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ABSTRACT 

Forest Canopy Height (CH) is an important biophysical parameter for effective forest management and 

conservation efforts. This study presents a Fully Convolutional Network (FCN)-based approach for 

estimating CH using L- and P-band polarimetric synthetic aperture radar (PolSAR) backscatters and their 

combinations. Specifically, a customized UNet architecture, tailored to the unique characteristics of SAR 

data, is employed to estimate CH in both heterogeneous and homogeneous forest sites, Lope and 

Mabounie respectively, located in Gabon. Results indicated that combinations of L- and P-band 

polarimetric backscatters led to CH predictions that were more accurate compared to single-band 

retrievals, with dual-band combinations producing Root Mean Square Error (RMSE) values of 4.03 m for 

Lope and 3.78 m for Mabounie. The estimation accuracies from the combinations of Synthetic Aperture 

Radar (SAR) bands were consistent across the two study areas, whereas the retrieval performance varied 

for individual bands. P-band-based retrievals were more accurate than L-band for the homogeneous 

Mabounie site (RMSE of 4.26 m vs. 4.63 m). However, for the heterogeneous Lope site, no significant 

RMSE difference was found between L- and P-band models. Upon comparison with other machine 

learning models, it was observed that the customized UNet model produced RMSE values three times 

lower than those of Random Forest (RF) and Light Gradient Boosting Machine (LGBM). These results 

are relevant in the context of upcoming long-wavelength SAR missions, such as the European Space 

Agency (ESA) BIOMASS and NASA-ISRO Synthetic Aperture Radar (NISAR), which could potentially 

be used for global forest canopy height mapping. 
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1. INTRODUCTION 

1.1. Background 

Climate change poses a global threat to ecosystems. Its adverse effects are manifesting more rapidly than 

predicted a decade ago (IPCC, 2022). Forests play a crucial role in regulating the global climate and 

offering essential ecosystem services such as carbon sequestration and biodiversity conservation. Despite 

their importance, forests are degrading at an alarming rate. For instance, Bourgoin et al., (2024) reported 

that anthropogenic intervention is responsible for an increase in tropical forest degradation by 200%. 

Besides, frequent climate extremes, such as heatwaves and droughts, have triggered alterations in forest 

composition and increased tree mortality rates (Hartmann et al., 2022). These natural and human-induced 

factors have caused forests to act as carbon sources in the atmosphere (Mitchard, 2018). Therefore, 

minimization of forest degradation can potentially reduce carbon dioxide emissions and increase terrestrial 

carbon sequestration.  

Recognizing the importance of forest conservation and management, the United Nations Framework 

Convention on Climate Change (UNFCCC) introduced the Reducing Emissions from Deforestation and 

Forest Degradation (REDD+) program (UNEP, 2018). REDD+ encourages countries to adopt National 

Forest Monitoring Systems (NFMS) (UNEP, 2018). However, the Monitoring, Reporting, and 

Verification (MRV) components within NFMS require accurate, timely, and reliable approaches for 

measuring forest biophysical variables. Here, earth observation (EO) plays a significant role by providing 

direct, precise, and timely data at regional and global scales (Lang et al., 2023). Furthermore, EO methods 

have extended beyond spatial mapping and enabled detailed forest morphological information extraction. 

In contrast, In-situ forest data collection is often labor-intensive, time-consuming, and limited to small 

scales (Lu et al., 2016).  

Canopy height (CH) is a crucial vegetation biophysical parameter for understanding ecosystem structure, 

carbon storage, and biodiversity in forests (Lang et al., 2023). The available EO datasets used for forest 

CH estimation include LiDAR (Dubayah & Drake, 2000), optical (Verrelst et al., 2015), and imaging radar 

(Moreira et al., 2013). LiDAR accurately estimates forest 3D structures (Duncanson et al., 2010), however, 

its extensive application is limited by high acquisition costs and cloud penetration inabilities, especially in 

tropical regions (Ge et al., 2022). While optical imagery primarily provides sensitivity to the chemistry of 

the target objects and is often subjected to saturation in dense tropical forests, radar is sensitive to their 

structure (Zhu et al., 2018). The potential of Synthetic Aperture Radar (SAR) in penetrating different 

forest layers and extracting detailed structural information makes it a well-suited dataset option for CH 

estimation (Ramachandran et al., 2023). Furthermore, polarimetric SAR (pol-SAR) backscatters, such as 

HH, HV, and VV, interact uniquely with different tree components. HH backscatter primarily interacts 

with trunks and branches, HV with the canopy structure, and VV with surface features (Wang et al., 1993).  

Furthermore, SAR techniques such as Interferometry (InSAR) and polarimetric Interferometry 

(PolInSAR) are traditionally used to estimate forest height (Chen et al., 2021). InSAR uses phase 

differences between at least two images, while PolInSAR combines polarimetric and interferometric data 

for detailed height information (Zhu et al., 2023). However, forest height retrievals using these techniques 

are influenced by various constraints associated with volume, temporal, and system decorrelation (Kugler 

et al., 2015; Lavalle & Hensley, 2012; Rizzoli et al., 2022). For example, parameters like window size and 

quantization compensation are assumed constant over a site but are data-dependent (Mahesh & Hänsch, 

2023). This underscores the challenge posed by the lack of uniform processing parameters across diverse 

landscapes (Mahesh & Hänsch, 2023). Moreover, another significant constraint of this approach is the 
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scarcity of SAR data (Ge et al., 2022). Existing space-borne data sources such as Sentinel-1 (C-band), 

RADARSAT-2 (C-band), and ALOS-PALSAR2 (L-band) utilize repeat-pass acquisition mode. This mode 

is susceptible to temporal decoration and geometric distortions and produces a high bias in CH estimation 

due to coherence loss (Khati et al., 2018). Moreover, short wavelengths such as C- and X-bands fail to 

reach the ground by penetrating the canopy (Kuenzer et al., 2011). As a result, ground information 

remains unavailable for these wavelengths in dense, complex, and tall forest sites, such as tropical forests. 

Berninger et al. (2019) estimated CH using short wavelengths (C- & X-) PolInSAR in the Indonesian 

tropical forest site and found that C-band predicted CH with an R² of 0.62–0.63, overestimating heights of 

0–15 m and underestimating heights above 15 m. And X-band-based models showed an R² of 0.58–0.66, 

with general underestimation. Both bands exhibited saturation effects for trees taller than 15 m. Another 

research conducted by Kugler et al. (2015) in the Sungai Wain tropical forest site in Indonesia used longer 

wavelengths such as L- and P-band PolInSAR to estimate forest CH. The study revealed that L-band Pol-

InSAR was effective for estimating heights up to 40 m, while P-band PolInSAR was somewhat able to 

estimate heights up to 60 m, both with a correlation coefficient of 0.44. This implied the effectiveness of 

longer wavelengths on CH estimation. Polarimetric SAR (PolSAR) is another technique that has been used 

effectively in forest height estimation studies over the years (Pourshamsi et al., 2018, 2021). PolSAR 

usually provides information on physical scattering mechanisms (Lee & Pottier, 2017). Notably, PolSAR is 

unable to provide vertical information directly and requires reference height data to establish statistical 

regressions (Pourshamsi et al., 2021). Understanding the potential of the PolSAR technique and SAR 

wavelengths, Garestier et al. (2009) employed L-band and P-band polarimetric SAR (PolSAR) data in 

maritime pine forests in Nezer, France. They found that the P-band demonstrated a strong height 

correlation (R² of 0.93, RMSE error < 2 m), while the L-band was saturated above 6 m. The study also 

noted limitations related to the forest biome and indicated a need for further research on tropical forest 

sites using PolSAR data. 
The growing importance of machine learning (ML) algorithms such as decision tree ensembles and 

support vector machines (SVM) has been observed over the years in forest CH studies owing to their 

ability to produce better accuracy compared to parametric regression-based models (Lu et al., 2016). They 

can also overcome the saturation effect of short wavelengths to some extent (Vafaei et al., 2018). 

Pourshamsi et al. (2021) explored the use of L-band PolSAR features combined with LiDAR 

measurements, employing ML models such as Random Forest (RF), Rotation Forest (RoF), Canonical 

Correlation Forest (CCF), and Support Vector Machine (SVM) for estimating CH in the tropical forests of 

Gabon. The study demonstrated good accuracy with an average R² of 0.70 and RMSE of 10 m. However, 

the study also underlined the potential underestimation of CH due to the limited penetration capabilities 

of L-band SAR and suspected that the coarse resolution of the SRTM DEM might have prevented the 

complete correction of topographic effects. Nevertheless, these pixel-based traditional ML models require 

hand-crafted features such as polarimetric ratios, indices, polarimetric decompositions, etc. Additionally, 

without incorporating external features such as Gray Level Co-occurrence Matrix (GLCM) parameters, 

they cannot incorporate spatial dependencies (Ge et al., 2022). Compared to traditional ML methods, 

Convolutional Neural Networks (CNNs) can more effectively capture spatial context information and 

recently have been employed in several forest CH estimations studies (Tolan et al., 2024; Li et al., 2023; 

Pascarella et al., 2023; Gazzea et al., 2023; Ge et al., 2022). Li et al. (2023) proposed a CNN-based 

framework for forest height estimation using L-band PolInSAR and PCGrad, achieving an RMSE of 

10.15 m at the tropical forest site. However, the accuracy was inadequate and required further 

optimization and the use of advanced ML techniques like Fully Convolutional Neural Networks (FCN). 

Ge et al. (2022) proposed an improved semi-supervised UNet model based on FCN for forest height 

mapping using combined optical, SAR, and LiDAR imaging. Although the study achieved good accuracy 

with RMSEs ranging from 2.09 m to 2.02 m, such approaches are often constrained by acquisition costs, 
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cloud cover, and temporal resolution of different datasets. Mahesh & Hänsch (2023), measured forest 

height using complex coherence of TanDEM-X SAR data on UNet architecture. This study used rectified 

linear unit (ReLU) in the encoder and decoder blocks of UNet architecture. Applying the ReLU function 

to the real part of complex pixel values from an interferometric SLC image could cause a loss of 

information by setting all negative real parts to zero, potentially discarding significant amplitude details. 

Nonetheless, the results showed the potential of a UNet-based approach in achieving more accurate CH 

estimations. 

To the best of my knowledge, no previous study has proposed a UNet model customized to the specific 

properties of the considered SAR data for CH mapping and compared its performances against standard 

ML algorithms. This study will focus on L- and P- bands PolSAR backscatters. 

1.2. Problem Statement  

Forest conservation and management require accurate and precise estimations of CH within the MRV 

system. With the upcoming ESA’s BIOMASS and NISAR missions, there will be an abundance of SAR L- 

and P-band products, increasing the necessity for further research utilizing PolSAR backscatters and 

advanced ML techniques. Considering the research gaps addressed in the previous section, this study aims 

to propose a customized UNet framework to estimate CH using PolSAR backscatters of L-, P-, and L- 

and P- (dual-band) combinations. The proposed framework considered the SAR backscatter properties 

during the customization of the UNet convolutional layers and activation functions. As discussed in the 

literature review, longer wavelengths (L- and P-bands) can produce better accuracy in CH estimation 

(Patenaude et al., 2005). However, a comparative assessment of L- and P-band PolSAR backscatters needs 

to be carried out for CH estimation. Additionally, this study aims to address the limitations of using 

PolSAR bands individually. This will be done by analyzing the accuracy of CH retrieval using 

combinations of L- and P-band PolSAR backscatter compared to individual band retrievals. The 

performance will be evaluated on both heterogeneous and homogeneous forest sites in Lope and 

Mabounie, Gabon, respectively. Lastly, this study seeks to evaluate the performance of the proposed UNet 

model against existing ML models such as Random Forest (RF) and Light Gradient Boosting Machine 

(LGBM), utilizing dual-band PolSAR backscatter to estimate CH. 

1.3. Objectives, Research Questions and Hypothesis 

This study aims to propose a customized UNet framework to estimate forest CH using PolSAR 

backscatter data. Additionally, the models will evaluate the estimation accuracy performance of L-band, P-

band, and dual-band PolSAR backscatter for both heterogeneous and homogeneous forest sites. This 

study also aims to compare the performance of the customized UNet model against two traditional 

decision-based ensemble tree ML models namely RF and LGBM.  

Objective 1: To compare CH estimation accuracies for L- and P- bands PolSAR backscatters (HH, HV, 

and VV) and their combinations. 

RQ1: For a heterogenous forest site, is there a significant difference between the accuracy of estimated 

CH from L-, P-, and dual-band PolSAR backscatters? 

RQ2: For a homogenous forest site, is there a significant difference between the accuracy of estimated CH 

from L-, P-, and dual-band PolSAR backscatters? 

Hypothesis: Dual-band PolSAR backscatters will produce significantly better accuracy than individual 

Bands.  

Objective 2: To compare the accuracies of different ML algorithms for CH estimation using Dual-band 

PolSAR backscatters.  

RQ1: For a heterogenous forest site, is there a significant difference between the accuracy of estimated 

CH from FCN (UNet) and traditional RF and LGBM models? 
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RQ2: For a homogenous forest site, is there a significant difference between the accuracy of estimated CH 

from FCN (UNet) and traditional RF and LGBM models? 

Hypothesis: UNet will achieve significantly higher accuracies compared to RF and LGBM. 

2. STUDY SITES AND DATA 

The datasets utilized in this study were obtained as part of the AfriSAR campaign. The campaign was a 

joint venture by the European Space Agency (ESA) and the National Aeronautics and Space 

Administration (NASA)to gather airborne data from tropical forest sites in Gabon, including Lope, 

Mabounie, Mondah, and Rabi (Hajnsek et al., 2017). This study used L- and P-band polSAR data and 

Land, Vegetation, and Ice Sensor (LVIS) (LVIS)forest height data of Lope and Mabounie. Site selection 

was done based on the structural and species diversity of these forest areas where Lope is a heterogenous 

site and Mabounie is a homogenous forest site (Wang et al., 2022) Figure 1.   

 

2.1. Lope 

The first study site is Lope National Park, located at 0°30′00″S and 11°30′00″E in central Gabon (Figure 1 

(b)) (Pourshamsi et al., 2021). This site covers an area of about 49,00 km², consisting of savannah and 

forest landscapes on hilly terrain (Marselis et al., 2018). The CH height distribution on the RH98 map 

shows three dominant forest regions (Figure 1(b) & Figure 2). The dark blue areas, covering 40% of the 

Figure 1. (a) Location of Lope and Mabounie sites in Gabon, (b) canopy height map of Lope derived from LiDAR 
(RH98), (c) canopy height map of Mabounie derived from LiDAR (RH98). 
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site, consist of non-vegetated soils and sparse savannas up to 20 meters (Pourshamsi et al., 2018). Light 

blue areas, covering 20%, contain medium-height vegetation (20–40m) and are found at the edges 

between non-vegetated and forested regions. Green and light-yellow areas, covering 40%, represent dense 

forests (40–60m) with trees of various ages and species, although very tall trees above 50m are scarce 

(Pourshamsi et al., 2021). The forest is primarily composed of diverse tropical species such as the Custard 

Apple, Ethiopian Pepper, Frankincense, Okoume, Ochna, and Ironwood (Lewis & Labrière, 2016). The 

terrain is gently rolling, featuring an average slope of up to 25% (Pourshamsi et al., 2018). 

2.2. Mabounie  

The Mabounie site, located in central-western Gabon at 00°43′ S and 10°31′ E, covers about 43.3 km2 

(Figure 1(c)) (Wang et al., 2022). The landscape is mostly flat with a few mild slopes (Pardini et al., 2018). 

Unlike the Lope CH distribution, this site is a mature forest with old-growth tall trees, primarily 30-40 

meters high, and very few exceed 45 meters (Figure 2) (Zhang et al., 2023a). The dominant tree species in 

Mabounie include Okoume, African Mahogany, Moabi, Ebony, Azobe, and Aiele (Marselis et al., 2018).  
 

 

 

Figure 2 Density distribution and cumulative percentage of canopy height for Lope and Mabounie.  

2.3. RADAR acquisition  

The German Aerospace Centre (DLR) collected data for the AfriSAR campaign during the wet season in 
February 2016. This campaign acquired L-band (23 cm) data simultaneously with P-band (69 cm) data 
using along tracks (Liu et al., 2021). The F-SAR system was employed for SAR data collection. The key 
parameters of the F-SAR sensor are detailed in Table 1 (Hajnsek et al., 2017). The acquired raw data was 
processed to detect and geocode beta-naught values (Reigber et al., 2012). The data was geocoded using 
TanDEM-X DEM due to the closer temporal resolution to the SAR acquisition date (Hajnsek et al., 
2017). This study used GTC products with an additional topographic correction, following the approach 

outlined by Hoekman & Reiche (2015), to detect gamma naught (𝛾0). The terrain correction included an 
improved multi-model terrain correction approach: normalization for slope-induced variation and 
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scattering mechanisms correction (Hoekman & Reiche, 2015). It has been reported that the backscatter 

coefficient gamma-nought (𝛾0) is more suitable for volumetric backscatters such as vegetation (Small, 

2011). Lastly, the SAR backscatter coefficient 𝛾0 was converted into decibels using equation 1.  

 𝛾⁰ [𝑑𝐵] =  10 ∗  𝑙𝑜𝑔10(𝛾⁰ [𝑙𝑖𝑛𝑒𝑎𝑟])  (1)  

Table 1 Key F-SAR Parameters  

2.4. Lidar Acquisition  

NASA collected Lidar data using the Land, Vegetation, and Ice Sensor (LVIS) during the AfriSAR 

campaign. This lidar system was aimed at supporting the ESA’s BIOMASS mission. The LVIS was 

mounted on the NASA Langley B200 aircraft and operated at an altitude of 7,315m (Pourshamsi et al., 

2018). It produced 20 m wide data footprints (Table 2). The generated LVIS data products included Level 

1B, which contains geolocated return energy waveforms, and Level 2, which provides elevation data for 

both the ground and canopy top, along with Relative Height (RH) measurements. LVIS height metrics are 

made publicly available by NASA and can be accessed at lvis.gsfc.nasa.gov. The standard data products 

including height metrics relative to the surface for points where 25%, 50%, 75%, 98%, and 100% of the 

waveform energy are detected, labeled as follows RH25, RH50, RH75, RH98, and RH100 (Lee et al., 

2011). The 98% RH metric was used for its accuracy, as it showed similar ground and forest heights 

compared to small-footprint LiDAR (Schlund et al., 2019).  

 
Table 2 Characteristics of the LVIS Sensor 

Parameter Specification 

Looking Direction Nadir 

Nominal Flight Altitude: 7,315 m 

Incidence Angle 0° to 6° 

Resolution 18 × 25 m 

Nominal LVIS Swath Width 1.5 km (200 mrad) 

Nominal LVIS Footprint 

Diameter: 18 m (2.5 mrad) 

 
 

 

 

 

 

  Wavelengths L-band P-band 

P
a
ra

m
e
te

rs
 

Platform Flight Height 6069 m 6069 m 

Frequency 1325 MHz 435 MHz 

Polarization VV, VH/HV, VV VV, VH/HV, VV 

Bandwidth 150 MHz 50 MHz 

Range Resolution 1.92 m 3.84 m 

Azimuth Resolution 0.65 m 2.0 m 

Incident Angles 25-45° 25-55° 
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3. METHODOLOGY 

In this study, HH, HV, and VV polarimetric backscatter images of L- and P-bands were used to estimate 

the CH of the Lope and Mabounie forest sites involving various ML algorithms. This study employed an 

FCN algorithm based on customized UNet architecture, specifically customized for SAR backscatter 

imageries to estimate CH. The study investigated the potential of L-band, P-band, and combined 

frequency backscatters using the proposed UNet architecture. Additionally, the performance of these 

bands was evaluated in both heterogeneous (Lope) and homogeneous (Mabounie) forests. The 

performance of the proposed UNet model was then statistically compared with existing pixel-based 

traditional ML models, namely RF and LGBM, which were selected based on their good performance in 

previous forest biomass and CH estimation studies (Ge et al., 2022; Morais et al., 2021; Pourshamsi et al., 

2018, 2021; Wang et al., 2022). 

The overall methodology is depicted in Figure 3. Section 3.1 elaborates on the image preprocessing and 

experimental setup. Section 3.2 represents the basic UNet model alongside the introduction of our 

customized UNet framework. In Section 3.3, pixel-based decision tree ensemble algorithms have been 

discussed. Model evaluation metrics are detailed in Section 3.4, followed by a brief discussion of 

evaluation metrics and statistical testing in Sections 3.5 & 3.6 respectively. 

3.1. Image processing and experimental setup 

3.1.1. Image preprocessing 

Two co-polarized (HH and VV) backscatter images, along with cross-polarized HV backscatter images of 

L- and P-bands, were upsampled to 20 x 20 m pixel spacing using average parameter to align with the 

spatial resolution of the reference CH map. This resolution was chosen considering the footprint diameter 

of the LVIS data (Table 2). LiDAR image of Mabounie contained missing values due to non-adjacent 

flight lines. For consistency in analysis, these missing regions were assigned NaN (Not a Number) values. 

Noise in radar images is frequent due to inherent electronic noise, environmental factors, and various 

forms of interference (Argenti et al., 2013). Despite speckle filtering, the images can still contain noise that 

acts as an outlier (Singh et al., 2021). Besides, the heterogeneous nature of the Lope study site resulted in 

varying backscatter values across different regions, potentially causing outliers in the data distribution. 

Although normalization is commonly used for feature scaling; standardization, also known as Z-scaling, 

was used for this study due to its robustness in handling outliers. Standardization scales features by 

subtracting the mean (µ) and dividing by the standard deviation (σ) (Equation 2), facilitating a broader 

range of values (Ahsan et al., 2021). Later, HH, HV, and VV backscatter images were stacked together for 

each wavelength. 

 𝑍 =
(𝑋′−µ)

σ
  (2) 
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Figure 3 Workflow of the proposed method for estimating forest canopy height using polarimetric SAR backscatter 

images. 
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3.1.2. Experimental setup  

Remote sensing images or tiles often contain a large array to cover areas on the ground. This makes them 

expensive to process with machine learning models, especially convolutional neural networks. Splitting an 

image into smaller patches can lower the computational cost compared to processing the whole image 

(Zoran & Weiss, 2011). 
In deep learning applications for forestry, various patch sizes are commonly used: 256 x 256 (Li et al., 

2023), 128 x 128 (Ge et al., 2022), 96 x 96 (Mahesh & Hänsch, 2023), 32x 32 (Gazzea et al., 2023), and 30 

x 30 (Li et al., 2023). As indicated in the CH maps of the study area, one of our sites exhibits a leftward 

tilt, while another site has a substantial region of missing values. This limitation reduced the possibility of 

extracting large square patches. Because using larger patches would leave some parts of the study area out. 

Consequently, a small patch size of 32 x 32 px was selected for this study. From these, 289 non-

overlapping patches were cropped from Lope and 180 from Mabounie. Since the FCN algorithm cannot 

process NaN values in the input SAR images, any patch containing NaN value was eliminated. After 

removing patches with NaN values, only 95 patches for Lope and 15 patches for Mabounie were left. The 

patches were then divided into a 70-30 split for training and testing, resulting in 65 patches for training 30 

for testing from Lope, 12 patches for training, and 4 for testing from Mabounie (Figure 2). A validation 

set was not incorporated due to the limited number of training and testing images. Instead, the same 

testing set was used for both hyperparameter tuning and model evaluation. It should be noted that 

traditional data augmentation methods, such as flipping and rotation, were avoided in this study. These 

methods are not scientifically accepted for SAR imagery due to the significant impact of imaging direction 

on SAR images (Mittermayer et al., 2012). For instance, two images of the same area captured 

simultaneously have a higher possibility of differing from one another if one is taken from an ascending 

orbit and the other from a descending orbit. Consequently, simply rotating a target by 180 or 90 degrees 

does not yield a realistic representation of the original image.  

The dataset dimensions for the UNet model are represented as (N×H×W×C). Here, N is the number of 

patches, H and W denote the height and width of each patch respectively, and C represents the number of 

channels. For wavelength comparison in the UNet model, the value of C was 3 for single-band data and 6 

for dual-band data. Both the height and width of each patch (H and W) were set to 32. 

  

Figure 4 Sampling design on Reference CH map of (a)Lope & (b) Mabounie   
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For the pixel-based RF and LGBM models, eight GLCM features from HV polarization for each band 

were extracted using a 3x3 filter. This was done to introduce spatial context to these RF and LGBM 

models, thereby making the comparison with the UNet model fairer. The eight GLCM features include 

mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation. The 

GLCM features were selected based on previous CH and biomass estimation studies, as detailed in the 

works of (Jackson et al., 2023; Lourenço et al., 2021; Luo et al., 2023). L- and P-band SAR backscatter 

data were combined with 16 GLCM features, resulting in 23 channels (C= 23). The same training and 

testing patches used for the UNet model were also applied to the RF and LGBM models.  However, 

pixels from the training and testing patches underwent stratified random sampling. Samples were collected 

across four different height classes for Lope ([0-20], [20-40], [40-50], [50-60]) and three classes for 

Mabounie ([0-25], [25-40], [40-60]). These strata were adopted considering the CH distribution of Lope 

and Mabounie (Figure 2). The aim was to ensure representation from each height strata.  From each class, 

a minimum of 400 points were collected. The test set was then further split into an 80-20 test-validation 

ratio, with the validation set used for hyperparameter tuning. For both RF and LGBM, a grid search 

approach was adopted for hyperparameter tuning. The hyperparameter values that were used for tuning 

are listed in the following Table 3. The values were chosen based on the previous studies on forest CH 

estimations and biomass estimations using EO data. Through this grid search, 75 and 1620 combinations 

of hyperparameters were fitted for RF and LGBM respectively, to find the best combination.  

Table 3  Grid Search Parameters for LGBM and RF Models 

3.2. UNet architecture and its components 

The UNet architecture was introduced by Ronneberger et al. (2015) and is a variant of convolutional 

neural networks (ConvNets). It is widely used for RS image segmentation and regression tasks (Ge et al., 

2022; Li et al., 2023; Pascarella et al., 2023; Zhang et al., 2023b). UNet can automatically learn and extract 

meaningful features from images through encoder and decoder blocks (Gazzea et al., 2023). This encoder 

and decoder path, along with the bridge, forms a U-shape. The convolution and max pooling blocks in the 

encoder and decoder path allow UNet to extract deeper features. For regression tasks, UNet is adapted by 

modifying the output layer to predict continuous values and using loss functions like Mean Squared Error 

(MSE). This adaptation makes UNet effective for tasks like depth estimation, providing detailed, pixel-

wise predictions while preserving spatial information (Mahesh & Hänsch, 2023).  

The encoder captures the context of the image by reducing its spatial dimensions and increasing the 

number of feature channels (Ge et al., 2022). Specifically, each block in the contracting path performs two 

3x3 convolutions (unpadded), each followed by a ReLU activation and a 2x2 max pooling operation with a 

stride of 2 for downsampling (Ronneberger et al., 2015). 

The decoder reconstructs the image's spatial dimensions while integrating high-resolution features from 

the encoder (Wang et al., 2023). It upsamples feature maps and uses a 2x2 convolution to halve the feature 

channels. Each step includes upsampling, concatenation with encoder features via skip connections, and 

two 3x3 convolutions with ReLU activation (Gazzea et al., 2023). Skip connections enhance upsampling 

by incorporating high-resolution details, improving segmentation accuracy. Skip connections in UNet 

transfer feature maps from the contracting to the expansive path, combining coarse, high-level 

information with fine, detailed data (Ronneberger et al., 2015). This maintains spatial information and 

Model No. Of estimators Max depth Learning rate 
Number of 

leaves 
Lambda l2 

LGBM [100, 200, 300, 500, 700] [ 4, 8, 12] [0.01, 0.05, 0.1] [8, 16, 24] [0, 0.1, 0.5, 1.0] 
RF [50,100, 200, 300, 500] [None, 2,3,5,6] NA NA NA 
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helps prevent the vanishing gradient problem by providing a direct path for gradient flow, ultimately 

improving pixel-level prediction accuracy (Ge et al., 2022). 

3.3. UNet Modifications: 

The base UNet model has performed well on both optical and SAR datasets (Gazzea et al., 2023; Ge et al., 

2022; Mahesh & Hänsch, 2023; Wang et al., 2023). However, the unique characteristics of SAR 

backscatter images and the specific requirements of forest CH regression tasks necessitate further 

modifications to the UNet architecture (Figure 5). These adjustments include changes to activation and 

loss functions to handle the complexity and speckles of SAR data, as well as the integration of specific 

regularization and dropout techniques to improve regression performance.  

The convolution block in both the encoder and decoder includes an activation function that helps analyze 

non-linearities, thus enabling the network to learn complex features. Nevertheless, the choice of activation 

function depends largely on the model input and objective, as it significantly affects the optimization, 

convergence, and overall performance of the model (Clevert et al., 2015). For this study, Exponential 

Linear Unit (ELU) was employed as the activation function, given the logarithmic negative values of SAR 

backscatter (dB). Using the standard ReLU, negative values scaled to zero, resulting in information loss. In 

contrast, the ELU activation function preserves negative values, improving learning efficiency and 

convergence. This helps mitigate the vanishing gradient problem and leads to faster and more accurate 

network training (Clevert et al., 2015). Additionally, the output activation function is set to ReLu to avoid 

negative forest height prediction as tree CH cannot be a negative value. 

 

 𝐸𝐿𝑈(𝑥) = {
𝑥

𝛼(𝑒𝑥 − 1)
    for x ≥ 0
   for x < 0  (3) 

With an input patch size of 32x32 and standard four layers, the UNet architecture first processes the input 

through several convolutional layers, gradually reducing the spatial dimensions via max-pooling operations 

Figure 5 UNet architecture used for CH estimation 
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in the encoder path. This results in progressively deeper layers with reduced patch sizes: 16x16, 8x8, and 

2x2. The bottleneck layer operates on the smallest patch size of 2x2, which can lead to artifacts because 

the patch size becomes very small at this stage, resulting in the loss of fine details and potential 

inaccuracies during reconstruction. To avoid this, the number of layers was reduced to 3, resulting in a 

minimum patch size of 8x8 (Figure 4). While reducing the number of layers decreases the number of 

parameters, this was mitigated by increasing the number of filters in each layer. The first layer had 64 

filters, the second had 128, and the last layer had 256. These adjustments led to a total of 5,086,337 

parameters, of which 5,081,729 are trainable and 4,608 are non-trainable. Furthermore, a dropout of 0.2 

with L2 regularization was employed to reduce the overfitting of the models. The Adam optimizer was 

used with an initial learning rate of 0.0001 and a weight decay of 0.000001. The model was trained for 500 

epochs, with a batch size of eight to achieve the results. The training and validation curves were found to 

be converged after 100 epochs (Appendix 1) for both sites and all the wavelengths. Although the loss 

function is not an integral part of the UNet model, it is crucial for convolutional network optimization. 

The ConvNets models adjust weight and biases depending on the loss. As mentioned previously, the 

reference CH map contains NaN values that impact gradient calculation. Also, SAR backscatters contain 

noises. To tackle this, the Huber loss function is employed to handle outliers and provide a robust 

measure of error (Clark et al., 2023). It computes the absolute difference between the true and predicted 

values and applies a threshold (δ) to differentiate between small and large errors. For small errors, it uses 

the Mean Squared Error (MSE), and for large errors, it uses a Mean Absolute Error (MAE) (equation 4). 

Additionally, the custom Huber loss function was designed to replace NaN values in the true and 

predicted outputs with zeros to avoid computational issues with the NumPy package. 

 𝐿𝛿(𝑦, ŷ) = {

1

2
 (y − ŷ )2

𝛿 ⋅∣ 𝑦 − ŷ ∣ −
1

2
𝛿2

   for ∣y−ŷ ∣≤δ
  for ∣y−ŷ ∣>δ

  (5) 

Where: 

•  y is the true value. 

• ŷ is the predicted value. 

• δ is the threshold parameter  

3.4. Decision Tree Ensemble  

Decision tree ensemble algorithms combine multiple decision trees to improve prediction accuracy 

(Pandey,2023). Each tree acts as an "if-then" rule system, splitting data based on input features until it 

reaches a prediction (leaf) (Saini & Ghosh, 2017). The ensemble technique uses voting techniques for the 

final prediction (Figure 4). ML models such as RF and LGBM are widely used in EO studies, as they 

analyze on pixel level (Ramachandran & Dikshit, 2022.). 

3.4.1. Random Forest  

RF is an ensemble learning technique that aggregates multiple decision trees, represented as, T {ξ1 (X), …, 

ξT (X)} where {X, Y} = {(x1, y1), …, (xn, yn)} denotes the collection of n training samples (Pourshamsi 

et al., 2021). Here, X signifies the D-dimensional feature vectors derived from HH, HV, and VV 

backscatter data of the L- and P-band. Hyperparameter tuning through grid search identified the best 

configurations as follows: for the Lope dataset, an unrestricted maximum tree depth with 500 trees 

provided the best results, capturing complex patterns effectively. For the Mabouinie dataset, a maximum 

depth of 6 with 500 trees prevented overfitting, ensuring the model remained generalizable. These settings 

optimize the model's performance by balancing flexibility and generalization. 
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3.4.2. Light Gradient Boosting Machine (LGBM) 

LGBM is an advanced ensemble-based decision tree method. Unlike traditional Gradient Boosting 

Machines (GBM), LightGBM uses a leaf-wise growth strategy rather than a level-wise approach 

(Tamiminia et al., 2021). This makes it faster and more efficient, especially with large datasets. In LGBM, 

trees are built sequentially, with each tree correcting the errors of its predecessors. The prediction ŷ for an 

observation is updated iteratively (equation 6) (Pourshamsi et al., 2018): 

 ŷ(𝑚) = ŷ(𝑚 − 1) + 𝜈 ⋅ ℎ𝑚(𝑥) (7) 

where ŷ (m) is the updated prediction after the m-th iteration, ŷ (m−1) is the prediction from the previous 

iteration, v is the learning rate, and hm(x) is the m-th tree's prediction of the residual. 

LGBM is a leaf-wise gradient boosting method that enhances accuracy by splitting the tree based on the 

leaf with the highest loss reduction (Tamiminia et al., 2021). This approach can significantly improve 

model accuracy but also carries a risk of overfitting, necessitating careful tuning of parameters. After 

testing various hyperparameter settings, the optimal configurations were identified for two datasets. For 

the Lope dataset, the best parameters are regularization term (lambda_l2) of 1.0, learning rate of 0.1, 

maximum tree depth of 4, 100 estimators, and 8 leaves per tree. For the Mabounie dataset, the optimal 

parameters are the same regularization term (lambda_l2) of 1.0, lower learning rate of 0.05, maximum tree 

depth of 4, 100 estimators, and 8 leaves per tree. These settings balance the trade-off between accuracy 

and overfitting, tailored to the specific characteristics of each dataset. 

3.5.  Evaluation metrics  

Several metrics are used to assess model performance. R² (Coefficient of Determination) is commonly 

used and calculated as: 

 𝑅2 =  1 −
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑛=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑛=1

  (8) 

In addition to R2, RMSE (Root Mean Squared Error) measures the average deviation of predicted values 

from true values: 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑛−1  (9) 

Percentage RMSE expresses RMSE as a percentage of the mean of the true values: 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑅𝑀𝑆𝐸 = (
𝑅𝑀𝑆𝐸

�̅�
 𝑥 100)  (10) 

MAE (Mean Absolute Error) measures the average magnitude of the errors in predictions, without 

considering their direction: 

 𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − ŷi|

𝑛
𝑛−1  (11) 

MAE provides a clearer picture of the average error magnitude, which can be easier to interpret compared 

to RMSE, particularly when dealing with outliers. Bias quantifies systematic errors in predictions, 

indicating potential underestimation or overestimation issues: 

 𝐵𝑖𝑎𝑠 =  
1

𝑛
∑ (𝑦𝑖 − ŷi)

𝑛
𝑛−1  (12) 

A positive bias suggests underestimation, while a negative bias indicates overestimation. Where  𝑦𝑖   are the 

true values ŷi  are the predicted values, and �̅�  is the mean. These metrics collectively provide a 

comprehensive evaluation of a model's predictive performance. While R2 assesses how well the model 

predicts compared to the mean, RMSE and Bias offer insights into the accuracy and systematic errors of 

predictions respectively. 
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3.6. Statistical Analysis 

Each model was iteratively run 15 times and the RMSE was recorded to compare model performances 

statistically. The recorded RMSE values of all the models can be found in (Appendix 2). One-way 

ANOVA (Analysis of Variance) on the RMSE values of the models was considered to test the two 

hypotheses in this study.  However, one-way ANOVA can only inform about significant differences 

between the groups and cannot specify which group is significantly different. Therefore, post-hoc T-tests 

with Bonferroni Correction of significance level were employed to determine where the group differences 

lie. In the first hypothesis, the performance of the L-band, P-band, and dual-band (L- and P-band) on the 

UNet model was tested. In the second hypothesis, the prediction performance of UNet, RF, and LGBM 

on Dual-band PolSAR backscatter was compared. For the ANOVA test, the threshold value for p was set 

to 0.05. Then for post-hoc T-tests, the Bonferroni Correction adjusted the significance level to 𝛼 =
0.05

𝑘
=  0.02, where k =3 is the number of comparisons made. 

4. RESULTS 

4.1. Forest CH retrieval using UNet on the Lope site 

For the Lope study area, the trained UNet models for L-, P-, and combined (L- + P-) wavelengths were 

individually applied to the test data set, and estimated CH values were compared to reference CH values 

extracted from the LIDAR data. Figure 6 illustrates the model evaluation box and confusion plots for 

different wavelength predictions.  The overall evaluation metrics of the models are reported in Table 4.  

For the L-band, the average error calculated in the predicted CH was 5.02 m (MAE). The R2, RMSE, and 

RMSE% were 0.85, 6.45 m, and 25.52% respectively. CH values between 10-20 m had a noticeable 

variance, mostly overestimated (Figure 6a) in the predicted CH compared to actual CH. However, for CH 

above 50m, the L-band-derived CH underestimates the actual height with an overall positive bias of 12.5 

m (Figure 6a). The overall L-band estimations demonstrated a high positive bias or underestimation of 

3.80 m.  The overall bias was found to be slightly reduced from 3.80 m to 2.95 m for the P-band 

compared to the L-band. The underestimation (3 m) for low vegetation was observed for P-band (Figure 

6c), with the overall MAE standing at 4.09 m. The improved R2 value indicated that the P-band enabled 

the model to explain 89% (R2 = 0.89) of the variance in the CH prediction. Similarly, reduced RMSE and 

RMSE% values were reported at 5.39 m, and 21.34% respectively. P-band-derived estimation slightly 

reduced the bias for all the forest strata (Figure 6c). The dual-band combination (L- +P-) provided the 

best performance across all metrics compared to the individual L- and P-bands. It produced the highest R2 

value of 0.94, indicating the best fit of the model. The lowest RMSE, RMSE%, MAE, and Bias indicated 

the highest accuracy in predictions (Table 4). The RMSE% for the Dual-band was approximately 60% and 

34% better than that of the L-band and P-band’s RMSE%, respectively. The dual band reduced the overall 

bias. However, overestimation remained evident in 20-40 m strata. The underestimation for very high 

forest canopies (above 50m) was slightly reduced compared to L- and P-band (Figure 6e). Nevertheless, 

the minor differences in evaluation metrics required a statistical significance test for wavelength 

comparisons. Figures 7 (a-d) illustrate the CH maps estimated from L-band, P-band, dual-band, and 

LiDAR (RH98) data respectively. From visual interpretation, it is evident that the L-band tends to 

underestimate the forest CH, while the P-band overestimates it in some regions. To some extent, the dual-

band approach balances the estimations, providing a more accurate representation. 
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Table 4 Performance Evaluation metrics of for L-band, P-band, and Dual-band on UNet-based Model for Lope site 
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 (c) CH bias of different height strata (d) Estimated vs reference CH 

Band and their combination  R2 RMSE (m) RMSE% MAE (m) Bias (m) 

L- 0.85 6.45 25.52 5.02 3.80 

P- 0.89 5.39 21.34 4.09 2.95 

Dual (L- + P-) 0.94 4.03 15.95 2.89 0.31 
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(a) CH map estimated from L-band  
(b) CH map estimated from P-band  

Figure 6 Model Evaluation for Lope site- The box plots on the left illustrates the mean and standard deviation of the bias 
derived from the UNet-based CH prediction across different height strata. The confusion plots on the right compare UNet 
predictions to the LiDAR (RH98) map for test datasets from the same site, with a density colormap showing the observation 
distribution. 
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(c) CH map estimated from Dual-band (d) Reference CH map from LidAR (RH98) 

4.2. Forest canopy height retrieval using UNet on Mabounie 

The UNet was then tested on the Mabounie site using SAR L-, P-, and Dual-band. The performance 

metrics are reported in Table 5. The strata-wise bias plots and confusion plots for each band are shown in 

Figure 8. R2 values indicated moderate model performances for Mabounie. However, the RMSE and 

RMSE% metrics suggested, models produced similar CH estimation accuracies as Lope. The Dual (L+P) 

band combination achieved the best performance, with the highest R² of 0.60, the lowest RMSE of 3.78 m 

and RMSE% of 11.89%, the lowest MAE of 1.69 m, and a small negative Bias of -0.38 m. The P-band 

also performed well, with an R² of 0.55 and an RMSE of 4.26 m, while the L-band had the lowest R² of 

0.47 and the highest RMSE of 4.63 m. The L-band bias plot (Figure 8a) demonstrated the model's 

underestimation tendency for CH between 0-25 m.  Additionally, for CH values above 30 m (Figure 8b), 

the model exhibited saturation with a mean positive bias of 15 m (8a). In contrast, the P-band showed a 

reduced underestimation compared to L-band (Figure 8e). The model prediction performance improved 

with the band combination (L-and P-) for 25–50 m strata. Further, the underestimation of tall CH (above 

50 m) was minimized to some extent (Figure 8e). The estimated CH maps (Figure 9) illustrate the 

prediction differences between bands. The yellow forest CH areas of the reference map were predicted as 

Low strata (light blue) for the L-band. However, the estimation improved with P- and dual-band. 

 

Table 5 Performance Evaluation metrics of for L-band, P-band, and Dual-band on UNet-based Model for Mabounie 
site 

 

Band combination  R2 RMSE 

(m) 

RMSE% MAE 

(m) 

Bias  

(m) 

L- 0.47 4.63 14.73 1.95 1.35 

P- 0.55 4.26 13.55 1.79 0.11 

Dual (L+P) 0.60 3.78 11.89 1.69 -0.38 

Figure 7 UNet Estimated CH Maps of the Lope Site Using Different Wavelengths 



 

24 

E
T

 L
-b

a
n

d
 

 

 

 (a) CH bias of different height strata (b) Estimated vs reference CH 

U
N

E
T

 P
-b

a
n

d
 

  

 (c) CH bias of different height strata (d) Estimated vs reference CH 

U
N

E
T

 D
u

a
l-

b
a
n

d
 

  

 (e) CH bias of different height strata (f) Estimated vs reference CH 

 

Figure 8 Model Evaluation for Mabounie site- The box plots on the left illustrates the mean and standard deviation of 
the bias derived from the UNet-based CH prediction across different height strata. The confusion plots on the right 
compare UNet predictions to the LiDAR (RH98) map for test datasets from the same site, with a density colormap 
showing the observation distribution. 
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(a) CH map estimated from L-band  (b) CH map estimated from P-band  

  
 (c) CH map estimated from Dual band  (d) Reference CH map from LiDAR (RH98) 

 

 

Figure 9 UNet Estimated CH Maps of the Mabounie Site Using Different Wavelengths 
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4.3. Statistical significance test on wavelength prediction performances  

A one-way ANOVA was used to analyze the RMSE values to compare the prediction performance of L-, 

P-, and combined SAR wavelengths on the UNet models (Chen et al., 2016) for both Lope and Mabounie 

sites. For the Lope site, the ANOVA test revealed that the F-statistic (45.06) was greater than the F critical 

value (3.22), thereby indicating the test's significance. In addition, the P-value (0.0035 x 10-8) also rejected 

the null hypothesis and suggested that a statistically significant difference was present among the 

wavelengths' CH estimation performances. However, further evaluation was required to determine which 

wavelength's performance was statistically significant. Therefore, separate T-tests were performed with an 

adjusted α of 0.02 (Bonferroni correction). The post-hoc T-tests revealed that the RMSE of dual bands 

(4.25 ± 0.26) was significantly smaller compared to the RMSE of the P-band (5.64 ± 0.49, P < 0.02) and 

the L-band (6.50 ± 0.98, P < 0.02) and (Appendix 3a). Notably, this study found no significant difference 

between L-band and P-band estimation performances.  

For Mabounie, the test results revealed that like Lope, Dual-band estimations produced better accuracy 

than individual bands. However, as shown in Appendix (3b), the CH estimation capabilities of individual 

L- and P-bands (P-value <0.02) were significantly different for this forest site. 

4.4. Forest canopy height estimation for RF and LGBM on Lope 

The confusion plots for RF and LGBM are presented in Figure 10. Overall, the accuracy of the estimated 

heights is moderate, with R2 values of 0.72 and 0.75 and RMSE values of 10.04m and 9.52m for RF and 

LGBM, respectively (Table 6). The two algorithms performed quite similarly, with LGBM showing a 

slightly better RMSE than RF. Both models appeared to overcome underestimations of tall forest heights 

slightly (>50 m) (Figure 10). Additionally, LGBM had a lower MAE of 6.95 m compared to RF's 7.41 m, 

and both models had similar Bias values, with LGBM at -0.61 m and RF at -0.62 m. At Lope, it was 

evident from the estimated maps that both RF and LGBM overestimated some low CH regions compared 

to the reference Figure 10. 

 

Table 6  Evaluation metrics for RF and LGBM for Dual-Band based CH Estimation of Lope site. 

Models R2 RMSE (m) RMSE% MAE (m) Bias (m) 

RF 0.72 10.04 35.36 7.41 -0.62 

LGBM 0.75 9.52 34.17 6.95 -0.61 
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4.5. Forest Canopy Height Estimation for RF and LGBM on Mabounie  

The performance metrics for RF and LGBM algorithms on the Mabounie site are summarized in Table 7. 

with the corresponding confusion plots shown in the accompanying Figure 11. The right side of Figure 11 

illustrates the map of estimated tree heights from the RF and LGBM algorithms. The R2 values of 0.12 for 

RF and 0.15 for LGBM indicated poor performance in explaining the variance in the data (Table 9). 

However, the RMSE, RMSE%, MAE, and bias values suggested a similar performance of the models to 

those observed at the Lope site for RF and LGBM respectively. The low R2 values resulted from the 

homogeneity of the CH distribution in the Mabounie forest site. As previously mentioned, most trees' 

heights ranged close to the forest's mean height, reducing the variability the models could capture. 

Notably, both models were inclined to highly saturate CH predictions, which led to underestimation for 

tall trees and overestimation for short trees. The overall prediction performance of the RF and LGBM 

models was similar to each other. This is also observed in the estimated CH map of both models in Figure 

(11). 

 

Table 7 Evaluation metrics for RF and LGBM for Dual-Band based CH Estimation of Mabounie site 

 
 

Models R2 RMSE (m) RMSE% MAE (m) Bias (m) 

RF 0.12 9.09 28.65 7.80 0.26 

LGBM 0.15 8.94 28.19 6.95 0.14 

Figure 10 The confusion plots on the left compare RF and LGBM (CH) predictions to the LiDAR (RH98) map for test 
datasets from the Lope site, with a density colormap showing the observation distribution. On the right are the estimated 
CH maps using RF and LGBM models and reference CH map from LiDAR RH98. 
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4.6. Statistical significance test of model’s prediction performance for Dual-band on Lope & 
Mabounie 

The Lope site's performance metrics (Tables 4 & 6) and confusion plots (Figures 6f and 10(a & c)) 

indicated that the UNet model provided more accurate predictions than the baseline RF and LGBM 

models. The UNet model achieved a 34-35% improvement in RMSE% compared to the pixel-based ML 

models. The UNet-based model generated a much higher R² (0.94) value than both RF (0.72) and LGBM 

(0.75). In addition, the confusion plots illustrated that the UNet model had less prediction variability and 

uncertainty than RF and LGBM. However, to make a statistical comparative assessment of model 

performance, the RMSE values of the models underwent one-way ANOVA and a post hoc T-test. The 

result of the statistical significance test is summarized in Appendix (3c).  

The statistical significance tests revealed a significant difference in model prediction accuracy with an F 

value of 45.06. The pairwise T-test confirmed the UNet's superiority in prediction accuracy compared to 

RF and LGBM, with p-values less than 0.02 (Bonferroni adjustment). Notably, the statistical test on the 

RMSE from the 15 iterative model runs showed no significant difference in the prediction capabilities of 

the RF and LGBM models. Besides, the RF and LGBM models resulted in higher prediction variability 

(SD = 0.98 and 0.49), while the UNet model had the lowest prediction variability (SD = 0.27), indicating 

more consistent predictions. Also, the statistical significance of the test on UNet, RF, and LGBM models 

on the Mabounie site is summarized in Appendix (3d). The results reiterated the Lope site's statistical 

evaluation with an F value of 45.06, where UNet outperformed the RF and LGBM.   

Figure 11 The confusion plots on the left compare RF and LGBM (CH) predictions to the LiDAR (RH98) map for test 
datasets from the Mabounie site, with a density colormap showing the observation distribution. On the right are the 
estimated CH maps using RF and LGBM models. 
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5. DISCUSSION 

5.1. Investigation of SAR Polarization and Wavelength Performance 

This study investigated the possibility of estimating forest CH using different wavelengths and 

combinations, on the FCN-based UNet model. The findings of this study suggest that backscatter images 

of different polarizations can accurately estimate forest CH using UNet models with a single baseline 

image. The accuracies were consistent for homogenous and heterogenous forest sites for all bands. As 

expected, each polarization interacts distinctively with various parts of the forest structure; therefore, 

combining polarizations enables accurate estimation of forest CH (Green, 1998; Srivastava et al., 2009).  

While HV polarization is highly sensitive to forest canopy volume (Chen et al., 2021; Liu et al., 2021), 

backscatter of HH and VV polarizations are frequently observed in trunks and ground surface interactions 

(Chen et al., 2020; Sun & Simonett, 1988). Silveira et al. (2023) also highlighted that co-polarization 

penetrates deeper into forest layers and provides vertical information, while cross-polarization provides 

mostly canopy information due to shallow penetration. However, co-polarization (HH and VV) 

backscatters are subject to attenuation by canopy closure and canopy volume, and their effectiveness 

largely depends on the wavelength's penetration ability (Townsend, 2002). 

When L- and P-bands were used individually, statistical significance tests indicated that their CH 

estimation performance differed between the Lope and Mabounie sites. This discrepancy could result 

from variations in forest structure, topography, and forest height distribution. Despite having similar 

dominant tree species, Mabounie is a homogeneous forest with mostly mature trees of uniform heights 

(30-35 m). In contrast, Lope's trees exhibited a wide range of heights (section 2.2). Additionally, Mabounie 

has plain topography, while Lope features hilly terrain (sections 2.1 and 2.2). As mentioned earlier, the 

effects of ground topography were corrected. This topographic correction approach improved the model 

output in the study by Schlund and Davidson (2018). So, it can be assumed that the terrain correction was 

sufficient to reduce the terrain effect for this study. Thus, the results indicated a different sensitivity of the 

two wavelengths to CH distribution. Our study suggested that the P-band performed better in CH 

estimation at the Mabounie site than the L-band. On the contrary, the performance of the L-band and P-

band did not exhibit a statistically significant difference for Lope. This was because the L-band interacts 

mainly with the canopy and branches, while the P-band's longer wavelength penetrates deeper, capturing 

ground-stem interactions (Neumann et al., 2012; Sandberg et al., 2011). However, Gazzea et al. (2023) and 

our study both suggest that longer wavelengths like P-band can result in a negative bias or overestimation 

for low-height forest strata due to the intricate signals from the understory, trunks, and ground coupling. 

Similar performance of the L-band at Lope was also observed in a previous study by Liu et al. (2021). Liu 

et al. (2021) used tomograms obtained from multi-baseline interferometric data, which is different from 

polarimetric backscatter-based estimation, indicating that the observed consistency in CH accuracy might 

result from the penetration capabilities of the wavelengths used. The CH of forest stands in Lope 

exhibited a bimodal distribution, with most values concentrated in the ranges of 1-8 m and 35-48 m. This 

contrasts with the  

s in Mabounie, which followed a more normal distribution. The distribution for Mabounie showed a high 

kurtosis of 0.69, indicating a more concentrated distribution. Approximately 80% of the CH in Mabounie 

fall between 25-40 m (Figure 2). So, it could be argued that the saturation and underestimation of CH for 

the L-band at the Mabounie site resulted from the homogeneity in the forest stands.  
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The results of this study also illustrated that the combination of L- and P-band could significantly improve 

model performance accuracy and reduce saturation effects for both forest sites, regardless of whether the 

forest structure is homogeneous or heterogeneous. While the P-band may better map CH due to increased 

penetration, it can also generate more complex signals from sub-canopy, trunks, and ground coupling 

(Gazzea et al., 2023). Consequently, the combination is complementary due to the different sensitivity to 

different forest layers of the two bands. However, no studies have been found that combine these bands 

specifically for CH estimation. Schlund and Davidson (2018) reported improved model performance by 

combining SAR wavelengths for AGB estimation in boreal and hemi-boreal forest sites. Notably, the 

underestimation of CH for heights above 50 m in Lope and 40 m in Mabounie could be considered 

insignificant when evaluating the wavelengths or model performances, as the frequency of occurrence for 

this CH range is less than 1% of the data (Figure 2). Interestingly, conventional RF and LGBM ML 

models were able to predict taller CH due to the stratification sampling technique, which is discussed 

further in section 5.2. 

5.2. Comparative Assessment of Model Performances  

Statistical significance tests on the prediction performances of conventional RF and LGBM models, and 

customized UNet models indicated that UNet models provided better accuracy. It is often claimed that 

FCN-based UNet models can predict with higher accuracy than pixel-based RF and LGBM models 

because UNet accounts for spatial context (Ge et al., 2022) However, in this study, the spatial context was 

additionally introduced to the RF and LGBM using GLCM features (section 3.1.2), yet they still failed to 

achieve the same accuracy as the UNet model. Therefore, it can be assumed that other factors influenced 

the model prediction accuracy. The improved performance for CH estimation of the customized UNet 

framework can be attributed to the potential of UNet to capture relevant features from different 

dimensions using a 1x1 convolution block.  This assumption is supported by findings from studies such as 

Schlund et al. (2018) and Soja et al. (2012), which highlighted the importance of combining dimensional 

channels to extract features. For instance, a simple HH/VV polarization ratio can reduce the topographic 

effect. In addition, the selection of suitable activation functions, such as the ELU function helps minimize 

the information and pattern loss. Besides, reducing the number of layers based on patch size helps to 

prevent edge artifacts on the patches (Pascarella et al., 2023). 

Although UNet produced better overall accuracy than RF and LGBM, with RMSE three times lower, it 

failed to predict the taller CH (>50 m in Lope and >40 m in Mabounie), which comprised less than 1% of 

the dataset. This limitation arose because FCN models require large datasets for effective training (Lang et 

al., 2023), which were not available for this study.  In contrast, RF and LGBM were able to predict this 

smaller portion of CH due to the stratification sampling technique and their inherent rule-based methods, 

which enabled these models to effectively split leaves for tall CH even with fewer training samples. 

Furthermore, due to the lack of sufficient variability in the CH distribution, RF and LGBM showed a 

saturation in the homogeneous forest site of Mabounie. Pourshamsi et al., (2021) also demonstrated 

similar saturation in the conventional RF, CCF, and SVM models using L-band PolSAR backscatter at the 

Lope site, due to insufficient variability in the training samples.  

It is worth discussing that the UNet model is computationally expensive to train compared to RF and 

LGBM (Ge et al., 2022). In this study, while RF and LGBM were trained on only 16 GLCM features, the 

UNet architecture extracted a total of 1216 features from the encoder and decoder blocks using the six 

PolSAR backscatters. Therefore, to make a fairer comparison of the models, incorporating more 

parameters into RF and LGBM was necessary. Specifically, including cross-channel parameters might help 

overcome the shortcomings of conventional methods, presenting a potential direction for future research. 
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At the same time, introducing the explainability of UNet model predictions is essential to improve the 

model's transparency and transferability. 

5.3. Uncertainties Associated with Reference Data 

To validate ML model outputs, it is crucial to report uncertainties in the reference map. These 

uncertainties can propagate through the analysis and accumulate, potentially impacting model output. 

Fatoyinbo et al. (2021) reported significant variability in LVIS height metrics for Lope and Mabounie. In 

Lope, maximum canopy heights were estimated at 75.9 m (RH 98) with individual footprints up to 88.9 m, 

often overestimated due to complex topography (Fatoyinbo et al., 2021). In Mabounie, heights peaked at 

75.26 meters (RH98), with sub-canopy heights from 8.9 m to 13.8 m. Further comparisons with ALS data 

showed a positive mean bias in LVIS estimates, with RMSE up to 4.2 m in Lope. This bias increases with 

canopy cover and slope, complicating accurate ground elevation and CH estimation (Hancock et al., 

2017). However, for this study, upon upsampling to 20 m grid spacing the highest CH was found to be 58 

m for Lope and 60 m for Mabounie. Additionally, dense cloud covers of the tropics caused gaps in the 

lidar data, and there were also missing values due to non-adjacent flight lines (Armston et al., 2020). This 

resulted in a shortage of sampling patches for ML models for the Mabounie site. 

5.4.  Comparison to Similar Works  

Few studies have explored various methods and SAR data for forest height prediction in tropical forests 

(Li et al., 2023; Mahesh & Hänsch, 2023; Pourshamsi et al., 2021). The findings of our study are 

comparable to these studies. In the tropical region, Pourshamsi et al. (2021) reported forest CH estimation 

accuracies with L-band PolSAR backscatter and SRTM-derived variables, achieving an RMSE of 10m at 

the pixel level. In contrast, our study found an RMSE of 6.45m for the same site using L-band PolSAR 

backscatters alone. Additionally, while their results showed high saturation, our model demonstrated 

better performance in reducing the saturation of CH. L-band PolInSAR data and CNN in the same study 

area obtained an RMSE of 10.15m (Li et al., 2023). In another study in the tropical region, Mahesh and 

Hansch (2023) used X-band InSAR data with a UNet architecture, achieving an RMSE ranging from 5.78 

m to 8.98 m, while our model demonstrated superior performance with an RMSE of 3.78 m to 4.63 m. 

The improved performance may result from the longer wavelengths used in this study. Moreover, to the 

best of our knowledge, our customized UNet models provided better accuracy than other CH estimation 

studies that combined SAR and optical imagery with FCN models in boreal and temperate regions (Astola 

et al., 2021; Ge et al., 2022). Recently Tolan et al. (2024), Lang et al., (2023), and Potapov et al. (2021) and 

produced global forest height maps from optical imagery using FCN models. The estimation accuracies of 

their models are within the same range as ours, with mean RMSE values between 4.5 and 7.5 m. It is 

noteworthy that the models from these studies were trained and tested on larger datasets and have higher 

spatial resolutions compared to the present study, providing evidence of their robustness and precision. 

To fairly compare these models with our own, it is essential to provide scientific evidence that generalizes 

this proof of concept across different biomes and enables forest height estimation at a global level. 

Nevertheless, the findings of this study are promising and encourage further research using UNet models 

and SAR data. 

5.5. Implications & Future Research Directions  

The findings from this study, as discussed in the previous section, have significant implications for future 

SAR missions such as BIOMASS and NISAR. An important note for these missions is that integrating L-

band and P-band radar observables can significantly enhance forest CH estimations compared to using 
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each band individually. The complementary characteristics of these bands in estimating CH for tropical 

forests suggest that each band may provide more accurate estimations under varying biome conditions and 

forest structures, which needs further exploration. Furthermore, future research can be expanded by 

exploring the effectiveness of shorter SAR wavelengths, such as X- and C-band observables. Notably, the 

C-band of Sentinel-1, along with the upcoming P-band BIOMASS and L-band missions, offers the 

potential for global-scale forest height estimation. Therefore, enabling automation with UNet or other 

FCN frameworks can significantly foster ongoing forest conservation initiatives. While FCN models like 

UNet reduce efforts in producing handcrafted features for model prediction, they introduce complexities 

in model interpretability. Therefore, another future direction for this work could involve using 

polarimetric decomposition features as model inputs and employing Local Interpretable Model-agnostic 

Explanations (LIME) to better understand which scattering mechanisms and to what extent influence 

model estimations. Future studies could also explore transfer learning approaches to minimize data 

scarcity issues, potentially enhancing model robustness and applicability in diverse ecological settings. 

6. CONCLUSION  

This study demonstrates the effectiveness of using L- and P-band PolSAR backscatters in combination 

with a customized UNet architecture for accurate forest CH estimation. The dual-band approach 

outperformed single-band methods, providing more accurate CH predictions across both heterogeneous 

and homogeneous forest sites. The customized UNet model exhibited superior performance compared to 

traditional ML models (RF and LGBM), achieving higher R² and lower RMSE values.  

It is worth noting the study's findings were limited to tropical regions and may not be generalizable to all 

biomes. The model also showed limitations in accurately predicting very tall canopy heights due to the 

scarcity of such samples in the training data. Thus, future research should incorporate more study areas or 

explore transfer learning to address these issues. Additionally, exploring other SAR wavelengths and 

features will help further refine and validate the proposed methodology. Also, incorporating explainability 

and interpretability into the model is crucial to enhance its transparency and utility for stakeholders.  

Despite the limitations, the integration of this approach into national forest monitoring systems can 

significantly improve the accuracy of forest biophysical parameter estimations, supporting global efforts in 

forest conservation and climate change mitigation. 
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7. APPENDICES 

 

Appendix 1: Represent the convergence graph of the training loss and validation loss of Lope (a)L- band ( 

(b) P-band, (c) Dual-band and Mabounie (d) L- band, (e) P-band, (f) Dual-band 

 

 

Appendix 2 (a) RMSE Values from Iterative UNet Model Runs for Lope 

 

L- band P-band Dual band 

7.8 8.94 4.53 

10.2 8.91 3.78 

7.56 8.03 4.42 

9.09 8.94 3.78 

9.33 8.89 3.74 

9.12 8.08 4.53 

9.99 9.21 3.78 

9.09 9.09 4.42 

8.99 9.04 3.78 

9.09 9.09 3.74 

9.88 9.09 3.74 

10.22 7.55 3.74 

8.98 9.01 3.74 

9.09 9.13 3.74 

9.09 8.88 3.68 

 

(b) RMSE Values from Iterative UNet Model Runs for Mabounie  
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RF LGBM UNet 
 

7.8 8.94 3.78 
 

10 8.94 3.78 
 

7.56 8.03 4.42 
 

9.09 8.94 3.78 
 

9.09 8.94 3.74 
 

9.09 8.08 4.53 
 

9.09 9.09 3.78 
 

9.09 9.09 4.42 
 

9.09 9.09 3.78 
 

9.09 9.09 3.74 
 

10 9.09 3.75 
 

10.22 7.55 3.78 
 

7.8 8.94 3.74 
 

9.09 8.94 3.66 
 

9.09 8.94 3.68 
 

 

 

 

(c) RMSE Values from Iterative RF, UNet and LGBM Model Runs for Lope 

 

RF LGBM UNet 

9.77 9.09 4.53 

10.04 6.56 3.78 

9.17 9.51 4.42 

9.42 9.51 3.78 

10.04 9.52 3.74 

9.77 9.52 4.53 

10.04 9.52 3.78 

9.17 9.09 4.42 

9.42 9.09 3.78 

10.04 10.04 3.68 

9.42 10.04 3.75 

10.04 9.09 3.74 

9.77 9.13 3.79 

6.57 6.56 3.74 

10.04 9.13 3.68 

 

(d) RMSE Values from Iterative RF, UNet and LGBM Model Runs for Mabounie 

 

RF LGBM UNet 

7.8 9.09 3.78 

10 6.56 3.78 

7.56 9.51 4.42 

9.09 9.51 3.78 

9.33 9.52 3.74 

9.09 9.52 4.53 
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9.18 9.58 3.78 

9.09 9.09 4.42 

9.25 9.66 3.78 

9.09 10.04 3.74 

10 10.3 3.75 

10.22 9.09 3.78 

7.8 9.13 3.74 

9.09 6.56 3.66 

9.2 9.13 3.68 

 
Appendix 3  

(a)  Statistical significance test on RMSE of L-, P- and Dual Band estimations for Lope site 

  

Groups Count Sum Average Variance Standard Deviation  

L- band 15 97.57 6.50 0.97 0.98  

P-band 15 84.64 5.64 0.25 0.50  

Dual-band 15 63.81 4.25 0.07 0.27  

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 38.68 2 19.34 45.06 0.00 3.22 

Within Groups 18.03 42 0.43    

       

Total 56.71 44         

       

       

POST-HOC TEST         
Groups 

P-value (T-test) Significant?   ALPHA   

L- band v P- band 0.06 NO 
  Test Alpha 

P-band v Dual-band 0.00 YES 
  ANOVA 0.05 

Dual-band v L-band 0.00 YES 

  

Post-hoc test  
(Bonferroni corrected) 

0.02 
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 (b) Statistical significance test on RMSE of L-, P- and Dual Band estimations for Mabounie site 

 

 

(c) Statistical significance test on RMSE of RF, LGBM, and UNet for Lope site 

SUMMARY       

Groups Count Sum Average Variance Standard Deviation  

RF 15 97.57 6.50 0.97 0.98  

LGBM 15 84.64 5.64 0.25 0.50  

UNet 15 63.81 4.25 0.07 0.27  

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 38.68 2 19.34 45.06 0.00 3.22 

Within Groups 18.03 42 0.43    

       

Total 56.71 44         

       

       

POST-HOC TEST         
Groups 

P-value (T-test) Significant?   ALPHA   

SUMMARY       
Groups Count Sum Average Variance Standard Deviation  

L- band 15 97.57 6.50 0.97 0.98  
P-band 15 84.64 5.64 0.25 0.50  
Dual-band 15 63.81 4.25 0.07 0.27  

       
ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 38.68 2 19.34 45.06 0.00 3.22 

Within Groups 18.03 42 0.43    

       
Total 56.71 44         

       

       
POST-HOC TEST         

Groups P-value (T-test) Significant?   ALPHA   

L- band v P- band 0.00 YES   Test Alpha 

P-band v Dual-band 0.00 YES   ANOVA 0.05 

Dual-band v L- band 0.00 YES 
  

Post-hoc test  
(Bonferroni corrected) 0.02 
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RF v LGBM 0.18 NO 
  Test Alpha 

LGBM v UNet 0.00 YES 
  ANOVA 0.05 

UNet v RF 0.00 YES 

  

Post-hoc test  
(Bonferroni corrected) 

0.02 

 

 

 

(d) Statistical significance test on RMSE of RF, LGBM, and UNet for Mabounie site 

SUMMARY       

Groups Count Sum Average Variance Standard Deviation  

RF 15 97.57 6.50 0.97 0.98  

LGBM 15 84.64 5.64 0.25 0.50  

UNet 15 63.81 4.25 0.07 0.27  

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 38.68 2 19.34 45.06 0.00 3.22 

Within Groups 18.03 42 0.43    

       

Total 56.71 44         

       

       

POST-HOC TEST         
Groups 

P-value (T-test) Significant?   ALPHA   

RF v LGBM 0.33 NO 
  Test Alpha 

LGBM v UNet 0.00 YES 
  ANOVA 0.05 

UNet v RF 0.00 YES 

  

Post-hoc test  
(Bonferroni corrected) 

0.02 
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