastly, from the result comparison, we see that the naive model and the HW2F model

have similar performance. In Table 5.8 and Table 5.9, we have found that the in-sample and

out-of-sample performance estimators are similar, as well as the in-sample and out-of-sample

IRSS error distributions in Table 5.10 and Table 5.11. Furthermore, we found in Table 5.13

that the two models do not significantly outperform each other. Hence, in this section, apart

from the small statistical outperformance, we will analyse whether there is an economical
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outperformance of the model.

In the results for the hybrid model, we have used the IRSS prediction error of the HW2F

model as an input, as visualised in Figure 4.5. Now, we will create a similar hybrid model,

which uses the IRSS prediction error of the HW2F model as an input. By doing so, we get

the following results of the performance estimators, as visualised in Table 5.15. We find that

when using the HW2F model prediction error, we consistently outperform the hybrid model

that uses the naive model prediction error as input, both in-sample and out-of-sample.

Table 5.15: Performance Estimators Comparison Hybrid Model with Different Input Data
Naive (In-Sample) HW2F (In-Sample) Naive (Out-of-Sample) HW2F (Out-of-Sample)

RMSE 3.634 3.599 3.019 2.680
MAE 2.541 2.478 2.168 2.131
MAPE 17.82% 17.55% 4.172% 4.123%

In Table 5.16, we find the distribution of the residual IRSS prediction error of the hybrid

model, when using different input samples. We can see that despite the higher in-sample

mean error, the hybrid model with the HW2F input has a better performance out-of-sample.

Table 5.16: Residual IRSS Error Distribution (bps) of Hybrid Model with Different Input
Data

Naive (In-Sample) HW2F (In-Sample) Naive (Out-of-Sample) HW2F (Out-of-Sample)
Mean 0.06200 0.1563 0.3192 0.2548
Std 3.616 3.596 3.002 2.969
Min -29.42 -29.08 -18.77 -18.31
Max 19.18 29.00 13.03 13.30

Median 0.05160 0.1425 0.08580 -0.08422
Spread 48.60 58.08 31.80 31.61

When applying the Wilcoxon signed-rank test to the data, we find that the P-value is

less than a = 0.05, hence, we reject H0. Hence, with this study, we have found that the

HW2F model economically outperforms the naive model, within our hybrid approach study.

Table 5.17: Results Wilcoxon Signed-Rank Test with α = 0.05 of Hybrid Model with Dif-
ferent Input Data

Input Model 1 Input Model 2 P-Value α Reject H0?
Naive HW2F 3.458e-02 0.05 Yes

5.5 Summary

In this section, we have discussed the results of our three models. We will base these re-

sults on three performance estimators: The RMSE, which measures the standard deviation

of prediction errors and is sensitive to large outliers; The MAE, which reflects the absolute

error and is more robust to outliers; and the MAPE, which expresses the accuracy of the

models as a percentage, as is useful for comparing across scales.

The HW2F model is simple and efficient with minimal computational demand after pa-

rameter calibration. The LSTM model is more complex requiring deeper architecture and
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more computational demand. Lastly, the hybrid model combines the HW2F and the LSTM

models, which increases the complexity of the model and requires an understanding of both

models.

Furthermore, the HW2F model provides the most accurate out-of-sample predictions,

based on the visual outputs of the models. The LSTM model shows very high volatility

during stress periods, while the hybrid model neutralises a lot of this volatility, but is still

less consistent than the HW2F model.

In terms of the performance estimators, on in-sample data, the LSTM model outperforms

the other models. Although the HW2F model performs well on in-sample data, it excels

the other models on out-of-sample data. Here, the hybrid model, however, shows improved

performance in comparison to the in-sample performance of the model.

By analysing the box plots of the individual models, which give an understanding of the

distribution of the residual error of the models per time step, we find that on in-sample

prediction, the LSTM performs better than the other models. However, on out-of-sample

data, we find that the HW2F model is the most stable with the lowest standard deviation.

The hybrid model performs slightly less accurately than the HW2F.

Lastly, in terms of relative performance, we analysed what percentage of the time steps

each model has had the lowest error in comparison to the other models. Here we have found

that the HW2F model consistently outperforms the LSTM model and the hybrid model,

from which the LSTM has the lowest overall relative performance.

Throughout the model comparisons, we have found very similar forecasting performance

among the naive model and our HW2F model. We continued our research and used these

two separate models as inputs to our hybrid model, and found that within our study, the

results however do have an economic difference.

Based on these results, we have now found sufficient insights for answering Sub-Research

Question III, Sub-Research Question V and Sub-Research Question VI, which will be dis-

cussed in the next section.
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6 Conclusion, Discussion, and Future Research

In this paper, we studied the forecasting performance in predicting IRSS. Interest rate

swaps are critical financial instruments for risk management, and accurate IRSS forecasting

is crucial due to the predictive nature of IRSS regarding economic growth, inflation, and

monetary policies. Given the growing complexity of swaps, it is essential to explore advanced

methodologies beyond traditional econometric models. Hence, this research explores the

forecasting accuracy of IRSS of machine learning models and, additionally, researches the

potential benefits of using an integrative hybrid approach. Therefore, in this section, we will

focus on concluding our findings in our research.

6.1 Conclusion

Our study was structured to individually address each of the sub-research questions

before formulating a comprehensive answer to the main research question. Therefore, to

conclude our thesis, we will first elaborate on the sub-research questions.

I What factors are the predictors that influence the dynamics of IRSS?

In a comprehensive literature study, we found that the predictors influencing the dynamics

of IRSS include financial predictors, such as the Treasury yield curve, a zero-coupon bond

yield, and the TEDS. Furthermore, macroeconomic predictors of IRSS are the GDP, the

unemployment rate, and the inflation rate.

II Which econometric models are currently being used in the forecasting of IRSS, and

which are identified as the most accurate in literature?

The econometric models currently used in forecasting IRSS found in our literature study

include the VAR, ARIMA, GARCH, Vasicek, and Hull-White models. Among these, the

HW2F model is identified as the most accurate in our study due to its ability to capture

the dynamics of IRSS effectively. Furthermore, we have found that the HW2F model has

an economical advantage in forecasting accuracy over the use of a naive model.

III What are the assumptions and the limitations of these econometric models in the fore-

casting of IRSS?

The econometric models assume that the predictors are stationary, linear and normally

distributed. More specifically, the HW2F model relies on the assumption of constant mean-

reversion parameters to estimate the interest rate movement, which may not hold true under

all market conditions. Furthermore, after the model-building phase, we find that the model

performs well under stable conditions, but shows spikes in prediction error during periods of

high IRSS return rate volatility. Lastly, the model prediction closely aligns with the previous

value, suggesting a form of naive forecasting.

IV Which machine learning models are expected to perform with the highest forecasting

accuracy in the forecasting of IRSS?
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During our literature study, by studying random forest algorithms, GBM techniques and NN

models, we found that NN will fit our IRSS prediction the best, as it can identify complex

non-linear relationships from high-dimensional input data. From additional research, we

found that LSTM models show the highest forecasting potential, as they can handle different

sequence lengths and mitigate the vanishing gradient problem from RNN.

V What are the assumptions and the limitations of these machine learning models in the

forecasting of IRSS?

In our study, we found that the LSTM model requires significant computational resources

and very careful hyperparameter tuning. We have found that although incorporating over-

fitting prevention techniques, predicting IRSS is too difficult for LSTM, as it is still prone

to overfitting, causing the model to lack forecasting accuracy on out-of-sample predictions.

This results in very high fluctuating error rates in our analysis.

VI How can a hybrid model that integrates econometric and machine learning approaches

be optimally designed for forecasting IRSS?

For forecasting IRSS, we have found that an optimal hybrid can be designed by combining

the initial forecasts from the HW2F econometric model with error corrections predicted

by the LSTM model, using the RC methodology found in our literature study. This ap-

proach leverages the strengths of both models, with the HW2F providing stability and

financial knowledge, and the LSTM capturing complex patterns. During evaluation, the

hybrid model demonstrated improved forecasting accuracy compared to the LSTM model

alone, reducing volatility in out-of-sample data. Specifically, the hybrid model achieved an

RMSE of 2.680, MAE of 2.131, and MAPE of 4.123%, which were all improvements over

the LSTM model’s RMSE of 3.708, MAE of 2.571, and MAPE of 5.041%. However, despite

these improvements, the hybrid model did not consistently outperform the HW2F model,

which had an RMSE of 2.298, MAE of 1.550, and MAPE of 3.118%. Notably, the hybrid

model still exhibited more volatility during periods of market stress than the HW2F model.

Furthermore, the increased model complexity and the higher computational demand are

both limiting the performance of the model.

After addressing the sub-research questions individually, and finding the answer to them

in our research, we can now conclude our research by considering the main research question,

stated below:

How do the predictive capacities of traditional financial models contrast with those of

machine learning algorithms in one-step-ahead forecasting IRSS, and would an integrative

approach using a hybrid model enhance the overall forecasting accuracy?

Our analysis has found that the HW2F model consistently provides an accurate out-of-

sample forecast. We have found that the HW2F maintains a very stable prediction, due to

the high mean-reversion parameters that match the behaviour of the IRSS fluctuations. Fur-

thermore, due to the characteristics of the HW2F being a relatively simple model with very

low computational demand, we find that the HW2F contrasts with our machine learning
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model. The LSTM model, with high computational demand and a high risk of overfitting,

showed a very high volatility in prediction error in stress periods. Although it performs very

well in in-sample data, the forecast on out-of-sample data shows very significant volatility,

indicating an overfitting model.

The objective of this paper was to propose a hybrid model aimed at leveraging the

strengths of the HW2F model and the LSTM model. However, using the setup discussed

in this paper, the hybrid model did not surpass the performance of the HW2F model in

terms of out-of-sample stability and accuracy. In our research, we have found that in terms

of the model complexity, the visual outputs, the performance estimators and the relative

performance of the models, the hybrid model neutralises the out-of-sample error volatility

produced by the individual LSTM model.

To conclude, this study highlights the importance of balancing complexity and stability in

forecasting models and suggests that traditional econometric models remain highly valuable

tools, despite the rapid growth of machine learning tools in financial forecasting.

6.2 Discussion

During our study, we have made assumptions, that can have a significant effect on the

outcome of our study. Hence, in order to ensure the replicability and validity of our study, in

this section we will discuss these assumptions. The first assumption of our study is that the

market functions efficiently. As discussed in Section 2.1, changes in IRSS are built up from

two elements: The financial element and the macroeconomic element. This assumption is

built upon the fact that the market prices fully reflect all the available information. How-

ever, markets can exhibit inefficiencies due to factors like regulatory changes or behavioural

biases. During our study, inefficiencies are taken out of the equation when forecasting the

IRSS.

Throughout our research, we have found that we were limited due to the very limited

research that has currently been performed on forecasting IRSS. Due to the limited research,

we had to make assumptions in our methodology for all three models. The HW2F model has

been used in a limited number of studies to forecast IRSS. Despite this, it has been used to

forecast interest rates in multiple studies. Hence, we have used the assumption that as IRSS

is an interest rate-driven derivative, this model would function well for our IRSS forecast.

NN has not been used for forecasting IRSS, and hence, similarly to the HW2F model, we

assume that its forecasting results on similar forecast such as interest rate and CDS, imply

that there is potential in forecasting IRSS using NN. Lastly, the subject of hybrid models

using both econometric and machine learning models has not been discussed in financial

forecasting.

Furthermore, as discussed in Section 3, the structural breaks made between the train-

ing/validation/testing set of the predictors might not have been optimal. The data limita-
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tion due to the COVID-19 pandemic made sure that the data on which the models have

been trained did not closely represent the stress period of the data after the breaks, affecting

the ability of the model to capture the financial and macroeconomic movements of the world.

Lastly, another limitation of this study has to do with the characteristics of a NN. The

combination of the black box effect and the computational demand of the model limited this

research in the ability to fine-tune the model. After iterating the, and finding non-optimal

performance, tuning the model and computing new results would often take up a lot of

time. Furthermore, due to the black box effect, we weren’t always sure whether the adap-

tion of the model would have a positive effect. After training our NN, the model created

weights that are used to make a forecast and validate the forecasting accuracy of the NN.

However, these weights are not transparent, nor can they be changed manually. This makes

it complex to determine the significance of the different inputs that were used in our NN.

Additionally, due to the very large size of our multidimensional input data, the trial and

error part of the hybrid model took a lot of computational effort. Despite using techniques

like cross-validation and dropout ratio, our LSTM model and our hybrid model constantly

showed the behaviour of overfit on the training data. Due to this high computational effort,

the study failed to overcome this problem, resulting in low forecasting accuracy of both the

LSTM model and the hybrid model.

6.3 Contribution to Literature

As discussed in Section 1.4, this research was aimed to address the gap in the financial

knowledge regarding IRSS. The currently existing literature focuses on utilising econometric

models for IRSS forecasting. Our contribution aimed at introducing a machine learning

model to this literature, combined with an integrative hybrid model.

We studied an area without extensive research in financial literature, hybrid models.

Multiple models were examined, and an elaborate framework was built to integrate the

strengths of individual models. Furthermore, we applied a comparative study providing in-

sights into the current performance of IRSS forecasting across various models, establishing a

framework for comparing multiple models. Additionally, we provided an extensive method-

ology for data preparation and model calibration, enhancing the replicability and robustness

of future forecasting studies.

Our findings in this study confirm the stability and reliability of traditional econometric

models like HW2F over newer machine learning techniques, particularly in out-of-sample

forecasting. The study showed that the machine learning techniques underperform tradi-

tional econometric models, as they highlight the overfitting and volatility risks of LSTM

models.
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6.4 Recommendations

Based on the conclusions drawn from the study, and the limitations that were drawn

within the discussion, we now focus on formulating recommendations for the company and

for future research.

Firstly, we recommend continuing the study for further model enhancements. Within our

methodology, we made assumptions that scope our research. For future research, we suggest

exploiting multiple extensions to the research, such as using other strategies to optimise the

hyperparameters. As we have used the Bayesian approximations hyperparameter tuner, we

use a technique with a high computational demand. As discussed in Section 6.2, this com-

putational demand has limited us in our research, so by using other hyperparameter tuners,

we create the opportunity to further enhance our model. Furthermore, in further research,

we recommend further analysis of feature engineering, by introducing lags, moving averages

or Sharpe ratios. By performing feature engineering, we aim for our model to better under-

stand the dynamics of the real world. Additionally, in order to find improved forecasting

accuracy, we suggest exploiting more NN models, en more hybrid models. Lastly, we have

currently investigated one-step ahead forecasting. After increasing the forecasting accuracy

of the one-step ahead hybrid model, multi-step forecasting will become an opportunity.

Our second recommendation is to work on the interpretability of the hybrid model’s pre-

diction. Given the complexity of combining econometric and machine learning techniques,

for the risk management of financial institutions, it could be critical to ensure that the re-

sults are understandable to both technical and non-technical stakeholders. Therefore, we

recommend the exploitation of explainable Artificial Intelligence (XAI) techniques, which

aim to make the model’s decision-making process more transparent. This will increase the

trust and adoption of hybrid models for financial institutions.

Lastly, the sequential nature of the hybrid model, where the LSTM model corrects the

HW2F error, assumes that error patterns are consistent and predictable, which turned out to

not be the case. Additionally, due to the sequential nature of the hybrid model, we assume

that the optimal setup of the individual HW2F model found in the grid search will imply

the same optimal setup of the HW2F model for the hybrid model. Hence, further research

should include scenario analyses on multiple model settings, in order to improve the hybrid

forecasting accuracy.
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