
MSc Thesis Applied Mathematics

Optimising node2vec in
Dynamic Graphs Through
Local Retraining

Michail Angelos Goulis

Supervisor: dr. Clara Stegehuis

August, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Acknowledgements

I would like to thank my supervisor dr. Clara Stegehuis for her excellent guidance and
support during my research. Her expertise and constructive feedback have been essential
to shaping my thesis. Moreover, I would like to express my appreciation to the other
members of my graduation committee, dr. Mark Uetz and dr. Sophie Langer, for taking
the time to read and evaluate my thesis. Next, I would like to thank study advisor Lilian
Spijker who was always happy to help me and answer my questions during my thesis and
studies in general. Last but not least, I am deeply thankful to my family for their endless
love and support and to my friends for their constant motivation throughout my studies.

Contents

1 Introduction 2
1.1 Problem Statement . 3
1.2 Thesis Outline . 3

2 Background 4
2.1 word2vec . 4

2.1.1 Skip-gram . 4
2.1.2 Negative Sampling . 5

2.2 node2vec . 7
2.2.1 Skip-gram . 7
2.2.2 Negative Sampling . 7
2.2.3 Biased Random Walks . 8

2.3 Node Removal Strategies . 10
2.3.1 Betweenness Centrality . 10
2.3.2 Degree Centrality . 10

2.4 Related Work . 11

3 Evaluation 12
3.1 One-vs-Rest(OvR) . 12
3.2 F-score . 13
3.3 Micro and Macro Averaging . 14

4 Method 15
4.1 Specifications of Datasets . 15
4.2 Algorithmic Implementation . 15

4.2.1 Dynamic Graph Generation . 16
4.2.2 Extending the graph . 19
4.2.3 Pruning the graph . 21

5 Results 24
5.1 Experimental Analysis and Modifications . 24
5.2 Dataset F-scores . 26
5.3 Random Walk Length . 29
5.4 Hyperparameter Configurations . 30
5.5 Node Removal Strategies . 32

6 Conclusion and Discussion 33

A Hardware Implementation 34

Optimising node2vec in Dynamic Graphs Through Local
Retraining

Michail Angelos Goulis

August, 2024

Abstract

In network representation learning, deep learning techniques have been on the rise
recently due to advancements in neural networks. One of the earliest techniques is
node2vec, which generates vector representations of nodes in a graph by simulating
random walks to capture network topology and node similarities. However, the time
complexity of these techniques is high and scales with the size of the networks. This
is particularly important in the case of dynamic networks, which evolve over time and
appear in a variety of real-world scenarios. There is still no general method to optimize
node2vec for dynamic graphs. In this thesis, we introduce a new technique that
makes representation learning computationally feasible in large dynamic graphs. We
approximate node2vec on dynamic graphs by focusing on the retraining of local areas
affected by graph updates instead of retraining on each graph iteration. We show that
this approximating implementation of node2vec results in minimal loss of accuracy
while achieving significant speedup, making it a strong optimization technique for use
in dynamic graphs.

Keywords: network embeddings, dynamic graphs, word2vec, node2vec, skip-gram,
negative sampling, dynamic graphs, extend, prune, centrality

1

1 Introduction

Many real-world problems involving large networks have increasingly relied on network
representation learning techniques. Traditionally, researchers in network science have used
specific graph heuristics to extract features such as degree statistics, clustering coefficients,
node centrality, etc. However, recent years have seen a surge in approaches that auto-
matically learn to encode network structures using deep learning techniques. The main
advantage of these methods is their ability to transform nodes into vectors and matrices,
which serve as the primary input for deep learning models. This transformation allows
these approaches to fully utilize the knowledge and techniques developed for methods that
process matrix-like structures. In addition, these network representation approaches have
led to impressive results in various network-based tasks such as node classification, node
clustering, and link prediction.

For example, in link prediction, algorithms like Graph Autoencoders and Variational
Graph Autoencoders have shown success in predicting future connections in social networks
and recommending friends or products [Kipf and Welling, 2017] [Salha et al., 2021]. Also,
in node classification, methods like Graph Convolutional Networks (GCNs) have been used
to predict the roles or categories of nodes in social networks and citation networks [Kipf
and Welling, 2017].

In a similar context, word2vec has been a pioneer in natural language processing (NLP).
Its main idea is to employ a neural network to learn dense, continuous vector representa-
tions of words from large text corpora. These vectors capture both syntactic and semantic
relationships between words, enabling meaningful linguistic analogies through vector arith-
metic. A popular example is the analogy "king - man + woman = queen". The encoding
of words into vectors has inspired a wave of innovation in various domains, including graph
representation learning.

In graph representation learning, nodes are represented as low-dimensional vectors
instead of words. One notable graph embedding technique, used primarily for node classi-
fication and link prediction, is node2vec, introduced by Grover and Leskovec [Grover and
Leskovec, 2016]. This method seeks to broaden the range of graph representation and deep
learning techniques, and it will be the main focus of our research.

Figure 1: Visualization of a graph and its corresponding embeddings [Perozzi
et al., 2014].

2

1.1 Problem Statement

As stated, node2vec has been a very successful technique in network representation learn-
ing, effectively capturing low-dimensional embeddings of nodes for various tasks. However,
it can be computationally expensive, even with common optimization techniques (which
we analyze further in the next chapters). This issue is especially pronounced in dynamic
graphs. A dynamic graph is a graph that is modified by adding new nodes/edges (ex-
tending) or removing nodes/edges (pruning). Dynamic graphs appear in various real-time
changing phenomena, such as social network interactions, communication networks, and
evolving biological systems [Holme and Saramäki, 2012].

For example, consider the case of a social network. When a user adds a new friend, a
new edge is created between the nodes representing these two users, extending the graph.
When a user unfriends someone, the edge between their corresponding nodes is removed,
pruning the graph. In this example, the social network is modelled as a dynamic graph
that evolves rapidly over time.

Re-training node2vec on dynamic graphs is inefficient as it requires processing the
entire training data again, which is particularly problematic when graph modifications are
relatively small compared to the original graph. More specifically,whenever a new node
or edge is added to the graph, the existing node embeddings must be updated to reflect
these changes. Therefore, in cases where the graph is updated often, this method becomes
impractical. An efficient method for calculating the updated embeddings can prove to be
highly beneficial in real-world scenarios.

To address this, we propose the following research questions:

RQ1 How can we make the node2vec algorithm more efficient in dynamic graphs?

RQ2 How does approximating node2vec in dynamic graphs affect accuracy and training
time?

RQ3 How is accuracy affected depending on the type of dynamic update (removing nodes
randomly or according to a specific graph statistic)?

We investigate the efficiency of a custom node2vec implementation in node classification
for local retraining compared to global retraining. Specifically, our approach focuses on
retraining only the affected areas of the graph after updates, rather than retraining the
entire network. This localized retraining aims to reduce computational complexity and
increase efficiency while maintaining accuracy.

1.2 Thesis Outline

The thesis is structured as follows. In Chapter 2 we introduce the theory behind word2vec
to get to the basis of node2vec. Chapter 3 defines the evaluation metrics used in our graph
models. Following this, Chapter 4 explains our process, the datasets we experimented on
as well as the custom implementations. Furthermore, in Chapter 5 we analyse the results
of our research. Finally in Chapter 6 we include the conclusion and discussion.

3

2 Background

In this section we will describe the background of word2vec, node2vec, graph learning,
centrality measures and dynamic networks.

2.1 word2vec

In the field of natural language processing (NLP), word2vec is a technique for converting
real language words into high dimensional vector representations. It was published by
Tomas Mikolov and his colleagues at Google in the paper "Efficient Estimation of Word
Representations in Vector Space" [Mikolov et al., 2013].

The core idea behind word2vec is its ability to capture the context and meaning of
words by embedding them in a continuous vector space. It analyses large amounts of
text data, and learns to group word sets that appear frequently together. As a result, it
can create meaningful semantic relationships which can be used for various tasks such as
sentimental analysis, machine translation etc.

Two primary architectures underpin the word2vec framework: the continuous bag-
of-words (CBOW) model and the skip-gram (SG) model. These architectures represent
distinct approaches to learning word embeddings, each with its own strengths and trade-
offs. We discuss the latter as it is also used in the training of node2vec.

2.1.1 Skip-gram

Skip-gram is a learning model for word2vec responsible for learning the word embeddings.
Training of the skip-gram model involves utilizing efficient lookup tables and dot products
rather than dense matrix multiplications as found in other neural network architectures
[Mikolov et al., 2013]. Its training objective is to maximise the probability of observing
the actual words given the target word, which is the word being predicted.

Given a word sequence, w1, w2, . . . , wn, for training, the skip-gram model seeks to
maximise the following objective in order to learn the embeddings

LSG =
1

n

n∑
i=1

∑
|j|<c
j ̸=0

log p(wi+j |wi), (1)

where wi is a target word and wi+j is a context word within a window of size c [Goldberg
and Levy, 2014]. Specifically, the target word is the word being predicted, while the context
words are the words that surround it.

We define the softmax unit function

p(wi+j |wi) =
exp(twi · cwi+j)∑
w∈W exp(twi · cw)

,

where p(wi+j |wi) represents the probability that wi+j appears given wi, tw and cw are
w’s embeddings when it behaves as a target and context, respectively. W represents the
vocabulary set [Kaji and Kobayashi, 2017]. It could be seen as the generalisation of the
sigmoid function: σ(x) = 1

1+e−x . More specifically, the sigmoid function can be seen as a
special case of the softmax function when dealing with two classes of a binary classification
problem. The softmax function works well as when the word vectors are near each other,
their dot product increases, leading to a higher numerator and thus higher probabilities.
This allows the model to give more weight on similar words which appear close to each
other.

4

wt

wt−2

wt−1

wt+1

wt+2

Figure 2: Skip-gram model architecture. Adapted from [Mikolov et al., 2013].

An alternative more abstract formulation of the problem is found in [Goldberg and
Levy, 2014]. In the skip-gram model, given a corpus of words w and their contexts c, we
consider the conditional probabilities p(c|w) of observing a context word c given w and a
corpus text. We define parameters θ as vc, vw, for w ∈ V, c ∈ C, i ∈ 1, . . . , d (a total of
|C| × |V | × d parameters) where vc and vw ∈ Rd are vector representations for c and w
respectively, and a set C of all available contexts. Our goal is to set θ to maximise

argmax
θ

∏
(w,c)∈D

p(c|w; θ), (2)

where D is the set of all word and context pairs we extract from the text.
The conditional probability p(c|w; θ) is defined as

p(c|w; θ) = exp(vc · vw)∑
c′∈C exp(v′c · vw)

,

This alternative definition uses simpler and more clean notation of the target and con-
text words and emphasizes the importance of the embeddings via the optimal parameter θ.
However, one can notice from both definitions that computing the sum in the denominator
over all the contexts c′ is expensive therefore we apply negative sampling.

2.1.2 Negative Sampling

Negative Sampling is an efficient technique used in training of word2vec to derive word em-
beddings [Mikolov et al., 2013]. Instead of including all possible words (w, c) as shown in
(2), only some negative examples (not correct pairs of target-context words) are sampled.
Negative-sampling is based on the skip-gram model but it optimises a different objective.
We derive the negative-sampling objective, which aims to maximize the likelihood of ob-
served word-context pairs while minimizing the likelihood of randomly sampled negative
examples, as shown in [Goldberg and Levy, 2014].

We consider a pair (w, c) of word and context and denote by p(D = 1|w, c; θ) the
probability that this pair comes from the training data with parameters θ controlling the
distribution.

Our goal is to find parameters that maximise the probabilities that all the observations
indeed came from the data and by taking the logarithm of this objective we have

argmax
θ

∑
(w,c)∈D

log p(D = 1|w, c; θ) (3)

5

We then define p(D = 1|w, c; θ) = 1
1+exp(−vc·vw) leading to the objective

argmax
θ

∑
(w,c)∈D

log
1

1 + exp(−vc · vw)

This objective has a trivial solution by setting θ such that vc = vw and vc · vw = K for all
vc, vw, where K is a large enough number.

To prevent all the vectors from having the same value, we can disallow some (w, c)
combinations. A way to achieve that is by including some (w, c) pairs for which p(D =
1|w, c; θ) is low, that is pairs which are not in the data. We generate the set D′ of random
incorrect (w, c) pairs, that is pairs of words that are not observed together in the training
data, to serve as negative samples for training the model (the name "negative-sampling"
stems from the set D′ of randomly sampled negative samples). The optimisation objective
(3) becomes now

argmax
θ

∏
(w,c)∈D

p(D = 1|c, w; θ)
∏

(w,c)∈D′

p(D = 0|c, w; θ)

= argmax
θ

∏
(w,c)∈D

p(D = 1|c, w; θ)
∏

(w,c)∈D′

(
1− p(D = 1|c, w; θ)

)
= argmax

θ

∑
(w,c)∈D

log p(D = 1|c, w; θ) +
∑

(w,c)∈D′

log
(
1− p(D = 1|c, w; θ)

)
= argmax

θ

∑
(w,c)∈D

log
1

1 + exp(−vc · vw)
+

∑
(w,c)∈D′

log
1

1 + exp(vc · vw)

= argmax
θ

∑
(w,c)∈D

log σ(vc · vw) +
∑

(w,c)∈D′

log σ(−vc · vw)

A more abstract version of the objective can be found in [Mikolov et al., 2013] defined
as

log σ(v′TwO
vwI) +

k∑
i=1

Ewi∼Pn(w)[log σ(−v′Twi
vwI)], (4)

where vwI is the vector representation of the input word wI , v′wO
is the representation of

the output word wO, v′wi
is the representation of negative sample word wi, Pn(w) denotes

the noise distribution from which negative samples wi are drawn and Ewi∼Pn(w) denotes
the expectation with respect to the noise distribution.

Initially, the unigram distribution was employed as noise distribution, where probabil-
ities are assigned to words based on their occurrence frequency in the corpus. Words with
higher frequency have also higher probability of being sampled. Subsequently, a tailored
approach was adopted, where each word is sampled proportional to its unigram distribution
raised to the power of 3

4 . This adjustment was found to outperform both the standard uni-
gram and uniform distribution in accuracy of analogical reasoning tasks, that is the ability
of understanding the analogous relationships between words (e.g. if the model knows that
"man" is to "woman" as "king" is to "queen") [Mikolov et al., 2013].

6

2.2 node2vec

Building on the principles of word2vec, Grover and Leskovec introduced node2vec, a graph-
based learning algorithm used to generate embeddings for nodes in a graph [Grover and
Leskovec, 2016]. It groups together node embeddings with similar characteristics (depend-
ing on the analysis) while preserving the structural properties of the network. Unlike tradi-
tional approaches that solely rely on labelled data, node2vec operates in a semi-supervised
manner, effectively utilizing both labelled and unlabelled data to enhance its learning
process.

The primary objective of node2vec is to represent each node in the graph as a dense
vector, capturing its semantic and topological properties. These embeddings serve as fea-
ture representations that can be fed into downstream machine learning models or neural
networks for various tasks such as node classification, link prediction, and graph visualiza-
tion.

2.2.1 Skip-gram

Similarly to word2vec, skip-gram is used as the learning model while training. The equiv-
alent optimisation to the objective (3) for node2vec is

max
f

∑
u∈V

∑
ni∈N(u)

logP (ni|u; f) (5)

In the network context, for each node u a d dimensional vector is learned and repre-
sented as f(u) where f is the embedding function, V is the set of all nodes and N(u) rep-
resents the walk neighbourhood of node u which is obtained through a series of specifically
defined random walks originating from u (see Chapter 2.2.3). The way the neighbourhood
N(u) of a node is defined is not by the standard method of including the adjacent nodes,
but rather by incorporating nodes that are generated from a random walk.

The probability P (ni|u; f) is modelled by a softmax unit [Armandpour et al., 2019]:

P (ni|u; f) =
exp (f(ni)

T · f(u))∑
v∈V exp (f(v)T · f(u))

2.2.2 Negative Sampling

Similarly to word2vec, negative sampling in node2vec is used to overcome the computa-
tional infeasibility of the skip-gram objective because each of the softmax terms requires
summation over all vertices [Yang et al., 2020]. Negative sampling provides a computa-
tionally feasible approximation to the objective (5) by replacing each logP (ni|u; f) term
with

log (σ(f(ni)
T · f(u))) +

k∑
j=1

Evj∼P (v)[log σ(−f(vj)T · f(u))]

where σ(x) = 1
1+e−x and P (v) is a distribution proportional to dαv , where dv is the

degree of node v [Mikolov et al., 2013], α = 0.75 and k is the number of negative samples.
Regarding the sampling of nodes, positive examples are pairs of nodes that are con-

nected in the graph and negative examples are pairs that are not connected. Instead of
considering all possible negative examples, negative sampling randomly samples a small
number of negative examples during each training iteration.

7

Since the sampling is proportional to the graph’s degree distribution P (v), nodes with
more connections are more likely to be chosen as negative samples. This is because high-
degree nodes have a higher chance of appearing in random walks by chance, even if they
aren’t truly connected to the central node in the context of the specific task.

2.2.3 Biased Random Walks

At its core, the node2vec algorithm explores the notion of node similarity within the graph
by employing a biased random walk strategy. In that sense, it is similar to word2vec as
it treats nodes as words and random walks as sentences. However, it expands on the
one-dimensional nature of word2vec, as sentences are linear sequences, whereas the walk
neighbourhood is a more complex, two-dimensional structure. By intelligently navigating
the graph space, it ensures that nodes with similar network neighbourhoods are embedded
closely together in the vector space. This strategy enables the embeddings to preserve the
local and global structural characteristics of the original graph.

One of the key challenges in designing node2vec lies in balancing the exploration and
exploitation trade-off during the random walk process. The algorithm incorporates two
parameters, namely the return and in-out parameters p and q, to control the exploration
behaviour, allowing it to capture both homophilic and structural equivalence among
nodes [Grover and Leskovec, 2016].

More specifically:

• Homophily: Nodes are organised based on communities they belong to (e.g. center
node connected to 4 surrounding it, like 5 in a dice)

• Structural equivalence: Nodes share structural roles e.g. two hubs (nodes that
are two distinct communities but have a hub role)

The way of sampling nodes can create different structures when trying to find the nodes
of a neighbourhood in a random walk. In general, there are two main sampling paradigms:

• Breadth-first Sampling (BFS): This algorithm explores a graph systematically,
visiting all the neighbouring nodes of the current node before moving to the next
level. It focuses on exploring the neighbourhood of a node and therefore discovers
other nodes that share similar connections (structural equivalence).

• Depth-first Sampling (DFS): This algorithm explores a graph by following a
single path as deep as possible until it reaches a dead end (no unvisited neighbors).
Then, it backtracks and explores another branch. It samples nodes sequentially at
increasing distances from the source node, making it more likely to encounter node
that share similar characteristics. It tends to stay within clusters of similar nodes
(homophily).

We simulate a random walk of length l for a given source u. Let ci denote the ith node
in the walk with c0 = u. The nodes ci are generated by

P (ci = x|ci−1 = v) =

{
πvx
Z if (v, x) ∈ E

0 otherwise
(6)

where πvx is the unnormalised transition probability between nodes v and x and Z is
the normalising constant [Grover and Leskovec, 2016].

8

Graph
Input data

Embeddings

sampling
strategy

skip-gram
model

Figure 3: node2vec embedding process. Adapted from [Berbatova, 2020].

To introduce bias in random walks, we define second-order walks and incorporate two
parameters: p and q. Second-order walks consider both the current and previous states.
Essentially, when the algorithm determines traversal probabilities, it also takes into account
the previous step.

Figure 4: Transition probability diagram. Adapted from [Grover and Leskovec,
2016].

Consider a random walk that just traversed edge (s, v0) and now resides at node v0
(Figure 4). The walk now needs to decide on the next step so it evaluates the transition
probabilities πv0x on edges (v0, x) leading from v0.

We set the transition probability πv0x to

πv0x =


1
p if dsx = 0

1 if dsx = 1
1
q if dsx = 2

(7)

The return parameter p controls the likelihood of backtracking and revisiting a node.
A high value of p reduces the chances of revisiting nodes, preventing 2-hop redundancy and
promoting moderate graph exploration. Conversely, a low p value increases the likelihood
of backtracking, keeping the walk closer to the starting node.

The in-out parameter q allows differentiation between inward and outward nodes
during traversal. A high q value (q > 1) biases the walk towards nodes near the previous
step, providing a local view of the graph similar to a BFS. In contrast, a low q value

9

(q < 1) encourages the walk to visit nodes further away, promoting outward exploration
akin to a DFS.

In the example of Figure 5, we observe that from node v0 we explore s1, s2, s3, s4 via BFS
as the random walks stay around the central starting node, generating the neighborhood
NBFS(v0) = {s1, s2, s3, s4}. On the other hand, DFS traverses nodes s4, s5, s6 in a path,
generating NDFS(v0) = {s4, s5, s6}.

Figure 5: DFS and BFS diagram. Adapted from [Grover and Leskovec, 2016].

2.3 Node Removal Strategies

Referring back to RQ3 of the introduction, it is interesting to explore how the strategy of
removing nodes affects the accuracy of a node2vec model. We focus on removing nodes
randomly and based on centrality measures. In network analysis, centrality is defined
as an indicator of ranking nodes based on their position and connections relative to other
nodes.

2.3.1 Betweenness Centrality

Betweenness centrality is a measure of centrality based on shortest paths. It represents
the degree to which nodes stand between each other. Betweenness centrality was introduced
by Linton C. Freeman in his paper "A Set of Measures of Centrality Based on Betweenness"
published in 1977 [Freeman, 1977].

Betweenness centrality of node v is the total of the fraction of shortest paths that pass
through v. In other words is calculated by counting how often a node appears on the
shortest paths between other nodes in the networks.

CB(v) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

where V is the set of nodes, σ(s, t) is the number of shortest (s, t)-paths, and σ(s, t|v) is
the number of shortest (s, t)-paths that pass through v where v /∈ {s, t}. If s = t, σ(s, t) = 1
and if v ∈ {s, t}, σ(s, t|v) = 0 [Brandes, 2008].

2.3.2 Degree Centrality

An even simpler metric of centrality is degree centrality. It is defined as the number of
connections a node has to other nodes. More specifically, the degree centrality of node v
is defined as

CD(v) = deg(v)

10

2.4 Related Work

In this section, we briefly discuss related work on embedding models for both static and
dynamic graphs. The DeepWalk algorithm is the first work that uses a standard random
walk to create node sequences, namely the lists of traversed nodes, from a static net-
work [Perozzi et al., 2014]. Afterwards, node2vec was introduced as a modified version of
DeepWalk, utilizing BFS and DFS on random walks [Grover and Leskovec, 2016].

There have also been many papers explaining incremental skip-gram with negative
sampling in word2vec but not for node2vec. One of the most notable contributions is by
[Goldberg and Levy, 2014], also referenced previously in our analysis, where they aim to
explain the main negative sampling equation found in [Mikolov et al., 2013]. Other papers
focus on hyperparameter tuning. For example, the paper from [Caselles-Dupré et al.,
2018] focuses on finding optimal hyperparameters in a recommendation system setting,
employing grid search on various datasets to enhance performance.

There have not been many studies focusing on the performance of node2vec in large
scale dynamic networks or ways of optimising its performance. The original paper from
Grover and Leskovec analyses node2vec performance on popular graphs and includes some
experimental results in static graphs [Grover and Leskovec, 2016]. In addition, the paper
from Peng et al. [Peng et al., 2020] proposes an efficient incremental skip-gram algorithm
with negative sampling for dynamic network embeddings and includes theoretical analyses
about the performance guarantee. However, their proposed objective function appears to
contain a conceptual error, which could potentially impact the validity of their performance
guarantees and the overall correctness of the algorithm.

There are also more recent studies that focus on embedding dynamic graphs and are
not based on node2vec. One of them is from Trivedi et al. [Trivedi et al., 2019] where
they model the occurrence of an edge as a point process and parametrise the intensity
function by using a neural network, taking node embeddings as the input. They claim that
their approach outperforms representative baselines, including node2vec, for the problem
of dynamic link prediction and event time prediction. However, their method evaluates
only on two datasets which does not seem representative enough.

Another type of research that does not rely on node embeddings at all is from Pareja
et al. [Pareja et al., 2020]. They propose the EvolveGCN, a model that adapts graph
convolutional networks (GCNs) over time using a recurrent neural network (RNN) to
evolve GCN parameters, The model is evaluated on link prediction, edge classification,
and node classification.

11

3 Evaluation

In this chapter, we introduce the evaluation metrics used to assess the performance of our
custom node2vec implementation in node classification.

3.1 One-vs-Rest(OvR)

One-vs-Rest(OvR), also known as one-vs-all, is a strategy used for multiclass classification
tasks where you have more than two classes. In simple terms, it is the generalisation of lo-
gistic regression to multiple classes. In this approach, multiple binary classifiers are trained,
each one distinguishing between one class and the rest of the classes. More specifically,
separate binary classification models where each model is trained with positive samples be-
longing to the class of interest and samples from all other classes act as negative examples.
To predict the class label for a new sample, the sample is passed through every binary
logistic regression model and the model that gives the highest probability or confidence
score is chosen. The final output of the OvR logistic regression classifier is the predicted
class label for each sample [Bishop, 2006].

Figure 6: One-vs-Rest.

12

3.2 F-score

To define F-score, we first need to define accuracy, precision, and recall. Accuracy is
a measure of the overall correctness of the classifier, calculated as the ratio of correctly
predicted instances to the total instances in the dataset

Accuracy =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN

Precision (or positive prediction value), on the other hand, focuses on the relevance of
the model’s predictions, measuring the ratio of correctly predicted positive observations to
the total predicted positives

Precision =
TP

TP + FP

Recall (or true positive rate) gauges the classifier’s ability to identify all relevant in-
stances, calculated as the ratio of correctly predicted positive observations to all actual
positives in the dataset

Recall =
TP

TP + FN

The F-score, or F1-score, harmonizes precision and recall into a single metric, providing
a balance between these two crucial measures. It is defined as the harmonic mean of
precision and recall, given by the formula

F1 =
2

Recall−1 + Precision−1
= 2

Precision ·Recall

Precision+Recall
=

TP

TP + 1
2(FP + FN)

This metric is particularly useful in situations where there is an uneven class distri-
bution, as it considers both false positives and false negatives. The F-score ranges from
0 to 1, where 1 indicates perfect precision and recall, and 0 represents the worst possible
F-score, typically seen when precision or recall is 0 [Taha and Hanbury, 2015].

Computing precision and recall to calculate the F-score proves useful in a binary class
classification task. However, in a multi-class setting we would need to calculate the F-score
in a One-Vs-Rest (OvR) approach. In this OvR approach, we determine the metrics for
each class separately, as if there is a different classifier for each class. With this approach,
we obtain multiple per-class F-scores. It would be beneficial to average them to end up
with a single number to describe overall performance. For that reason, we introduce some
averaging methods.

13

3.3 Micro and Macro Averaging

In a mutilabel classification task, we define Macro-F1 score as the average of F1-scores
throughout all classes

Macro− F1 =
1

N

N∑
i=1

F1i =
1

N

N∑
i=1

2
Precisioni ·Recalli
Precisioni +Recalli

where

Precisioni =
TPi

TPi + FPi

and

Recalli =
TPi

TPi + FNi

In other words, it computes the F1 score for each class independently and then takes
the average. This treats all classes equally regardless of their frequency, making it optimal
when a dataset is imbalanced but the classes are equally important

We define Micro-F1 score as the global average F1 score by aggregating all true posi-
tives, false positives, and false negatives across all classes.

Micro− F1 = 2
Micro Precision ·Micro Recall

Micro Precision+Micro Recall

where

Micro Precision =

N∑
i=1

TPi

N∑
i=1

(TPi + FPi)

and

Micro Recall =

N∑
i=1

TPi

N∑
i=1

(TPi + FNi)

This makes it particularly useful when measuring the overall performance across all
classes [Manning et al.].

14

4 Method

4.1 Specifications of Datasets

We focus our research on the datasets that are more commonly used in node classification
tasks. More specifically:

Name |V | |E| Labels
BlogCatalog 10,312 333,983 39
PPI 3,890 38,739 50
Wikipedia 4,777 92,517 40
Cora 2,708 5,278 7

Table 1: Graph datasets.

• BlogCatalog [Zafarani and Liu, 2009]: This dataset includes 10,312 bloggers rep-
resented as nodes and 333,983 friendship relationships represented as edges. Each
blogger is associated with labels that represent their topic interests. There are 39
distinct labels in the network, and a single blogger can have multiple labels.

• PPI [Breitkreutz et al., 2007]: This dataset includes 3,890 nodes representing proteins
and 38,739 interactions represented as edges. Each protein is associated with labels
that represent biological states derived from hallmark gene sets. There are 50 distinct
labels in the network.

• Wikipedia [Mahoney, 2011]: This dataset includes 4,777 nodes representing words
and 92,517 edges representing co-occurrences between words. Each word is associated
with labels that represent its part-of-speech role. There are 40 distinct labels in the
network.

• Cora [McCallum et al., 2000]: This dataset includes 2,708 machine-learning papers
represented as nodes and 5,429 citations represented as directed edges. Each paper
is associated with labels that represent its class. There are 7 distinct classes in the
network.

4.2 Algorithmic Implementation

We use eliorc’s node2vec implementation [eliorc, 2022] in our experiments. Negative sam-
pling in node2vec is implemented using gensim.word2vec [Gensim, 2024]. In our research,
we adapt the node2vec implementation for use in dynamic graphs. Specifically, we take
snapshots of the evolving graphs and apply node2vec to each snapshot. This approach
allows us to simulate a dynamic graph evolving over time.

Additionally, we modified the implementation to support the starting_nodes argument.
Specifically, we define an additional argument to initiate random walks from specific start-
ing nodes. The modified node2vec function is defined as:

node2vec(dimensions, num_walks, walk_length, p, q, starting_nodes)

The code implementation is publicly available at https://github.com/mihalisag/
dynamic_graph_learning.

15

https://github.com/mihalisag/dynamic_graph_learning
https://github.com/mihalisag/dynamic_graph_learning

4.2.1 Dynamic Graph Generation

To dynamically update the graph, we first follow a custom procedure adapted from the
paper [Peng et al., 2020] to generate graphs dynamically. More specifically, we:

1. Define the starting connected graph Gn

2. Remove a node while ensuring the updated graph G∗ is still connected G∗ = Gt−1 \v

3. Store the updated graph

4. Repeat the process for a specified number of nodes r

5. Reverse the graph list

In step 2 of removing a node we have three options. The first option is to choose a
node randomly. The second option is to use the betweenness centrality (see Chapter 2.3.1).
Calculating betweenness centrality is computationally expensive because it involves finding
all shortest paths. To speed up the calculation we use the nx-parallel package from [Juneja,
2024] which can work in parallel to calculate the betweenness centrality for multiple nodes
simultaneously. In addition, we choose a subset of the nodes to increase efficiency by not
having to iterate through the random walks of all possible pairs, while still providing a
good approximation. The third option is to use degree centrality (see Chapter 2.3.2) which
is also computationally expensive but not as demanding as betweenness centrality.

The reason we have three different node removal methods is to ensure the node removal
process is unbiased. Specifically, by removing nodes based on centrality metrics instead of
purely at random, we can more effectively analyze the impact of removing key nodes in the
graph. Random node removal offers a baseline for comparison. Conversely, removing nodes
with high betweenness centrality targets those that act as bridges within the network, high-
lighting effects on connectivity. Similarly, using degree centrality to eliminate nodes with
the most connections emphasizes important changes in the network’s structure. Examining
these varied strategies helps us understand how different removal methods influence the
network.

After this process, we obtain a list of connected graphs starting with a connected
subgraph G0 where |VGn−r | = |VGn | − r, for r = 0, 1, . . . n and building up to the initial
graph Gn.

The main reason we follow this process is to maintain the original structure of the initial
graph while we take its subgraphs. This is particularly important for our experiments later
in node classification as it is helpful to keep the structure of the dataset used.

We can now use this list of graphs for our extending and pruning experiments. We
define the algorithms used in pseudocode.

16

Algorithm 1: remove_nodes_connected(G, N, removal_process)

Data: Initial graph G, Number of nodes to remove N , Node removal process
removal_process

Result: Pruned graph G′, Removed nodes-edges dictionary D

Set random seed to 42;
G′ ← copy of G;
D ← empty dictionary;
ignore_list← empty list;
while N > 0 and |G′.nodes| > 0 do

if removal_process = ’random’ then
v ← random node from G′.nodes;

else if removal_process = ’betweenness_centrality’ then
bet_centr_dict← betweenness centrality of G′;
bet_centr_dict← filter out nodes in ignore_list;
v ← node with max betweenness centrality in bet_centr_dict;

else if removal_process = ’degree_centrality’ then
deg_centr_dict← degree centrality of G′;
deg_centr_dict← filter out nodes in ignore_list;
v ← node with max degree centrality in deg_centr_dict;

components← list of connected components of G′;
component_v ← None;
foreach component ∈ components do

if v ∈ component then
component_v ← component;
break;

if component_v ̸= None then
subgraph← create subgraph of G′containing component_v;
subgraph← remove node v from subgraph;
if subgraph is connected then

removed_edges← edges of G′containing v;
add (v, removed_edges) pair to D;
G′ ← remove node v from G′;
N ← N − 1;

else
if removal_process ∈ {’betweenness_centrality’, ’degree_centrality’}
then

add v to ignore_list;

return G′, D

17

Algorithm 2: dynamic_graph_gen(G, R)

Data: Initial graph G, Number of different nodes R

Result: List dynamic_graphs of dynamic graphs

dynamic_graphs← [G];

G′ ← copy of G;

while i ≤ R do

G′ ← remove_nodes_connected(G′, 1);

append G′ to dynamic_graphs;

i← i+ 1;

return dynamic_graphs

...

Figure 7: Dynamic graph generation. (i) Initial graph structure. (ii) Selection of
a node for removal while ensuring the graph remains connected. (iii) Removal of
the selected node. (iv) Final resulting graph.

18

We also define some of the variables that are used in both extending and pruning
algorithms:

• X: list of vector embeddings

• y: group label of the corresponding embeddings of X

• D: dictionary of (node label, vector embedding) pairs

• model ← node2vec(G, starting_nodes): model by applying node2vec to graph G
and initiating random walks from starting_nodes (optional)

• emb_group(model.fit()): fit model and generate X, y,D

4.2.2 Extending the graph

To extend the graph, we first generate the list of dynamic graphs which is passed as input
to the algorithm. We follow this process

We first declare the dynamic graphs, Gi and Gj , from the graph list. Here, i and j
represent the moments the graphs were sampled, with i < j. We then time the global
and local retraining parts separately. In the global retraining process we take as input of
the node2vec algorithm the resulting graph Gj . For the local retraining we again take as
input graph Gj but we define as starting nodes ∆ the different nodes of the two graphs
Gi, Gj . We also keep track of the nodes traversed from the random walks of the local
model. Finally we update the initial embeddings with the embeddings obtained from the
new random walks.

1

2

3

4

Figure 8: Extending the graph. (i) A snapshot of the initial graph. (ii) Nodes are
added (green), increasing the graph’s size and complexity. (iii) Four random walks
are initiated from selected nodes within the newly added portion of the graph.

19

Algorithm 3: dynamic_extend(G, N, graphs_list)

Data: Initial graph G, Number of nodes to add N , list of graphs graphs_list

Result: Global and local embeddings, times taken for global and local

embeddings, number of added nodes

Gi ← first graph in graphs_list;

Gj ← last graph in graphs_list;

∆ = |VGj | \ |VGi |;
model_i← node2vec(Gi);

model_i.fit();

Xi, yi, Di ← emb_group(model_i);

global timing

model_global← node2vec(Gj);

model_global.fit();

X_local, y_global,D_global← emb_group(model);

local timing

model_temp← node2vec(Gj , starting_nodes = ∆);

D_temp← emb_group(model_temp);

traversed_nodes← nodes from random walks of model_temp;

D_local← copy of Di;

update pairs of D_local with pairs of D_temp for keys in traversed_nodes;

X_local, y_local← unpack (node label, embedding) pairs from dictionary

D_local

return

X_global, y_global,X_local, y_local, total_global_time, total_local_time, |∆|

20

4.2.3 Pruning the graph

Before we prune the graph, we need to first keep track of the neighbors of the nodes we
plan to remove. We introduce an additional variable N∆ which denotes the random walk
neighbors of a nodes set ∆. More specifically, we define an algorithm which traverses a set
of nodes ∆ of a graph and saves the walk neighbors of ∆ that are H steps away

Algorithm 4: get_neighborhood(G, ∆, H)

Data: Graph G, Nodes set ∆, Maximum number of hops H

Result: H steps away neighbor nodes of ∆

final_neighbors← [];

for each node in ∆ do

current_neighbors← neighbors of node in G;

all_neighbors← current_neighbors;

for i← 1 to H do

new_neighbors← set();

for each neighbor in current_neighbors do

append neighbor to new_neighbors;

current_neighbors← new_neighbors− all_neighbors;

append current_neighbors to all_neighbors;

Remove node from all_neighbors;

Create neighborhood_subgraph from G using all_neighbors;

append nodes of neighborhood_subgraph to final_neighbors;

return final_neighbors;

For the pruning process, we follow a similar approach as in the extension process. We
first declare the dynamic graphs, Gi and Gj , with i > j. For clarity, we refer to these graphs
as G_updated and G_pruned, respectively. We then time the global and local retraining
parts separately. In the global training we take as input of the node2vec algorithm the
pruned graph G_pruned. For the local retraining we first keep track of the different nodes
∆ of the pruned and updated (initial) graph. We then obtain the neighbourhood N∆ of
the nodes ∆ found in the initial graph. Afterwards, we generate a node2vec model and
embeddings dictionary D_pruned taking as input the pruned graph and as starting nodes
the neighbors N∆. We create an embeddings dictionary D_mod as a copy of the initial
embeddings but filtered to the nodes of N∆. Finally, we update the embeddings dictionary
D_mod with the embeddings from D_pruned and unpack the local embeddings.

21

Algorithm 5: dynamic_prune(G, R, graphs_list)

Data: Initial graph G, Number of nodes to prune R, list of graphs graphs_list

Result: Global and local embeddings, times taken for global and local retraining,

number of removed nodes

G_pruned← first graph in graphs_list;

G_updated← last graph in graphs_list;

∆ = |VG_updated| \ |VG_pruned|;
model_initial← node2vec(G);

model_initial.fit();

X_initial, y_initial,D_initial← emb_group(model_initial);

global timing

model_updated← node2vec(G_pruned);

model_updated.fit();

X_global, y_global,D_global← emb_group(model_updated);

local timing

N∆ ← get_neighborhood(G_initial,∆, 1);

model_pruned← node2vec(G_pruned, starting_nodes = N∆);

X_pruned, y_pruned,D_pruned← emb_group(model_pruned);

D_mod← copy of D_initial filtered to different nodes N∆;

update pairs of D_mod with pairs of D_pruned;

X_local, y_local← unpack (node label, embedding) pairs from dictionary

D_mod ;

return

X_global, y_global,X_local, y_local, total_global_time, total_local_time, |∆|

22

1

2

3
4

Figure 9: Pruning the graph. (i) A snapshot of the original graph. (ii) Nodes are
selected (red) such that the graph remains connected after they are removed. (iii)
The resulting pruned graph with the removed nodes’ neighbors (blue). (iv) Four
random walks initiated from the neighbouring nodes.

23

5 Results

We are evaluating our implementation on the task of node classification. Before comparing
the embeddings in terms of accuracy and training time, we first present some experimental
results about our implementation.

5.1 Experimental Analysis and Modifications

Ideally, node2vec samples from the distribution of P (v) (see chapter Chapter 2.2.2). How-
ever, eliorc’s implementation relies on node co-occurrence frequencies from the generated
walks instead of the degree distribution, similar to how word2vec uses word frequencies in
text data.

It has been proven for DeepWalk (a special case of node2vec where p = q) that if the
degree distribution of a connected graph follows a power law, the frequency with which
vertices appear in the random walks also follows a power-law distribution [Perozzi et al.,
2014]. In graph theory, a power law distribution describes a network where a few nodes
have many connections, while most nodes have few. It also has a heavy tail, meaning a few
nodes have an exceptionally high number of connections. This empirically justifies using
frequencies instead of degrees for negative sampling. However, this theoretical basis is only
proven for DeepWalk, which uses standard random walks. For the generalized version of
node2vec, especially for short random walks, this lemma does not necessarily hold true.
Furthermore, node2vec relies on biased random walks (as defined in Chapter 2.2.3).

To empirically analyze if sampling from node frequencies is similar to sampling from
the degree distribution, we have included graphs of the degree and frequency distributions
(see Figures 10, 11). A theoretical analysis and proof would be outside the scope of this
project.

100 101 102 103

Degree x

10−4

10−3

10−2

10−1

100

P
r(
d
eg

(v
)
≥
x

)

(a)

103 104 105

Visits x

10−2

10−1

100

P
r(
V
≥
x

)

(b)

Figure 10: Degree (a) and frequency (b) log-log plot. In plot (a) the x-axis
represents the degree x of a node v while the y-axis represents the probability that
the degree is larger or equal than x. In plot (b) the x-axis represents the visits x
of a random walk while the y-axis represents the probability that a node has visits
larger or equal than x.

24

0 1000 2000 3000 4000

Degree

0

50000

100000

150000

200000

250000

300000

350000

V
is

it
s

Figure 11: Correlation plot of Degree-Frequency.

In Figure 10, both the degree distribution plot (a) and the frequency plot (b) follow a
similar distribution. More specifically, both plots exhibit a heavy-tailed distribution. This
indicates while most nodes have a relatively low degree, there are a few nodes with a very
high degree.

In Figure 11, it appears that degree and frequency are directly correlated, which is
indicated by the linear relationship observed in the scatter plot. Specifically, as the degree
of a node increases, the number of visits also increases proportionally. This correlation
suggests that nodes with higher connectivity (higher degree) are visited more frequently
during the random walks. This direct correlation can be explained by the nature of random
walks as they more likely to visit highly connected nodes due to their increased number of
edges.

(a) (b)

Figure 12: Plots

We also plot the frequency and correlation plots for multiple (p, q) configurations.
We again observe that they all follow a similar distribution (Figure 12a) and have direct
correlation (Figure 12b).

25

5.2 Dataset F-scores

Metric Retraining 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1
Global 0.7178 0.7535 0.7581 0.7730 0.7940 0.8082 0.8173 0.8167 0.8371
Local 0.7350 0.7628 0.7758 0.7846 0.8058 0.8173 0.8253 0.8229 0.8487

Macro-F1
Global 0.7511 0.7650 0.7722 0.7951 0.7982 0.8195 0.8217 0.8454 0.8457
Local 0.7596 0.7766 0.7827 0.8043 0.8058 0.8201 0.8229 0.8450 0.8524

Table 2: Performance metrics for Cora dataset for (d, r, l, p, q) =
(128, 40, 80, 0.25, 1).

In Table 2, we gather the F1-scores for a specific dataset. We define the column
"Retraining" for differentiating between global retraining (taking as input all the graph’s
nodes) and local retraining (taking as input only the affected area of the graph). We also
contain "training size percentage" columns ranging from 10% to 90%, representing the
micro/macro F1-scores for different training/test ratios. E.g. 10% means training size =
0.9 ∗ dataset size.

We create this table for every choice of node2vec hyperparameter list (d, r, l, p, q) and
type of dynamic update (extending/pruning) for each dataset. From now on, we define
(d, r, l, p, q) = (128, 40, 80, 0.25, 1) as the default node2vec hyperparameter list (see Chapter
5.4 for explanation).

As expected, the scores rise as the training size increases. However, for every dataset
the scores can differ. For example, the BlogCatalog dataset has much lower F1-scores
compared to the other datasets (see Figure 13).

26

Figure 13: Comparison of global and local retraining for (a) PPI, (b) BlogCatalog,
(c) Cora and (d) Wikipedia datasets using F1-scores. Blue circles represent global
retraining, while red triangles represent local retraining.

27

The scores for each dataset are found in Figure 13. In the PPI, Cora and Wikipedia
datasets, micro-F1 scores of both global and local retraining show an increasing trend with
training size, with local retraining (red triangles) slightly outperforming global retraining
(blue circles) at larger sizes. This also appears to be true for the macro-F1 scores. The
superior performance of local retraining might be attributed to its ability to capture local
structures more effectively, although the differences are minimal.

In the case of the BlogCatalog, it seems that after 50% of the training size, the global
scores seem to outperform the local ones. Nevertheless, the differences between the two
strategies remain very small.

PPI blog catalog cora wikipedia
0.0

0.2

0.4

0.6

0.8

1.0

(a)

PPI blog catalog cora wikipedia
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 14: Bar charts comparing dataset time speedup and accuracy difference for
(a) extend and (b) prune methods across datasets. Green bars represent speedup,
while red bars represent accuracy difference.

Another important measure of performance is presented in Figure 14. The figure aver-
ages the macro F1-scores for each dynamic update process and for each training percentage
using the default hyperparameter list. The red bar represents the accuracy difference be-
tween retraining locally and globally. It seems that the difference is miniscule. In contrast,
the difference in time speedup (green bar) is substantial, reaching at least 70% in speedup
gains for both types of dynamic update. More specifically, when extending the graph the
cora dataset reaches an 80% gain while keeping an accuracy loss of less than 5%. In the
case of pruning, the wikipedia dataset seems to score the highest speedup gain among the
datasets, reaching almost 85%. However, it also has the highest accuracy loss among all
datasets passing 10%, even though it is still relatively small.

28

5.3 Random Walk Length

Another important comparison can be made on the length of the random walks. More
specifically, we perform experiments for a walk length = 40 and walk length = 80 for both
types of dynamic update. We take the average results of all hyperparameter sets (see
Chapter 5.4 for hyperparameter details).

PPI blog catalog cora wikipedia
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

(a) accuracy (extend)

PPI blog catalog cora wikipedia
0

1000

2000

3000

4000

5000

T
im

e
(s

)

(b) time (extend)

PPI blog catalog cora wikipedia
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

(c) accuracy (prune)

PPI blog catalog cora wikipedia
0

1000

2000

3000

4000

5000

T
im

e
(s

)

(d) time (prune)

Figure 15: Comparison of walk lengths in terms of accuracy and time across
datasets. Blue bars represent a walk length of 40, while orange bars represent a
walk length of 80.

From Figure 15 we observe that in the case of extending, both random walk lengths
seem to offer almost identical accuracy. In comparison, choosing walk length = 40 seems
to offer a dramatic time difference. For every dataset, the amount of time used to retrain
the model is doubled when the walk length = 80 on average. For BlogCatalog a time
difference of almost 40% is observed. In the wikipedia dataset a difference of is found.

In the case of pruning, a similar behaviour is observed as in extending. The main
difference lies in the wikipedia dataset. In terms of accuracy, having a longer walk length
seems to give almost double the accuracy. In terms of time, both walk lengths offer a
higher speedup, especially in the case of the shorter walk length which is more than 60%
faster than the longer random walk.

29

5.4 Hyperparameter Configurations

We perform grid search on the hyperparameter space of the node2vec algorithm. Grid
search systematically generates all possible combinations of these values, forming a Carte-
sian product of hyperparameter sets [Goodfellow I., 2016].

We define the hyperparameter space as follows

(d, r, l, p, q) ∈ {64, 128}×{8, 10, 20, 40, 80}×{8, 80, 160, 240}×{0.25, 0.5, 1, 2, 4}×{0.25, 0.5, 1, 2, 4}
where

• d is the vector dimension

• r is the number of random walks

• l is the random walk length

• p the return parameter

• q the in-out parameter

(a) PPI (b) BlogCatalog

(c) Cora (d) Wikipedia

Figure 16: Scatter plots comparing accuracy and time in terms of global and
local retraining across datasets. Blue dots represent global retraining and orange
dots represent local retraining. Green dotted circles represent the hyperparameter
intersection.

30

In Figure 16, we observe that local retraining performs much better than global in
terms of time while keeping a high accuracy. This plot takes into account the whole
hyperparameter set where each dot corresponds to a different (d, r, l, p, q) configuration.

We take the intersection of the parameters that maximise accuracy for each dataset
in terms of local retraining. From our analysis, it seems that (128, 40, 40, 0.25, 1) is the
optimal configuration. The relative low value of the return parameter p = 0.25 makes the
walks more probable to backtrack and stay close to the starting node. Additionally, as
discussed in Chapter 5.3, selecting l = 40 yields precise results while significantly reducing
computation time.

We also choose 512 as the number of nodes when generating dynamic graphs. This
choice ensures that the implementation remains computationally feasible while still pro-
viding a representative baseline for each network.

31

5.5 Node Removal Strategies

PPI blog catalog cora wikipedia
0.0

0.2

0.4

0.6

0.8

1.0

degree centrality betweenness centrality random

Figure 17: Bar charts comparing accuracy for different node removal processes
across datasets. Blue bars represent node removal via degree centrality, orange bars
via betweenness centrality and green bars via removing nodes randomly.

In Figure 17, we observe that choosing a random node to remove when generating
the dynamic graphs is always more accurate than removing nodes based on centrality
measures. However, the differences are minimal. Specifically, the degree centrality method
consistently results in the lowest accuracy across all datasets, indicating that removing
nodes with the highest number of connections disrupts the network structure more than
other methods.

Another interesting point is the time complexity of the different removal processes. As
mentioned in Chapter 4.2.1, betweenness centrality as a node removal strategy is com-
putationally expensive. Calculating betweenness centrality for all nodes in a graph has
a time complexity of O(n3) in the worst case, where n is the number of nodes. Degree
centrality has a time complexity of O(n+m) where n is the number of nodes and m the
number of edges, as it initialises a degree count for each node (O(n)) and iterates through
all edges, where each edge increments the degree count of the node it connects (O(m)). In
comparison, selecting a random node to remove takes O(1).

Given its superior accuracy and lower computational complexity, random node removal
emerges as the best overall strategy.

32

6 Conclusion and Discussion

The main goal of this research was to optimize node2vec for dynamic graphs and evaluate
its performance in terms of time and accuracy. Reflecting on our first two research ques-
tions about making node2vec more efficient in dynamic graphs through approximations, we
demonstrated that local training, rather than retraining the entire updated graph, yields
similar results. Although this approach results in a relatively small loss in accuracy, it
provides a significant speedup. Regarding the third research question on how the selection
of a node for removal impacts the model’s accuracy, our findings indicate that different re-
moval methods lead to varying accuracy outcomes, though these differences were relatively
minor. Notably, random node removal emerged as the most accurate and efficient strategy
among the methods we tested.

It is important to note the limitations of our study. First of all, there are imbalances
and differences in our datasets, particularly with the much larger BlogCatalog dataset. We
removed the same number of nodes from every dataset. While this number was sufficient
for most datasets, representing a significant portion of each graph, BlogCatalog might have
benefited from removing a larger number of nodes. Additionally, a greater variety in the
number of nodes removed could have been more beneficial. However, the main constraint
was the computational complexity of the random walks, as the algorithm needs to traverse
every node, making the time scale by the size of the graph and the node set. We were
unable to perform extensive hyperparameter tuning on the BlogCatalog dataset, unlike
the more comprehensive testing conducted on other datasets due to the complexity of the
random walks and the size of the dataset.

Another point to consider is the different structure of each graph. It is highly probable
that graphs with different statistics (e.g., number of nodes/edges, number of connected
components, clustering coefficient, etc.) would yield different results. Additional experi-
ments could be done in more datasets to recognise possible patterns when removing specific
nodes. The analysis could also be coupled with graphs statistics (e.g. clustering coefficient,
degree statistics etc.) to understand the effect of removing specific nodes.

Additionally, exploring new methods for extending and pruning the graph could yield
valuable insights. For instance, when extending the graph, it would be intriguing to ex-
amine the impact of attaching another graph to the existing one and analyze how the
embeddings change based on the structure of the new graph (e.g. if the attaching graph
has the structure of a tree graph, a path graph etc.).

33

A Hardware Implementation

Running Environment. The experiments are conducted on a single CPU-only Linux
server with AMD EPYC 7713P 64-Core Processor and 128G RAM. The number of parallel
workers is 64, equal to the number of cores.

34

References

Mohammadreza Armandpour, Patrick Ding, Jianhua Huang, and Xia Hu. Robust negative
sampling for network embedding. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):3191–3198, July 2019. ISSN 2374-3468, 2159-5399. doi: 10.1609/
aaai.v33i01.33013191.

Melania Berbatova. Using Structured Information from Tags for Book Recommendations.
PhD thesis, 03 2020.

Christopher M. Bishop. Pattern recognition and machine learning. Information science
and statistics. Springer, New York, 2006. ISBN 978-0-387-31073-2.

Ulrik Brandes. On variants of shortest-path betweenness centrality and their generic com-
putation. Social networks, 30(2):136–145, 2008.

Bobby-Joe Breitkreutz, Chris Stark, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz,
Michael Livstone, Rose Oughtred, Daniel H Lackner, Jürg Bähler, Valerie Wood, et al.
The biogrid interaction database: 2008 update. Nucleic acids research, 36(suppl_1):
D637–D640, 2007.

Hugo Caselles-Dupré, Florian Lesaint, and Jimena Royo-Letelier. Word2vec applied to
recommendation: hyperparameters matter. In Proceedings of the 12th ACM Confer-
ence on Recommender Systems, page 352–356, Vancouver British Columbia Canada,
September 2018. ACM. ISBN 978-1-4503-5901-6. doi: 10.1145/3240323.3240377. URL
https://dl.acm.org/doi/10.1145/3240323.3240377.

eliorc. Node2vec. https://github.com/eliorc/node2vec, 2022. Accessed: 2024-05.

Linton C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40
(1):35, March 1977. ISSN 00380431. doi: 10.2307/3033543.

Gensim. Word2vec. https://radimrehurek.com/gensim/models/word2vec.html, 2024.
Accessed: 2024-05.

Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-
sampling word-embedding method. (arXiv:1402.3722), February 2014. URL http://
arxiv.org/abs/1402.3722. arXiv:1402.3722 [cs, stat].

Courville A. Goodfellow I., Bengio Y. Deep learning. The MIT Press, 2016.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 855–864, 2016.

Petter Holme and Jari Saramäki. Temporal networks. Physics reports, 519(3):97–125,
2012.

Aditi Juneja. nx-parallel. https://github.com/networkx/nx-parallel/tree/main,
2024. Accessed: 2024-07.

Nobuhiro Kaji and Hayato Kobayashi. Incremental skip-gram model with negative sam-
pling. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel, editors, Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, pages 363–371,
Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi:
10.18653/v1/D17-1037. URL https://aclanthology.org/D17-1037.

35

https://dl.acm.org/doi/10.1145/3240323.3240377
https://github.com/eliorc/node2vec
https://radimrehurek.com/gensim/models/word2vec.html
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1402.3722
https://github.com/networkx/nx-parallel/tree/main
https://aclanthology.org/D17-1037

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Matt Mahoney. Large text compression benchmark. http://www.mattmahoney.net/dc/
textdata, 2011.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to in-
formation retrieval.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automat-
ing the construction of internet portals with machine learning. Information Retrieval, 3:
127–163, 2000.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In C.J.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki
Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph
convolutional networks for dynamic graphs. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 5363–5370, 2020.

Hao Peng, Jianxin Li, Hao Yan, Qiran Gong, Senzhang Wang, Lin Liu, Lihong Wang,
and Xiang Ren. Dynamic network embedding via incremental skip-gram with negative
sampling. Science China Information Sciences, 63:1–19, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701–710, 2014.

Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. Simple and effective
graph autoencoders with one-hop linear models. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium,
September 14–18, 2020, Proceedings, Part I, pages 319–334. Springer, 2021.

Abdel Aziz Taha and Allan Hanbury. Metrics for evaluating 3d medical image segmenta-
tion: analysis, selection, and tool. BMC medical imaging, 15:1–28, 2015.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep:
Learning representations over dynamic graphs. International Conference on Learning
Representations (ICLR), 2019. URL https://openreview.net/references/pdf?id=
Hy8cqH0rE.

Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang. Un-
derstanding negative sampling in graph representation learning. page 1666–1676, Au-
gust 2020. doi: 10.1145/3394486.3403218. URL https://dl.acm.org/doi/10.1145/
3394486.3403218.

R. Zafarani and H. Liu. Social computing data repository at ASU, 2009. URL http:
//socialcomputing.asu.edu.

36

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://www.mattmahoney.net/dc/textdata
http://www.mattmahoney.net/dc/textdata
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://openreview.net/references/pdf?id=Hy8cqH0rE
https://openreview.net/references/pdf?id=Hy8cqH0rE
https://dl.acm.org/doi/10.1145/3394486.3403218
https://dl.acm.org/doi/10.1145/3394486.3403218
http://socialcomputing.asu.edu
http://socialcomputing.asu.edu

	Introduction
	Problem Statement
	Thesis Outline

	Background
	word2vec
	Skip-gram
	Negative Sampling

	node2vec
	Skip-gram
	Negative Sampling
	Biased Random Walks

	Node Removal Strategies
	Betweenness Centrality
	Degree Centrality

	Related Work

	Evaluation
	One-vs-Rest(OvR)
	F-score
	Micro and Macro Averaging

	Method
	Specifications of Datasets
	Algorithmic Implementation
	Dynamic Graph Generation
	Extending the graph
	Pruning the graph

	Results
	Experimental Analysis and Modifications
	Dataset F-scores
	Random Walk Length
	Hyperparameter Configurations
	Node Removal Strategies

	Conclusion and Discussion
	Hardware Implementation

