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Abstract

The mathematical study of puzzles and games has gained quite some popularity. We con-
tribute to this growing area of research by introducing the game of Snake on a graph. Based
on the classic computer game Snake, a snake forms a simple path that has to move to an
apple while avoiding colliding with itself. When the snake reaches the apple, it grows longer,
and a new apple appears. A graph on which the snake has a strategy to keep eating apples
until it covers all the vertices of the graph is called snake-winnable. We refer to the problem
of determining whether a graph is snake-winnable as the snake problem.

We prove the snake problem is NP-hard, even when restricted to grid graphs. For
odd-sized bipartite graphs and graphs with vertex-connectivity 1, we fully characterize the
snake-winnable graphs. Furthermore, we show that non-Hamiltonian graphs with a girth
greater than 6 are never snake-winnable and provide a necessary graph structure for all
snake-winnable graphs.
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1. Introduction

1.1 The game of Snake

Many will remember playing Snake on their mobile phone. Created by Taneli Armanto [7],
its introduction on Nokia phones in 1998 popularized mobile phone games, and solidified it
as a timeless classic. Players control a snake and have to guide it to apples. With each apple
consumed, the snake grows longer. The challenge is to grow the snake as long as possible
while avoiding collisions with its own body or the screen’s borders.

Figure 1.1: A recreation of the 1998 Nokia snake game.

The origin of Snake, however, dates back much further than the Nokia version. In 1976
the arcade game Blockade was released by Gremlin Industries [6]. Unlike the Nokia version,
this was a two-player game where both players controlled a snake and had to block each
other.

A single-player version called Snake Byte was published in 1982 by Sirius Software [9].
Written by Chuck Sommerville, the game was already quite similar to the Nokia version
but also featured solid obstacles and moving plums that the snake had to avoid. The game
Nibbler, also released in 1982 [8], focused more heavily on the obstacles and had the snake
navigate a maze-like structure to reach the apples. Feeling more like a hybrid between snake
and Pac-Man, the game would start with all the apples already placed within the maze, and
the snake had to consume them all to complete the level.

Figure 1.2: Part of an advertisement for Snake Byte from the Summer 1983 Sirius Product
Catalog.
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1 INTRODUCTION

Over the years, many new versions of the game have been released. A search for “snake”
on Google even provides you with a playable version right on the search results page. Inspired
by this popular game, we will continue the tradition of turning fun games into even more
exciting mathematics.

Since the game of snake is usually played on a grid, it has a natural translation to a game
on a grid graph. The snake forms a path on the graph and moves from vertex to vertex to
navigate to a vertex with an apple. But we do not have to restrict ourselves to grid graphs
since this game can be generalized to any connected graph.

1.2 Related work

Over the years, many puzzles and games have been studied through a mathematical lens.
Demaine provides an extensive overview of the area of combinatorial games [4], including
games such as Checkers and Jenga, and puzzles like Sudoku and Minesweeper.

Closer related to our game of Snake, is the work by De Biasi and Ophelders [3] on the
Nibbler food collection problem. This problem asks the following: given a graph, the food
locations, growth rate, and starting position of the snake, can the snake collect all the food?
The growth rate indicates how much the snake grows each time it eats a piece of food.
The Nibbler food collection problem is NP-hard, even when restricted to solid grid graphs.
Furthermore, if the growth rate is at least 2, then it is also NP-hard on rectangular grid
graphs.

1.3 Our contributions

While the work by De Biasi and Ophelders is primarily inspired by the game Nibbler, our
version of Snake on a graph is closer to the Nokia version. Instead of having all the apples
on the graph from the beginning, only one apple is present at a time. A new apple is placed
only when the previous one is consumed, meaning the snake does not know the locations of
future apples. Hence, it will have to adjust its strategy according to where the next apple
appears. In contrast to the game described by De Biasi and Ophelders, which is framed
as a motion planning problem, our game can be viewed as a two-player game where the
apple placer acts as an adversary to the snake. We also generalize the game to be played on
any connected graph, rather than strictly adhering to the original game of Snake and only
considering grid graphs.

For Snake on a graph, we show that determining whether the snake has a winning
strategy is NP-hard, even when restricted to grid graphs (Section 4). We also take steps
towards characterizing the graphs with a winning strategy for the snake. We give a full
characterization of the winnable odd-sized bipartite graphs (Section 3.2.1) and winnable
graphs with vertex-connectivity 1 (Section 7.1). Furthermore, we show that the snake can
never win on non-Hamiltonian graphs with a girth greater than 6 (Section 5). Finally, we
provide a necessary graph structure for the snake to have a winning strategy (Section 6).

1.4 Preliminaries and notation

We provide a brief summary of the notation used, as well as some of the requisite background.
For a more in-depth source on graph theory, we refer to the book Graph Theory With
Applications by Bondy and Murty [1].

For a graph G, we write G = (V,E), where V is the set over vertices and E is the set
of edges of G. By |V | and |E| we denote the cardinality of these sets. An edge between the
vertices u and v is denoted uv. For a vertex v ∈ V , the neighbor set is denoted N(v) and
consists of all vertices that are adjacent to v. The degree of v, denoted d(v) is the cardinality
of N(v).
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1 INTRODUCTION

Let G′ be a subgraph of G. By V (G′) we denote the set of vertices and by E(G′) the set
of edges of G′. A subgraph G′ is complete if uv ∈ E(G′) for all u, v ∈ V (G′). Otherwise, we
call G′ incomplete. For some v ∈ V \V (G′), G′ + v denotes the graph obtained by adding v,
and all the edges uv with u ∈ V (G′) to G′.

Let S be a subset of V . The subgraph induced by S consists of the vertices of S, and all
the edges of E with both endpoints in S. By G− S we denote the subgraph of G induced
by V \S. If S = {v}, then by slight abuse notation we denote G− S = G− v.

A path P = (p1, . . . , pk) is an ordered set of vertices with pipi+1 ∈ E for all i ∈ {1, . . . , k−
1}. The vertices p1 and pk are the endpoints, and all other vertices are internal vertices
of P . The path is simple if no two vertices on the path are the same. In some cases, we will
view P as the ordered set of edges (p1p2, p2p3, . . . pk−1pk). By |P |, we denote the number
of edges on P , which we call the length of the path. Note the number of vertices on a path
is always 1 more than the length of the path. We denote P = V \V (P ).

If for every u, v ∈ V , there exists a path from between u and v, then we say G is
connected. Otherwise, we call G disconnected.

A cycle C = (c1, . . . , ck) is a path with ckc1 ∈ E. When considering the cycle as a set of
edges, we also view ckc1 as part of the cycle. Hence, the length of a cycle |C| denotes the
number of edges, as well as the number of vertices on C. Just like paths, a cycle is simple
if no two vertices on the cycle are the same, and C = V \V (C).

A Hamiltonian cycle in G = (V,E) is a simple cycle that contains all the vertices of V .
If a graph has a Hamiltonian cycle, then we call it Hamiltonian. Otherwise, refer to it as
non-Hamiltonian.

A graph G = (V,E) is bipartite if V can be partitioned into two disjoint sets X and Y
such that every edge has one endpoint in X and the other in Y .

If a graph can be embedded in the plane, that is, it can be drawn in the plane without
any crossing edges, then it is planar. The outer face of an embedding is the unbounded
region that surrounds the graph. The outer boundary consists of all the edges and vertices
that directly border the outer face.
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2. The game of Snake on a graph

In the game of Snake, a snake moves around a grid while avoiding colliding with the
surrounding walls or its own body. The snake consists of a sequence of grid squares. The
first square of this sequence, the head of the snake, can move to any of the free adjacent
squares. The rest of the body follows the head.

At any point in time, one of the grid squares contains an apple. The snake’s aim is to
eat this apple by moving its head onto this square. When the snake eats the apple, it grows
one square longer. As this happens, a new apple appears on one of the free squares. An
example of the gameplay can be found in Figure 2.1.

Part of the difficulty of the game lies in the fact that the snake is always moving, requiring
the player to react quickly. In many versions, the snake even speeds up as the game moves
on. We will, however, completely eliminate this element. We are not interested in whether
the player is quick enough to make a certain move; instead, we want to know whether the
move is possible at all.

Since the game of Snake is played on a grid, we can describe it as a game on a grid
graph, as depicted in Figure 2.2. The snake forms a simple path that moves around in the
graph. While the original game would always be played on a grid graph, we can generalize
it to any type of simple graph.

Let us now formally define the rules of Snake on a graph. The game is played on a
connected simple graph G = (V,E) with |V | ≥ 3. From now on, we will assume all our
graphs have this property.

2.1 Snake position

During the game, the snake will always occupy an ordered set of vertices, which must form
a simple path. We define the length of the snake as the number of vertices on this path.
Since the length of a path is defined as the number of edges it contains, the length of the
snake will always be one more than the length of the path it forms.

Let ℓ be the current length of the snake, then we denote the position of the snake
by S = (s1, . . . , sℓ). We will refer to s1 as the head, and sℓ as the tail of the snake. By S,
we denote all vertices in V that are not on S. We will refer to S as the unoccupied set.

In some cases, we will index the snake’s position by time to better describe the snake’s
movement. By St = (st1, . . . , s

t
ℓ), we denote the position of the snake at time t.

2.2 Snake movement

Let St = (st1, . . . , s
t
ℓ) be the current position of the snake. For a vertex v ∈ V , the neighbor

set N(v) denotes the set of vertices in V that are adjacent to v. The head of the snake must
move to a vertex in N(st1). Suppose the head moves from st1 to some vertex v ∈ N(st1).

Figure 2.1: The snake moves towards the apple and grows by one square.
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2 THE GAME OF SNAKE ON A GRAPH

Figure 2.2: The game of Snake can be described as a game on a rectangular grid graph.

Then the next position of the snake becomes St+1 = (v, st1, . . . , s
t
ℓ−1). In other words, we

add v to the beginning of the path and remove stℓ from the end.
By our rules, St+1 should still form a simple path. It follows that the head can move

to any adjacent vertex that is either unoccupied or the current tail vertex, as depicted in

Figure 2.3a. More formally, the head must move to some vertex in N(st1)∩
(
St ∪ {stℓ}

)
. In

Figure 2.3b, we can see that if the snake moves to an occupied vertex that is not the tail,
then the snake will no longer form a simple path. Hence, we forbid this type of movement.

An exception to the rules is made when the snake has length ℓ ≤ 2. For these shorter
lengths, we do not allow the head to move to the tail vertex, since this would allow the
snake to turn around. At the end of Section 2.4, we will see that this exception makes a
significant difference.

2.3 Eating an apple

At the start of the game, the location of the first apple can be any vertex. Let a be the
first apple location, then the snake automatically starts on a with S0 = (a). The next
apple is placed on some vertex a′ ̸= a. The game then continues as follows. At each point
in the game, there will be exactly one apple on the graph. The snake eats the apple by
moving its head to this vertex, at which point a new apple is immediately placed on one of
the unoccupied vertices. We will sometimes refer to the apple location as the apple itself.
Let St = (st1, . . . , s

t
ℓ) be the current snake position and a the current apple location. Suppose

the head moves from st1 to a. Then the snake eats the apple on a and the next snake position
will be St+1 = (a, st1, . . . , s

t
ℓ). So unlike “normal” movement, stℓ is not removed from the

path and the snake grows one vertex longer.

(a) The snake can move to an un-
occupied vertex or the tail vertex.

(b) After an illegal move, the snake
no longer forms a simple path.

Figure 2.3: The rules for the snake’s movement are demonstrated on a grid graph.
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2 THE GAME OF SNAKE ON A GRAPH

Observation 2.1. Let a be the location of the apple at time t, then a /∈ St.

Proof. First, we note that st1 ̸= a, since otherwise the apple would be eaten and no longer
be on the graph.

Suppose a = sti for some i ∈ {2, . . . , ℓ}. Then the head must have been on a at some
earlier point after which a has remained occupied by some part of the snake up until time t.
But we know that the apple on a could only have been placed at a time when a was
unoccupied. Hence, the head must have reached a sometime after the apple was placed,
which would imply that the apple was already eaten and is no longer on the graph.

2.4 Winning and losing conditions

If the snake manages to reach length |V |, then we say the snake wins. Note that when this
happens, the snake will occupy all the vertices. Hence, there are no more vertices an apple
could be placed on.

If there is no vertex the snake can move to, then the snake loses. To be more precise,
if ℓ < |V |, the snake is in the position S = (s1, . . . , sℓ) and

N(s1) ∩
(
S ∪ sℓ

)
= ∅,

then the snake loses.
We want to avoid strategies where the snake can keep moving around without making

progress. Imagine, for example, a scenario where the snake will lose if it eats the apple, but
it can keep moving in cycles, postponing its loss forever. To this end, the snake will also
lose if it repeats a previous position. More precisely, if for the current position St, there is
some t′ < t such that St′ = St, then the snake loses. Note that the snake can never repeat
a position it was in at a shorter length. Furthermore, any strategy that repeats a position
can be reformulated as one where the position is not repeated: we simply remove the set
of moves between the two identical positions. Because of this, we will not be very careful
with this rule when formulating winning snake strategies. If we find a winning strategy that
violates it, we know there exists a winning strategy that does adhere to the rule.

Our aim is to determine on which graphs the snake can always win, regardless of the
apple placement. To this end, we will often view it as a two-player game: one player controls
the snake, and the other places the apples. While the snake tries to grow to length |V |, the
apple placer tries to prevent the snake from doing so. We will usually assume both players
play perfectly and always use a winning strategy if possible. When the snake has a winning
strategy on a graph, we will call the graph snake-winnable. We will refer to the problem of
determining whether a graph is snake-winnable as the snake problem.

To conclude our overview of the game, we make a few observations regarding snake-
winnable graphs.

Observation 2.2. If G does not contain a Hamiltonian path, then G is not snake-winnable.

Proof. Since the snake must always form a simple path in G, if it reaches length |V | it will
form a Hamiltonian path.

Observation 2.3. If G is Hamiltonian, then G is snake-winnable.

Proof. Since G is Hamiltonian, there is some simple cycle C in G that contains all vertices.
The snake can keep moving along this cycle. Since any apple will be placed on C, it will
eventually be eaten by the snake. By following this strategy, the snake can keep growing
until it covers the entire cycle, which contains all vertices.

Observation 2.4. Suppose G = (V,E) has a spanning subgraph G′ = (V,E′) that is snake-
winnable, then G is snake-winnable.
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2 THE GAME OF SNAKE ON A GRAPH

Proof. Since E′ ⊆ E, any move that is legal for the snake on G′ is also legal on G. It follows
that if the snake has a winning strategy on G′, then it can use the same strategy to win
on G.

Note that Observation 2.4 also implies that if G is not snake-winnable, then none of the
spanning subgraphs of G can be snake-winnable.

Observation 2.5. For a graph G = (V,E), if there is some v ∈ V with degree d(v) = 1,
then G is not snake-winnable.

Proof. Suppose there is some vertex v ∈ V with d(v) = 1 and let u be the only neighbor
of v. Since |V | ≥ 3, the first apple can be placed on some vertex that is not v. The second
apple is then placed on v. When the snake eats the second apple, we must have s1 = v
and s2 = u. But since the snake has length 2, the head is not allowed to move to u, which
means there is no vertex the head can move to.

In the proof of Observation 2.5, we used that at length 2, the head cannot move to the
tail vertex. In fact, without this restriction, the observation would not hold, as P3, the path
graph on three vertices, would be snake-winnable.
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3. Snake on grid graphs

As we saw in Section 2, the original game of Snake can be described on a grid graph.
In fact, the game is usually played on a subclass of grid graphs known as rectangular grid
graphs. In this section, we will study the game on this subclass, as well as the more general
class of grid graphs.

3.1 Rectangular grid graphs

In most versions of the game, the playing field of the snake is a rectangular area. This can
be described as a rectangular grid graph, which has an embedding as a rectangular grid.

Definition 3.1. A rectangular grid graph G = (V,E) is a graph that has an embedding
with V = [m] × [n] with m,n ∈ N. For any u, v ∈ V we have uv ∈ E if and only
if ∥u− v∥ = 1.

When covering rectangular grid graphs, we will often refer to the embedding as the graph
itself. In some cases, we will refer to a vertex by their coordinates in the embedding.

If either m = 1 or n = 1, then G is a path graph and, thus, has a vertex of degree 1.
By Observation 2.5, it follows that these graphs are not snake-winnable. We will show that
all rectangular grid graphs that are not path graphs are snake-winnable. The following
observation will be helpful.

Observation 3.2. All rectangular grid graphs are bipartite.

Proof. Let G be a rectangular grid graph and (x, y) be a vertex of G. The only possible
neighbours of (x, y) are (x + 1, y), (x − 1, y), (x, y + 1), and (x, y − 1). In other words, a
vertex can only be adjacent to vertices with a coordinate sum that differs by exactly 1. It
follows that we can partition the vertices based on the parity of their coordinate sum.

Let us first turn our attention to rectangular grid graphs with an even number of vertices.
These even-sized graphs are exactly those with at least one of m or n even. For m,n ≥ 2,
these graphs are known to be Hamiltonian [2]. For completion, we present our own proof
by demonstrating how to construct such a Hamiltonian cycle.

Lemma 3.3. Let G = (V,E) be an m×n rectangular grid graph with m,n ≥ 2 and at least
one of m or n even. Then G is Hamiltonian.

Proof. Since an m × n rectangular grid graph is isomorphic to an n × m rectangular grid
graph, without loss of generality, we may assume m is even. Let m = 2x for some x ∈ N.
Our Hamiltonian cycle will be constructed by linking several paths together. An example
of this construction can be found in Figure 3.1.

For i ∈ {1, . . . , x}, let Pi be the path

Pi = ((2i− 1, 2), (2i− 1, 3), . . . , (2i− 1, n), (2i, n), (2i, n− 1), . . . , (2i, 2)) .

We can combine these paths to form a longer path P = (P1, P2, . . . , Px). Then P forms a
simple path from (1, 2) to (2x, 2) = (m, 2). Let P ′ be the path

P ′ = ((m, 1), (m− 1, 1), . . . , (1, 1)) . (1)

Note that P ′ is completely disjoint from all the Pi, and therefore also disjoint from P .
Furthermore, P contains all vertices in V that do not lie on P ′. It follows by combining P
and P ′, we obtain a Hamiltonian cycle.
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3 SNAKE ON GRID GRAPHS

(1, 1) (m, 1)

P1 P2 P3 P

P'

Figure 3.1: Constructing a Hamiltonian cycle on an even-sized rectangular grid graph.

Corollary 3.4. Let G = (V,E) be an m × n rectangular grid graph with m,n ≥ 2 and at
least one of m or n even. Then G is snake-winnable

Proof. By Observation 2.3, if a graph is Hamiltonian, then it is snake-winnable.

Next, we will consider odd-sized rectangular grid graphs. Again, we only focus on
rectangular grid graphs that are not path graphs. Unlike our previous result, these graphs
turn out to be non-Hamiltonian.

Observation 3.5. If G = (V,E) is an odd-sized rectangular grid graph, then G is non-
Hamiltonian.

Proof. By Observation 3.2, G is bipartite. Bipartite graphs do not contain any odd cycles.
For G to be Hamiltonian, we would need a cycle of length |V |, but since |V | is odd, this is
not possible.

Although odd-sized grid graphs are non-Hamiltonian, we can construct a cycle that
contains all vertices except for one. In fact, we can find two of these cycles that differ
by exactly one vertex. Thus, the union of these two cycles will contain all vertices. In
Section 3.2.1, we will see that this type of two-cycle structure plays an important role in
snake strategies on the more general class of grid graphs. Furthermore, we will introduce a
generalization of this structure in Section 7.2, which is always snake-winnable.

For odd-sized rectangular grid graphs, an example of the construction of these two cycles
be found in Figure 3.2a and is done as follows.

Lemma 3.6. Let G = (V,E) be an m × n rectangular grid graph, with m,n ≥ 2 and both
odd. Then G contains two different cycles C1 and C2, both of length |V | − 1, with the
following property: there is a vertex v on C1 and a vertex u on C2 such that by replacing v
by u on C1, we obtain C2.

Proof. Let m = 2x+ 1 and n = 2y + 1 for some x, y ∈ N. We will first construct C1, this is
depicted in Figure 3.2a. The paths P1 up to Px−1 are constructed in the same manner as
for the proof of Lemma 3.3. We construct the path Px by linking the following paths:

P l
x = ((2x− 1, 2), (2x− 1, 3), . . . , (2x− 1, 2y + 1), (2x, 2y + 1), (2x, 2y), (2x+ 1, 2y))

P j
x = ((2x+ 1, 2j + 1), (2x, 2j + 1), (2x, 2j), (2x+ 1, 2j))

for j ∈ {1, . . . , y − 1}. We combine these paths to Px =
(
P y
x , . . . , P

1
x

)
, which we then

add to the previous Pi to form P = (P1, . . . Px). Combining P with the path P ′ =
((2x+ 1, 1), (2x, 1) . . . , (1, 1)) we obtain the cycle C1 that contains all vertices except (2x+
1, 2y + 1) = (m,n).
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3 SNAKE ON GRID GRAPHS

(a) Constructing a cycle by
combining several paths. (b) The two cycles C1 and C2 differ by one vertex.

Figure 3.2: Constructing two different cycles of length |V | − 1 on an odd-sized rectangular
grid graph.

In C1 we can exchange (2x, 2y) for (2x + 1, 2y + 1) to obtain a cycle of length |V | − 1
that contains all vertices except for (2x, 2y). This gives us the second cycle C2. The two
cycles are depicted in Figure 3.2b.

We will now use these two cycles to define a winning strategy for the snake on rectangular
grid graphs with an odd number of vertices.

Theorem 3.7. Let G = (V,E) be an m× n rectangular grid graph with m,n ≥ 2. Then G
is snake-winnable.

Proof. By Corollary 3.4, we already know that if at least one of m or n is even, G is snake-
winnable. It remains to show that if both m and n are odd, then the snake still has a
winning strategy.

Let the cycles C1 and C2 be as in Lemma 3.6. If the first apple appears on (m−1, n−1),
then the snake starts by moving clockwise along C1. Similarly, if the first apple appears
on (m,n), the snake starts by moving clockwise along C2. If the first apple appears on any
other vertex, then the snake can pick either of the two cycles to move along. Note that
while the snake has length at most |V | − 2, it can always decide to switch to the other cycle
when it reaches (m− 1, n). So until it reaches length |V | − 1, the snake always moves along
one of the two cycles and switches whenever the apple is placed outside of its current cycle.
By doing so, the snake can guarantee that once it eats the second to last apple and grows to
length |V | − 1 it is positioned on one of the two cycles. Furthermore, it occupies all vertices
on this cycle and thus the final apple will be placed on either (m − 1, n − 1) or (m,n). It
can then repeatedly move to its tail until the head reaches (m− 1, n), from which the snake
can move to the vertex with the final apple.

For Theorem 3.7, the snake uses a strategy where it can switch between two cycles. We
will see this type of strategy return quite a few times, both on grid graphs as well as more
general graph classes.

3.2 Grid graphs

Imagine that the playing field of the snake now includes obstacles that the snake has to
avoid, as depicted in Figure 3.3. The snake no longer plays on a rectangular grid graph,
as the playing field can now contain holes and have a non-rectangular outer boundary. To
describe this game variant with obstacles, we turn to the more general class of grid graphs.
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3 SNAKE ON GRID GRAPHS

Figure 3.3: A grid graph can be used to describe the game of Snake with obstacles.

Definition 3.8. A graph G = (V,E) is a grid graph if and only if it is a vertex-induced
subgraph of some rectangular grid graph.

Note that this also allows grid graphs to have “holes”: points inside the outer boundary
that are not vertices. There is a subclass known as solid grid graphs, which can have a
non-rectangular shape, but do not contain any holes. We will take a closer look at this
subclass in Section 3.3.

Since a grid graph is a vertex-induced subgraph of some rectangular grid graph, we
maintain that for every pair of vertices u, v ∈ V , uv ∈ E if and only if ∥u− v∥ = 1. We also
maintain the following

Observation 3.9. Any grid graph is bipartite.

Proof. Any grid graph is an induced subgraph of a rectangular grid graph. By Observa-
tion 3.2 rectangular grid graphs are bipartite. It follows that grid graphs are also bipar-
tite.

3.2.1 Odd-sized grid graphs

From Observation 3.9, we obtain that odd-sized grid graphs are non-Hamiltonian. We will
see that for such a graph to be snake-winnable, we need a similar structure to the one we
found for Theorem 3.7.

Definition 3.10. The theta graph Θ(p, q, r) is constructed by taking two vertices u and v
and connecting them by three internally disjoint paths of lengths p, q and r. If at least one
of p, q or r is 0, then u = v.

For Theorem 3.7, we used the two cycles C1 and C2. By combining these two cycles, we
obtain the graph Θ(|V | − 3, 2, 2), as depicted in Figure 3.4. It turns out that for odd-sized
grid graphs, the snake-winnability is solely determined by the existence of Θ(|V | − 3, 2, 2)
as a spanning subgraph. To prove this, we first turn to the more general class of bipartite
graphs.

Observation 3.11. Let G = (X ∪ Y,E) be a bipartite graph. If ||X| − |Y || > 1, then G is
not snake-winnable.

Proof. Any path in G must alternate between X and Y . Hence, G can only contain a
Hamiltonian path if |X| = |Y | or ||X| − |Y || = 1. By Observation 2.2, it follows that
if ||X| − |Y || > 1, then G is not snake-winnable.

Theorem 3.12. Let G = (V,E) be an odd-sized bipartite graph with partition V = X ∪ Y .
Then G is snake-winnable if and only if Θ(|V | − 3, 2, 2) is a spanning subgraph of G.

Proof. If Θ(|V | − 3, 2, 2) is a spanning subgraph of G, then the snake can use the strategy
from Theorem 3.7 to win.

12



3 SNAKE ON GRID GRAPHS

Figure 3.4: Odd-sized rectangular grid graphs have a Θ(p, q, r) spanning subgraph with p =
|V | − 3, q = 2 and r = 2.

It remains to show that if there is no Θ(|V | − 3, 2, 2) spanning subgraph, then the apple
placer has a winning strategy. We will approach this as follows. As the snake reaches
length |V | − 1, there are at most two vertices the snake can move to: the only remaining
unoccupied vertex and the tail vertex. If the head and the unoccupied vertex are in the
same part, then the head can only move to the tail. By cleverly placing the apples, we will
show that the apple placer can guarantee this is the case. Furthermore, due to the previous
apple placement, the snake will create a Θ(|V | − 3, 2, 2) spanning subgraph if it moves to
the tail. Hence, the snake cannot move to the unoccupied vertex nor the tail vertex, and
will thus lose.

Assume Θ(|V | − 3, 2, 2) is not a spanning subgraph of G. Since G is odd-sized, by
Observation 3.11 we know G can only be snake-winnable if ||X| − |Y || = 1. Without loss of
generality, we will assume that |X| = |Y |+ 1.

Consider the moment the snake reaches length |V | − 3. Since |V | − 3 is even, the snake
occupies the same number of vertices of X as of Y . Hence, there is one vertex y ∈ Y
that is unoccupied. The apple placer places the next apple on y. When the snake eats the
apple on y, it reaches length |V | − 2, which is an odd number. Since the snake alternates
between X and Y , both its head and tail must be in Y as depicted in Figure 3.5. Hence,
the two remaining unoccupied vertices are both in X.

Suppose both unoccupied vertices are adjacent to the head and the tail. Then between
the head and tail of the snake, we have the path of length |V |−3 formed by the snake itself,
and two paths of length 2, each through one of the unoccupied vertices. Thus, we obtain
a Θ(|V | − 3, 2, 2) spanning subgraph of G. Since we assumed such a spanning subgraph did
not exist, we can conclude that at least one of the unoccupied vertices is not adjacent to

Figure 3.5: The snake always alternates between X and Y . When the snake reaches
length |V | − 2 with its head in Y , the two remaining unoccupied vertices are in X.

13



3 SNAKE ON GRID GRAPHS

(a) The snake has to move to x2 first. From x2, the
snake can only move to the previous tail.

(b) The position of the snake before
eating the apple on x1.

Figure 3.6: After eating the apple on x1, the snake can only move to sl, but this move
requires Θ(|V | − 3, 2, 2) spanning subgraph.

both the head and the tail. Let this be x1 and let x2 be the other unoccupied vertex. The
apple placer places the next apple on x1.

Suppose the snake immediately eats x1, without moving to some other vertex first. Then
the tail would remain in the same place. Furthermore, this requires x1 to be adjacent to
the head, which means it is not adjacent to the tail. Hence, from x1 the snake can only
move to another unoccupied vertex. But since x2 is the only remaining unoccupied vertex
and x1 and x2 are both in X, this is not possible. It follows that the snake must move to
some other vertex first before eating the apple on x1. At length |V | − 2, the snake cannot
move to its tail since this would create an odd cycle. Thus, the only move the snake can
make is to x2.

After moving to x2, the previous tail vertex becomes unoccupied, as depicted in Fig-
ure 3.6a. From x2, the snake cannot move to x1 or the current tail vertex. Hence, it has
to move to the previous tail vertex. Continuing this reasoning, we find that the only thing
the snake can do until it eats the apple is repeatedly moving to the previous tail vertex. Of
course, this type of move requires that the previous tail vertex is adjacent to the current
head. Since the previous tail vertex is also adjacent to the current tail, the snake must be
moving along a cycle of length |V | − 1, consisting of the snake itself and the previous tail
vertex.

Let S be the position of the snake right before it moves to x1, which is depicted in
Figure 3.6b. Let s1 be the head vertex and sℓ the tail vertex. Furthermore, let sℓ′ be the
previous tail vertex, that is adjacent to both s1 and sℓ. Note that since the head moves
from s1 to x1, s1 and sℓ must both be in Y , and sℓ′ in X. After eating the apple on x1, sℓ
remains the tail vertex. From x1, the snake cannot move to sℓ′ , since they are both in X. If
the snake can move to sℓ, then the paths (s1, x1, sℓ) and (s1, sℓ′ , sℓ), together with S form
a Θ(|V | − 3, 2, 2) spanning subgraph of G. Since we assumed such a spanning subgraph did
not exist, we can conclude that there is no vertex the snake can move to form x1, and will
thus lose.

Corollary 3.13. Let G = (V,E) be an odd-sized grid graph. Then G is snake-winnable if
and only if Θ(|V | − 3, 2, 2) is a spanning subgraph of G.

Proof. Every odd-sized grid graph is bipartite.

14



3 SNAKE ON GRID GRAPHS

Figure 3.7: A even-sized non-Hamiltonian grid graph that is snake-winnable. The dashed
lines indicate paths, which should be made sufficiently long to be embedded as depicted.

3.2.2 Even-sized grid graphs

Corollary 3.13 gives us a characterization of all odd-sized grid graphs that are snake-
winnable. Ideally, we would find a similar characterization for even-sized grid graphs. Since
we already know Hamiltonian grid graphs are snake-winnable, the question becomes whether
there are any even-sized non-Hamiltonian grid graphs that are snake-winnable. The graph
in Figure 3.7 shows us that these types of graphs do exist. In Figure 3.8, we see this
graph contains a cycle of length |V | − 2. Since grid graphs cannot contain cycles of odd
length, |V | − 2 must be even, and thus |V | is even. We first show that this graph is indeed
non-Hamiltonian.

Observation 3.14. The graph in Figure 3.7 is non-Hamiltonian.

Proof. For any vertex with degree 2, both incident edges must be included in any Hamilto-
nian cycle. It follows that if the graph in Figure 3.7 would have a Hamiltonian cycle, then
the dashed paths, as well as (u2, u1, v1, v2) and (u6, u7, v7, v6) must be part of it. Com-
bined, this gives us a path from u4 to v4 that contains all vertices except for u3, v3, u5,
and v5. To form a Hamiltonian cycle, we must find a u4v4-path with exactly these remaining
four as internal vertices. But this is not possible, and thus the graph in Figure 3.7 is not
Hamiltonian.

To prove the snake has a winning strategy on this graph, we first make the following
observation.

Observation 3.15. Suppose the snake has length |V |−2 and is positioned on some cycle C.
Furthermore, suppose the snake covers all vertices on C, and the two remaining unoccupied
vertices are adjacent to each other. If both unoccupied vertices are adjacent to some vertex
in C, then the snake will win.

Proof. Let u and v be the two unoccupied vertices and suppose they are adjacent to the
vertices u′ and v′ on C, respectively. If the next apple is on u, then the snake moves along C
until it reaches u′. From there, it moves to u. It can then move to v to eat the final apple.
Similarly, if the next apple is on v then the snake moves along C until it reaches v′. From
there, it moves to v, and then u to eat the final apple.

15



3 SNAKE ON GRID GRAPHS

Figure 3.8: The cycles C1 and C2, both of length |V | − 2.

Lemma 3.16. There are non-Hamiltonian grid graphs with an even number of vertices that
are snake-winnable.

Proof. Let G = (V,E) be a graph as depicted in Figure 3.7. In Figure 3.8 we can see the
cycles C1 and C2 of G, both have length |V | − 2. The strategy of the snake starts similarly
to the strategy from Theorem 3.7. The snake moves along C1 or C2 and changes to the
other cycle if the apple is placed outside of its current cycle. Note that while the snake has
length at most |V | − 4, it can choose which cycle to move along each time it reaches u4.
By employing this strategy, the snake will be positioned on one of the two cycles when it
reaches length |V | − 3. By symmetry, we may assume this is C1.

If the next apple is on C1, then the snake can eat the apple by moving along C1. After
doing so, it covers the entire cycle, and the two remaining unoccupied vertices are u5 and v5.
By Observation 3.15, the snake will win.

If the next apple is not on C1, then it is either on u5 or v5. If it is on v5, then the snake
moves along C1 until it reaches u4. It then first moves to u5, and then to v5 to eat the apple.
By doing so, the snake will be positioned on C2, with u3 and v3 the remaining unoccupied
vertices. By Observation 3.15, the snake will win.

If the next apple is on u5, then the snake moves along C1 until it reaches v6. It then
first moves to v5, and then to u5 to eat the apple. The snake will now be positioned
on a new cycle, depicted in Figure 3.9. The two remaining vertices are u7 and v7. By
Observation 3.15, the snake will win.

Figure 3.9: If the apple appears on u5, the snake moves to a new cycle.
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3 SNAKE ON GRID GRAPHS

Figure 3.10: A grid graph with a Θ(|V | − 5, 3, 3) spanning subgraph that is not snake-
winnable.

Interestingly, the graph in Figure 3.7 has a Θ(|V | − 5, 3, 3) spanning subgraph. In fact,
it has multiple Θ(|V | − 5, 3, 3) spanning subgraphs. However, it turns out having such
a spanning subgraph is not sufficient for a graph to be snake-winnable. In Figure 3.10
we see a graph that has a Θ(|V | − 5, 3, 3) spanning subgraph but is not snake-winnable.
This spanning subgraph can be formed with the paths (v1, v2, v3, v6), (v1, v4, v5, v6) and the
lower v1v6-path, through (u1, . . . , u8).

Lemma 3.17. There are grid graphs with a Θ(|V | − 5, 3, 3) spanning subgraph that are not
snake-winnable.

Proof. Let G = (V,E) be the graph in Figure 3.10. When the snake reaches length 6, one of
the vertices in {u1, . . . , u8} must be unoccupied. The apple placer places the next apple on
this vertex. After eating the apple and growing to length 7, the vertices in {v1, . . . , v6} are
too far away from the head to be on the snake. Hence, none of the vertices in {v1, . . . , v6}
are occupied.

Suppose the snake now wants to occupy both pairs {v2, v3} and {v4, v5}. Then it must
move in a way similar to Figure 3.11. But as we can see, this will cause the snake to
lose. It follows that while the snake has length at least 7 and at most |V | − 4, one of
the pairs {v2, v3} and {v4, v5} will be unoccupied. At these lengths, the snake can also
no longer turn around: if it is currently moving clockwise, it cannot change to moving
counterclockwise. By symmetry, we may assume the snake is moving clockwise.

When the snake reaches length |V | − 4, one the pairs {v2, v3} and {v4, v5} will be unoc-
cupied. By symmetry, we may assume v2 and v3 are unoccupied. The apple placer places

Figure 3.11: The type of maneuver the snake has to make to occupy {v1, . . . , v6} at length 7
or longer.
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3 SNAKE ON GRID GRAPHS

(a) The position of the snake as it
reaches length |V | − 3.

(b) The position of the snake as it
reaches length |V | − 2.

Figure 3.12: When the snake reaches length |V | − 2, the next apple can be placed on v5
from where the snake will be stuck.

the next apple on v2. Since we assumed the snake is moving clockwise, the snake can only
eat the apple while in the position depicted in Figure 3.12a. The apple placer places the
next apple on v4. When the snake eats the apple on v4, it must be in the position depicted
in Figure 3.12b, with its tail on v3. The apple placer places the next apple on v5. Since v5
is the only vertex the head can move to, the snake is forced to eat the apple on its next
move. So the head moves to v5, but the tail remains on v3. From v5, there is no vertex the
snake can move to, and thus it will lose.

While having a Θ(|V |−5, 3, 3) spanning subgraph is not a sufficient condition for a graph
to be snake-winnable, the question of whether it is necessary remains open. Answering
this question, however, would still not provide a characterization of all even-sized non-
Hamiltonian grid graphs that are snake-winnable. Our winnable example in Figure 3.7 had
multiple Θ(|V | − 5, 3, 3) spanning subgraphs. For future research, one might look at more
complicated structures consisting of multiple Θ(|V | − 5, 3, 3) spanning subgraphs to search
for a characterization.

3.3 Solid grid graphs

Unlike grid graphs, solid grid graphs cannot contain holes. Neither the graph in Figure 3.7,
nor the graph in Figure 3.10 are solid grid graphs. This leaves us to wonder what the

(a) Transforming the graph from Figure 3.7 into a solid grid
graph.

(b) The resulting graph has
a Hamiltonian cycle.

Figure 3.13: If we transform the graph from Figure 3.7 into a solid grid graph by adding
vertices, then the resulting graph is Hamiltonian.
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3 SNAKE ON GRID GRAPHS

Figure 3.14: An even-sized solid grid graph that is non-Hamiltonian and snake-winnable.

snake-winnable solid grid graphs look like.

Definition 3.18. A solid grid graph G = (V,E) is a grid graph where every point within
the outer boundary is a vertex of G.

For odd-sized solid grid graphs, Corollary 3.13 holds, so we have a complete character-
ization of the snake-winnable graphs. For even-sized solid grid graphs, we would like to
know if there are any that are non-Hamiltionian and snake-winnable. The example of a
non-Hamiltonian even-sized graph from Figure 3.7 is not a solid grid graph. In Figure 3.13a
we can see one way to transform it into a solid grid graph by adding vertices. But this new
graph is Hamiltonian, as demonstrated in Figure 3.13b. However, there are even-sized solid
grid graphs that are non-Hamiltonian and snake-winnable. One of these graphs is depicted
in Figure 3.14.

Observation 3.19. The graph in Figure 3.14 is non-Hamiltonian.

Proof. For all vertices with degree 2, both incident edges will be part of any Hamiltonian
cycle. This is depicted in Figure 3.15a. After adding these edges, both v3 and v7 have only
two incident edges that can still be part of the cycle, as depicted in Figure 3.15b. But this
leaves v5 with only one incident edge for the cycle, from which it follows that we cannot
form a Hamiltonian cycle.

Lemma 3.20. There are non-Hamiltonian solid grid graphs with an even number of vertices
that are snake-winnable.

Proof. Let G = (V,E) be the graph in Figure 3.14 and let C1 and C2 be as depicted in
Figure 3.16. Note that these two cycles have the same structure as the cycles in Figure 3.8.
Therefore, we can employ the exact same strategy as used for Lemma 3.16.

(a) All edges incident with a vertex of de-
gree 2 must be part of any Hamiltonian
cycle.

(b) The vertices v3 and v7 can only be
added in one way, leaving v5 with only one
incident edge for the cycle.

Figure 3.15: The graph in Figure 3.14 is non-Hamiltonian.
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3 SNAKE ON GRID GRAPHS

Figure 3.16: The cycles C1 and C2 have the same structure as the cycles in Figure 3.8.

While the graph in Figure 3.14 does have a Θ(|V | − 5, 3, 3) spanning subgraph, we do
not know if this is a sufficient or even necessary condition for an even-size solid grid graph
that is non-Hamiltonian to be snake-winnable.
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4. The complexity of the snake problem

The complexity of a problem gives us an idea of how difficult it is to solve. First, we
provide a brief overview of the complexity class NP, NP-hardness, and NP-completeness.
For a more in-depth source on the topic, we refer to the book Computational Complexity
by Papadimitriou [10].

A decision problem is a problem that can be answered with either “yes” or “no”. For
decision problems on graphs, we usually want to determine whether a graph has a certain
property or not. In our case, this is whether or not the graph is snake-winnable.

A decision problem is in the complexity class NP if every “yes” instance can be verified
in polynomial time. This is done with the use of a certificate, which, when given alongside
the instance, allows us to verify in polynomial time that it is indeed a “yes” instance. For
example, for the Hamiltonian cycle problem, if we are given a graph G = (V,E) and a cycle
containing all the vertices of V , then we can verify that this cycle indeed exists in G. The
complexity class P consists of all decision problems that can be solved in polynomial time.
For any of the problems in P, we can give the polynomial-time algorithm as a certificate,
and thus P ⊆ NP. Quite famously, it has been conjectured that P ̸= NP, however, this has
not yet been proven.

A polynomial-time reduction is a transformation from an instance of problem A to an
instance of problem B, that can be done in polynomial time and has the following property.
If the instance of A is a “yes” instance, then it is always transformed into a “yes” instance
of B. Conversely, if it is a “no” instance of A, then it is always transformed into a “no”
instance of B. Suppose we have some algorithm to solve B. Then we can use it to solve A
by first using the transformation. This means that if we know A is hard to solve, B must
be hard to solve as well.

A decision problem A is NP-hard if, for every problem in NP, there is a polynomial-time
reduction to A. Informally, A is at least as hard as every problem in NP. If a decision
problem is NP-hard and also in NP itself, then it is NP-complete.

Recall that by Corollary 3.13, an odd-sized grid graph is snake-winnable if and only if
it has a Θ(|V | − 3, 2, 2) spanning subgraph. We will use this characterization to show that
the snake problem on grid graphs is NP-hard. To do so, we reduce from the Hamiltonian
cycle problem on grid graphs, which is NP-complete [5]. By adding a gadget, we will create
an odd-sized grid graph where the existence of an Θ(|V | − 3, 2, 2) as a spanning subgraph
depends on the Hamiltonicity of the original graph.

Theorem 4.1. The snake problem is NP-hard, even when restricted to grid graphs.

Proof. LetG = (V,E) be an instance of the Hamiltonian cycle problem on grid graphs. Since
odd-sized grid graphs are never Hamiltonian, we may assume G is even-sized. Let v = (x, y)
be the vertex on the top row of G that is furthest to the right, as depicted in Figure 4.1a.
This means the points (x, y + 1) and (x + 1, y) are not vertices of G. If (x − 1, y) is also
not a vertex of G, then (x, y) has degree at most 1, which means G cannot be Hamiltonian.
Hence we may assume that (x − 1, y) is also a vertex of G, and we denote u = (x − 1, y).
Since the degree of v is at most 2, the edge uv must be part of any Hamiltonian cycle.

For our reduction, we create a new graph G′ = (V ′, E′) by attaching a gadget to u
and v, as depicted in Figure 4.1b. Since the gadget is odd-sized and we assumed G was
even-sized, G′ is an odd-sized grid graph. In G′, let the vertices v1, v2, v3, v4 be as depicted

21



4 THE COMPLEXITY OF THE SNAKE PROBLEM

G

(a) The two rightmost points
of the top row of G.

G

(b) Attaching the gadget to G
to create G′.

Figure 4.1: The reduction from a grid graph G to G′ by using a gadget.

in Figure 4.1b. Note that there is no cycle in G′ of length |V ′| − 1 that contains both v2
and v4. Thus, any Θ(|V | − 3, 2, 2) spanning subgraph of G′ must consist the following three
paths: (v1, v2, v3), (v1, v4, v3), and some v1v3-path that contains all vertices in V ′\{v2, v4}.
Since the gadget only connects to G at u and v, to form the latter path G must have a
Hamiltonian path from u to v. But since the edge between uv is part of any Hamiltonian
cycle, this Hamiltonian path from u to v exists if and only if G is Hamiltonian. It follows
that G′ has a Θ(|V | − 3, 2, 2) spanning subgraph if and only if G is Hamiltonian. By Corol-
lary 3.13, we obtain that G′ is snake-winnable if and only if G is Hamiltonian, completing
our reduction and proving the NP-hardness of the snake problem on grid graphs.

Since all grid graphs are planar and bipartite, by Theorem 4.1 the snake problem is also
NP-hard when restricted to either of these graph classes. For odd-sized bipartite graphs,
Theorem 4.1 gives us the following.

Corollary 4.2. The snake problem on odd-sized bipartite graphs is NP-complete.

Proof. By Theorem 3.12, an odd-sized bipartite graph is snake-winnable if and only if it has
a Θ(|V |−3, 2, 2) spanning subgraph. Thus, we can give a Θ(|V |−3, 2, 2) spanning subgraph
as a certificate.

Naturally, we would like to know whether we can also find a certificate for other graph
classes. For Hamiltonian graphs, this can be the Hamiltonian cycle. Naively, we might
consider giving the winning snake strategy as a certificate for all other snake-winnable
graphs. However, it is unclear whether such a strategy can be formulated in polynomial
size. We could, for example, try to describe the path the head has to take for each possible
apple placement. But when the snake has length ℓ, there are still |V | − ℓ possible locations
for the next apple. Hence, the number of paths in such a strategy could be on the order
of |V |!. Furthermore, these paths do not need to be simple and are therefore not easily
bounded. We do know the snake cannot repeat a previous position, but especially at longer
lengths the number of possible positions for the snake could be very large. The question
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of whether there is always a winning strategy that can be formulated in polynomial size
remains open.

Unlike on grid graphs, the Hamiltonian problem on solid grid graphs does have a
polynomial-time algorithm [11]. Hence, a reduction similar to the one from Theorem 4.1
would not work to show the snake problem is NP-hard on solid grid graphs. The question of
whether the snake problem is also NP-hard on solid grid graphs remains open. Interestingly,
the Nibbler food collection problem studied by De Biasi and Ophelders is similar to our
snake problem and was found to be NP-hard on solid grid graphs[3]. In this game, the snake
starts at a given length in a given position, and the location of each apple is known. These
apples are all placed on the graph at the start of the game and no new apples appear when
the snake eats an apple. The snake moves by the same rules as for our Snake game and the
question is whether there is a path the snake can take that allows it to eat all the apples.
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5. The girth of snake-winnable graphs

So far, we have seen a few strategies where the snake can switch between two cycles. If
the snake wants to quickly switch between the cycles, then they must share many vertices.
However, this also means the part where the cycles differ forms a smaller cycle. So to be
able to execute such a strategy, the shortest cycle in the graph cannot be too large.

Definition 5.1. The girth of a graph G, denoted g(G), is the length of the shortest cycle
in G.

Grid graphs, for example, always have a girth of at least 4, since they do not contain any
triangles. By Observation 2.3, any Hamiltonian graph is snake-winnable. Since any cycle
graph is Hamiltonian, we can create snake-winnable graphs of arbitrarily large girth.

By Lemma 3.12, an odd-sized bipartite graph is snake-winnable if and only if it has
a Θ(|V | − 3, 2, 2) as a spanning subgraph. These winnable graphs always have girth 4,
as Θ(|V | − 3, 2, 2) has a cycle of length 4 and bipartite graphs cannot have any cycles of
length 3. This raises the question of what can be said about the girth of non-Hamiltonian
snake-winnable graphs. In Section 5.1, we will show that if the girth of a non-Hamiltonian
graph is greater than 6, then it is not snake-winnable. In Section 5.2 we provide an example
of a non-Hamiltonian snake-winnable graph that has a girth of 6, showing that this bound
is tight.

5.1 Bounding the girth of non-Hamiltonian snake-winnable graphs

Let G = (V,E) be a graph and C be some cycle in G. We will say a cycle C contains the
snake if the entire path formed by the snake lies on C. To prove that any non-Hamiltonian
graph with a girth greater than 6 is not snake-winnable, we will do the following. When the
snake reaches length |V | − 3, there are four possible scenarios: the snake can be contained
in a cycle of length |V |−3, a cycle of length |V |−2, a cycle of length |V |−1, or in no cycle.
Note that there can be no cycle of length |V | that contains the snake since that would make
the graph Hamiltonian. We will show that for each of these scenarios, the apple placer has
a winning strategy. To do so, we first prove several lemmas that show that, as the snake
grows longer, the girth required to make certain types of moves becomes smaller. In other
words, if the girth is large, then as the snake grows long, its movement will become more
limited.

Lemma 5.2. Let C be a cycle in G that contains the snake and let ℓ be the current length of
the snake. Suppose the head of the snake leaves C and returns to C after visiting m vertices
in C. Then g(G) ≤ |C| − ℓ+ 2m+ 2.

Figure 5.1: The snake leaves C from s1 and returns to C at s+1 .
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5 THE GIRTH OF SNAKE-WINNABLE GRAPHS

(a) The paths PC on C
and PC through C.

(b) The path PC has length
at most |C| − ℓ + 1 + m
and PC has length m+ 1.

Figure 5.2: If the snake returns to C after visiting m vertices, G must contain a cycle of
length |C| − ℓ+ 2m+ 2.

Proof. The idea behind the proof is as follows. The path the snake takes outside of C,
together with the section of C it “skips”, will form a cycle. But the snake cannot just
return anywhere on C, since it must move to an unoccupied vertex or the tail. Hence,
the length of the section it can skip will be bounded. We will show that the length of
this skipped section is at most |C| − ℓ + m + 1. Combined with the path the snake takes
through C, this will result in a cycle of length at most |C| − ℓ+ 2m+ 2.

We first note that if ℓ ≤ 2m + 2, then |C| − ℓ + 2m + 2 ≥ |C|. Since the existence
of C implies g(G) ≤ |C|, the statement is trivially true. Hence, we may assume that ℓ >
2m+ 2 > m, which means that while the head moves through C, the tail remains on C.

Suppose the head of the snake leaves C and returns to C after visiting m vertices in C,
as depicted in Figure 5.1. Let S = (s1, . . . , sℓ) be the position of the snake right before the
head leaves C. Similarly, let S− = (s−1 , . . . , s

−
ℓ ) be the position of the snake right before

the head returns to C and S+ = (s+1 , . . . , s
+
ℓ ) the position right after. By PC we denote the

section of C that the snake skips, as depicted in Figure 5.2a. More precisely, PC is the path
the head would have taken had it stayed on C, with endpoints s1 and s+1 . When the snake
is in position S− = (s−1 , . . . , s

−
ℓ ), all the unoccupied vertices on C are between s1 (from

where the snake left C) and s−ℓ . From s−1 , the head will move to one of these unoccupied
vertices or to s−ℓ . Hence, the length of PC is maximized if the head returns to C by moving
to its tail and s+1 = s−ℓ . This is depicted in Figure 5.2b.

Since the snake makes m moves before returning to C, we know that s−ℓ = sℓ−m. Thus,
the length of PC is maximized if s+1 = sℓ−m. In this case, PC consists of (sℓ, . . . , sℓ−m)
and the path from s1 to sℓ through the section of C that was unoccupied by S. The
section (sℓ, . . . , sℓ−m) has length m. Before the head leaves C, there are |C| − ℓ unoccupied
vertices between s1 and sℓ. This forms a path of length |C| − ℓ + 1. Combined, we obtain
that PC has length at most |C| − ℓ+ 1 +m.

The head moves from s1 to s+1 by visiting m vertices in C. It follows that there must also
exist some s1s

+
1 -path of length at most m+ 1 with all internal vertices in C, as depicted in

Figure 5.2b. We will call this path PC , as depicted in Figure 5.2a. By combining PC and PC ,
we obtain a cycle of length at most |C|−ℓ+2m+2. It follows that g(G) ≤ |C|−ℓ+2m+2.

Corollary 5.3. Let G = (V,E) be a graph with g(G) > 2k. Let ℓ = |V | − k be the length of
the snake, with k ≥ 2. Suppose G has a cycle C that contains the snake. If the head of the
snake leaves C, then it must visit all vertices in C before returning to C.

25



5 THE GIRTH OF SNAKE-WINNABLE GRAPHS

Proof. Let m be the number of vertices that the head visits before returning to C. By
Lemma 5.2, we know g(G) ≤ |C| − ℓ + 2m + 2. Suppose the head does not visit all the
vertices in C, in other words, we have m ≤ |V | − |C| − 1. This gives us the following upper
bound for g(G):

g(G) ≤ |C| − ℓ+ 2m+ 2 ≤ 2|V | − |C| − ℓ.

Since we have ℓ = |V | − k, it follows that

g(G) ≤ |V | − |C|+ k.

Since C contained the snake, we know that |C| ≥ |V | − k, and thus we have |V | − |C| ≤ k.
This gives us g(G) ≤ 2k, which contradicts that g(G) > 2k. We conclude that the head
must visit all vertices in C before returning to C.

Of course, we might wonder why the snake would want to return to C. The following
observation shows us that if there are unoccupied vertices on C, then the snake has to return
at some point.

Observation 5.4. Let S be the current set of unoccupied vertices. To win, the snake will
have to visit all vertices in S at some point in the future.

Proof. To win, the snake has to obtain a position that occupies all vertices. If a vertex is
currently unoccupied, then it can only become occupied if the snake visits it.

Whenever the snake eats an apple, the tail remains in place. So if the snake eats an
apple on one of the m vertices it visits in C, then the maximal length of the section it skips
becomes one shorter. If the apple is placed on some vertex in C and the snake has to visit
all vertices in C as in Corollary 5.3, then the snake has to eat the apple before it can return
to C. We can use this to prove the following lemma.

Lemma 5.5. Let G = (V,E) be a graph with g(G) > 2k. Let ℓ = |V | − k be the length of
the snake with k ≥ 2. Suppose G has a cycle C that contains the snake with |C| > ℓ. If the
apple is on some vertex in C, then the snake will lose.

Proof. Suppose the apple is on some vertex in C. Then at some point, the head of the snake
will have to leave C to eat the apple. We will first show that after the head leaves C, it can
never return to C.

Suppose the head leaves C and returns to C at some later point. By Corollary 5.3, the
snake has to visit all vertices in C before it can return. Let m be the number of vertices the
snake visits before returning to C, then m = |V | − |C|. Furthermore, one of these vertices
must contain the apple.

When the snake eats the apple, the tail will not move. So while the snake visits m
vertices in C, the tail will only move m − 1 times. It follows that right before the head
moves back to C, the tail will be on sℓ−m+1. Let s

+
1 be the position of the head right after

it re-enters C. We now use similar reasoning as for Lemma 5.2 to obtain that there is a
path on C from s1 to s+1 of length at most |C| − ℓ+m+ 1.

Combined with the path of the head through C, this gives us a cycle of length at
most |C| − ℓ+ 2m+ 1. Given that m = |V | − |C|, we obtain that

|C| − ℓ+ 2m+ 1 = 2|V | − |C| − ℓ+ 1.

Since |C| ≥ ℓ+ 1, we have

2|V | − |C| − ℓ+ 1 ≤ 2(|V | − ℓ),
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(a) The snake can take Pu or Pv to S.

u

v

Pu

Pv

(b) The snake in position S′.

Figure 5.3: There is no cycle that contains the snake and the head can move to either u
or v next, without ensuring a loss.

and since ℓ ≥ |V | − k, it follows that G must contain a cycle of length at most 2k. This
contradicts that g(G) > 2k, and thus we can conclude that the head cannot return to C.

Since |C| ≥ ℓ+1, there must be some vertex v on C that is unoccupied right before the
head leaves C. Since the snake can no longer return to C, the snake can never visit v again,
and v will remain unoccupied. By Observation 5.4, the snake will lose.

Corollary 5.6. Let G = (V,E) be a graph with g(G) > 6. Consider the moment the snake
grows to length |V | − 3. If there is a cycle C of length |V | − 1 or |V | − 2 that contains the
snake, then the snake will lose.

Proof. Since the snake is contained in C and |C| < |V |, there is some unoccupied vertex
in C. The apple placer places the next apple on this vertex. We can now use Lemma 5.5
with k = 3 to obtain that the snake will lose.

Corollary 5.6 excludes two out of the four possible scenarios for when the snake reaches
length |V | − 3. The two that remain are: the snake is contained in a cycle of length |V | − 3,
and there is no cycle that contains the snake. Hence, we still need to show both of these
scenarios will result in a loss for the snake. For the latter case, the following lemma will be
useful.

Lemma 5.7. Let G = (V,E) be a graph with g(G) > 2k and let ℓ = |V | − k be the length of
the snake with k ≥ 2. Suppose there is no cycle in G that contains the snake. Then, there
is at most one vertex to which the snake can move next without ensuring a loss.

Proof. The idea behind the proof is as follows. If there are two different vertices the snake
can move to, then this will give us two different paths through S. We will see that these
paths must both lead to S and cannot meet before they reach S. With one of these paths, we
then construct a cycle that contains a big portion of S. Using this cycle and the remaining
path, we will show that the snake can move in a way that contradicts Corollary 5.3.

Let S be the current position of the snake with s1 the head position, and sℓ the tail
position. Let u and v be two unoccupied vertices that are both adjacent to the head.
Suppose the snake can move to either u or v next, without ensuring a loss. First, suppose
the snake moves to u. Then it cannot move to v before the head moves to S again, otherwise
we would have a cycle of length at most k+1. By Observation 5.4 the snake will eventually
have to visit v to win. It follows that the snake has to move to S at some point. With the
same argument, this is also the case if the snake moves to v first.

Let Pu and Pv be the paths the head can take from u and v to S respectively. The
two paths are depicted in Figure 5.3a. We know Pu and Pv must be internally disjoint,
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otherwise, we would have a cycle of length at most k + 1. Let si be the endpoint of Pu

and sj of Pv. Without loss of generality, we may assume that i ≤ j. Since there is no cycle
that contains S, we must have i, j < ℓ. This means sℓ lies on neither of the two paths.

Suppose the snake takes the path Pv. When the head moves to sj , the cycle C =
(sj−1, . . . s1, Pu) will contain the snake. The snake can now keep moving along C until the
head is on s1 again. Let S′ be the position of the snake at this moment, which is depicted
in Figure 5.3b. Note that C still contains S′. This new position is similar to the original
position S, but the last section of the snake, from s′j+1 to s′l, now lies on Pv. Since we
assumed the snake could also take Pu from u to si, it follows that from the position S′, the
snake can take the path Pu to leave and re-enter C. However, we know sℓ neither lies on
this path, nor on the cycle C. By Corollary 5.3, this is not possible. It follows that from
the original position S, either moving to u or moving to v must result in a loss.

By Lemma 5.7, we obtain that if G has a girth of at least 7, the snake has length |V |−3,
and there is no cycle containing the snake, then we can predict its movement. We can use
this to our advantage when describing a strategy for the apple placer. The following lemma
will be useful for this purpose.

Lemma 5.8. Let G = (V,E) be a non-Hamiltonian graph with g(G) > 4. When the snake
grows to length |V | − 2, if the two unoccupied vertices are not adjacent, then the snake will
lose.

Proof. Since G is non-Hamiltonian, there is either a cycle of length |V | − 2, a cycle of
length |V | − 1, or no cycle that contains the snake. By Lemma 5.5, the snake will lose if
there is a cycle of length |V | − 1 that contains the snake.

First, suppose that there is a cycle of length |V | − 2 that contains the snake. In other
words, the head of the snake is adjacent to the tail, and the snake itself forms a cycle. Let C
be this cycle. Both unoccupied vertices are in C, and the apple has to be placed on one of
these two vertices. The snake cannot eat the apple by only moving along C. Hence, at some
point, it must move to one of the unoccupied vertices. When it does so, by Corollary 5.3,
the snake has to visit the other unoccupied vertex next. However, this is not possible, since
the unoccupied vertices are not adjacent. It follows that the snake will lose.

Now suppose there is no cycle that contains the snake. By Lemma 5.7 there is only
one unoccupied vertex the head can move to without losing. The apple is placed on this
vertex, forcing the snake to eat the apple on its next move. From there, the head cannot
move to its tail, since there was no cycle that contained the snake. It can also not move to
the remaining unoccupied vertex since they are not adjacent. It follows that the snake will
lose.

We now return to our scenario where G is non-Hamiltonian with g(G) > 6, the snake
grows to length |V | − 3, and there is no cycle containing the snake. By Lemma 5.8, the
apple placer only needs to ensure that when the snake eats the next apple, the remaining
unoccupied vertices are not adjacent. This allows us to prove the following.

Lemma 5.9. Let G = (V,E) be a non-Hamiltonian graph with g(G) > 6. Consider the
moment the snake grows to length ℓ = |V | − 3 and suppose there is no cycle in G that
contains the snake. Then, the snake will lose.

Proof. Let S be the current snake position with s1 and sℓ being the head and tail positions
respectively. We will distinguish between two cases. In the first case, the snake is able to
visit all three unoccupied vertices without moving to S in between. In the second case, this
is not possible.
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Case 1: the snake can visit all vertices in S without moving to S in between.

First, we note that by Lemma 5.7, the snake can visit the vertices in S in only one order.
Let u be the vertex the snake has to move to first, v the second, and w the third. The
apple is placed on v. First, the snake has to move to u, after which sℓ becomes unoccupied.
Next, the snake has to eat the apple on v. After eating the apple, w and sℓ are the two
remaining unoccupied vertices. But w cannot be adjacent to sℓ since this would give us
the cycle (S, u, v, w), contradicting that G is non-Hamiltonian. Hence, the two remaining
unoccupied vertices are not adjacent and by Lemma 5.8, the snake will lose.

Case 2: the snake cannot visit all vertices in S without moving to S in between.

By Lemma 5.7, there is at most one vertex the head can move to without guaranteeing a
loss. Let this be vertex u. The apple is placed on u, meaning the snake has to eat the apple
on its next move. After eating the apple on u, we know the snake cannot move to sℓ, since
then the cycle (S, u) would then have contained S. Thus, one of the remaining unoccupied
vertices has to be adjacent to u, otherwise the snake will lose. Let v be an unoccupied vertex
that is adjacent to u and let w be the other unoccupied vertex. Since we assumed the snake
cannot visit all vertices in S without moving to S in between, the snake should not be able
to move from u to v and then to w. It follows that the two remaining unoccupied vertices v
and w cannot be adjacent and by 5.8, the snake will lose.

From our four possible scenarios, we have now shown three will result in a loss for the
snake. It remains to show that if there is a cycle of length |V | − 3 that contains the snake,
then the apple placer has a winning strategy. Note that in this scenario, the snake itself
forms is cycle and the head is adjacent to the tail.

Lemma 5.10. Let G = (V,E) be a non-Hamiltonian graph with g(G) > 6. Consider the
moment the snake grows to length ℓ = |V |−3 and suppose there is a cycle C of length |V |−3
that contains the snake. Then, the snake will lose.

Proof. Since C has the same length as the snake, the vertices of C are exactly those that are
occupied by the snake. This also means all three unoccupied vertices are in C. Note that
the three unoccupied vertices cannot form a cycle by themselves, since G does not contain
any cycles of length three. Hence, there is at most one unoccupied vertex that is adjacent
to both of the other unoccupied vertices. If such a vertex exists, the apple is placed on it.
We will refer to the vertex with the apple as vertex a.

The snake cannot eat the apple by only moving along C. Hence, at some point, it must
move to an unoccupied vertex. By Corollary 5.3, we know that once the snake leaves C, it
cannot return to C without visiting all unoccupied vertices first. Furthermore, by Observa-
tion 5.4, the snake cannot win without visiting all three unoccupied vertices. But since a
is the only vertex that can be adjacent to both other unoccupied vertices, it has to be the
second unoccupied vertex the snake visits.

The scenario when the snake leaves C is depicted in Figure 5.4. Let u be the unoccupied
vertex the snake moves to before moving to a, and let v be the remaining unoccupied vertex.
Let sℓ be the tail position right before the head moves to u. When the head moves to u, sℓ
becomes unoccupied. When the snake eats the apple on a, sℓ remains unoccupied, and v
and sℓ are the two remaining unoccupied vertices. By Lemma 5.3, the head has to move
to v next, and thus v must be adjacent to a. But then, v cannot be adjacent to sℓ, since this
would create the cycle (S, u, a, v) contradicting that G is non-Hamiltonian. Hence, v and sℓ,
the two remaining unoccupied vertices, are not adjacent, and by Lemma 5.8 the snake will
lose.
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u vau va

s1

va

Figure 5.4: From a cycle of length |V | − 3, the snake moves to u before eating the apple
on a. If the snake can move to v, the remaining two unoccupied vertices cannot be adjacent.

We can now prove the following upper bound on the girth of non-Hamiltonian snake-
winnable graphs.

Theorem 5.11. Let G = (V,E) be a non-Hamiltonian graph with g(G) > 6. Then, G is
not snake-winnable.

Proof. Consider the moment the snake grows to length |V |−3. Since G is non-Hamiltonian,
there cannot be any cycle of length |V |. Hence, the snake is either contained in a cycle of
length |V | − 1, a cycle of length |V | − 2, a cycle of length |V | − 3, or in no cycle.

If the snake is contained in a cycle of length |V | − 1 or |V | − 2, then the snake will
lose by Corollary 5.6. If the snake is contained in a cycle of length |V | − 3, then it will
lose by Lemma 5.10. Finally, if the snake is not contained in any cycle, then it will lose
by Lemma 5.9. It follows that once the snake reaches length |V | − 3, the apple placer can
guarantee the snake will lose, and thus G is not snake-winnable.

5.2 The girth of snake-winnable grid graphs and partial grid graphs

From Theorem 5.11, the question arises whether there are any non-Hamiltonian snake-
winnable graphs with a girth of 6. We will show that such a graph does exist. But first, we
examine the implications Theorem 5.11 has for grid graphs.

Observation 5.12. A grid graph cannot have a girth of 6.

Proof. In a grid graph, a cycle of length 6 cannot be cordless, as depicted in Figure 5.5.
Hence, if a grid graph has a cycle of length 6, then it must also have a cycle of length 4.

From Observation 5.12, we obtain the following.

Lemma 5.13. All non-Hamiltonian snake-winnable grid graphs have a girth of 4.

Proof. By Theorem 5.11, a non-Hamiltonian snake-winnable grid graph cannot have a girth
of 7 or higher. By Observation 5.12, it can also not have a girth of 6. Since any grid graph is
bipartite, it can only contain cycles of even length and therefore the girth cannot be odd. It
follows that the only girth a non-Hamiltonian snake-winnable grid graph can have is 4.

Figure 5.5: In a grid graph, a cycle of length 6 cannot be cordless.
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Figure 5.6: A non-Hamiltonian partial grid graph with a girth of 6 that is snake-winnable.

If we want to find an example that shows the bound from Theorem 5.11 is tight, then
this cannot be a grid graph. Hence, we turn to the more general class of partial grid graphs.

Definition 5.14. A graph G = (V,E) is a partial grid graph if and only if it is a subgraph
of some rectangular grid graph.

Since partial grid graphs do not have to be a vertex-induced subgraph of a rectangular
grid graph, they can have cycles of length 6 that are cordless. The graph in Figure 5.6 is
non-Hamiltonian, snake-winnable, and has a girth of 6.

Lemma 5.15. There are non-Hamiltonian partial grid graphs with a girth of 6 that are
snake-winnable.

Proof. Note that the graph in Figure 5.6 is a spanning subgraph of the graph in Figure 3.7.
Since this graph is non-Hamiltonian, the graph in Figure 5.6 must be non-Hamiltonian as
well. Furthermore, it also contains the cycles C1 and C2, as depicted in Figure 5.7. Hence,
we can use the exact same strategy for the snake as for Lemma 3.16.

Lemma 5.15 shows us that the bound from Theorem 5.11 is tight, even on the class of
partial grid graphs. Since partial grid graphs are bipartite and planar, the bound is tight
on those classes as well.

Figure 5.7: The cycles C1 and C2.
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6. The structure of snake-winnable graphs

In this section, we will provide a necessary structure for all non-Hamiltonian snake-
winnable graphs. For this, we first examine a different variant of the game where the head
is never allowed to move to the tail vertex.

6.1 The Head Moves First variant

In Section 2 we defined the rules for the movement of the snake as follows. If the snake is in
the position S = (s1, . . . , sℓ), then the head has to move to some vertex inN(s1)∩

(
S ∪ {sℓ}

)
.

We can distinguish three different types of moves, which are depicted in Figure 6.1.
In the first type of move, the head moves to the apple and the tail remains in place.

This means one vertex is added to the snake and, consequentially, one vertex is removed
from the unoccupied set. We will refer to this as a type α move.

In the second type of move, the snake moves to an unoccupied without the apple. In
this case, the new head position is added to the snake, and the former tail is removed. This
also means one vertex is removed from the unoccupied set and a different vertex is added.
We will refer to this as a type β move.

In the third move type, the head moves to the tail vertex and the unoccupied set remains
unchanged. We will refer to this as a type γ move.

Definition 6.1. Let S = (s1, . . . , sℓ) be the position of the snake. In the Head Moves
First variant, abbreviated as HMF, the head has to move to some vertex in N(s1). In
other words, in the HMF variant, the snake can only make type α and type β moves.

For a graph, if the snake has a winning strategy for the HMF variant, then we will call
it HMFsnake-winnable

Observation 6.2. If a graph is HMFsnake-winnable, then it is also snake-winnable.

Proof. If a graph is HMFsnake-winnable, then the snake has a winning strategy that only
consists of type α and type β moves. Since both of these move types are also allowed in the
(normal) game of Snake, we can use the same strategy as a winning strategy for Snake.

(a) A type α move. (b) A type β move.

(c) A type γ move.

Figure 6.1: The three different types of moves.
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The reverse, however, does not hold. In fact, we will show that the HMFsnake-winnable
graphs are exactly those that are Hamiltonian. By Observation 2.3, we saw any Hamiltonian
graph is snake-winnable. The same holds for the HMF variant.

Observation 6.3. If G = (V,E) is Hamiltonian, then G is HMFsnake-winnable.

Proof. Since G is Hamiltonian, there is some simple cycle C in G that contains all vertices
in V . Just like for the normal variant, the snake can keep moving along this cycle. Since C
has length |V |, until the snake reaches length |V |, there will always be some unoccupied
vertex on C between the head and the tail. This means the snake never has to make a
type γ move to move along the cycle, and thus G is HMFsnake-winnable.

If a vertex is not on the snake and does not contain the apple, then we will call it an
empty vertex. To show that non-Hamiltonian graphs are not HMFsnake-winnable, we will
use the following two observations.

Observation 6.4. After the snake makes a type β move, there is an empty vertex that is
adjacent to the tail.

Proof. Let St = (st1, . . . , s
t
ℓ) be the position of the snake. If the snake makes a type β move,

then the head moves to some empty vertex v ∈ St. The next snake position is st+1 =
(v, st1, . . . , s

t
ℓ−1). Thus, stℓ becomes unoccupied and is adjacent to the new tail stℓ−1. By

Observation 2.1, stℓ cannot contain the apple, and thus must be empty.

Observation 6.5. Suppose v is empty and the snake makes a type α move to vertex a.
Then, v remains unoccupied after this move.

Proof. First note that a ̸= v, since v is empty. Let St be the unoccupied set at time t,
with v ∈ St. If the snake makes a type α move, then St+1 = St\{a}. Hence, we have v ∈
St+1.

Using Observations 6.4 and 6.5, we can prove the following lemma, which plays an
important role in the apple placer’s strategy.

Lemma 6.6. Suppose the snake plays by the rules of the HMF variant and makes a type β
move. Then the apple placer can ensure that when the snake reaches length |V | − 1, the
remaining unoccupied vertex is adjacent to the tail.

Proof. First note that the snake can only make a type β move if it has length at most |V |−2,
since at length |V | − 1 the only remaining unoccupied vertex contains the apple.

After the snake makes the type β move, by Observation 6.4, there is some empty vertex
that is adjacent to the tail. Since the snake can only make type β moves until it eats the
apple, this remains the case until the snake makes a type α move. So right before the snake
makes the next type α move, there is some vertex v that is empty and adjacent to the tail.
By Observation 6.5, directly after the type α move, v remains unoccupied. Since the tail
does not move during a type α move, v also remains adjacent to the tail. If the snake has not
yet reached length |V | − 1, then the apple placer can place the apple on some vertex a ̸= v.
This means v remains empty and adjacent to the tail. If the snake immediately makes
another type α move, then by Observation 6.5, v remains unoccupied and adjacent to the
tail. If the snake makes a type β move next, then by Observation 6.4, after this move there
is an empty vertex that is adjacent to the tail. It follows that the apple placer can repeat
this strategy until the snake reaches length |V | − 1.

We will use Lemma 6.6 to formulate a winning apple placer strategy for the HMF variant
on non-Hamiltonian graphs.
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s1

Figure 6.2: If G is non-Hamiltonian and the only unoccupied vertex is adjacent to the tail,
then the head cannot be adjacent to the unoccupied vertex.

Theorem 6.7. A graph is HMFsnake-winnable if and only if it is Hamiltonian.

Proof. By Observation 6.3, we know that if a graph is Hamiltonian, then it is HMFsnake-
winnable. It remains to show that if a graph is non-Hamiltonian, then it is not HMFsnake-
winnable.

Let G = (V,E) be a non-Hamiltonian graph. Since G is non-Hamiltonian, there must
be two vertices u, v ∈ V that are not adjacent to each other. The first apple is placed on u
and the second on v. Since the snake cannot immediately move from u to v it must make a
type β move before eating the apple on v. By Lemma 6.6, it follows that the apple placer
can ensure that when the snake reaches length |V | − 1, the remaining unoccupied vertex is
adjacent to the tail, as depicted in Figure 6.2.

Since this is the only remaining unoccupied vertex and the snake is following the rules
of the HMF variant, it must move to this vertex. However, by doing so it would create a
Hamiltonian cycle. Since we assumed G was non-Hamiltonian, it follows that after it reaches
length |V | − 1, there is no move the snake can make, and thus the snake will lose.

6.2 A necessary structure for snake-winnable graphs

From Theorem 6.7, we see that type γ moves are essential for snake strategies on non-
Hamiltonian graphs. However, the snake might not always be able to make such a move.

Definition 6.8. The circumference of a graph G is the length of the longest simple cycle
in G and is denoted as is denoted circ(G).

Observation 6.9. Let ℓ be the current length of the snake on G = (V,E). If ℓ > circ(G),
then the snake can no longer make type γ moves.

Proof. To make a type γ move, the head of the snake has to be adjacent to the tail. This
means the snake will form a cycle right before and after a type γ move, which is only possible
if G contains a cycle of length ℓ.

Note that if G = (V,E) is non-Hamiltonian, then circ(G) < |V |. Hence, for non-
Hamiltonian graphs, there will be some point at which the snake length exceeds circ(G) and
can no longer make type γ moves. In essence, the snake will be playing by the HMF variant
rules from this point on. So if the apple placer can force a type β move after this point,
then by Lemma 6.6, the snake will lose. We will use this to describe a necessary structure
for snake-winnable graphs.

Definition 6.10. Let St = (st1, . . . , s
t
ℓ) be the position of the snake on G at time t. The

head graph at time t, denoted Ht, is the subgraph of G induced by St ∪ {st1}.

An example of the head graph can be seen in Figure 6.3.
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6 THE STRUCTURE OF SNAKE-WINNABLE GRAPHS

Figure 6.3: The head graph Ht is the subgraph induced by St ∪ st1.

Figure 6.4: The vertices u and v are not adjacent to each other. If the snake immediately
eats the apple on u, then it has to make a type β move to reach v.

Lemma 6.11. Let G = (V,E) be a non-Hamiltonian graph and let t be the moment the
snake reaches length circ(G) + 1. If Ht is incomplete, then the apple placer can force the
snake to make a type β move within the next two moves.

Proof. Since the length of the snake is greater than circ(G), the snake can only make type α
and type β moves. Let st1 be the head position of the snake at time t. We distinguish
between two different cases: there is some vertex v in Ht that is not adjacent to st1, or all
vertices in Ht are adjacent to st1.

First, suppose there is some vertex v ∈ St that is not adjacent to st1. The apple placer
places the next apple on v. Since the head cannot directly move from s1 to v, it has to make
a type β move next.

Next, suppose all vertices in St are adjacent to st1, as depicted in Figure 6.4. Since Ht is
incomplete, there must be two vertices u, v in St that are not adjacent to each other. The
apple placer places the first apple on u. If the snake does not make a type β move next
and immediately moves to u, then v remains unoccupied and the apple placer can place the
next apple on v. Since v is not adjacent to u, the snake will have to make a type β move
next.

Corollary 6.12. Let G = (V,E) be a non-Hamiltonian snake-winnable graph and let t′ be
the moment the snake reaches length circ(G) + 1. Then for all t ≥ t′, Ht must be complete.

Proof. Suppose Ht is incomplete. Since the length of the snake is greater than circ(G), the
snake can only make type α and type β moves after time t. By Lemma 6.11, the snake can
be forced to make a type β move within the next two moves. It follows by Lemma 6.6 that
the snake will lose.

Corollary 6.12 shows us that for non-Hamiltonian snake-winnable graphs, the head graph
must remain complete during the last part of the game.

Definition 6.13. Let t be the first time the snake eats an apple and the head graph is
complete. We refer to the phase of the game starting from t onward as the complete
phase.

Note that the complete phase can only start when the snake eats an apple. Thus, if the
complete phase starts at time t, then the snake made a type α move from t−1 to t. It turns
out that once the snake reaches the complete phase, it is guaranteed to win.
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Observation 6.14. Suppose at some time t, Ht is complete. Then, the snake will win.

Proof. Let st1 be the head of the snake. Since Ht is complete, the apple a must be adjacent
to st1. The snake can immediately move to a, and for the next head graph, we get Ht+1 =
Ht − st1. Hence, the head graph Ht+1 remains complete. The snake can keep repeating this
strategy until it reaches length |V |.

Since reaching the complete phase results in a guaranteed win for the snake, the apple
placer will always try to prevent this. This gives us the following.

Lemma 6.15. Let St = (st1, . . . , sℓ) be the position of the snake at time t, and suppose the
snake made a type α move from time t − 1 to t. Furthermore, suppose Ht is incomplete.
Then the snake cannot enter the complete phase at time t+ 1.

Proof. Suppose the snake can enter the complete phase at time t + 1. Then the snake has
to eat an apple at time t + 1, and thus the apple must be placed in N(st1). We then get
that Ht+1 = Ht − st1 is complete. Since Ht was incomplete, there was some vertex in St

that is not adjacent to st1. Hence, the apple placer could have placed the apple on a vertex
that is not in N(st1). By Observation 6.14, the snake will win if it reaches the complete
phase. Thus, the apple placer always wants to prevent the snake from entering the complete
phase. We conclude that the apple placer would never have placed the apple in N(st1), and
thus the snake cannot enter the complete phase at time t+ 1.

Lemma 6.15 shows us that the snake cannot enter the complete phase right after making
a type α move. We will now show that on non-Hamiltonian graphs, the snake can also not
enter the complete phase right after a type β move.

Lemma 6.16. Let G be non-Hamiltonian. If the snake makes a type β move followed by a
type α move, then after the type α move, the head graph cannot be complete.

Proof. By Observation 6.4 and Observation 6.5, after the type α move, there is an empty
vertex that is adjacent to the tail. Let this be vertex v. Let S = (s1, . . . , sℓ) be the position
of the snake, and H the head graph after the type α move. Note that H contains both v
and s1. If H is complete, then it contains a path P from s1 to v that contains all vertices
in H. But since v is adjacent to sℓ, we can form a Hamiltonian cycle in G by combining P
and S. This contradicts that G is non-Hamiltonian, and thus H cannot be complete.

Corollary 6.17. Let G be a non-Hamiltonian graph. If the snake enters the complete phase
at time t, then from t− 2 to t− 1, the snake must have made a type γ move.

Proof. By Lemma 6.15, the snake could not have made a type α move from t− 2 to t− 1.
By Lemma 6.16, the snake could also not have made a type β move from t − 2 to t − 1.
Hence, the snake must have made a type γ move from t− 2 to t− 1.

After a type γ move, the head of the snake will always be adjacent to the tail. Thus,
Corollary 6.17 shows us that the snake always forms a cycle right before it enters the
complete phase. If the snake enters the complete phase at time t, then we will refer to V (Ht)
as the final clique and the cycle formed by St−1 as the final cycle.

Corollary 6.17 gives us the following necessary structure for snake-winnable graphs.

Theorem 6.18. Let G = (V,E) be a snake-winnable graph. Then G must contain a clique Q
of size at least |V |−circ(G). Furthermore, there must be a cycle that C in G such that C = Q.

Proof. First note that ifG is Hamiltonian, then the statement is trivially true since circ(G) =
|V |, and thus we can have Q = ∅.

36



6 THE STRUCTURE OF SNAKE-WINNABLE GRAPHS

Figure 6.5: The snake makes a type γ move from t − 1 to t − 2, and enters the complete
phase at time t. We get that St−1 forms a cycle a V (Ht) is a clique.

Suppose G is not Hamiltonian. By Corollary 6.12, there must be some time t at which
the snake enters the complete phase. Let St = (st1, . . . , s

t
ℓ) be the position of the snake at

time t. We have the clique Q = V (Ht) with |Q| = |V | − ℓ+1. By Corollary 6.17, the snake
makes a type gamma move from t− 2 to t− 1, as depicted in Figure 6.5. Let C be the cycle
formed by St−1. Note that C has length ℓ− 1. Furthermore, V (Ht) = C and thus

|Q| = |V | − |C| = |V | − ℓ+ 1 ≥ |V | − circ(G).

For even-sized bipartite graphs, we saw that having a Θ(|V |−5, 3, 3) spanning subgraph
was not sufficient for it to be snake-winnable. Note that having a Θ(|V | − 5, 3, 3) spanning
subgraph satisfies the structural requirement form Theorem 6.18 with a cycle of length |V |−2
and a clique of size 2. Hence, we can also conclude that while this structural requirement is
necessary, it is not sufficient for a graph to be snake-winnable.
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7. Snake on graphs with low vertex-connectivity

In Section 2, we specified that the game of Snake is always played on a connected graph.
On a disconnected graph, the apple could always be placed in a different component than
the head, making it trivially unwinnable for the snake. On connected graphs, there will
always be a path from the head to the apple, but it might be blocked by the body of the
snake. If the graph has low vertex-connectivity, then the number of paths to the apple may
be limited. Intuitively, this makes it more likely for the snake to “block” itself, making it
easier for the apple placer to win.

Definition 7.1. Let G = (V,E) be a connected simple graph. Let S ⊂ V be a set of vertices
such that G−S is disconnected. Then S is called a vertex cut. If there is a single vertex v
such that G− v is disconnected, then we call v a cut vertex.

Definition 7.2. Let G = (V,E) be a connected simple graph. The vertex-connectivity
of G, denoted κ(G), is the size of the smallest vertex cut in G. For Kn, the complete graph
on n vertices, we define κ(Kn) = n− 1.

For a graph G, we denote the number of connected components of G by ω(G). Note
that if G is connected, then ω(G) = 1. We can make the following two observations.

Observation 7.3. If G has a vertex cut S and ω(G−S) > |S|, then G is non-Hamiltonian.

Proof. Suppose G does have a Hamiltonian cycle C. Let v be some vertex that is not in S.
If we start at v and follow the cycle, then we will visit every component and end up back
in the component with v. It follows that we will have to move through S at least ω(G− S)
times. But since ω(G − S) > |S|, this is not possible and we conclude that G cannot be
Hamiltonian.

Observation 7.4. If G has a vertex cut S and ω(G − S) > |S| + 1, then G is not snake-
winnable.

Proof. By Observation 2.3, a graph needs to have a Hamiltonian path to be snake-winnable.
Any Hamiltonian path passes through S at least ω(G− S)− 1 times.

7.1 Snake-winnable graphs with vertex-connectivity 1

A graph with vertex-connectivity 1 is a connected graph with a cut vertex. Graphs with
vertex-connectivity 1 can never be Hamiltonian, since any cycle has vertex-connectivity 2.
Consider some graph with a cut vertex. If the snake wants to move between different
components, it will have to move through the cut vertex. But if the snake is long, then
the cut vertex will remain occupied for a while. Hence, the snake cannot return to another
component for some time. In other words, as the snake grows longer, it becomes increasingly
hard for the snake to move between different components. We will see that in many cases,
the apple placer can use this to obtain a winning strategy. But first, we show that there do
exist snake-winnable graphs with vertex-connectivity 1.

Lemma 7.5. Let G = (V,E) be a graph with κ(G) = 1 and let v be a cut vertex of G.
Suppose that G1 and G2 are the only two connected components of G − v with |V (G1)| =
|V (G2)| = m and m ≥ 2. Furthermore, let G1 + v and G2 + v both be complete. Then G is
snake-winnable.
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7 SNAKE ON GRAPHS WITH LOW VERTEX-CONNECTIVITY

Figure 7.1: A snake-winnable graph with cut vertex v. The subgraphs G1 + v and G2 + v
are both complete.

Figure 7.2: At length m, the snake moves into G1 until its tail is on v. It then eats the
apple on a, after which it occupies every vertex in G1 and can move to v.

Proof. The graph G is depicted in Figure 7.1. While the snake is shorter than m, it can
always move between G1 and G2 by moving into the current component until v becomes
unoccupied, and then moving to the other component through v. We consider the moment
the snake grows to length m.

First, suppose the next apple is placed on v. This means v is currently unoccupied and
thus the snake must be entirely in G1 or entirely in G2. By symmetry, we may assume the
snake is entirely in G1. Since the snake has length m, it occupies all the vertices in G1.
Furthermore, since G1+v is complete the head must be adjacent to v. The snake can eat the
apple on v on the next move, after which the head graph will be G2 + v, which is complete.
By Observation 6.14 the snake will win.

Next, suppose after the snake grows to length m, the next apple is not placed on v.
By symmetry, we may assume the apple is placed on some vertex a in G1, as depicted in
Figure 7.2. If the head is in G2, then the snake keeps moving into G2 until v is unoccupied.
It then first moves its head to v, and then into G1. With its head in G1 the snake can now
repeatedly move to vertices in G1 that are not a, until its tail is on v. Since the snake has
length m, it now occupies all vertices in G1, except for a. The snake then eats the apple
on a and since G1 + v is complete, its head on a will be adjacent to its tail on v. The head
moves to v, after which the head graph is G2 + v, which is complete. By Observation 6.14,
the snake will win.

It turns out the graph from Lemma 7.5 is the only type of snake-winnable graph with
vertex-connectivity 1. To show this, we first prove the following two lemmas that show the
limitations of the snake on graphs with vertex-connectivity 1.

Lemma 7.6. Let G = (V,E) be a graph with κ(G) = 1 and let v be a cut vertex of G.
Let G1 and G2 be two different connected components of G− v, with |V (G1)| = m. Suppose
the head of the snake is in G1 and the snake has a length of at least m + 2. If there is an
unoccupied vertex in G2, then the snake will lose.

Proof. By Observation 5.4, the snake will have to move to the unoccupied vertex in G2

at some point in the future. Hence, at some point, the head will have to move from G1

to G2. To do so, the head will have to move through v. Thus, the snake must first keep
moving into G1 until it is either entirely in G1, or only its tail outside of G1, namely on v.
But this is impossible since G1 only contains m vertices and the snake has a length of at
least m+ 2.
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7 SNAKE ON GRAPHS WITH LOW VERTEX-CONNECTIVITY

Lemma 7.7. Let G = (V,E) be a graph with κ(G) = 1 and let v be a cut vertex of G.
Let G1 and G2 be two different connected components of G− v, with |V (G1)| = m. Suppose
the head of the snake is in G1, the snake has a length of at least m+ 1, and the apple is on
some vertex a in G1. If there is some unoccupied vertex in G2, then the snake will lose.

Proof. Similar to Lemma 7.6, we will show that the head cannot return to G2. To move
from G1 to G2, the snake has to move into G1 until it is either entirely in G1, or only its
tail outside of G1. Hence, it must occupy at least m vertices in G1. But then the head also
has to visit a, at which point it will grow to length m + 2. By Lemma 7.6, the snake will
lose.

We can now show that if the two components of G − v have different sizes, then the
apple placer has a winning strategy.

Lemma 7.8. Let G = (V,E) be a graph with κ(G) = 1 and let v be a cut vertex of G.
Let G1 and G2 be two different components of G − v. If |V (G1)| ̸= |V (G2)| then G is not
snake-winnable.

Proof. First note that if either |V (G1)| = 1 or |V (G2)| = 1, then G has a vertex of degree 1
and is not snake-winnable by Observation 2.5. Hence, we may assume that both G1 and G2

have at least two vertices.
Let |V (G1)| = m1 and |V (G2)| = m2 and suppose m1 ̸= m2. Without loss of generality,

we assume that m1 < m2. When the snake grows to length m1 − 1 there must be some
vertex u1 in G1 that is unoccupied. The apple placer chooses u1 as the next apple location.
When the snake eats the apple on u1, it will grow to length m1. Since m1 < m2, there
must be some unoccupied vertex u2 in G2. The apple placer chooses u2 as the next apple
location.

When the snake eats the apple on u2, it will either be entirely in G2, or both the cut
vertex v and u2 are occupied by the snake. Thus, at least two of the occupied vertices are
in G2. Since the snake now has length m1+1, it follows that that must be some unoccupied
vertex v1 in G1. The apple placer chooses v1 as the next apple location. When the snake
eats the apple on v1, it will grow to length m1 + 2 with its head in G1. Furthermore, there
must be an unoccupied vertex in G2 and by Lemma 7.6, the snake will lose.

Next, we show that if one of the two components is incomplete, then the snake will lose.

Lemma 7.9. Let G = (V,E) be a graph with κ(G) = 1 and let v be a cut vertex of G. Let G1

and G2 be two different connected components of G− v and suppose G1 + v and G2 + v are
not both complete. Then G is not snake-winnable.

Proof. If G1 and G2 do not have the same number of vertices, then G is not snake-winnable
by Lemma 7.8. Hence, we may assume that G1 and G2 have the same number of ver-
tices. Let |V (G1)| = |V (G2)| = m. If m = 1, then G has a vertex of degree 1 and by
Observation 2.5 G is not snake-winnable. Hence, we may assume that m ≥ 2.

Suppose that G1 + v and G2 + v are not both complete subgraphs of G. By symmetry,
we assume G2 + v is incomplete.

When the snake reaches length m− 1, there must be some unoccupied vertex u2 in G2.
The next apple is placed on u2. When the snake eats the apple on u2 and grows to length m,
there will be at most m − 2 vertices in G1 that are occupied. Hence, the apple placer can
place the next apple on some u1 in G1, guaranteeing that the head of the snake is in G1

when it grows to length m+ 1. Furthermore, there must be an unoccupied vertex in G2.
First, suppose that there is some unoccupied vertex v1 in G1. Then the apple placer

places the next apple on v1. Since the snake has length m + 1 and both its head and the
apple are in G1, by Lemma 7.7, the snake will lose.
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Now suppose that there are no unoccupied vertices in G1. Recall that we assumed G2+v
is incomplete. If there is some vertex in G2 that is not adjacent to v, then the apple placer
places the next apple there. This means that if the snake moves to v and then immediately
eats the apple, then after eating the apple, the head graph is incomplete. Since the snake
now has length m + 2 and the circumference of G is at most m + 1, by Lemma 6.12, the
snake will lose.

If the snake first moves to v and then to a vertex in G2 without the apple, then a vertex
in G1 will become unoccupied. Since the snake has length m+1 and both its head and the
apple are in G2, by Lemma 7.7 the snake will lose.

Theorem 7.10. Let G = (V,E) have vertex-connectivity 1 and let v be a cut vertex of G.
Furthermore, let G1 and G2 be two different connected components of G − v. Then G is
snake-winnable if and only if ω(G− v) = 2, |V (G1)| = |V (G2)| ≥ 2, and G1 + v and G2 + v
are both complete.

Proof. By Lemma 7.5, if ω(G− v) = 2, |V (G1)| = |V (G2)| ≥ 2, and G1 + v and G2 + v are
both complete, then G is snake-winnable.

By Observation 7.2, G is not snake-winnable if ω(G − v) > 2. If either |V (G1)| = 1
or |V (G2)| = 1, then G had a vertex of degree 1 and is not snake-winnable by Obser-
vation 2.5. By Lemma 7.8, if |V (G1)| ̸= |V (G2)|, then G is not snake-winnable. By
Lemma 7.9, G is also not snake-winnable if either G1 + v or G2 + v is incomplete.

For grid graphs, Theorem 7.10 gives us the following.

Corollary 7.11. There are no snake-winnable grid graphs with vertex-connectivity 1.

Proof. Let G be a grid graph with κ(G) = 1 with cut vertex v. Let G1 and G2 be two
components of G − v. We know G cannot have a clique with more than two vertices.
But if |V (G1)| = |V (G2)| ≥ 2 and G1 + v and G2 + v are both complete, the V (G1 + v)
and V (G2 + v) are both a clique with at least 3 vertices.

7.2 Snake-winnable graphs with vertex-connectivity 2

In Section 3 we saw a few examples of graphs with vertex-connectivity 2 that are non-
Hamiltonian and snake-winnable, for example, the graph in Figure 3.7. In this section, will
present two different types of non-Hamiltonian graphs that are snake-winnable.

Let G be the graph in Figure 7.3, which can be constructed as follows. We first take a
simple path P = (p1, . . . , pk) with k ≥ 3. We then add G1 and G2, which are two copies
of the complete graph on m vertices. Finally, we make both p1 and pk adjacent to all

Figure 7.3: A snake-winnable graph with vertex-connectivity 2. The subgraphs G1, G2 are
complete, p1 and pk are adjacent to all the vertices in V (G1) ∪ V (G2).
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Figure 7.4: The snake moves along a cycle (P, P ′) with V (P ′) = V (G1).

the vertices in both copies. Note that S = {p1, pk} is a vertex cut and G − S has three
connected components. By Observation 7.2, G is non-Hamiltonian. We now show that G is
snake-winnable.

Lemma 7.12. The graph in Figure 7.3 is snake-winnable.

Proof. We first show that up until the snake reaches length k + m, it can maintain the
following. The snake always moves along a cycle (P, P ′), with either V (P ′) = V (G1)
or V (P ′) = V (G2), as depicted in Figure 7.4.

Suppose the snake has length ℓ < k + m and is moving along such a cycle, but the
apple is placed on a vertex outside of the cycle. By symmetry, we may assume the snake
is moving along a cycle (P, P ′) with V (P ′) = V (G1), and the apple is placed on some
vertex a ∈ V (G2). First, the head moves along the cycle until it reaches pk as depicted
in Figure 7.5a. At this point, there will be ℓ − k < m occupied vertices in G1. The head
then visits the m − 1 vertices in G2 that do not contain the apple. After doing so, the
tail has moved m − 1 times, and thus the vertices in G1 are all unoccupied, as depicted in
Figure 7.5b. Furthermore, since G2 is a complete graph, the head must be adjacent to the
apple. The snake eats the apple, and since all vertices in G2 are adjacent to p1, it will be
contained in some cycle (P, P ′′) with V (P ′′) = V (G2), as depicted in Figure 7.5c.

By following this strategy, the snake can guarantee that once it reaches length k+m, it
occupies exactly all the vertices in P and all vertices in either G1 or G2. Furthermore, since
it is on a cycle of exactly the same length as the snake, the head is adjacent to the tail. By
symmetry, we may assume the snake occupies all the vertices in V (P ) ∪ V (G1). The head
then repeatedly moves to the tail until it reaches p1. Since p1 is adjacent to all vertices
in G2, the head graph is now complete, and by Observation 6.14, the snake will win.

(a) From pk, the snake moves
into G2.

(b) The snake first visits all
empty vertices in G2.

(c) After eating the apple, the
snake lies on (P, P ′′).

Figure 7.5: Up until the snake reaches length k +m, it always moves along a cycle (P, P ′),
with either V (P ′) = V (G1) or V (P ′) = V (G2).
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Figure 7.6: A snake-winnable graph with vertex-connectivity 2. The subgraphs G1, G2

and G3 are all complete with |V (G3)| ≥ |V (G2)| ≥ |V (G1)|. The vertices v1 and v2 are
adjacent to all the vertices in V (G1) ∪ V (G2),∪V (G3).

Recall that by Theorem 3.12, odd-sized bipartite graphs are snake-winnable if and only
if they have a Θ(|V | − 3, 2, 2) spanning subgraph. Note that for the graph in Figure 7.3,
if G1 and G2 are K1, then G = Θ(|V | − 3, 2, 2).

In the strategy for Lemma 7.12, the snake has different options for the final cycle and final
clique. It could either have V (P ) ∪ V (G1) on the final cycle and V (G2) as the final clique,
or V (P )∪V (G2) on the final cycle and V (G1) as the final clique. In the strategies we found
for the graphs in Figure 3.7, Figure 3.15 and Figure 5.6, the snake also had several options
for the final cycle and final clique. However, we will show that there are non-Hamiltonian
snake-winnable graphs with vertex-connectivity 2 where the snake can always have the same
final cycle and final clique.

LetG be the graph in Figure 7.6, which can be constructed as follows. First, we take three
complete graphs G1, G2, and G3 with |V (G1)| = m1, |V (G2)| = m2, and |V (G3)| = m3.
We have m3 ≥ m2 ≥ m1 ≥ 2 and m3 ≤ m1 +m2 − 2. We then add two vertices v1 and v2
and make both of these vertices adjacent to all vertices in V (G1) ∪ V (G2) ∪ V (G3). Note
that G has κ(G) = 2 with vertex cut S = {v1, v2}. Furthermore, since ω(G− S) = 3, G is
not Hamiltonian.

Lemma 7.13. Let G be the graph in Figure 7.6. Then G is snake-winnable and the snake
can always end with V (G3) as a final clique.

Proof. Since G3 is complete, there is a v1v2-path P that contains all the vertices in G3. Note
that |P | ≤ m1+m2. Up until the snake reaches length m1+m2+1, it always moves around
some cycle C = (P, P ′) with |C| = m1+m2+1 and either V (P ′) ⊆ V (G1) or V (P ′) ⊆ V (G2).
This is possible since the snake can use the same strategy as in Lemma 7.12.

(a) Along (P, P ′′), the snake
moves to v1 and then into Gi.

(b) The snake first visits all
empty vertices in Gi.

(c) The snake is on a cycle
and V (G3) is the final clique.

Figure 7.7: The snake can ensure V (G3) is the final clique.
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When the snake reaches length m1 +m2 +1, it will occupy all the vertices of its current
cycle, which include v1, v2 and all the vertices in G3. Hence, the next apple will either
be placed in G1 or G2. Let Gi ∈ {G1, G2} be the component that contains the apple
and Gj ∈ {G1, G2} the component that does not contain the apple.

The snake first moves to a cycle (P, P ′′) where V (P ′′) = V (Gj), as depicted in Fig-
ure 7.7a. When the snake reaches v1, instead of continuing along P , the snake moves into Gi.
There, it first visits all the Gi that do not contain the apple, as depicted in Figure 7.7b.
Finally, the snake eats the apple, after which it grows to a length m1 + m2 + 2. At this
point, it will lie on a cycle that consists of all the vertices in V (G1) ∪ V (G2) ∪ {v1, v2}.
Thus, the next apple must be placed in G3. The snake then moves to the tail on v2, as
depicted in Figure 7.7c. From there, it can eat the apple in G3 and enter the complete phase
with V (G3) the final clique.

7.3 Snake-winnable graphs with higher vertex-connectivity

We have seen non-Hamiltonian snake-winnable graphs with vertex-connectivity 1 and 2.
Furthermore, there are Hamiltonian graphs with arbitrarily large vertex-connectivity, which
are snake-winnable by Observation 2.3. The question remains whether there are any non-
Hamiltonian snake-winnable graphs with higher vertex-connectivity. We will show that by
connecting several complete graphs, we can construct a non-Hamiltonian snake-winnable
graph with arbitrarily large vertex-connectivity.

Theorem 7.14. There are non-Hamiltonian snake-winnable graphs with arbitrarily large
vertex-connectivity.

Proof. For a given k, we will construct a non-Hamiltonian graph G with κ(G) = k that
is snake-winnable, which is depicted in Figure 7.8. First, we take G1, . . . , Gk+1, which
are k+ 1 copies of the same complete graph on at least 2 vertices. We then add k new ver-
tices {v1, . . . , vk}, and make each of these vertices adjacent to all the vertices in each of theGi

for i ∈ 1, . . . , k + 1. Note that G has vertex-connectivity k with vertex cut S = {v1, . . . , vk}.
Furthermore, ω(G− S) = k + 1, and thus G is non-Hamiltonian by Observation 7.2.

We will now prove that G is snake-winnable by showing it has the graph from Figure 7.3
as a spanning subgraph. Let Pi be a path in Gi that contains all the vertices of Gi. Note
that such a path exists for each of the Gi since they are complete. We then form the
path P = (v1, P2, v2, P3, v3 . . . , vk−1, Pk, vk), as depicted in Figure 7.9. The path P contains
all the vertices of G except for V (G1) and V (Gk+1). Furthermore, the endpoints of P are
adjacent to all the vertices in V (G1) ∪ V (Gk+1). Hence, by combining P with G1, Gk+1k,
and all edges between {v1, vk} and V (G1)∪ V (Gk+1), we obtain the graph from Figure 7.3.
By Lemma 7.12, we know this graph is snake-winnable. Thus, G has a snake-winnable
spanning subgraph and it follows by Observation 2.4 that G is snake-winnable.

...
...

Figure 7.8: A non-Hamiltonian snake-winnable graph with vertex-connectivity k.
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7 SNAKE ON GRAPHS WITH LOW VERTEX-CONNECTIVITY

......
......

Figure 7.9: The path P = (v1, P2, v2, P3, v3 . . . , vk−1, Pk, vk).

While the graph in Figure 7.8 has a snake-winnable spanning subgraph with lower vertex-
connectivity, this is not the case for the graph in Figure 7.3. Since the latter has vertex-
connectivity 2, by Theorem 7.10, the only snake-winnable graph of lower vertex-connectivity
is the one in Figure 7.1. Hence, because of the path P , the graph in Figure 7.3 can never
have a snake-winnable spanning subgraph of vertex-connectivity 1. We can thus consider
the graph in Figure 7.3 to be a minimal snake-winnable graph with respect to the vertex-
connectivity. Whether such minimal graphs also exist for higher vertex-connectivities re-
mains an open question.
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8. Conclusion

Based on the classic computer game of Snake, we defined the game of Snake on a graph.
Originally played on a grid, Snake can easily be translated to a game on a grid graph, which
can then be further generalized to any connected simple graph. In the game of Snake on a
graph, we disregard human factors like reaction time and focus solely on the combinatorial
question of whether a graph is winnable. This makes the game of Snake on a graph a natural
addition to the field of combinatorial games on graphs. Central to this game is the question
of which non-Hamiltonian graphs are snake-winnable. Unfortunately, fully resolving this
question remains an open problem.

For odd-sized bipartite graphs and graphs with vertex-connectivity 1, we were able to
completely characterize snake-winnable graphs (Theorems 3.12 and 7.10). More generally,
we showed that every non-Hamiltonian snake-winnable graph has a girth of at most 6
(Theorem 5.11). Furthermore, we determined that any non-Hamiltonian snake-winnable
graph G must have a cycle and a clique that are completely disjoint and together contain
all the vertices of G (Theorem 6.18). While both the condition on the girth, as well as the
cycle and clique structure, are necessary for non-Hamiltonian graphs to be snake-winnable,
they are not sufficient.

The snake problem is NP-hard, even when restricted to grid graphs (Theorem 4.1).
Whether it can be solved in polynomial time on solid grid graphs remains an open question.
Given the numerous possible apple placements and positions of the snake, it is unclear
whether the snake problem is even in NP, as it is not obvious how a snake strategy could
be described compactly.
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